

zome primer

by Steve Baer

elements of zonohedra geometry

two and three dimensional growths of stars with five fold symmetry

THE BOOK THAT RUINED MY LIFE

MARC

Zome Primer

Zome Primer Elements of Zonohedra Geometry

Steve Baer

Zomeworks Corporation | Albuquerque, New Mexico

ISBN: 978-00000000-0 ISBN-10: 0

Updated: 2024-12-15 20:31:51-06:002024-12-15

То

My Wife Holly

Preface

This booklet has first an elementary explanation of the geometry of Zonohedra, then a more difficult account of the growths of the thirty-one zone star. This system, based on the 31 lines that pass through the center of an icosahedron and either a vertex, edge midpoint or face midpoint is new and unusual.

I have applied for a patent on this structural system. The patent is assigned to Zomeworks Corporation. The predecessors of this system are the octet truss and the MERO space grid system. The relative potentials of these systems are discussed briefly by a comparison of their geometric possibilities.

The forms possible using this system are limitless; there is no attempt here to explore these possibilities—the examples shown are small probings. The booklet describes the mathematics of the process that creates these limitless forms.

The framework for the Robert Ford residence was designed by Jim Welty and Robert Ford.

The shallow rectangular based trusses were designed by Berry Hickman of Zomeworks who also introduced the excellent plastic ball joint used throughout in the models photographed.

The design and manufacture of the 6-zone aluminum joint was done by Otto Jung of Design Industries in Albuquerque.

Ken Leonard did the layout and both he and my wife, Holly, gave much editorial assistance.

S.C.B. Albuquerque August 1970

Contents

Pr	Preface				
1	Zomes, Domes and Clusters				
	1.1	What Are Zomes?	1		
	1.2	What is the Difference Between a Zome and a Geodesic Dome?	4		
2	Zonohedra				
	2.1	What are Zonohedra?	7		
	2.2	Face Planes of Zonohedra	16		
	2.3	Section Stars and Face Planes	22		
	2.4	Division of Zonohedra into Parallepiped Cells	25		
3	Regular Ways of Arranging Lines in Space				
	3.1	Three Zones	31		
	3.2	Four Zones	32		
	3.3	Six Zones	35		
	3.4	Ten Zones	38		
4	Clustering 4				
	4.1	Twenty-one Zone Structure	41		
	4.2	Twenty-one Zone Zome Clusters	50		
5	Stre	tching a Zone	57		
6	Trus	ses: Twenty-one Zone System	65		
	6.1	$6 A \text{ Lines } 15 C \text{ Lines } \ldots $	65		
	6.2	Triacontahedron	81		

7	Critical Constants				
	7.1 Six Zone	87			
	7.2 Ten Zone	87			
	7.3 Ten Zone	88			
	7.4 The Appearance of the ${\cal C}{\cal T}^n$ Series in the Dimensions of the Triaconta-				
	hedron and the Enneacontahedron	94			
8	Symmetries of a Regular Thirty-one Zone Star	97			
9	Five-Fold Symmetry	101			
	9.1 Growth and Generations of Stars	106			
10	D Sections	111			
	10.1 R Section	112			
	10.2 S Section	117			
	10.3 T Section	121			
	10.4 V Section	125			
	10.5 X Section	129			
	10.6 <i>Y</i> Section	133			
	10.7 The Formation of Triangles	136			
	10.8 A Star Problem	137			
11	1 The Divine Proportion	139			
	11.1 Tau Power Series	146			
	11.2 Pattern and Rules	146			
	11.3 The Fibonacci Numbers	148			
12	2 Coherence Proofs	149			
	12.1 Two Dimensions	150			
	12.1.1 Definition 1	150			
	12.1.2 Definition 2	150			
	12.1.3 Definition 3	152			
	12.1.4 Definition 4	152			
	12.1.5 Definition 5	152			
	12.1.6 Definition 6	153			

12.2 Three Dimensions	155
12.2.1 Definition 1	155
12.2.2 Definition 2	156
12.2.3 Definition 3	156
12.2.4 Definition 4	156
12.2.5 Definition 5	156
12.2.6 Definition 6	157
12.2.7 Definition 7	157
12.2.8 Definition 8	157
12.2.9 Definition 9	L57
13 Joints 1	L63
14 The Stars of Other Systems 1	175
14.1 Octet Truss	185
14.2 The Mero Space Grid System	188
15 Hardware 1	L91
List of Figures 2	201
List of Tables 2	207
References 2	211
Index 2	213

1 Zomes, Domes and Clusters

1.1 What Are Zomes?

A Zome is a man-made structure derived from zonohedra. The zones of the zonohedron may be stretched or shrunk or removed to produce, if desired, an asymmetric dome shaped structure.

Zomes may be single or clustered.

Figure 1: Zome

Figure 2: Zome, with person and child

Zomes can cluster together like soap bubbles. Their zones can be stretched, shrunk, or omitted completely to make the various zomes' different shapes and sizes. The zomes can also pack several layers deep.

Figure 3: Construction of a Zome structure

Figure 4: Scale model of a Zome structure

Figure 5: Construction of a Zome structure

Figure 6: Scale model of a Zome structure

1.2 What is the Difference Between a Zome and a Geodesic Dome?

A geodesic dome is a structure which closely follows the shape of the sphere and whose edge lengths closely follow the path of great circles on the sphere. (These are the sphere's geodesics.) The geodesic dome, because of its shape, and the arrangement of its structural members is extremely strong, but its uses are limited because of the inflexibility of its shape. It is always part of a sphere—a low bubble or a high bubble—its floor is always a circle—any variation would destroy the structural properties of the geodesic dome. The geodesic dome, if it is large and composed of many edges and joints, has many different edge lengths. It is complicated in structure and simple in shape. Zomes are simple in structure and complicated in shape.

Figure 7: Geodesic Dome–DEW line Radome, circa 1956

Figure 8: Geodesic Dome

2 Zonohedra

2.1 What are Zonohedra?

A zonohedron is a convex solid, all of whose faces are polygons with edges in equal and parallel pairs.

These are possible faces for zonohedra:

Figure 9: Possible faces

These are zonohedra:

Figure 10: Cube

Figure 11: Octagonal prism

Figure 13: Truncated Octahedron

Figure 14: Truncated Cuboctahedron

Figure 15: Great rhombicosidodecahedron or Truncated icosidodecahedron

A zone of edges is a band of parallel edges which circles the solid. Every edge belongs to a zone.

Figure 16: Seven-Zone Polar Zonohedron

Figure 17: Polar Zonahedron from CHH Franklin's drawing

2.2 Face Planes of Zonohedra

A plane is defined by two lines. A six-zone figure has six different lines; 1, 2, 3, 4, 5, 6. How many pairs can we form with six objects?

1,2	2,3	3,4	4,5	5,6		
1,3	2,4	3,5	4,6			
1,4	2,5	3,6			= 15	
1,5	2,6					
1,6						

Table 2.1: Pairs of Six Objects

Algebraic expression:

$$X = \frac{(n)(n-1)}{2}$$

Figure 18: Zone "1" shaded

Figure 19: Rhombic Triconntahedron, labeled zones

Rhombic Triacontahedron with face planes labeled with numbers of the zones which form the plane.

There are then 15 more faces on the other side which add up to the 30 faces of the Triacontahedron.

The ten-zone system can form $\frac{10 \times 9}{2 \times 1} = 45$ different planes. This figure is the enneacontahedron with its faces marked:

Figure 20: Enneacontahedron, labeled

The equation is for the number of planes, and if we wish to find the total number of faces for the polyhedron, including the back side, multiply the number of different planes by 2, and this equals (n)(n-1).

The formula $\frac{(n)(n-1)}{2}$ is true for the number of planes that can be formed with the different zones provided that no more than two lines lie in one plane. These collections of lines associated with zonohedra are called the *stars* of the *zonohedra*. A star is called non-singular if no three of the lines are coplanar.

If three lines of the star lie in one plane, then the zonohedron associated with the star has a pair of hexagons. If more than three lines lie in one plane, then there are facets to the zonohedron with corresponding more edges—octagon, decagon, etc.

Figure 21: Singular Star, through vertices of cuboctahedron.

Figure 22: Associated zonohedron, truncated octahedron

2.3 Section Stars and Face Planes

The zonohedron that has its edges parallel with the lines of the 31-zone star is a huge figure with faces—two faces for each of the 121 sections—one face on each side of the figure. The face corresponding to a particular section is formed by the lines of the star following each other head to toe around in a complete polygon. Consequently, the 242 sided zonohedron associated with the 31 zone star has:

12	regular decagons	T sections
30	irregular dodecagons	R sections
60	irregular hexagons	S sections
20	regular hexagons	V sections
60	rectangles	X sections
60	rectangles	Y sections
$\overline{242}$		

Table 2.2: Faces of a 31 Zone Star

Figure 23: Associated face plane

Figure 24: Section star

2.4 Division of Zonohedra into Parallepiped Cells

Figure 25: Rhombic Dodecahedron

Every zonohedron can be divided into component parallelepiped cells. Every set of three different lines form one cell. In the case of the four-zone rhombic dodecahedron 25, there are then:

$$C_3^4 = \frac{4 \cdot 3 \cdot 2}{3 \cdot 2 \cdot 1} = 4 \text{ cells.}$$
(2.1)

The sides of the component parallelepiped cells are necessarily the same as the sides of the complete figure.

Figure 26: Triacontahedron

The triacontahedron subdivides into:

$$C_3^6 = \frac{6 \cdot 5 \cdot 4}{3 \cdot 2 \cdot 1} = 20 \text{ cells.}$$
(2.2)

The rhombic triacontahedron divides into 10 acute and 10 obtuse parallelepipeds.

Figure 27: Enneacontahedron

The enneacontahedron subdivides into

$$C_3^{10} = \frac{10 \cdot 9 \cdot 8}{3 \cdot 2 \cdot 1} = 120 \text{ cells.}$$
(2.3)

There are five different kinds of cells. With one kind of diamond, there are only two kinds of cells possible, but the enneacontahedron has two kinds of diamond faces allowing for more types of cells.

There are:

10	A cells	6 fat diamonds		acute
20	B cells	6 fat diamonds		obtuse
30	C cells	4 fat diamonds	2 skinny diamonds	acute
30	D cells	4 skinny diamonds	2 fat diamonds	acute
30	E cells	2 skinny diamonds	4 fat diamonds	obtuse
$\overline{120}$	cells			

Table 2.3: Cells of the Enneacontahedron

3 Regular Ways of Arranging Lines in Space

The regular polyhedra are like seeds from which growths may appear. They are the connecting joints for the zonohedra. The joints are all parallel to each other. The lines of the zonohedra are perpendicular to the faces of the joints.

3.1 Three Zones

Figure 28: Cube

3.2 Four Zones

Figure 29: Tetrahedron

Figure 30: Octahedron

Figure 31: Rhombic Dodecahedron

3.3 Six Zones

Figure 32: Dodecahedron

Figure 33: Rhombic Triacontahedron

3.4 Ten Zones

Figure 34: Icosahedron

Figure 35: Rhombic Enneacontahedron

4 Clustering

4.1 Twenty-one Zone Structure

Triacontahedron

In this series, the central zome is higher. It could as well be lower.

Figure 36: Triacontahedron, 1

Figure 37: Triacontahedron, 2

Figure 38: triacontahedron, 3

Figure 39: triacontahedron, 4

Figure 40: triacontahedron, 5

Figure 41: triacontahedron, 5

Enneacontahedron of edge length B clustered with triacontahedron of edge length A and triacontahedron of edge length $AT^{-1}.$

Figure 42: Enneacontahedron with 2 triacontahedrons

Clusters of triacontahedra - A line vertical.

Figure 43: Triacontahedra, 5

Figure 44: triacontahedra, 5

4.2 Twenty-one Zone Zome Clusters

6 *A* LINES 15 *C* LINES Orientation: *A* lines horizontal

Figure 45: Two triacontahedra fused through skew hexagon.

Two triacontahedra fused through skew hexagon.

Figure 46: Front view - same as above.

Figure 47: Same cluster as above - One zome has zone stretched past others.

Figure 48: Three triacontahedra fused, through skew hexagon.

Figure 49: Front view - same as above.

Figure 50: Fourth zome added - fused to two side zomes through skew hexagon - fused to front zome through vertical section.

Figure 51: Same as above. Notice the appearance of ${\cal C}$ and ${\cal CT}$ in the floor sections.

5 Stretching a Zone

Zonohedra have bands of parallel edges. Any such band of edges can be stretched to alter the shape of the zonohedron. Stretching a band of edges does not alter any angles.

Figure 52: Six zone zome - half a triacontahedron

Figure 53: 1 horizontal zone stretched to 2

Figure 54: same as above (top view)

Figure 55: 2nd horizontal zone stretched to two top panels 2x2 (top view)

Figure 56: 2 side zones stretched

Stretching zones allows one to build buildings of different shapes using the same kinds of components.

Figure 57

Figure 58

Figure 59

6 Trusses: Twenty-one Zone System

6.1 6 A Lines 15 C Lines

Figure 60: Single 21-zone A cell

Figure 61: 2 A cells

Figure 62: 4 A cells

Figure 63: 8 A cells

Figure 64: Truss turning corner 8 A cells

Figure 65: Truss turning corner 8 A cells - 4 B cells

Figure 66: Truss forming $\operatorname{arch}^* A$ cells middle sections B cells on sides

Figure 67: *Truss forming arch Head on view

Figure 68: Single 21 zone B cell

21-zone truss forming a cap over 5 six-zone diamonds

Figure 69

Figure 70

Figure 71

Figure 72: Six-zone truss covering the top half of triacontahedron

Figure 73: Pentagonal structure formed by truncating pent corner of triacontahedron. See structure in Figure 162

Figure 74

Figure 75: Rectangular truss - folded plate configuration

Figure 76: Truss formed of obtuse cells.

Figure 77

Figure 78: Two views of a rectangular trussed roof.

Figure 79: Triacontahedron–with interior icosadodecahedron for stiffening.

6.2 Triacontahedron

Radiustoacuteangledcorner=AT.Radius to obtuse angled cornerBT.

Figure 80: Triacontahedron

An enneacontahedron within a triacontahedron. The six sided vertices of the enneacontahedron coincide with the three sided vertices of the triacontahedron.

Figure 81: Enneacontahedron within a triacontahedron

Triacontahedron with edge = A fused with Triacontahedron with $edge = AT^{-1}$.

Short diagonals of large diamond faces appear as long diagonals of small diamond faces.

The acute angled vertex of a large triacontahedron is located at the center of a small triacontahedron.

Figure 82: Enneacontahedron within a triacontahedron

Triacontahedron clustering carried from A to AT^{-2} .

Figure 83: Triacontahedron

7 Critical Constants

7.1 Six Zone

Figure 84: Six zone

 $\overline{\frac{BD}{AB}} = 1.0514622$ $\overline{\frac{AC}{AB}} = 1.7013016$ $\cos \theta = 0.4472136$ $\sin \theta = 0.8944272$ $\tan \theta = 2.0000000$ $\sin \frac{\theta}{2} = 0.5257310$ $\cos \frac{\theta}{2} = 0.8506507$ $\tan \frac{\theta}{2} = 0.6180339$

7.2 Ten Zone

Figure 85: Ten zone

$$\overline{\frac{BD}{AB}} = 0.7136441$$
$$\overline{\frac{AC}{AB}} = 1.8683446$$
$$\cos \phi = 0.7453559$$
$$\sin \phi = 0.66666666$$
$$\tan \phi = 0.8944272$$
$$\sin \frac{\phi}{2} = 0.3568220$$
$$\cos \frac{\phi}{2} = 0.9341723$$
$$\tan \frac{\phi}{2} = 0.3819660$$

7.3 Ten Zone

Figure 86

$$\frac{\overline{BD}}{\overline{AB}} = 1.1547005$$
$$\frac{\overline{AC}}{\overline{AB}} = 1.6329931$$
$$\cos X = 0.3333333$$
$$\sin X = 0.9428090$$
$$\tan X = 2.8284271$$
$$\sin \frac{X}{2} = 0.8164965$$
$$\cos \frac{X}{2} = 0.5773502$$
$$\tan \frac{X}{2} = 0.7071067$$

A line radii of an icosahedron with edge = C. The pair of radii outline one end of a golden diamond.

Figure 87: Six-Zone Diamond

1

Figure 88: Golden Diamond

B line radii of dodecahedron with edge = C. One pair outlines one end of the skinny diamond; another pair outlines an end of a maraldi diamond.

Figure 89: 10 Zone Diamonds

Figure 90: Skinny Diamond

Table 7.1: Proportions Of A, B, and C Lines

Figure 91: Maraldi Diamond

7.4 The Appearance of the ${\cal CT}^n$ Series in the Dimensions of the Triacontahedron and the Enneacontahedron

Both these patterns can be found as sub patterns of the five-fold symmetry patterns of page.

Figure 92: Triacontahedron

All edges are ${\cal A}$ lines—one ${\cal A}$ line is perpendicular to the plane of page.

Figure 93: Enneacontahedron

All edges are B lines— A line is perpendicular to the plane of page.

8 Symmetries of a Regular Thirty-one Zone Star

The dodecahedron and the icosahedron are duals of each other - the vertices of one match the face midpoints of the other and vice versa.

The ten B lines of the thirty-one zone star go through the vertices of the dodecahedron or, equivalently, the face midpoints of the icosahedron while the six A lines go through the vertices of the icosahedron or, equivalently, the face midpoints of the dodecahedron.

The fifteen C lines go through the edge midpoints of either the icosahedron or the dodecahedron.

The middles of edges are commonly midway between vertices or face midpoints and C lines bisect all angles between A lines and three of the four kinds of angles formed between B lines.

In examining angles between lines, we are also examining equators. There are six different equators and slicing through them, we form the *R*, *S*, *T*, *V*, *X*, and *Y* sections.

All pairs of lines lie in one of-these six kinds of sections.

See Sections for a discussion of different angles and the polygons they form.

Figure 94: Thirty-One Zone Star: Dodecahedron

Figure 95: Thirty-One Zone Star: Icosahedron

9 Five-Fold Symmetry

The icosahedron and the dodecahedron have five-fold symmetry. They cannot occur as crystals. Crystals are built up of molecules that are located in systems of regular points. It is impossible for a system of regular points to have five-fold symmetry. The inability of objects with five-fold symmetry to fit together is obvious if one tries to it regular pentagonal tiles together to cover a plane. Three, four and six sided tiles will fit, but not regular five sided tiles.

Figure 96

Figure 97

Figure 98

There do exist crystals, for example $MoAl_{12}$, that contain icosahedral elements within their component cells. But only a subgroup of the icosahedron's many symmetries is employed in the structure, and the icosahedron merely goes along for the ride. It is impossible for it to use its five-fold symmetry. The case of the icosahedral element within the $MoAl_{12}$ crystal can be compared to a set of triangular tiles, each with a pentagon pattern within. But the pentagon, although it might touch a side, would leave the pattern up to the simpler shape that it lived within.

Figure 99: Five Fold Symmetry Examples

Three different species of Pediastrum. (From Brown, The Plant Kingdom, Ginn, 1935 [Bro35]) Note that the two on the right have five-fold symmetry.

Five-fold symmetry does appear scattered among other symmetries in nature.

9.1 Growth and Generations of Stars

Below, we have three different patterns. Each has been produced by a different star following the same rule of growth. In one case, the pattern is that of squares, in other triangles and in the largest a strange pattern of over-lapping pentagons and five pointed stars.

The rule followed is that the star sprouts other stars similar to itself at each of its end points. Each old end point must sprout before new ones sprout.

This is called recursive growth. In the first two cases, it produces a simple and uniform pattern which, as it grows, duplicates itself across the page.

The patterns to the right of the line patterns indicate at which generation the point was produced.

The regularity and homogeneity of the patterns of squares and triangles indicate the simplicity of growths that follow these symmetries. These are patterns of crystal growth—billions of identical molecules can be incorporated identically in these patterns.

In the case of the pattern with five-fold symmetry, there isn't uniformity. Different points have different patterns in their immediate neighborhoods. Instead of the pattern simply reproducing itself across the page, it becomes steadily more intricate.

Figure 101: Triangle Patterns

10 Sections

If the lines of the 31-zone star followed no pattern, it would be possible to form $\frac{31 \times 30}{2 \times 1} = 465$ planes—each with a different orientation.

In our 31-zone system, the pairs of lines form only 121 different planes—this is because some of the pairs of lines lie on the same plane. Thus, our 31-zone star is singular.¹

In any one 31-zone star there are:

1See definition of singular star - Figure 21

15	R	sections
30	S	sections
6	T	sections
10	V	sections
30	X	sections
30	Y	sections

Table 10.1: Section types in 31 zone star

Figure 103: R Section Star

Figure 104: R Section Equators

Figure 105: One R Section Equator

Figure 106: Species of R Section Triangles and Their Subdivisions 1–6

Figure 107: Species of R Section Triangles and Their Subdivisions 7–12

10.2 S Section

Figure 108: S Section

Figure 109: S Section Equators

Figure 110: One S Section Equator

In the S section there is only one triangle possible:

Figure 111: S Section Triangle

10.3 T Section

Figure 112: T Section

Figure 113: T Section Equators

Figure 114: One T Section Equator

In the T section there are two kinds of triangles possible:

Figure 115: T Section Triangles

Figure 116: VSection

Figure 117: VSection Equators

Figure 118: VSection Equator

In the Vsection there are equilateral triangles:

Figure 119: VSection Equilateral Triangle

Figure 120: X Section

Figure 121: X Section Equators

Figure 122: One X Section Equator

In the X section there is a rectangle:

Figure 123: X Section Rectangle

Figure 124: YSection

Figure 125: YSection Equators

Figure 126: One YSection Equator

In the Ysection there is a rectangle:

Figure 127: YSection Rectangle

10.7 The Formation of Triangles

The R, S, T, and V sections contain triangles; the X and Y don't. They couldn't because they don't have enough lines. Every triangle has sides running in three different directions, but the X and Y have only two directions.

If we have three zones in one plane, then we can form a triangle. If it is a structure with only certain lengths of structural members, then we must have them proportioned correctly so that they begin and end at the vertices of these particular kinds of triangles. This is a more difficult problem. The A and B lines are unique in that stars formed of only A lines or B lines are non-singular. They define maximum numbers of planes—most uniformly distributed through space—with minimum numbers of lines. But they cannot triangulate themselves—mixed A and B lines do form triangles as can be seen in the triangles within the R sections. But it is the 15 C lines that serve as the triangulators in our star. In the T and V sections they form triangles with themselves while in the R and S sections the very relationship between the lengths of the A and B lines was determined by choosing the same C lines as a base for two different triangles—one with A lines and one with B lines.

10.8 A Star Problem

An interesting problem for the designer would be to construct a star in which every plane defined in the system by two lines could be triangulated by other lines in the system. Or, to arrange lines in space, so there were never only two lines in one plane. This is impossible—as you add more lines to triangulate a plane, the new lines define new planes with old lines, and the star needs even more new lines to form triangles. That the X and Y sections in the thirty-one zone star are unable to triangulate themselves cannot be avoided. A proof of this assertion can be derived from the necessity of all convex polyhedra to have some faces with fewer than six sides.

We have shown all the triangles that can be formed with our system. We have not illustrated all the convex polygons—those with an even number of sides are straight forward. The existence of irregular pentagons, septagons, nonagons and eleven sided figures has not been investigated.

There are a finite number of classes of such an angle similar convex polygons. If one does not insist that the polygons be convex, then there are infinite numbers of such polygons. In three dimensions, the smallest convex polyhedron is the tetrahedron. A tetrahedron has 4 triangular sides. The stock of possible triangles to form tetrahedra is those we have shown in the R, S, T and V sections. These triangles must fit together along the proper planes to form tetrahedra within our system. For instance, in the V sections there are equilateral triangles, but the dihedral angles between V sections do not allow us to form a regular tetrahedron in our system.

11 The Divine Proportion

Figure 128: Divine Proportion

THE DIVINE PROPORTION, or 1.6180339 ... is the relationship between the diagonal of a pentagon to the edge. This accounts for its ubiquitous appearance in our structures with five-fold symmetry, for these structures are continuously forming pentagons. Again and again components can be found as diagonals or sides of pentagons made with other components—or both. But this isn't really reason enough. It is hard to think of any of the numerous divine proportion relationships as cause for others. Rather, they all seem symptoms of a deeper set of relationships. And our fastening on the divine proportion and the Fibonacci numbers¹ seems peculiar when we consider, for instance that the square root of 2 appears again and again in grids of squares.

¹ See Section 11.2

Figure 129: Square root of 2

And that the square root of 2, an irrational number, is approached by a simple sequence of fractions.

$$\frac{1}{1}, \frac{3}{2}, \frac{7}{5}, \frac{41}{29}, \frac{99}{70} \tag{11.1}$$

Each denominator is the sum of the numerator and the denominator of the preceding fraction. Each numerator is the sum of its own denominator and the preceding one. Or, if one uses a pattern of seven lines, there are still other relationships and their powers that appear and reappear.

Figure 130: 7-Zone Star

In the 7-zone star the relationship between the lengths of the radii and the line $\overline{45}$ can be approached by the relationship between successive integers in a sequence formed in much the same way as the divine proportion's Fibonacci series. The rule for forming the sequence is that in the sequence any integers S_n :

$$S_n = 2S_{n-1} + S_{n-2} - S_{n-3} \tag{11.2}$$

or, for example,

$$283 = 2(126) + 56 - 25 \tag{11.3}$$

The first terms in the sequence are...1, 2, 5, 11, 25, 56, 126, 283, 636, 1429, 3211, 7215, 16212, 36428, 81853

$$\frac{11}{5} = 2.20000 \tag{11.4}$$

$$\frac{283}{126} = 2.24698\tag{11.5}$$

$$\frac{7215}{3211} = 2.24696\tag{11.6}$$

$$\frac{81853}{36428} = 2.24698\tag{11.7}$$

Calculating the value from 10 place trigonometry tables

$$\frac{radius}{\overline{45}} = 2.24701 \tag{11.8}$$

The relationship between the radius and the line $\overline{27}$ is approached by the ratio between adjacent terms in a sequence where:

$$S_n = S_{n-1} + 2S_{n-2} - S_{n-3} \tag{11.9}$$

The more you examine properties of objects and phenomena, the more you find yourself presented with a few terms, usually simple, from a long series of terms. Often you cannot touch the terms which are farther or lower in the series, but you can define properties which they have. One gets the feeling of living in a container - one of an infinite number - to which are shunted objects and phenomena which have passed through one filter but can't pass through another; a great process like that which takes place in a gravel yard, only we are unable to see gravel other than that of our own size but sense that it exists in endless different piles beyond - everything from sand to piles of planet sized boulders.

T expressed as a continued fraction.

$$1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \dots}}} \tag{11.10}$$

We can truncate the fraction anywhere and compute its value. The farther we carry it the closer it approximates the exact value;

$$T = \frac{\sqrt{5} + 1}{2} \tag{11.11}$$

11.1 Tau Power Series

T^{-3}	=	0.2360680
T^{-2}	=	0.3819660
T^{-1}	=	0.6180340
T^0	=	1.0000000
T^1	=	1.6180340
T^2	=	2.6180340
T^3	=	4.2360680
T^4	=	6.8541020
T^5	=	11.0901699
T^6	=	17.9442719
T^7	=	29.0344418

Table 11.1: Tau Power Series

$$T^n = T^{n-1} + T^{n-2} \tag{11.12}$$

11.2 Pattern and Rules

If you begin with any two numbers and follow the rule, each term equals the sum of the two preceding terms, the ratio between consecutive terms approaches the divine proportion.

The first two terms of the Fibonacci numbers are 1, 1, and their proportion $\frac{1}{1}$ is a long way from *T*, but $\frac{F_n}{F_{n-1}}$ quickly approaches *T*.

$$\frac{F_7}{F_6} = 1.6250\tag{11.13}$$

$$\frac{F_{12}}{F_{11}} = 1.6180 \tag{11.14}$$

Accompanying many simple polygons and patterns of polygons are series such as the Fibonacci, where the relationships between different terms approach the precise geometric relationships. The rules for forming the accompanying series are then clues for examining the structure of the pattern. And the relationships repeated in the pattern are clues for rules which give the process to form the pattern.

The perfection of the geometric form seems fragile. If we demand perfection to 7 decimal places, the thickness of a line spoils our form.

But the rules for the formation of the series which accompany the pattern are sturdy and simple. If mistakes are made in a sequence formed by the rules, the sequence heals itself after a few generations to again approach the precise form. This is seen in how quickly the Fibonacci series approaches T after its clumsy beginning.

Figure 131

Stacks of six zone acute and obtuse cells. The widths of an acute cell and an obtuse cell are in the divine proportion. Therefore, a series of stacks can be built with each stack 1.6180339... times as tall as the one before it. The rule is that each stack is made by placing the two stacks that precede it on top of each other.

There are also numerous relationships involving the divine proportion among the altitudes of the parallelepiped cells formed with "B" lines.

11.3 The Fibonacci Numbers

F_1	1	F_{11}	89	F_{21}	10946	F_{31}	1346269
$\overline{F_2}$	1	F_{12}^{-1}	144	F_{22}^{-1}	17711	F_{32}^{-}	2178309
$\overline{F_3}$	2	$F_{13}^{}$	233	F_{23}^{-}	28657	F_{33}^{-}	3524578
F_4	3	$F_{14}^{}$	377	F_{24}^{-1}	46368	F_{34}^{0}	5702887
F_5	5	F_{15}	610	F_{25}	75025	F_{35}	9227465
F_6	8	F_{16}	987	F_{26}	121393	F_{36}	14930352
F_7	13	F_{17}	1597	F_{27}	196418	F_{37}	24157817
F_8	21	F_{18}	2584	F_{28}	317811	F_{38}	39088169
F_9	34	F_{19}	4181	F_{29}	514229	F_{39}	63245986
F_{10}	55	F_{20}	6765	F_{30}	832040	F_{40}	102334155
-		-				_	

Table 11.2: Fibonacci Numbers

$$F_n = F_{n-1} + F_{n-2} \tag{11.15}$$

12 Coherence Proofs

In a structural system or any pattern the question arises; what is the pattern made of? What are the relationships between different elements of the pattern?

In a checkerboard pattern such as that shown in figure 100 all distances between neighboring intersections are the same. And the distance between two intersections of any line is simply a multiple of this base distance. This base distance then naturally becomes the unit for building the pattern.

In our pattern created by the star with five-fold symmetry, the situation is different. There are many different lengths between intersections. If the growth patterns follow simple rules such as those followed in forming the two-dimensional pattern of figure 102, then all distances between intersections can be expressed as simple sums of components whose lengths are equal to powers of the divine proportion times some constant. This is also true in three dimensions - the A and B lines of the 31-zone star forming a growth similar to our 2-dimensional growth intersect each other at points where the distance between any two intersections on an A line equals

$$s_1 A T^{r_1} + s_2 A T^{r_2} + \dots \, s_n A T^{r_n} \tag{12.1}$$

and the distance between two intersections on a B line equals a polynomial

$$q_1 B T^{t_1} + q_2 B T^{t_2} + \dots \, q_n B T^{t_n} \tag{12.2}$$

The building blocks for our system are then a series of lengths related by the divine proportion. An A series, a B series and a C series—each of slightly different lengths.¹

¹ See Critical Constants 7 and Hardware 15.

12.1 Two Dimensions

12.1.1 Definition 1

We call any particular polynomial of the form

$$s_1kT^{r_1} + s_2kT^{r_2} + \dots \, s_nkT^{r_n} = f_i(kT) \tag{12.3}$$

 \boldsymbol{s}_i and \boldsymbol{r}_i are integers.

We call the class of all such polynomials F(kT) then;

$$f_i(kT) + f_j(kT) \in F(kT) \tag{12.4}$$

$$f_i(kT) - f_j(kT) \in F(kT) \tag{12.5}$$

$$(T^n)f_i(kT) \in F(kT) \tag{12.6}$$

We are interested in the distances between intersections along the lines of certain sets of patterns.

12.1.2 Definition 2

A pattern is a number of extended lines which point in five different directions in one plane with at least one line pointing in each direction.

Figure 132

12.1.3 Definition 3

The lines are labeled;

$$i^{l^n}$$

 $n = 1, 2, 3, 4, 5$
 $i = 1, 2, \dots$

n names the direction - i names the particular line pointing in that direction. The angles between lines are;

$$\frac{\pi}{5}, \frac{2\pi}{5}, \frac{3\pi}{5}, \frac{4\pi}{5}$$

12.1.4 Definition 4

An intersection is named by any two of the lines which intersect there, such as

$$j^{l^n} \times k^{l^m} \tag{12.7}$$

12.1.5 Definition 5

If on a line all intervals between intersections are equal to different $f_i(kT)$, then the intersections "fit" each other.

An intersection fits a line if it fits all intersections on that line.

A line g^{l^p} fits another line f^{l^q} if the intersection $g^{l^p} \times f^{l^q}$ fits all the intersections of f^{l^q} .

A pattern fits if all the intersections on all the lines fit.

Lemma 12.1.1. If on a line l^n an intersection I_n fits an intersection I_m then I_n fits all I_o where I_o fits I_m .

Lemma 12.1.2. Any i^{l^m} , j^{l^n} , h^{l^p} , $m \neq n$, $n \neq p$, p form a triangle similar to T_1 or T_2

12.1.6 Definition 6

These triangles are called the Golden triangles because their sides are in the divine proportion.

Lemma 12.1.3. If the two vertices of a Golden Triangle fit each other then all vertices fit each other.

Lemma 12.1.4. If a line j^{l^m} fits a line h^{l^n} and if all l^n fit some line i^{l^m} and if i^{l^m} fits all l^n without the line j^{l^m} , then, all intersections $j^{l^m} \times l^n$ fit $j^{l^m} \times h^{l^n}$ and the line j^{l^m} fits all l^n .

Figure 133

Lemma 12.1.5. If j^{l^m} fits h^{l^n} then all l^p , $p \neq m, n \times j^{l^m}$ fit $jlm \times hln$ and if h^{l^n} fits all l^p without j^{l^m} them j^{l^m} fits all l^p .

Theorem 12.1.6. If a pattern fits and a line j^{l^m} is added and j^{l^m} fits some line j^{l^n} , $n \neq m$, then the new pattern including j^{l^m} fits.

A pattern fits if all the intersections on all the lines fit. (Definition 5) To prove the new pattern fits we must prove all the new intersections fit the lines they are on.

1. There are no new intersections on the lines k^{l^m} , $k \neq j$, therefore all the intersections on these lines fit.

- 2. All the intersections $j^{l^m} \times l^n$ fit $j^{l^m} \times h^{l^m}$ and the line $j^{l^m} \times h^{l^m}$ and the line j^{l^m} fits all l^n . (Lemma 4) Therefore all the intersections of the lines l^n fit.
- 3. All the intersections $l^{p,p\neq m,n} \times j^{l^m}$ fit $j^{l^m} \times h^{l^n}$. (Lemma 5) Therefore, the intersections of line j^{l^m} fit $j^{l^m} \times h^{l^n}$. Therefore, the intersections fit on all the lines l^m (step 1) and j^{l^m} fits all $l^{p,p\neq m,n}$ (Lemma 5) which means that all the intersections on all the lines $l^{p,p\neq m,n}$ fit and our theorem is thus proved.

12.2 Three Dimensions

12.2.1 Definition 1

In three dimensions we have a pattern made up of the diameter lines through vertices and face midpoints of the icosahedron.

The lines through the vertices are the A lines.

The lines through the face midpoints lines are B lines.

There can be other lines parallel to the original 16 lines. They are given the name of the line they are parallel to.

We name a line

$$i^{A^{n^1}}$$

 $n = 1, 2, 3, 4, 5, 6$
 $i = 1, 2, \dots$

$$j^{B^{m^1}}$$

 $m = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10$
 $j = 1, 2, \dots$

or generally

$$h^{X_i^{p^1}}$$

 $p = 1, 2 \dots 10$
 $h = 1, 2, \dots$
 $X = A, B$

12.2.2 Definition 2

All lines of a 3D pattern are connected directly or through other intersections to the original pattern of 16 lines.

12.2.3 Definition 3

Intersections on A lines "fit" if all the intervals between them can be expressed as polynomials

$$s_1 A T^{r_1} + s_2 A T^{r_2} + \dots \, s_n A T^{r_n} = f_i(AT) \tag{12.8}$$

 $s_i, r_i =$ integers and A =an interval of length.

12.2.4 Definition 4

Intersections on B lines "fit" if all intervals between them can be expressed as polynomials.

$$s_1BT^{r_1} + s_2BT^{r_2} + \dots \ s_nBT^{r_n} = f_i(BT) \tag{12.9}$$

 $\boldsymbol{s}_i, \boldsymbol{r}_i = \text{integers} \text{ and } \boldsymbol{B} = \text{an interval of length}.$

12.2.5 Definition 5

$$B = \frac{\cos(\frac{\pi}{6})}{\cos(\frac{\pi}{10})}A\tag{12.10}$$

12.2.6 Definition 6

A 3D pattern "fits" if all the intersections on all the lines fit.

12.2.7 Definition 7

An R section is a plane containing two A lines and two B lines. The angle between the two A lines is \Box ; the angle between the two B lines is \Box ; the angle between an A and a B line is

$$\frac{\pi - \theta - \phi}{2} \text{ or } \frac{\pi - \theta - \phi}{2} \tag{12.11}$$

12.2.8 Definition 8

A T plane is a plane perpendicular to an A line. A T plane is named by this A line

 T^{A^n}

Lemma 12.2.1. There are five R sections perpendicular to each T plane. Each A line is contained in five different R sections. Each B line is contained in three different R sections.

Lemma 12.2.2. The projection of the interval A along any A line onto a T plane

$$=A\sin(\theta) \tag{12.12}$$

12.2.9 Definition 9

$$k = \sin(\theta) \quad or \quad = 0.A \tag{12.13}$$

1: What does 0.A resolve to?

(if the interval is on the A line perpendicular to the T plane).

Lemma 12.2.3. The projection of the interval B along any B line onto a T plane

$$=B\sin(\frac{\pi-\theta+\phi}{2}) = k \text{ or } = B\sin(\frac{\pi-\theta-\phi}{2} = T^{-1_k})$$
(12.14)

Figure 134

Lemma 12.2.4. The projection onto any T plane of any interval along any line $k^{X_i^{r^1}}$ between any two intersections which fit in the 3D pattern is a polynomial

$$s_1kT^{r_1} + s_2kT^{r_2} + \dots + s_nkT^{r_n} = f_i(kT)$$
(12.15)

$$s_i, r_i = \textit{integers}$$

$$k = A\sin(\theta) = B\sin(\frac{\pi-\theta+\phi}{2})$$

Lemma 12.2.5. The angles between the lines projected on a T plane are

$$\frac{\pi}{5}, \frac{2\pi}{5}, \frac{3\pi}{5}, \frac{4\pi}{5}$$
(12.16)

Figure 135

Lemma 12.2.6. 3D Patterns which fit project onto all T planes 2-dimensional patterns which fit.

Lemma 12.2.7. All intervals between intersections of lines of the 3D pattern appear as intervals between intersections in the projections on some T planes.

For an intersection

$$i^{X_k^{n^l}} \times i^{X_j^{m^l}} \tag{12.17}$$

not to appear as an intersection in the pattern projected on a T plane, the intersecting lines must lie in one of the five perpendicular R sections.

At most, two different lines intersect $i^{X_k^{n^l}}$. The two intersections

$$i^{X_k^{n^l}}$$
 or $g^{X_t^{p^l}}$

lie. Therefore, there is at least one T plane in which both 3D intersections project as 2-dimensional intersections.

Lemma 12.2.8. If some pairs of intersections

$$i^{X_k^{n^l}} \times h^{X_j^{m^l}}$$
 and $i^{X_k^{n^l}} \times g^{X_f^{p^l}}$ (12.18)

did not fit in our 3D pattern, that is, we cannot find any polynomial $f_1(X_kT)$ that equals the interval between them, then also for some T plane we cannot find a polynomial $f_i(kT)$ which equals the interval between their projected intersections.

Lemma 12.2.9. Any misfits between intersections of the 3D pattern project as misfits between intersections on some T plane. Therefore, a 3D pattern which projects on all T planes as a 2D Pattern which fits is a 3D pattern which fits.

Theorem 12.2.10. If a 3D pattern fits and a new line is added $k^{X_i^{n^l}}$ which intersects and fits some other line $h^{X_j^{n^l}}$ then the new 3D pattern including $k^{X_i^{n^l}}$ fits.

Proof. In each T plane the projection of the line $k^{X_i^{n^l}}$ fits the projection of the line $h^{X_j^{m^l}}$. In each T plane the projection of the 3D pattern without $k^{X_i^{n^l}}$ fits. Therefore, the projection is with the line $k^{X_i^{n^l}}$ fits on each T plane and the theorem is proved. \Box

The coherence proof demonstrates that if one builds a structure using the A and B lines of the 31 zone star (the C lines may be used only within the forms defined by the A and B lines) and always follows the rule that new parts are added at intersections of existing parts or at points along existing parts which can be reached by subdividing a large part into component small parts, then no matter how far or intricately one builds, two extensions of two entirely different limbs of the same structure can always be locked back together in a perfect fit with a combination of our simple parts.

We have shown that the intervals between intersections are all equal to certain polynomials in T. Because

$$T^n = T^{n-1} + T^{n-2} (12.19)$$

all the terms of any such polynomial can descend by subdivisions into a polynomial with only two terms-

$$f_i(AT) = rAT^n + sAT^{n-1}$$
(12.20)

There are many interesting side-lights to these investigations. One of which is that it is impossible to divide any one of our building blocks AT^n into equal pieces.

There are much shorter proofs of the coherence of this system, but the short proofs don't lead one through so many characteristics of the structure.

13 Joints

We have associated the thirty-one zone star throughout with the icosahedron and the dodecahedron. It also fits perfectly with the three smaller regular polyhedra. The tetrahedron, the cube and the octahedron fit inside the icosahedron and the dodecahedron. Their vertices touch a vertex, an edge midpoint or a face midpoint of the larger figure. This regular match between large and small figure positions the smaller figure so that regular patterns on the large figure project inwards as regular patterns on the small figure. In each case, either five or ten small figures fit at once within the larger figure.¹

Each of the regular polyhedra is thus a convenient core from which to define the regular thirty-one zone star. The geometric regularities insure simplicity in the connections. Any one of the regular polyhedra can be used with the same pattern of flanges or holes on each of its faces as a connector for the thirty-one zone structural system.²

¹ See illustrations in Cundy and Rollet's *Mathematical models* [CR61].

² Note! In the case of the thirty-one zone pattern projected on the octahedron, four of the faces have a left-handed pattern. The drawing and the photo are of patterns with different handedness.

Figure 136: Tetrahedron

Figure 137: Tetrahedron Vertices

ć

Figure 138: Cube

Figure 139: Cube Vertices

Figure 140: Octahedron

Figure 141: Octahedron Vertices

Figure 142: Dodecahedron

Figure 143: Dodecahedron Vertices

Figure 144: Icosahedron

Figure 145: Icosahedron Vertices

14 The Stars of Other Systems

In the design of a connector simplicity in one part may demand specialization and the establishment of hierarchies among other parts.

The sketches of a joint of an icosahedron show examples of different ways of joining the five edges of an icosahedron. The parts remain identical if they trade or share with each other at the joint.

Figure 146: Sharing

Figure 147: Trading

When some parts dominate others, there is a hierarchy created and the parts must be differentiated. In our illustration, we show five edges of an icosahedron stacked on top of one another. With the icosahedron, it is possible to have both ends of each edge occupy similar positions, but this is not always true.

Figure 148: Dominating

The creation of one hierarchy may create the need for more. For instance, if you wish to use a hierarchy of stacked edges to make a simple triangle, then you must also create a hierarchy between ends of the same edge. The two ends of the same edge have different ranks.

Figure 149: Stacked Edges of a Triangle

Very often we don't have the structural members actually touching each other. Then we avoid the edges' problem of sharing, trading or dominating—we push the entire problem on to the joint. The joint must accommodate all the connecting members, and it shouldn't demand that they have elaborate ends or different kinds of ends. The joint must also be strong and inexpensive.

If the joint is a ball and the A, B and C connections are simply holes which the members screw into. All holes of the same type are identical, and the ends of all structural members are identical.

This is a wonderful feature because you can't make mistakes—there are no right and wrong holes of a certain type. The joint shown in Figure 160 has 12 threaded holes for the A lines in the thirty-one zone system. Joints made this way are expensive, and the connectors at the end of the structural members are expensive. A common inexpensive connecting system is a joint made of multiple interconnecting flanges with the flattened ends of the structural members bolting against the flange of the joint. Joints made of flanges can be simple flat stampings that lock together or are welded together.

Flanges bring problems. What if you must connect two joints, and you find that once you bolt one end of your member to one joint it can't bolt to the other because the flange is turned the wrong way? The specialization of a flat end and a flange has brought problems. The end of the structural member could be made to swivel. That is expensive. The joint could be made so that this problem never arises. Unfortunately, our second solution is not always possible. To make a thirty-one zone joint where each connection is a flat flange and which is impossible to put together incorrectly, you have to devise a pattern that passes through each connecting point only once and is regular (you can't tell the pattern that surrounds a connection from the pattern that surrounds any other connection of the same type).

Figure 150: Flanges of an icosahedron or dodecahedron

This is impossible to do in the case of the thirty-one zone star. You can make a flange joint for the thirty C connections. The C lines can have the specialization of flange orientation while still avoiding the clumsiness of having to arrange themselves in a hierarchy. The flanges are the edges of an icosahedron or a dodecahedron.

Three interlocking rectangles at right angles to each other form a flange joint for the 12 A lines, 6 C lines and 12 B lines.

Figure 151: Interlocking rectangles forming a flange joint

Note! These are three perpendicular R sections.

There is a mistake proof flange joint for both A and C connections if one hierarchy is introduced. You must always orient the joint to suit the A lines.

This joint is shown in the photo of the wooden model of the three intersecting planes.

Figure 152: Model of intersecting planes

Two of the flanges for the missing C lines are added. This joint is completely regular until the addition of these C flanges—they are not in the same plane as their neighboring A flanges. We thus have two types and lose our regularity.

A good flange joint for the thirty-one zone star is made of six interlocking disks—five R sections and one T section.

Figure 153: Six interlocking disks

Figure 154: Vertices on a sphere

This creates an irregular icosahedron which passes through each of the sixty-two connecting points and decides automatically the orientation of sixty of the flanges. The pole points of this figure are A connections and one of the five intersecting R sections must dominate the others to determine the flange orientation. This joint can have part or all of the R sections in place depending on which connections are needed.

14.1 Octet Truss

The widely used octet truss is based on the star that passes through the midpoints of the edges of a cube. (Or, equivalently, the midpoints of the edges of an octahedron, the midpoints of the faces of a rhombic dodecahedron, the vertices of a cuboctahedron.)

Figure 155: Star for octet truss

This is a singular star with four sections (A sections in drawing) containing three lines at 60° to each other and three sections with two lines at right angles (B sections). The zonohedron whose edges are parallel to the lines of the star is the truncated octahedron.

Figure 156: Truncated Octahedron

14.2 The Mero Space Grid System

This system is based on the octet truss star plus three more zones which pass through the face midpoints of the cube which has the other lines passing through its edge midpoints. This singular star has three sections (B sections) with four lines intersecting at 45° to each other, four sections (A sections) with three lines at 60° to each other and six sections (C sections) with two lines at 90° to each other.

Figure 157: Star for MERO system

The zonohedron associated with this star is the truncated cuboctahedron.

Figure 158: Truncated Cubooctahedron

Lengths of A, B, and C lines.

Structural members where A = 40''.

Figure 160: Six Zone Joint

Figure 159: Six Zone Joint Plan

Figure 161: Section for $1\frac{1}{4}$ " pipe

Figure 162: Framework for Robert Ford residence.

A lines = AT^2 ; base A = 40''

 $C \operatorname{lines} = CT^2$ (see page 32)

Figure 163: Zome Climber

 $A \operatorname{lines} = 40'' C \operatorname{lines} = 42''$

List of Figures

1	Zome	1
2	Zome, with person and child	2
3	Construction of a Zome structure	2
4	Scale model of a Zome structure	3
5	Construction of a Zome structure	3
6	Scale model of a Zome structure	4
7	Geodesic Dome–DEW line Radome, circa 1956	5
8	Geodesic Dome	5
9	Possible faces	8
10	Cube	9
11	Octagonal prism	9
12	Rhombic Dodecahedron	10
13	Truncated Octahedron	11
14	Truncated Cuboctahedron	12
15	Great rhombicosidodecahedron or Truncated icosidodecahedron	13
16	Seven-Zone Polar Zonohedron	14
17	Polar Zonahedron from CHH Franklin's drawing	15
18	Zone "1" shaded	17
19	Rhombic Triconntahedron, labeled zones	18
20	Enneacontahedron, labeled	19
21	Singular Star, through vertices of cuboctahedron.	21
22	Associated zonohedron, truncated octahedron	22
23	Associated face plane	23
24	Section star	24
25	Rhombic Dodecahedron	25

26	Triacontahedron	26
27	Enneacontabedron	27
27		27
28	Cube	31
29	Tetrahedron	32
30	Octahedron	33
31	Rhombic Dodecahedron	34
32	Dodecahedron	35
33	Rhombic Triacontahedron	36
34	Icosahedron	38
35	Rhombic Enneacontahedron	39
36	Triacontahedron, 1	42
37	Triacontahedron, 2	43
38	triacontahedron, 3	44
39	triacontahedron, 4	45
40	triacontahedron, 5	46
41	triacontahedron, 5	47
42	Enneacontahedron with 2 triacontahedrons	48
43	Triacontahedra, 5	49
44	triacontahedra, 5	50
45	Two triacontahedra fused through skew hexagon.	51
46	Front view - same as above.	52
47	Same cluster as above - One zome has zone stretched past others	53
48	Three triacontahedra fused, through skew hexagon.	53
49	Front view - same as above.	54
50	Fourth zome added - fused to two side zomes through skew hexagon -	
	fused to front zome through vertical section.	54
51	Same as above. Notice the appearance of C and CT in the floor sections.	55
52	Six zone zome - half a triacontahedron	57
53	1 horizontal zone stretched to 2	58
54	same as above (top view)	59
55	2nd horizontal zone stretched to two top panels $2x2$ (top view)	60
56	2 side zones stretched	61

57 58 59		62 63 64
60	Single 21-zone A cell	65
61	2 <i>A</i> cells	66
62	4 <i>A</i> cells	67
63	8 <i>A</i> cells	68
64	Truss turning corner 8 A cells	68
65	Truss turning corner 8 A cells - 4 B cells	69
66	Truss forming arch* A cells middle sections B cells on sides	70
67	*Truss forming arch Head on view	71
68	Single 21 zone B cell	72
69	-	73
70		74
71		75
72	Six-zone truss covering the top half of triacontahedron	76
73	Pentagonal structure formed by truncating pent corner of triacontahe-	
	dron. See structure in Figure 162	77
74		78
75	Rectangular truss - folded plate configuration	79
76	Truss formed of obtuse cells	79
77		80
78	Two views of a rectangular trussed roof	80
79	Triacontahedron—with interior icosadodecahedron for stiffening	81
80	Triacontahedron	82
81	Enneacontahedron within a triacontahedron	83
82	Enneacontahedron within a triacontahedron	84
83	Triacontahedron	85
84	Six zone	87
85	Ten zone	88
86		_
		88

89 10 Zone Diamonds 91 90 Skinny Diamond 92 91 Maraldi Diamond 93 92 Triacontahedron 94 93 Enneacontahedron 94 93 Enneacontahedron 95 94 Thirty-One Zone Star: Dodecahedron 98 95 Thirty-One Zone Star: Icosahedron 99 96	88	Golden Diamond)
90 Skinny Diamond 92 91 Maraldi Diamond 93 92 Triacontahedron 94 93 Enneacontahedron 95 94 Thirty-One Zone Star: Dodecahedron 98 95 Thirty-One Zone Star: Icosahedron 99 96	89	10 Zone Diamonds	L
91Maraldi Diamond9392Triacontahedron9493Enneacontahedron9594Thirty-One Zone Star: Dodecahedron9895Thirty-One Zone Star: Icosahedron9996	90	Skinny Diamond)
92 Triacontahedron 94 93 Enneacontahedron 95 94 Thirty-One Zone Star: Dodecahedron 98 95 Thirty-One Zone Star: Icosahedron 99 96	91	Maraldi Diamond	3
93 Enneacontahedron 95 94 Thirty-One Zone Star: Dodecahedron 98 95 Thirty-One Zone Star: Icosahedron 99 96	92	Triacontahedron	1
94Thirty-One Zone Star: Dodecahedron9895Thirty-One Zone Star: Icosahedron9996	93	Enneacontahedron	5
94 Infity-One Zone Star. Douecatedroit 96 95 Thirty-One Zone Star. Icosahedron 99 96	0.4	Thirty One Zone Star Dedeschedren	2
95 Filinty-one Zone Star. Resaledron 99 96 101 97 102 98 103 99 Five Fold Symmetry Examples 105 100 Square Patterns 107 101 Triangle Patterns 107 101 Triangle Patterns 108 102 Pentagon Patterns 109 103 R Section Star 112 104 R Section Equators 113 105 One R Section Equators 114 106 Species of R Section Triangles and Their Subdivisions 1–6 115 107 Species of R Section Triangles and Their Subdivisions 7–12 116 108 S Section 117 109 S Section Equators 117 109 S Section Equator 117 109 S Section Equator 118 110 One S Section Equator 120 111 S Section Triangle 120 112 T Section Triangle 122 114 One T Section Equator 123 115 T Section	94	Thirty-One Zone Star. Douecalledron	נ ר
96	95	Inirty-One zone star: icosanedron	1
97	96		1
98 103 99 Five Fold Symmetry Examples 105 100 Square Patterns 107 101 Triangle Patterns 108 102 Pentagon Patterns 109 103 R Section Star 109 103 R Section Equators 112 104 R Section Equators 113 105 One R Section Equator 114 106 Species of R Section Triangles and Their Subdivisions 1–6 115 107 Species of R Section Triangles and Their Subdivisions 7–12 116 108 S Section 117 109 S Section Equators 117 109 S Section Equator 117 109 S Section Equator 117 119 S Section Equator 120 111 S Section Equator 122 114 One T Section Equator 123 115 T Section Equator 123 115 T Section Equator 123 115 T Section Equator 124 116 V Section Equator 125	97		2
99 Five Fold Symmetry Examples 105 100 Square Patterns 107 101 Triangle Patterns 108 102 Pentagon Patterns 109 103 R Section Star 112 104 R Section Equators 113 105 One R Section Equators 114 106 Species of R Section Triangles and Their Subdivisions 1–6 115 107 Species of R Section Triangles and Their Subdivisions 7–12 116 108 S Section 117 109 S Section Equators 117 109 S Section Equators 118 110 One S Section Equator 119 111 S Section Equator 120 112 T Section Triangle 122 113 T Section Equators 122 114 One T Section Equator 123 115 T Section Equators 124 116 V Section Triangles 124 117 V Section Equators 125 117 V Section Equators 126 118 V Sect	98		3
100 Square Patterns 107 101 Triangle Patterns 108 102 Pentagon Patterns 109 103 R Section Star 112 104 R Section Equators 113 105 One R Section Equators 113 106 Species of R Section Triangles and Their Subdivisions 1–6 115 107 Species of R Section Triangles and Their Subdivisions 7–12 116 108 S Section 117 109 S Section Equators 117 109 S Section Equators 117 109 S Section Equators 118 110 One S Section Equator 119 111 S Section Equator 120 112 T Section Triangle 122 113 T Section Equator 123 114 One T Section Equator 123 115 T Section Triangles 124 116 V Section 125 117 V Section Equators 126 118 V Section Equator 126 119 126 126 <td>99</td> <td>Five Fold Symmetry Examples</td> <td>5</td>	99	Five Fold Symmetry Examples	5
101 Triangle Patterns 108 102 Pentagon Patterns 109 103 R Section Star 112 104 R Section Equators 113 105 One R Section Equators 114 106 Species of R Section Triangles and Their Subdivisions 1–6 115 107 Species of R Section Triangles and Their Subdivisions 7–12 116 108 S Section 117 109 S Section Equators 117 109 S Section Equators 118 110 One S Section Equator 119 111 S Section Equator 120 112 T Section Triangle 120 112 T Section Equators 122 114 One T Section Equator 123 115 T Section Triangles 124 116 V Section Triangles 124 116 V Section Equators 125 117 V Section Equators 126 118 V Section Equator 126	100	Square Patterns	7
102 Pentagon Patterns 109 103 R Section Star 112 104 R Section Equators 113 105 One R Section Equator 114 106 Species of R Section Triangles and Their Subdivisions 1–6 115 107 Species of R Section Triangles and Their Subdivisions 7–12 116 108 S Section 117 109 S Section Equators 118 110 One S Section Equator 119 111 S Section Triangle 120 112 T Section Triangle 121 113 T Section Equators 122 114 One T Section Equator 123 115 T Section Triangles 124 116 V Section 125 117 V Section Equators 126 118 T Section Equators 126 119 V Section Equator </td <td>101</td> <td>Triangle Patterns</td> <td>8</td>	101	Triangle Patterns	8
103 R Section Star112104 R Section Equators113105One R Section Equator114106Species of R Section Triangles and Their Subdivisions 1–6115107Species of R Section Triangles and Their Subdivisions 7–12116108S Section117109 S Section Equators118110One S Section Equator119111 S Section Triangle120112 T Section Triangle121113 T Section Equators122114One T Section Equator123115 T Section Triangles124116 V Section125117 V Section Equators126118 V Section Equator126119 T Section Equator126111 T Section Equator126112 T Section Equator126113 V Section Equator126114 V Section Equator127	102	Pentagon Patterns	9
105 R section Equators112104 R Section Equators113105One R Section Equator114106Species of R Section Triangles and Their Subdivisions 1–6115107Species of R Section Triangles and Their Subdivisions 7–12116108S Section117109 S Section Equators117109 S Section Equators118110One S Section Equator119111 S Section Triangle120112 T Section Equators121113 T Section Equators122114One T Section Equator123115 T Section Triangles124116 V Section Equators125117 V Section Equators126118 V Section Equators126119 V Section Equators126111 V Section Equator126112 V Section Equator126113 V Section Equator127	102	P Section Star 11	า
104 R section Equators113105One R Section Equator114106Species of R Section Triangles and Their Subdivisions 1–6115107Species of R Section Triangles and Their Subdivisions 7–12116108S Section117109 S Section Equators118110One S Section Equator119111 S Section Triangle120112 T Section Triangle121113 T Section Equators122114One T Section Equator123115 T Section Triangles124116 V Section Equators125117 V Section Equators126118 V Section Equators126118 V Section Equators126118 V Section Equators126117 V Section Equators126118 V Section Equators126118 V Section Equator127	103	R Section Equators	2 ງ
105One R Section Equator114106Species of R Section Triangles and Their Subdivisions 1–6115107Species of R Section Triangles and Their Subdivisions 7–12116108S Section117109S Section Equators117109S Section Equators118110One S Section Equator119111S Section Triangle120112T Section Triangle121113T Section Equators122114One T Section Equator123115T Section Triangles124116V Section125117V Section Equators126118V Section Equator126118V Section Equator127	104	$\begin{array}{c} n \text{ Section Equators} \\ 0 \text{ no } B \text{ Section Equator} \\ 11 \end{array}$	5 Л
106Species of R Section Triangles and Their Subdivisions 7–12115107Species of R Section Triangles and Their Subdivisions 7–12116108S Section Equators117109 S Section Equators118110One S Section Equator119111 S Section Triangle120112 T Section Triangle121113 T Section Equators121113 T Section Equators122114One T Section Equator123115 T Section Triangles124116 V Section125117 V Section Equators126118 V Section Equator127	105	Species of B Section Triangles and Their Subdivisions 1. 6 11	4 5
107Species of T section Triangles and Their Subdivisions 7–12116108S Section Equators117109 S Section Equators118110One S Section Equator119111 S Section Triangle120112 T Section \ldots 121113 T Section Equators122114One T Section Equator123115 T Section Triangles124116 V Section Equators125117 V Section Equators126118 V Section Equator127	107	Species of R Section Triangles and Their Subdivisions $1-0$	5 6
100 S Section Equators 117 109 S Section Equators 118 110 One S Section Equator 119 111 S Section Triangle 120 112 T Section 121 113 T Section Equators 122 114 One T Section Equator 123 115 T Section Triangles 124 116 V Section 125 117 V Section Equators 126 118 V Section Equator 127	107	Species of n_i section mangles and men suburvisions $i = 12 \dots 11$	0 7
110 One S Section Equators 110 111 S Section Triangle 120 112 T Section 121 113 T Section Equators 121 113 T Section Equators 122 114 One T Section Equator 123 115 T Section Triangles 124 116 V Section 125 117 V Section Equators 126 118 V Section Equator 127	100	Section Equators	י 2
110 One S Section Equator 117 111 S Section Triangle 120 112 T Section 121 113 T Section Equators 122 114 One T Section Equator 123 115 T Section Triangles 124 116 V Section 125 117 V Section Equator 126 118 V Section Equator 127	110	Ope Societa Equator 110	0
111 Disection Intalgie 120 112 T Section	111	S Section Triangle	פ ה
112 T Section 121 113 T Section Equators 122 114 One T Section Equator 123 115 T Section Triangles 124 116 V Section 125 117 V Section Equator 126 118 V Section Equator 127	112	TSection 12	1
113 7 Section Equators 122 114 One T Section Equator 123 115 T Section Triangles 124 116 V Section 125 117 V Section Equators 126 118 V Section Equator 127	112	TSection Equators	า ว
114 One T Section Equator 123 115 T Section Triangles 124 116 V Section 125 117 V Section Equators 126 118 V Section Equator 127	111	$\frac{1}{2}$	່ 2
113 <i>I</i> Section Intalgies 124 116 <i>V</i> Section 125 117 <i>V</i> Section Equators 126 118 <i>V</i> Section Equator 127	115	$T_{\text{Section Triangles}} $ 12	ט ג
110 V Section 123 117 V Section Equators 126 118 V Section Equator 127	116	VSection 12	4 5
117 V Section Equators 120 118 V Section Equator 127	117	VSection Equators	5 6
	11Q	VSection Equator 12	5 7
119 V Section Equilateral Triangle 128	119	VSection Equilateral Triangle	٬ ৪

120	X Section	9
121	X Section Equators	0
122	One X Section Equator	1
123	X Section Rectangle	2
124	<i>Y</i> Section	3
125	YSection Equators	4
126	One Y Section Equator	5
127	YSection Rectangle	6
128	Divine Proportion	0
129	Square root of 2	2
130	7-Zone Star	3
131		.7
132		1
133		4
134		8
135		0
136	Tetrahedron	4
137	Tetrahedron Vertices	5
138	Cube	6
139	Cube Vertices 16	7
140	Octahedron	8
141	Octahedron Vertices	9
142	Dodecahedron	0
143	Dodecahedron Vertices	1
144	Icosahedron	2
145	Icosahedron Vertices	3
146	Sharing	6
147	Trading	7
148	Dominating	8
149	Stacked Edges of a Triangle	9
150	Flanges of an icosahedron or dodecahedron	51

151	Interlocking rectangles forming a flange joint	82
152	Model of intersecting planes	83
153	Six interlocking disks	84
154	Vertices on a sphere	85
155	Star for octet truss	86
156	Truncated Octahedron	87
157	Star for MERO system	88
158	Truncated Cubooctahedron	89
160	Six Zone Joint	95
159	Six Zone Joint Plan	96
161	Section for 1 ¹ / ₄ " pipe	97
162	Framework for Robert Ford residence	98
163	Zome Climber	99
List of Tables

2.1	Pairs of Six Objects
2.2	Faces of a 31 Zone Star 23
2.3	Cells of the Enneacontahedron
7.1	Proportions Of A , B , and C Lines
10.1	Section types in 31 zone star
11.1	Tau Power Series 140
11.2	Fibonacci Numbers

Bibliography

Baer, Steve - *The Dome Cookbook* - Lama foundation, New Mexico - 1968 Borrego, John - *Space Grid Structures (Skeletal Frameworks and Stressed-Skin Systems)* -MIT Press - Massachusetts - 1968

An exhaustive study of a few simple kinds of space grids with excellent illustrations of both the geometries and the hardware.

Courant and Robbins - *What is Mathematics? (An elementary approach to ideas and methods)* - Oxford University Press 1941 & 1953

A good book for anyone who thinks about curious and profound questions in mathematics. It has a good section on continued fractions and infinite series.

Coxeter, H. S. M. - Regular Polytopes - The MacMillan Co. New York - 1948 & 1963

This book has the most information about the regular polyhedra that I have seen. It is a difficult book for beginners. It has a good section on zonohedra. There are interesting historical remarks at the chapter ends.

Cundy and Rollett - Mathematical Models - Oxford at the Clarendon Press - 1951 & 1961

A good simple book on polyhedra and interesting mathematical models. The illustrations are the best that can be found.

Hilbert, David and S. Cohn-Vossen - *Geometry and the Imagination* - Chelsea Publishing Co. - New York - 1952

Many interesting and varied subjects are covered in this book. An excellent chapter on regular systems of points.

Hoggatt, Verner E. Jr, - *Fibonacci and Lucas Numbers* - Houghton Mifflin Co. - Boston - 1969

Short clear text. The best of the books on Fibonacci numbers.

Kowalewski, Dr. Gerhard - *Per Keplersche Korper und Andere Bauspiele* - K. F. Koehlers Antiquarium - Leipzig 1938 An account of the triacontahedron including the appearance of the divine proportion in its measurements, its breakdown into 20 parallelepipeds, the plaiting of its faces and ways of coloring its faces.

Ogilvy and Anderson - *Excursions in Number Theory* - Oxford University Press , New York - 1966

An excellent book on number theory with a lucid chapter about continued fractions. Thompson, D'Arcy - *On Growth and Form* (Vol. 2) - Cambridge at the University Press -1942 & 1963

Thompson discusses the divine proportion and the Fibonacci numbers and their appearance in nature.

Tyng, Anne Griswold - *Geometric Extensions of Consciousness* - English translation from "Zodiac 19" magazine -

Filled with profound observations and important structural ideas.

Vorobyov, N. N. - *The Fibonacci Numbers* - D. C. Heath & Co. Boston - 1963 Short clear text.

Wachsmann, Konrad - *The Turning Point of Building* - Reinhold Publishing Corporation, New York - 1961

An excellent book about prefabrication, design, joints, panels and processes associated with the machine.

References

- [Bro35] William Henry Brown. *The plant kingdom: a textbook of general botany*. Boston: Ginn and company, 1935.
- [CR61] H. Martyn Cundy and A. P. Rollett. *Mathematical models*. 2d ed. Oxford: Clarendon Press, 1961.

Index

Accounting.

See Economic accounting

Anticipatory design science, 22

Anti-entropy, 101–102 See also Entropy

Areas. See Topology

Astronauts: all humans as, 56

Atomic energy, 129.

See also Energy Automation: of human biological processes, 54; and loss of jobs, 124 Automobiles: ownership of, 134

Bank wealth, 89

Behavioral sciences: in educational process, 26

Brain: as coordinating switchboard, 25; difference between mind and, 101; imitated by computer, 118

British Empire and the great pirates, 37–38

Categoryitis, 31

Children: as comprehensivists, 25–26 Circle. *See* Great circle Comprehension: defined, 77 Comprehensivity of Great Pirates, 34–35; Great Pirates abandoning their, 50–51; man forced to reestablish, 53

Computers: provide new impersonal problem solutions, 45; as superspecialist, 53; strategy combined with general systems theory and synergetics, 93–94; as imitation of human brain, 118; beginning of, 122; resolving ideological

dogmas, 138

Craftsmen: early specialized, 29; tools of, 122; in the industrial economy, 123

Cross-breeding: of world man, 131

Cybernetics: defined, 95

Darwin, Charles: theory of animate evolution, 47

Da Vinci, Leonardo, 35–36

Democracy, 92–93

Design: capability of early world men, 28–29; of spaceship Earth's internal support systems, 59–60; of universal evolution, 111–112; revolution in, 134

Design science: anticipatory, governing yesterday's naval mastery, 22

Divide and conquer: grand strategy of, 39

 $E = MC^2$, 69, 96. See also Energy

Economic accounting: by great pirates, 94–95; synergy in, 103; need for realistic, 112

Educational task: to allow physical and metaphysical success, 130

Einstein, Albert: formula $E = MC^2$, 45, 69, 96; definition of physical universe, 70; reassess universe, 97

Electromagnetic spectrum: great pirates' first use of, 43–44; effecting human evolution, 110 Energy: impounding of sun's radiant, 58, 59, 93; generalized law of, 73; savings as fossil fuels, 94, 129; in synergetics, 95; finite, 96; harnessing of, 129; atomic exploitation of, 129

Entropy: energy systems eventually run down, 46; assumed universe subject to, 96; wealth as antientropy, 101

Environment: early society inability to cope with, 26; evolution synergetically produced, 103–104; changes in physical, 110

Euler, Leonhard, 81

Evolution: success of human dependent on mastering metaphysical, 46; design and patterns in, 49, 54, 111–112; man's feeling about, 53–54; inexorable, 55; our present position in, 65–66; effected by electromagnetic spectrum, 110; comprehending phases of, 127

Experiences: to extract generalized principles, 62; is finite, 70

Exploitation: of atomic energy, 129; of fossil fuels, 129. *See also* Energy Extinction, 48

Failures: humanity's, 24–25 Fellowships, 125

Forecasting, 22

Fossil fuel: energy savings account, 94, 128; expending of, 129. See also Energy

Generalized principles: minds discovering, 21; extracted from human experience,

61–62; first was leverage, 63; surviving with, 118; inventively employed only through mind, 127

Genera! systems theory: as tool of high intellectual advantage, 67, 70–71; combined with computer strategy and synergetics, 95

Geodesic lines, 76

GI Bill, 115

Gold: demand system inadequate, 88–98; used by Great Pirates for trading, 90 Grand strategy: divide and conquer, 39; organizing our, 65.

See also Strategy

Great circle: defined, 76

Great Pirates: as sea mastering people, 34; feared bright people, 35; use of logistics by, 37; and British Empire, 37–38; use of local strong man as king by, 39; tutoring of bright specialists by, 40; in world competition, 41, 43; becoming extinct, 44, 50; rules of accounting still used, 45

Gross national product: estimate for 1970, 108–109

Growth: physical and metaphysical, 61

"Have-nots" struggle with "haves" produces war, 87

"Haves": struggle with "have-nots" produces war, 87

Heisenberg, Werner: principle of indeterminism, 72

Human beings, as astronauts, 56; will be free, 111; employing real wealth, 124; characteristics in Mexico, 132. *See also* Man

Humanity: exists in poverty, 23–24; on Earth's surface, 27; extinction of, 49; place in evolution of, 66; function of, in universe, 83–84; and standard of living of, 102–103 Ideologies: political, 48; resolving dangerous dogmas of, 138

Indeterminism: Heisenberg's principle of, 72

India: population problems in, 113 Industrialization: demonstration of world, 104 Industry: tooling of, 22, 116, 122, 133; production increased by world wars, 116; craftsmen in the economy, 123. *See also* Tools

Information: multiplies wealth, 104-105 Initiative, 45

Intellect: as humans' supreme faculty, 60–61; frees man of special case superstition,

63; use of as man's function in universe, 99

International Monetary Fund: 1967 deliberations of, 88

Invention, 134

Inventory: of variables in problem solving, 67–68

Jobs: loss of in automation, 124

King: as great pirate's local strong man, 39, 40

Law of conservation of energy: defined, 98. See also Energy

Learning: always increases, 99; man's past, 131; industrial retooling revolution,

133

Lesser circle: defined, 76

Leverage: first generalized principle, 63. See also Generalized principles

Life: as synergetic, 79–80; hypothetical development of support systems in, 107–108

Lincoln, Abraham, 45–46

Lines, 81. See also Topology

Machine: spaceship Earth as, 59–60 Macrocosm: as universe outside the system,

70

Malthus, Thomas, 47

Man: utterly helpless as newborn, 61;

as adaptable organism, 118–119.

See also Human beings

Mass production: and mass consumption, 123

Mathematics: improved by advent of zero, 36. See also Topology

Metals: not destroyed in war, 117 Metaphysical: initiative confused between religion and politics, 45; masters the physical, 46; experiences not included in physical universe, 68; defies "closed systems" analysis, 69; in synergetics, 95; need for, in educational task, 130

Mexico: human characteristics in, 132 Michelangelo, 35–36

Microcosm: universe inside the system, 70

Mind: comprehends general principles, 24, 127, 128; difference between brain and, 101; fellowships of, 125

Money: as bank wealth, 89.

See also Wealth

Moon gravity: as income wealth, 94 More-with-less: and generalized principles of, 63

Myth: of wealth as money, 114;

of population explosion, 136 Natural laws: and Great Pirates, 34.

See also Generalized principles Navies: and Great Pirates, 38 Negatives: yesterday's, realized, 24 North America: early crossbreeding men in, 131

Photosynthesis: impounds sun's energy, 59

Pirates. See Great Pirates

Planck, Max, 97

Planners: more comprehensive than other professions, 67

Points. See Topology

Politicians: local, asked to make world work, 51.

See also Ideologies

Pollution: as survival problem, 85 "Poluto": as new name for planet, 85 Population: problems in India, 113;

explosion in as myth, 136 Poverty: humanity existing in, 23–24 Principles. *See* Generalized principles Problem solving: by yesterday's

contrivings, 21

Resources: of Earth unevenly distributed, 29; no longer integratable, 52; unique materials made "on order," 106

Revolution: design and invention, 134

Safety factor: in man's evolution, 111–112

Schools: beginning of, 41.

See also Specialization; Strategy Second law of thermodynamics, 46 Senses: Great Pirates relying on, 43 Ships: logistics for production and maintenance, 37. *See also* Vessels

Slavery: of specialist expert, 41; human, 107

Sovereignties: claim on humans in, 37–38; categoryitis in, 31

Spaceship Earth: present condition of, 121

Specialist: computer as super, 53 Specialization: society operates on theory of, 25; early leaders who developed, 26, 30, 33; intellectual beginning of schools, 41–42; specialist as slave, 41; over causing extinction, 48, 49; scientific, applied toward weaponry, 52–53

Speed of light: discovery of, 97 Spending: regarding energy is obsolete, 98

Spoken word: as first industrial tool, 122

Strategy: secret and anticipatory, of Great Pirates, 35; comprehensive of naval war colleges, 37

Structures: industrial tool enclosing, 116–117

Students: comprehend elimination of war, 134

Sun: radiation as income wealth, 58, 94. See also Energy

Survival: physical and metaphysical, 61; potentials increased by intellect, 63

Sword: powerful men of, 26.

See also Great Pirates

Synergetics. See Synergy

Synergy: defined, 78, 95; defines universal evolution, 79; combined with computer strategy and general systems theory, 95; wealth develops interest through, 102; in economic accounting, 103; in humanity escaping from local identity, 106

System: universe as biggest, 68; thought is, 72; first subdivision of universe, 71, 83; variables in evolution, 83

Technologies: as substitute after war, 117

Telford, Thomas: as Great Pirates' specialist, 37

Thinking: long-distance future of, 22; in terms of whole, 67; as a system, 72; dismissal of irrelevancy in, 76–77; tackling problems with, 83; humans free to, 126.

See also Intellect; Mind

Time: as relative, 135

Tools: industrial, 116; externalizations of integral functions, 117; craft and industrial extinctions, 122; spoken word, 122

Topology: mathematics of comprehension, 77; discovered by Euler, 81; patterns of lines, points and areas, 80–81. *See also* Geodesic lines; Great circle; Lesser circle

Underlying order in randomness, 74–75 Universe: as biggest system, 68, 96; physical defined by scientists, 68–69, 70, 72, 97; subdivision, 71; generalized law of energy conservation in, 73; defined by synergy, 79; humanity's function in, 83, 112

Van Allen belts, 58

Variables: inventorying of and

problem solving in, 67

Vectorial geometry: mathematics

of comprehension, 75-80

Vessels: use of, in venturing, 28

War: beginning of the great class, 47–48, 87; as age-old lethal formula of ignorant men, 52; as taking priority over real problems, 87; students comprehend elimination of, 134

Water: desalinization of, as problem solution, 85-86. Pollution

Wealth: generated by integrating resources, 29; as a safety factor, 61; defined, 88, 93; irreversible in evolutionary processes, 91; society's real, 91, 94,124; income is sun radiation and moon gravity, 94; as anti-entropy, 101; can only increase, 101,105; common, of humanity, 105; of the U.S., 108; of know-how produced by GI Bill. 115

Weaponry: scientific specialization applied toward, 52

Wholes: thinking in terms of, 67; systems in synergy, 78. See also Systems

World: and first seafarers, 28; sea ventures thought in terms of, 30; asking local politicians to make it work, 51; defined, 104, 119; veterans returning from World War II, 115; increase industrial production in, 115–116; cross-breeding in, 131-132

Todo list

1: What does 0.A resolve to?
