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Preface

This booklet has first an elementary explanation of the geometry of Zonohedra, then
a more difficult account of the growths of the thirty-one zone star. This system, based
on the 31 lines that pass through the center of an icosahedron and either a vertex,
edge midpoint or face midpoint is new and unusual.
I have applied for a patent on this structural system. The patent is assigned to

Zomeworks Corporation. The predecessors of this system are the octet truss and
the MERO space grid system. The relative potentials of these systems are discussed
briefly by a comparison of their geometric possibilities.
The forms possible using this system are limitless; there is no attempt here to

explore these possibilities—the examples shown are small probings. The booklet
describes the mathematics of the process that creates these limitless forms.
The framework for the Robert Ford residence was designed by JimWelty and Robert

Ford.
The shallow rectangular based trusses were designed by Berry Hickman of Zome-

works who also introduced the excellent plastic ball joint used throughout in the
models photographed.
The design andmanufacture of the 6-zone aluminum joint was done by Otto Jung

of Design Industries in Albuquerque.
Ken Leonard did the layout and both he and my wife, Holly, gave much editorial

assistance.

S.C.B.
Albuquerque
August 1970
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1 Zomes, Domes and Clusters

1.1 What Are Zomes?

A Zome is a man-made structure derived from zonohedra. The zones of the zonohe-
dronmay be stretched or shrunk or removed to produce, if desired, an asymmetric
dome shaped structure.

Zomes may be single or clustered.

Figure 1: Zome
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Figure 2: Zome, with person and child

Zomes can cluster together like soap bubbles. Their zones can be stretched, shrunk,
or omitted completely to make the various zomes’ different shapes and sizes. The
zomes can also pack several layers deep.

Figure 3: Construction of a Zome structure



Figure 4: Scale model of a Zome structure

Figure 5: Construction of a Zome structure



Figure 6: Scale model of a Zome structure

1.2 What is the Difference Between a Zome and a Geodesic Dome?

A geodesic dome is a structure which closely follows the shape of the sphere and
whose edge lengths closely follow the path of great circles on the sphere. (These are
the sphere’s geodesics.) The geodesic dome, because of its shape, and the arrangement
of its structural members is extremely strong, but its uses are limited because of the
inflexibility of its shape. It is always part of a sphere—a low bubble or a high bubble—its
floor is always a circle—any variation would destroy the structural properties of the
geodesic dome. The geodesic dome, if it is large and composed of many edges and
joints, has many different edge lengths. It is complicated in structure and simple in
shape. Zomes are simple in structure and complicated in shape.



Figure 7: Geodesic Dome—DEW line Radome, circa 1956

Figure 8: Geodesic Dome





2 Zonohedra

2.1 What are Zonohedra?

A zonohedron is a convex solid, all of whose faces are polygons with edges in equal
and parallel pairs.

These are possible faces for zonohedra:
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Figure 9: Possible faces

These are zonohedra:



Figure 10: Cube

Figure 11: Octagonal prism



Figure 12: Rhombic Dodecahedron



Figure 13: Truncated Octahedron



Figure 14: Truncated Cuboctahedron



Figure 15: Great rhombicosidodecahedron or Truncated icosidodecahedron

A zone of edges is a band of parallel edges which circles the solid. Every edge
belongs to a zone.



Figure 16: Seven-Zone Polar Zonohedron



Figure 17: Polar Zonahedron from CHH Franklin’s drawing



2.2 Face Planes of Zonohedra

A plane is defined by two lines. A six-zone figure has six different lines; 1, 2, 3, 4, 5, 6.
Howmany pairs can we form with six objects?

1,2 2,3 3,4 4,5 5,6
1,3 2,4 3,5 4,6
1,4 2,5 3,6 = 15
1,5 2,6
1,6

Table 2.1: Pairs of Six Objects

Algebraic expression:

𝑋 = (𝑛)(𝑛 − 1)
2



Figure 18: Zone “1” shaded



Figure 19: Rhombic Triconntahedron, labeled zones

RhombicTriacontahedronwith face planes labeledwithnumbers of the zoneswhich
form the plane.
There are then 15more faces on the other side which add up to the 30 faces of the

Triacontahedron.

The ten-zone system can form
10 × 9
2 × 1

= 45 different planes.
This figure is the enneacontahedron with its faces marked:



Figure 20: Enneacontahedron, labeled

The equation is for the number of planes, and if we wish to find the total number of
faces for the polyhedron, including the back side, multiply the number of different
planes by 2, and this equals (𝑛)(𝑛 − 1).



The formula
(𝑛)(𝑛 − 1)

2
is true for the number of planes that can be formed with

the different zones provided that no more than two lines lie in one plane. These
collections of lines associated with zonohedra are called the stars of the zonohedra. A
star is called non-singular if no three of the lines are coplanar.

If three lines of the star lie in one plane, then the zonohedron associated with the
star has a pair of hexagons. If more than three lines lie in one plane, then there are
facets to the zonohedron with corresponding more edges—octagon, decagon, etc.



Figure 21: Singular Star, through vertices of cuboctahedron.



Figure 22: Associated zonohedron, truncated octahedron

2.3 Section Stars and Face Planes

The zonohedron that has its edges parallel with the lines of the 31-zone star is a huge
figure with faces—two faces for each of the 121 sections—one face on each side of the
figure. The face corresponding to a particular section is formed by the lines of the star
following each other head to toe around in a complete polygon. Consequently, the 242
sided zonohedron associated with the 31 zone star has:



12 regular decagons T sections
30 irregular dodecagons R sections
60 irregular hexagons S sections
20 regular hexagons V sections
60 rectangles X sections
60 rectangles Y sections

242

Table 2.2: Faces of a 31 Zone Star

Figure 23: Associated face plane



Figure 24: Section star



2.4 Division of Zonohedra into Parallepiped Cells

Figure 25: Rhombic Dodecahedron

Every zonohedron can be divided into component parallelepiped cells. Every set of
three different lines form one cell. In the case of the four-zone rhombic dodecahe-
dron 25, there are then:

𝐶4
3 = 4 ⋅ 3 ⋅ 2

3 ⋅ 2 ⋅ 1
= 4 cells. (2.1)

The sides of the component parallelepiped cells are necessarily the same as the
sides of the complete figure.



Figure 26: Triacontahedron

The triacontahedron subdivides into:

𝐶6
3 = 6 ⋅ 5 ⋅ 4

3 ⋅ 2 ⋅ 1
= 20 cells. (2.2)

The rhombic triacontahedron divides into 10 acute and 10 obtuse parallelepipeds.



Figure 27: Enneacontahedron



The enneacontahedron subdivides into

𝐶10
3 = 10 ⋅ 9 ⋅ 8

3 ⋅ 2 ⋅ 1
= 120 cells. (2.3)

There are five different kinds of cells. With one kind of diamond, there are only two
kinds of cells possible, but the enneacontahedron has two kinds of diamond faces
allowing for more types of cells.
There are:

10 A cells 6 fat diamonds acute
20 B cells 6 fat diamonds obtuse
30 C cells 4 fat diamonds 2 skinny diamonds acute
30 D cells 4 skinny diamonds 2 fat diamonds acute
30 E cells 2 skinny diamonds 4 fat diamonds obtuse

120 cells

Table 2.3: Cells of the Enneacontahedron



3 Regular Ways of Arranging Lines in
Space

The regular polyhedra are like seeds from which growths may appear. They are the
connecting joints for the zonohedra. The joints are all parallel to each other. The lines
of the zonohedra are perpendicular to the faces of the joints.
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3.1 Three Zones

Figure 28: Cube



3.2 Four Zones

Figure 29: Tetrahedron



Figure 30: Octahedron



Figure 31: Rhombic Dodecahedron



3.3 Six Zones

Figure 32: Dodecahedron



Figure 33: Rhombic Triacontahedron





3.4 Ten Zones

Figure 34: Icosahedron



Figure 35: Rhombic Enneacontahedron





4 Clustering

4.1 Twenty-one Zone Structure

Triacontahedron

In this series, the central zome is higher. It could as well be lower.
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Figure 36: Triacontahedron, 1



Figure 37: Triacontahedron, 2



Figure 38: triacontahedron, 3



Figure 39: triacontahedron, 4



Figure 40: triacontahedron, 5



Figure 41: triacontahedron, 5

Enneacontahedron of edge length𝐵 clustered with triacontahedron of edge length
𝐴 and triacontahedron of edge length𝐴𝑇 −1.



Figure 42: Enneacontahedron with 2 triacontahedrons

Clusters of triacontahedra -𝐴 line vertical.



Figure 43: Triacontahedra, 5



Figure 44: triacontahedra, 5

4.2 Twenty-one Zone Zome Clusters

6𝐴 LINES 15𝐶 LINES Orientation: 𝐴 lines horizontal



Figure 45: Two triacontahedra fused through skew hexagon.

Two triacontahedra fused through skew hexagon.



Figure 46: Front view - same as above.



Figure 47: Same cluster as above - One zome has zone stretched past others.

Figure 48: Three triacontahedra fused, through skew hexagon.



Figure 49: Front view - same as above.

Figure 50: Fourth zome added - fused to two side zomes through skew hexagon - fused
to front zome through vertical section.



Figure 51: Same as above. Notice the appearance of𝐶 and𝐶𝑇 in the floor sections.





5 Stretching a Zone

Zonohedra have bands of parallel edges. Any such band of edges can be stretched
to alter the shape of the zonohedron. Stretching a band of edges does not alter any
angles.

Figure 52: Six zone zome - half a triacontahedron
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Figure 53: 1 horizontal zone stretched to 2



Figure 54: same as above (top view)



Figure 55: 2nd horizontal zone stretched to two top panels 2x2 (top view)



Figure 56: 2 side zones stretched

Stretching zones allows one to build buildings of different shapes using the same
kinds of components.



Figure 57



Figure 58



Figure 59



6 Trusses: Twenty-one Zone System

6.1 6𝐴 Lines 15𝐶 Lines

Figure 60: Single 21-zone𝐴 cell
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Figure 61: 2𝐴 cells



Figure 62: 4𝐴 cells



Figure 63: 8𝐴 cells

Figure 64: Truss turning corner 8𝐴 cells



Figure 65: Truss turning corner 8𝐴 cells - 4𝐵 cells



Figure 66: Truss forming arch*𝐴 cells middle sections𝐵 cells on sides



Figure 67: *Truss forming arch Head on view



Figure 68: Single 21 zone B cell

21-zone truss forming a cap over 5 six-zone diamonds



Figure 69



Figure 70



Figure 71



Figure 72: Six-zone truss covering the top half of triacontahedron



Figure 73: Pentagonal structure formed by truncating pent corner of triacontahedron.
See structure in Figure 162



Figure 74



Figure 75: Rectangular truss - folded plate configuration

Figure 76: Truss formed of obtuse cells.



Figure 77

Figure 78: Two views of a rectangular trussed roof.



Figure 79: Triacontahedron—with interior icosadodecahedron for stiffening.

6.2 Triacontahedron

Radius to acute angled corner = 𝐴𝑇.
Radius to obtuse angled corner= 𝐵𝑇.



Figure 80: Triacontahedron

An enneacontahedron within a triacontahedron. The six sided vertices of the en-
neacontahedron coincide with the three sided vertices of the triacontahedron.



Figure 81: Enneacontahedron within a triacontahedron

Triacontahedron with edge= 𝐴 fused with Triacontahedron with edge= 𝐴𝑇 −1.
Short diagonals of large diamond faces appear as long diagonals of small diamond

faces.
The acute angled vertex of a large triacontahedron is located at the center of a small

triacontahedron.



Figure 82: Enneacontahedron within a triacontahedron

Triacontahedron clustering carried from𝐴 to𝐴𝑇 −2.



Figure 83: Triacontahedron





7 Critical Constants

7.1 Six Zone

Figure 84: Six zone

𝐵𝐷
𝐴𝐵

= 1.0514622

𝐴𝐶
𝐴𝐵

= 1.7013016

cos 𝜃 = 0.4472136

sin 𝜃 = 0.8944272

tan 𝜃 = 2.0000000

sin
𝜃
2

= 0.5257310

cos
𝜃
2

= 0.8506507

tan
𝜃
2

= 0.6180339

7.2 Ten Zone
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Figure 85: Ten zone

𝐵𝐷
𝐴𝐵

= 0.7136441

𝐴𝐶
𝐴𝐵

= 1.8683446

cos𝜙 = 0.7453559

sin𝜙 = 0.6666666

tan𝜙 = 0.8944272

sin
𝜙
2

= 0.3568220

cos
𝜙
2

= 0.9341723

tan
𝜙
2

= 0.3819660

7.3 Ten Zone

Figure 86

𝐵𝐷
𝐴𝐵

= 1.1547005

𝐴𝐶
𝐴𝐵

= 1.6329931

cos𝑋 = 0.3333333

sin𝑋 = 0.9428090

tan𝑋 = 2.8284271

sin
𝑋
2

= 0.8164965

cos
𝑋
2

= 0.5773502

tan
𝑋
2

= 0.7071067



𝐴 line radii of an icosahedron with edge= 𝐶. The pair of radii outline one end of a
golden diamond.

Figure 87: Six-Zone Diamond



Figure 88: Golden Diamond

𝐵 line radii of dodecahedronwith edge= 𝐶. One pair outlines one end of the skinny
diamond; another pair outlines an end of a maraldi diamond.



Figure 89: 10 Zone Diamonds



Figure 90: Skinny Diamond



𝐴 = 0.9510565 𝐶 = cos 18° 𝐶
𝐴 = 1.0981855 𝐵

𝐵 = 0.8660254 𝐶 = cos 30° 𝐶
𝐵 = 0.9105930 𝐴

𝐶 = 1.0514622 𝐴
𝐶 = 1.1547005 𝐵

Table 7.1: Proportions Of𝐴,𝐵, and𝐶 Lines

Figure 91: Maraldi Diamond



7.4 The Appearance of the𝐶𝑇 𝑛 Series in the Dimensions of the Triacontahedron and
the Enneacontahedron

Both these patterns can be found as sub patterns of the five-fold symmetry patterns
of page.

Figure 92: Triacontahedron



All edges are𝐴 lines—one𝐴 line is perpendicular to the plane of page.

Figure 93: Enneacontahedron

All edges are𝐵 lines—𝐴line is perpendicular to the plane of page.





8 Symmetries of a Regular Thirty-one
Zone Star

The dodecahedron and the icosahedron are duals of each other - the vertices of one
match the face midpoints of the other and vice versa.

The ten𝐵 lines of the thirty-one zone star go through the vertices of the dodeca-
hedron or, equivalently, the face midpoints of the icosahedron while the six𝐴 lines
go through the vertices of the icosahedron or, equivalently, the face midpoints of the
dodecahedron.

The fifteen𝐶 lines go through the edge midpoints of either the icosahedron or the
dodecahedron.

The middles of edges are commonly midway between vertices or face midpoints
and 𝐶 lines bisect all angles between 𝐴 lines and three of the four kinds of angles
formed between𝐵 lines.

In examining angles between lines, we are also examining equators. There are six
different equators and slicing through them, we form the𝑅,𝑆,𝑇, 𝑉,𝑋, and𝑌 sections.

All pairs of lines lie in one of-these six kinds of sections.

See Sections for a discussion of different angles and the polygons they form.
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Figure 94: Thirty-One Zone Star: Dodecahedron



Figure 95: Thirty-One Zone Star: Icosahedron





9 Five-Fold Symmetry

The icosahedron and the dodecahedron have five-fold symmetry. They cannot occur
as crystals. Crystals are built up of molecules that are located in systems of regular
points. It is impossible for a system of regular points to have five-fold symmetry. The
inability of objects with five-fold symmetry to fit together is obvious if one tries to it
regular pentagonal tiles together to cover a plane. Three, four and six sided tiles will
fit, but not regular five sided tiles.

Figure 96
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Figure 97



Figure 98



There do exist crystals, for example MoAl12, that contain icosahedral elements
within their component cells. But only a subgroup of the icosahedron’s many sym-
metries is employed in the structure, and the icosahedron merely goes along for the
ride. It is impossible for it to use its five-fold symmetry. The case of the icosahedral
element within the MoAl12 crystal can be compared to a set of triangular tiles, each
with a pentagon pattern within. But the pentagon, although it might touch a side,
would leave the pattern up to the simpler shape that it lived within.



(a) MoAl12 crystal pattern

(b) Pediastrum species

Figure 99: Five Fold Symmetry Examples

Three different species of Pediastrum. (From Brown, The Plant Kingdom, Ginn,
1935 [Bro35]) Note that the two on the right have five-fold symmetry.

Five-fold symmetry does appear scattered among other symmetries in nature.



9.1 Growth and Generations of Stars

Below, we have three different patterns. Each has been produced by a different star
following the same rule of growth. In one case, the pattern is that of squares, in
other triangles and in the largest a strange pattern of over-lapping pentagons and five
pointed stars.

The rule followed is that the star sprouts other stars similar to itself at each of its
end points. Each old end point must sprout before new ones sprout.

This is called recursive growth. In the first two cases, it produces a simple and
uniform pattern which, as it grows, duplicates itself across the page.

The patterns to the right of the line patterns indicate at which generation the point
was produced.

The regularity and homogeneity of the patterns of squares and triangles indicate
the simplicity of growths that follow these symmetries. These are patterns of crys-
tal growth—billions of identical molecules can be incorporated identically in these
patterns.

In the case of the pattern with five-fold symmetry, there isn’t uniformity. Different
points have different patterns in their immediate neighborhoods. Instead of the
pattern simply reproducing itself across the page, it becomes steadily more intricate.



(a) Stars

(b) Sprouting Stars

(c) Growth Patterns (d) Generations

Figure 100: Square Patterns



(a) Stars

(b) Sprouting Stars

(c) Growth Patterns
(d) Generations

Figure 101: Triangle Patterns



(a) Stars

(b) Sprouting Stars

(c) Growth Patterns (d) Generations

Figure 102: Pentagon Patterns





10 Sections

If the lines of the 31-zone star followed no pattern, it would be possible to form
31 × 30
2 × 1

= 465 planes—each with a different orientation.

In our 31-zone system, the pairs of lines form only 121 different planes—this is
because some of the pairs of lines lie on the same plane. Thus, our 31-zone star is
singular.1

In any one 31-zone star there are:

1 See definition of singular star - Figure 21

15 𝑅 sections
30 𝑆 sections
6 𝑇 sections
10 𝑉 sections
30 𝑋 sections
30 𝑌 sections

Table 10.1: Section types in 31 zone star
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10.1 R Section

Figure 103:𝑅 Section Star



Figure 104:𝑅 Section Equators



Figure 105: One𝑅 Section Equator



Figure 106: Species of𝑅 Section Triangles and Their Subdivisions 1–6



Figure 107: Species of𝑅 Section Triangles and Their Subdivisions 7–12



10.2 𝑆 Section

Figure 108: S Section



Figure 109: 𝑆 Section Equators



Figure 110: One 𝑆 Section Equator

In the𝑆 section there is only one triangle possible:



Figure 111: 𝑆 Section Triangle



10.3 𝑇 Section

Figure 112: 𝑇 Section



Figure 113: 𝑇 Section Equators



Figure 114: One 𝑇 Section Equator

In the 𝑇 section there are two kinds of triangles possible:



Figure 115: 𝑇 Section Triangles



10.4 𝑉 Section

Figure 116: 𝑉 Section



Figure 117: 𝑉 Section Equators



Figure 118: 𝑉 Section Equator

In the 𝑉 section there are equilateral triangles:



Figure 119: 𝑉 Section Equilateral Triangle



10.5 𝑋 Section

Figure 120:𝑋 Section



Figure 121:𝑋 Section Equators



Figure 122: One𝑋 Section Equator

In the𝑋 section there is a rectangle:



Figure 123:𝑋 Section Rectangle



10.6 𝑌 Section

Figure 124: 𝑌 Section



Figure 125: 𝑌 Section Equators



Figure 126: One 𝑌 Section Equator

In the 𝑌 section there is a rectangle:



Figure 127: 𝑌 Section Rectangle

10.7 The Formation of Triangles

The𝑅,𝑆,𝑇, and𝑉 sections contain triangles; the𝑋 and𝑌don’t. They couldn’t because
they don’t have enough lines. Every triangle has sides running in three different
directions, but the X and Y have only two directions.



If we have three zones in one plane, then we can form a triangle. If it is a structure
with only certain lengths of structural members, then we must have them propor-
tioned correctly so that they begin and end at the vertices of these particular kinds of
triangles. This is a more difficult problem. The𝐴 and𝐵 lines are unique in that stars
formed of only𝐴 lines or B lines are non-singular. They define maximum numbers
of planes—most uniformly distributed through space—with minimum numbers of
lines. But they cannot triangulate themselves—mixed𝐴 and𝐵 lines do form triangles
as can be seen in the triangles within the 𝑅 sections. But it is the 15 𝐶 lines that
serve as the triangulators in our star. In the 𝑇 and 𝑉 sections they form triangles with
themselves while in the𝑅 and 𝑆 sections the very relationship between the lengths
of the𝐴 and𝐵 lines was determined by choosing the same𝐶 lines as a base for two
different triangles—one with𝐴 lines and one with𝐵 lines.

10.8 A Star Problem

An interesting problem for the designer would be to construct a star in which every
plane defined in the system by two lines could be triangulated by other lines in the
system. Or, to arrange lines in space, so there were never only two lines in one plane.
This is impossible—as you add more lines to triangulate a plane, the new lines define
new planes with old lines, and the star needs evenmore new lines to form triangles.
That the𝑋 and 𝑌 sections in the thirty-one zone star are unable to triangulate them-
selves cannot be avoided. A proof of this assertion can be derived from the necessity
of all convex polyhedra to have some faces with fewer than six sides.

We have shown all the triangles that can be formed with our system. We have not
illustrated all the convex polygons—those with an even number of sides are straight
forward. The existence of irregular pentagons, septagons, nonagons and eleven sided
figures has not been investigated.

There are a finite number of classes of such an angle similar convex polygons. If
one does not insist that the polygons be convex, then there are infinite numbers of
such polygons.



In three dimensions, the smallest convex polyhedron is the tetrahedron. A tetra-
hedron has 4 triangular sides. The stock of possible triangles to form tetrahedra is
those we have shown in the𝑅, 𝑆, 𝑇 and 𝑉 sections. These triangles must fit together
along the proper planes to form tetrahedra within our system. For instance, in the 𝑉
sections there are equilateral triangles, but the dihedral angles between 𝑉 sections do
not allow us to form a regular tetrahedron in our system.
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11 The Divine Proportion

Figure 128: Divine Proportion



THEDIVINEPROPORTION, or1.6180339 … is the relationship between thediagonal of
a pentagon to the edge. This accounts for its ubiquitous appearance in our structures
with five-fold symmetry, for these structures are continuously forming pentagons.
Again and again components can be found as diagonals or sides of pentagons made
with other components—or both. But this isn’t really reason enough. It is hard to think
of any of the numerous divine proportion relationships as cause for others. Rather,
they all seem symptoms of a deeper set of relationships. And our fastening on the
divine proportion and the Fibonacci numbers1 seems peculiar when we consider, for
instance that the square root of 2 appears again and again in grids of squares.

1 See Section 11.2



Figure 129: Square root of 2

And that the square root of 2, an irrational number, is approached by a simple
sequence of fractions.

1
1

, 3
2

, 7
5

, 41
29

, 99
70

(11.1)



Each denominator is the sum of the numerator and the denominator of the preced-
ing fraction. Each numerator is the sum of its own denominator and the preceding
one. Or, if one uses a pattern of seven lines, there are still other relationships and their
powers that appear and reappear.

Figure 130: 7-Zone Star



In the 7-zone star the relationship between the lengths of the radii and the line 45
can be approached by the relationship between successive integers in a sequence
formed in much the same way as the divine proportion’s Fibonacci series. The rule
for forming the sequence is that in the sequence any integers 𝑆𝑛:

𝑆𝑛 = 2𝑆𝑛−1 + 𝑆𝑛−2 − 𝑆𝑛−3 (11.2)

or, for example,

283 = 2(126) + 56 − 25 (11.3)

The first terms in the sequence are…1, 2, 5, 11, 25, 56, 126, 283, 636, 1429, 3211,
7215, 16212, 36428, 81853

11
5

= 2.20000 (11.4)

283
126

= 2.24698 (11.5)

7215
3211

= 2.24696 (11.6)

81853
36428

= 2.24698 (11.7)

Calculating the value from 10 place trigonometry tables

𝑟𝑎𝑑𝑖𝑢𝑠
45

= 2.24701 (11.8)

The relationship between the radius and the line 27 is approached by the ratio
between adjacent terms in a sequence where:

𝑆𝑛 = 𝑆𝑛−1 + 2𝑆𝑛−2 − 𝑆𝑛−3 (11.9)



The more you examine properties of objects and phenomena, the more you find
yourself presented with a few terms, usually simple, from a long series of terms. Often
you cannot touch the terms which are farther or lower in the series, but you can define
properties which they have. One gets the feeling of living in a container - one of an
infinite number - to which are shunted objects and phenomena which have passed
through one filter but can’t pass through another; a great process like that which takes
place in a gravel yard, only we are unable to see gravel other than that of our own size
but sense that it exists in endless different piles beyond - everything from sand to
piles of planet sized boulders.

𝑇 expressed as a continued fraction.

1 + 1

1 + 1

1 + 1
1 + …

(11.10)

We can truncate the fraction anywhere and compute its value. The farther we carry
it the closer it approximates the exact value;

𝑇 =
√

5 + 1
2

(11.11)



11.1 Tau Power Series

𝑇 −3 = 0.2360680
𝑇 −2 = 0.3819660
𝑇 −1 = 0.6180340
𝑇 0 = 1.0000000
𝑇 1 = 1.6180340
𝑇 2 = 2.6180340
𝑇 3 = 4.2360680
𝑇 4 = 6.8541020
𝑇 5 = 11.0901699
𝑇 6 = 17.9442719
𝑇 7 = 29.0344418

Table 11.1: Tau Power Series

𝑇 𝑛 = 𝑇 𝑛−1 + 𝑇 𝑛−2 (11.12)

11.2 Pattern and Rules

If you begin with any two numbers and follow the rule, each term equals the sum of
the two preceding terms, the ratio between consecutive terms approaches the divine
proportion.

The first two terms of the Fibonacci numbers are 1, 1, and their proportion
1
1
is a

long way from 𝑇, but 𝐹𝑛
𝐹𝑛−1

quickly approaches 𝑇.

𝐹7
𝐹6

= 1.6250 (11.13)

𝐹12
𝐹11

= 1.6180 (11.14)



Accompanying many simple polygons and patterns of polygons are series such as
the Fibonacci, where the relationships between different terms approach the precise
geometric relationships. The rules for forming the accompanying series are then
clues for examining the structure of the pattern. And the relationships repeated in
the pattern are clues for rules which give the process to form the pattern.
The perfection of the geometric form seems fragile. If we demand perfection to 7

decimal places, the thickness of a line spoils our form.
But the rules for the formation of the series which accompany the pattern are sturdy

and simple. If mistakes are made in a sequence formed by the rules, the sequence
heals itself after a few generations to again approach the precise form. This is seen in
how quickly the Fibonacci series approaches 𝑇 after its clumsy beginning.

Figure 131



Stacks of six zone acute and obtuse cells. The widths of an acute cell and an obtuse
cell are in the divine proportion. Therefore, a series of stacks can be built with each
stack 1.6180339… times as tall as the one before it. The rule is that each stack is made
by placing the two stacks that precede it on top of each other.
There are also numerous relationships involving the divine proportion among the

altitudes of the parallelepiped cells formed with "𝐵" lines.

11.3 The Fibonacci Numbers

𝐹1 1 𝐹11 89 𝐹21 10946 𝐹31 1346269
𝐹2 1 𝐹12 144 𝐹22 17711 𝐹32 2178309
𝐹3 2 𝐹13 233 𝐹23 28657 𝐹33 3524578
𝐹4 3 𝐹14 377 𝐹24 46368 𝐹34 5702887
𝐹5 5 𝐹15 610 𝐹25 75025 𝐹35 9227465
𝐹6 8 𝐹16 987 𝐹26 121393 𝐹36 14930352
𝐹7 13 𝐹17 1597 𝐹27 196418 𝐹37 24157817
𝐹8 21 𝐹18 2584 𝐹28 317811 𝐹38 39088169
𝐹9 34 𝐹19 4181 𝐹29 514229 𝐹39 63245986
𝐹10 55 𝐹20 6765 𝐹30 832040 𝐹40 102334155

Table 11.2: Fibonacci Numbers

𝐹𝑛 = 𝐹𝑛−1 + 𝐹𝑛−2 (11.15)



12 Coherence Proofs

In a structural system or any pattern the question arises; what is the pattern made of?
What are the relationships between different elements of the pattern?

In a checkerboard pattern such as that shown in figure 100 all distances between
neighboring intersections are the same. And the distance between two intersections
of any line is simply a multiple of this base distance. This base distance then naturally
becomes the unit for building the pattern.

In our pattern created by the star with five-fold symmetry, the situation is different.
There are many different lengths between intersections. If the growth patterns follow
simple rules such as those followed in forming the two-dimensional pattern of fig-
ure 102, then all distances between intersections can be expressed as simple sums of
components whose lengths are equal to powers of the divine proportion times some
constant. This is also true in three dimensions - the𝐴 and𝐵 lines of the 31-zone star
forming a growth similar to our 2-dimensional growth intersect each other at points
where the distance between any two intersections on an𝐴 line equals

𝑠1𝐴𝑇 𝑟1 + 𝑠2𝐴𝑇 𝑟2 + … 𝑠𝑛𝐴𝑇 𝑟𝑛 (12.1)

and the distance between two intersections on a𝐵 line equals a polynomial

𝑞1𝐵𝑇 𝑡1 + 𝑞2𝐵𝑇 𝑡2 + … 𝑞𝑛𝐵𝑇 𝑡𝑛 (12.2)

The building blocks for our system are then a series of lengths related by the divine
proportion. An𝐴 series, a𝐵 series and a𝐶 series—each of slightly different lengths.1

1 See Critical Constants 7 and Hardware 15.
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12.1 Two Dimensions

12.1.1 Definition 1

We call any particular polynomial of the form

𝑠1𝑘𝑇 𝑟1 + 𝑠2𝑘𝑇 𝑟2 + … 𝑠𝑛𝑘𝑇 𝑟𝑛 = 𝑓𝑖(𝑘𝑇 ) (12.3)

𝑠𝑖 and 𝑟𝑖 are integers.

We call the class of all such polynomials 𝐹(𝑘𝑇 ) then;

𝑓𝑖(𝑘𝑇 ) + 𝑓𝑗(𝑘𝑇 ) ∈ 𝐹(𝑘𝑇 ) (12.4)

𝑓𝑖(𝑘𝑇 ) − 𝑓𝑗(𝑘𝑇 ) ∈ 𝐹(𝑘𝑇 ) (12.5)

(𝑇 𝑛)𝑓𝑖(𝑘𝑇 ) ∈ 𝐹(𝑘𝑇 ) (12.6)

We are interested in the distances between intersections along the lines of certain
sets of patterns.

12.1.2 Definition 2

A pattern is a number of extended lines which point in five different directions in one
plane with at least one line pointing in each direction.



Figure 132



12.1.3 Definition 3

The lines are labeled;

𝑖𝑙𝑛

𝑛 = 1, 2, 3, 4, 5
𝑖 = 1, 2, …

𝑛 names the direction - 𝑖 names the particular line pointing in that direction. The
angles between lines are;

𝜋
5

, 2𝜋
5

, 3𝜋
5

, 4𝜋
5

12.1.4 Definition 4

An intersection is named by any two of the lines which intersect there, such as

𝑗𝑙𝑛 × 𝑘𝑙𝑚
(12.7)

12.1.5 Definition 5

If on a line all intervals between intersections are equal to different 𝑓𝑖(𝑘𝑇 ), then the
intersections “fit” each other.
An intersection fits a line if it fits all intersections on that line.
A line 𝑔𝑙𝑝

fits another line 𝑓 𝑙𝑞
if the intersection 𝑔𝑙𝑝 × 𝑓 𝑙𝑞

fits all the intersections
of 𝑓 𝑙𝑞

.
A pattern fits if all the intersections on all the lines fit.

Lemma 12.1.1. If on a line 𝑙𝑛 an intersection 𝐼𝑛 fits an intersection 𝐼𝑚 then 𝐼𝑛 fits all 𝐼𝑜
where 𝐼𝑜 fits 𝐼𝑚.

Lemma 12.1.2. Any 𝑖𝑙𝑚
, 𝑗𝑙𝑛

, ℎ𝑙𝑝
,𝑚 ≠ 𝑛,𝑛 ≠ 𝑝, 𝑝 form a triangle similar to 𝑇1 or 𝑇2



12.1.6 Definition 6

These triangles are called the Golden triangles because their sides are in the divine
proportion.

Lemma 12.1.3. If the two vertices of a Golden Triangle fit each other then all vertices fit each
other.

Lemma 12.1.4. If a line 𝑗𝑙𝑚
fits a line ℎ𝑙𝑛

and if all 𝑙𝑛 fit some line 𝑖𝑙𝑚
and if 𝑖𝑙𝑚

fits all 𝑙𝑛
without the line 𝑗𝑙𝑚

, then, all intersections 𝑗𝑙𝑚 × 𝑙𝑛 fit 𝑗𝑙𝑚 × ℎ𝑙𝑛
and the line 𝑗𝑙𝑚

fits all 𝑙𝑛.



Figure 133

Lemma 12.1.5. If 𝑗𝑙𝑚
fitsℎ𝑙𝑛

then all 𝑙𝑝, 𝑝 ≠ 𝑚,𝑛 × 𝑗𝑙𝑚
fit 𝑗𝑙𝑚 × ℎ𝑙𝑛 and ifℎ𝑙𝑛

fits all
𝑙𝑝 without 𝑗𝑙𝑚

them 𝑗𝑙𝑚
fits all 𝑙𝑝.

Theorem 12.1.6. If a pattern fits and a line 𝑗𝑙𝑚
is added and 𝑗𝑙𝑚

fits some line 𝑗𝑙𝑛 , 𝑛 ≠ 𝑚,
then the new pattern including 𝑗𝑙𝑚

fits.
A pattern fits if all the intersections on all the lines fit. (Definition 5) To prove the new pattern

fits we must prove all the new intersections fit the lines they are on.

1. There are no new intersections on the lines 𝑘𝑙𝑚 , 𝑘 ≠ 𝑗, therefore all the intersections on
these lines fit.



2. All the intersections 𝑗𝑙𝑚 × 𝑙𝑛 fit 𝑗𝑙𝑚 × ℎ𝑙𝑚
and the line 𝑗𝑙𝑚 × ℎ𝑙𝑚

and the line 𝑗𝑙𝑚

fits all 𝑙𝑛. (Lemma 4) Therefore all the intersections of the lines 𝑙𝑛 fit.

3. All the intersections 𝑙𝑝,𝑝≠𝑚,𝑛×𝑗𝑙𝑚
fit 𝑗𝑙𝑚 ×ℎ𝑙𝑛

. (Lemma5)Therefore, the intersections
of line 𝑗𝑙𝑚

fit 𝑗𝑙𝑚 × ℎ𝑙𝑛
. Therefore, the intersections fit on all the lines 𝑙𝑚 (step 1) and

𝑗𝑙𝑚
fits all 𝑙𝑝,𝑝≠𝑚,𝑛 (Lemma 5) which means that all the intersections on all the lines

𝑙𝑝,𝑝≠𝑚,𝑛 fit and our theorem is thus proved.

12.2 Three Dimensions

12.2.1 Definition 1

In three dimensions we have a pattern made up of the diameter lines through vertices
and face midpoints of the icosahedron.

The lines through the vertices are the𝐴 lines.

The lines through the face midpoints lines are𝐵 lines.

There can be other lines parallel to the original 16 lines. They are given the name of
the line they are parallel to.

We name a line

𝑖𝐴𝑛1

𝑛 = 1, 2, 3, 4, 5, 6
𝑖 = 1, 2, …

𝑗𝐵𝑚1

𝑚 = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
𝑗 = 1, 2, …

or generally



ℎ𝑋𝑝1
𝑖

𝑝 = 1, 2 … 10
ℎ = 1, 2, …
𝑋 = 𝐴, 𝐵

12.2.2 Definition 2

All lines of a 3D pattern are connected directly or through other intersections to the
original pattern of 16 lines.

12.2.3 Definition 3

Intersections on𝐴 lines “fit” if all the intervals between them can be expressed as
polynomials

𝑠1𝐴𝑇 𝑟1 + 𝑠2𝐴𝑇 𝑟2 + … 𝑠𝑛𝐴𝑇 𝑟𝑛 = 𝑓𝑖(𝐴𝑇 ) (12.8)

𝑠𝑖, 𝑟𝑖 = integers and𝐴 = an interval of length.

12.2.4 Definition 4

Intersections on𝐵 lines “fit” if all intervals between them can be expressed as poly-
nomials.

𝑠1𝐵𝑇 𝑟1 + 𝑠2𝐵𝑇 𝑟2 + … 𝑠𝑛𝐵𝑇 𝑟𝑛 = 𝑓𝑖(𝐵𝑇 ) (12.9)

𝑠𝑖, 𝑟𝑖 = integers and𝐵 = an interval of length.

12.2.5 Definition 5

𝐵 =
cos(𝜋

6
)

cos( 𝜋
10

)
𝐴 (12.10)



12.2.6 Definition 6

A 3D pattern “fits” if all the intersections on all the lines fit.

12.2.7 Definition 7

An𝑅 section is a plane containing two𝐴 lines and two𝐵 lines. The angle between
the two𝐴 lines is �; the angle between the two𝐵 lines is �; the angle between an𝐴
and a𝐵 line is

𝜋 − 𝜃 − 𝜙
2

or
𝜋 − 𝜃 − 𝜙

2
(12.11)

12.2.8 Definition 8

A 𝑇 plane is a plane perpendicular to an𝐴 line. A 𝑇 plane is named by this𝐴 line

𝑇 𝐴𝑛

Lemma 12.2.1. There are five 𝑅 sections perpendicular to each 𝑇 plane. Each 𝐴 line is
contained in five different𝑅 sections. Each𝐵 line is contained in three different𝑅 sections.

Lemma 12.2.2. The projection of the interval𝐴 along any𝐴 line onto a 𝑇 plane

= 𝐴 sin(𝜃) (12.12)

12.2.9 Definition 9

𝑘 = sin(𝜃) or = 0.𝐴 (12.13)

1: What does 0.A resolve to?

(if the interval is on the𝐴 line perpendicular to the 𝑇 plane).

Lemma 12.2.3. The projection of the interval𝐵 along any𝐵 line onto a 𝑇 plane

= 𝐵 sin(𝜋 − 𝜃 + 𝜙
2

) = 𝑘 𝑜𝑟 = 𝐵 sin(𝜋 − 𝜃 − 𝜙
2

= 𝑇 −1𝑘) (12.14)



Figure 134



Lemma 12.2.4. The projection onto any𝑇 plane of any interval along any line 𝑘𝑋𝑟1
𝑖 between

any two intersections which fit in the 3D pattern is a polynomial

𝑠1𝑘𝑇 𝑟1 + 𝑠2𝑘𝑇 𝑟2 + … + 𝑠𝑛𝑘𝑇 𝑟𝑛 = 𝑓𝑖(𝑘𝑇 ) (12.15)

𝑠𝑖, 𝑟𝑖 = integers

𝑘 = 𝐴 sin(𝜃) = 𝐵 sin(𝜋 − 𝜃 + 𝜙
2

)

Lemma 12.2.5. The angles between the lines projected on a 𝑇 plane are

𝜋
5

, 2𝜋
5

, 3𝜋
5

, 4𝜋
5

(12.16)



Figure 135

Lemma 12.2.6. 3D Patterns which fit project onto all 𝑇 planes 2-dimensional patterns which
fit.

Lemma 12.2.7. All intervals between intersections of lines of the 3D pattern appear as inter-
vals between intersections in the projections on some 𝑇 planes.



For an intersection
𝑖𝑋𝑛𝑙

𝑘 × 𝑖𝑋𝑚𝑙
𝑗 (12.17)

not to appear as an intersection in the pattern projected on a 𝑇 plane, the intersecting lines
must lie in one of the five perpendicular𝑅 sections.

At most, two different lines intersect 𝑖𝑋𝑛𝑙
𝑘 . The two intersections

𝑖𝑋𝑛𝑙
𝑘 or 𝑔𝑋𝑝𝑙

𝑡

lie. Therefore, there is at least one 𝑇 plane in which both 3D intersections project as
2-dimensional intersections.

Lemma 12.2.8. If some pairs of intersections

𝑖𝑋𝑛𝑙
𝑘 × ℎ𝑋𝑚𝑙

𝑗 and 𝑖𝑋𝑛𝑙
𝑘 × 𝑔𝑋𝑝𝑙

𝑓 (12.18)

did not fit in our 3D pattern, that is, we cannot find any polynomial 𝑓1(𝑋𝑘𝑇 ) that equals the
interval between them, then also for some 𝑇 plane we cannot find a polynomial 𝑓𝑖(𝑘𝑇 ) which
equals the interval between their projected intersections.

Lemma 12.2.9. Any misfits between intersections of the 3D pattern project as misfits between
intersections on some 𝑇 plane. Therefore, a 3D pattern which projects on all 𝑇 planes as a 2D
Pattern which fits is a 3D pattern which fits.

Theorem 12.2.10. If a 3D pattern fits and a new line is added 𝑘𝑋𝑛𝑙
𝑖 which intersects and fits

some other line ℎ𝑋𝑛𝑙
𝑗 then the new 3D pattern including 𝑘𝑋𝑛𝑙

𝑖 fits.

Proof. In each 𝑇 plane the projection of the line 𝑘𝑋𝑛𝑙
𝑖 fits the projection of the line

ℎ𝑋𝑚𝑙
𝑗 . In each 𝑇 plane the projection of the 3D pattern without 𝑘𝑋𝑛𝑙

𝑖 fits. Therefore,
the projection is with the line 𝑘𝑋𝑛𝑙

𝑖 fits on each𝑇 plane and the theorem is proved.



The coherence proof demonstrates that if one builds a structure using the𝐴 and𝐵
lines of the 31 zone star (the𝐶 lines may be used only within the forms defined by the
𝐴 and𝐵 lines) and always follows the rule that new parts are added at intersections
of existing parts or at points along existing parts which can be reached by subdividing
a large part into component small parts, then no matter how far or intricately one
builds, two extensions of two entirely different limbs of the same structure can always
be locked back together in a perfect fit with a combination of our simple parts.
We have shown that the intervals between intersections are all equal to certain

polynomials in 𝑇. Because
𝑇 𝑛 = 𝑇 𝑛−1 + 𝑇 𝑛−2 (12.19)

all the terms of any such polynomial can descend by subdivisions into a polynomial
with only two terms-

𝑓𝑖(𝐴𝑇 ) = 𝑟𝐴𝑇 𝑛 + 𝑠𝐴𝑇 𝑛−1 (12.20)

There are many interesting side-lights to these investigations. One of which is that it
is impossible to divide any one of our building blocks𝐴𝑇 𝑛 into equal pieces.
There are much shorter proofs of the coherence of this system, but the short proofs

don’t lead one through so many characteristics of the structure.



13 Joints

We have associated the thirty-one zone star throughout with the icosahedron and
the dodecahedron. It also fits perfectly with the three smaller regular polyhedra.
The tetrahedron, the cube and the octahedron fit inside the icosahedron and the
dodecahedron. Their vertices touch a vertex, an edge midpoint or a face midpoint
of the larger figure. This regular match between large and small figure positions the
smaller figure so that regular patterns on the large figure project inwards as regular
patterns on the small figure. In each case, either five or ten small figures fit at once
within the larger figure.1

Each of the regular polyhedra is thus a convenient core from which to define the
regular thirty-one zone star. The geometric regularities insure simplicity in the con-
nections. Any one of the regular polyhedra can be used with the same pattern of
flanges or holes on each of its faces as a connector for the thirty-one zone structural
system.2

1 See illustrations in Cundy and Rollet’sMathematical models [CR61].
2 Note! In the case of the thirty-one zone pattern projected on the octahedron, four of the faces have

a left-handed pattern. The drawing and the photo are of patterns with different handedness.
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Figure 136: Tetrahedron



Figure 137: Tetrahedron Vertices



Figure 138: Cube



Figure 139: Cube Vertices



Figure 140: Octahedron



Figure 141: Octahedron Vertices



Figure 142: Dodecahedron



Figure 143: Dodecahedron Vertices



Figure 144: Icosahedron



Figure 145: Icosahedron Vertices





14 The Stars of Other Systems

In the design of a connector simplicity in one part may demand specialization and
the establishment of hierarchies among other parts.

The sketches of a joint of an icosahedron show examples of different ways of joining
the five edges of an icosahedron. The parts remain identical if they trade or share
with each other at the joint.
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Figure 146: Sharing



Figure 147: Trading

When some parts dominate others, there is a hierarchy created and the parts must
be differentiated. In our illustration, we show five edges of an icosahedron stacked on
top of one another. With the icosahedron, it is possible to have both ends of each edge
occupy similar positions, but this is not always true.



Figure 148: Dominating

The creation of one hierarchy may create the need for more. For instance, if you
wish to use a hierarchy of stacked edges to make a simple triangle, then youmust also
create a hierarchy between ends of the same edge. The two ends of the same edge
have different ranks.



Figure 149: Stacked Edges of a Triangle

Very often we don’t have the structural members actually touching each other. Then
we avoid the edges’ problem of sharing, trading or dominating—we push the entire
problem on to the joint. The joint must accommodate all the connecting members,
and it shouldn’t demand that they have elaborate ends or different kinds of ends. The
joint must also be strong and inexpensive.

If the joint is a ball and the 𝐴, 𝐵 and 𝐶 connections are simply holes which the
members screw into. All holes of the same type are identical, and the ends of all
structural members are identical.



This is a wonderful feature because you can’t makemistakes—there are no right and
wrong holes of a certain type. The joint shown in Figure 160 has 12 threaded holes
for the 𝐴 lines in the thirty-one zone system. Joints made this way are expensive,
and the connectors at the end of the structural members are expensive. A common
inexpensive connecting system is a joint made of multiple interconnecting flanges
with the flattened ends of the structural members bolting against the flange of the
joint. Joints made of flanges can be simple flat stampings that lock together or are
welded together.

Flanges bring problems. What if you must connect two joints, and you find that
once you bolt one end of your member to one joint it can’t bolt to the other because
the flange is turned the wrong way? The specialization of a flat end and a flange has
brought problems. The end of the structural member could be made to swivel. That is
expensive. The joint could be made so that this problem never arises. Unfortunately,
our second solution is not always possible. To make a thirty-one zone joint where
each connection is a flat flange and which is impossible to put together incorrectly,
you have to devise a pattern that passes through each connecting point only once and
is regular (you can’t tell the pattern that surrounds a connection from the pattern that
surrounds any other connection of the same type).



Figure 150: Flanges of an icosahedron or dodecahedron

This is impossible to do in the case of the thirty-one zone star. You can make a
flange joint for the thirty𝐶 connections. The𝐶 lines can have the specialization of
flange orientation while still avoiding the clumsiness of having to arrange themselves
in a hierarchy. The flanges are the edges of an icosahedron or a dodecahedron.

Three interlocking rectangles at right angles to each other form a flange joint for
the 12𝐴 lines, 6𝐶 lines and 12𝐵 lines.



Figure 151: Interlocking rectangles forming a flange joint

Note! These are three perpendicular𝑅 sections.

There is a mistake proof flange joint for both𝐴 and𝐶 connections if one hierarchy
is introduced. You must always orient the joint to suit the𝐴 lines.

This joint is shown in the photo of thewoodenmodel of the three intersecting planes.



Figure 152: Model of intersecting planes

Two of the flanges for the missing 𝐶 lines are added. This joint is completely
regular until the addition of these𝐶 flanges—they are not in the same plane as their
neighboring𝐴 flanges. We thus have two types and lose our regularity.

A good flange joint for the thirty-one zone star ismade of six interlocking disks—five
𝑅 sections and one 𝑇 section.



Figure 153: Six interlocking disks



Figure 154: Vertices on a sphere

This creates an irregular icosahedron which passes through each of the sixty-two
connecting points and decides automatically the orientation of sixty of the flanges.
The pole points of this figure are 𝐴 connections and one of the five intersecting 𝑅
sections must dominate the others to determine the flange orientation. This joint
can have part or all of the𝑅 sections in place depending on which connections are
needed.

14.1 Octet Truss

The widely used octet truss is based on the star that passes through the midpoints of
the edges of a cube. (Or, equivalently, the midpoints of the edges of an octahedron, the
midpoints of the faces of a rhombic dodecahedron, the vertices of a cuboctahedron.)



Figure 155: Star for octet truss

This is a singular star with four sections (𝐴 sections in drawing) containing three
lines at 60° to each other and three sections with two lines at right angles (𝐵 sections).
The zonohedron whose edges are parallel to the lines of the star is the truncated
octahedron.



Figure 156: Truncated Octahedron



14.2 The Mero Space Grid System

This system is based on the octet truss star plus three more zones which pass through
the face midpoints of the cube which has the other lines passing through its edge mid-
points. This singular star has three sections (𝐵 sections) with four lines intersecting
at 45° to each other, four sections (𝐴 sections) with three lines at 60° to each other and
six sections (𝐶 sections) with two lines at 90° to each other.

Figure 157: Star for MERO system

The zonohedron associated with this star is the truncated cuboctahedron.



Figure 158: Truncated Cubooctahedron





15 Hardware
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Lengths of𝐴,𝐵, and𝐶 lines.

Structural members where𝐴 = 40″.

Figure 160: Six Zone Joint



Figure 159: Six Zone Joint Plan



Figure 161: Section for 11⁄4” pipe



Figure 162: Framework for Robert Ford residence.

𝐴 lines =𝐴𝑇 2; base𝐴 = 40″

𝐶 lines= 𝐶𝑇 2 (see page 32)



Figure 163: Zome Climber

𝐴 lines= 40″ 𝐶 lines= 42″
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Atomic energy, 129.

See also Energy Automation: of human biological processes, 54; and loss of jobs, 124
Automobiles: ownership of, 134
Bank wealth, 89
Behavioral sciences: in educational process, 26
Brain: as coordinating switchboard, 25; difference betweenmind and, 101; imitated

by computer, 118
British Empire and the great pirates, 37–38
Categoryitis, 31
Children: as comprehensivists, 25–26 Circle. See Great circle Comprehension:

defined, 77 Comprehensivity of Great Pirates, 34–35; Great Pirates abandoning their,
50–51; man forced to reestablish, 53
Computers: provide new impersonal problem solutions, 45; as superspecialist, 53;

strategy combined with general systems theory and synergetics, 93–94; as imitation
of human brain, 118; beginning of, 122; resolving ideological
dogmas, 138
Craftsmen: early specialized, 29; tools of, 122; in the industrial economy, 123
Cross-breeding: of world man, 131
Cybernetics: defined, 95
Darwin, Charles: theory of animate evolution, 47
Da Vinci, Leonardo, 35–36
Democracy, 92–93
Design: capability of early world men, 28–29; of spaceship Earth’s internal support

systems, 59–60; of universal evolution, 111–112; revolution in, 134
Design science: anticipatory, governing yesterday’s naval mastery, 22
Divide and conquer: grand strategy of, 39
𝐸 = 𝑀𝐶2, 69, 96. See also Energy



Economic accounting: by great pirates, 94–95; synergy in, 103; need for realistic,
112
Educational task: to allow physical and metaphysical success, 130
Einstein, Albert: formula𝐸 = 𝑀𝐶2, 45, 69, 96; definition of physical universe, 70;

reassess universe, 97
Electromagnetic spectrum: great pirates’ first use of, 43–44; effecting human evo-

lution, 110 Energy: impounding of sun’s radiant, 58, 59, 93; generalized law of, 73;
savings as fossil fuels, 94, 129; in synergetics, 95; finite, 96; harnessing of, 129; atomic
exploitation of, 129
Entropy: energy systems eventually run down, 46; assumed universe subject to, 96;

wealth as antientropy, 101
Environment: early society inability to cope with, 26; evolution synergeticaily pro-

duced, 103–104; changes in physical, 110
Euler, Leonhard, 81
Evolution: success of human dependent on mastering metaphysical, 46; design

and patterns in, 49, 54, 111–112; man’s feeling about, 53–54; inexorable, 55; our
present position in, 65–66; effected by electromagnetic spectrum, 110; comprehend-
ing phases of, 127
Experiences: to extract generalized principles, 62; is finite, 70
Exploitation: of atomic energy, 129; of fossil fuels, 129. See also Energy
Extinction, 48
Failures: humanity’s, 24–25 Fellowships, 125
Forecasting, 22
Fossil fuel: energy savings account, 94, 128; expending of, 129. See also Energy
Generalized principles: minds discovering, 21; extracted from human experience,

61–62; first was leverage, 63; surviving with, 118; inventively employed only through
mind, 127
Genera! systems theory: as tool of high intellectual advantage, 67, 70–71; combined

with computer strategy and synergetics, 95
Geodesic lines, 76
GI Bill, 115
Gold: demand system inadequate, 88–98; used by Great Pirates for trading, 90
Grand strategy: divide and conquer, 39; organizing our, 65.
See also Strategy



Great circle: defined, 76
Great Pirates: as sea mastering people, 34; feared bright people, 35; use of logistics

by, 37; and British Empire, 37–38; use of local strong man as king by, 39; tutoring of
bright specialists by, 40; in world competition, 41, 43; becoming extinct, 44, 50; rules
of accounting still used, 45
Gross national product: estimate for 1970, 108–109
Growth: physical and metaphysical, 61
“Have-nots” struggle with “haves” produces war, 87
“Haves”: struggle with “have-nots” produces war, 87
Heisenberg, Werner: principle of indeterminism, 72
Human beings, as astronauts, 56; will be free, 111; employing real wealth, 124;

characteristics in Mexico, 132. See alsoMan
Humanity: exists in poverty, 23–24; on Earth’s surface, 27; extinction of, 49; place

in evolution of, 66; function of, in universe, 83–84; and standard of living of, 102–103
Ideologies: political, 48; resolving dangerous dogmas of, 138
Indeterminism: Heisenberg’s principle of, 72
India: population problems in, 113 Industrialization: demonstration of world, 104
Industry: tooling of, 22, 116, 122, 133; production increased by world wars, 116;

craftsmen in the economy, 123. See also Tools
Information: multiplies wealth, 104–105 Initiative, 45
Intellect: as humans’ supreme faculty, 60–61; freesman of special case superstition,

63; use of as man’s function in universe, 99
International Monetary Fund: 1967 deliberations of, 88
Invention, 134
Inventory: of variables in problem solving, 67–68
Jobs: loss of in automation, 124
King: as great pirate’s local strong man, 39, 40
Law of conservation of energy: defined, 98. See also Energy
Learning: always increases, 99; man’s past, 131; industrial retooling revolution,

133
Lesser circle: defined, 76
Leverage: first generalized principle, 63. See also Generalized principles
Life: as synergetic, 79–80; hypothetical development of support systems in,

107–108



Lincoln, Abraham, 45–46
Lines, 81. See also Topology
Machine: spaceship Earth as, 59–60 Macrocosm: as universe outside the system,

70
Malthus, Thomas, 47
Man: utterly helpless as newborn, 61;
as adaptable organism, 118–119.
See alsoHuman beings
Mass production: and mass consumption, 123
Mathematics: improved by advent of zero, 36. See also Topology
Metals: not destroyed in war, 117 Metaphysical: initiative confused between reli-

gion and politics, 45; masters the physical, 46; experiences not included in physical
universe, 68; defies “closed systems” analysis, 69; in synergetics, 95; need for, in
educational task, 130
Mexico: human characteristics in, 132 Michelangelo, 35–36
Microcosm: universe inside the system, 70
Mind: comprehends general principles, 24, 127, 128; difference between brain and,

101; fellowships of, 125
Money: as bank wealth, 89.
See alsoWealth
Moon gravity: as income wealth, 94 More-with-less: and generalized principles of,

63
Myth: of wealth as money, 114;
of population explosion, 136 Natural laws: and Great Pirates, 34.
See also Generalized principles Navies: and Great Pirates, 38 Negatives: yesterday’s,

realized, 24 North America: early crossbreeding men in, 131
Photosynthesis: impounds sun’s energy, 59
Pirates. See Great Pirates
Planck, Max, 97
Planners: more comprehensive than other professions, 67
Points. See Topology
Politicians: local, asked to make world work, 51.
See also Ideologies



Pollution: as survival problem, 85 “Poluto”: as new name for planet, 85 Population:
problems in India, 113;
explosion in as myth, 136 Poverty: humanity existing in, 23–24 Principles. See

Generalized principles Problem solving: by yesterday’s
contrivings, 21
Resources: of Earth unevenly distributed, 29; no longer integratable, 52; unique

materials made “on order,” 106
Revolution: design and invention, 134
Safety factor: in man’s evolution, 111–112
Schools: beginning of, 41.
See also Specialization; Strategy Second law of thermodynamics, 46 Senses: Great

Pirates relying on, 43 Ships: logistics for production and maintenance, 37. See also
Vessels
Slavery: of specialist expert, 41; human, 107
Sovereignties: claim on humans in, 37–38; categoryitis in, 31
Spaceship Earth: present condition of, 121
Specialist: computer as super, 53 Specialization: society operates on theory of, 25;

early leaders who developed, 26, 30, 33; intellectual beginning of schools, 41–42;
specialist as slave, 41; over causing extinction, 48, 49; scientific, applied toward
weaponry, 52–53
Speed of light: discovery of, 97 Spending: regarding energy is obsolete, 98
Spoken word: as first industrial tool, 122
Strategy: secret and anticipatory, of Great Pirates, 35; comprehensive of naval war

colleges, 37
Structures: industrial tool enclosing, 116–117
Students: comprehend elimination of war, 134
Sun: radiation as income wealth, 58, 94. See also Energy
Survival: physical and metaphysical, 61; potentials increased by intellect, 63
Sword: powerful men of, 26.

See also Great Pirates
Synergetics. See Synergy
Synergy: defined, 78, 95; defines universal evolution, 79; combined with computer

strategy and general systems theory, 95; wealth develops interest through, 102; in
economic accounting, 103; in humanity escaping from local identity, 106



System: universe as biggest, 68; thought is, 72; first subdivision of universe, 71, 83;
variables in evolution, 83
Technologies: as substitute after war, 117
Telford, Thomas: as Great Pirates’ specialist, 37
Thinking: long-distance future of, 22; in terms of whole, 67; as a system, 72; dis-

missal of irrelevancy in, 76–77; tackling problems with, 83; humans free to, 126.
See also Intellect; Mind
Time: as relative, 135
Tools: industrial, 116; externalizations of integral functions, 117; craft and indus-

trial extinctions, 122; spoken word, 122
Topology: mathematics of comprehension, 77; discovered by Euler, 81; patterns of

lines, points and areas, 80–81. See also Geodesic lines; Great circle; Lesser circle
Underlying order in randomness, 74–75 Universe: as biggest system, 68, 96; physi-

cal defined by scientists, 68–69, 70, 72, 97; subdivision, 71; generalized law of energy
conservation in, 73; defined by synergy, 79; humanity’s function in, 83, 112
Van Allen belts, 58
Variables: inventorying of and

problem solving in, 67
Vectorial geometry: mathematics

of comprehension, 75–80
Vessels: use of, in venturing, 28
War: beginning of the great class, 47–48, 87; as age-old lethal formula of ignorant

men, 52; as taking priority over real problems, 87; students comprehend elimination
of, 134
Water: desalinization of, as problem solution, 85–86. Pollution
Wealth: generated by integrating resources, 29; as a safety factor, 61; defined, 88,

93; irreversible in evolutionary processes, 91; society’s real, 91, 94,124; income is
sun radiation and moon gravity, 94; as anti-entropy, 101; can only increase, 101,105;
common, of humanity, 105; of the U.S., 108; of know-how produced by GI Bill. 115
Weaponry: scientific specialization applied toward, 52
Wholes: thinking in terms of, 67; systems in synergy, 78. See also Systems
World: and first seafarers, 28; sea ventures thought in terms of, 30; asking local

politicians to make it work, 51; defined, 104, 119; veterans returning fromWorld War
II, 115; increase industrial production in, 115–116; cross-breeding in, 131-132
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