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Epigraph

I could be bounded in a nutshell and count myself a king of infinite space.

—WilliamShakespeare, Hamlet, Act II, Scene2 (As cited byCoxeter regarding
``The Finiteness of Triangles, Introduction to Geometry'')
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Foreword

SOME PERSONAL REMINISCENCES OF DONALD COXETER
DOUGLAS R. HOFSTADTER
CENTER FOR RESEARCH ON CONCEPTS AND COGNITION
INDIANA UNIVERSITY
It is a great honor to have my name linked with that of Donald Coxeter.
As a mathematics and physics student in the 1960s and 1970s, I often ran across

the intriguing name H. S. M. Coxeter. I knew that this man’s books were world famous,
had heard that they were elegant and concise, and, on flipping through them once
or twice, had even seen that they were filled with beautiful, enticing diagrams. But
somehow, I had other things on mymind and I paid them little heed. When, decades
later, I finally came under the spell of Coxeter’s words, images, and ideas, I fell in love
with geometry.
What eventually launchedme on a collision course with geometry was a spectacular

course on complex analysis that I took at Stanford University way back in 1962. This
course was given by a young professor named Gordon Latta, who hailed from Toronto,
the city in which English-born Donald Coxeter eventually settled. Latta, without doubt
the best mathematics teacher I ever had, was extremely visual in his teaching, and he
conveyed the depth and power of calculus in the two-dimensional arena of complex
numbers in an inimitable fashion. One image from that course stuck withme for three
decades—that of a circle turning the complex plane inside out, flipping the finite disk
inside the perimeter into the infinite region outside the perimeter, and vice versa.
One fateful morning in 1992—thirty years after Latta’s course—I woke up with that

image of circular inversion in my head, for God knows what reason, and in particular
with the vaguememory that any circle outside the disk was carried, by this strange but
lovely operation, into a circle inside thedisk (andvice versa). Thisweird geometric fact,
which I knew Latta must have proven, struck me as so marvelous that I immediately
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decided to try to prove itmyself. Actually, I wasn’t entirely sure that Iwas remembering
the statement correctly, and this made my idea of proving it a little dicier. Indeed, my
first attempt, rather ironically, showed that a random circle did not become another
circle! However, my sense of mathematical aesthetics insisted that this statement had
the ring of truth, and compelled me to try again. The second time around, I caught my
dumbmistake (the center doesn’t go to the center!) and proved that circles indeed
remain circles when flipped inside out by circles.
This small but joyful excursion into inversion was the tiny spark that ignited a forest

fire inmybrain, andover thenext fewmonths, as geometric imagery started cramming
my head fuller and fuller, I knew I needed an external guide. Where else to turn but
to the person whose name for me was synonymous with the word “geometry”—H. S.
M. Coxeter? I bought a copy of the thin volume he had written with Samuel Greitzer,
called Geometry Revisited, and went through it from beginning to end, absorbing the
ideas with passion. Some of them, as it happened, I had already invented on my own,
but by far themajority were brand new tome and served as springboards for countless
geometrical forays that I made over the next several years. Thanks to Coxeter and
Greitzer, I was flawlessly launched on one of the richest and happiest explorations in
my life.
Somewhere around six months into my geometrical odyssey, I used a chain of

analogies to make a discovery that excited me greatly, and I wrote up the story of this
discovery in a short essay. I wanted to find out if my discovery was new or old, so I
decided to seek the reaction of a number of geometers whose books I admired. First
and foremost was Donald Coxeter, and so I took the plunge and sent him my essay
along with a cover letter. Not wishing to impose, I tried to be very brief (a mere ten
pages!), but felt I at least had to tell him how much his book had meant to me. In a
most cordial and prompt reply, he suggested I take a look at a couple of books he had
written on projective geometry, and so, without hesitation, I purchased them both.
The older of the two was a concise opus entitled The Real Projective Plane, and I have

to say that reading this was another dazzling revelation to me. As Coxeter points out
in his preface, the restriction to the real plane in two dimensions makes it possible for
every theorem to be illustrated by a diagram. And not only is this possible, but in the
book it is done. By itself, this simple fact makes the book a gem. Moreover, Coxeter
strictly adheres to the philosophy of proving geometric theorems using geometric
methods, not using algebra. Thismeans that a reader of The Real Projective Plane comes



to understand projective geometry through the ideas that are natural to it, building
up an intuition totally unlike the intuition that comes through formulas. I am not
impugning what is called the analytic style of doing geometry; I am just saying that
coming to understand projective geometry using the synthetic style was among the
most gratifying mathematical experiences I have ever had. I will never forget the
many nights I spent in bed reading Coxeter’s monograph with only a tiny reading light
perched on it (in fact, inside it), in order not to wake up my wife, who had nothing
against my infatuation with geometry but who seemingly couldn’t sleep a wink if even
a single photon impinged on her eyelids.
I cannot resist quoting a sentence in the preface to The Real Projective Plane. It says

this: “Chapter 10 introduces a revised axiom of continuity for the projective line, so
simple that only eight words are needed for its enunciation.” I think Donald Coxeter
must have felt not only pleased but also proud as he wrote this down, because he was
so in love with simplicity, elegance, and economy of means. Here is the eight-word
definition to which hewas referring: “Everymonotonic sequence of points has a limit.”
What a delight! As you probably can tell, my copy of The Real Projective Plane is one of
mymost lovingly read andmost prized possessions.
Speaking of doing geometry with a minimum of photons, I have to relate one of the

most absurd and yet enriching geometrical experiences I have ever had. Somewhere
inmymany readings on geometry, I came across a vignette about a famous nineteenth-
century German geometer—probably Steiner, Plücker, von Staudt, or Feuerbach—who
was so suspicious of the insidious dangers supposedly lurking in diagrams that he
insisted on teaching his students geometry in a pitch-dark room, using words and
words alone to convey all the ideas. When I first read about this, I was nonplussed,
thinking it to be among the silliest notions I had ever heard of. But perhaps precisely
because it was so silly, this scene kept bouncing around inmyhead for a long time, and
eventually, years later, when I myself was teaching a course on triangle geometry that
often met at my house at night, I couldn’t resist pulling down all the shades, turning
off all the lights, and trying out this technique myself. The room became absolutely
pitch dark, so dark that the students couldn’t even see my armsmove when I traced
geometric shapes in the air. All they ever knew about were my spoken words, not my
physical gestures. And what theorem did I prove to them in that darkest darkness of
night? None other than the gleaming jewel known as Morley’s theorem, which states
that the “taboo” trisectors of the three angles of a random triangle join each other at



the corners of an equilateral triangle floating somewhere inside the random triangle.
Did they see it in their mind’s eyes? I am sure they did! And what proof did I relate
to my assembled students? Well, naturally, it was the one I had found in the pages of
Coxeter and Greitzer’s little volume and hadmademy own, although of course I had
to adapt it to fit my brave new light-free, diagram-free circumstances.

This whole episode may seem like an exercise in utter craziness, but in retrospect,
I don’t think so. Quite the contrary, it was an unforgettable exercise in visualization
without vision. One has to remember that some of the greatest of all mathematicians
have been blind, and yet that didn’t stop them frommaking astounding discoveries.
I was reminded of this as I perused Coxeter’s famous book Introduction to Geometry,
chock-full of literary quotes (the index includes Aeschylus, Aristophanes, Plato, Shake-
speare, Goethe, Lewis Carroll, H. G. Wells, Dorothy L. Sayers, and even Tom Sawyer),
and found the following sentence, which he took from E. T. Bell’s book The Development
of Mathematics: “Euler overlooked nothing in the mathematics of his age, totally blind
though he was for the last seventeen years of his life.”

There is a vast difference, I feel, between having no diagrams before one’s eyes and
having no diagrams inside one’s head. They are not the same thing at all; indeed, inter-
nal imagery is indispensable. For that reason, one of the most regrettable and baffling
tendencies in the mathematics of the twentieth century was a mad stampede toward
obliteration of the visual and even the visualizable. Donald Coxeter, however, as every-
thing he wrote vividly demonstrates, was among the people who most systematically
opposed this madness.

I will never forget how, at age fifteen or so, I came across the bookGeneral Topology by
John L. Kelley. This austere volume, the first treatise I had ever seen on “rubber-sheet
geometry,” that mysteriously alluring branch of mathematics I thought was populated
by Möbius strips and distorted doughnuts, did not, in its hundreds of pages, contain a
single diagram; instead, it was filled with incredibly dense and prickly notation using
all sorts of arcane symbols (many of which, I realized years later, stood for rather
simple, bland words, but were used in their place for the dubious sake of maximal
symbolic compression). Being young and naïve and in love with mathematics, and
not yet having had the experience of struggling with it, I merely thought to myself,
“Oh, so this is the kind of thing I will have mastered in just a few years! Won’t that



be wonderful!” I wasn’t dismayed in the least by the prospect of reading long and
picture-free works of mathematics, and writing such things myself; it struck me as a
natural part of the process of reaching the mythical status known as “mathematical
maturity.”
Within a few years, however, I discovered that I personally could not survive in such

an arid atmosphere. Diagrams (or at least mental imagery that could be thought of as
personal, inner diagrams) were the oxygen of mathematics to me, and without them I
would simply die. And thus, when the air of abstraction for abstraction’s sake became
too thin for me to breathe, I wound up with no choice but to bail out of graduate school
inmathematics. It was a terrible trauma. If, at that crucialmoment inmy life, someone
had suggested that before abandoning mathematics, I take a look at geometry, I might
have discovered the works of Donald Coxeter and followed a very different pathway in
life.
In 2000, several years after my correspondence with Donald Coxeter, I went to the

University of Toronto to give two colloquia in the Physics Department. After the first
(a talk describing the key role played by analogies in physics), a very thin and well-
dressed elderly gentleman walked up and softly said tome that he was Donald Coxeter.
You could have knockedme over with a feather. At the time, he was ninety-three years
old! We walked out to an informal reception together and ate cookies and chatted for
a little while. Mentally speaking, he was completely at the top of his game, and we
talked in a lively fashion about the importance of analogies in both math and physics.
I was deeply touched by his presence at my lecture.
But the capper came at my second physics colloquium. Just as I started speaking,

I spied Donald Coxeter once again in the audience. And after I had finished, we
once again met and chatted for a little while. This time, after we had touched on
the family of geometries about which I had written to him some eight years earlier,
the conversation somehow veered to the topic of Coxeter’s vegetarianism and his
incredible daily exercise program, which at that time he was still religiously following.
How honored I felt that this great man, this icon of twentieth-century mathematics,

had come to hear me not just once but twice, and had presented himself to me as
if he were an admirer of mine rather than the reverse. The logic was simply upside
down. Moreover, here was someone who for almost his entire life had stuck to a moral
principle that I, too, had found central: the sacredness of life, whether that of humans
or that of “lower” creatures. Altogether, the message that came straight to me was



that this was a human being entirely without pretension, the kind of person that I
had grown up hearing described as a “mensch”—the best kind of person that exists. I
had the privilege of meeting this marvelous mensch face-to-face on only those two
occasions, but they remain indelibly imprinted onmymind.
This concludes my personal reminiscences of Donald Coxeter, but I would like to

add a few words about Siobhan Roberts’s book. I have never met Siobhan, but we have
corresponded a little bit. What I know of her comes almost entirely from reading her
words about Donald Coxeter, and what emerges loud and clear is that she understands
the man’s spirit very deeply. She understands what drove him, and she knows just
how to put into words the fire that always inhabits a great mathematician’s soul. I
hope that Siobhan’s book will bring to many people not only a sense for the beauty of
mathematics itself, but also a sense for how the very human love of hidden patterns
and symmetries can result in a hundred years of exultant exploration.



Part I.

Pure Coxeter
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0 Introducing Donald Coxeter

Tell me something is impossible and I will set about it immediately.

—H. S. M. Coxeter

On a cold and crystalline night in January 2002, the geometer Donald Coxeter
sat waiting for the formalities to begin at a reception put on by the Royal Society of
Canada, a club of distinguished scientists modeled after the Royal Society in Britain.
Coxeter, ageninety-four, sat near thefireplace in the library of theUniversity of Toronto
president’smansion, holding in one hand a glass of redwine tilted dangerously toward
a spill, and in the other an exploding pastry. “This cream puff is not very sensible,” he
said, fastidiously dressed—as he always was, even for breakfast—in a suit and tie. He
waited contentedly, the elder Genius among geniuses.1
Donald Coxeter was a man whommost admirers only ever knew as old. Encoun-

tering Coxeter in his tenth decade, fledgling mathematicians were often taken aback
by his preternaturally ancient appearance, the patina of time at once smoothing and
wrinkling his face with a certain cosmic glow. The standard joke among his longtime
colleagues was that Coxeter had looked equally ancient a quarter century before.2 In
thememory of his children, he was always balding, and what hair he had was gray. His
great-grandchildren found him a frightening presence and avoided his company.3
Michel Broué, director of the Institut Henri Poincaré in Paris, became acquainted with
Coxeter while a student in the 1960s, but only by the coattails of Coxeter’s reputation.
“I was amazed to hear he was still alive. I thought he had lived in the nineteenth
century,” Broué recalled. “His name was everywhere. He was such a legend.”4
At the Royal Society gathering, between the advances of fans and well-wishers,

Coxeter—never one to waste an idle moment when he could instead pounce on a
geometry problem—gestured toward the middle distance and asked, “What shape is
that table?” It seemed like a trick question. Anyone could see the table was round,
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it was a circle. But Coxeter begged to differ: “If I were suspended from the ceiling
looking down upon the table,” he said, “then it would be a circle.” From Coxeter’s
coordinates across the room, however, his perspective was slanted and transformed.
“I see it as an ellipse,” he declared, adding as a footnote that he had written a paper on
this exact subject, titling it poetically “Whence Does a Circle Look like an Ellipse?”5

This was quintessential Coxeter, ruminating about the romance of shapes—ellipses
and circles, hexagons and icosahedrons. Coxeter’s definition of his discipline, of-
ten recited, was this: “Geometry is the study of figures and figures. Figures as in
shapes”—triangles, cubes, dodecahedrons—“andfigures as innumbers.”6Hedelighted
in the geometry of frothy bubbles, porous sponges, the cells of honeycombs, the buds
on pineapples, and sunflowers. During his professorial days, Coxeter picked tower-
ing sunflowers from his garden, taller than the diminutive man himself, and toted
their yellow-rayed faces along on the city bus to the University of Toronto, where he
employed them as teaching devices. He dabbed a dot of glossy red nail polish on
each of the sunflower’s seeds, highlighting the geometrically perfect golden ratio of
their graceful whorl—a phenomenon known as phyllotaxis.7 (For further discussion
of phyllotaxis, see appendix 1.)

Coxeter was also known to be both instructive and entertaining in revealing the
hidden symmetry of an apple. Around the dinner table with colleagues gathered for
the American Math Society conference in 1981, he asked: “Did you know that apples
do not have cores?” They thought he was pulling their leg, until the hostess, Marjorie
Senechal, a mathematics professor at Smith College, procured an apple and placed it
before himwith a knife, as requested. He filleted the fruit into thin horizontal sections,
demonstrating that there was no stem-to-stern core, but rather elongated pods of
seeds suspendedwithin. The pièce de résistance occurredwhenhe reached the center
of the apple and sliced through its equator. There lay its secret symmetry—not nature’s
sloppy attempt at spherical symmetry, as suggested by an apple’s exterior, but rather
perfect fivefold symmetry, hidden at the apple’s heart: the apple seeds were arranged
in a five-pointed star. Everyone around the table gasped when they saw it. “It just
shows,” said Senechal, “that he was looking everywhere, and looking deeply. Coxeter
delighted in the geometry of everyday objects, and, because he was so curious and
astute, he found symmetries and regularities in these objects that the rest of us never
suspected.”8



Everyday patterns grabbedCoxeter’s attention, played in hismind, andprovokedhis
geometer’s passion for over eighty years (he made his first discoveries at age thirteen,
and was still practicing, still pulling books from his library for yet another paper, at
age ninety-six).9 The renowned futurist and innovator Buckminster Fuller captured
Coxeter’s century-spanning stewardship of classical geometry with this dedication in
his book on the geometry of thought:

By virtue of his extraordinary life's work in mathematics,
Dr. Coxeter is the geometer of our bestirring
twentieth century, the spontaneously acclaimed
terrestrial curator of the historical
inventory of the science of
pattern analysis.
I dedicate this work with particular esteem for him
and in thanks to all the geometers of all time
whose importance to humanity
he epitomizes.10

For afigureof suchmajestic status—perfectly pedigreedatCambridgeandPrinceton,
muse to such titans as Fuller and M. C. Escher, and masterminds the likes of Douglas
Hofstadter and John Horton Conway—Coxeter was first and foremost a humble, hands-
on geometer who appreciated the feel of his shapes and models, turning them in
his fingers, peering through their corners with x-ray vision to get a reading on their
intrinsic symmetrical properties. Above all, he valued visual input to feed his vivid
geometric intuition. As a geometer, as a number of mathematicians have commented,
“Coxeter could really see things.”11



One in a series of “cartoon Coxeters” drawn by the geometer David Logothetti.
The honorifics only continue. He was reverentially called the “King of Geometry.”12

However, while his contributions to geometry were formidable, in person hewas never
one to wield his status with even a trace of blustery bravado—Coxeter was modest,
self-effacing, and soft-spoken.13 Others likened him to a modern-day Euclid, the
greatest classical geometer of the twentieth century. And, he was considered the man
who saved geometry from near extinction in a mathematical era characterized by its
penchant for all things algebraic and austere.14 In the twentieth century, jungles of
symbols and equations, a tangle of subscripts and superscripts, overtookmathematics,
leaving a dearth of diagrams and shapes.

Coxeter’s obsession with geometry was motivated exclusively, almost with an elitist
bent, by beauty. And yet, classical geometry is not merely a paean to the beauty of
patterns and shapes. It is also intensely practical. While we no more notice geometry
and its crucial impact on our lives than we notice the curve of the Earth when walk-
ing upon it, geometry is everywhere and its reach is infinite. Geometric algorithms
produce the computer-designed curves of a Mercedes-Benz, animated films such as
Pixar’s The Incredibles, and the fluid contours of detergent bottles.15 László Lovász,
mathematician-in-residence at Microsoft, discerned an important application in Cox-
eter’s last paper (delivered at a conference in Budapest when he was ninety-five),



addressing the properties of four mutually touching circles. In the field of computer
algorithms, the elementary classical interest in four mutually touching circles is “a
hot topic,” said Lovász. “It’s a central topic in the geometric representation of graphs.
These geometric representations are related to issues in data-mining programming.”
Data mining is the technology of finding patterns in massive amounts of raw informa-
tion. It powers e-commerce engines such as eBay, and the American government’s
surveillance software MATRIX (Multistate Anti-TeRrorism Information eXchange).
Amazon.com exploits this technology when you buy or search for a book and the
site prompts you with recommendations—when you click into your shopping cart
Coxeter’s book The Beauty of Geometry, you learn that customers who bought this book
also bought Coxeter’s bestseller Introduction to Geometry, his Regular Polytopes, and
Famous Problems of Geometry and How to Solve Them by Benjamin Bold. “Each customer
is a data point,” Lovász explained, “spending this muchmoney here and that much
money there, and so you get a set of points associated with each particular visit to the
site. You get a huge number of points, because there are a huge number of customers.
This generates points in some space that is higher-dimensional than three.” Patterns
amass on graphs in these multiple dimensions and become computerized geometric
representations of who buys what.16
The inadvertent applications of Coxeter’s pure geometry go on and on and on,

appearing in linear programming, modern technology, and immunology, to name but
a few.17 Most often the applications involve mathematical tools that Coxeter invented,
which in time have revolutionized the way mathematicians and scientists create and
investigate. Coxeter pioneered tools that are now called “Coxeter groups” and “Coxeter
diagrams”—tools that shed new light on symmetry, and deepen its study. Symmetry
underpins all mathematics—an equation being an expression of perfect balance. And
symmetry describes the forces of nature—everything from the smallest spec of a
subatomic particle, to a sunflower, to the shape of the universe and the hypothetical
parallel universes that mirror our own.18
Mathematicians today can’t say enough good things about these Coxeterian inno-

vations. They are “one of the pillars of mathematics,”19 “part of the substrate …the
air we breathe”20 and almost as essential as numbers themselves.21 Papers have
been written on why Coxeter groups pop up so much, why they are such a versatile
and omnipresent tool that can be deployed in such a diversity of domains in both
mathematics and science. They crop up even in our existential search for the shape
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of the universe. The physics of superstring theory, the much-lauded “theory of ev-
erything,” rests on the concept of supersymmetry. Some physicists conjecture that
infinite-dimensional symmetries will be important in unraveling the puzzle of string
theory.22 “[A]nd if so,” said EdWitten, the “pope of strings,” at Princeton’s Institute
for Advanced Study, “maybe it will be helpful to understand the Coxeter groups.”23

Symmetry was the center of gravity for Coxeter’s geometry—he was incessantly
searching for the symmetries of shapes. Coxeter was a classical geometer, the classi-
cal goal of geometry being not so much to prove theorems but to discover gem-like
geometric objects. He explored and enumerated diverse species of geometric config-
urations, and uncovered how they relate to one another through their symmetrical
properties. Prefacing Introduction to Geometry, Coxeter stated: “The unifying thread
that runs through the whole work”—and indeed that ran through his whole life and
career—“is …in a single word, symmetry.”24

Louis Kahn’s geometrically inspired National Assembly Building in Dhaka,
Bangladesh.



Etymologically the word breaks down to sym,meaning “together,” andmetry,mean-
ing “measure,” and implies that different parts “measure together.”25 Symmetry
is ubiquitous, with faces, feet, and much of the human body being approximately
symmetrical. The music of Bach has many symmetrical qualities, as does the art of
Leonardo da Vinci, the metrical rhythm and rhymes of poetry, and the designs by
architects such as Louis Kahn.26

Symmetry, generally speaking, occurs when two halves of a whole are each other’s
reflection in a mirror (bilateral symmetry). Examples of symmetry abound in the
chemistry of life, though often the symmetry of life is “chiral” or “handed,” meaning
the halves or mirror images are different. The spearmint molecule and caraway
molecule are chiral twins—one molecule is the mirror reflection of the other, and with
that minor difference the molecules have considerably different effects on our taste
buds.27

The chirality of pharmaceuticals (drugs often being compounds of left-handed and
right-handedmolecules) was demonstrated with tragic consequences in the use of
Thalidomide28: one of itsmolecular geometrieswas therapeutic as a sedative quelling
morning sickness, but the mirror opposite caused unexpected birth defects.29 Mirror
symmetry is not the only type of symmetry. There is also rotational symmetry (a
pinwheel), or translational symmetry (repeating rail ties spaced equally apart), and
then many combinations thereof (a trail of footprints is symmetrical in the sense that
it is produced by “glide reflection,” a composition of translation and reflection).30

In geometry, a finite object is symmetrical if it looks the same after being subjected
to a geometric change (a rotation, or reflection), called a symmetry operation, or a
transformation. The sphere can be rotated and reflected in an infinite number of ways
and always remain exactly the same; a sphere is invariant under an infinite number of
symmetry operations.31 However, these infinite symmetries are predictable and thus
hold less allure than the shapes with discrete symmetries that Coxeter preferred to
investigate.* A square, for example, has only eight symmetries, eight precise ways in
which its position can be moved or changed, all the while leaving the square looking
the same (see chapter 6). This mathematical study of symmetry is systematized in
“group theory.” The meaning of a group in mathematical terms is distinctly different



from the everyday meaning of the word. While a group in ordinary language can be
defined as a number of people or objects located, gathered, or classed together based
on some distinguishing characteristic, a group in mathematical terms is the set of
eight actions—the symmetry operations—that preserve the square’s appearance.32

A Coxeter group is a tool for exploring the world of group theory. But Coxeter
investigated shapesmore complex than the square—he liked shapes with a complexity
analogous to that of an exquisite crystal. He studied how the facets of a crystal, the
angles between its corners and edges align “just so” andmake it a highly symmetric
object. A Coxeter group pertains to these finite symmetries, the finite number of
rotations that preserve a crystal’s appearance. “It is this finiteness,” said Ravi Vakil,
a geometer at Stanford, “within the infinite group that makes some sort of magic
happenmathematically.”33

Coxeter followed in a tradition of classical geometerswho extended the investigation
of symmetries into multiple dimensions,34 where shapes rotate and reflect upon
themselves, replicating their properties in the hall of mirrors that is hyperspace.
These multidimensional shapes are called polytopes. Coxeter’s preoccupation with
polytopes was so conspicuous that during his stint at Princeton in the 1930s he earned
the nickname “Mr. Polytope.”35

Polytopes,meaning “manyshapes,” are abroadclass of geometricfigureswhose sub-
sets of families, related like cousins by their symmetries, live in various dimensions.36
The two-dimensional polytopes are called polygons (meaning “many angles”—gon
derives from the Greek word gonu meaning “knee,” a knee often being bent at an
angle).37 Everyone is acquainted with some of the regular polygons, having equal
sides: we test our geometrical skills in grade school with an equilateral triangle; the
square, as Coxeter said, “confronts us all over the civilized world”; then there’s the
Pentagon Building; the hexagonal snowflake; the eight-sided octagon of a stop sign;
and the twelve-sided dodecagon of the old Canadian nickel or British threepenny
bit.38



The dimensional progression from a point to a hypercube.
The three-dimensional polytopes are called polyhedra (meaning “many sur-

faces”—hedron is an Indo-European word meaning “seat,” so a polyhedron has many
seats, or surfaces on which one could sit).39 The most famous polyhedra are the
Platonic solids: the tetrahedron, octahedron, icosahedron, cube, and dodecahedron.
Analogous figures exist in higher dimensions—the fourth dimension, for example,
contains the simplex (the 4-D analog to the tetrahedron), and the hypercube (the 4-D
analog to the cube). And in higher dimensions still, polytopes morph into more and
more complex cousins of the originals, some continuing to infinity.40
Coxeter’s house was a veritable zoo of polytopes, overtaking every available surface.

He hung posters of higher-dimensional polytopes as art on his wall; he had polyhedral
lampsandpolyhedral bookends. Polyhedra—madeof cardboard,wood,marble, plastic
straws, string and sticks, plaster, soldered wires, and stained glass41—filled the china
cabinet, lurked among plants, encroached on thewindow seat, on the fireplacemantel,
on side tables, and sometimes the dining room table.† Coxeter’s book Regular Polytopes
became a best-seller and a mathematical classic, the geometrical analog of Darwin’s
Origin of Species. With his Coxeter groups, Coxeter did for polytopes what Darwin did
for organic beings42—he classified and quantified their very existence.

Around the time Coxeter chose classical geometry for his career, however, circa
1930, the classical tradition—of hands-on visual reasoning, using antiquated treasures
such as triangles, circles, and polyhedra as specimens of study—was exiting its golden
age. Historian E. T. Bell pronounced in 1940: “The geometers of the 20th century
have long since piously removed all these treasures to themuseum of geometry where
the dust of history quickly dimmed their luster.”43 Geometry was being recast, like
a remake of a cinematic classic, in an abstract and dry format. Geometry was being
subsumed by algebra and analysis—it was all equations and no shapes, like prose
without poetry.44
The eminent Germanmathematician Hans Freudenthal (1905–90) lamented classi-

cal geometry’s dethronement in a 1971 essay, “Geometry Between the Devil and the
Deep Sea.” For a long time, he said, mathematics was synonymous with geometry, but
today it is rejected as not firmly enough rooted in reality. Freudenthal countered with
a “haphazard” list of questions that evoke the singular mind-set of a geometer, some
of them very much related (on varying levels) to the space in which we live.



Why does a rolled piece of paper become rigid?

How do shadows originate?

What kind of curve is the terminator on the moon?

What is the intersection of a plane and a sphere, or two spheres?

Why can the radius of a circle be transferred six times around the periphery?

How come a beautiful star arises by this construction?

Why is the straight line the shortest?

Why do congruent triangles fit to cover the plane and why do congruent pentagons
in general fail to do so?

How can people measure big distances on the earth, the diameter of the earth, and
distances of celestial bodies?

What is the shortest path for a light ray to travel from one point to another while
touching a mirror?

How does a kaleidoscope work?

If a cube is split into six square pyramids with their vertices in the center and
these pyramids are turned outside upon the corresponding faces, why does a rhombic
dodecahedron arise?

Why can a table with four legs wobble, and what is the difference with a table with
three legs?

Why does a door need two hinges, and how can we add a third?

And finally the old question: why does a mirror interchange right and left though
not above and below?45



George Odomwith one of his models, which he sent to Coxeter.

Another of Freudenthal’s questions matched a geometric trick Coxeter demon-
strated whenever he found the chance: “Why does a tied paper ribbon show a regular
pentagon?” Coxeter’s instructions for folding a five-sided polygon are simple. “The
figure of a pentagonwith diagonals can be neatly displayed,” he said in his best-selling
book Introduction to Geometry, “by tying a simple knot in a long strip of paper and care-
fully pressing it flat.”46 It is easy enough to do. Tear a 2 × 15 inch strip of paper with a
ruler to keep the edge straight. Loop the ends as if beginning to tie two shoelaces. Slide
the edges together until they jimmy into place, meeting flush with the fold, and then
press the woven strips flat. There you have a very practical pentagonal bookmark.

Geometer Walter Whiteley, director of Applied Mathematics at York University, in
Toronto, asked similar questions in his course “Introduction to Geometries.” Do the
tracks of a bicycle indicate it was traveling forward or backward? Why does a piece
of paper fold along a straight line? Whiteley called all this “Learning to See Like a
Mathematician.” And in a paper titled “The Decline and Rise of Geometry in 20th
Century North America,” Whiteley warned that if this visual perspective had met its
demise during the dark ages of classical geometry, the consequences would be pro-
found and far-reaching. Should classical geometry ever become extinct, he reckons



a “geometry gap” would haunt Western civilization for generations to come.47 With-
out classical geometry, as without Mozart’s symphonies or Shakespeare’s plays, our
culture, our understanding of the universe, would be impoverished and incomplete.
Donald Coxeter did much to save us from such a loss.

A tied paper pentagon, from Coxeter’s Introduction to Geometry.

According to mathematical folklore, the shift away from classical geometry mani-
fested itselfmost dramaticallywith a statement by a bombastic Frenchmathematician,
who declared:

“À bas Euclide! Mort aux triangles!”—“Down with Euclid! Death to triangles!”48

Legend has it that this war cry came from one Nicolas Bourbaki. He believedmathe-
matical education in France was falling behind the international standard. He wanted
to overhaul the entire structure of mathematics. In so doing, he sought to stamp out
the use of diagrams. Bourbaki endeavored to write an algebraic encyclopedia of math-
ematics without a single picture. This aversion to shapes was defended as serving the
interest of purity: all mathematical results were to be reached by reason alone—by
rationality—rather than by the corruptible visual sense. According to Bourbaki, our
visual perception of the world was unreliable, our eyes leaving us victim to subjectivity
and error.49



“General Bourbaki,” as depicted in a Scientific American article, 1957.

More than forty years later, when reminded of Bourbaki and the “Death to Triangles!”
rant, Coxeterwas cool and calm,with the retrospection of old age. “Everyone is entitled
to their opinion,” he said. “But Bourbaki was sadly mistaken.”50 Coxeter had by then
become geometry’s apostle. He ignored the fads and fashions, and through steadfast
rear-guard action, simply persevering with the shapes he loved, he preserved the
classical tradition of geometry and sustained it through its lean years.51 For this he
has become a hero for many mathematicians the world over.52

Even if you have never before heard of Coxeter, let alone his Coxeter groups or
Coxeter diagrams, you will nonetheless find it hard to resist a tumble down the Coxe-
terian rabbit-hole into his geometrical wonderland. There is something marvelous in
witnessing Coxeter’s seemingly esoteric and arcane obsession, his intense focus and
all-consuming passion for classical geometry that lifts him above the humdrum of
the everyday andmakes his life take flight.53 It’s easy to get hooked by his devotion
and stoicism in fighting for his beloved geometry. And, by following Coxeter as an
ambassador and interpreter in these foreign parts, you may find yourself viewing the



world from a new and illuminating lens—Coxeter’s perspective—seeing a hypertext
reality where everything takes on shades and shapes of geometry. For example, not
long ago a billboard at a small-town Di$count car rental lot beckoned with a truly
Coxeterian double entendre. Rising out of the cultural wasteland of fast-food joints,
car dealerships, and gas stations lining the main road into town, the billboard read:

Front Street North, Belleville, Ontario, January 2002.

* Astronomer Fritz Zwicky (1898–1974) was notorious for calling people “spherical
bastards” if he found them uninteresting and dislikable—no matter which way he
considered these people, they were equally offensive.

† Many of Coxeter’s models were sent to him as gifts from strangers, fans from
afar, such as George Odom, a resident of the Hudson River Psychiatric Center, in
Poughkeepsie, New York. Odom sent so many models over the years that Coxeter,
though grateful, eventually ordered him to stop. As Odom recalled, Coxeter begged
him: “ ‘Please! NO MORE MODELS!’ ”

chapterMr. Polytope Goes to Budapest

Geometry will draw the soul towards truth.

—PLATO, THE REPUBLIC



Bursts of white light lit up the splendidly restored auditoriumofHungary’s Academy
of Sciences as Donald Coxeter inched toward the lectern, leaning only slightly on his
cane. Photographers had descended upon the academy, located on the east bank of
the Danube in Budapest, to capture a few shots of the president of the Republic of
Hungary, FerencMadl, who was theremaking a rare public appearance at the opening
ceremony of the János Bolyai Conference on hyperbolic geometry, in July 2002. But
afterward, the photographers stayed to snap a few shots of Coxeter as well.1
Flash from the cameras reflected off his pale pate and the bejeweled turtle brooch

pinned to his lapel. Well into his nineties, Coxeter still traveled the international
conference circuit. He had been invited to give the opening lecture at this event,
commemorating the two hundredth birthday of Hungary’s sainted Bolyai, who, with
his discovery of non-Euclidean geometry in 1823, changed forever our perception of
space.2
When a long-retired mathematician is asked to give an address at a conference,

his audience would be forgiven in assuming that he’ll provide an autobiographical
synopsis of his career. Coxeter, however, wrote a scholarly paper, months and months
in the preparation. Titled “An Absolute Property of Four Mutually Tangent Circles,”3
it addressed a topic tangentially related to Descartes’ Circle theorem, one of Coxeter’s
favorites.4 As he was announced to the audience, Coxeter shuffled the pages of his
talk, and readied his visual aids—numerous transparencies and a geometrical model,
a cubic nexus of multicolored straws. Three hundred or so mathematicians awaited
his presentation, a discrete group of individuals more than willing to forfeit July’s
summer sun for the somnolent glow cast by the lecture hall’s overhead projector. Most
were a fraction of Coxeter’s age. Many, the organizers included, had been skeptical
that he would be able to make the journey. A similar number no doubt wondered
whether he could possibly have anything left to profess.5
Coxeter began slowly, enunciating meticulously with his lingering British accent:

“The absolute property of four mutually tangent circles that I am describing seems to
have been discovered byMr. Philip Beecroft, of Hyde Academy, Cheshire, England, and
published in The Lady and Gentleman’s Diary …In Beecroft’s own words, [the theorem
states,] ‘If any four circles be described to touch each other mutually, another set of
four circles of mutual contact may be described whose points of contact shall coincide
with those of the first four.’ ”6 He waded into an examination of what he believed to be
his new proof—a simple, elegant proof—of Beecroft’s theorem, delineating the four



mutually tangent circles, a1, a2, a3, a4, and another set, b1, b2, b3, b4. “This figure
makes the theorem almost obvious,” he said, fixing his transparency into position,
“but for the sake of completeness it seems desirable to consider further details.” He
proceeded, pausing here and there, whistling lightly under his breath, as he often did
to focus his concentration.7

The diagram of four mutually tangent circles used by Coxeter in his Budapest talk.

When Donald Coxeter barely squeaked by his ninety-fifth birthday, his doctor diag-
nosed that hewas in that final andwaning stage of lifewarranting palliative care—there
was no cure for what ailed him. He was creaky and tired, acute pointy parentheses
wrinkling around his subtle smile. He had weathered cancer of the prostate and the
right eye, and a heart attack, andnow suffered chronic digestive troubles. Nonetheless,
against doctor’s orders, he was determined—ever the obstinate optimist—to make the
trip to the Bolyai conference.8
In an attempt to be as prudent as possible in planning his journey, Coxeter tended

with grandfatherly gumption to life-and-death details such as buying travel health
insurance (he was refused), and determining what to do with his brain should he die
while away. Coxeter’s brain functioned so impressively over the years that he had



received a request for its mass of synapses to be seized swiftly, no more than twelve
hours’ postmortem, in order to undergo scientific research at McMaster University, in
Hamilton, Ontario,9 where a specimen of Einstein’s well-traveled and well-dissected
brain resides.10 As Coxeter recalled, McMaster’s Dr. Sandra Witelson rang and asked
with pardonable clinical insensitivity: “Dr. Coxeter, when you die can we have your
brain?” He took it as a compliment and agreed.11
On the day of departure, Coxeter sat at his cluttered kitchen table and set about

the task of testing his hearing aids. He snapped his fingers from one ear to the other,
then tried a ticking pocket watch. “Dead as a doornail! I get the best results when I
don’t have any hearing aid in at all!” he concluded, at once confused and bemused.
He glanced out the window to find the airport limousine waiting at the sidewalk.
“Oh, bother!” he cursed (that was the extent of his cursing, for a minor mishap or
a major flood in the basement). “How very, very awkward. I’m not ready!” Coxeter
checked and rechecked that his passport and airline ticket and envelope stuffed with
Hungarianmoney were safely stowed in his briefcase. He packed his hearing aids and
the Tupperware container full of dead and fresh batteries (“A terrible nuisance that
they were somehowmixed together”). He gathered all the parts of his electric shaver
and stowed his high-altitude antiembolismic socks in the waistband of his daughter’s
skirt, like Kleenex at the ready under the cuff of a sleeve.12
Coxeter’s daughter, Susan Thomas, a retired nurse, was his escort. With the chauf-

feur patiently standing by outside, Coxeter checked for his passport yet again, then
snapped his briefcase shut. He inched down the stairs, taking each step two feet at
a time, and finally passed the cuckoo clock in the foyer embossed with the motto
“Delay Not the Hour Flies.” He shuffled along the front walk, and slid his stiff, angular
body, not an ounce of body fat for cushioning, onto the limo’s leather seat. He was off,
venturing forth on one more journey into what he termed “the wild wicked world”—a
world, according to the classical definition of “geometry,” which he had spent more
than three-quarters of a century measuring.13
One day after Coxeter arrived in Budapest, he attended a welcoming luncheon at his

posh Hyatt hotel. There to greet him was the conference organizer, András Prékopa.
A member of the Hungarian Academy of Sciences, and a professor of mathematics
and operations research at Rutgers University, Prékopa had never before met Coxeter.
When he did he shook his hand and announced with a beaming smile: “Dr. Coxeter is
the world’s greatest living classical geometer. No question!”14



Later that evening, relaxing in the hotel lobby, Coxeter met with another fan, Texan
Glenn Smith, a self-described “geometry groupie,” whomakes a successful living in
the sesame business. Smith brought to Budapest the geometric model for Coxeter’s
presentation—constructed by special order—as well as an antique set of wooden ge-
ometric solids, circa 1850, which he had purchased during a stopover in London.
Smith always travels with models in his suitcase that can be assembled and disassem-
bled like LEGO; it’s how he kills time in airports and keeps himself company in hotel
rooms.15

Even with his hobbyist’s perspective, Smith had a cogent argument for Coxeter’s
designation as the savior of classical geometry. “Coxeter sounderstood the importance
of geometry that he stuck with it. He went out on a hilltop—when all the rest of us
were down in the valley—and he saw what was out in front of us and how important
geometry was going to become, and he led us out of the darkness. We’ve been in
a dark age,” said Smith. “And I think we’re still trying to come out of that age. The
more we investigate geometry, the better off we all will be.” Smith also provided an
interesting way of explaining the importance of geometry in the world. “Geometry
is at the root of everything, whether we recognize it or not. If you take everything
and strip it down—start out with the universe and galaxies and stars and planets and
solar system and the Earth, then the Earth is organized into countries and countries
become communities and communities are made of families, families are made up of
people, people have organs, organs have cells, molecules, atoms, subatomic—strip all
that away, and at every stage there are certain geometries or configurations of patterns.
If you study those patterns, you will see them almost wherever you go, they will always
exist. That’s the nice thing about geometry, about polytopes or polyhedra—we could
be anywhere in the universe and have the same thoughts. In other words, geometry is
not particular to this planet we live on.”16

“What I told my children when they were young,” he continued, “is that you need to
learn geometry because if you are ever picked up by a flying saucer, you’ll need to show
the aliens that you know geometry. They will know geometry for sure. You’ll need
to be able to make a tetrahedron like this”—he placed his right hand on his forehead
and his left hand on his right elbow, forming the frame of a tetrahedron. “If you see
somebody from another planet, do that and they’ll know you have some intelligence,
and they won’t treat you like an insect and pull off your arms and legs.”17



Coxeter, not long before, had articulated much the same sentiment when speaking
of the Platonic solids: “I don’t think they were invented. I think they were discovered.
Somebody on a different planet, with the right kind of mind, would find the same
thing.”18 That evening in Budapest, Coxeter added as a footnote: “It was Plato’s idea
that everything that is true has always been true and people simply reconstructed
true things by thinking about them.”19

Researching the family tree of geometry, tracing the ancestry fromThaleswho begat
Pythagoras who begat Plato, is comparable to retelling tales from the Bible, sincemost
of what is known about these single-name ancients comes fromunattributed or biased
sources, anecdotes passed down and spun together to form a grandmythology.20

The five regular polyhedra, for example, the mainstays of geometry, are also called
Platonic solids even though they were known before Plato (427–347 BC). But Plato
took a special interest in these solids and left us the earliest surviving description
in his book Timaeus (the sequel to his Republic).21 In Scotland, a complete set of
five carved out of stone have been attributed to Neolithic people dating back some
4,000–6,000 years. In fact, according to George Hart’s Web-based Encyclopedia of
Polyhedra,22 hundreds of stone spheres have been found with carved edges roughly
corresponding to the regular polyhedra, and ranging in material from sandstone to
granite and quartzite. Ornate bronze dodecahedra by the dozens, dating to Roman
times from the second to fourth century, have been unearthed across Europe, in the
United Kingdom, Belgium, Germany, France, Luxembourg, the Netherlands, Austria,
Switzerland, and Hungary. Their function has not been confirmed—perhaps candle
stands, flower stands, staff or scepter decorations, surveying instruments, leveling
instruments, finger ring-size gauges, or just plain geometric sculpture.23

Coxeter liked to note that a pair of icosahedral dice of the Ptolemaic dynasty reside
in one of the Egyptian rooms of the British Museum in London, and that excavations
on the Monte Loffa, near Verona, extracted an Etruscan dodecahedron, revealing that
this figure was enjoyed as a toy at least 2,500 years ago.24 Known for meticulously
sourcing his ideas, Coxeter provided perhaps the best summation of origins: “The
early history of these polyhedra is lost in the shadows of antiquity. To ask who first
constructed them is almost as futile as to ask who first used fire.”25



In the ancient Greek tradition, geometry was elevated beyond its practical Egyptian
and Babylonian usage (5000–500 BC) to the rank of science.26 The Greek wordmathe-
mata translated to “science of learning”—andmathematics in those days essentially
comprised geometry.27 Geometry was the purest measure of truth and the highest
form of knowledge, with schools dedicated to its study. The Pythagorean School,
which became part of the zeitgeist,28 was attended by citizens of all social strata, es-
pecially the upper class. Women disregarded a law forbidding their presence at public
meetings and flocked to hear Pythagoras speak.29 The ingenuity of the Pythagorean
theorem—stating that the square of the hypotenuse of a right-angled triangle is equal
to the sum of the squares of the other two sides—provided early affirmation of the
direct relationship between number and space. However, when Pythagoras squared
the hypotenuse, he did not do “modern” mathematics, multiplying the hypotenuse by
itself. Rather, he literally constructed a geometrical square on top of the hypotenuse.
Likewise, the sum of two squares being equal to a third meant that the two squares
could be physically cut up and reassembled to form the third square.30
Pythagoras (569–475 BC) believed that mathematics was religion, capable of puri-

fying the spirit and uniting the soul with the Divine. He made the study of geometry
part of a liberal education, probing theorems in an intellectual manner.31 His heir
was Plato, who proclaimed, “God ever geometrizes.”32 And when Plato started his
own school, the Academy, the sign hanging over the entrance indicated he did not
suffer geometrical fools gladly: “Let none ignorant of geometry enter my door.”33
Plato, too, held that mathematics was the finest training for the mind, the secrets of

the universe being embedded in number and form. He believed the ideal geometrical
shapes—circles, spheres, squares, cubes—did not exist in reality but only in a higher
realm of their own, independent from the physical world; a sphere in the physical
world was only an approximation of the perfect form of a sphere.
“The ideal notion is the mathematical concept,” said mathematical physicist Sir

Roger Penrose. “A mathematical concept or mathematical structure, in a certain
sense, conjures itself into existence. Mathematicians tend to think of mathematics
as having its own existence …of mathematical notions and mathematical truths as
having a timeless existence. And mathematicians are somehow explorers in that
world.” The notion that mathematical structures contain an inviolable reality of their
own is somehow reassuring. The humanmind operates with significant margin of
error, so often imprecise, inconsistent, and selective in its judgments. Inmathematics,



there exists logical rigor, an absolute purity. Plato’s world of mathematical forms
provided a methodology that modern science has followed ever since—scientists
propose models of the world, and the models are tested against observations from
previous or new experiments.34
Plato himself had a model of the world, based on his namesake solids. In his book

Timaeus, four interlocutors gather to discuss cosmology and natural science. The
main character, Timaeus, constructs a story for the creation and composition of the
universe. As one Plato biographer, A. E. Taylor, recounted, “What Timaeus is really
trying to formulate is no fairy tale, but, as we shall see, a geometrical science of
nature.” In devising his theory of everything, Plato paired the classical elements with
the five regular solids.35 These shapes, Plato said, were “forms of bodies which excel
in beauty,”36 their beauty residing in the criteria they meet for being “regular,” or
uniform. First, each solid’s surfaces are all the same regular polygon—a shape with all
sides and all angles equal (the equilateral triangle, the square …). The classification of
the Platonic solids as “regular” also depends on a second criterion: the same number
of regular polygon faces must meet in the same way at each corner, or vertex.37
There are three Platonic solids constructed solely with the equilateral triangle. The

simplest is the tetrahedron, composed of four equilateral triangles, three at each of
its four vertices. In his scheme of the elements, Plato chose the tetrahedron, due
to its simplicity and sharp corners, to represent fire, the fiercest and most basic of
the elements—with its “penetrating acuteness …the pyramid is the solid which is the
original element and seed of fire.”38 The octahedron is built from eight equilateral
triangles, four at each vertex, and Plato considered it symbolic of air, because this
solid spins nicely in the wind (or by blowing on it) when you hold it between finger
and thumb.39 The icosahedron has twenty equilateral triangles, five at each vertex,
which combine to make it the roundest of the regular polyhedra. As a result, Plato
associated the icosahedron with a drop of water, “the densest and least penetrating of
the three fluid elements.”40
The cube, Plato assigned to earth: “for earth is the most immovable of the four and

the most plastic of all bodies, and that which has the most stable bases must of neces-
sity be of such a nature.”41 Thus four of the five convex regular polyhedra symbolized
the four elements: fire, air, water, and earth. “The discrepancy between four elements
and five solids did not upset Plato’s scheme,” Coxeter noted. “He described the fifth as
a shape that envelops the whole universe.”42 The dodecahedron, with twelve pentag-



onal or five-sided faces, was the model of the universe as a whole. “There remained a
fifth construction,” said Plato, “which God used for embroidering the constellations on
the whole heaven.”43 Plato’s scheme demonstrated considerable prescience, because
the Platonic solids, even though they did not turn out to be the exact elements of all
existence, are in many ways elemental, or fundamental, components of the universe,
emerging on both microscopic and macroscopic dimensions in the most unexpected
places—a recent cosmological hypothesis revisited Plato’s notion that the universe
might be dodecahedral; and in astrochemistry, the shape of the Nobel-winning C60
molecule is a truncated icosahedron. (See chapter 10 for C60 and chapter 12 for the
dodecahedral universe.)44

Kepler’s Platonic solids etched with the classical elements, from Harmonice Mundi,
1619.

The Fabergé-egg feature of Platonic solids—what makes them such exquisite trea-
sures—is the fact that only five regular solids can physically exist.* This cunning act
of geometric sorcery is explained by the solids’ regularity (faces all the same regular
polygon, with the same grouping of polygons around each vertex). It is best appreci-
ated by constructing the Platonic solids for oneself, piece by piece—simply taping the
component polygons together. “Any intelligent child who plays with regular polygons
(cut out of paper or thick cardboard, with adhesive flaps to stick them together) can
hardly fail to rediscover the Platonic solids,” said Coxeter. “They were built up that
‘childish’ way by Plato himself.”45



The elasticized popping dodecahedron, from Introduction to Geometry.

Models of these highly symmetric solids can also be constructed from “nets,” made
by tracing a flat pattern of adjoined component polygons. Coxeter provided instruc-
tions in his book Introduction to Geometry46 for a springy dodecahedronmodel made
by fitting together two nets, folded into “bowls” of pentagons that are then strung
together by an elastic band. When assembled, the dodecahedron model becomes
alive—animated by its crude spring-release system, it can be pushed flat and stored
in a book, but when not compressed by sufficient weight it spontaneously pounces
back into shape. During class, Coxeter made a stunt of pretending to have lost his
dodecahedron model. “Oh, bother!” he’d mutter mid-lecture. “Now, where is my
dodecahedron?” He’d look around, opening a book or lifting a stack of papers and
then—POP!—there it was, springing into being.47 (Endnote 47 contains illustrated
instructions for constructing a popping dodecahedron.)

Euclid (365–25 BC) proved there are only five Platonic solids.48 And given the
above-mentioned restrictions, only three regular polygons (the equilateral triangle,
square, and pentagon) can be used in the construction of the Platonic solids. This
is because the sum of polygon angles that meet at a vertex must be less than 360°
in order to form a convex solid. This can be proved algebraically, or by physically
putting the component polygons together and discovering what works. For example,
if you try to fit three, four, or five triangles around a vertex, there is still a gap, and
the triangles then can be folded down to meet one another, forming a corner of the
respective solid (the tetrahedron, octahedron, or icosahedron). All other options with



the equilateral triangle would not work: two triangles around a vertex cannot possibly
meet at all edges to form a solid, while six triangles add up to 360° exactly, thus leaving
no gaps and forming a flat tiling, and seven, eight, or more triangles overlap or meet
in accordion-like folds.49

Euclid’s seminal contribution to geometry was his book The Elements. But Euclid was
not the author of The Elements so much as its editor. He compiled and organized the
fundamentals of geometry, work done by Thales, Pythagoras, and other predecessors.
Euclidean geometry in general, to loosely define it, encompassed the study of familiar
shapes, their areas and angles, and filled thirteen books. The first book covered
triangles; the next, rectangles; followed by circles, polygons, proportion, similarity;
with four books on number theory, and one each on solid geometry and pyramids,
culminating with the properties of the majestic five regular polyhedra—here Euclid
placed the Platonic solids on a pedestal and gave his proof that there are only five.50

By the middle of the nineteenth century, Euclid’s Elements had been the bible of
mathematics for two millennia. Arabian mathematicians and authors, providing
one of few sources of information on Euclid’s life, translated his name as “Uclides,”
uclimeaning “key” and desmeaning “measurement”—Euclid was the “key of geom-
etry.”51 And the Euclidean framework was assumed to be the geometry of the real
world. Immanuel Kant’s philosophy still dominated metaphysical beliefs, and in his
Critique of Pure Reason he asserted that the Euclidean system was “a priori”—meaning
“prior to experience,” based on synthetic, theoretical deduction rather than empirical
observation, or, as Kant translated it, “an inevitable necessity of thought.”52

In 1847, Oliver Byrne, a mathematics schoolteacher and Queen Victoria’s surveyor
of the Falkland Islands, published a beautiful new edition of Euclid’s Elements,with
color diagrams replacing equations (this in addition to the simple line drawings of
previous editions).53 Byrne’s book, The First Six Books of the Elements of Euclid, stated
on its title page, “Colored Diagrams and Symbols Are Used Instead of Letters for the
Greater Ease of Learners.” In the preface, Byrne elaborated: “The arts and sciences
havebecomeso extensive, that to facilitate their acquirement is of asmuch importance
as to extend their boundaries. Illustration, if it does not shorten the time of study, will
at least make it more agreeable. This work has a greater aim thanmere illustration;
we do not introduce colors for the purpose of entertainment …but to assist the mind
in its researches after truth, [and] to increase the facilities of instruction.”54



Euclid, then, was enjoying continued popularity, but there were undercurrents of
dissent. In The Elements, Euclid had outlined his exalted five postulates, and the first
four were simple enough:

1. A straight line may be drawn between any two points.

2. A piece of straight line may be extended indefinitely.

3. A circle may be drawn with any given radius and an arbitrary center.

4. All right angles are equal.55

But the fifth postulate—the parallel postulate—was unlike the others, and allegedly
Euclid himself had been hesitant to include it in his Elements. “His reluctance to
introduce it,” Coxeter observed, “provides a case for calling [Euclid] the first non-
Euclidean geometer!”56 It stated:
5. If a straight line crossing two straight linesmakes the interior angles on the same

side less than two right angles, the two straight lines, if extended indefinitely, meet on
that side on which are the angles less than the two right angles.57
Coxeter deemed it “unnecessarily complicated.”58 Indeed, since Euclid’s time,

the parallel postulate had dogged mathematicians, and annoyed them. It was not
intuitively obvious and required mathematicians to suspend disbelief; it stumped
them because it could in no way be verified by experience.
Another way of expressing the parallel postulate is to say that, given a line and a

point not on the line, every line through the point will meet the line, except in one
“freaky case”: when the two lines are parallel to each other. But, as Jeremy Gray,
historian of mathematics at the Open University, pointed out, who is to say what
happens to two parallel lines when extended to infinity, or off 1010 light-years away,
where strange things might alter the laws of space? Maybe parallel lines could meet
somewhere in the “vaguer cluster,” said Gray. Regardless, it is impossible to check.
“So it’s a very strange statement,” he said. “It’s a blot. Because it’s a leap of faith unlike
all the other postulates.”59
Over the years, most mathematicians ignored this blot, for if they didn’t the reign

of Euclidean geometry threatened to collapse like scaffolding with one faulty strut.
Some mathematicians, the more daring, courageous, and foolhardy—Greek, Arab,
Islamic, and eventuallyWesternmathematicians—tried and failed to prove the parallel



postulate using the other four postulates. As the failures accumulated, these attempts
of geometrical derring-do only continued, forming a procession of doomed parallel
postulators throughout history.60 The predicamentwas decried in themid-eighteenth
century as “the scandal of elementary geometry.”61

Hungary’s János Bolyai (1802–60) was one of the adventurers who went in search
of geometry’s Holy Grail. He first tried to prove the fifth postulate, with no success. He
then wondered whether the postulate was perhaps false. Bolyai became infatuated,
convinced he was closing in on the chase for geometry’s mercurial axiom. His efforts
dismayed his father, Farkas Bolyai, who himself had exercised self-destroying due
diligence with the parallel postulate.62 “I have traveled past all reefs of this infernal
Dead Sea,” he told his son, “and have always come back with brokenmast and torn
sail.” He tried desperately to disabuse János of his interest.63

Youmust not attempt this approach to parallels. I know this way to the very end. I
have traversed this bottomless night, which extinguished all light and joy of my life. I
entreat you, leave the science of parallels alone …I thought I would sacrifice myself for
the sake of the truth. I was ready to become amartyr who would remove the flaw from
geometry and return it purified to mankind. I accomplished monstrous, enormous
labours…I turned back when I saw that no man can reach the bottom of this night. I
turned back unconsoled, pitying myself and all mankind. Learn frommy example: I
wanted to know about parallels, I remain ignorant, this has taken all the flowers of my
life and all my time fromme.64

His son, however, ignored the warnings:

I am determined to publish a work on parallels as soon as I can put it in order,
complete it, and the opportunity arises. I have not yet made the discovery but the path
that I am following is almost certain to lead to my goal, provided this goal is possible.
I do not yet have it but I have found things so magnificent that I was astounded …65

Eventually Farkas relented and encouraged his son to publish whatever he had as
soon as possible, lest the ideas pass to someone else. “There is some truth in this,”
János agreed, “that certain things ripen at the same time and then appear in different
places in the manner of violets coming to light in early spring.”66 They published
János’s findings in 1832, as an appendix to a book on geometry his father had long
been preparing.67



János’s findings proved that the fifth postulate was not a theorem—not a conse-
quence of Euclid’s first four postulates—by showing that there are geometries in which
Euclid’s first four postulates hold true but the fifth does not. He had discovered a
consistent and self-contained system of geometry that differed from Euclid’s in its
properties of parallelism; in Bolyai’s non-Euclidean geometry, there are infinitely
many lines through a given point that do not meet a given line. With this, Bolyai had
performed a seemingly impossible feat.68He had discovered a new geometry—“one of
themostmomentous discoveries evermade,” said Gray—but the world simply ignored
it. By the time János Bolyai died, in 1860, he had received no recognition for his
discovery of non-Euclidean geometry.69

With Bolyai’s discovery, there were then two types of geometry, Euclidean and non-
Euclidean, each rooted in the classical tradition. As a classical geometer, Coxeter
carved a unique, surprisingly productive, and far-reaching career from Euclidean
geometry, elevating it to complex and hyperdimensional levels, and hemade forays in
the non-Euclidean realm as well.70 Thus, Coxeter was what you might call a modern
classical geometer, according to SirMichael Atiyah, one of the finestmathematicians of
our day: “Coxeter’s geometry was classical flat geometry, geometry of ordinary space.
Then he moved into variations on that, with group theory. And this brings geometry
into touch with modern algebra in lots of interesting ways. He was the master of that
bridge,” said Sir Michael. “But Coxeter stayed in the old world. He didn’t become a
modern geometer. He didn’t embrace modern geometry as a whole. He stayed very
close to the spirit of classical geometry …He was a virtuoso in that area. Quite unique.
He’s almost the last classical geometer more than the first modern geometer.”71
Since Bolyai’s time, many more types of non-Euclidean geometry have been dis-

covered. Geometry, broadly speaking, is anything that shares the general ideas of
Euclidean geometry. If a few rules are changed, however, then a slightly different
“non-Euclidean” geometry results. There is a seemingly infinite diversity of geome-
tries, either classical or contemporary in origin—each logical systems unto themselves
and devised for a specific purpose.72 Some of them, Coxeter waded into headlong
(especially projective geometry); some, he approached in spurts (such as topology,
also known as “rubber-sheet” geometry, with the four-color problem, regarding the
theory of maps); and other areas he touched on scarcely at all (modern curved com-
plex geometry, fractal geometry, and taxicab geometry†).73 The different geometries



evolved slowly, like a genealogy, responding to ideas of the times, and sometimes
pushing the envelope. For example, the study of knots required the development of
topology, which in turn required the development of metric spaces. Whereas differen-
tial geometry, the study of curved surfaces via calculus, originated in the mid-1800s
and was found to be relevant (along with non-Euclidean geometry) at the turn of the
next century in the space-time geometry of Einstein’s relativity theory.74 Many of
these branches were “beyondmy powers,” Coxeter once admitted,
There are so many branches of the subject in which I am almost as ignorant as

the proverbial man in the street. I must ask you to forgive me if I concentrate on
my own favorite branches, and I must take the risk of offending various geometers
who will ask why I have not dealt with algebraic geometry, differential geometry,
symplectic geometry, continuous geometry, metric spaces, Banach spaces, linear
programming, and so on …Thus there are many geometries, each describing another
world: wonderlands and Utopias, refreshingly different from the world we live in.75
A different non-Euclidean geometry from Bolyai’s, for instance, occurs when you

assume there are no parallel lines at all—every pair of lines intersects. One way to
illustrate this mind-bending geometry is with a query that Coxeter entertained (one
long a part of geometry folklore): If you had your pilot’s license and flew ten hours
due south, then ten hours directly west, and then ten hours due north, how could it
transpire that you would find yourself right back at your starting place?76
Flummoxed disbelief is the usual reaction to this question, because the directions

are envisioned in the flat Euclidean plane. Coxeter demonstrated this warped per-
spective in 1957 with a grainy black-and-white television appearance on a Canadian
news magazine. In comparing the “nature of space” and alternative geometries to
Euclidean, he made use of two blackboards—a standard flat blackboard on the wall,
and a swiveling globe of the world painted black. First, Coxeter said, consider an
ordinary triangle in the plane. He gestured to his triangle drawn on the regular chalk-
board—a traditional Euclidean triangle with angles summing to 180°. Another kind
of geometry, he continued, moving toward his globe, is geometry on the surface of a
sphere. And then, beginning at the North Pole, he chalked lines on the globe running
due south, then traveling due west, and finally due north, leading directly back to his
starting point and forming a triangle with his path—a triangle constructed from three
90° angles.77 So if we choose, Coxeter concluded, “we can find a triangle having right
angles at each vertex, and the sum of the three is 270° .” This is spherical geometry,



one example of a non-Euclidean geometry. Non-Euclidean geometry exists in worlds
where, tinkering with qualitative and quantitative factors, the angles of a triangle sum
tomore or less than the traditional Euclidean180° . It is simply amatter of experiment;
mathematicians invent new geometries and then it is left to the physicists to figure
out which of these geometries, if any, apply in the real world.78

Coxeter demonstrating non-Euclidean spherical geometry with a 270° triangle on a
globe.

When Bolyai’s non-Euclidean geometry eventually gained attention, people began
asking, “Which geometry is valid in physical space—Euclidean or non-Euclidean?”79
Bolyai’s new geometry had exposed a firmly entrenched misunderstanding about
the nature of space. For ages mathematicians had believed that Euclidean geometry
was the one and only logical account of the way the world could be. But, as Bolyai
announced: “All I can say now is that I have created a new and different world out of
nothing.”80

Wading into his talk at the commemorative Bolyai conference, Coxeter twirled
in his fingers Smith’s model, a nexus of multicolored straws—a skeleton of a cube
surrounding the skeletons of two interlocked tetrahedra. As he proceeded with his
lecture, a rumble of unease stirred in the audience, the skeptics straining to hear.



“Louder! Louder, please! We cannot hear!” cried Coxeter’s daughter. His microphone
wasn’t working. Neither was his hearing aid. Oblivious to the predicament as it was
being resolved, Coxeter carried on, the audience scribbling bouquets of tangent circles
into notepads on their laps.81

Coxeter at the microphone in Budapest.
Coxeter was hardly a showman. He was a gentleman geometer who held his audi-

ence’s attention with the beauty and elegance of his work. He was known for being
birdlike, both in appearance and style—very delicate, very precise, very spare. “You
have to know what’s important,” said Gray, who likened Coxeter to a violin rather than
an entire orchestra. “He’s not going to rhapsodize, he’s not going to tell you that this is
a huge big deal…he’s not going to write you any advertising copy.”82 Coxeter meets
the measure of an elegant and beautiful practitioner also because his mathematics
flourishes in the minds of other mathematicians. When a piece of mathematics is
called beautiful or elegant, it is presented in a way that conveys understanding, and
one litmus test for understanding is whether other mathematicians can do something
with it, fitting it nicely into the bigger picture. “It becomes elegant because it opens
something up,” said Gray. “The elegance is in the power it conveys to do something
that couldn’t, or hadn’t, been done before.”83
In the end, Coxeter’s talk went over well, and it proved relevant—it was related to the

hot applied topic of data mining. “His proof [of an absolute property of four tangent
circles] is not an earth-shaking discovery,” said Karoly Bezdek, the secretary of the
Budapest conference committee. “But his proof is the simplest one, the ideal proof for
Beecroft’s theorem. Nowadays manymathematicians publish with very complicated



proofs. It is important to have simple proofs that we can digest and really learn from.
It’s an art to discover the right proof.”84 The conference organizer, Prékopa, was very
pleased as well: “It is amazing that somebody who is 95 years old can invent new
scientific results of such depth and present them at a meeting. I wish I could be such
a fresh-minded person, and interested and active. Coxeter gets distracted and falls
asleep during some of the other talks,” he noted (many an audience member was
caught nodding off), “but he always wakes up when he’s interested.”85

One widely accepted mathematical truth is that mathematics is a “young man’s”
game. “Young men should prove theorems, old men should write books,” said the
legendary G. H. Hardy, a professor of Coxeter’s at Cambridge who penned A Mathe-
matician’s Apology, a lament for his waning mathematical prowess.86 Hungarian math-
ematician Paul Erdös (1913–96) is the usual counterexample. Erdös was a prolific
problem solver to the end of his life, publishingmore than one thousand papers, more
than any mathematician in history. He was “the man who loved only numbers,” as
the title of Paul Hoffman’s biography proclaimed.87 A close friend and collaborator,
Ron Graham (introduced to Erdös by Coxeter in 1958), recalled that Erdös “was com-
pletely dedicated to, as he would say, ‘taking a peek into The Book’—‘The Book’‡ was
this hypothetical book of the Almighty that contains all the best possible proofs, all
the gems of mathematics that you can present in a page or two. Erdös really lived
mathematics.”88

Donald Coxeter is an equally good counterexample disproving the stereotype of a
mathematician’s “best-before date.”89 Coxeter’s only professional regret, articulated
at the end of his days, was that he had not collaborated with Erdös90—his Erdös
Number was 2 (as was Einstein’s).91 A person who coauthored a paper with Erdös
gainedanErdösNumber1; apersonwhocoauthoredapaperwith suchapersonhas an
Erdös Number 2, and so on, forming an international nexus of Erdös’s 485 coauthors.
Erdös had no real home base and traveled the world with his battered Mexican leather
briefcase of worldly possessions, landing on the doorstep of welcoming or unexpecting
mathematicians. Upon arriving at his destination Erdös would announce: “My brain is
open!” (the title of another Erdös biography, by Bruce Schechter).92 His visits were so
intensive that Graham often joked, “We had Erdös over for a month last weekend.”93
After Erdös squeezed all the mathematical juice from his host he moved on to his next
stop.94



Left to right: Unidentified woman, Coxeter, Branko Grünbaum, Paul Erdös, circa
1965.
Coxeter had plenty of opportunity to become an Erdös 1. He and Erdös often crossed

paths. One day in 1935, when Erdös was at Cambridge, he rang Coxeter and asked him
a question regarding a problem he was working on about parallelotopes.95 Coxeter
worked on Erdös’s problem for a few days, but it didn’t lead to collaboration. They
met numerous times thereafter, in London, Toronto, and elsewhere. In 1965, Coxeter
noted in his diary: “while shaving I solved Erdös’s problem (of the dancing girls and
boys).” But still no collaboration.96
For Erdös’s sixty-eighth birthday, Coxeter dedicated a talk in his honor on “a sym-

metrical arrangement of eleven hemi-icosahedra,”97 and the two bounced ideas back
and forth in correspondence—a letter from Erdös, always written with a fountain pen,
typically beganwith a brief pleasantry, promptly launching into pages ofmathematical
proposition, suppositions, equations, conclusions, and a diagram. Coxeter sent Erdös
problems he might appreciate, and Erdös contributed ideas to a few of the problems
Coxeter was working on,98 but upon Erdös’s death in 1996, Coxeter settled for an
Erdös Number 2.99

Coxeter’s daughter Susan, not being the least bit mathematically inclined (or even
empathetic), wasn’t so impressed with her father’s intellectual longevity, and in gen-
eral she ran hot and cold on his status as a mathematical legend. Having solved the
problem of the microphone malfunction during his lecture, Susan settled in and read



her novel. And at the end of his talk, when Coxeter hightailed it to the loo, Susan gave
her evaluation. “To think,” she said. “We’ve come all this way to talk about circles
touching circles when there are so manymore important things going on in the world.
Dad would hate to be equated with Elvis Presley, but Elvis gave people somemoments
of joy, happiness, inspiration. And if that’s what Dad’s work does for these people,
that’s wonderful. Personally, I get more from Elvis Presley.”100
The day wound down with a reception in the Academy of Sciences ballroom.

Conference-goers stood nibbling on a dinner buffet, and scrounged for a miscal-
culated supply of desserts. Coxeter found one of few seats in the house, a majestic
dais elevated above the crowd. A steady stream of admirers stopped by, bowed
at his side, and gave him praise. Ernest Vinberg, from Moscow State University,
introduced himself and thanked Coxeter for long ago writing a letter to his Soviet-era
PhD committee, reassuring them that Vinberg’s field of study—Coxeter groups—was
not politically suspect (after perestroika Vinberg’s PhD was finally conferred, and
he proceeded to do a second PhD, also on Coxeter groups).101 Daina Taimina, a
senior research associate at Cornell, approached Coxeter to show him her crocheted
model of the hyperbolic plane, and to tell him that his Introduction to Geometry was a
blessing—“it saved me,” she said—when she started teaching high school geometry in
Latvia in 1975.102
At the close of the festivities Coxeter plodded back to his hotel, the scorching July

sun retreating over the Danube. Just then John Ratcliffe, from Vanderbilt University,
in Nashville, Tennessee, caught up with him on the sidewalk. Ratcliffe told Coxeter he
had two copies of his Regular Polytopes—one at work and another in his study at home
for late-night consultations. “This is the modern-day Euclid’s Elements,” said Ratcliffe,
pulling a copy of the book from his attaché case. “It’s like the Bible for me. I refer to it
all the time.”103
All in all, it was a jubilant day for Coxeter. He had managed the trip, delivered an

apropos presentation, and been showered with adulation. “It was very satisfactory!”
he said, never one for hyperbole in language. Susan deposited her father in his hotel
room and withdrew for some time on her own. Coxeter climbed out of his suit jacket,
undid his shirt and tie, sat on the edge of the bed, and sipped on some champagne
from the minibar.§ After the high of the day he was stung by melancholy (as he was
a few times during the Budapest conference, prompted by a documentary camera
following him the entire trip). He thought of how he could have been a better husband,



father, and grandfather, spending less time on his work. He thought of the recent
invitation he passed up to return to his almamater, Trinity College, Cambridge, as a
newly minted emeritus fellow—amark of honor that allowed him, if he chose, to live
out the end of his days in a room in Great Court, kept company by all his old haunts.
He thought of his childhood governess May Henderson, whom he had been known
to confess he loved more than his mother. When he was in his late sixties, Coxeter
planned to pay May a surprise visit on a trip home to England. He was devastated to
find she had died of cancer only two weeks before he arrived. May had taught Coxeter
French and Latin, multiplication, division, and quadratic equations. Little did she
know, way back then, what a fine mathematical mind she was molding.104
* Another awe-inspiring feature of the Platonic solids is their interconnectedness.

The dodecahedron, with twelve faces and. twenty vertices, is the mate, or dual, of the
icosahedron, which has twenty faces and twelve vertices. Similarly, the cube, with six
faces and eight vertices, is the dual of the octahedron, which has eight faces and. six
vertices. The fact that these solids are dual to one another has the result that they also
share their symmetries.
† Taxicab geometry measures distances by vertical and horizontal steps—east-west

and north-south increments—the way taxis traverse city blocks, rather than by the
shortest distance between two points, as the crow flies. Fittingly, the distance units in
taxicab geometry are known as the “Manhattan metric.”
‡ Galileo Galilei (1564–1642) also referred to a “grand book” of the universe, and to

the importance of geometry in gleaning knowledge of its contents. In The Assayer he
wrote: “Philosophy is written in this grand book, the universe, which stands continu-
ally open to our gaze. But the book cannot be understood unless one first learns to
comprehend the language and read the characters in which it is written. It is written
in the language of mathematics, and its characters are triangles, circles, and other
geometric figures without which it is humanly impossible to understand a single word
of it; without these one is wandering in a dark labyrinth.”
§ His usual bedtime elixir, to fortify his constitution, was a stomach-curdling mix-

ture of Kahlúa coffee liqueur, peach schnapps, sometimes a splash of vodka, and soy
milk.



1 Young Donald In Wonderland

Beside the actual universe I can set in imagination other universes in which
the laws are different.

—J . U . SYNGE, Kandelman's Krim

Coxeter’s mother, Lucy Gee, a portrait and landscape painter, had grudgingly relin-
quished her freedom in favor of her husband’s wish for progeny, and their only child,
Donald, was born in London, England, on February 9, 1907.1
Lucywasa sternandscrawnywoman, unphotogenic, her sallowcomplexion relieved

by demure and engaging brown eyes. She preferred sports jackets, knee breeches,
and harlequin-diamond stockings to constraining Victorian dresses. She was a decent
painter (attending the Royal Academy of the Arts) who jealously guarded her creative
realm. Coxeter’s father, Harold Samuel Coxeter, was a hobby sculptor and baritone
singer. Fittingly, their family home at 34 Holland Park Road, in the Royal Borough
of Kensington and Chelsea,2 sat in a high-society artists’ colony whose denizens
had included Henry James. “The weather is hideous, the heaven being perpetually
instained with a sort of dirty fog-paste, like Thames-mud in solution,” ranted the
American writer. “At 11 a.m. I have to light my candle to read!”3
Harold, a robust, white-haired, flushed-faced man, was an autodidact and read

voraciously. If there were ever questions of general knowledge discussed at a party,
Coxeter’s father always trumped the other guests with trivia.4 Harold earned his living
as a manufacturer of surgical instruments. As a boy he had wanted to become a
doctor, but he dutifully joined Coxeter & Son Limited, a family business started in
1836 by his grandfather. The company becamewell known for inventing amechanism
that anaesthetized surgical and dental patients with a continuous flow of oxygen and
laughing gas—apromotional flier boasted that Coxeter& Sonwonmany a “prizemedal”
at international exhibitions.5

37



Initially, Lucy and Harold named their child simply Donald. Donald himself came to
wish it had been left at that, though the dithering that followed formed a tale he often
enjoyed telling. The birth certificate recorded his first name officially as MacDonald,
after his father’s father. His mother added “Scott” in homage to a renowned rela-
tive—the British architect Sir Giles Gilbert Scott, designer of the iconic window-paned
red phone booth, as well as the Bankside power station (now the TateModern), and the
University Library at Cambridge. Then ameddling godparent suggested the boy ought
to have his father’s name as well. His first name thus became Harold, making him
H. M. S. Coxeter, or, as one quick-witted observer pointed out, a ship in Her Majesty’s
fleet. A simple rotation of the names produced Harold Scott MacDonald Coxeter.6

One of the earliest surviving portraits of Donald, painted by his mother, shows him
at about three years old, dressed in a frilly collared shirt and knickerbockers, a swag of
blond curls hanging at his shoulders. With his feet dangling from a velvet-upholstered
bench, he is seated, smacking at the keys of a grand piano, a gift to Lucy from Harold
upon Donald’s birth. The house was also furnished with a billiards table for Harold
in the living room. A cavernous study to the rear was Lucy’s, though it provided the
setting for Donald’s first exposure to geometry (even if subconscious) as he crawled
across the oak floor, a symmetrical herringbone pattern of rectangles—in geometric
terms, a tiling or tessellation of the Euclidean plane.7

At about the same age that Donald posed for his mother at the piano, he demon-
strated the first signs of his interest in numbers, staring intently at the financial pages
of his father’s Times, columns upon columns of numerals. Within a few years, his
precocious intellect unequivocally showed itself—first with music, not mathematics.
Before he was ten, Donald was an accomplished pianist. He learned from his father’s
friend, musician and composer Ernest Galloway, who played live music in the silent
movie theaters to make ends meet. He often dropped by the Coxeters’ for impromptu
musical ensembles, after which he taught Donald how to play and compose. Donald
penned stacks of arrangements. One piece, written over fivemonths when Donald was
sixteen, titledMagic, contained several movements and was composed as incidental
music for G. K. Chesterton’s play of the same name. He evenwent to the trouble of indi-
cating when the curtain should rise and themusic fade in and out. Most arrangements
he wrote as Christmas or birthday gifts, with dedications to his mother or father.8



Some eighty years later, Coxeter discussed the link between his early mathematical
and musical inclinations. “I was interested in the structure of the notes of music,”
he said. “That was somewhat mathematical. I think it’s clear that one has to regard
[music] as beingmathematical: the 12 semitones in the octave and the 8 diatonic notes
and how they are different.”9 As for the aesthetic analogy betweenmathematics and
music, Coxeter admitted he could hardly do better than quote his Cambridgementor G.
H. Hardy in describing the intersection of the two arts: “ ‘There is a very high degree of
unexpectedness combined with inevitability and economy …Amathematical proof should
resemble a simple and clear-cut constellation, not a scattered cluster in the Milky
Way.’ Similar words might well be used as advice to composers, with ‘mathematical
proof’ replaced by ‘piece of music.’ ”10

The first sheet of Donald’s score forMagic.



Coxeter itemized several parallels between these two “precise arts”—replacing a
D# with a Db in a piece of music and switching a plus and minus sign in mathematics
would be equally disastrous (whereas, he noted in contrast, “A painting or a piece of
sculpturewould not be essentially changed if a few of its daubs of paint or lumps of clay
had been differently placed, and Keats’s “Ode to a Grecian Urn,” with its awkward line,
‘O Attic shape! Fair attitude!…’ would be positively improved if theword ‘attitude’ could
be replaced by one that did not clash with ‘Attic.’ ”).11 He also remarked on historical
similarities. The development of music was hampered by lack of notation until the
Middle Ages; so was much of mathematics until the invention of Arabic numerals. “In
this respect Geometry was exceptional,” he said, “because its essential ideas are so
simple that they can be adequately expressed in words, especially when accompanied
by sketched diagrams. It is pleasant to see how closely the illustrations in the oldest
manuscripts of Euclid’s Elements resemble those that we draw today.”12

In illuminating howmathematical ideas are “inherent in music itself,” Coxeter went
on to discuss rhythm, and the time signature, “a fraction whose denominator is a
power of 2 while its numerator indicates the number of beats in a bar—usually 2, 3,4,
or 6 (like the period of the rotational symmetry of a crystal).”13 Harmony provided
another example, the pitch of a note being determined by its frequency, or the number
of vibrations per second. Here, Coxeter co-opted the words of English physicist Sir
James Jeans: “ ‘It is found to be a quite general law that two tones sound well together
when the ratio of their frequencies can be expressed by the use of small numbers, and
the smaller the numbers the better is the consonance …This was known to Pythago-
ras 2,500 years ago; he was the first, so far as we know, to ask the question, ‘Why
is consonance associated with the ratios of small numbers?’ ”14 Coxeter continued,
commenting that, “One is tempted to see some significance in the fact that the agree-
able harmonics, 3, 4, 5, 6, 8, 10, 12 correspond to the numbers of sides of regular
polygons that Euclid was able to construct with his chosen instruments, the straight
edge and the compass …whereas the dissonant harmonics—7, 9, 11, 13—correspond
to polygons that cannot be so drawn.”15

And of course, Coxeter’s analysis truly sings when he addressed the point of com-
parison closest to his domain:



Most mathematics depends for its appeal on some aspect of symmetry. Symmetry
is likewise a guiding principle in musical composition. In a fugue, for instance, the
second occurrence of the main theme is usually in a different but related key. Such
a transposition is analogous to the geometric operation of translation or parallel
displacement. Again, Bach’s trick of inverting a theme is analogous to reflection in a
mirror. One of the most interesting transformations in elementary geometry is the
dilative reflection, which combines a reflection with a dilation or steady increase of
size. This has its musical counterpart in Bach’sWedge Fugue.16
The pleasure Coxeter experienced from writing music transferred naturally into

mathematics. “I got the samekind of euphoria froma successful piece ofmathematical
rediscovery,” he said, “that I formerly did in writing a piece of music.”17 Lucy sought
an evaluation of her son’s musical talent, taking him to see British composer Gustav
Holst. “I don’t know how she got to him,” Coxeter recalled, “but she took me along and
I showed him some of the music I had written, and I played a little bit on the piano.
On the whole he thought it was rather poor.” They received much the same response
from a visit to Irish composer C. V. Stanford, who said: “Educate him first.”18

Donald’s joy in music and math was his salvation from an anxious environment
at home. His parents’ common passion for the arts was not enough to make them a
happy couple. For starters, his father wanted more children, but Lucy did not. Harold
attended Royal Psychological Society meetings to cope with the marital difficulties.
There he befriended a German divorcée, Rosalie Gabler, who along with her daughter,
Katie, six years older than Donald, became family friends of the Coxeters’. Relations
did not improve, however, and Donald’s parents took steps toward ending their mar-
riage. The indignity of divorce was great in that day—“It was taboo,” Coxeter recalled.
Divorce was rare and required proof of adultery. The shock was enough to send
Donald headlong into alternative worlds of his own creation, taking refuge in music,
mathematics, and make-believe.19
Coxeter’s first teacher was his dearly loved nanny, May Henderson. In confessing

he loved May more than his mother, Coxeter explained it was perhaps due to the long
periods of time he spent separated from his mum during the First World War. He and
May lived outside London, at the Coxeters’ weekend cottage in the south of Kent, near
the border of Surrey.20 There they were at a safe remove from Germany’s zeppelins,
the passenger airships doing double duty as bombers.21



Young Donald at work.

May’s curriculum distracted Donald, and inspired him. Her introductory lessons
in French and Latin moved him to do something many children fantasize about but
few actually execute: He created his own language—Amellaibian. He filled a 126-page
notebook detailing the construction of this language and the imaginary world where
it was spoken. The inhabitants were called “ ‘bainia,’ a spherical kind of fairy,” who
drew life energy from batteries made of cork, wood shavings, paraffin, lanolin, white
paint, Vaseline, and cloth, all sedimented together, layer upon layer, within glass
casings of various shapes. He wrote this novella in impeccable uppercase letters. It
contained vocabulary lists (“The Terminations of Amellaibian Words,” neatly divided
into verbs, nouns and pronouns, adjectives and adverbs), maps, histories, genealogies,
short stories, and a section called “Fairies’ Birthdays and Other Events.” Much of the
narrative chronicled the fairies’ romantic adventures and happy unions. Gradually,
the treatise turned mathematical, with pages and pages dedicated to weights and
measures, formulas, equations, and Amellaibian magic numbers—any number that
factored into Donald’s favorite number at the time, 250.22



A page from Donald’s primer on his invented language, “Amellaibian.

While Donald was enrapt with his Tolkien-esque fairy tale (predating Tolkien),
Harold and Lucy were in the midst of their divorce. After May Henderson left to get
married, Donald’s parents sent him to the coeducational St. George’s boarding school,
twenty kilometers north of London, to shield him from any nasty indiscretions during
the divorce proceedings.23 His father dropped by the house to see him off: “Donald
was such a dear and looked so nice in his school things and was so very glad to see
me. He’s so sensible, and brave about school. But he will be dreadfully homesick.”24



“I was incarcerated at boarding school,” Coxeter later said. “The head-master was
something of a freak. He took a sadistic interest in caning the bottoms of boys who
behaved badly. My father explained to me later that he got sexual pleasure from
beating boys on their bums.”25 Coxeter and his one friend at boarding school, John
Flinders Petrie, son of Egyptologist and adventurer Sir William Matthew Flinders
Petrie, suffered under the headmaster’s cane quite a lot. Donald also foundhis parents’
visits disconcerting, since they came separately, alternating weekends. Epidemics of
measles or chicken pox often quarantined the schools, preventing his parents from
taking him on outings. He looked forward to walking as far as he could down the
school’s driveway, to the edge of the quarantine, to meet his mother or father when
they arrived. They spent most of their visit in a room at the back of the school, usually
reserved for practicing the piano. Once during a visit with his father, Donald suddenly
burst into tears, uncontrollable weeping. His father tried to comfort him, but he was
inconsolable, overcomewith the trauma of his parents’ separation. “It was toomuch at
that adolescent age,” Coxeter recalled. “I was weeping at the collapse of my family.”26

Harold’s announcement of his plans to remarry only made matters worse. Donald
and his mother, and everyone among family and friends, assumed his new wife would
be Rosalie Gabler. In hindsight, family members speculated as to whether Harold had
occupied her bed, or insinuated the pretense of a romantic liaison, in moving along
his divorce.27 But Rosalie was too old to bear Harold the children he wanted, so he
proposed to her daughter, Katie, instead. Rosalie sent Katie off to Munich for a year
in an attempt to cool the affair, or at least test its mettle. The May-September couple
married in 1922, when Katie was twenty-one and Harold forty-three. For Donald it
was a double blow. Katie had been the object of his first crush.28

Donald idolized his father, the pivot point of his life and the dominating influence.
But as Harold began his new family, becoming a father to three daughters in rapid
succession (Joan, Nesta, andEve), Donaldwas no longer the sole focus of his attentions,
even during their father-son visits. “I took Donald to town yesterday—morning at the
office and afternoon at a cinema,” wrote Harold to Rosalie in 1924. “He’s a queer kid
and not very easy. He practically ignores Joan [his eldest half sister]—not that he is
the least unfriendly or jealous, I think, but simply that she doesn’t interest him, not
being mathematical or—so far—particularly musical.”29



At the uneasy and vulnerable time of adolescence, Donald’s broken family hurt him
to the heart—into his nineties Coxeter’s memories of his parents’ broken marriage
stayed with him as one the greatest tragedies of his life, bringing him to tears even
then. As a boy he was deeply sensitive and idealistic, clever and solitary, and his
parents’ failings were horribly disappointing. They had read him the Bible every
night before bed (they explored Quakerism for a time), and were his closest playmates.
Photographs show Donald and his mother and father on picnics with only adults for
company, and sometimes a chicken or a dog. Donald hardly knew how to relate to
other children and didn’t make many friends at St. George’s. He was ridiculed and
bullied for his brainy peccadilloes, girls tittering as they kicked at his shins under
the desks. “One boy had a grudge against me because I was a weakling,” Coxeter
recalled. “That’s why I dreaded the break between early lessons and late lessons. All
the children went out to play games and I hid under the teacher’s desk, to avoid this
teasing boy.”30

These desperate circumstances worked as a catalyst. During his incarceration at
St. George’s, Donald experienced his formative encounter with geometry.31 The only
problem being that just as Donald fell in love with the jewels of classical geometry, the
tradition was falling decidedly out of fashion.32

The golden age of classical geometry had been themiddle of the nineteenth century.
The science of triangles and circles, to be sure, was founded in the era of the great
Euclid, Pythagoras, and Archimedes, but theorems on triangles and the like accumu-
lated until the central cache of knowledge amassed in the 1800s, and to a dwindling
extent the beginning of the twentieth century.33

“Geometry sometimeshashad tofight for its existence,” observed JeremyGray. “You
might think, if you were not a mathematician, that of course geometry is important.
Ask people what mathematics is and they would probably say geometry in the first
minute of their answer. But in somemath departments there is a feeling that, ‘Ohwe’ve
left that behind …Who wants to prove things about triangles?’ ”34 The classical visual
and intuitive approach with circles and triangles and polyhedrons had come to be
thought of as “playing,” “tinkeringwith toys,”35 and “second-ratemath”—amusements
for idling away daydreams and Sunday afternoons.36



The luster of Euclidean geometry first began to fade after the dethronement of the
parallel postulate in the mid 1800s. After that, “logical worries” crept into Euclidean
geometry as a whole. It had been the paradigm of truth, the bedrock of empirical
pursuit; three-dimensional Euclidean geometry had been a concrete perspective that
jibed well with the scientific rationalism of the Victorian era, and it neatly explained
the real space in which we lived. Or so mathematicians thought. Then it came time to
face reality: geometers had been constrained to one space, instead of roaming two, or
more, for millennia.37
Mathematicians began questioning the veracity and reliability of Euclid’s Elements as

a whole. His dependence on diagrams drew the most criticism. And Euclid’s original
work included not only an abundance of diagrams, but also a collection of intentional
geometrical fallaciesmadebelievableby convincingbutflawedfigures—Euclid thought
it was a good exercise for the students to find the errors in reasoning.38 The lesson
now appeared not so constructive: diagrams are deceptive. And as a result, the
pendulum swung to the opposite extreme; the trend becamemathematics without
the disinformation of pictures, without appealing to the corruptible visual sense.
To restore the faith, mathematicians took to formalism, a term spoken pejoratively

among disheartened classical geometers. Formalism embraced a systematic method,
enforcing the logic of geometry axiom by axiom—pictorial geometry was rendered
abstract and algebraic through the power of sheer deduction; it was all numbers and
equations.39 This rigorous rote method was no way to teach geometry to children,
however, and the consequences at the grade school level were grim—this mobilized
the Association for the Improvement of Geometrical Teaching, founded in England in
1871.40 But there was no stopping the march of modern mathematics. The eminent
DavidHilbert, at Göttingen—known for hisHilbert space—was the beacon of formalism,
the prime mover pushing modern geometry toward a more formalist and abstract
style.41He published his book The Foundations of Geometry in 1899, the first thoroughly
systematic study of Euclidean space, supplanting Euclid’s axiomatization—with this
work Hilbert is said to have made the greatest impact on geometry since Euclid. And,
Hilbert famously underscored the arbitrary nature of visual space, and the importance
of keeping geometrical terms abstract, with this catchy remark: “One must be able to
say at all times—instead of points, straight lines, and planes—tables, chairs, and beer
mugs.”42



While the non-Euclidean revolution changed the foundation of geometry and
“kicked up a fuss,” as Gray described, “It was never the fuss that the fourth dimension
caused—Woooo woooo! The fourth dimension!!”43 Flouting tradition by stretching
the boundaries of three-dimensional Euclidean space into higher realms—into
hyperspace, or what’s called n-dimensional geometry—was also a trend very much
in the air at the latter part of the nineteenth century, as the restrictions on rigid
three-dimensional Euclidean geometry loosened.44*
Edwin A. Abbott concocted a fictional world with inhabitants who contemplated

higher dimensions in his book Flatland, A Romance of Many Dimensions, published in
1884 under the pen name A. Square. The main character, Square himself, is visited in
his two-dimensional land by an alien creature named Sphere, from three-dimensional
Spaceland. Square gets acquainted with this odd creature, and in so doing becomes
convinced Sphere is not a “burglar or cut-throat, somemonstrous Irregular Isosceles,”
who by disguising himself as spherical had gained entry to his house with plans of
stabbing him with his acute angle. Square comes to believe that there is in fact life in
Spaceland after he learns to visualize three-dimensional entities.45
In relaying his experiences, Square aimed to be instructive and encouraging, yet

when he voiced his views about higher dimensions in Flatland he was imprisoned
for heresy. And indeed, an unorthodox mystical bent, popular in spiritualistic and
theosophical circles, manifested itself in the proliferation of writings on the fourth
dimension.46 English mathematician Charles Howard Hinton was notorious for his
mystical leanings, but he also devised a very down-to-earth bridge, a mental aid, to
expedite the crossing into hyperspace—a system of multicolored cubes, which he ex-
plained in an essay called “Casting Out the Self.”47 Coxeter encounteredHinton’s work
at about the age of thirteen. He absorbed Hinton’s book, The Fourth Dimension, during
the ensuing years, and it opened wide this gosling geometer’s insatiable appetite for
polytopes.48
Another influence on the young Donald was H. G. Wells’s science fiction novel The

Time Machine: “Space …is spoken of as having three dimensions, which one may call
Length, Breadth, and Thickness,” wrote Wells. “But some philosophical people have
been asking why three dimensions particularly—why not another direction at right
angles to the other three? …Well, I do not mind telling you I have been at work upon
this geometry of Four Dimensions for some time.”49 Published in 1895, The Time
Machine was still a best-seller in 1920, just when Donald was off to boarding school.



Also in the air at the time was the fallout from the total eclipse of the Sun on May
29, 1919. During the eclipse, British astronomer Sir Arthur Eddington had measured
the bending of starlight by the Sun, confirming Albert Einstein’s theory of general
relativity, a geometrical theory postulating that the presence of mass and energy
generates gravity, and that gravity has the effect of “curving” space and time—gravity
= space-time geometry, a continuum with three dimensions of space and a fourth
dimension of time. The media event made Einstein immediately famous.50 The
London Times headline proclaimed, REVOLUTION IN SCIENCE, NEWTHEORY OF THE
UNIVERSE. Two days hence theNew York Times answered with, LIGHTS ALL ASKEW IN
THE HEAVENS/MEN OF SCIENCE MORE OR LESS AGOG OVER RESULTS OF ECLIPSE
OBSERVATIONS/EINSTEIN THEORY TRIUMPHS.51

With the fabric of space changing before his eyes, Coxeter experienced a personal
geometric epiphany. His formative encounter with the study of shapes and space
occurred when he wound up in his school’s sickbeds, lying next to his friend John
Petrie. Woozy with the flu and surrounded by the sick-bay smells of antiseptic, freshly
laundered sheets, and the coal fireplace burning at the end of the room, he and John
lay there musing about the mysteries of the world.

“How do you imagine time travel works?” John asked.

“Youmean as in The Time Machine?” replied Donald. After thinking for a moment,
he answered John’s question. “I suppose one might find it necessary to pass into the
fourth dimension.”

The fourth dimension that most intrigued Donald, however, was spatial, not tempo-
ral. Having recently studied Euclid in math class, the two boys pondered for a while
why there were only five Platonic solids, and then whiled away the time imagining
how to stretch the Platonic solids into the fourth dimension.52 Even more intriguing
than the reason why the teenaged Donald and John reveled in such a heady exercise,
is the question of how, exactly, they set out with their mental machinery and traveled
into hyperspace.



Einstein’s general relativity, espousing a “spacetimegeometry,” is often summarized
as follows: Matter tells spacetime how to curve, spacetime tells matter how to move.

Put the question of how to think in four dimensions to John Horton Conway and he
jokingly snaps back: “None of your business! That’s personal!”53 Conway occupies
the John von Neumann Chair of mathematics at Princeton University. Coxeter called
Conway “a great friend!” whenever he mentioned him, even though they engaged
only on a professional level.54 Conway has a boyish dishevelment about him, but
all the same he is an imposing presence, statuesque even, a grinning Archimedes
of the twenty-first century. He is best known for inventing the Game of Life, surreal
numbers, and his “Conway group” or “Conway’s constellation”—a beastly group of
sporadic symmetries (sporadic, because they do not fit into any classification scheme).
Conway calls these “white hot” discoveries that had him walking around in a world
all his own for weeks. And he characterizes such a piece of mathematics by his
“Hotspur property,”55 in reference to a character in Shakespeare’s King Henry IV. In act
3, Glendower says, “I can call spirits from the vasty deep…” To which Hotspur replies:
“Why, so can I, or so can any man; But will they come when you do call for them?”56
Conway calls himself an honorary student of Coxeter’s. He never studied with

the great man, but much of Conway’s work is Coxeterian in nature. And Conway is
considered by some to be Coxeter’s successor—they held in common a wide-ranging
mathematical curiosity and a profound geometric spirit.57 In 1957, when Conwaywas
a teenager in his first year at Caius College, Cambridge, he sent Coxeter a fan letter.

Dear Professor Coxeter,

Over the past year or so my copy of your edition of Ball's ``Mathematical
Recreations'' has accumulated an astonishing number of notes and some cor-
rections. Most of these canhardly be said to be suitable for publication in later
reprints, but one or two may seem important.58

The letter went on for five pages; tiny scrawls interrupted by a very sure-handed
rendering of a four-dimensional cube, or a hypercube. Conway had discovered that
by labeling the vertices of a hypercube in a certain way he could derive a number of
magic squares.† Eventually Conway signed off, with a query about a four-dimensional
polytope:



My absolutely last remark is a question. Where can I find the requisite infor-
mation required to draw {5,3,3}, or do I have to work out the details for my-
self? I should be very thankful if you could supply me with some accessible
information.

Yours hopefully,

J. H. Conway59

Awhile later at Cambridge, Conwaymadeanearnest effort to trainhimself to think in
four dimensions. He did not expect to see the fourth dimension, as if it were a physical
reality. Time is most often thought of as the fourth dimension, but higher dimensions
can measure any value or feature of existence.60 The fourth dimension could be
temperature or wind direction, the fifth dimension could be the rate of interest on
your credit card, and the sixth dimension could be your age, and on and on and on as
you please. Each characteristic measured adds another “dimension”—the dimensions
become coordinates, a navigational tool that quantifies our existence, our position in
the world. Being geometers, Conway and Coxeter naturally preferred contemplating a
fourth dimension in terms of space.61
In attempting to visualize a fourth coordinate or dimension in space, Conway built a

device that allowed him to see with “double parallax”—in addition to the displacement
that occurs horizontally when you look at an object by closing one eye and then the
other, he tried to train himself to see vertical parallax. If he could experience both
horizontal and vertical parallax, he would have four coordinates for every point in
space, and thus would be seeing four dimensions. In his attempt to do so, Conway
donned a recycled motorcycle helmet, adapted with a flat visor and cheap, old war-
surplus periscopes. The periscopes were bolted to the visor (not very well; they rattled
when he walked) and extended from his right eye up to his forehead and his left eye
down toward his chin. The only name Conway had for the helmet was “that damned
contraption” because it was rather uncomfortable—his nose was pressed up against
the visor, as a child’s to a toy shop window at Christmas.62
Conway had a strong desire to see four dimensions, which he truly believed was

possible (and still does). He walked around wearing his helmet in the Fellows Garden
of his college at Cambridge. “I suppose I had a limited amount of success in that
quixotic quest,” he recalled. “I got to the point where I could see four dimensions, but



there was no hope of going beyond, so what’s the point?”63 His discoveries since his
helmet days are in dimensions much, much higher—the Conway group is in twenty-
four dimensions, and the group he studied and dubbed the Monster group exists in
196,884 dimensions.64

Addressing the exercise of thinking in four dimensions in his book Regular Polytopes,
Coxeter offered three methods: the axiomatic, the algebraic, and the intuitive.65
Coxeter preferred the third, and seeking some historical enlightenment to bolster his
position he quoted French mathematician Henri Poincaré, a staunch advocate for the
use of intuition and pictures in mathematics: “A man who devoted his whole life to it,
might succeed in visualizing the fourth dimension.”66
Coxeter would have been slightly more optimistic. Before he began with this pur-

suit, however, he issued a cautionary disclaimer. It is an “insidious error,” he said,
to assume that “because the fourth dimension is perpendicular to every direction
known through our senses, there must be something mystical about it.”67 He then
dashed off a footnote quoting the Platonist philosopher Henry More—“Spirits have
four dimensions”—by way of a wrongheaded example.68
After those words of warning, he proceeded by acknowledging that visualizing four

dimensions is no walk in the park for ordinary mortals who are accustomed to a firm
three-dimensional footing. “But a certain facility in that direction may be acquired,”
he encouraged, “by contemplating the analogy between one and two dimensions, then
two and three”—as Abbott did with Flatland—“and so (by a kind of extrapolation) three
and four. This intuitive approach is very fruitful in suggesting what results should be
expected.”69
As a teenager, Coxeter had used the very samemethod while imagining four dimen-

sions in the infirmary, and afterward he wrote a school essay on the subject called
“Dimensional Analogy.” In the introduction he began by saying,
The number of dimensions possessed by a figure is the number of straight lines

each perpendicular to all the others which can be drawn on it. Thus a point has no
dimensions, a straight line one, a plane surface two, and a solid three …
In space as we now know it only three lines can be imagined perpendicular to each

other. A fourth line, perpendicular to all the other three would be quite invisible and
unimaginable to us. We ourselves and all the material things around us probably
possess a fourth dimension, of which we are quite unaware. If not, from a four-



dimensional point of view we are mere geometrical abstractions, like geometrical
surfaces, lines and points are to us. But this thickness in the fourth dimensionmust be
exceedingly minute, if it exists at all. That is, we could only draw an excessively small
line perpendicular to our three perpendicular lines, length, breadth and thickness, so
small that no microscope could ever perceive it.

We can find out something about the conditions of the fourth and higher dimensions
if they exist, without being certain that they do exist, by a process which I have termed
“Dimensional Analogy.”70

More specifically, the process of dimensional analogy works by one of twomeans:
section or projection. “According to the first method,” instructed Coxeter, the in-
habitants of Flatland “would imagine the solid figure gradually penetrating their
two-dimensional world, and consider its successive sections.”71 This is like dipping a
cube in water—as the corner breaks the surface, and then more and more of the cube
slides in, you envision the cross section of the solid as delineated by the waterline.
“The sections of a cube, beginning with a vertex,” Coxeter said, “would be equilateral
triangles of increasing size, then alternate-sided hexagons,‡ ‘truncated triangles,’ and
finally equilateral triangles of decreasing size, endingwith a single point—the opposite
vertex.”72 While Flatlanders imagined three-dimensional solids scanned through
their two-dimensional reality, Coxeter and his ilk fathomed solids of four dimensions,
or more, slicing through our three.

According to the secondmethod—projection—Flatlanders studied the shadow of a
solid figure in various positions (as Aristotle did with the Earth’s shadow on the Moon,
determining that if the shadow is always a circle the Earth itself must be spherical). A
cube’s shadow projected from a light directly above one face would appear as a square,
while a shadow projected from a light directly above one corner would appear as a
hexagon.73 Four-dimensional polytopes, similarly, can be projected down to three
dimensions.

Despite the fact that intuition was Coxeter’s forte he conceded that intuitive results
should be checked by one of the other two procedures, the axiomatic and algebraic
methods. “For instance,” he said, “seeing that the circumference of a circle is 2𝜋𝑟,
while the surface of a sphere is 4𝜋𝑟2, wemight be tempted to expect the hyper-surface
of a hyper-sphere to be 6𝜋𝑟3 or 8𝜋𝑟3. It is unlikely that the use of analogy, unaided by



computation, would ever lead us to the correct expression, 2𝜋2𝑟3.”74 Using algebraic
computation, we can orient ourselves in this new abstract reality by allowing any
point in four dimensions to be represented by one of Descartes’ inventions—Cartesian
coordinates—just like any point on a three-dimensional graph.

Sequences of “parallel sections,” slicing through the icosahedron and the dodeca-
hedron, from Coxeter’s Regular Polytopes.

In his work La Géometrie, Frenchmathematician and philosopher René Descartes
(1596–1650) applied the symbols of algebra—a “barbarous”medium, he called it75—to
the shapes of geometry, thereby inventing his Cartesian coordinates and Cartesian, or
analytic, geometry.

As a student Descartes scorned philosophy and ethics; only mathematics gave him
satisfaction, he said, “on account of the certitude and evidence of their reasonings.”76
Obtaining a law degree did nothing to convince him otherwise, so he decided to
devote his life to learning and applying the methodology of mathematics to master
the secrets of the universe. He expected to discover a complete and all-encompassing
truth explaining every aspect of existence within his lifetime. He told sick friends to
hang on just a little longer, cures for what ailed them, even the secret for eternal life,
were on the way.77

Although Descartes did not accomplish these grand ambitions, he succeeded in
instituting an entire new regime for the study of geometry. He had never liked the
Greek approach—he thought it was obscure and fatiguing to the imagination.78 He
may have found, as many have since, that when facing a problem in elementary



Euclidean geometry one often has no clue where to begin, the only recourse being
to wait helplessly for inspiration.79 Descartes did away with these uncertainties by
introducing lines and shapes to a quantified graphical construct. Shapes could now
be investigated with precision, each line represented by an equation, a steam engine
that drove a new kind of geometrical proof and discovery.80

Cartesian geometry demarcated space between two axes at right angles to each
other, x being horizontal and y being vertical, forming a two-dimensional xy plane,
with any point on that plane identified by (x,y) coordinates. This graphical domain
evolved to include a third dimension of measurement, the z-axis, producing (x,y,z)
coordinates, and then to include any number of dimensions. Coordinates of a point in
four-space are customarily denoted by (x,y,z,w).81

Descartes’ ideas about analytical geometry came to him in a dream, revealing, just
as he wished, “the magic key which would unlock the treasure house of nature and
put him in possession of the true foundation …of all the sciences.”82 He published
hisMethod of Rightly Conducting the Reason and Seeking Truth in the Sciences in 1637. He
outlined his analytic treatment of geometry in one of the book’s three appendices, La
Géometrie.83

Within the decade, Descartes’ geometry became part of university curriculum. In
historian E. T. Bell’s estimation, this alliance between geometry and algebra set the
stage for classical geometry’s near demise three centuries later. “Algebra is easier to
see through than a cobweb of lines in the Greek manner of elementary geometry,” he
argued. The real power of the newmethod lay in its capacity to reduce geometry in its
entirety to algebra. “We start with equations of any desired or suggested degree of
complexity and interpret their algebraic and analytic properties geometrically. Thus
we have not only dropped geometry as our pilot; we have tied a sackful of bricks
to his neck before pitching him overboard. Henceforth algebra and analysis are to
be our pilots to the unchartered seas of ‘space’ and its ‘geometry.’ ” Bell also noted:
“Though the idea behind it all is childishly simple …the method of analytic geometry
is so powerful that very ordinary boys of seventeen can use it to prove results which
would have baffled the greatest of the Greek geometers—Euclid, Archimedes, and
Apollonius.”84



Donald’s writings on dimensional analogy won him a school essay prize and grew to
five notebooks—filled with both visual diagrams and charts of algebraic computations.
Family history, as proudly replayed by Coxeter’s three half sisters, his children, and
Coxeter himself, records that when his prodigious mathematical talents came clearly
into view, he was taken by his father to see an expert in the field: mathematician and
logician Bertrand Russell.85 Author of The Principles of Mathematics (1903), Russell
was one of England’s good and great men. He had been dismissed from his position
at Trinity College in 1916, when he was convicted and later imprisoned for antiwar
activities.86 Donald’s father, also a pacifist, had made Russell’s acquaintance at con-
scientious objector meetings in London. They became friendly, and when Russell
and his second wife opened an experimental school for young children in 1927, it
would be on land lent to him by Harold Coxeter. When asked for his opinion of this
boy wonder, Russell suggested Donald meet Eric H. Neville, the mathematical scout
who had brought self-taught numerical genius Srinivasa Ramanujan from India to
study at Cambridge in 1914.87 Donald was also recommended to Neville by the Fabian
socialist and suffragette, Professor Edith Morley,88 whose letter of endorsement read:

Dear E.H.,

I have taken a liberty which I hope you will forgive! A certain Donald Coxeter,
aged 15, who is supposed to be a rather unusual mathematician and musi-
cian for his years, has spent his summer holiday writing what I am told is an
entirely original treatise on the fourth dimension. The boy is a friend of my
friend Mrs. McKillop: I don't know him personally but I have heard a great
deal about him and know that he does not get any real sympathy or under-
standing at school in his mathematical pursuits.

I think you will forgive me for sending him word he may write to you and ask
you to help him. Apparently he has read your little book (I think I am right in
saying this): at any rate he has heard of it and feels you are the one person
who can help him.

If there is no promise in his work, you can easily choke him off: if there is,
your advice may be invaluable to him. He is to go to Cambridge later on. He
will write to you direct when he plucks up courage to do so and I hope youwill
not think either of us very presumptuous.



Yours V. Sincerely, Edith Morley89

On exactly the same day, September 11, 1923, Coxeter also put pen to paper:

Dear Professor Neville,

Professor Edith Morley says I am to write to you and say she suggested it. I
am going to buy your book on the Fourth Dimension, as I am awfully keen on
that sort of thing. I am writing a book myself on ``Dimensional Analogy,'' of
which I enclose an outline …

Yours Hopefully, Donald Coxeter90

Amonth later, Donald received a reply and zipped off his return: “I was thrilled to
get your letter,” he wrote. “I confess I had given you up almost.”91 Neville arranged to
meet Donald at the boarding school and grilled him with loaded questions.
“Do you know what a limit is?” Neville asked. Donald floundered, giving various

poor definitions.
“What has a limit? What could have a limit?” Neville prodded.
“Well, a function or number,” Donald replied.
“You should have said a sequence!” Neville corrected. “You must leave school at

once! They’re not teaching you right!”92
Neville advised Donald to drop all subjects, savemathematics and German (many of

the bestmathematicians and texts being German), and fast-track with private tutelage
for Cambridge.93
A suitable tutor was found in Alan Robson, a well-knownmathematics teacher of

the day, and senior mathematics master at Marlborough College, two hours or so west
of London. Stonehenge became a frequent getaway spot, a hilltop clearing with vistas
in all directions, the perfect setting for Donald to invite visual confections of space
and let them wander through his head. At Marlborough, Donald rented a room with
a family in town and rode his bicycle every day to the school. Robson coached him
during a spare period—the school would not enroll a boy as old as sixteen, for his
mind was no longer a blank slate, having been sullied by years of teaching elsewhere
(most students enrolled at the school in the primary grades). When Donald began, his
marks ranked at the bottom of all Robson’s students (in what would be his class). His
obsession with the fourth dimension caused him to be dismally behind on some of the



basics. To correct the imbalance, Robson insisted Donald focus on his deficiencies.
His tutor forbade him from thinking in the fourth dimension, except on Sundays.
Donald did his best to abstain from relations with the polytopes, and as a result, from
1923 to 1925, his marks skyrocketed and he earned the highest standing among his
peers.94

Donald wrote the Cambridge entrance exams in 1925 and was accepted at King’s
College. Robson felt he could, and should, do better—mathematics at Cambridge’s
more illustrious Trinity College was unmatchable. Donald completed another year of
study, took the exams a second time, and won a scholarship to Trinity.95

Hewas sent onhiswaywithonefinal gift fromRobson. His tutor suggestedhe submit
some of his work to theMathematical Gazette, a time-honoredmathematical periodical,
founded in 1894 by the Mathematical Association.96 Over the years, Russell, Bell, J.
E. Littlewood, and G. H. Hardy graced the pages of the Gazette.97 With a push from
Robson, Donald sent in his work evaluating the volume of a spherical tetrahedron,
which led him to some definite integrals.98 In volume 13,published in 1926, Coxeter
proposed: “Can any reader give an elementary verification of the results which have
been suggested by a geometrical consideration and verified graphically?”99

With his query dangling in the mathematical ether, Donald marched off to Cam-
bridge for the fall term of 1926, bolstered by a substantial supply of homemademarzi-
pan from his mother (he was careful not to eat too much; he allowed himself only a
little each day to make it last as long as possible).100 His good friend John Petrie went
to University College London, but they kept in touch.101 Petriemademany productive
trips to Trinity, and he and Coxeter continued contemplating new geometric shapes,
which led to a trio of discoveries.



The skew polyhedra, or regular sponges, discovered by Petrie (top, and bottom left)
and Coxeter (bottom right). The black areas are considered holes.

Petrie had previously invented an ingeniously unique way of viewing a polyhedron,
tracing its edges in a zigzag pattern until you find you have returned to the vertex
from which you embarked (the only rule being that you can trace two consecutive
edges belonging to a face, but not three; after tracing two edges youmust move your
route along, traversing a different face). With a cube, the resulting shape is a “skew
hexagon,” but in tribute the general term is a “Petrie polygon.” In 1926, during one
of Petrie’s early visits to Trinity, he and Coxeter generalized the concept of a regular
skew polygon to that of a regular skew polyhedron. As a result, Petrie discovered
two completely new geometric beings, and Coxeter discovered one. Not bad for two
nineteen-year-old geometers. These entities are now known as the Coxeter-Petrie
polyhedra.102

As the crisp autumn weather turned cold in November, Coxeter received in the mail
a response to hisGazette query—a registered letter fromG.H.Hardy, then a professor of
geometry at Oxford and recognized as the greatest mathematician in England. “I tried
very hard not to spend time on your integrals,” Hardy scribbled around the perimeter



on one of several pages of calculations, “but to me the challenge of a definite integral
is irresistible.”103 With that, Donald Coxeter performed a rite of passage. He had
entered the mathematical dialectic, striding alongside Hardy no less. He was floating
on air for days.
* As early as 1827, Germanmathematician August Möbius (1790–1868) hypothe-

sized that a trip through a fourth spatial dimension could transform an object into
its mirror image. In 1909, Scientific American issued a call for explanations of the
fourth dimension through an essay contest, and many essays explored similar mirror
reversals.
† A magic square is a square array of numbers arranged in such a way that the sum

of the numbers in any horizontal, vertical, or diagonal direction is always the same.
The most famous magic square has been long known in China as the Lo-shu—it is
the 3 × 3 arrangement of numbers from one to nine such that all the straight lines of
three add up to fifteen.
‡ The process of sectioning lends itself to another Coxeterian geometric trick: try to

cut a cube of cheese so that the cross section (the cut line) is a hexagon.





2 Aunt Alice, And The Cambridge
Cloister

The art of doing mathematics consists in finding that special case which con-
tains all the germs of generality.

—DAVID HILBERT

Students who chosemathematics as their path of higher learning at Cambridgemet
with an immediate academic hazing—“struck by the shattering blow that for three
years they are to do mathematics, all mathematics, and nothing but mathematics!”1
This warning, issued in a university publication, advocated reform to Cambridge’s
pure mathematics curriculum to make it less aloof and remote, and more relevant to
the real world. The antiquated course of study was limited to “the exceptional being
who could live through years and years of nothing but mathematics for its own sake
…That not many stand up to this impact is shown by the large number of students
who after one year change to economics, to physics, to anything but mathematics
…The normal student soon suffers from an attack of mental indigestion and brings up
mathematical wind.”2

Coxeter’s director of studies was John E. Littlewood,3 an analyst and another of
Britain’s revered mathematicians. Littlewood expressed his view of geometry in his
book A Mathematician’s Miscellany, wherein he stated that a good measure of mathe-
matical talents was to ask the individual under evaluation: “What did you get out of
geometry in school?”4 Coxeter, having spent two years studying his custom-made
curriculum with Robson, and factoring in his private obsession with polytopes, was
certainly better versed in geometry than most. On the whole he was prepared as best
he could be for the rigors of pure mathematics at Cambridge, the undisputed center

61



of mathematics in Britain. Through the 1920s and ‘30s, Cambridge came to rival lead-
ing universities anywhere in the world. Two noteworthy developments included the
creation of the PhD degree in 1924,5 and the increasing appearance of women—Dame
Mary Cartwright, for instance—in the pages of research journals.6
Of all the disciplines of study at Cambridge, mathematics was the oldest and most

respected, andas such itwasoneof the last bastions for training in classical geometry.7
As Coxeter’s academic shepherd, Littlewood advised which lectures to attend: analytic
geometry, projective geometry, differential geometry, topology, theory of groups,
theory of numbers, as well as electricity, celestial mechanics, the theory of relativity,
and the geometry of time and space.8 Littlewood’s job also entailed putting Donald
through his paces in preparation for the daunting Mathematics Tripos examinations.
Although the Tripos amounted to a slick and superficial test of talents, ambitious
students strove for Senior Wrangler, the highest achievement—the title “wrangler”
deriving from the contentious discussions students in earlier centuries underwent in
order to qualify for a degree.9
Coxeter welcomed the grind, dashing to the dining hall for breakfast by 7:30 a.m.,

wheeling across town on his bicycle for lectures starting at 9:00 a.m.10 Mathematics
lectures took place in the old Arts School, tucked away in the center of town where
new buildings boxed the old into the middle of the block—finding the Arts School
for the first time was as frustrating as navigating to the center of a labyrinth. Upon
entering the main hall, a blackboard divvied with a wooden frame into columns and
rows indicated which lectures were where. The creaking seminar theater, the main
venue, was furnished wall to wall and nearly floor to ceiling in oak, an intellectual
tinderbox of mathematical cogitation.11
Buried in nothing but mathematics, Coxeter was in his element. He did not suffer

the prognosis of intellectual indigestion, but he did develop a duodenal ulcer, perhaps
making him the subject of a poem published in the 1926 Trinity yearbook titled “A
Simple Story:”

A Trinity mathematician

Would not take sufficient nutrition,

Till his bedder one day

Threw his text-books away,



And he's now in the pink of condition.12

A strict vegetarian diet cured Coxeter, a regime he wouldmaintain for both digestive
and ethical reasons for the rest of his life. He ate nothing but raw vegetables with olive
oil, raw fruit, honey, Blake’s Vitaveg biscuits, whole-meal bread, and lactic cheese.
He lost a lot of weight, making him a thin linear man of a geometer. At one point his
condition was so grave that his mother made a fretful trip to Cambridge to check on
him, and she stayed the night, which purportedly made Lucy Gee the only woman
ever to have slept in residence at Trinity, save Queen Victoria.13

Trinity’s well-vaunted history also included alumnus Sir Isaac Newton. A portrait
of Newton (1642–1727) hung in the dining hall, a constant reminder to students of
the man who epitomized Trinity’s contribution to mathematics and science.14

When Cambridge had closed during the Great Plague in the summer of 1665, New-
ton, then a student, went home to Woolsthorpe, sixty miles north. He took advantage
of the time off for some independent study in mathematics (his aim at Trinity initially
was a law degree). Years later Newton told friends that his great insight—containing
a fertile germ of generality—came to him during that respite, first hitting him in his
garden: the force that caused the apple to fall from a tree, he realized, might also ac-
count for the pull that orbits theMoon around the Earth, and all the planets around the
Sun.15 As James Gleick described in his Newton biography, “The apple was nothing in
itself. It was half a couple—the moon’s impish twin. As an apple falls toward the earth,
so does themoon: falling away from a straight line, falling around the earth. Apple and
moon were a coincidence, a generalization, a leap across scales, from close to far and
from ordinary to immense.”16 Newton did not produce his theory of universal gravity
with this one insightful moment. He continued with his studies at Trinity, and did so
well in mathematics that his teacher, Isaac Barrow, resigned as the Lucasian Professor
of Mathematics to allow Newton, whom he spotted as an “unparalleled genius,” to take
his place.17



Portrait of Sir IsaacNewton in the dining hall at Trinity College (by JohnVanderbank,
1725).

In 1687 Newton published his masterpiece, Philosophiae Naturalis Principia Math-
ematica, hailed by Frenchmathematician and physicist Jean le Rond d’Alembert as
“the most extensive, the most admirable, and the happiest application of geometry
to physics which has ever beenmade.”18 Newton did things with geometry that no
geometer had done before; geometry was no longer merely about space. Newton mar-
ried it to motion. As the scientist himself stated in Principia: “The description of right
lines and circles, upon which geometry is founded, belongs to mechanics. Geometry
does not teach us to draw these lines, but requires them to be drawn …from the same
principles, I now demonstrate the frame of the System of the World.”19 He put forth a
set ofmathematical laws describing all forms ofmotion in the Universe. The backdrop
for all motion, Newton’s notion of space, was classically rigid and inflexible, based on
the foundations of Euclidean geometry. Time, also, was absolute, ticking away like a
metronome, keeping the universe in sync.20



Euclidean geometry was also crucial to Principia since it was the parlance Newton
chose to popularize his work. Newton claimed he used his newmode of mathematics,
his calculus, to get results on his gravitational theory in the first place. But he trans-
lated his findings into geometrical terms for publication, believing in geometry as
the classic language of mathematics, and the language his elite audience would most
readily understand. In contrast to the popularity of Descartes’ analytic geometry, the
central role Newton gave to Euclidean geometry reestablished its importance.21

Newton left Trinity in 1696, accepting a job at the Royal Mint, but before he left
he established a formal school of mathematics and mathematical physics (today
Cambridge has its high-tech Isaac Newton Institute for Mathematical Sciences). At
the end of his life, Newton remarked, “If I have been able to see further, it was only
because I stood on the shoulders of giants”—Copernicus and Galileo, Tycho Brahe,
and Johannes Kepler.22

Kepler (1571–1630) is best known for his three laws of planetary motion, the work
Newton extrapolated upon in Principia. But by Coxeter’s estimation, Kepler’s most
notable contributions to pure mathematics were his work pertaining to polygons and
polyhedra.23 And in fact, Kepler’s at once insightful and quixotic advancements to
the extant knowledge of polyhedra were the precursor to his planetary laws.

In 1596, Kepler had published his book Mystery of the Cosmos, theorizing that the
proportions of the five Platonic Solids governed the paths of the six then-known
planets.24 His polyhedral planetary scheme worked like Russian nesting dolls:

The Earth’s orbit is the measure of all things; circumscribe around it a dodecahe-
dron, and the circle containing this will be Mars; circumscribe around Mars a tetra-
hedron, and the circle containing this will be Jupiter; circumscribe around Jupiter a
cube, and the circle containing this will be Saturn. Now inscribe within the earth an
icosahedron, and the circle contained in it will be Venus; inscribe within Venus an
octahedron, and the circle contained in it will be Mercury. You now have the reason
for the number of planets.25

Recounting the description of this scheme by the Hungarian science writer and
novelist Arthur Koestler, Coxeter said: “It was a kind of Wonderland croquet through
mobile celestial hoops.”26 Kepler presented this whimsical hypothesis to the Duke
of Württemberg, and submitted various plans for models. One proposition grabbed



the duke’s fancy: a planetary punch bowl, the sphere of each planet containing a
different beverage dispensed through a network of pipes at the turn of a faucet. The
duke commissioned it in silver. The silversmith, however, ran into problems and the
project languished.27

Kepler’s polyhedral planetary scheme, fromMysterium Cosmographicum, 1596.
Eventually, Kepler recognized that his polyhedral theory of the planets, together

with the punch bowl, would not hold water. He later became assistant to the foremost
astronomer of the day, Tycho Brahe.* After Brahe’s death, Kepler inherited his trove
of astronomical observations and put them to good use in developing his laws of
planetary motion.28 In 1619, he published Harmony of the World, containing a more
sophisticated mathematical model than the nesting scheme.29
Harmony of the World also included the first systematic treatment of polyhedra, ex-

trapolatingonall thatwasknown in theday. SinceEuclid’s time, geometershad studied
one polyhedron or another, but these findings were rather haphazard and scattered.
Kepler took a comprehensive approach. He defined classes of polyhedra, identified all
their members, and proved his set complete. Kepler redetermined the class of convex
uniformpolyhedra known as the Archimedean solids (Archimedes’ ownwork on them
having been lost), and he discovered that prisms and the antiprisms belonged in the
same class. The Archimedean solids are also called the semi-regular solids—like the
Platonic solids, they have regular polygon faces and the same arrangement of faces at
each vertex, but they have more than one type of face per solid.30



Kepler also conducted a dig into his own imagination and happened upon two
regular star polyhedra, created by “stellation”—the edges or faces of a polyhedron
are extended until they meet in such a way that their new faces form stars. Kepler
called the resulting critters the small and large dodecahedral hedgehogs, due to their
prickly appearance. They are also called the Kepler star polyhedra; earlier renditions
of these shapes existed, but Kepler was the first to recognize that they met the criteria
for regular polyhedra.31

The stellation torch passed to Coxeter at Cambridge, the only Platonic solid whose
stellations remained to be investigated being the icosahedron.32 Coxeter came by this
project via Littlewood, who had received a letter about models of stellated icosahedra
from a Mr. H. T. Flather, in St. Albans, midway between London and Cambridge.
Littlewood sent Coxeter to have a look. Coxeter arrived at the proper address, rang the
bell, and when the door opened had amomentary shock. “I was looking straight in
front,” recalled Coxeter, “and I saw nothing. Then I looked down and saw a tiny dwarf.
And that was he.” Flather was quite elderly, but invited Coxeter in and exhibited
the models. They were remarkably small models, and very intricate. “One could
hardly imagine how they could be made,” said Coxeter. “Except by his very small,
child-sized hands.” The series included more than fifty stellations of the icosahedron.
Littlewood accepted Flather’s models as a gift to Trinity, and Coxeter agreed to write
an accompanying enumeration and description, which became The 59 Icosahedra.33
An expert analysis of this workmight judge it “nonsense”—it was fun and aesthetically
pleasing, quite popular among fledgling geometers, though not at all important in the
grand scheme of polyhedra research. But then again, for Coxeter the aesthetics were
reward enough, beyond which he did not pretend any great shakes.34



Kepler’s star polyhedra, from Harmonice Mundi, 1619.

Coxeter managed his undergraduate degree without difficulty. He received first
class status on part 1 of the Tripos, after his first year in 1927, andwith the completion
of part 2 the following year he attained the coveted status of Senior Wrangler.35 With
those results, he received a research scholarship and returned the following year.
His success was the result of his discipline. “I too often feel the need for nine lives,
to get done everything that is worth doing,” he wrote in a letter home to Katie, his
stepmother. “There is such a lot of literature, for instance, and I can’t sparemuch time
for reading.”36 Though on one occasion he defended an indulgent day punting up the
River Cam, followed by some skinny-dipping in Byron’s Pool (whereupon he came to
the conclusion that bathing suits “are the ideal garments to wear after bathing”37).
That day on the river was not typical, Coxeter insisted. “I work hard most days, but
one must rest sometimes,” he said, in response to Katie’s questions about how he
found time to laze about in boats—and he added that “a description of the work-days
would makemuch duller reading.”38 Truth be told, he said, unfettered leisure and
relaxation were the best prescription to facilitate inspiration. His only regimented
extracurricular activity on recordwashismembership in theMagpie&Stumpdebating



club. He joined in his second year with a fellowmathematician, as chronicled in the
1928 Trinity yearbook: “…we have two veteran newmembers, Mr. J. A. Todd, who is too
funny for words, and Mr. H. S. M. Coxeter, who is always very good and unintelligible,
but terribly brief.”39

Coxeter striking a cerebral pose at Cambridge.

In 1928, Coxeter purchased a horse with part of his scholarship money. He named
her Trixie and rented a stall at a farm nearby.40 Being desperately shy, and finding
human relationships a bit of a bother, riding Trixie gave Coxeter an excuse to get away
from the stresses of social interaction.41 Coxeter was a hermit within his own head,
and, at age twenty-one, he had not had a girlfriend; he was in love with geometry.

Sheltered by his introversion, the carnal pleasures crept up on Coxeter rather un-
expectedly. Much to his embarrassment and shame, Coxeter discovered he derived
improper pleasure from riding Trixie bareback. He confessed this to his father, who
immediately connected his son’s repressed sexuality and the shock of the divorce,
compounded by his failed crush on Katie.42



Harold suggested withminimal moral coercion43 that his son spend the summer of
1928 undergoing psychoanalysis in Vienna. For June, July, and August, Coxeter placed
himself in the useful hands of the great psychoanalyst Dr.Wilhelm Stekel.44 Stekel was
a protégé-cum-dissident of Freud’s, who, as Coxeter recalled, disagreed with Freud
because the latter would take patients for years and years while Stekel believed that if
you couldn’t cure a person in a fewmonths then treatment was no use.45 Harold had
made Stekel’s acquaintance through Rosalie Gabler at the Royal Psychological Society
meetings; Rosalie was the English translator for several of Stekel’s books.46

Coxeter does not fit precisely any of the anonymous case studies Stekel later pub-
lished, though a compulsive vegetarian with an obsession for counting comes close.
One of Stekel’s books points to how the doctor might have treated Coxeter. Entitled
Disguises of Love, it was published, in Gabler’s English translation, in 1922. The perti-
nent chapter opens with the following tale. “Plutarch tells us a wonderful story of the
hereditary prince Antiochus of Syria,” wrote Stekel:

To the grief of his father, Seleucus, he fell sick of a severe disorder, which sapped his
strength; the cause of this no physician could discover. Only to the penetrating insight
of the celebrated master of the healing art, Erisistratus, was it given to discover that
an incurable love for his stepmother, the beautiful queen Stratonice, consumed the
prince. Plutarch does not tell us if the prince was aware of his passion. Those who
are surprised that we can be in love without knowing it, do not know the enigmatic
subterfuges of love and its cravings. I have repeatedly been able to show that people
have fallen sick, under all sorts of disguises of illness, while, in reality, they loved and
desired without knowing it.47

During treatment Stekel asked leading questions and instructed his patient to keep
a dream diary. Coxeter recorded sixty-four dreams over the course of the summer.
He dreamed he was an invalid, belittled, and laughed at by a boy. He dreamed about
missing trains and boarding buses that drove too fast and took the wrong route. He
dreamed he grudgingly shared his raincoat and had to walk long distances (which,
in his dream at least, he didn’t care to do). In several dreams he was alone and,
encountering horses in a field, he tested himself to see, with the analysis, whether he
could resist temptation—“(i.e. avoid sexual excitement).” He was pleased to observe
that he would not have to pass the farm again in order to get home. And in another



dream he found himself walking with John Petrie and his sister, Ann. “I thought,
what a pity I am not in love with Ann, and wondered what my feelings would be on
meeting the Pritchards next year: I hoped I would love the sister and not the brother
(homosexually).”48

His nanny, May Henderson, made a cameo appearance, as did a German girl with
long dark hair in braids. “Surely she is the ideal,” Coxeter said to himself in his dream,
noting in the margin of his dairy that this might be Katie. Pleasing his parents was
a repeating theme. “My father was about to perform a peculiar manipulation onmy
body,” Coxeter noted. “He explained that I must be tied up so that I couldn’t move or
make any sound. He would then strikemy chest over the heart with his elbow. He said
it might kill me, but that would be better than leaving me as I was. I agreed I would
prefer even that to the only alternative—suicide.”49

The only other aspect of his treatment Coxeter remembered was that Stekel advised
him to read OscarWilde; he thought the poem “The Ballad of Reading Gaol” contained
some good psychology. Wilde subsequently became one of Coxeter’s favorite authors,
and he empathized with the writer over his imprisonment for homosexuality, as
Coxeter did (in his own style of generosity and humanitarianism) with anyone he
thought victim of an injustice.50

Regardless of any progress made with psychoanalysis that summer, Coxeter’s time
in Vienna proved unexpectedly productive professionally. He loitered in the reading
rooms of the University of Vienna Library and there made a meeting that influenced
the course of his career—the work of Ludwig Schläfli (1814–95).51 Once Coxeter was
asked which, of any mathematician in all of history, he wished he could meet and
converse with. He chose Schläfli.52

Coxeter placed Schläfli among the vanguard of nineteenth-century mathematicians
who conceived of geometry in more than three dimensions.53 Schläfli also invented a
simple notation that represents all the Platonic solids and all the regular polytopes.
Schläfli wrote his notation (now called the Schläfli symbol) as (p / q), which Coxeter
later amended to {p, q}—with p representing the shape of each face, and q representing
the arrangement (or number) of shapes at each corner or vertex. Take the tetrahedron,
represented by the notation {3,3}—p = 3, for the three sides of the equilateral triangle,
and q = 3 for the number of triangles at each vertex.54



Schläfli is remembered, too, for his proof that in four-dimensional space there are
only six regular convex polytopes. The limit of six occurs for the same reason that
in three dimensions there are only five regular polyhedra—only a certain number of
shapes satisfy the criteria for regularity. In four dimensions the six regular polytopes
include: the simplex or 5-cell, each cell being a tetrahedron, and three tetrahedra
meeting any an edge; the 8-cell, or tesseract, made of eight cubes, three cubesmeeting
at every edge; the 16-cell made of sixteen tetrahedra; the 24-cell made of octahedra;
the 120-cell made of dodecahedra; and the 600-cell made of tetrahedra.55

These four-dimensional regular polytopes are represented by the symbol {p, q,
r}—the first two numbers of the notation indicate the type of component polyhedron,
and the third number indicates howmany polyhedra converge around one edge. The
system of notation carries on for higher dimensions. In the fifth dimension, the analog
to the tetrahedron is {3,3,3,3}, often called the 5-simplex. It has 6 vertices, 15 edges,
20 triangular faces, 15 tetrahedral cells, and 6 tetrahedral hypercells. The component
cell is the 4-simplex—the first {3, 3, 3 in the notation—and to each edge, three of these
are joined (in general, in n-dimensional space, the simplex has n +1 component cells,
each being an (n - 1)-simplex, and at each edge three of these are joined).56

Schläfli proved that in higher dimensions regular polytopes become a rarer breed.
Only three regular polytopes exist in five or more dimensions, continuing to infinite
dimensions: these are the simplex (the generalized tetrahedron), the hypercube or
“measure polytope” (the generalized cube), and the orthoplex or cross polytope (the
generalized octahedron).57 (See appendix 2 for a chart of the Schläfli symbols for the
3-D and 4-D regular polytopes.)

Unfortunately, Schläfli’s work with polytopes was little appreciated while he was
alive. His book Theorie der vielfachen Kontinuität (Theory of Continuous Manifolds)
reached publication only as a memorial volume six years after his death. “The French
and English abstracts of this work …attracted no attention,” lamented Coxeter. “This
may have been because their dry-sounding titles tended to hide the geometrical
treasures that they contain, or perhaps it was just because they were ahead of their
time, like the art of Van Gogh.”58



Inspired and back at Cambridge after his summer in Vienna, Coxeter set about his
PhD (in which Schläfli’s work figured prominently),59 with Henry F. Baker as his advi-
sor. Coxeter kept Baker on a high pedestal, never thinking of him as a contemporary.
“I thought of him as a god,” Coxeter said, adding all the same: “There were things,
such as the polytope theory I was doing, that even he didn’t understand.”60

Geometry reached its apex at Trinity with Baker (1866–1956). In 1912, the Fourth
International Congress of Mathematics had been held at Cambridge. Baker, then a
professor (he was a Trinity alumnus who never left), made an address foreshadow-
ing his ambitions for the field. He praised the distinguished geometers from other
lands in attendance, and expressed his hope that their presence would stimulate
English geometry to new activity.61 Baker’s sympathies were known to be markedly
Italian—admiring the algebraic geometry of Corrado Segre, Annibale Comessatti, Fed-
erigo Enriques, and Guido Castelnuovo, with whom he shared a liking for extending
what was known about objects in three-dimensional space to higher dimensions.62

Two years later, Cambridge’s Lowndean chair of Astronomy and Geometry fell va-
cant. The astronomers were not happy when it was awarded to the geometer Baker.63
In 1925, Baker published four volumes of his six-volume tome Principles of Geometry
(the remaining two volumes came out in 1933). And Baker established his geomet-
rical Saturday afternoon “tea parties”—hardcore research seminars softened by the
niceties of teacups and biscuits.64 Baker gathered around him a group of young men
infected by his vision and enthusiasm.65 The substance of their work, however, had
a frivolous and trivial element to it—as did classical geometry in that day. Baker’s
acolytes often chased after superficial and carefree questions, saying, “Oh, here’s a
nice thing we can do in two dimensions, let’s see if we can do it in three, let’s see if
we can do it in four.” These algebraic investigations were clever and tricky, and had
a certain charm, but in the end they lacked substance. “It’s not where the subject of
geometry was going,” said Jeremy Gray. “Its take was a bit naïve.”66

Coxeter managed to avoid this pitfall and carve his own path. “What Donald was
able to do,” said Gray, “and one or two other people who came to Cambridge at that
time, was to tap into a more substantial part of the mathematical river.” The frivolous
explorations into hyperdimensions were a bit of a backwater. “This was a little cottage
industry Baker’s people had. They did very well and they got Smith’s prizes out



of Cambridge, which is the big thing to do, and sets you up for a research career,”
said Gray. “Yet they themselves would say they never really in the end got the right
generalizations for progress in the subject. Donald somehowdid that. He leapt beyond
that into really substantial mathematics.”67
Every Saturday morning, before the tea party, Coxeter made a ten-minute bicycle

ride from his residence in Great Court over the River Cam to Baker’s house, where he
reported progress on his PhD research. Saturday afternoons, all the regulars gathered
for the tea party, held in the old Arts School. Students took turns presenting their
most recent findings, followed by sparring discussion, debating the cut and thrust
of related points. During Coxeter’s turn in 1928, he described the sequence of “pure
Archimedean” polytopes from three to eight dimensions, having 6, 10, 16, 27, 56, and
240 vertices, respectively.68 He had begun this line of investigation while studying
with Robson, and although he promised his tutor he would refrain from indulging
in his polytopes, except on the day of rest, Coxeter was unable to resist entirely. He
smuggled in his polytopes, spending a good deal of his spare time adding further
volumes to his “Dimensional Analogy” essay. He never forgot the thrill, the frisson
of synaptic excitement he felt, when, sitting under a tree in the Savernake Forest, he
rediscovered the pure Archimedean polytopes69—the analogs of the Archimedean
solids in higher dimensions. Even as a rediscovery it was an intellectual coup, and the
impact of following such a giant’s path stuck with Coxeter for years.
When Coxeter discussed this work at Baker’s tea party, the usual banter followed,

questioning and connecting his results to other areas of study. “One of the algebraic
geometers immediately expressed interest,” Coxeter noted, “because 6, 10, 16, 27, are
the numbers of lines on the Del Pezzo70 surfaces in 6, 5, 4, 3 dimensions. Du Val went
one step farther by declaring 2×28 to be the number of lines on the ‘Del Pezzo surface’
in 2 dimensions, which is a repeated plane joined to itself along a quadratic curve of
genus 3; the lines are the repeated bitangents.”71 This subject led to Coxeter’s first
published paper: “The Pure Archimedean Polytopes in Six and Seven Dimensions,”
printed in the Proceedings of the Cambridge Philosophical Society.72
Coxeter’s research and analysis grew by orders of magnitude, broadening and

deepening the reservoir of data on polytopes. One day he escaped from the monastic
confines of Trinity for a solitary bike ride to the Gog Magog Hills,73 in the south
Cambridge countryside, a rural oasis inhabited by singing skylarks, aromatic wild
marjoram, and a grove of oak, beech, dogwood, and field maple. The fresh air and



peaceful landscape did nothing to calm Coxeter’s mathematical thoughts; indeed,
what Coxeter “saw” that day was not the bucolic scenery. Rather, he had a flash
of insight—witnessed with his geometric mind’s eye—into how these Archimedean
polytopes could be exhibited as members of a larger family, indexed bymeans of a
clever notation, much like Schläfli’s: 𝑛𝑝𝑞—for a figure in𝑛 + 𝑝 + 𝑞 + 𝑟 dimensions.74
This was Coxeter’s first original contribution to the domain of polytopes, and led
to his second major paper, “The Polytopes with Regular-Prismatic Vertex Figures,”
published—all ninety-six pages—in the Philosophical Transactions of the Royal Society, a
journal of even greater repute.75

Patrick Du Val and Coxeter lounging on the lawn at Cambridge.

When Coxeter’s turn came up for another session at Baker’s tea party, he invited
his “Aunt Alice” to deliver a joint lecture.76 More widely known as Alicia Boole Stott
(1860–1940), shewas a housewife geometer and polytope aficionado forty-seven years
Coxeter’s senior (he twenty-one and she sixty-eight). Stott became one of his dearest
friends and professional soul mates. According to Coxeter, Stott had introduced the
word “polytope” to the English language with the first publication of her work in
1900.77



Alicia Boole Stott

Over the years, Coxeter became Stott’s loyal promoter, telling her story at every
opportunity. Stott was the middle of five daughters born to George Boole, known
for his algebra of logic (the Boolean logic that drives Google searches and computer
circuitry), and Mary Everest (the highest mountain in the world was named in honor
of Stott’s uncle, the surveyor Sir George Everest). Her father died when she was four
years old, and she spent her early years, repressed and unhappy, with her maternal
grandmother and great-uncle in Cork. “When Alice was about thirteen,” wrote Coxeter,
the five girls were reunited with their mother (whose books reveal her as one of the
pioneers of modern pedagogy) in a poor, dark, dirty and uncomfortable lodging in
London. There was no possibility of education in the ordinary sense, but Mrs. Boole’s
friendship with James Hinton attracted to the house a continual stream of social
crusaders and cranks. It was during those years that Hinton’s son, Howard, brought a
lot of small wooden cubes, and set the youngest three girls the task of memorizing the
arbitrary list of Latin words by which he named them, and piling them into shapes.
To Ethel, and possibly Lucy too, this was a meaningless bore; but it inspired Alice (at
the age of about eighteen) to an extraordinarily intimate grasp of four-dimensional
geometry.78



Howard Hinton exposed Alice to his mystical interpretation of higher dimensions.
But she did not care to follow him along these occult lines of thought, said Coxeter,
noting that she “soon surpassed him in geometrical knowledge. Her methods re-
mained purely synthetic, for the simple reason that she had never learnt analytical
geometry.”79

In the 1880s, Stott rediscovered the six polytopes in four dimensions and then,
using a ruler and compass, cardboard and paint, she produced completemodel sets of
their central sections.† During the intervening years, before shemet Coxeter, Stott “led
a life of drudgery, rearing her two children on a very small income.”80 She returned to
her geometric workwhen her husband,Walter Stott, happened upon thework of Pieter
H. Schoute, at the University of Groningen, the Netherlands, who was investigating the
central sections of the very same four-dimensional polytopes. Stott wrote to Schoute
with the news that her findings corroborated his (Stott’s powers of geometrical visual-
ization, Coxeter noted, supplemented Schoute’s more orthodox methods). Schoute
arranged for the publication of Stott’s discoveries, and their partnership continued
until Schoute’s death in 1913, after which Stott abandoned her polytopes again until
shemet Coxeter.81 Coxeter’s alliance with Aunt Alice was a great source of joy.82 “The
strength and simplicity of her character,” he said, “combined with the diversity of her
interests to make her an inspiring friend.”83 They conducted an ongoing conversa-
tion about polytopes, by letter and with visits back and forth. Aunt Alice once sent
Coxeter on his way after polytopes and tea with a present—twomatching lamps with
wooden truncated icosahedra for bases, which he carefully carried on the train back
to Cambridge.84

Coxeter submitted his PhD dissertation in 1931, the same year Godfrey H. Hardy
returned to Trinity from his stint at Oxford.85 As one of only four individuals made a
Trinity Fellow that year,86 Coxeter received a copy of the college ordinances, marked
“Private: for Masters and Fellows only,” outlining his privileges87: he could now walk
on the grass in the courtyards, shortcutting the ninety-degree paths by the hypotenuse
if he wished.‡



Hardy, coming to Trinity to occupy the Sadlerian Chair of pure mathematics, was
also among the privileged. But he despised anything bourgeois and refused to live in
the best rooms allotted to him in residence. Aman known for his eccentricities, Hardy
had a pronounced phobia of mirrors. When he walked into a room, he covered any
reflective surface with a piece of cloth. It wasn’t so much a superstitious hatred, but a
dislike of his own looks—few photographs of Hardy are therefore known to exist.88
It is amusing, in this respect, to imagine the falloutwhenHardybumped intoCoxeter

on campus, since Coxeter was known to carry a set of mirrors on his person almost
everywhere he went. He had the mirrors custom cut by a workshop into triangular
wedges which hinged together to form a large kaleidoscope—a tent of mirrors, 24
inches across and 12 inches tall. This was the tool Coxeter used to investigate the
symmetrical properties of polyhedra.89
When invented by Sir David Brewster in 1814, the kaleidoscope produced quite

a stir, selling a reported 200,000 instruments in London and Paris in three months.
Sir David was deeply dismayed, however, because his invention gained popularity
merely as a toy, though appealing to children and adults alike—he had invented the
kaleidoscope as an artistic and scientific instrument. In defending the importance of
the instrument, he published a tirade expressing outrage that his patents were being
infringed in the kaleidoscope’s mass production, and—worse yet—that the knock-offs
were so sloppily constructed (in his book he provided illustrated instructions for
building them properly). He was greatly chagrined that of the hordes who witnessed
his instrument’s beautiful effects, not even one thousand experienced a “correct idea
of the power of the Kaleidoscope.”90 How relieved and rewarded Sir David would
have been to see Coxeter toting his kaleidoscopes for geometric investigation. Using
kaleidoscopes, Coxeter generated precise two-dimensional and three-dimensional
geometric patterns—he found kaleidoscopes useful in exploring his polytopes, since
many of their geometric symmetries are generated by reflections, such as mirror
symmetry.
Kaleidoscopes operate by the laws of optics; when a ray of light from an image falls

upon a mirror, the angle of incidence (the angle at which a ray hits the mirror) equals
the angle of reflection (the angle by which it bounces off the mirror). In this manner, a
kaleidoscope generates a repeating sequence of reflections, an effect produced not
solely by its real mirrors, but also by its chambers of virtual mirrors, the mirrors
reflected in themselves again and again and again. When a sequence of reflections



travels through a kaleidoscope’s hall ofmirrors, one of two things happens. Depending
on the angles at which the mirrors meet, the reflected images either multiply end-
lessly, creating an infinite pattern, or the reflected images coincide, falling back on
themselves as they retrace the same path. When the latter occurs, the optics conspire
to create the image of a finite geometric pattern or shape in the mirrors. This is what
Coxeter (and Brewster) were interested in.91

In his investigations, Coxeter deployed two types of kaleidoscopes. The first were
simple kaleidoscopes: two hingedmirrors replicating whatever object fell between
them, with images of the object ricocheting off the mirrors and forming a perfectly
symmetric rosette, like a two-dimensional snowflake. To produce this finite effect,
the mirrors must be arranged at angles that exactly divide 180° (or pi). Otherwise,
the images produced in the kaleidoscope will not match up—the snowflake would be
shattered into disjointed pieces.92

Coxeter assembling one of his Cambridge-era kaleidoscopes some years later.



A square can be generated in a two-mirror kaleidoscope, which can be constructed
on a makeshift basis with any two mirrors at your disposal. On a sheet of paper draw
a square, and fold it perfectly in half in all the ways possible so that each half is the
mirror opposite of the other—this should produce a square divided into eight identical
pieces, each a 45°-45°-90° triangle. Cut out one of these triangles, and place mirrors
along two adjacent edges, with the mirrors meeting at the vertex that would be the
center of the square. If you then look into the mirrors, you’ll see the image of an entire
square—the fraction (one-eighth) of the square between the mirrors is reflected back
and forth and this parade of images configures to form the whole polygon.93

Coxeter used kaleidoscopes to produce patterns not only of 2-D polygons, but also
images of the 3-D Platonic solids. While twomirrors are needed to generate the 2-D
polygons, three mirrors are needed to generate the 3-D solids—images of each of the
Platonic solids can be produced by a certain arrangement of three mirrors,94 and for
this reason the symmetries of the Platonic solids are said to be “kaleidoscopic.”95
The Germanmathematician August Möbius, more famous for his twisted strip, first
studied the practice of using mirror arrangements to generate the Platonic solids in
1852.96

In order to create images of the Platonic solids, the three mirrors are arranged in a
triangular cone, somewhat like the corner of a room, but again the mirrors must be
aligned at angles that are specific fractions of 180° .§ The mirror planes of symmetry
of a cube divide it into forty-eight congruent sectors, and thus when a kaleidoscope
generates the cube, it does so by reflecting and reproducing this one sector—with
forty-eight reflections bouncing around the kaleidoscope—causing the entire cube to
take shape (this composite image of the cube consists of the real object in the chamber
of the real mirrors, and the virtual objects or reflections, generated in a multiple array
in the virtual mirrored chambers).97

And while the image of the square was generated in the kaleidoscope by a piece of
paper, geometers use a particular kind of prop to generate the Platonic solids. One
prop commonly used is a simple stick (even a pencil or pen will do), which generates
only the edges of the solid—for instance, it would be a skeletal-looking cube, or the
frame of a cube. Another type of prop is a round ball or blob of any material, which



generates the vertices or corners of the cube—leaving the edges and the faces to the
viewer’s imagination. This method of generating the Platonic solids with mirrors and
props is called “Wythoff’s construction,” invented by the DutchmathematicianWillem
AbrahamWythoff (1865–1935).98

Amapping of a dodecahedron onto a sphere, generated bymirrors of an icosahedral
kaleidoscope.

Using kaleidoscopes to explore symmetries can also be extended to investigate the
polytopes of multiple dimensions. Each dimension simply requires another mirror.
In the physical world, of course, the geometer hits a practical impasse beyond three
dimensions, since kaleidoscopes representing four dimensions and more cannot
physically be constructed. But this did not deter Coxeter. The physical limitations
motivated him to develop a systematized theory of kaleidoscopes, a generalization of
how they would continue to generate the polytopes of higher dimensions, continuing
on to infinity, if our physical reality would permit.99

Coxeter’s kaleidoscopes were his prized possessions, and he tended to them with
loving care: “improved the mirrors,” he noted in his diary, “fixed mirrors,” “made
gadgets for the mirrors.”100 He asked his mother to sew green felt pockets into which
each individual sector of mirror could be slipped, to minimize breakage and chipping
during transport.101 He pulled out his mirrors for show-and-tell at every opportu-



nity—especially with his father and Aunt Alice. “I can’t tell you how thrilled I am at the
thought of seeing your magic mirrors!” Stott exclaimed in a letter. “It seems to me too
wonderful for words and I am longing for next week to come. How you will wake up
the stuffy mathematicians on Saturdays!!”102
Hardy, with his hatred of mirrors, no doubt agreed to meet Coxeter only if he left

his mirrors at home. If he saw Coxeter walking toward him from across Great Court,
those wretched mirrors under his arm, Hardy might have given him only a tentative
wave, understood to mean “Good day!” but also “Stay the dickens away!”

Rubbing elbows with Hardy as he neared the end of his PhD, Coxeter was exposed to
a fine mentor, the finest example of the caliber of mathematician he hoped to become.
Hardy was nearing the end of his career, but it was a noble career and he had earned
Trinity as home for the rest of his days. In 1940, Hardy published AMathematician’s
Apology, reflecting on his career. He asked, “Is it really worth while to make a seri-
ous study of mathematics? …What is the proper justification of a mathematician’s
life?” Lines drawn in the margin alongside the text of Coxeter’s copy highlighted
Hardy’s response, which culminated with perhaps the most oft-cited quotation about
mathematics: “A mathematician, like a painter or a poet, is a maker of patterns …The
mathematician’s patterns, like the painter’s or the poet’s must be beautiful. The ideas,
like the colours or the words, must fit together in a harmonious way. Beauty is the first
test: there is no permanent place in the world for ugly mathematics.”103
Writing his PhD thesis, which he dedicated to John Petrie and titled “Some Con-

tributions to the Study of Regular Polytopes,” Coxeter expressed exactly the same
sentiment in the introduction, with a bit of self-deprecating humor:

Although it is unnecessary, from a practical point of view, to consider regular
skew polygons ofmore than five dimensions, the humanweakness of amath-
ematician compels him to examine the general case, although the trigonom-
etry involved is extraordinarily complicated …The only excuse for this part of
the work must be its intrinsic beauty.104

Coxeter’s writings on polytopes won him the coveted Smith’s prize,105 indicating
he had more than withstood the stultifying labors of haughty pure mathematics at
Cambridge. Hehadnot, as a largenumber ofmath studentswere known todo, changed
his course of study to somethingmore sensible—anything butmathematics. According



to the article advocating reform of themathematics curriculum, aiming tomake it less
lofty, more practical and down-to-earth, Coxeter was an exception: the exception who
lives through years and years of suchmathematical rigors and retains his enthusiasm
is “a veritable mathematical specialist…someone ideally prepared for a world which
does not exist.”106
* Brahe (1546–1601) was a Danish astronomer and mathematician who lost part of

his nose in a duel with a mathematician (some accounts say they were arguing over a
geometry problem).
† When Aunt Alice made her appearance as Coxeter’s guest at Baker’s tea party, she

brought her models and donated them to the department for permanent exhibit. As
recently as 2003 they could still be found there, in the office of Professor Raymond
Lickorish, director of the Newton Institute of Mathematics, displayed on his desk.
Another set is on display at the University of Groningen.
‡ As a Fellow he also could dine in Hall at High Table and eat the finer food; he

could linger aftermeals in Old Combination Room, sipping tea and coffee and aperitifs
in well-worn leather armchairs; and he could order a supply of wine for his private
consumption and have it delivered to his room (quantities of wine so supplied could
not exceed two dozen bottles a year); he had access to the library key, allowing him to
enter and borrow books after hours; and he was given a key that opened the gate to the
Fellows’ Garden on the outskirts of the college—its winding walking paths punctuated
by the occasional bench for thought.
§ A three-mirror kaleidoscope arranged slightly differently, with the mirrors joined

end to end forming a fenced-in triangle, generates an infinite tiling of the plane—im-
ages interlocking like the tiling of a floor, and bouncing around endlessly.





3 Coming of Age at Princeton with the
Gods of Symmetry

Symmetry, as wide or as narrow as you define its meaning, is one idea by
which man through the ages has tried to comprehend and create order,
beauty and perfection.

—HERMANNWEYL, SYMMETRY

Known as the “papa daddy”1 of Princetonmathematics professors, Solomon Lef-
schetz visited Cambridge in 1931, in search of suitable candidates for the illustrious
Rockefeller research fellowships. He met Coxeter and invited him to apply.2 As a
Rockefeller Fellow, Coxeter stood to benefit from a one-year research professorship at
Princeton with a handsomemonthly salary of $150,3 a princely sum during the Great
Depression, when the average American family income fell to $1,300 annually and
unemploymentwas at 25 percent.4 The prospect no doubt pleasedCoxeter immensely,
and not for financial or self-gratifying reasons. Rather, it surely appealed to his hu-
manism. Established in 1913 by John D. Rockefeller, and funded by the Rockefeller
Foundation, the fellowships embodied a grand philanthropic enterprise to promote
“the well-being of mankind throughout the world.”5

Critics argued that Rockefeller’s benefactions were set up as a shield against public
censure, considering the industrial fortune he hadmade in oil, steel, railroads, and
banking. Still, this act of kindness was undeniably far-reaching in its generosity. With
an endowment of nearly $250million, the foundationmademedical and public health
education a priority at home in the United States, as well as in Africa, India, the Middle
East, and Latin America.6

85



The foundation’s reach expanded even further after the First World War. It strove
for a grand “advance of knowledge” disseminated by international research professor-
ships, intellectual missionaries sent out to bring greater order and civility to society.7
Wickliffe Rose, the president of the foundation’s International Education Board, made
a high-minded declaration of his mandate in a memorandum titled “Scheme for the
Promotion of Education on an International Scale:”8
This is an age of science. All important fields of activity from the breeding of bees to

the administration of an empire, call for an understanding of the spirit and technique
ofmodern science.…Science is themethod of knowledge. It is the key to suchdominion
asmanmay ever acquire over his physical environment. Appreciation of its spirit and
technique, moreover, determines the mental attitude of a people, affects the entire
system of education, and carries with it the shaping of a civilization …The nations that
do not cultivate the sciences cannot hope to hold their own …9
There was nothing new about this liberal-minded venture: “It was at least as old

as the Greeks,” stated an historical account of the International Education Board.
“Rose was driven to it as a result of the disillusion of the world tragedy of 1914–1918,
and the desperate need …of some ingredient which would heal the dissensions of
nations.”10 Knowledge was that ingredient: “Knowledge is the unifying principle of
civilized life—the centripetal force which holds it together. Knowledge is the solvent
in which boundaries can be dissolved and barriers burned away. It is the common
republic of mankind in which citizenship is denied to no nation and no group. It is the
avenue that leads to the ultimate unity of the world.”11
Rose embarked on a five-month tour of Europe to evaluate the status quo, shadow-

ing scientists in their laboratories, inquiring about their problems and needs. The
foundation boasted that never before had a search for superior brains been prose-
cuted over so wide and diverse an area, andmany specimens of inherent brilliance
and talent were discovered. Several recipients of a Rockefeller Fellowship later re-
ceived Nobel prizes, among them Enrico Fermi, a physicist from Italy, and Germany’s
Werner Heisenberg, the author of the uncertainty principle. Two primary centers of
mathematical scholarship judged worthy of support were Göttingen University, in
Germany—the home base of Hilbert and his formalism12—and the Henri Poincaré
Institute in Paris. The meeting of Rockefeller trustees at which Rose presented his
proposal for these institutions was recorded in theminute books as a perfect snapshot
of his earnest intentions: “[He] reported, with the aid of elaborate charts and diagrams,



not on mathematics at Göttingen or Paris alone, but on mathematics in every leading
institution around the world. He was reporting on whereman had arrived in his math-
ematical thinking, and where the opportunities for progress seemed brightest.” Rose
favored Göttingen and Paris because they represented the peaks in mathematical
science.13 Rose’s mantra: “Make the peaks higher.”14
As he systematically surveyed “the mountain ranges of intellectual endeavor,”15

Rose realized that a parallel course had to be taken in America. American universities
received funds to bolster their resources in mathematics, physics, astronomy, chem-
istry, and biology. And by the mid-1920s, the foundation decided that in addition to
fundingAmerican scholars abroad, it should also bring the “bright lights” over to study
in America. In this spirit, Coxeter took Lefschetz’s advice and applied for a fellowship.
Upon acceptance, he met with one complication. This was in the middle of his time
as a fellow at Trinity College. He hated to give that up, so by a special decree of the
Trinity College counsel, his fellowship was extended for an extra year to compensate
for the year away. Several other fellows later took advantage of this precedent and
were said to be “doing a Coxeter.”16
In August 1932, Coxeter chose to forgo a family holiday in Vienna, allowing him to

sail early for America and spend some time inNewYork before hewas due at Princeton.
On the eve of his departure, his father pondered what Donald’s future might hold:

So Donald is off tomorrow after all…If only he could really fall in love—even a
hopeless passion would be better than none—tomake him give himself away.
I had such a nice talk withMrs. Stott—alone—about him. She is a finewoman,
and sees the danger of his becoming nothing but an intellectual, and also sees
in him the possibility of a fine soul as well as a fine intellect.17

Donald’s transformation began as soon as he set foot aboard the RMS Aquitania,
abetted by his traveling companion, Frank O’Connor, a family friend who was a doctor
in New York (Harold thought his son was in good hands; O’Connor was “a man of
the world”).18 To Donald’s astonishment, days on the ship were filled with play—a
horse-racing gambling game and dancing every night. The dancing made him feel
inferior; he didn’t know how to dance “American style.” To makematters worse for
a stiff fellow who could barely screw up courage to dance at all, on certain nights
partners were assigned by pure chance in a “Cinderella dance”—women threw off a
shoe and each man danced with the girl whose slipper he grabbed. Coxeter was not



quick enough to get the one he wanted, but he did manage to draw the attention of
one young lady. She was curious about geometry and he obligingly taught her to draw
a four-dimensional polytope. She was also the center of attention among a crowd
of rowdy young men. In his first letter home, Coxeter signed off saying, “But that is
as far as I have got, and the voyage ends tomorrow, when I prepare to enter a whole
continent of such people.”19

The approach of the New York skyline was “just as in the flicks, except that now
one no longer had the sneaking suspicion that the skyscrapers were faked.” Almost
immediately after landing, owing to a misunderstanding entirely of his own fault,
Coxeter became separated from O’Connor, with whom he was staying. The Rockefeller
representative sent tomeet Coxeter sought himout at all the speakeasies in the vicinity
of the dock, clearly ignorant of the character he was looking for.

Coxeter experiencedagood sampling ofAmericabeforemakinghisway toPrinceton.
O’Connor introduced him to his secretary, and she and a friend took Coxeter up the
Empire State Building. “A fine view from the top,” he said in his second letter home.
“A thunderstorm approached, and came right over us, the cloud obscuring everything.
After one great clap of thunder the girls said they could feel the building swaying in
the wind (it actually sways only 2 inches, so I expect in reality they were trembling).”
The next day a rich patient of O’Connor’s sent a chauffeur forty miles to fetch them for
a visit to his Mount Kisco estate. “Swimming pool on the lawn; special dressing places
with hot and cold water and a telephone. Everything else on the same scale. (When he
heard I was a vegetarian, he got one of his six chauffeurs to take us in one of the six
cars to see the vegetable garden.)”

On August 31, Coxeter and O’Connor drove to New Hampshire to watch a total solar
eclipse (this, in fact, was the reason he wanted to be in America early, to catch the
eclipse that Europe would miss). “We selected an open hillside, ten miles in from ‘the
belt of totality.’ At 4.25½ there was no sun left but a tiny crescent…At 4.29½ we got a
very good view of ‘Bailey’s beads.’ The darkness over the earth was very impressive,
and we saw the corona well. It was all over at 4.30, and we hurried southward to get
ahead of the crowds.” Back in New York, Coxeter recounted all this and more—“each
day holding sufficient events for a month”—in an eight-page letter home, writing it
“wearing nothing but a towel, Samoan fashion, on account of the heat.”20



After a time, Coxeter set out for Princeton, an hour’s train ride southwest from New
York City. Before getting down to work, he bought a bicycle and explored the town.
While descending a grassy slope at considerable speed he was “pulled violently off my
bicycle …by a man who apologized profusely, declaring that he was ‘very drunk.’ ”21
He also traveled back to New York for a World Series baseball game between Babe
Ruth’s New York Yankees and the Chicago Cubs, and he attended his first football
game, between Princeton and Amherst. Reflecting on these American pastimes, he
offered a caustic verdict: “I do not want to be bored by a repetition of either.”22

Princeton, by the early 1930s, was poised to overtake Göttingen as the mathemat-
ical center of the world. In 1932, after the Nazis took power, Hitler purged German
universities of all Jewish academics, propelling many to America. Einstein arrived at
Princeton in 1933. He called the town “awondrous little spot, a quaint ceremonious vil-
lage of punydemigods on stilts.”23AndEinstein’s disciple, thePolishphysicist Leopold
Infeld, noted, “It is difficult to learn anything about America in Princeton—muchmore
so than to learn about England in Cambridge.” Infeld observed that in the mathemat-
ics building, Fine Hall, “English is spoken with so many different accents that the
resultant mixture is termed ‘Fine Hall English.’ ”24 The architecture of the university,
similarly, was an “amazing tutti-frutti of all possible and impossible styles.” Mostly
it was neo-Gothic, an amalgam of Cambridge and Oxford, including an imitation (a
grotesque one, Infeld thought) of Trinity’s Great Gate.25
Fine Hall, built in 1931, was the most decadent mathematics facility ever de-

signed—and designed deliberately so mathematicians would be loath to leave.26
The individual working quarters were sanctuaries, more living rooms than offices,
each well-appointed with a big desk, plump upholstered chairs, oriental rugs, and a
clothes closet. The walls were paneled with dark oak, shipped from England at the
cost of one-fifth of the building’s budget, and select wall panels cleaved open like
cupboards to reveal hidden blackboards, inlaid both into the interior wall and the
opening flaps. Even the lead-paned windows were part of the design scheme—etched
with mathematical formulae and figures. The air, Infeld said, was suffused with
mathematical ideas and formulae: “You have only to stretch out your hand, close it
quickly and you feel that you have caught mathematical air and that a few formulae
are stuck to your palm …Even the sun rays must remember, when passing through
the windows, the law to which they are subject according to the will of God, Newton,



Einstein and Heisenberg.”27 The windows in the professors’ lounge (decorated by
the famed New York architectural firm McKim, Mead, and White, and overseen by
a departmental wife) had Einstein’s gravitational law and general relativity theory
indelibly recorded on the glass, and one of the studies refracted light through a stained
glass emblem of the Platonic solids. To top it all off, there were reading lights in the
bathrooms—Fine Hall was in tune to the unpredictable timing of inspiration—and an
on-site shower and locker room allowedmathematicians to return to their research,
refreshed with adrenaline pumping, after nipping out for a tennis match on the
backyard courts. In the insouciant lyrics of a faculty song, Fine Hall was a “country
club for math, where you can even take a bath.”28

Soon after Coxeter’s arrival at Princeton, he met with his recruiter, Professor Lef-
schetz, to chart a course of study that outlined sufficient work to occupy about thirty
hours each day.29 Loud and obstreperous, Lefschetz both awed and frightened gradu-
ate students. Russian-bornand trainedas anengineer inFrance, he came to theUnited
States at age twenty-one to find work. In 1907, he lost both hands in a transformer
explosion at Westinghouse Electric Company, in Pittsburgh, the tragedy pushing him
into the more philosophical field of mathematics. He obtained his doctorate, and ulti-
mately landed at Princeton in 1924. He became known for his profound geometrical
intuition, in the algebraic hyper-dimensional tradition of the Italian school. But Lef-
schetz’s area of specialty became topology—or “rubber sheet” geometry*—amodern
genre of geometry that contained only select morsels of interest to Coxeter.30

Lefschetz could smell a theoremwheremanymathematicianswouldn’t even suspect
one, but seldom could he be bothered to work out the details of a proof; the running
joke was that he never wrote a correct proof nor stated an incorrect theorem.31 If
something was clearly true, he considered producing a proof just for the sake of
verification to be a waste of time—when a student proudly showed him a clever result
for one of his theorems, Lefschetz barked back: “Don’t come to me with your pretty
proofs. We don’t bother with that baby stuff around here.”32 In reality, however,
proofs were necessary for publication, and Lefschetz wrangled his grad students into
finishing his work. And with his two hooks for hands, over which he usually wore
shiny black gloves reaching his elbows, he also depended on students for practical
matters—every morning a graduate student pushed a piece of chalk into his glove
and removed it at the end of the day. A film from his early days at Princeton shows



him giving a lecture, gesticulating wildly with his shiny-gloved appendages. The
faculty song composed about Lefschetz was a toast: “Here’s to Lefschetz, Solomon
L./Irrepressible as hell/When he’s at last beneath the sod/He’ll then begin to heckle
God.”33

Officially, as Coxeter’s Rockefeller personal record card stated, he had come to
Princeton to study with Oswald Veblen. But Veblen, another topologist, and Hilbert’s
counterpart in America seeking to modernize geometry, was not muchmore up Cox-
eter’s alley than Lefschetz. Coxeter and Veblen discussedmathematics during long
walks in the woods (as Veblen was known to conduct his work). But on the whole,
Veblen left Coxeter free to do his own thing. Informality was the custom at Princeton.
Mathematicians, especially visiting mathematicians on research fellowships, con-
ducted their business by sidling up to pertinent parties in the common room, testing
the waters for collaboration, and by drifting in and out of alluring lectures.

Coxeter attended Veblen’s lectures, during which Veblen posed an extended ques-
tion: “What is geometry?”34 The shifting grounds of geometry in the early twentieth
century hadmade it a nebulous concept. Veblen focused his lectures for weeks on that
question, trying in vain to hit upon a satisfactory answer. The problem was that every-
thing the geometers came up with as a definition for the purview of their field could,
semantically, be twisted to include all of mathematics. In the end, Veblen settled on a
deliberately and amusingly vague definition. Geometry, he reckoned, was “that part
of mathematics which a sufficient number of people of acknowledged competence in
the matter thought it appropriate so to designate, guided both by their inclinations
and intuitive feelings, and by tradition.”35

Coxeter also attended lectures by theHungarianmathematician John vonNeumann,
another Rockefeller Fellow, who always wore a suit one size too small. Von Neumann
was amagician of a lecturer, able to takewhat was given andwithmathematical sleight
of hand unveil logical conclusions with sweeping and illusive dexterity. He was so fast
with his delivery that students asked himquestions for the sole purpose of slowing him
down. VonNeumann playfully engaged in an ongoing gamewith Swissmathematician
Henri Frederic Bohnenblust (known as Boni), whereby either man tried to catch the
other working. The rules stated they could burst into one another’s office in Fine Hall



at any time without knocking, in an effort to catch their opponent in the act. If caught,
the loser doled out ten dollars. Von Neumann was never caught, since he did his work
late into the night, and spent the daylight hours apparently doing nothing (he was
thinking).36

Coxeter also attended lectures by twomathematical physicists, Eugene Paul Wigner
and George Pólya,37 both Hungarians, and both at Princeton as Rockefeller Fellows
(Wigner split his fellowship with von Neumann, each taking half a year). Pólya consid-
ered himself more a mathematician with a physicist’s inclinations. “I am not good
enough for physics and I am too good for philosophy,” he once said wryly. “Mathe-
matics is in between.”38 Coxeter’s encounters with Pólya and Wigner (he attended
Wigner’s lecture on “how to make a single crystal of copper as big as a human head”)
were facilitated by the fact that FineHall was connected to the physics building, Palmer
Laboratory, by a second-floor corridor—an architectural detail nicely symbolic of the
relations between mathematics, queen of the sciences, in service by analogy and
abstraction to the kingly physics.39

These encounters engaged Coxeter with the scientific applications of mathematics.
He was a pure mathematician at heart, studying and developing the art of mathe-
matics for its own sake. Pure mathematicians are propelled by the internal logic of
mathematics as an abstract and symbolic structure, rather than by any insights about
the world. In contrast, insights about the world propel applied mathematicians to
orient their work toward an immediate usefulness, in the physics, biology, sociology,
or elsewhere. However, these seemingly black-and-white realms are not, or at least
seldom remain, entirely isolated. Pure mathematics discovered and investigated in
one era—and considered in that era to have no practical value whatsoever—is often
found, at a later date, to hold startling and unexpected practical applications (this was
the case with Coxeter’s work, especially his Coxeter diagrams and Coxeter groups,
which will be discussed later).

Coxeter was often praised as the purest of the pure, a mathematician who se-
questered himself in his study and reveled only in the pearls of the intellect. But
a glance at his bibliography shows otherwise—with papers, “On Wigner’s Problem
of Reflected Light Signals in de Sitter Space,” “The Space-Time Continuum,” and
“Virus Macromolecules and Geodesic Domes.”40 He welcomed the chance to con-
verse with applied mathematicians and scientists, sometimes seeking them out with



a spontaneous phone call in a flash of insight. He delighted in exploring geometry’s
appearances in the sciences, even if he wasn’t actively engaged in uncovering these
connections himself. Coxeter was not a pedantic purist who strictly observed the
barrier, and certainly not the hostility, between pure and applied.41

To that end, at Princeton Coxeter exposed himself to topics slightly beyond his ken.
He went to lectures on neutrons, on cosmic rays (with a Geiger counter exhibited
so that the audience could observe the rays coming in at about one per minute), on
various kinds of expanding universes, and on the primeval atom (created 1010 years
ago), which, as he recounted in a letter home, “while breaking up under a kind of
super-radioactivity, emitted hard rays analogous to the x-rays from radium, and these
‘birth cries of the universe,’ have gone rushing around and round space ever since, to
be observed today as ‘cosmic rays.’ ”42 After a lecture by Governor Holt on emotion
and arithmetic, Coxeter talked with him about physicists and mystics. And he argued
with Irving Robertson at supper about telepathy.43

In his residence at the Graduate College, Coxeter and his new acquaintances—“all
delightfully at ease in the American manner”—listened to President Franklin Roo-
sevelt’s fireside chats on the radio, outlining the details of his New Deal.44 They took
turns reading poetry aloud—Edgar Allan Poe’s “The Raven”—until they were all almost
asleep.45 Coxeter bragged in his continuous flow of letters that he was entertained at
grand dinner parties with distinguished professors and their wives, much older than
himself.46 And he noted in the postscript to one letter that his new friends observed
America had already made quite an impression on him; he appeared to have matured
noticeably since his arrival, and now actually looked his twenty-five years.47

Keen to fend off his parents’ concern that their only son was doomed to become “a
fusty old bachelor,”48 Coxeter resolved to do two things while in America: to shun all
Englishmen, and to find a suitable woman to bring home to England and make his
wife. He filed this progress report to his father:

I have met a really perfect girl—a fortnight ago, her first and my second time at the
square dancing class—very graceful, with straight black hair, good features and pale
complexion. I thought, “surely, she cannot still be unmarried, as she looks at least
22”; but her beautiful hands were ringless.



The mere touch of those hands seemed unlike that of anyone else’s. The next time,
a week ago, I contrived to have her for my partner almost all the time, but it was
impossible to talk. Afterward, I asked who she is, and was merely told that she is
one-quarter squaw. At that I was enormously thrilled, and wove the most marvelous
fantasies about her. I thought I would begin by inviting her to the Faculty Dance. And
then today I learnt that her husband is assistant lecturer in geology. So you see fate
has been kind in everymatter save themost important of all …I must relinquish all my
lovely fantasies, which culminated in a triumphant return to England with my bride
and the prospect of one-eighth Red-Indian children. (The shock was pretty bad, and I
consider myself very unfortunate: Burwell says 99.9% of American married women
wear a ring.)

Would you say that if I am as keen as all that, her being already married ought to
mean nothing to me? I can only reply that her husbandmust be a better man than I,
else she would not have accepted him. And I think they are happy. I am writing this in
bed in the middle of the night. Being too bowled over to sleep, I get some comfort by
relating this sorrowful story to you, my dearest friend. Now I will try to find solace in
[Felix] Klein’s “Lectures on the Icosahedron.”49

Resigned to leaving romantic matters in arrears, Coxeter had a productive year
at Princeton, his polytopes research proliferating to such an extent that Professor
Lefschetz nicknamed himMr. Polytope—“because I had long been specially interested
in the figures which [Lefschetz] insisted were simply ‘polyhedra’ in space of any num-
ber of dimensions.”50 Coxeter understandably found this remark a tad dismissive,
though Lefschetz’s was a perfectly proper definition of polytopes. On the whole, Cox-
eter said in a letter to his father polytopes are an “anathema”51 in America. Coxeter
was somewhat consoled to receive a letter from a Cambridge compatriot, Gilbert de
Beauregard Robinson, who by then was at the University of Toronto. Robinson wrote
inviting Coxeter to deliver one or two lectures on polytopes at Toronto, an offer which
Coxeter gamely accepted.52 But on the whole, Coxeter was working upstream, against
the flow of themore fashionable areas of geometry, such as topology. The less trodden
path, for him, was more seductive, and, perchance, would lead toward unexpected
andmore rewarding destinations.



Coxeter pressed ahead with polytopes that year and made a breakthrough, indeed
one of his greatest career achievements, though the extent and range of his discovery
would not be fully realized for some years to come. Coxeter discovered what he at the
time called “graphical symbols”53 for kaleidoscopes and the polytopes they generated.
The kaleidoscopes Coxeter carried around at Cambridge—his custom-made con-

traptions of mirrors and hinges—were the tools he used to investigate the symmetrical
properties of polytopes generated in up to three dimensions, with one mirror per
dimension. Beyond three dimensions it was impossible to physically construct kalei-
doscopes. But mathematicians do not dwell in three dimensions—not intellectually,
anyway. They live in hypothetical n dimensions, exploring patterns and polytopes that
stretch to infinity. The physical impossibility of building n-dimensional kaleidoscopes
did not hold Coxeter back. The challenge of gaining a glimpse of higher-dimensional
shapes—and an understanding of their symmetrical properties—turned in his mind,
rotated and reflected, until he realized he could simply devise another sort of contrap-
tion for climbing the dimensions. He discovered a way of exploring n-dimensional
kaleidoscopes with a different tool, amental crutch, formulated from imagination and
ingenuity alone. This tool mimicked his physical kaleidoscopes and took the shape of
a simple symbolic diagram constructed with pencil and paper. His graphical symbol
became known as the Coxeter diagram. Once it caught on, with the contagion of an
indispensable high-tech gadget, it became widely used by mathematician and scien-
tists alike as they investigated symmetries—whether symmetries of shapes, numbers,
equations, or symmetries in the fabric of the universe and all its contents.
“A Coxeter diagram is a code,”54 said Neil Sloane, a mathematician and telephony

scientist at the AT&T Shannon Lab, in New Jersey. (Sloane is best known for creat-
ing the On-Line Encyclopedia of Integer Sequences; one sequence, discovered by
Bernardo Recamán Santos, contains a pattern of numbers so difficult to decipher
that those who have tried dubbed it “How to Recamán’s Life.”) “A code is a way of
converting data from one format to another, encoding it in such a way that you’ve
concealed information from prying eyes or protected it against distortion, or you’ve
taken out redundancy, or just put it in a nice clean format. Certainly, Coxeter diagrams
do that. They convey information”—about polytopes and their kaleidoscopes and the
groups of symmetries they generate—“in a precise and elegant format. A Coxeter
diagram is a good vocabulary for talking about groups,” said Sloane. “In that sense,
it’s a bit like Morse code. It’s a language.”55



As it happens, the analogy between Morse code and Coxeter diagrams works on
two levels. Both codes convert essential information into a concise and visual short
form. And superficially, the basic components of Morse code, the dots and the dashes,
are also the basic components of a Coxeter diagram. In a Coxeter diagram, which
imitates the physical contraption of the kaleidoscope, each dot, or node, represents a
mirror. This, for example, is the Coxeter diagram for the kaleidoscope that generates
an icosahedron in three dimensions:

The numbers under the segments connecting the nodes indicate the angles at
which the mirrors meet. Here, 180° degrees divided by 3 = 60°, and 180° divided by
5 = 36°. In this way, the numbers dictate what kind of kaleidoscope it is—tetrahedral,
octahedral, or icosahedral.

Being a proponent of elegance and economy, Coxeter devised abbreviations to
simplify his diagram. For instance, when nodes are not joined, such as the nodes to
the far left and far right in the above diagram, their respective mirrors in reality meet
at an angle of 90° (or in amanner such that if they were joined by a line there would be
a 2 beneath). For another abbreviation, Coxeter decreed that when mirrors are joined
at an angle of 60° —since they frequently are, such as in the icosahedral kaleidoscope
above—the number 3 should be left out; so when you come across two dots joined by a
line with no number beneath, you assume the angle between those mirrors to be 60° .
Thus, the proper Coxeter diagram for the icosahedral kaleidoscope is:

Suchabbreviationsmay seemneedless, but inpractice anything that cangounstated
serves as a simplification and increases a tool’s utility and efficiency, much the same
way you might prefer to use an Internet hookup with a minimum of connections
and passwords to quickly access the desired information. Coxeter, being a master of
concision, wanted tomake his diagrams as spare as Shaker furniture, with aminimum
of lines, nodes, and numbers cluttering the design.



Another indispensable feature of his diagrams was that they not only conveyed
the kind of kaleidoscope used for exploration, a Coxeter diagram also indicated what
shapes couldbegeneratedwithin. FollowingWythoff’smethodofpositioningaprop—a
blob or a stick—in the kaleidoscope to generate the polytope, Coxeter added one more
symbol to his diagrams. He circled the appropriate node to indicate where the prop
should be placed on themirrors. So this is the Coxeter diagram not for the icosahedral
kaleidoscope (as above), but for the icosahedron itself:

Likewise, the following Coxeter diagram indicates the dual of the icosahedron—the
dodecahedron—the only difference being that the prop is placed in a different position:

The dimensions can be easily increased, and hyper-dimensional polytopes easily
investigated, by simply adding nodes, ormirrors, to the diagram—one node per dimen-
sion. Here is the Coxeter diagram symbolic of the icosahedron in four dimensions,
also known as the 600-cell:

Icosahedra and dodecahedra do not exist in dimensions higher than four, which
suited Coxeter fine. “Four is my favorite dimension,” he once said. “The things
that happen in four dimensions are extra special and agreeable.”56 To his eye, four
dimensions produced the most exquisite collection of regular polytopes. Coxeter
probed up to 8 dimensions, but beyond that he left it to other people.57 But even
though Coxeter did not often ascend into these altitudinous domains, he nonetheless
enumerated all possible kaleidoscopes that produce polytopes continuing to infinite,
or n-dimensions. Coxeter diagrams are like a rope ladder by which mathematicians
climb, notch by notch, node by node, dimension by dimension, through the eternal
exosphere of infinity. (See appendix 3 for all the kaleidoscopes Coxeter enumerated,
organized by dimension.)
Coxeter diagramsmay appear rather quaint and arcane, even esoteric and useless

explorations into a very narrow corner of symmetry, but deceptively so. Tomathemati-
cians exploring the symmetries and patterns of numbers, and scientists exploring
the symmetries of the universe, they became invaluable tools. Coxeter diagrams
provide a quick summary of the symmetrical properties being studied, exactly like
shorthand. It is much easier to hold the whole message in the mind’s eye—get the



whole picture—about symmetries when they are laid out with a diagram, rather than
spreading the message through a disjointed list of algebraic identities and equations.
The group of symmetries produced by one set of mirrors, or generators, can be quite
different from those of another set, and the Coxeter diagrams help in the differen-
tiation, providing an identification tag that twigs a mathematician’s memory to the
complete characterization of the group.58
Take for example an 8-dimensional polytope, which has 711,244,800 symmetries,

240 vertices, 6,720 edges, finishing with its 7-dimensional cells, namely 17,280 sim-
plexes and 2,160 orthoplexes.59 The Coxeter diagram representing that polytope
helpfully compresses such a stream of data:

Gaining a glimmering of a polytope’s appearance in the intangible higher dimen-
sions through projection—projecting the shape like a shadow down to three or two di-
mensions—also efficiently compresses the complexities. Here is a three-dimensional
projection, a model, of the four-dimensional icosahedron, the 600-cell, followed by a
projection of the same polytope down to two dimensions60:

Paul Donchian’s model of the four-dimensional icosahedron, or 600-cell, projected
down to three dimensions.



The 600-cell projected down to two dimensions, drawn by the Germanmathemati-
cian Salomon van Oss, circa 1906.

Clearly, Coxeter’s graphic representation of the 600-cell is trim by comparison:

“It is really remarkable,” said JohnConway, “because youhave a higher-dimensional
and tremendously symmetrical object and Coxeter’s way of conveying it is with this
astonishingly compact notation.”61 Marjorie Senechal is similarly astonished at Cox-
eter’s pithy diagrams: “He tugs us upward through the thickets and wickets of higher
dimensions so deftly and delightfully that we (almost) feel at home there.”62

As this invention took shape at Princeton, Coxeter delivered the inaugural lecture
introducing his graphical symbols. Lefschetz sniffed at his accomplishment: “It’s
good to talk about trivial things occasionally,”63 he said. Little did Lefschetz know
where these trivialities would takeMr. Polytope. Unfazed and confident in the intrinsic
value of his work, Coxeter produced a long paper outlining his research results. Oddly
enough, he left it with Lefschetz,64 a daring, or foolish, choice for a shepherd. Coxeter
hoped the paper could be published in the Princeton journal Annals of Mathematics.

His year at Princeton coming to a close, Coxeter planned to spend the next two
years in England, to complete his tenure at Trinity, and then reconsider his options.
His friends at Princeton organized a farewell pub crawl around town65 but tried to
convince him to stay, on the assumption that a job offer was sure to materialize. And,
they pointed out, it was a pity to leave just as Einstein arrived. “Not that I should
really appreciate Einstein’s work,” Coxeter said in a letter to Katie. “Veblen’s relativity



reaches practically the same conclusions, in amore geometrical manner.”66 As if he’d
heard the compliment, Veblen told Coxeter that he had liked having him to an unusual
extent and wished he was staying another year. Coxeter felt inclined to reply, “If you
had said that earlier, I might have arranged to stay.”67

Little did Coxeter know, and never in his wildest dreamswould he have guessed, that
his discoveries, his Coxeter diagrams and his enumeration of the symmetry groups of
polytopes, would three-quarters of a century hence make unexpected appearances in
applications of the very same work by Einstein that had left Coxeter so nonplussed—in
string theory. Although Einstein’s relativity may not have been sufficiently geometric
for Coxeter’s liking, it was rooted in geometry nonetheless—the revolution of non-
Euclidean geometry. This was one of those times when a piece of pure mathematics,
dismissed in the moment as having no practical connection to the world in which we
live, later fell into the lap of the right person and came alive again in application.

Before heading home, Coxeter cruised across America on a road trip with his father,
stopping at the Chicago’s World Fair. The theme was “A Century of Progress,” with
exhibits featuring “Live Babies in Incubators,” “A House of the Future,” and the leggy
fan dancer Sally Rand. A Hall of Science exhibit caught Coxeter’s attention—as touted
in a newspaper headline: PAUL S. DONCHIAN OPENS DOOR TO A FAIRYLAND OF
PURE SCIENCE, HIS WIRE AND CARDBOARDMODELS EXPLAIN HIGHESTMATHE-
MATICS.68 Donchian, a rug salesman and amateur geometric model maker69 from
Hartford, Connecticut, manned a display table covered by a gaggle of his wire polytope
models, big ones the size of beach balls, little ones bobbing alongside like ducklings af-
ter theirmother.† The subhead to thenewspaper report, which appeared inDonchian’s
hometown paper, the Hartford Courant, chronicled how his appearance at the fair had
ENTHRALLED THOUSANDS—the models drew a gaping public that stood in befud-
dlement at the four- and five-dimensional entities, and they drew “wizards of higher
mathematics perking up their ears”—Coxeter was one of them and he and Donchian
became fast friends. The father of relativity showed up to take a look as well, but
as the newspaper headline reported, EINSTEINWAS BARRED FROM EXHIBIT LEST
CROWDS CRUSH BOTH HIM ANDMODELS. Being Einstein, he was granted a private
viewing after the hall closed for the day.70



After the road trip, Coxeter returned to England, but his Princeton year lingered as
the happiest time of his life.71 Even the idyllic Cambridge did not seem so perfect
by comparison. When Princeton’s Annals of Mathematics published his kaleidoscopes
paper—“Discrete Groups Generated by Reflections”—Coxeter came down with a bout
of nostalgia that even his tightly calibrated rational disposition could not suppress.
On the recommendation of a friend, the Indian astrophysicist Subrahmanyan Chan-
drasekhar,72 a fellow at Trinity with whom he often dined at High Table, Coxeter
applied for and received an Eliza Procter fellowship, allowing his return to Prince-
ton.73

And so for the academic year of 1934–35, Coxeter found himself back across the
pond, in time to witness the unparalleled stir caused by Einstein’s presence; the
gawking photographers hadn’t lost interest even after his eminence had been about
town for over a year. Reporters from small-town newspapers and the New York Times
camped out in the swath of evergreen forest in front of Fine Hall, hoping to catch
a glimpse of Einstein’s bouffant-haired silhouette in the window of the professors’
lounge; or they loitered on his walking route, hoping to bump into him sauntering to
work, eating an ice-cream cone in his sloppy clothes and grubby tennis shoes (once a
dapper dresser, by the time he got to Princeton, Einstein was completely uninterested
in his appearance).74
Coxeter’s second stint at Princeton was busier and headier than the first.‡ His

Trinity coeval Patrick Du Val came as a Rockefeller Fellow, the two of them basking
in captivating discussions with members of the newly formed Institute for Advanced
Study.75 The institute did not yet have a building of its own. It shared Fine Hall with
the university’s math department, having the effect that this year there was no plush
office space for Coxeter. He worked from a carrel in the mathematics library, which
took up Fine Hall’s entire third floor and was open twenty-four hours a day, every day
of the year including Christmas. Coxeter’s working quarters in the library may have
been slightly second-rate, but the company he kept that year was out of this world.
By some accounts, Einstein made an effort to fit in with the Fine Hall culture. He

played ping-pong in the common room; he was uncoordinated and the ball often
landed in his hair. He attended at least some of the social events, such as the buffet
luncheon held every fewmonths, catered with home cooking by the faculty wives. The
dish prepared by Mrs. Einstein was “always very exotic and something to be avoided.”



Certain mathematicians were known to huddle with dread as the luncheon began.
They drew straws and the person with the shortest was sent down the buffet table on
a surveillance mission, giving the “high sign” when he found the unsavory Einstein
salad, and flagging it for those who came after.76

By other accounts, Einstein isolated himself at Princeton, perhaps fatigued by his
fame. He had moved on from relativity and was now laboring over his unified field
theory, seeking to unite all the laws of physics. But his initial discoveries still cap-
tured public and scholarly attention. In particular, his relativity work rankled the
mathematicians, providing fodder for gossip, skepticism,§ and resentment—much
more vehement opposition than Coxeter’s mild disinterest. Being a physicist and not
a mathematician, Einstein faced criticism because he hadn’t thoroughly learned the
mathematics he needed for his results. His friends allegedly alerted him to some re-
sults they thought he should look at, including the non-Euclidean geometry espoused
by Germany’s Bernhard Riemann (1826–1866),77 which subsequently produced his
theories. This wasn’t uncommon. It would be an imposition for a physicist to study
mathematics intensively just to glean the crucial bits and pieces he needed.78

Nonetheless, mathematicians and mathematical physicists were disinclined to for-
get or forgive that Einstein had achieved his work by thinking in physics rather than
mathematics. One Fine Hall mathematician suggested that Einstein’s general theory
“made natural the surmise that all physics might be looked at as a kind of extended ge-
ometry.” Veblen opined in a letter that, “though the great physicist used mathematics
as a tool, [Einstein] probably could not have discovered the general theory of relativ-
ity without the four-dimensional geometry earlier worked out at Göttingen.” David
Hilbert at Göttingen noted: “Every boy in the streets of our mathematical Göttingen
understands more about four-dimensional geometry than Einstein. Yet, despite that,
Einstein did the work, and not the mathematicians.” And speaking to an audience of
mathematicians, Hilbert remarked, “Do you know why Einstein said the most original
and profound things about space and time that have been said in our generation?
Because he had learned nothing about all the philosophy andmathematics of time
and space.”79



Einstein himself didn’t begrudge credit to mathematics and geometry. In 1921 he
gave an address, “Geometry and Experience,” to the Prussian Academy of Sciences.
“We may in fact regard geometry as the most ancient branch of physics,” he said.
“Without it I would have been unable to formulate the theory of relativity.”80 And the
next year, during a lecture in Kyoto, he stated: “Describing the physical laws without
reference to geometry is similar to describing our thoughts without words.”81

Einstein’s theories set our universe to a new score, orchestrating a booming
crescendo between symmetry and physics. Prior to the twentieth century, the laws
of nature were believed to operate like gears and pulleys. Physicists considered the
concept of symmetry inconsequential, a sideshow of pleasing eye candy; occasionally
symmetry simplified a problem, but it certainly had no fundamental role to play in
the core dynamics of the physical world. Though Einstein isn’t usually thought of in
these terms, he cast symmetry as the underlying foundation of space and time. A
unique aspect of his thinking on special relativity was the assumption of a “symmetry
principle.”82
“Symmetry doesn’t so much control as it does describe or account for nature,” ex-

plained Leon Lederman, Nobel laureate in physics, and director emeritus at Fermilab,
in Illinois. “As we go deeper, deeper into our understanding of the physical universe,
even the biological universe, it gets more complicated—seemingly, the equations
get more complicated, the things you have to describe are more varied. And you’d
like some unifying principle. Then, out pops symmetry. I give Einstein credit for
introducing symmetry into modern physics. He did that with his special theory of
relativity—𝐸 = 𝑚𝑐2. Wow! The big increase in knowledge is the statement that the
laws of physics apply to any system that you want; the laws are invariant to a change
in the velocity of the system—that’s relativity. And then it became very clear to even
grubby plumber-like experimental physicists—which is what I am—that symmetry in
factmakes thingsmuchmore simple, that it is the overriding basis of themathematics
of physics, or all sciences, that symmetry produces an elegance and a beauty to the
description of nature.”83
Another mathematician known for revolutionary work in symmetry was Emmy

Noether, also around and about on the Princeton campus during Coxeter’s second year
there. Anacademic refugee inoneofHitler’s early sweeps (being Jewish, andawoman),
Noether accepted an invitation to the all-women Bryn Mawr College, in Pennsylvania,



arriving in 1934. She made weekly trips to lecture at Princeton’s institute, and to
visit her friends Einstein and HermannWeyl. She could be spotted walking up from
the train station, always wearing the same outfit: a shiny shapeless jumper that
only accentuated her proportions, being almost as big around as she was high. One
day a mathematician standing in the common room window of Fine Hall saw her
approaching. “How can you tell a penguin from Emmy Noether?” he asked. “A
penguin doesn’t carry a briefcase.” (Weyl gave a more flattering portrait of Noether,
saying, “The graces did not preside at her cradle.”)84

During her seminars, Noether stood at the blackboard with a wet sponge in hand,
ready to erase as she worked. Intellectually too impatient to wait for the water to
dry, she wrote on the blackboard when it was wet. This brought two unfortunate
results: her chalkings initially were invisible, emerging only upon drying; and then,
once the writing had finally dried, it was nearly impossible to erase. Her multitasking
complicated matters further. She’d write something of import below while erasing
with her wet sponge above, producing a trickle of water rolling, ominously, downward.
She didn’t know quite what to do to stop the drop of water that was threatening to
destroy her work. So she blew on it to direct it off course.85

In 1915, Noether had made one of the most remarkable contributions to human
knowledge in a theorem pertaining to symmetry and derived from Einstein’s insights.
Known as Noether’s theorem, it states: For every symmetry in the laws of physics,
there must exist a conservation law (if there is symmetry, something is conserved).86

On a metaphysical level there are symmetries with respect to time, as Einstein
proved—if scientists such as Lederman, in Illinois, and his friendly rivals at CERN, in
Geneva, do the same experiment, either years apart or separated only by nanoseconds,
both parties will achieve results governed by the exact same laws of physics, since
those laws do not depend on any absolute time. Similarly, there is symmetry in the
law of conservation of energy—energy can neither be created nor destroyed. “Why?”
asked Lederman. “I don’t know. That’s the way nature is.”87

Noether’s theorem was extraordinary due to its capacity to unite the mindset of
physicists and mathematicians, catalyzing their interaction.¶ Symmetry, studied in
the confines of an icosahedron’s corner, or in the widest frontier of the ever-expanding
universe, is omnipotent and omnipresent. And thus, it can be applied by analogy
from Coxeter’s geometrical niche to Einstein and Noether’s macroscopic expanses



of physics. “All of mathematics is the study of symmetry, or how to change a thing
without really changing it,” Coxeter said in a 1972 radio documentary. “It is symmetry,
then, in its various forms, which underlies the orderliness, laws, and rationality of the
universe, and thereby also the language of mathematics.”88

Coxeter, studying the symmetries of polytopes—how they can be transformed and
conserved in appearance by reflections and rotations—had no purpose inmind for his
work other than its stunning aesthetics. And in the 1930s, his work not only lacked
connection to the symmetries of physics, but even such mathematicians as Lefschetz
were unable to see the inherent value in his pure mathematical pursuit—trivial topics
like polytopes are fine for the occasional intellectual romp, Lefschetz had said, pooh-
poohing Coxeter’s lecture, a comment which stabbed the geometer in the moment
(enough to quote it in his diary), and surely echoed in his head. Coxeter, it seemed,
preoccupied himself with a rusty relic of classical geometry, a futile endeavor as far
as most modern mathematicians and scientists were concerned. Then again, as is
said of pure mathematics, if it is beautiful and elegant, if it is good and profound,
there is always the latent promise that it will open something up. Eventually, almost
inevitably—often inadvertently and unbeknownst to its inventor—a beautiful piece
of pure mathematics will fall into the pattern of crystallizing with an application in
science.

During his second stint at Princeton, Coxeter sat in on a few lectures where Einstein
either spoke or was present, but they had no concrete interaction.89 Coxeter’s most
relevant intersection with Einstein, therefore, was vicarious, through HermannWeyl,
known for his Weyl gauge theory (Gauge theories are a class of physical theories
rooted in the notion that symmetry transformations can be executed locally as well as
globally).

Before coming to Princeton, Weyl and Einstein had collaborated on the concept of a
unified theory.90 Weyl’s earlier unification attempts had failed, and Einstein had put
his finger on one of the serious flaws. From then on, the unification plot consumed
Einstein, who worked on this problem for the rest of his life. “The physics community
thought that hewaswasting his time,” recalled JohnMoffat, a physicist at the Perimeter



Institute, in Waterloo, Ontario, who corresponded with Einstein in the early 1950s.
“But as usual, Einstein was ahead of the game. Because he was doing something that
subsequently became one of themain activities of fundamental physics today—unified
theory, or string theory.”91

At Princeton, Weyl continued working with Einstein on the unification theory, but
the emphasis of Weyl’s work was elsewhere. Serendipitously, it was along the lines of
what Coxeter was doing, and Coxeter’s published paper on kaleidoscopic reflection
groups caught Weyl’s eye.92

Weyl looked more the part of a proprietor of a German delicatessen than the world-
renownedmathematician that hewas. By the estimationof some, hewas the closest the
twentieth century had to a truly universal mathematician. He boasted a perspective
that was both deep and broad, spanning geometry, algebra, mathematical physics,
topology, and analysis. His masterful results, however, did not come easily. He had
a harsh voice and, toiling in his study, he let out groan after groan, his exasperation
reverberating through Fine Hall. One colleague said Weyl sounded like the perpetual
recipient of the worst possible news. Another colleague compared Weyl’s delivery of
theorems to a woman giving birth to a child. Weyl’s lecturing style also was unnerving,
as his faculty verse attested: “Herewehave a punningAryan/Who likes tomake groups
Unitarian/He is that most saintly German/The One, The Great, The Holy Hermann.”
Lefschetz invented the nickname Holy Hermann for Weyl due to his ponderous way
of lecturing with protracted sentences, stuffed with long multi-syllabic words, and the
verb as far toward the end of the sentence as was linguistically possible.93

Weyl delivered a course during the 1934–5 academic year called “The Structure and
Representation of Continuous Groups.” While Coxeter worked with a family of groups
known as discrete or finite groups, symmetry groups that were generated by discrete
or finite objects such as polyhedra, Weyl worked with the mysterious and amorphous
family of continuous groups, such as the infinite symmetries of the sphere. The sky,
similarly, is continuously symmetrical as we gaze into the well of outer space, and the
Earth, rotating around its axis, with the Sun rising in the east and setting in the west,
gives us the same sense of continuous sphericalmotion. Within the continuous groups
there are five particularly “exceptional groups,” as they are called, whose character
has been likened to Uranus and Pluto—in a way these planets are familiar to us, but
really they remain intractable to investigation and unknowable.94



Coxeter was a regular atWeyl’s series of seminars on continuous groups, and the un-
expected connections between their fields soon became apparent. Coxeter’s discrete
symmetries, it turned out, were special cases of the larger family of continuous sym-
metries, and thus informed, by analogy, some of the more sporadic and exceptional
infinite groups. One way to think of it is that the infinite symmetries of a sphere’s
continuous rotation are hard to get a handle on; their unwieldy nature makes them
overwhelming. But it is an elementary fact of geometry that a rotation can be broken
down into smaller parts, smaller movements, or reflections—reflections upon reflec-
tions add up to a full-turn rotation. The relevance of Coxeter’s work forWeyl, then, was
that Weyl’s continuous groups now had a skeleton, a basic underpinning framework,
a root system, reducing their infinite and intangible properties to abstract and more
manageable finite pieces. Coxeter’s work—his Coxeter diagrams and his enumeration
of the finite reflection groups—were just the tools Weyl needed. Weyl’s enigmatic infi-
nite symmetries were rendered slightly less amorphous andmysterious when treated
with the Coxeterian tools. This amounted to a tremendous simplification and is now
part of the standard treatment of continuous groups.95 “The overall classification
of these symmetry groups is probably one of the most important handful of ideas in
human history in the last century,” said Ravi Vakil, a younger-generation algebraic
geometer at Stanford. “Because they underlie so much.”96 Coxeter had hit upon a
primordial and indispensable tool that permeates the field of mathematics.
Weyl, duly impressed, enlisted Coxeter to take the official notes for the seminars.

And whenWeyl’s lessons reached the more general realm of “various topics in group
theory,” he invited Coxeter to present his research with discrete symmetries. Coxeter
took over five of Weyl’s seminars in total.97 After the course concluded, Weyl immor-
talized Coxeter’s contribution in the official course notes,98 adding it as an appendix.
This was a coup of exponential proportions for Coxeter, both locally and globally. With
Princeton’s reputation, the course notes were mimeographed and distributed world-
wide. International orders occupied two secretaries who were occupied solely with
the task of duplication andmailing. Reaching such a captive audience raised Coxeter’s
profile and catapulted him into an elite tier of mathematicians.
Over the following years, as Coxeter continued with his polytope opus, amassing,

piece by piece, chapters for his first book, Regular Polytopes, he consulted occasionally
with Weyl. He wanted to devote a number of pages to an idea of Weyl’s that added to
the narrative on polytopes. He wrote asking Weyl’s permission, and sent along the



relevant chapters in rough draft. “Of course you are welcome to use ‘my’ formula
for the order of the special subgroup of an infinite group generated by reflections,”
Weyl wrote back. “Thank you very much for your kindness in letting me see these two
chapters of your book …I have no criticisms to offer …But I look forward to reading
the whole book when it comes out.”99

At the end of his second turn at Princeton, Coxeter again wasn’t hearing of any job
offers, either with the math department or the Institute for Advanced Study. Between
the Depression and the turmoil in Europe, such venerated figures asWeyl and Einstein
were available for the taking; no one but the brightest minds in the firmament had
prospects.100
Coxeter’s only job opportunity in America came from Carmelita Hinton—the wife

of Alicia Boole Stott’s nephew, Sebastian Hinton. In 1935, Carmelita, a progressive
educator and reputedly a friend of Chairman Mao, was in the midst of establishing the
Putney School, at Elm Lea Farm, in Vermont—America’s first coeducational boarding
school, which based its curriculum on the ideas of farm work, academics, travel, and
the arts (to this day the school observes this tradition). Carmelita was a great believer
in John Dewey’s philosophy of “learning by doing.” She offered Coxeter a position on
the teaching staff—she was trying to get “real people” to teach and Coxeter, with his
great gift formathematics, as well as his talent inmusic and love of the outdoors, was a
perfect fit. Coxeter considered himself well suited for the job, especially since while at
Princetonhehad takenon the task of editingW.W.RouseBall’sMathematical Recreations
andEssays, a book full of good teachingmaterial. Coxeter, clearly delighted to be chosen
as Ball’s successor, wrote to his father: “Did I tell you that I have undertaken to edit
…Rouse Ball’s Recreations and Essays? It was Hardy who proposed me as the man to
do it. I think it will be fun, and familiarity with the sort of stuff that it contains cannot
fail to be an advantage to a teacher (if such I am to be).”101 Charged by the prospect
of “pioneer” work at a new school, his first instinct was to jump at the chance, even
going so far as to suggest to his father that his eldest half sister, Joan, be sent overseas
for a year at the new school.102
Coxeter’s mathematical peers, however, cautioned him against such a move, the

strongest warning coming from Oswald Veblen. His anti-teaching bias ran in the
family. Veblen was the nephew of the sardonic iconoclast and economist Thorstein
Veblen, whose five-chapter memorandum, “The Higher Learning in America,” argued



that the whole American apparatus of degrees and undergraduate teaching was a
sham. In contrast to the goal of practicality, Thorstein believed “the sole end of the
truly inquiring mind should be irresponsible scholarship, idle curiosity, and useless
knowledge.”103 In the same vein, Oswald Veblen bedeviled the Princeton administra-
tion, urging visitors to the university, graduate students, and department professors
alike not to waste time doing any more teaching than they had to. Veblen stressed to
Coxeter the importance of having time to write down ideas during the brief creative
years of one’s life—“of which one year is a considerable fraction.” And he cautioned
Coxeter that he would miss, more than he realized, “the companionship of mathe-
matical minds.” The sanctum for research that Trinity provided was a precious thing.
“I could have created so muchmore,” Veblen said, “if time and energy had not been
taken up with teaching.”104
Coxeter finally lost his battle of indecision when the Trinity council refused to grant

him an additional leave of absence. He had written the bursar to test the lay of the
land, financially and otherwise, should he want to defer his fellowship another year.
Coxeter was prepared to give up one of two remaining years at Trinity, but he knew
that to sever the connection entirely would be damaging to his career. He turned
down Carmelita Hinton’s offer—“I don’t feel a bit happy about it, and I hate having to
confess this victory of reason over emotion. But everyone assures me I will see the
advantages of remaining in the academic world, as soon as the pangs of remorse have
softened.”105
Hemade the most of his remaining days at Princeton. His diary entry one day was,

“Drawing circles,” and on another, “Drew some more circles,” and on another, “Got
up early to draw (4,6) triangles.” He exclaimed, “I have overworked this week!”—and
stayed in bed the next day readingW. Somerset Maugham’s Cakes and Ale.106Hemade
numerous jaunts into New York—for an exhibit at the Metropolitan Museum of Art; for
a magicians’ meeting; for the annual gathering of the American Mathematical Society,
after which Pat Du Val took him to see some burlesque.107 On June 14, 1935, Veblen
told him that he was “the best-liked Englishman who has come to Princeton,” and six
weeks later Coxeter was once again on his way back to England.108
* Topologists study properties of shapes that are preserved when the shapes are de-

formed through stretching, twisting, or compressing, though tearing is not permitted
by the rules of topology. A circle is topologically equivalent, with some stretching, to an
ellipse; even a cube and a sphere can be deformed into one another, and are thus are



said to be “homeomorphic.” A topological characteristic of polyhedra was discovered
by Swiss mathematician Leonhard Euler (1707–83), and is now known as the Euler
characteristic of polyhedra, or Euler’s formula: for any polyhedra, the number of its
vertices (𝑉) minus its edges (𝐸) plus its faces (𝐹) equals two, or 𝑉 − 𝐸 + 𝐹 = 2.
† As a result of Donchian’s distraction with his models, the family rug business

struggled financially; he had cultivated a serious hobby that evaporated weeks at a
time as he painstakingly constructed his elaborate wire sculptures. When a hurricane
hit New England, causing massive flooding, an apocryphal tale has it that Donchian
saved his models first, his children second, and his livelihood, his sopping wet rugs,
last.
‡ By one measure, as a Rockefeller Fellow he had been appointed treasurer of the

Fine Hall tea club and was charged with the task of “collecting one dollar from each of
about forty unwilling professors and students,” but this time around he was chairman
of the tea club, since that duty always went to the Procter Fellow.
§ Einstein had won the Nobel in 1921, but not for relativity, since it was still some-

what in dispute; instead he received it for his 1905 essay on photoelectric effect.
¶ For this, Lederman praised Noether’s contribution to the skies: “Noether’s theo-

rem provides a natural centerpiece for any discussion that unifies physics and math-
ematics …in a way that enlivens them both …The worlds inhabited by theoretical
physicists and mathematicians are often quite separate and independent. It is during
the rare moments when the two worlds converge that the bugles blow, the drums roll,
and science moves forward!”



4 Love, Loss, And LudwigWittgenstein

For pairs of lips to kiss maybe Involves no trigonometry.

—Frederick Soddy, ``The Kiss Precise''

Back at Trinity, Coxeter unpacked and settled into his suite of rooms in Great Court.
He obediently explained his work to his father, showed Aunt Alice his “group pictures,”
and dined in the college hall with Pat Du Val, who “got drunk and tried to show how he
could sing.”1 And then, out of the blue, a job offer arrived: an assistant professorship
at the University of Toronto. Coxeter’s visit there while at Princeton had been a vetting
of sorts. “My lecture seems to have been well liked,” Coxeter said of the job offer it
brought.2 But he was not sure whether to accept, and discussed his uncertainty with
his father. When would he have to start? How long would he have to stay? What
minimum period would not seem too shabby to them? Would he lose forever this last
year of his Trinity Fellowship? Could he refuse Toronto now and change his mind at a
later date? What were his chances for a job in England?3
Coxeter had just been appointed a lecturer at Trinity, and his first few lectures

received good reviews from the college chairman, although Coxeter noted in his diary,
“Palmer, my pupil, showed that I know no geometry!”4 A college lectureship was a
lesser position than a university appointment—not nearly the status of a professor-
ship5—but, buoyed by this small success, Coxeter refused the University of Toronto
offer,6 much preferring to remain in England if he could find a comparable position.
His chances were slim since only one professorship was coming open in his field—the
Lowndean Chair of Astronomy and Geometry, at Cambridge, from which his PhD
advisor, Henry F. Baker, was due to retire. On January 8, 1936, he composed his letter
of application.7
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While awaiting news of the Lowndean chair appointment, Coxeter kept himself
preoccupied. He took in abadLaurel andHardyfilm, andattendeda lecture byGodfrey
Hardy: “How to Write and How Not to Write a Mathematical Paper.”8 And he resumed
his often “painful” discussions with Austrian philosopher, Ludwig Wittgenstein then
at Cambridge, who was among the twentieth century’s most influential philosophers,
alongside Bertrand Russell and Jean-Paul Sartre.
The reclusive Wittgenstein had taken a liking to Coxeter when he was a student,

and they kept in touch. “I had tea with Wittgenstein yesterday,” Coxeter recorded in
his diary. “He talked very interestingly about blindness and deafness, and why you
get seasick on a camel but not on a horse. He doesn’t seem any more abnormal than
before.”9
Coxeter had enrolled in Wittgenstein’s “Philosophy for Mathematicians” lecture

for the 1933–4 year. To Wittgenstein’s horror, so did a total of forty students, far
too many for the intimate lecture he was willing to deliver. “There are too many
of you,” the philosopher protested. “Will three or four please leave?” After only
a few weeks, Wittgenstein informed his still too numerous students that the class
would continue no longer. He deigned to lecture for only a chosen few. He would
dictate his thoughts, and his select students were instructed to copy the notes and
distribute them to the rest of the class in what became known as his Blue Books.
The select group included Wittgenstein’s five favorite students: Francis Skinner (a
promising mathematics student who became Wittgenstein’s constant companion,
confidante, and collaborator); mathematician Louis Goodstein; philosopher Margaret
Masterman (a pioneer in the field of computational linguistics, her beliefs about
language processing by computers were ahead of their time and are now fundamental
to the field of artificial intelligence); philosopher Alice Ambrose (of the analytic school,
who also wrote papers on pi, mathematics, and the mind); and Coxeter.10
For Coxeter, Wittgenstein was largely unintelligible and intellectually precious.

Wittgenstein refused to lecture for the customary 50 minutes, but required 150 min-
utes, partly because he needed an hour to warm up and partly due to his habit of
stopping mid-sentence as he worked through his next point internally. Coxeter timed
a pause at more than twenty minutes, after which Wittgenstein carried on where he
left off, as if nothing was amiss. On another occasion, Wittgenstein complained the
lecture hall was too formal. Coxeter offered the sitting room in his suite in Great Court,
andWittgenstein agreed to the new location. Of one lecture, Coxeter noted: “Found



Wittgenstein really interesting for the first time (Locality of Thought),” but shortly
thereafter he ceased attending, judging his time better spent on his ownmathematical
research (nonetheless Wittgenstein continued using Coxeter’s room).11 Coxeter later
remarked of his Wittgenstein excursion: “I couldn’t understand that kind of philoso-
phy. I thought it was nonsense. It didn’t appeal tome at all. The only thing I remember
of his work is that his book Tractatus-Logico-Philosophicus began in chapter one with the
proposition, ‘The world is everything that is the case,’ and ended in the final chapter
with the proposition [and the only sentence in that chapter], ‘Whereof one cannot
speak, thereof one must be silent.’ ”12

Ludwig Wittgenstein

TheCambridgeprofessorial electionswereheldonFebruary28, anddisappointingly
Coxeter lost the Lowndean chair to William Hodge, winner of Cambridge’s Adams
Prize. Never before had the biannual Adams Prize competition, since its inception in
1848, been on a geometrical topic. Usually it addressed natural philosophy or physics.
The Adams question this time called for an advance in existing geometrical theory.13
Coxeter’s groups generated by reflections would have qualified (there is no record as
to whether he made a submission), but Hodge, backed by none other thanWeyl and
Lefschetz,14 won for work developing the relationship between geometry, analysis,
and topology—a contribution described as “…one of the great landmarks in the history
of science in the present century.”15



Initially, Coxeter’s reaction was calm disappointment; he commiserated with his
friend Patrick Du Val, also an unsuccessful candidate (as was Eric H. Neville).16 By
June, however, panic set in, forcing Coxeter to reconsider the offer from Toronto. His
father admitted that with the change in circumstances, the balance seemed to favor
that he go. “I see that it would add to your prestige later on when a suitable position in
England turns up,” said Harold. “I get the sense that in some ways England is asleep
or sitting on the top of a shaky pedestal. But the whole world seems to be shaky too
and without firm foundation …Probably your mother will be very disappointed …but I
do not think you should consider your mother—still less us—in anything which vitally
concerns your career.”17 Coxeter discussed the matter with Hardy and Littlewood,
and a few days later Hardy concurred with a wire: “Reluctantly agree you better go
this year.”18 And after talking it through with Baker over dinner, Coxeter made his
final decision to go. “I could not have dissuaded you from going to Toronto,” wrote
Baker. “Many goodmen have begun away fromEngland; Europe seems now to bemad;
and anyway, Toronto is an inspiring place.”19 Coxeter wired Samuel Beatty, head of
Toronto’s mathematics department: “May I accept after all?” Beatty’s response came
in the affirmative and Coxeter was slated to start in the fall.20

Squeezed into Coxeter’s busy schedule of research and teaching duties and prepa-
rations for the move, were the emotionally fraught demands of his mother. All of a
sudden Lucy seemed old and slowing down, almost winding down on life. Her son took
her shopping and dropped in for tea, reading aloud from Oscar Wilde’s De Profundis
while Lucy painted colored faces on an icosahedronmodel.21 Still, she always wanted
more of his time, and resented his legion of friends and commitments that kept him
away. Coxeter’s father had been visiting Lucy more regularly as well. “I went to visit
Lucy a few days ago and found her really ill,” Harold said in a letter to Rosalie. “She
has greatly altered recently and is much kinder and considerate …I should not be
surprised if she has not very long to live, and I think she feels this herself. Donald also
senses the same, I think, as Lucy says he has been sweeter to her than he has ever
been.”22



On a Saturday afternoon in March, during tea at a friend of his mother’s, Cox-
eter made the chance acquaintance of “an attractive Dutch girl,”23 Hendrina (Rien)
Brouwer.* Her parents had both died recently and, minimally educated, she came to
England to find work as an au pair. She had wide-set blue eyes and an entrancingly
open and symmetrical face framed by fine blond hair, always pulled back.24 Coxeter
arranged their first date by post two days beforehand:

Dear Miss Brouwer,

I will call for you at 10 o'clock. It takes about an hour to reach Cambridge.
Then we can look at colleges for a while, have lunch in my rooms, meet my
best friend Pat Du Val for tea, and drive to the station …I hope you will forgive
my not driving you back, but I shall have to stay in Cambridge for a few days
to finish off some work.25

Donald with his mother, Lucy, and father, Harold, at Much Hadham circa 1933.
For their second date, they visited the FitzwilliamMuseum, the art museum at the

University of Cambridge, and afterward Donald gave Rien a demonstration of his
kaleidoscopes. And from there, the courtship proceeded at a clip. Coxeter’s father,
knowing his son’s track record, had no compunction about offering advice, sending
this missive:



May I be so rash as to say it might be worthwhile to be careful that Rien does
not fall for one or other of your friends or acquaintances or any other attractive
or attracted youngman among themen at Cambridgewhile you are ``getting
to know each other.'' She will be susceptible in a new country, and a different
life, and springtime, and unless I am a bad judge, many of the said youngmen
would be susceptible also to her; or might feel less inclined to caution than
HSMC! Having said this much, I now say take no notice of what I have said,
but go your own way and make your own decisions for your own life.26

Coxeter took notice. Less than a week later, on May 24, he proposed to Rien in a
Cambridge cemetery, recording in his diary, “R to supper. Asked her, and she did not
say No.”27 Rien also documented the day, noting that they “chatted a long time” and
that Donald asked “whether or not I wanted to be his wife …It was like a dream. Is it
really to become a reality?” Rien was smitten. She thought Donald was a “darling,”
and he provided the stable future she sought—“Yes, I have everything.”28
Donald’s father was ecstatic about the engagement and immediately gave his bless-

ing.29 His mother was “tiresomely hurt” that Harold and Katie received word of the
engagement before she did. “How easily misunderstandings arise and bitterness and
jealousy and hurt pride is aroused,” Harold wrote to his son. “Don’t be too worried or
depressed about Lucy,” he consoled. “She will be all right. It is difficult for her to feel
she is losing you, when in many ways you have taken my place in her life. We have
definitely decided that neither Katie nor the children will appear at your wedding.
Perhaps we could have a second celebration here after the wedding sometime …It is a
great joy to me to feel that you will have so loveable and suitable a wife and I believe
you will bless the day youmet her. There will be much to discuss, but there is time.”30

Prior to the wedding Coxeter and his father planned a vacation in Norway for the
entire month of July, timed to coincide with the International Congress of Mathemati-
cians in Oslo. The close relationship between Donald and his father was more that of
brothers, though in preparation for the trip the domineeringHarold told the full-grown
Donald what to pack and how to behave. “Take a nice pair of leather shoes with rubber
soles for walking. No sneakers please. And several tie pins and suspenders for your
socks …Don’t invite anyone else to tour with us, without my approval …What fun it will
be.”31



Donald and his father on their trip to Scandinavia, shortly before Harold’s death,
1936.
Landing at Oslo, they enjoyed two weeks of touring before the congress be-

gan—climbing mountains, bathing in the snow and swimming in idyllic lakes, Coxeter
driving through the hills in their rented convertible and Harold, a freer and wilder
spirit than his son, standing naked on the passenger seat in the wind. Expeditions
like these were old hat to Harold and filled many family photo albums—pictures of
men scaling iced mountainsides with walking sticks and safety lines stringing the
party together (a cigarette company financed one trip; Harold was a chain-smoker
and won the prize for the customer who sent in the largest collection of emptied
packages).32 Coxeter, on the other hand, wasn’t so accustomed to the long days of
trekking—“very footsore,” he moaned in a letter to Rien.33
The conference started on July 14. Coxeter and a few Cambridge peers attended.

One told Coxeter he found himself sitting between twomathematical behemoths—“I
felt like a very small hyphen.” Another confided that he sat through only a single
session and then skipped out to spend the rest of his time hiking and swimming in the
mountains. Three days into the conference, Coxeter ducked out to visit the National
Gallery, for the second time.34



At the congress, Coxeter met Irish mathematician J. L. Synge (nephew of the play-
wright J. M. Synge), who had founded the department of applied mathematics at the
University of Toronto. J. L. Synge became a lifelong friend, and he and Coxeter would
correspond with each other into old age. Synge made wide-ranging contributions to
mathematics, in classical mechanics, geometrical mechanics and geometrical optics,
gas dynamics, hydrodynamics, electrical networks, mathematical methods, differ-
ential geometry, though his main achievement was to apply geometrical terms to
Einstein’s theory of general relativity. He restated many problems in simple geomet-
rical language, applying this method to the stability of the bicycle in a paper titled
“Steering Gear,” and launched into elasticity with one on “The Tightness of the Teeth,
Considered as a Problem Concerning the Equilibrium of a Thin, Incompressible Elas-
tic Membrane.”35 Synge also wrote a fantastical mathematical novel, Kandelman’s
Krim. Coxeter loved it and plundered its pages, excerpting twelve passages in his book
Introduction to Geometry, such as this one prefacing a section on rational numbers:

``The northern ocean is beautiful,'' said the Orc, ``and beautiful the delicate
intricacy of the snowflake before it melts and perishes, but such beauties are
asnothing tohimwhodelights in numbers, spurning alike thewild irrationality
of life and the baffling complexity of nature's laws.''36

The congress was that year distinguished as being the first time a Fields Medal
was awarded, and Synge had been instrumental in planning the award with another
Toronto mathematician, John Charles Fields. It was formally called the International
Medal for Outstanding Discoveries in Mathematics, though soon dubbed the Nobel
Prize for Mathematics, since Alfred Nobel had neglected the category of mathematics.
A Swedish industrialist and inventor of dynamite, Nobel has stipulated in his will
that the interest from his $9 million endowment be used to establish prizes for inven-
tions or discoveries of the utmost practical benefit to humankind. Why mathematics
was excluded is unknown, though a long-circulating rumor at mathematics confer-
ences suggests that Nobel was angry about the attentions another mathematician had
showered upon Nobel’s mistress, and this was his revenge.37
The honor of a Fields Medal recognized outstandingmathematical achievement of a

mathematician no older than forty: “…while it was in recognition of work already done,
it was at the same time intended to be an encouragement for further achievement
on the part of the recipients and a stimulus to renewed effort on the part of others.”



Embossed with the head of Archimedes, the gold medal also bore a dictum from
the Roman poet Manilius: “to rise beyond your understanding and make yourself
master of the universe.” In its inaugural year in Oslo, Fields medals were awarded to
Lars Valerian Ahlfors, of Harvard University, and Jesse Douglas, at the Massachusetts
Institute of Technology.38

Returning from Norway at the end of July, Coxeter faced the wedding and the move
to a new country and felt overpowered with things to do.39 He and Rien set their
wedding date for the first of September, mere days before they were due to leave for
Toronto. Trinity College Chapel was already booked, so they settled on the Round
Church in the heart of Cambridge—the main rotunda, fittingly, was a perfect circle.

Then, on August 15, a wire from Katie brought tragic news. Having observed his
mother’s surrender to life, Donald was shocked to learn it was his father who had
died.40 Harold had been holidaying in a coast guard cottage at the seashore near
Brighton. “I ammanaging to get the whole family to bathe [swim] before breakfast
every day so far, and 2 or 3 times during the day,”41 he wrote in his last letter to his
son. Harold suffered a heart attack while teaching his youngest two daughters to swim
underwater in the shallows of the English Channel. The girls noticed that he failed to
surface and, by the time they fetched help, their father had drowned.42

The following days went by in a numb and telescoped rush: to the undertaker, to the
inquest, to the burial at Woking, and “in face of this terrible calamity,” as one friend
said, “all your plans have to be made anew.” Donald and Rien decided to marry early,
to cut short the painful waiting. Two days after the burial—“two of the most ghastly
days ever spent”—they wed with only a few family members present. Many of the
intended wedding guests were surprised to open Cambridge’s evening newspaper
and see a photograph of Donald with his bride on the porch of the Round Church, two
weeks ahead of the date on their invitation.43 In the wedding photographs, Donald’s
fists were clenched tight, knuckles white with stress.

Congratulations and condolences arrived in tandem. One friend said, “Fate is very
cruel, why had he to die—as you ask—when all the family was happy and content?”
Another commiserated: “Why Harold? I can hardly believe it yet but to you who were
nearest the loss must be doubly bitter in its reality …One’s philosophy falters when
Death appears so indiscriminate.”44



A wedding present in the form of a mathematical poem came from Thorold Gos-
set—“The Kiss Precise,” by Oxford’s Frederick Soddy, a Nobel laureate in chemistry.
The poem revealed Soddy’s formula for the relationship of the radii of four mutually
tangent circles. “Although Professor Soddy has put his discovery in such a frivolous
form,” wrote Gosset, “it is really rather an interesting geometrical proposition. He
says it took him three years to work it out …”45

For pairs of lips to kiss maybe

Involves no trigonometry.

`Tis not so when four circles kiss

Each one the other three.

To bring this off the four must be

As three in one or one in three.

If one in three, beyond, a doubt

Each gets three kisses from without.

If three in one, then is that one

Thrice kissed internally.

Four circles to the kissing come.

The smaller are the benter.

The bend is just the inverse of

The distance from the centre.

Though their intrigue left Euclid dumb

There's now no need for rule of thumb.

Since zero bend's a dead straight line

And concave bends have minus sign,

The sum of the squares of all four bends

Is half the square of their sum.

To spy out spherical affairs

An oscular surveyor



Might find the task laborious,

The sphere is much the gayer,

And now besides the pair of pairs

A fifth sphere in the kissing shares.

Yet, signs and zero as before,

For each to kiss the other four

The square of the sum of all five bends

Is thrice the sum of their squares.

Donald and Rien on the steps of the Round Church on their wedding day, Cambridge
1936.
Also known as the “Kissing Circles Theorem,” it had been published by Soddy the

previous June in Naturemagazine.46 Gosset closed his letter of congratulations with a
suggested addition, to describe the even more general case, “in N dimensions for N +
2 hyperspheres of the Nth dimension,” which he published in Nature the following
year.



And let us not confine our cares

To simple circles, planes and spheres,

But rise to hyper flats and bends

Where kissing multiple appears,

In n-ic space the kissing pairs

Are hyperspheres, and Truth declares

That n plus two will osculate

Each with an n plus one fold mate

The square of the sum of all the bends

Is n times the sum of their squares.47

Friends and family sent notes wishing Coxeter bon voyage, “not only for the Atlantic,
but for the wider sea of life.” He underscored a passage saying, “You must now be
looking forward to the future, a new life and new relations in a new world rather
than to the past…”48 From Aunt Alice, Coxeter received an antique stained-glass
Archimedean solid lampshade. Her condolences were full of hope: “My dear! I don’t
know how to write to you—words seem so futile beside so great a separation! But
indeed one can rejoice, for his sake, that it happened so …While I have been writing
mymind has gone back to the lovely world we have visited together, and which you
have made so much your own. I wonder where you will get to in it! How I wish I could
follow.”49
Coxeter said his good-byes “without sentimentality.”50 His mother, as well as Katie

and his three half sisters, could not quite believe he was holding to his plan to leave.51
The newlyweds set out for Canada on September 3, the trauma of the last weeks
gradually sinking in. As Coxeter noted in his diary, Rien “nearly lost her breath in the
night,” which he found quite disturbing in light of recent events. And he noted: “R
told me I must stop mourning for Harold.”52
* Their first conversation revealed, disappointingly, that Rien was of no relation

to the Dutch mathematician Luitzen Brouwer, who devoted much of his career to
defending intuitionist and visual mathematics, for which he considered logic only a
helpmate, as discussed in his paper, “On the Untrustworthiness of Logical Principles.”



5 “Death To Triangles!”

He who despises Euclidean Geometry is like a man who, returning from for-
eign parts, disparages his home.

—H. G. Forder

Logic teaches us that on such and such a road we are sure of not meeting an
obstacle. It does not tell us which is the road that leads to the desired end.
For this, it is necessary to see the end fromafar, and the facultywhich teaches
us to see is intuition. Without it, the geometrician would be like a writer well
up in grammar but destitute of ideas.

—Henri Poincaré, Oeuvres

The Coxeters sailed into Quebec City, endured a long wait for the immigration
inspector, and then continued by train to Toronto,1 somewhat of a backwater in that
day, second in status to Montreal. By Toronto standards, this English couple were
more cosmopolitan, avant garde, and their arrival created a bit of a stir—they painted
rather than wallpapered the interior of their house, and wore stylish clothing.2 For the
Coxeters, the weather took some getting used to. The first winter was a shock—Donald
constantly had colds (he assaulted them with ascorbic acid and shoulder stands),
and Rien began lobbying for a fur.3 But before long, Coxeter was ensconced at the
University of Toronto. He noted in his diary: “showedmirrors at seminar” and “1/4
hour after my graduate lecture students were still taking notes.”4
The job came with an annual salary of $1,500. Coxeter was a penny-pincher, need

be or not, writing on the overside of each page so as not to waste an iota of space (for
this reason, no working copies of his books survived). He recycled stamps left clean,
complaining that Canadian postage was absurdly expensive. And the couple saved
on hot water bills by sharing bathwater, Rien bathing first.5 They were the perfect
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picture of a “Jack Sprat” couple6—Rien, a lover of sweets, was forever trying to reduce,
while Coxeter, skinny and vegetarian, was still plagued by the duodenal troubles that
had first beset him at Trinity. The course of treatment prescribed by a Toronto doctor
stipulated that he pump his stomach at closely timed intervals after eating, leaving
food in his stomach long enough for nutrients to be absorbed but not long enough
for it to reach his faulty digestive tract7 (this continued on and off for ten years until
Coxeter underwent a gastorectomy).8
Coxeter and Rien, the mathematician and the housewife, established a nice econ-

omy of existence. Rien prepared their separate diets (she made a failed attempt at
vegetarianism), with mealtime scheduled like clockwork at eight, twelve, and six, the
table set, the radio tuned to the news. Coxeter always dressed for breakfast, even
on weekends and holidays, and always wore a tie (Rien insisted, finding his neck
unattractive).9 All the workings of the household were similarly calibrated to facili-
tate Coxeter’s profession. This dynamic was etched in the mind of one of his early
students, John Coleman, now professor emeritus at Queen’s University, in Kingston,
Ontario. He needed to consult with Coxeter outside office hours, and telephoned his
professor at home to make plans to drop by. Rien greeted Coleman when he knocked:
“WHAT—DO—YOU—WANT?” barked this beautiful, blunt woman, her accent a thick
Dutch-English. “She was like a bulldog at the door,” remembered Coleman.10 Rien
treated her husband as a precious object, protecting his time andhis space, optimizing
the parameters of his life for a career of mathematical productivity—early in 1937 he
recorded in his diary: “I made myself sick working on (3,3,5; 5).”11 The only obstacle
hindering Coxeter’s ambitions as a classical geometer was bad timing; he set out
on his research career exactly when this antiquated field was firmly entrenched as
passé. Coxeter’s kind of geometry was fun as a hobby, but fewmathematicians in their
right-angled mind were staking careers on it.

At the International Congress of Mathematicians in Paris in 1900, Hilbert, the father
of formalism, had delivered a rousing address at the Sorbonne in which he posed
twenty-three unsolved questions that he felt would shape mathematics in the coming
century. He asked, “Who of us would not be glad to lift the veil behind which the future
lies hidden; to cast a glance at the next advances of our science and at the secrets of
its development during future centuries? …We hear within ourselves the constant cry:
There is the problem, seek the solution. You can find it through pure thought.”12



Only three of Hilbert’s problemswould have been even remotely tempting to Coxeter
(and there is no evidence he worked on any of them very much).13 Fewer and fewer
questions were being asked in classical geometry. And even if Coxeter had discovered
a surprising new theorem about Euclidean geometry—for example, Frank Morley’s
1899 “miracle” theorem that Coxeter liked so much, trisecting the angles of a triangle
(see appendix 5)—this would hardly garner him a plum job at the likes of Princeton
or Cambridge.14 With all the interesting questions in classical geometry seemingly
answered and its theorems discovered, mathematicians turned elsewhere to fuel their
ambitions, to churn out papers for publication and scurry up the ranks of academia.
“As long as a branch of science offers an abundance of problems, so long is it alive,”
Hilbert had said in his address—“a lack of problems foreshadows extinction.”15

By that measure, classical geometry, like an old-growth forest, was an endangered
domain. And in general, the pendulum of scientific methodology had swung far away
from the intuitive visual approach. “In the sciences in the last century and a half,
the pictorial and the logical have stood unstably perched, each forever suspended
over the abyss of the other,”16 observed Peter Galison, professor of the history of
science and physics at Harvard. “It goes back and forth, and not in an accidental
way,” Galison said. “Pushing hard on the visual methods ends up pushing toward
the anti-visual. Beliefs swing between an almost theological dogma that images are
stepping stones to higher knowledge, or that they are deceptive idols that keep us
from higher understanding …Ultimately we need both sides.”17 For the time being,
however, geometry was subsumed and shrouded by the algebraization of each and
every branch of mathematics—shapes were expressed in terms of algebraic equations.

A dramatic example of this shift was reflected in the widespread acceptance of Nico-
las Bourbaki’s approach to mathematics.18 Mathematical folklore allows it that Bour-
baki, an enfant terrible of French mathematics, first made his mark in the mid-1930s.
Bourbaki was known to frequent the Café Capoulade, in Paris, near the Luxembourg
Gardens, where he worked on an ambitious tome, an encyclopedia of all mathematics.
He called his treatise Éleménts de mathématique—the singular “mathematic” hinting
at the unifying intentions (though it was translated in English to Elements of Mathe-
matics)19—and ultimately it was to include six books, a few chapters of each book



published every couple of years.* Bourbaki’s first installment, chapter 1 of Book I, on
set theory, was published in 1939. He wrote various books of his treatise simulta-
neously, the next installment, published in 1940, being chapters 1 and 2 of Book III,
followed in 1942 by chapters 3 and 4 of Book II, and so on.20
In a retrospective on Bourbaki’s impact, a Scientific American article reported that

this mathematician had quickly attracted international attention. “His works are read
and extensively quoted all over the world. There are young men in Rio de Janeiro
almost all of whose mathematical education was obtained from his works, and there
are famous mathematicians in Berkeley and in Göttingen who think that his influ-
ence is pernicious,” wrote the mathematician Paul R. Halmos. “He has emotional
partisans and vociferous detractors wherever groups of mathematicians congregate
…The legends about him are many, and they are growing every day. Almost every
mathematician knows a few stories about him and is likely to have made up a couple
more.”21
But there was something odd about Bourbaki, something more than a little sus-

picious. The great French professors, whose reputations were pegged to producing
great students, were all in a dither because none of them could claim this outstanding
Bourbaki as their own. “Qui est ça Bourbaki?” theymuttered to themselves. The illusive
Bourbaki accepted invitations to conferences, agreed to give lectures, but then he
never showed up, sendingword that hewas sick or hadmissed his plane.22 AsHalmos
climactically concluded in the article: “The strangest thing about him…is that he does
not exist.”23
In reality, Bourbaki was a pseudonym for a secret society comprised of the crème

de la crème of French mathematicians.24 The founding members, or “prima donnas”
as they’ve been called, included Henri Cartan25 (son of Elie Cartan), Claude Chevalley,
Jean Delsarte, Szolem Mandelbrojt (uncle to Benoît Mandelbrot), René de Possel,
and Jean Dieudonné. The brains of the movement was André Weil, brother of the
philosopher Simone Weil, who, by contrast, considered algebra, as well as money
andmechanism, a “monster of contemporary civilization”; she believed algebra in
particular should be deemed “an error concerning the human spirit.”26
Why the members chose Bourbaki as their nom de plume was cloaked in a number

of running jokes, perpetually recycled in the pages of mathematics journals. One
story holds that the surname referred to a French army officer in the Franco-Prussian
War—General Charles Denis Sauter Bourbaki—who fled from France to Switzerland



with a small remnant of his army in 1871, was arrested and interned, then botched a
suicide attempt, and lived to the venerable age of eighty-three. A statue of General
Bourbaki in Nancy, France, establishes a connection with the mathematicians who
appropriated his name, since several were young faculty at the University of Nancy.27
A second ancestral line dates to the 1920s, when André Weil, then a student at the
École Normale Supérieure, was exposed to an initiation of sorts, a guest lecture by a
distinguished visitor name Bourbaki. At the end of class students realized that their
visitor was in fact a senior student in disguise—with a beard and a fake foreign ac-
cent—and that his lecture was a scripted piece of mathematical double-talk, devolving
into “sheer nonsense” which included a “theorem of Bourbaki.”28

Cartoon from Scientific American, May 1957, representing Bourbaki as a “milling
throng of French mathematicians.”

In 1980, The Mathematical Intelligencer published perhaps the most fabulous musing
on Bourbaki’s origins. The article translated a story by FrenchmanOctaveMirbeau, an
anarchist and art and literature critic who promoted the careers of August Rodin and
Claude Monet. In Mirbeau’s story, “Journal d’une Femme du Chambre,” the character
of one Captain Mauger takes Celestine, his neighbor’s chambermaid, for a tour of his
garden. Celestine narrates, reflecting on her outing:

The Captain recounted to me how, last week, he caught a hedgehog under a
woodpile. He is training it…He calls it Bourbaki…What an idea! …An intelli-
gent animal, a joker, extraordinary, which eats everything!



``My word, yes!'' the Captain exclaimed, ``In a single day this confounded
hedgehog ate a beefsteak, a mutton stew, some salted bacon, gruyere
cheese, jam …he's marvelous …there's no restraining him …he's like me …he
eats everything!''

This tale was an apt metaphor for the mathematician Bourbaki—“Nicolas has
pledged to produce a comprehensive treatise of modern mathematics; the staggering
scope of his enterprise makes plain his kinship to Captain Mauger’s omnivorous
pet.”29

Bourbaki, the group—somemembers of the collective to this day hold to the conceit
and refer to Bourbaki in the third person singular30—advocated a unified restruc-
turing of mathematics into an architecture of “mother-structures.”31 The Bourbaki
style epitomized the dry and formalist trend, algebraic and axiomatic, and in this
respect Bourbaki members considered themselves Hilbert’s heir.32 The Bourbaki
method, as the Scientific American article reported, was based on a dogmatic belief in
the right order for learning, a gratuitously invented terminology, and an economical
organization of ideas that was “so bent on saying everything that it leaves nothing
to the imagination and has, consequently, a watery, lukewarm effect.”33 In an omen
of Bourbaki’s insulting impenetrability (for somemathematicians, at least), the first
publication was armed with a users’ manual in the form of “Instructions to Readers.”

Building on the Elements treatise, with new chapters published periodically, the
Bourbakists became notorious among a certain set of mathematicians for being anti-
geometry. Mythology held that “Down with Euclid! Death to Triangles!” was the
Bourbaki battle cry.34 Geometry was slighted predominantly by the conspicuous
absence of pictures or diagrams in the Bourbaki publication. This was perhaps the
most distinctive characteristic of the Bourbakimethod (and themost offensive charac-
teristic, to Coxeter and like-mindedmathematicians)35: it banned the use of diagrams
in mathematics. The only exception was a symbol, a backward S-curve printed in the
margin to caution readers, like a traffic sign on a treacherous mountain road, when a
slippery or “dangerous turn” in the argument was ahead.36



“Bourbaki made a point of no pictures,” said Pierre Cartier, a retired second-
generation Bourbaki member (all members must retire at age fifty37), now director
emeritus of the Institut des Hautes Études Scientifique, in France. “Rather, it was
based on pure logical reasoning, as little visual insight as possible. Visual insight was
considered a concession to human weakness.”38

The impetus behind both the invention of Bourbaki in the first place, and Bourbaki’s
distrust of diagrams, can be traced to the First WorldWar. “[T]his war, we can very well
say, was extremely tragic for the French mathematicians,” recounted Dieudonné, the
Bourbaki scribe. “In the great conflict of 1914–1918, the German and French govern-
ments did not see things in the sameway where science was concerned. The Germans
put their scholars to work, to raise the potential of the army by their discoveries and
by the improvement of inventions or processes, which in turn served to augment the
German fighting power. The French …felt that everybody should go to the front …This
showed a spirit of democracy and patriotism that we can only respect, but the result
was a dreadful hecatomb of young French scientists.” This had dire repercussions
for Frenchmathematics. After the war there was a dearth of young talent. While the
older mathematicians who had made Paris an international center were still alive
(being too old to serve), they knew only the mathematics of their youth. The teaching
at École Normale stagnated. There were no liaisons with cutting-edge mathematics
in the international community. Bourbaki was born as a means of reinvigorating the
teaching of mathematics in France and reestablishing its world-class standing.39

As for the anti-visual bent, Bourbakists’ opposition to figures had the noblest of
intentions. They didn’t consider figures evil, nor did they target triangles with an
irrational vendetta. Rather, in seeking mathematical truth, they rationally distrusted
the subjective visual sense, and thus felt it should not be employed; the Platonic
intellectual powers were trustworthier for penetrating the perfect and pure world of
mathematical forms. The Bourbakis invoked, in religious terms, the “third eye of the
soul” to compensate for the fallibility of the two physical eyes.40

The move away from the hegemony of the eye was a far-reaching trend in early-
twentieth-century France. One thesis holds that it was instigated in part by the First
WorldWar and the failure of sight to protect soldiers. The extreme conditions of trench
warfare created “a bewildering landscape of indistinguishable, shadowy shapes, il-



luminated by lighting flashes of blinding intensity, and then obscured by phantas-
magoric, often gas-induced haze …When all that the soldier could see was the sky
above and themud below, the traditional reliance on visual evidence for survival could
no longer be easily maintained.”41

The anti-visual trend was also a reaction against France’s long-standing “hyper-
trophia of the eye.” The eye had grown into an enlarged organwith swollen importance.
Louis XIV’s Versailles demonstrated this fetish for visual appearance, as did the cam-
era, early cinema, and Paris as a city of spectacle and light—its image of parade,
phantasmagoria, dream, dumbshow, mirage andmasquerade, all “metaphors of vi-
sual untruth.” Unlike Germany, where music rose in importance, and England, where
words dominated, in France visual appearance remained paramount for an extended
period, reaching its peak in the late nineteenth century, when decoration, decadence,
artifice, and art nouveau42 held sway.43

Reacting against this state of affairs, French intellectuals from a broad spectrum of
disciplines suffered a loss of confidence in the eye and abandoned the value of visual
evidence.44 Bourbaki was part of this phenomenon. Visual reasoning inmathematics
and science was supplanted by the power of equations and abstract methods to con-
ceptualize and explain reality, delivering a hard blow to the classical, and very visual,
tradition of geometry.

According to Imre Toth, a Hungarian philosopher of mathematics and emeritus
professor at the International College of Philosophy in Paris, “Bourbaki was an enemy
of everything that is geometry.” Coxeter, by contrast, stood strong. He was the rock,
the stone, which the Bourbakis could not destroy. “He remained a geometer and
represented a high fidelity to geometry,” said Toth. “He was the preserver of the
classical geometrical spirit; Coxeter was the citadel of geometry, the unconquerable
fortress of geometry, against this huge deluge of Bourbaki.”45

Pitting Coxeter against Bourbaki is suspect for some, since Coxeter and the
Bourbakis never so much as shot derisive glances at each other across conference
halls—that was not Coxeter’s style.46 The relevance of making opponents out of
Coxeter and Bourbaki is that the two embodied vastly different approaches to
geometry as practiced in the last century, a period during which classical geometry
was in desperate straits.



Bucking the anti-visual Bourbaki movement, Coxeter, who had begun spinning his
polytope opus at Cambridge and Princeton, stoically continued with this pursuit at
the University of Toronto.
His polytopes made their way into his updated version of W. W. Rouse Ball’s book

Mathematical Recreations and Essays. In February 1939, the page proofs of the final
manuscript arrived, shortly after the birth of Coxeter’s first child, Edgar (his daughter,
Susan, was born two years later in 1941). He read the proofs while taking breaks from
painting the nursery yellow, and hemarked a common babymilestone in his diary
with an extra geometric dimension of enthusiasm: “E succeeded in rolling over 93
degrees onto his tummy.”47 Coxeter’s revised edition came out later that year.
This classic bookwas asmuch aboutmagic as it was aboutmath—themind-bending

trickery of math, the games and mystery, with no application but fun. Among the first
items in the table of contents was “To find a number selected by someone.” There was
a section onmazes, their history and rules for traversing.48 In Ball’s edition there had
been an entire chapter on string figures, which Coxeter deleted. Putting his subtle
stamp on the book, he also deleted the pages on “Mechanical Recreations” to make
room for a new chapter on—what else?—“Polyhedra.” Therein, in the subsection on
“Ball-piling and Close-packing,” he gave a solution to the problem of the sand on the
seashore and why it gets dry around your foot and wet underneath:

If you stand on wet sand, near the seashore, it is very noticeable that the
sand gets comparatively dry around your feet, whereas the footprints that
you leave contain free water …The grains of sand, rolled into approximately
spherical shape by the motion of the sea, have been deposited in something
like random piling. The pressure of your feet disturbs this piling, increasing
the interstices between the grains. Water is sucked in from around about, to
fill up these enlarged interstices. When you remove your feet, the random
piling is partially restored, and the water is left above.49

As a testament to the book’s appeal, it went through eight reprints in the following
three decades, and elicited the letter to Coxeter from an aspiring John Conway.
In addition to these recreational polytopal preoccupations, Coxeter ramped up

his rate of publication in scholarly mathematics journals, producing articles with an
evocative litany of titles: “Regular Skew Polyhedra in Three and Four Dimensions
and Their Topological Analogues”; “An Easy Method for Constructing Polyhedral



Group-Pictures”; “The Regular Sponges, or Skew Polyhedra”; “Regular and Semi-
regular Polytopes”; “The Polytope 221, whose 27 Vertices Correspond to the Lines
on the General Cubic Surface”; “The Nine Regular Solids”; “The Product of Three
Reflections”; “A Problem of Collinear Points”; “Quaternions and Reflections.”50 His
papers attracted attention for their beauty, not only in terms of their mathematical
content, but also their stylistic merit. Coxeter had an eye for detail and paid close
attention to how he marshaled his facts, presenting his argument in the most orderly,
logical, and eloquent manner.† He crafted flowing segues from one point to the next
and carefully constructed an overall symmetry throughout his arguments, nicely
tying-off all the references.51 Coxeter routinely wrote papers displaying suchmastery.
John Conway once tried to match the feat of a Coxeterian-caliber paper and found it
required headaching effort.52

As Coxeter refined his research, at once expanding and focusing its scope, he parsed
the properties of polytopes in hope of finding something new. Coxeter worked with
his polytopes the way a sculptor approaches yet another block of marble. As Coxeter’s
student, the CBC broadcaster Lister Sinclair likened: “When he got a new block of
marble, Michelangelo stared at it, listened to it, touched it, and softly walked ‘round
and around it. He was asking Pandora’s block, ‘Who’s there? Who’s in there?’ Only
then would Michelangelo begin to let the unseen prisoner loose. I’ve actually watched
that happenmany times. I’ve seen a great artist pace ‘round and around a block of new
material asking, ‘Who’s there? Who’s in there?’ That great artist is Donald Coxeter.”53

Day to day, pencil and paper always at hand, Coxeter sifted and resifted one polytope
and then another through his mind. He looked for interconnections, extrapolations,
hybrids, and analogies, these subtleties accumulating and leading toward discoveries
that sometimes came to naught—as he noted in his diary one day: “I considered
possible new polytopes (useless idea).”54 He kept Aunt Alice apprised of his work by
letter, until her death in 1940.

Coxeter developed another fruitful collaboration with Gilbert de Beauregard Robin-
son, a colleague at the University of Toronto, who suggested an extremely rich rethink-
ing of the interactions between polytopes and group theory, the algebraic study of
symmetry.55 This link between Coxeter’s elementary Euclidean polytopes and the
more modern algebraic geometry was tantamount to striking gold. The hybrid at-



tracted the attention of highbrow academics, those who might otherwise have viewed
Coxeter’s classical inclinations with dismissive disdain. His work in this area was
top-rate, eliciting invitations to speak at all the best universities, leading Coxeter to
nurture the beginnings of a loyal fan base that would come to circle the globe.56

Benoit Mandelbrot was one such fan. In 1947, Mandelbrot was at Caltech as a grad-
uate student when Coxeter visited to give a lecture. “He was a great reassurance,”
recalled Mandelbrot, professor emeritus at Yale and fellow emeritus at IBM.57 Man-
delbrot had begun his university education in Paris when Bourbaki began imposing
its influence. “Bourbaki had a very destructive aspect which they deny today,” he said.
“They say it was benign, but I can testify it was not.”58

Mandelbrot’s boyhood education had been put in the hands of his uncle, Szolem
Mandelbrojt, a professor of mathematics at the Collège de France and a founding
member of Bourbaki. Nephew and uncle, however, had opposing tastes in mathe-
matics. The young Mandelbrot called himself a geometer; he had a special gift for
shapes and did geometry in his head. His uncle, an analyst, also had a visual gift,
but he kept geometry for Sundays and vacations; geometry, his uncle told him, was
exhausted, and onemust outgrow it in order tomake a genuine scholarly contribution.
If he pursued geometry, young Mandelbrot faced ruin and unemployment.59

In 1945, after a splendid performance in mathematics on the Grande Écoles en-
trance exams—Mandelbrot credited some cheating with his photographic memory of
an “army of shapes” that allowed him to find a geometric counterpart for any analytic
problem—he decided to attend the École Normale Supérieure, but with the intention
of avoiding his uncle’s type of mathematics. Mandelbrot soon ascertained he had
no alternative but to follow Bourbaki. “[T]hey were a militant bunch, with strong
biases against geometry and against every science, and ready to scorn and even to
humiliate those who did not follow their lead,” he once recalled. “It was presented to
us students as the best there was. And if we didn’t like it, we were advised to move
out of math.”60 Mandelbrot was disheartened and after only a few days he moved to a
different school. Eventually he drifted out of mathematics, dabbling in economics,
engineering, physics, and physiology. Intermittently, geometry coaxed him back, as
when he encountered Coxeter at Caltech.61



“He was viewed as a throwback,” said Mandelbrot, remembering Coxeter in that day.
“He was a bit marginal. He could not have been a professor at Princeton or Harvard,
but he was at Toronto, which was very good but not quite so central. I remember
feeling the strength of his style. The enjoyment Coxeter always had handling shapes,
models, and letting models help him dream, is something I find very attractive and
very important—the spirit of loving shapes and the role of the eye and the hand, that’s
what I found so marvelous in Coxeter.”
“Most people are not strong enough to have a well-defined personal style,” Mandel-

brot said. “They would bend according to fashion or circumstances and he clearly did
not bend. He kept with his classical tradition of geometry, which had been totally flat-
tened—pulverized would be even closer—by Bourbaki. To learn mathematics without
pictures is criminal, a ridiculous enterprise.”62

Coxeter’s unlikely success, flouting themathematical fates, did not occur by happen-
stance. He was diligent, doggedly hanging on to his polytopes, and dodging distrac-
tions that threatened to lure him away.63Hiswife pushed him to take on departmental
duties, hoping he might one day become head of the math department, but Coxeter
had no interest. He was well aware that the nuisance of administrative commitments
would only keep him from his mathematical objectives.64
Coxeter willingly gave his time as founding editor in chief of the Canadian Journal

of Mathematics the late 1940s, continuing in the position for nine years. That sort of
extracurricular activity he considered worthwhile because it provided an ongoing and
cutting-edge education. And hemaintained a voluminous correspondence with all
ranks of mathematicians who, more and more as the years passed and the ingenuity
and delights of his work spread, wrote to him from around the world.65
Time consumed by teaching he also considered well spent—classrooms being full

of fresh incubating minds. Coxeter began each class by asking for questions from the
floor. When they were answered he seamlessly segued into his lecture, so smoothly
that the last question seemed to have been carefully planted. The exception to this con-
temporaneous style was when Coxeter planned his lectures around books in progress.
He came to class with a manuscript and spread piles of pages on tables in front of
him. He gave the manuscript a test run over the course of the term, fielding questions
and comments from students. Occasionally he profited when his students produced
ideas or solutions to problems that he hadn’t thought of himself—he would interrupt



the class, run over to the manuscript, and make a note at the edge of the page. And of
course, students’ contributions were credited in the published text. His mathematical
ambitionswere almost selfless. In preserving andbolstering the oeuvre of the classical
tradition, Coxeter’s primary interest was the progress of knowledge and encouraging
younger generations.66

Coxeter, for the most part, was the master of his domain—he was unimpeachable.
He had a remarkable geometric eye, and his powers of intuition were hard to match.
“Donald would look at a picture,” said Barry Monson, one of Coxeter’s PhD students,
“of the tiling of a two-dimensional plane—think simply of square tiles on the floor,
going out forever and ever and ever. Donald would look at that sort of thing and say,
‘Well, it is quite clear that if we magically jump from one tile to another a considerable
distance away, then along the route we must pass over the intermediary tiles in such
and such a fashion.’ This is all fine and easily visualized,” said Monson. “Nevertheless
there are some statements in there that one can, and perhaps even should, prove quite
rigorously, in part because Donald would make such statements not only about the
ordinary Euclidean space we live in, but he would go on to say it is obvious that exactly
the same thing must happen in non-Euclidean space, and then by further extension,
in higher dimensional spaces. Most of us can’t readily visualize these things. We
need to rely on algebraic arguments to bolster what our intuition tells us. But Donald
would not rely on those watertight algebraic arguments, even when writing his papers
and books. He would just see things and that is how they were. And he was usually
right.”67

Coxeter’s famed intuition, lampooned.



If ever Coxeter was questioned by a student on the veracity of a point that he knew
was beyond reproach, he didn’t respond in a wishy-washy conciliatory manner, mod-
estly asserting his knowledge. Nor did he snap back in a brusque or rude manner
common amongmany socially clueless mathematicians (a stereotype, but for good
reason). In his avuncular way, he simply made it known that he had been around a
while, and that he was right. On a personal level, there was not an ounce of egomania
about him, but intellectually he had an ego and wielded it, politely when necessary.
“He was almost courtly,” said Monson. “He was very gentle, even when he managed to
show you that you were thinking like an idiot.” It was thus quite gratifying for students
to catch Coxeter in a lapse and point out he was wrong. “That did not happen very of-
ten,” said Monson, “and you didn’t crow about it when it did, but it was fun to do.” Asia
Ivie??? Weiss, now a professor of mathematics at York University, was lucky enough
to have such an experience. She was Coxeter’s seventeenth and final PhD student
(and the only woman). Working on a problem, she couldn’t see Coxeter’s extrapolation
from two dimensions to three, even after reams of calculations. She persevered and,
after days and days, successfully proved that the three-dimensional result was not
a spiral on a cone, as Coxeter had said was so patently clear, but rather a spiral on a
sphere. “I was afraid to go and tell him,” said Weiss. When she did, Coxeter’s response
was pure delight: “Haaaaaaaa! Look at that!” he let out with glee. Weiss married the
following year and Coxeter gave her a beautiful glass ball with spirals winding around
it as a wedding gift.68

Coxeter’s selective attention span, and disinterest in the tedious minutiae of depart-
mental affairs, made promotions at the university somewhat hard to come by. He had
been hired as an assistant professor in 1936. Seven years passed before he rose to
associate, another five before he received tenure as a full-fledged member of faculty:
“I felt like the patriarch Jacob,” he joked about his time served, “working seven years
for Leah and seven years for Rachel.”69When the professorship finally came—and
soon after a coveted office in the university college tower—he was already a fellow of
the Royal Society of Canada, and shortly after a fellow of the Royal Society of London70
(he signed his name in the Royal Society book, which, a few flips of the page backward
in time, also bore the signatures of Newton and Einstein).



More important, in 1948, the year he became a professor, he at long last published
his treatise dedicated entirely to polytopes, giving it the singular title Regular Polytopes.
A postcard of congratulations arrived in the mail from his Marlborough College tutor,
Alan Robson: “I am glad to see your Polytopes actually printed; and I like it very much.
The pictures and tables are very pleasing. What a long time it is since you made that
resolution (do you remember it?) when you were working for the Trinity exam, not
to work in 4 dimensions except on Sundays.”71 The book was the consummation of
twenty-four years’ work.

Regular Polytopes earned a reputation as a modern-day addendum to Euclid’s work,
and Coxeter had intended it to be exactly that (“In fact,” he noted in the preface, “this
book might have been subtitled ‘A Sequel to Euclid’s Elements’ ”). It picked up where
Euclid left off, extending the study and classification of the Platonic solids and a larger
family of polytopes to the nth dimension. “As for the analogous figures in four or more
dimensions, we can never fully comprehend them by direct observation,” Coxeter
said. “In attempting to do so, however, we seem to peep through a chink in the wall of
our physical limitations, into a new world of dazzling beauty.”72

The book’s “chief novelty,”73 by Coxeter’s estimation, was his graphical notation
representing kaleidoscopes and the multidimensional shapes they generated—here
was one strategy for overcoming the human inability to experience hyperspace. An-
other strategy he presented was to convert Coxeter diagrams and the information they
encoded into their algebraic equivalent, into Coxeter groups. Coxeter groups—a com-
prehensive and systematic enumeration of kaleidoscopes and the symmetries they
generate—elucidated mathematical symmetries in a transcendent way, translating
geometric entities into algebraic ones like an English-French dictionary, and giving
mathematicians another ladder by which to climb the dimensions.74

Coxeter, of course, was not so vain as to give these graphical diagrams and their
algebraic equivalents the Coxetermoniker. These tools—and Coxeter himself—became
more andmore popular as an increasing number of mathematicians picked up his
methods. Only gradually did his tools gain their proper-noun nomenclature, working
their way into the mathematical lexicon as Coxeter namesakes.



By inventing such versatile tools, Coxeter firmly melded his classical geometry
with the more modern algebraic approach. This was not the first time a geometry-
algebra interface had been achieved. In the seventeenth century, Descartes made
the first crossing with analytic geometry. And in the eighteenth century, Joseph-
Louis Lagrange, one of the fathers of group theory, declared: “As long as algebra
and geometry traveled separate paths their advance was slow and their applications
limited. But when these two sciences joined company, they drew from each other
fresh vitality and thenceforward marched on at a rapid pace towards perfection.”75
Coxeter made his crossing by the bridge of group theory, the mathematical lan-

guage of symmetry. With his envoys, he injected into classical geometry a dose of
modern mathematics. He breathed new life into the subject and made it sparkle with
sophisticated symmetry groups. “Coxeter groups are anunexpectedly nice application
of group theory,” said Jeremy Gray. “Donald’s work makes the connection between
geometry and groups that much richer. Which is a two-way street, because you then
get interesting families of groups that you care more about because you can carry
them back to geometrical questions …That is a very big trick in mathematics. That’s
what Donald showed us how to do.”76
Coxeter’s big trick transported mathematicians into towering and daunting di-

mensions using visual images by analogy. And again, the microcosm-macrocosm
metaphor applies. While Coxeter didn’t stray too far from his home base of the fourth
dimension, 24 or 256 dimensions are of interest to other mathematicians. With Cox-
eter groups, a polytope—say, a square—in the tangible two or three dimensions is
translated into symbolic algebra. The algebraic generalization then informs the sym-
metries of the square in 256 dimensions, or an arbitrary number of dimensions.77
Coxeter groups describe the symmetries of a shape—the geometric existential essence
of what it means to be a square or a dodecahedron—in any dimension.78
Before wading any further into how Coxeter groups work, some exposition on group

theory is helpful. The commands issued to a soldier—Attention! Right face! Left face!
About face!—might loosely be considered a group. These commands form a group of
order four, since there are four in the set. To be more specific, however, a symmetry
group comprises the set of commands, or transformations, performed on an object
that preserve its initial appearance.
The symmetry groupof a square contains eightmotions that preserve its appearance

(the squares below have been marked to assist in tracking the motions).‡ These are:



(1) Do nothing. This is called the identity element.

(2) Rotate 90°about the center, counterclockwise.

(3) Rotate 180°about the center, counterclockwise.

(4) Rotate 270°about the center, counterclockwise.

(5) Reflect across the horizontal side bisector.

(6) Reflect across the diagonal through the lower left-hand and upper right-hand
vertices.

(7) Reflect across the vertical side bisector.

(8) Reflect across the diagonal through the lower right-hand and upper left-hand
vertices.

Since there are eight symmetries of the square, the square is said to have a symmetry
groupof order eight. These transformations together gain the status of a groupbecause
they satisfy the four laws of group theory. These are:

1. The “do nothing” identity element is in the set.

2. The “associative” law dictates that when three symmetry transformations are
performed one after the other, as long as the order in which they are applied is
the same, they can be grouped in two different ways and achieve the same result.
For example, multiplication of integers is associative:

(2 × 3) × 5 = 2 × (3 × 5)



And with rotations of the square:

(90° + 270°) + 180° = 90° + (270° + 180°) = 540°

(which is equivalent to a 180°rotation)

3. The “inverse” law dictates that each symmetry must be reversible by another
symmetry (its inverse) in the group; that is, performing one symmetry and then
its inverse gives the same result as the identity, doing nothing. For example, the
inverse of a 90° rotation is a 270° rotation, since 90° + 270° = 360°, a rotation
equivalent to the identity.

4. The magical “closure” law requires that when any two symmetries in the group
are performed one after the other, the result of that combination is also a sym-
metry in the group. As shown above, rotation (2) followed by rotation (3) results
in rotation (4), which is also in the symmetry group.79

Given these persnickety laws, or axioms, group theory is described by mathemati-
cians who work with it not only as “magical,” but also “thorny.”80 To dwell too much
on the gnarly complexities of group theory, however, would hardly be in keeping with
the Coxeterian spirit of simplicity. “It’s amistake to assume that whatmathematicians
do is esoteric, deep and difficult,” said John Conway. “All the great discoveries are very
simple—Einstein’s for example. Coxeter’s books explain things in elegant and simple
terms. And what Coxeter did with his Coxeter groups was simple.”81

Coxeter always kept the discussion of his groups concrete by referring to themirrors
he used to generate the Platonic solids. Coxeter groups are symmetry groups that
can be generated by reflections in mirrors—or as he described them, “the algebraic
expression of howmany images of an object may be seen in a kaleidoscope.”82 Since
the square’s eight symmetries can be generated in a kaleidoscope, it is defined by a
Coxeter group of order eight.83



For a crash course on Coxeter groups, any mirror will do. Imagine standing at
a bathroom mirror, and there before you is your mirror image—so there are two
of you. Coxeter described this phenomenon by referencing The Adventures of Alice
in Wonderland: “If Alice could take us through the looking-glass,” Coxeter said, “we
would still see the same two things, for the image of the image is just the original
object.”84 The mathematical description of either scenario is a “Coxeter group of
order 2,” because there are two images: the original and the virtual opposite twin
reflected in the mirror.85
In the alphabet of algebra, this Coxeter group of order 2 is expressed as 𝑎𝑎 = 1 or

𝑎2 = 1, where you can think of 𝑎 as the mirror, and 1 as you, or the identity image. So
when an object—you—is reflected into mirror 𝑎 and back out frommirror 𝑎 producing
a second image, the result is you, or the identity image. This is the simplest Coxeter
group, and it is given the designation: 𝐴186
Next, imaginemirrors in an elevator, on two adjacent sides of the compartment—this

amounts to a simple two-mirrored kaleidoscope. When you look at two mirrors that
meet at a perpendicular corner, four images are present: your immediate image
in one mirror; your immediate image in the second mirror; yourself outside the
mirrors looking in (the real or “original” image); and then there is a fourth image
behind the seambetween the twomirrors. Thesemirror reflections generate a Coxeter
group of order 4.87 The algebraic alphabet for this Coxeter group has two characters,
since there are twomirrors—𝑎 and 𝑏. The algebraic statement in this case would be:
𝑎2 = 𝑏2 = (𝑎𝑏)2 = 1.
If yet anothermirror was present on the ceiling or the floor, various combinations of

the three algebraic symbols 𝑎, 𝑏, 𝑐would algebraically represent this Coxeter group,
since it is generated by three mirrors. In this fashion, the algebraic alphabet accu-
mulates. A dictionary of algebraic words accumulates, forming a vocabulary§ that
facilitates discussions and investigations of geometric entities in an algebraic lan-
guage—ameeting of geometric and algebraic minds.88 (See appendix 4 for further
exploration into Coxeter groups.)
Coxeter groups proceed in the samemanner. When more precisely aligned mirrors

are used, and a prop is placed inside to generate a Platonic solid, the mirrors do not
behave, in terms of Coxeter groups, exactly like the simple mirrors just described.
There isn’t a direct correlation, such as with a Coxeter group of order two producing
two images—suffice it to say the mirrors of the kaleidoscopes interact to form amore



complex pattern. The three-dimensional icosahedron is defined by a Coxeter group
of order 120—the reflection of an appropriately placed prop, a blob, will bounce off
the three mirrors, producing twelve images of the blob, which together form the
vertices of a finite icosahedron. Using the algebraic symbols to mimic more andmore
mirrors, the study of polytopes ascends the dimensions, adding new words to the
algebraic alphabet and expanding the study of group theory. The icosahedron in
four dimensions, or the hypericosahedron, is defined by the Coxeter group of order
14,400 and has 120 vertices. Mathematicians, if they have the time, can calculate this
data for themselves, or they can grab their copy of Regular Polytopes and look up the
information, calculated by Coxeter for all kaleidoscopes and organized nicely in tables
at the back of his book.

Charles Addams’s 1957New Yorker cartoon inadvertently illustrates a Coxeter group
of infinite order.
In deepening the union between geometry and algebra, Coxeter acknowledged the

value and power of both methods for obtaining results. But he was a master at using
his geometrically rooted tools—his Coxeter groups and Coxeter diagrams—to establish
results in group theory. He plugged in his symmetry groups and diagrams, bypassed
laborious calculations, and covered leaps and bounds with a few simple and swift



steps. “Most people do not have his fantastic geometric insight,” said Roe Goodman,
a professor of mathematics at Rutgers University. “Coxeter was a real pioneer, who,
through dint of great insight and concentration, imagined higher dimensional objects.
But for most people it is very hard to fasten onto them. And for those people, like
myself, the algebraic description comes in handy. But in a certain sense the algebraic
calculations are always a little disappointing. It’s sort of like bookkeeping—you see
that the account balances but you’d like to know where the fun was in spending the
money.”89
Coxeter groups are forever crawling out of the mathematical ocean, and the fact

that they pop to the surface so much as a useful gadget signals the omnipotence and
omnipresence of their symmetries, underlying everything from geometry to topology
to number theory to algebra to physics, even chemistry, cosmology, biology, sociology,
catastrophe theory, economics, and so on. Coxeter groups forge links to all sorts of
fields; they are a way of thinking that can be applied to all sorts of problems. The basic
concept of a Coxeter group is a template for symmetry, a universal building block for
investigation. There are hundreds of mathematicians doing research pertaining to
Coxeter groups, and related concepts of symmetry.90
Fields of study that investigate patterns often apply group theory, and thus Coxeter

groups, as probative tools, because symmetries are invoked to simplify or completely
solve complicated problems. This association works, in part, because equations be-
have according to symmetries, and hence, they behave analogously like shapes. The
square, for example, has four vertices and eight symmetries. The equation 𝑥4 = 3
has four roots, and in this case the same eight symmetries, or permutations. “The
symmetries of the square and the symmetries of the equation 𝑥4 = 3 are the same,
from a certain point of view. That’s an analogy,” said Simon Kochen, the Henry Bur-
chard Fine Professor of Mathematics, at Princeton. “Mathematicians don’t talk a lot
about analogy in mathematics. Not because it isn’t there, but just the opposite. It
permeates all mathematics.” Analogy in mathematics and science—and in bridging
the two—is pervasive, and a vehicle to jump-start new advances. Coxeter groups are
one way of crafting mathematical analogies.91
“It’s always amazing when Coxeter groups turn up,” said Vakil. “Someone gives a

lecture, on something seemingly unrelated, and then the name ‘Coxeter’ comes up
and there is sort of a shiver through the audience. ‘Ah! Here they are again!’ And why
are they there? I have no meta-reason, no quasi-philosophical or religious reason as



to why they come up. But there’s got to be some reason why they underlie so many
different structures. This powerful idea of symmetry, this aesthetically beautiful and
extremely simple structure, for some reason underlies the world and so much of
mathematics.”92

While Vakil doesn’t offer any philosophical or meta-existential reason for the om-
nipresence of Coxeter groups, Sir Michael Atiyah is willing to try. “These surprising
connections in mathematics are always the most interesting things. I’ve seen them
enough to have a general philosophical view,” said Sir Michael, knighted for his work
as a geometer, winner of the Fields Medal and currently an honorary professor of
mathematics at Edinburgh University. His curiosity often leads him to these unpre-
dictable interfaces, where dissolving boundaries shed new light on both realms as
techniques are transported from one side to the other. “And usually what it means,”
he said, “if you examine underneath, is that you find deep important truths that
aren’t obvious. These connections are an indication of something really exciting that
you’ve got to explore—like a sign, a warning sign: ‘GOSH, LOOK, DIG HERE, HIDDEN
TREASURE!’ ” Some people think of these connections as nice fortuitous accidents,
but Sir Michael does not take this view. “These things are not accidents. They are
somehow fundamental. Even if you didn’t know they were there before, once you see
them you have to investigate and by investigating you discover lots and lots of things.
They are a very important part of mathematics in terms of directing the search of
mathematicians into new areas. This is where newmathematics is forged,” he said.
“In a lot of mathematics, you build up big theory in a rather straightforward way. But
every now and again there are these things that connect up to different parts. They
are showing you that you missed something by building this big structure, going up
in one direction. You realize that you should have turned off ‘right’ at one stage and
explored something else.”93

The ubiquity of Coxeter groups in modern mathematics is fodder for somemathe-
maticians in refuting the lament that geometry has suffered any decline in the twen-
tieth century. It’s just that geometry has changed; it is a different sort of geometry.
Coxeter’s ideas have not become less important, they’ve becomemore important, they
have transcended their origins. In the earlier stages of his career, Coxeter’s followers



studied precisely what he studied and asked precisely the same questions. Then those
questions were answered, and the answers have become the terrain over which the
next generation of acolytes pass on their way to another neck of the woods, where new
questions await answers, and then more questions again.94

“Coxeter’s perspective and ideas are in the air we breathe,” said Vakil. “It’s not that
his ideas are used to solve problems, it’s that the fundamental problems grow out of
his ideas. He’s the soil, part of the substrate, part of the building in which we work, in
which we live. Coxeter’s name gets stated, but in some senses people don’t even think
of him as a person—he is an adjective that gets applied to somany things. Towards the
end of his life, many people I met were amazed that he was still alive. He had become
a name. A famous name—these famous names becomemore a concept than a person.
It’s like hearing that Beethoven was walking down the street.”95

* Book I. Set Theory, Book II. Algebra, Book III. Topology, Book IV. Functions of One
Real Variable, Book V. Topological Vector Spaces, Book VI. Integration.

† He tickled his readers with unexpected turns of phrase such as: “…dividing the
product of the first three expressions by the product of the last two, and indulging in
a veritable orgy of cancellation, we obtain…” And a pet word of Coxeter’s was “per-
spicuous”—from the Latin perspicuus, as in “perspective,” and meaning plain to the
understanding, or conveyed with clarity and precision of presentation. “Perspicuous”
is a very Coxeterian word both because he used it at least once per book, and because,
as an expositor, in the written word or in the classroom or at the conference lectern,
he embodied perspicuousness.

‡ Other motions or transformations may have the same effect, but they are equiv-
alent to the eight listed. If you reflect the square twice in the same mirror line, for
example, that would effectively be the same as doing nothing. Mathematicians are
only concerned with the end result of a transformation—the final effect rather than
the actual motion that obtained it. Two symmetries are equivalent if they produce the
same final effect.



§ The languagemetaphor in explaining how groups work continues to be applicable
because, like in any language, the algebraic words can be strung together, or interact,
according to the equivalent grammatical rules. The grammatical rules dictate how
reflections combine in the kaleidoscopes—as the reflections bounce frommirror to
mirror like billiard balls ricocheting off the bounds of the pool table. The rules work
like multiplication, since the images reflect off mirrors successively, or in “multiple”
fashion, and combine to generate a complete image.



6 Tangents on Politics and Family Val-
ues

[B]ut let us not confine our cares
To simple circles, planes and spheres …

—Thorold Gosset, Addendum To ``The Kiss Precise''

Regular Polytopesmade Coxeter’s reputation. He fielded offers for visiting profes-
sorships internationally, and for full-time jobs in bigger cities, more in tune with his
cosmopolitan sensibilities. He faced a difficult choice when an opportunity arose
that would take him back to England, to Sheffield University. It was the most ago-
nizing decision of his life. As was his habit, he made a list of pros and cons, which
balanced perfectly, sixty-five on each side. A handsome raise persuaded him to stay in
Toronto. But no sooner had he made the decision than he regretted it and wished he
could change his mind. Around the same time, there were rumblings of interest from
Princeton, which never materialized, and he turned down Notre Dame. In 1951, the
American University inWashington, D.C., wanted him to do operations research in lin-
ear programming—the use of mathematical models to aid decision-making problems
involving a multitude of variables.1 American also tempted him with a high salary.
This time the head of the Toronto math department alerted the university president
that Coxeter was considering leaving. Not wanting to lose the star that was putting
Toronto—and Canada—on the mathematical map, the president persuaded Coxeter to
stay, again with a sizeable salary increase.2
Regular Polytopes attracted two distinct crowds: practitioners in Coxeter’s classical

corner, who appreciated the symmetrical and shapely polytopes for their own sake,
and those who wanted to harness his findings for more modern application. “Every
reader will find some parts of the book more palatable than others,” Coxeter noted
in the preface, “but different readers will prefer different parts: one man’s meat is
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another man’s poison.”3 Coxeter also made clear his purely quixotic intentions. “The
chief reason for studying regular polyhedra,” he said, “is still the same as in the time
of the Pythagoreans, namely, that their symmetrical shapes appeal to one’s artistic
sense …Such an escape from the turbulence of ordinary life will perhaps help to keep
us sane.”4

While Coxeter had put his final years of work into Regular Polytopes, the real world
was in the throes of the SecondWorldWar. “Realmathematics has no effects onwar,” G.
H. Hardy stated in 1940. “No one has yet discovered any warlike purpose to be served
by the theory of numbers.”5 Hardy, there, made an uncharacteristic miscalculation.
During the SecondWorld War, the Allies utilized mathematical logic in deciphering
Germany’s Enigma code. Coxeter received his call for service in 1941, when the
Canadian government decided it needed to set up a cryptanalysis bureau the likes of
Britain’s Bletchley Park. “There is grave possibility that every message transmitted is
available to…enemy sympathizers,” warned aDepartment ofNational Defense circular.
“It is safe to assume that the signals emanating fromOttawa,Winnipeg, Halifax, etc. are
just as strong in enemy countries as they are in Canada.”6 The Canadian government
knew its signals were being listened to. Canadian receivers “manned by army, navy,
and Department of Transport personnel crackled with a constant stream of messages,
day and night, on all practical bands. Dot-dot, dash-dot—almost all were in Morse
code and the listeners knew that they came fromU-boats announcing sinkings, enemy
raiders, spies calling home, diplomats reporting negotiations, or German air and army
units organizing attacks. Some of the messages were from enemies—Germany and
Italy—and some from potential enemies—Japan and Russia.”7

Samuel Beatty, the head of the math department at the university, recommended
Coxeter and Gilbert de Beauregard Robinson when the National Research Council
came looking for cryptographer candidates. These twomathematicians knew nothing
about codes and ciphers, but they were acquainted with mathematician Abraham
Sinkov,8 then with the U.S. Army’s Signal Intelligence Service (Coxeter hadmet him at
Princeton). They acquired the necessary accreditation—“fingerprinted for my visa,”9
Coxeter noted in his diary—and undertook two reconnaissance missions to Wash-
ington to get a briefing on what the work involved. Robinson decided to engage with
the Canadian cryptology team, cover name “Examination Unit.” Another friend and



colleague of Coxeter’s, the graph theorist William Tutte, worked as a code breaker at
Bletchley Park—along with Alan Turing*—and deciphered a series of Germanmilitary
encryption codes, an accomplishment cited when he was inducted into the Order of
Canada as “one of greatest intellectual feats of World War II.”10

In the end, Coxeter decided against the cryptology work. “I managed to wriggle out
of it,” he admitted. “I wanted to just go on with my mathematical research.”11 On
August 14, 1945, he wrote in his diary “THEWAR IS OVER,” and two weeks later he
sent in the final draft of Regular Polytopes to his editor.12 Also, he declined because
he was a pacifist. Years later, a colleague mentioned to him that Bertrand Russell
had been a pacifist in the First World War but not in the Second. “That’s one of the
things thatmakes him likeable,” Coxeter said, adding that the situation during the First
World War was quite different.13 Nevertheless, Coxeter remained firmly committed
to his views against war; he was “disgusted” when a maid in his employ enlisted in
the Women’s Air Auxiliary Force.14

Pacifism was not a popular position during the Second World War, throwing the
Coxeters conspicuously out of kilter with others in their social circle. Rien went to a
luncheon with departmental wives and reported back that Mrs. Beatty was “unsympa-
thetic about her pacifism, and said: ‘How funny the English are!’ ”15 And Elizabeth
Synge seemed to have run away fromCoxeter andRien at a concert and theywondered:
“Is she mad because we still drive a car in war-time?”16 The Coxeters’ wartime contri-
butions includedmailing food parcels to England17 and cabling Coxeter’s stepmother,
Katie, with an invitation to send one of his half sisters to Toronto for safekeeping.18

Coxeter’s staunch pacifism was only one facet of his larger sense of social justice.
His presence and support were always felt, even if mostly behind the scenes. He was
outspoken in his quiet fashion, attending meetings and contributing money, if not
always on the barricades.19 On July 17, 1942, he attended a Canadian Civil Liberties
Union rally with the physicist Leopold Infeld,20 who by then was at the University of
Toronto. The Toronto rally, which had been organized jointly with the American Civil
Liberties Union, drew a crowd of five thousand, demanding repeal of the ban on the
Communist Party of Canada. Coxeter was classified in the Canadian Who’s Who as a
liberal, but by all indications his leanings were rather more to the left of center.21



Coxeter supported Infeld when he was forbidden from leaving Canada to spend his
sabbatical year in his native Poland, then behind the Iron Curtain. In the Canadian
Parliament, the Progressive Conservative leader George Drew denounced Infeld as a
traitor who would provide the communists with atomic secrets. In 1950, after Infeld
resigned from his position at the university and remained in Poland, he and his wife
and their Canadian-born children were stripped of Canadian citizenship. Coxeter kept
in touch with Infeld, visited him in Europe in 1954, and later wrote an introduction
to his posthumous autobiography,Why I Left Canada. However, Infeld’s wife, Helen,
decided against including his contribution. Several friends and colleagues had offered
introductions, and she found Coxeter’s humdrum anecdotes about their children
playing together in Toronto’s ravines rather beside the point. Mrs. Infeld appreciated
Coxeter’s private support all the same and kept in touch with the occasional letter,
such as one in 1976 in which she expressed her gratitude: “Do you know, my life has
been such that I have come to highly evaluate some human qualities and feel that
it is good to tell people who have them so. I’d like to tell you that I do admire you
as a person of principle, not swayed by general prejudice, emotional blindness or
temporary hysteria of others in important matters. Would that people as a whole had
such rational understanding, everywhere!”22

Chandler Davis, a mathematician at the University of Michigan in the 1950s, also
benefited from Coxeter’s civil libertarian sympathies. Davis had been called before
the House Un-American Activities Committee (HUAC). He refused to testify and was
indicted for contempt of Congress. It was a particularly disheartening and deflating
experience for Davis, as HUAC investigators had dug up fewer than a dozen indiscre-
tions. He had been an active leftist since high school, and he felt more of his efforts
were worth noting23 (at least Davis was called to testify; subpoenas were prized as
acknowledgment of one’s stance, and failure to attract the attention of HUAC was said
to elicit “subpoenas envy”24).

Some of Davis’s fellow professors deemed him guilty of “deviousness, artfulness
and indirection hardly to be expected of a University colleague.” He was fired and
blacklisted from university jobs in the United States, spending eight years in limbo,
“jobless and under indictment.” His political activities were limited to preparing
for his court case, which he lost, committing him to a six-month jail sentence. A
welcome-home party awaited him upon release, but no employment, until he met the



pacifist Coxeter at amathematicsmeeting. Coxeter invited him to consider a job at the
University of Toronto, and wrote letters of recommendation to the math department
and (Davis suspects) to the Canadian government. Initially, the government refused
Davis entry but, ultimately, after a letter-writing campaign, they relented.25

In subsequent years, Coxeter was active in the cause for nuclear disarmament,
sitting on the university’s Nuclear Disarmament Committee, organizing speakers,
and engaging in a long talk with Nobel chemist John Polanyi about the origin of the
Hiroshima bomb.26 In 1959, he signed his name to a nuclear disarmament petition,
making the front page of Canada’s national newspaper, the Globe and Mail, with the
headline: U OF T HEADS SEEKING END TO NUCLEAR TESTING.27

And in 1967, he expressed his outrage at American involvement in Vietnam, dis-
cussing the issue with his friend and former PhD student Seymour Schuster, then a
professor ofmathematics at Carleton College, in Minnesota. Coxeter asked Schuster to
send him a copy ofMacbird, by Barbara Garson—a play, based onMacbeth,mercilessly
attacking President Lyndon Baines Johnson and his war policies. Schuster obliged,
but worried Coxeter might be offended by Garson’s crass intimation that President
Johnson was responsible for the assassination of President John F. Kennedy. “I feel
this intimation was, at the very least, in bad taste, and might also be considered un-
ethical,” Schuster wrote. “I should like to think further about the question and look
forward to hearing your opinion on it.” Coxeter’s response surprised Schuster: “In
reply to your question about the book, I fully appreciate your hesitation, but I find
myself able to enjoy it without any qualm. The monstrous insinuation seems to me
justified by the consideration that, even though technically false, it is ‘in character.’
What he is doing now, she could argue, is so atrocious that, if he had been guilty also
of the assassination, it would make no difference, just as we would think no worse of
Hitler (than we do) if someone proved him responsible for the death of Gandhi.”28

On thedomestic front, Coxeter didnot display quite the samepropensity for peaceful
relations. Of her husband’s dedication to social justice and his all-consuming and
unwavering devotion to geometry—his polytics—Rien seldom hadmuch to say (one
couple who socialized with the Coxeters observed that Rien seemed not to have any



intellectual interests, other than being overawed by her husband’s intellect).29 On the
surface, Rien accepted her husband’s commitments mostly without quibble, trying
not to feel any imposition or jealousy. She humored herself by saying that at least her
husband would not stray—math was his mistress.30

“I was not able to love Rien as fully and completely as one should his wife,”31 Coxeter
conceded. He devoted most of his time and energy to his geometry. One weekend,
he mischievously procured an invitation for his wife and their two children to visit
a colleague’s cottage without him, so he could stay home and be alone to work on
his book. He saw nobody all weekend, working hard to get a chapter done. But his
finagling brought regret—“leavingme alone andmiserable.”32 And it plummeted Rien
intomisery. “R thinks I am trying to drive her crazy. Imust takemore responsibility for
the children.”33 Coxeter made token efforts to help with the parenting. He recorded
in his diary that he sat writing the final copy of Regular Polytopes in the bedroom of his
daughter, then age three, who had the measles.34

Neither nature nor nurture were enough tomakemathematics a fascinating subject
for either of Coxeter’s children; they hated math. By age nine, as Coxeter noted hope-
fully in his diary, Edgar was “getting quite good with multiplication.”35 But in his last
year of high school, Edgar brought his father to meet with his mathematics teacher,
and they “spent an hour explaining his neurotic horror of trigonometry.”36 Edgar
commandeered his father into pleading his case so he could drop the course without
penalty (but in the end, he did “pretty well” on geometry37). Susan fared somewhat
better. She chose to take geometry and trig instead of Latin. But by grade thirteen
she managed a score of only 50 percent on the standardized mathematics exam (she
maintains the marker saw the name “Coxeter” and didn’t have the heart to fail her, as
she deserved).38



Edgar, Donald, Rien, and Susan, circa 1952.

Their unimpressive performances were perhaps less an indication of smarts and
more a symptom or side effect of having such a legendary but emotionally absent
father. Indeed, Susan and Edgar remember his presence not so much as a father, but
as another sibling who needed taking care of. Rien told him what to wear (dressing
him in spiffy windowpane-checked suits with diagonal lattice ties), whether to wear
his galoshes on a rainy day, and when to wipe his chronically dripping nose.

In 1959, Susan and Edgar lodged a formal complaint with their parents about the
tension and lack of affection in their household. And from there followed a traditional
pattern of rebellion. Edgar, who had an interest in theology, announced he wanted to
become a Jew (he later studied to become an Anglicanminister). Susan dated older
men, whom her parents tried their darnedest to scare away. They repeatedly accused
one of burglarizing their house. Coxeter dispensed with another boyfriend after he
caught him in a compromising position with Susan on the living room floor in the wee
hours of themorning after a date; Coxeter accused the youngman of taking advantage
of his daughter (or was convinced to do so by Rien) and had the dean of the University



of Toronto faculty of medicine expel him frommedical school (the fellow transferred
to the University of Ottawa).† Coxeter was a mathematical pioneer, progressive in his
politics, but a stern and chilly conservative as far as child rearing was concerned. He
seemed to subscribe to a view advocated by Harold H. Punke, at Auburn University, in
Alabama: “intellectually competent persons” should breed, Punke argued, but not
be bothered with the charges of child rearing in order that they “use their time and
energy for other purposes.”39
In 1957, Coxeter reflected on his creative process in a survey sent to him by Punke,

a professor of education. On the topic of creativity, Coxeter observed, “It seems to
emerge from the sub-conscious …Fresh air, exercise and restful sleep are better than
any artificial stimulants.” His best times of the day were very early in the morning.
His moments of contemplation left him “never lonely or afraid, but surely thrilled.”
He relied on “mental images” in fostering ideas; “imagination should be allowed
unlimited scope.” And he said his stream of ideas came to him “not increasingly; but I
have no fear of running dry, because the supply of unfinished projects would suffice
to occupy me for many years to come, even if no completely new ideas appear from
now on.”40
He appended his survey answers with a story of one “eureka” moment of creativity

that occurred at Trinity College, Cambridge. Some of his bright ideas had hit him
while resting under a tree in a forest, while riding a bicycle, and at that intermittent
stage between dreaming and waking (he usually kept paper and pencil waiting on
his bedside table). He chose to give a detailed description of his discovery of a four-
dimensional figure, the “snub-24-cell,” having 96 vertices, 432 edges, 480 triangular
faces, and 144 solid cells—a creative insight that came to him in the middle of a
peaceful night’s rest in his suite of rooms in Great Court. He relayed the discovery
with intricate technicality, indifferent to the limited, if not nonexistent, mathematical
expertise of the man he was writing to:

I had long been trying to extend to four dimensions the familiar construction
for the snub cube (one of the 13 Archimedean solids) by taking, as vertices,
suitable points inside all the white triangles covering a sphere …I knew that
the four-dimensional analogue of the network of spherical triangles is an ar-
rangement of black and white tetrahedra covering a hypersphere, the shape
of such a tetrahedron being usually ``quadri-rectangular.''



The problem was to locate a point inside a white tetrahedron, in such a posi-
tion that it would be equidistant from the corresponding points in the nearest
other white tetrahedra. The snag was that, since the number of ``nearest
other white tetrahedra'' was nine, the equality of their distances would im-
pose eight conditions on the point to be selected: five more conditions than
such a point could generally be expected to satisfy.

So I went to bed and soon slept soundly. About 3 a.m. I awoke with the idea
of using a symmetrical ``isosceles'' tetrahedron: a right pyramid based on
an equilateral triangle. Such a tetrahedron still has nine neighbours of the
same color, but they consist of three of one type and six of another; I could
thus choose a point on the axis of symmetry and adjust its height so as to
equate the distances of the two types of neighbouring point. I switched on
the light and went into my living room to write it down, lest I might find the
nextmorning that it had passed away like any ordinary dream. Whenmorning
came, there it was, ready for all the details to be filled in.

Coxeter emphasized there is no use trying to force creativity. At the crucial moment,
effort is only a hindrance, but this may followmonths of painstaking preparation. “My
advice to others who wish to develop creativity,” he said, “is to choose a problem so
absorbingly fascinating that they are really happy to think about it at every available
moment, especially at such times of relaxation as in a bath or in bed, or while out for
a pleasant walk.”41

From outward and material appearances the Coxeters were doing nicely by the
1950s—far better off than their days of sharing bathwater in the dirty thirties. In 1949,
Coxeter inherited money after the death of his mother (whom he’d only been back
to visit once since he’d left for Canada). He received the bad news while sailing with
his family to England, the children expecting to meet their grandmother for the first
time—it was Edgar who spotted the name Coxeter in the Times obituaries.42 With the
inheritance, the Coxeters purchased a three-story house for $37,500 on Roxborough
Drive, in Toronto’s tony Rosedale neighborhood.43 And they could now afford a live-in
maid. Finding and keeping decent help was another matter. Coxeter returned home
fromwork nearly every day to be briefed on the never-ending saga of the revolving
door of maids and their shortcomings. As Coxeter noted, they were “too ladylike to



work properly, and very stupid,” “had a weak heart,” “like a witch (never again),” or
were caught stealing white shoe polish from the study and had to be dismissed. More
often than not they left of their own accord. Coxeter chronicled the frequent turnover
in his diary
There was absolutely no way Rien could manage the household without help. The

Roxborough house placed them smack in the neighborhood of ladies who lunched.
Soon after the Coxeters moved in, the University of Toronto purchased a mansion
up the street for its president, adding evenmore social cachet to their address. They
often had university colleagues and their wives in for high tea or dinner, sometimes a
gathering of Coxeter’s graduate students—“Erdös and Dirac to dinner …20 staff and
students for sherry at 9.”45 The hour of a party approaching, Coxeter invariably got
himself into trouble. As the doorbell rang, he fumbled hopelessly with the tight zipper
of his wife’s dress. He lowered the drinks tray down the dumbwaiter such that the
sherry and glasses crashed and shattered. He lit a fire in the fireplace but forgot to
open the flue. Rien’s customary response was to screech at him, in Dutch:46 “You ezel!
You rotzak! You lammeling!!”‡ Coxeter’s evaluation of these evenings: “All my 6 grad
students for the evening. Frightful,”47 or “Fiasco!”48 or “Infelds came for the evening.
We felt dreadfully inferior.”49
Donald and Rien went out frequently to social gatherings as well. Between all the

socializing, sometimes with numerous events each week, one wonders when Coxeter
managed to be so prolific. He said he drank too much only once in his lifetime. On
NewYear’s Day 1946, after he and Rien spent the evening quietly at home, he observed
with incredulity that they “…both felt just as rotten as those who had celebrated with
strong drink all night!”50 Rien loved the ivory tower social scene. But even their busy
social itinerary she judged as lacking—such as having no plans on New Year’s—and
she aired her grievances: “R says nobody asks us to parties; they all find us dull. How
depressing.” “R very worried because I was too quiet and when I did say something
it was the wrong thing.” “R says I must talk to people and stop being so dull.” “R
depressed since everyone dislikes me.” “I made a faux pas.”51
Coxeter enjoyed the social scene well enough, and by all accounts he was the perfect

gentleman, if not effusively convivial. Chitchat and schmoozing were not his cup of
tea, but he took great pleasure in finding other people who had interests similar to his
own. Rien was fun and gay at parties, but she put people off with exuberant and often
inappropriate outbursts.52 At home she wondered when her miseries would end. She



was plagued by eternal discontent over the invitations she failed to receive and she
suffered chronic malaise about her rotund waistline. When she went in for a checkup,
Coxeter noted, “Dr. Owen found R physically healthy. Prescribed a holiday, a maid, a
hobby, and a full life. She would have preferred him to find a curable disease.”53 Rien
felt listless and longed for something exciting to happen.54
It probablywasn’t quite what Rien had inmind but, a few years after Regular Polytopes

was published, her husband was on the verge of becoming a household name—in
mathematicians’ households, anyway. Mathematicians were reading his book in such
numbers as towarrant a secondprinting in1962—somecalled it their bible, a reference
they kept in multiple copies, in their offices at home and at work. “The mathematical
community Coxeter gathered round himself with Regular Polytopes is many ringed, like
ever widening ripples on a pond,” said Marjorie Senechal (adding that Coxeter was
“no falling stone”).55 The ripples would eventually encircle Bourbaki—even Bourbaki
would come to acknowledge the usefulness of Coxeter’s tools, his muse of classical
geometry notwithstanding—forgiven, or at least overlooked.
* Coxeter and Turing overlapped at Trinity, and later corresponded about their

mutual interest in phyllotaxis.
† Forty years later, having forgiven Coxeter, this man had the courage to come

courting Susan again; she had been recently widowed by her husband, Alf (eleven
years her senior). Coxeter by then was a widower himself. This time Coxeter decided
he liked the fellow and issued him a written apology. Susan nonetheless declined the
overtures of her suitor.
‡ Translation: ezel=ass; rotzak=rat, stinker, scoundrel; lammeling=dead loss, rotter,

pain in the neck.





7 Bourbaki Prints a Diagram

A soul never thinks without a mental image.

—ARISTOTLE

AsCoxeter’s researchbridgingpolytopeswithmoderngroup theory gained esteem,1
he also set out as amissionary to raise the profile of plain, old, classical geometry, pop-
ularizing its gems at the grassroots level with grade school and high school teachers
and students.
From 1955 through 1957, Coxeter dedicated several weeks of his summer holidays

to cultivating the seeds of his beloved geometry.2 He had been summoned by the
Mathematical Association of America (MAA) to be a “roving lecturer,” as he described
it, touring American universities and organizations as part of the National Science
Foundation’s “Summer Institutes” for high school teachers.3
Over the course of these tours, he stopped in Ann Arbor, Michigan; Chicago, Illinois;

and Arkansas City, Kansas. He gave several lectures to the Friends of Scripta Mathemat-
ica, in New York City, upon invitation from Jekuthiel Ginsburg, the journal’s founder,
at Yeshiva University. He went as far west as Stanford, California, and as far north
as Fairbanks, Alaska. He took advantage of his time spent on of the lecture circuit to
test material for his next book, Introduction to Geometry, another of the most popular
mathematics books of the century.
WillyMoser, one of Coxeter’s PhD students at the time, was lucky enough to tag along

for the last leg of one of Coxeter’s tours. “Donald mademany great contributions to
mathematics. I made one great contribution,” recounted Moser. Moser’s opportunity
came at the end of Coxeter’s 1955 summer of roving lectures, after his session in
Stillwater, at Oklahoma State University. Moser drove down to meet Coxeter and serve
as his assistant, taking detailed notes of the well-polished lectures. “At the end of the
summer we drove north, to civilization,” said Moser, wryly. “We were in my car and
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Donald askedme if he could drive. It was a new car. Indeed it was the first car I had
ever purchased, a green 1955 Plymouth 2-door. I paid $2,000 for it and drove it to
Oklahoma. But I agreed. I was surprised to see that he was an aggressive driver. At
one point he was trying to pass a car while driving up a hill on a 2-lane highway. I
immediately perceived that this was not a prudent thing to do.4 He tried to coax the
car to go faster but it wouldn’t respond. At the last possible moment I shrieked at him,
‘Pull back, pull back.’ I was probably his only student to shriek at him. He began to
pull back and at that moment a truck came over the hill. He managed to get back into
the right lane just in time. I HAD SAVED HIS LIFE! And mine. But saving Coxeter’s life
was my greatest contribution to mathematics.”5

“In Oklahoma,” Coxeter noted on the back of this photo, “where my host introduced
me to an American-Indian (‘Native American’) couple.”

Published in 1961, Introduction to Geometry was Coxeter’s secondmasterpiece. He
opened the book, and no doubt his lectures, with one of his pointed comments: “For
the last thirty or forty years, most Americans have somehow lost interest in geometry.
The present book constitutes an attempt to revitalize this sadly neglected subject.”6
Introduction to Geometry became widely used as a university textbook.7 As testament
to its popularity, for a time it was the most frequently stolen item in the University of



Toronto mathematics library. And it was one of the first textbooks to be built around
the concept of symmetry,8 and of course, it was full of pictures. “I agree with Alice
in Wonderland,” Coxeter once remarked. “Wasn’t it Alice in Wonderland who said,
‘What’s the good of a book that doesn’t have pictures?’ ”9
Coxeter’s book received a rave review from the preeminent critic Martin Gardner

in his column in Scientific American: “Most professional mathematicians enjoy an
occasional romp in the playground of mathematics in much the same way that they
enjoy an occasional game of chess; it is a form of relaxation that they avoid taking
too seriously. On the other hand, many creative, well-informed puzzlists have only
the most elementary knowledge of mathematics. H. S. M. Coxeter …is one of those
rare individuals who are eminent as mathematicians and as authorities on the not-
so-serious side of their profession …There are many ways in which Coxeter’s book
is remarkable. Above all, it has an extraordinary range.”10 And while Introduction to
Geometry is encyclopedic in its scope, like the Bourbaki treatise, it is at once as engag-
ing and awe-inspiring as a curiosity cabinet. In the chapter on hyperbolic geometry,
Coxeter prefaced his section on “The Finiteness of Triangles” with a Shakespearean
epigram borrowed from Hamlet: “I could be bounded in a nutshell and count myself a
king of infinite space.”11
Coxeter’s career, considering his two masterpieces—Regular Polytopes and Introduc-

tion to Geometry—can be viewed as two intersecting circles: they overlap, but their
circumferences delineate two distinct realms. One realm encompasses Coxeter’s role
as popularizer and connoisseur of the beauty and fun of classical geometry (symbol-
ized by Introduction to Geometry), whereas the other comprises his contribution as a
pioneer, an innovator melding classical with modern geometry (as demonstrated in
Regular Polytopes). The former achievement won him a wide and varied fan base, and
the latter cemented his reputation amongmathematicians. As observed by SirMichael
Atiyah, “If his fate was just to be a connoisseur of beautiful pictures, he wouldn’t have
been so widely recognized, he would have beenmore of a sideline. But you add this
extra dimension of symmetries (finite or continuous), and that lifted him up andmade
him well known and in touch with other aspects of mathematics.”12
Fields Medal winner David Mumford, who teaches pattern theory and the mathe-

matics of perception at Brown University, felt Coxeter’s impact in both realms. He
stumbled upon Coxeter’s book Regular Polytopes as a high school student in the early
1950s. “It was like I had discovered howmath was really done,” he recalled. “High



school mathematics didn’t show how deep the subject was. It was a revelation. It
made me realize what mathematics was all about.”13 As Mumford continued his
studies in mathematics at a scholarly level, Coxeter’s work influenced his interests,
specifically with the “compactification of modulized spaces”—just as they suggest,
these are atlases, of sorts, for algebraic objects—and Coxeter’s work fit nicely into the
story he and his coauthors told in the book Smooth Compactification of Locally Symmetric
Varieties. Mumford later met Coxeter in the 1970s, in a replay of the typical scenario.
“I had assumed he was dead, and then, ‘Oh my god, Coxeter—he’s here.’ ” At the time
Mumford was at Harvard, teaching the undergraduate geometry course. He often
shook up the syllabus using Introduction to Geometry as a text, and he invited Coxeter
down to give a lecture.14

With the twentieth-century stampede toward modern mathematics, toward all
things abstract, algebraic and austere, the Bourbaki enterprise thrived beyond the
borders of France—through publication of volumes of its treatise, and via Bourbaki
members in the flesh who were installed at various universities on secondments,
exposing new guinea pigs to the Bourbaki approach firsthand. Claude Chevalley went
to Princeton’s Institute for Advanced Study and later to Columbia.15 Dieudonné spent
time in São Paulo, Brazil, as well as at the University of Michigan and Northwestern
University.16
Over the years the group continued to disguise itself in “mockmystery,” and rumors

continued to spread about Bourbaki, “the mathematician.”17 In one ruse, Bourbaki
applied for an individual rather than group membership in the American Mathemati-
cal Society (AMS); the request was refused, twice. The AMS secretary suggested that
an application for an institutional membership might meet with more success, but
Bourbaki would have none of it.18
The Bourbaki group gathered three times per year, once for an extended two-week

period, at a youth camp, a monastery, resort, or hotel, where they made major policy
decisions, drew up the table of contents for the current volume of the treatise, and
delegated research. When their semiregular publication of Elements of Mathematics
became a commercial success, the royalties paid for travel expenses, wine, and ex-
tracurricular activities that enlivened the proceedings.19 According to La Tribu, their
internal newsletter, the Bourbaki group played chess, table soccer, volleyball, or Fris-
bee. They embarked with gusto on mountain hikes, bicycle excursions, or swimming



expeditions. They caroused in bumper cars, went butterfly hunting or mushroom
picking. They sunbathed, dozed off with text in hand, stuffed themselves with local
delicacies and drank until royally drunk—Armagnac, champagne, rum toddies, or
wine (wine being the much-needed fuel of Bourbaki’s cogitation). Once under the
influence, inebriated members sometimes performed a “virile French cancan or a
lascivious belly dance …The deliberately laid-back attitude …gave the impression of
insouciant genius.”20

As far as the tone of the meetings was concerned, Bourbaki’s biographer, Liliane
Beaulieu, described them as opting “for the humorous and the ribald, on occasion
ascending to the heroic contrasted with the loutish”21—humor was said to be their
second-favorite mind game after mathematics. The mathematical discussions were
not nearly as civilized as Henry F. Baker’s tea parties at Cambridge. Anybody at any
time could interrupt, comment, ask questions, or criticize. Dieudonné observed:
“Certain foreigners, invited as spectators to Bourbaki meetings, always come out with
the impression that it is a gathering of madmen. They could not imagine how these
people, shouting—sometimes three or four at the same time—could ever come up with
something intelligent.”22

As the group’s scribe, over the years Dieudonné came to be considered the speaker
for the group as well. Between his stentorian voice and propensity for definitive
statements and unchallengeable opinions, Dieudonné was known to crank up the
decibel level of any conversation. It was Dieudonné who would later declare: “Down
with Euclid! Death to Triangles!” He was a giant, a tall, big, and ebullient man, oft
times loud and rude. Hewas flamboyant, with a brutalmanner of expression.23 Pierre
Cartier recalled an outing to a concert hall with Dieudonné. “It was fascinating,” he
said. “He would look at the score in his hand and exclaim with disapproval—‘OH!’—if a
note was missing from the orchestra.”24 Coxeter, with comparable zeal as a musician,
preferred musical scores to books for bedtime reading.25

The domineering Dieudonné penned first drafts of Bourbaki chapters, which were
referred to as “Dieudonné’s monster.” From there, each chapter of Elements of Math-
ematics commonly took six, seven, even ten drafts before consensus was reached
(unanimity was required, with each member having veto power).26 And lest the en-
terprise be misunderstood, Dieudonné clarified: “Bourbaki’s treatise was planned as



a bag of tools, a tool kit for the working mathematician, and this is the key word which
I think everybody should keep in mind when talking about Bourbaki or discussing its
plan or contents.”27 Cartier agreed: “You can think of the first books of Bourbaki as
an encyclopedia. If you consider it as a textbook, it’s a disaster.”28

The popularity of Bourbaki initially brought about something of a revolution in
university-level mathematics. Marjorie Senechal was a graduate student in the 1950s
at the University of Chicago, a hotbed of Bourbaki in America, under the auspices of
Marshall Stone. Stone, strongly influenced by the ideas of Bourbaki, had made the
mathematics department at the University of Chicago arguably the best in the country.
He recruited the brains of the Bourbaki group, André Weil, and Samuel Eilenberg,
who worked closely with another Chicago professor, Saunders MacLane. “I suffered
under the Bourbaki regime,” said Senechal, one of MacLane’s students. “Bourbaki
was the method taught. I think it cost mathematics a lot of talent—a lot of people who
think visually and work visually left the profession, because they felt they didn’t have a
home there anymore.” Coxeter kept the spark alive for people who wanted to continue
to do concrete geometry, even if it was unfashionable. “Coxeter was the antithesis
to Bourbaki.* He was a lifeline,” said Senechal, “a way of salvation from Bourbaki.
Because through him I knew there wasmore tomathematics, I knew there was a whole
branch of mathematics I could relate to.”29



Jean Dieudonné

But theBourbaki revolution shookmore than just the universities. Bourbaki trickled
down into high schools and public schools, as mathematicians taught by the Bourbaki
method became teachers themselves.30 Bourbaki principles infiltrated the “New
Math” grade school curriculum reform. The NewMath spread throughout theWestern
Hemisphere, from South America through the American heartland, into Canada, and
across the Atlantic to England, Wales, West Germany, Denmark, the Netherlands,
and France. New Math overhauled the traditional curriculum, ridding it of trivial
problem solving and rote number juggling. Instead, schoolchildren as early as grade
one learned the equations of algebra and set theory (the mathematical theory of sets,
or collections of abstract objects, and the rules that govern their relationships and
manipulations). Dusty and dilapidated Euclidean geometry also was forsaken—like
removing Shakespeare from the syllabus and replacing it with grammar, as though
one were a minor subset of the other.31 “This tendency is not only regrettable,” said
Coxeter, “but unreasonable.”32

Historically, Euclidean geometry had been under siege ever since its limited
scope had been exposed. “Euclid’s approach to geometry has been attacked on two
grounds—that it is illogical, and that it is boring,” Coxeter said in a 1967 report on the
state of geometry in primary and secondary school education. “Neither criticism is
new,” he said, adding: “The objection that Euclid is boring is much more serious than
the objection that his logic is imperfect.”33

If Euclidean geometry was boring, Coxeter argued, this was due to the canned and
ossified way it was taught. Like arithmetic, the subject had been reduced to rote
learning, with teachers opening a textbook and doing the stultifying “chalk-and-talk”
at the front of the classroom. Children mindlessly memorized properties of triangles
and their theorems—Side-Angle-Side, Angle-Side-Angle—and regurgitated them on
demand to please their teachers. They were robbed of experiencing the beauty and
tricks intrinsic to heuristic learning—that is, learning through trial-and-error and
making discoveries for oneself.



The French Bourbakis were one influence behind the NewMath reforms; the Rus-
sians were another. When the Soviets successfully launched the Sputnik satellite into
orbit, the Western world got a shock—rudely awakened to the fact that it was falling
behind in science, technology, and mathematics. A colorful interpretation of events
was articulated in a British report chronicling the NewMath:
It all started on that memorable day in 1957 when the Russians sent their first

Sputnik orbiting the earth. Up till then the countries of the West had rather patroniz-
ingly regarded the USSR as a backward giant of a nation, hopelessly engaged in trying
to educate its largely peasant people to achieve the technological advantages of its
more favoured European neighbours. The noisy “Bleep-Bleep” of the Sputnik’s radio,
however, quickly dispelled any notions Westerners might have that the Russians still
counted on their hands or that the abacus was the sole piece of educational equipment
in Soviet schools. Clearly this formerly retarded people had outstripped Britain and
America in finding scientists and mathematicians of a very high caliber indeed. How
had this astonishing advance in Russian scientific education come about? No one
could supply the answer but it had to be admitted that Soviet schools were obviously
producing more and better mathematicians and scientists than were coming from
the British system of education.34
Following the bleeping Sputnik, the United States Congress released millions of

dollars in funding for science education under the “National Defense Education Act.”
A flurry of international activity led to the formation of the United Nations Educational
Scientific and Cultural Organization (UNESCO) and theOrganization for European Eco-
nomic Cooperation (OEEC). Reform of the mathematics curriculum was undertaken
with urgency and idealism.35
The first forum of debate on the NewMath was the 1958 International Congress of

Mathematicians, held in Edinburgh. Then came the infamous conference at which
Dieudonné whooped his war cry. Held at the Cercle Culturel de Royaumont, Asnières-
sur-Oise, France, from November 23 to December 4, 1959, the conference addressed
theneed for reform inFrenchmathematical education. Here thebombasticDieudonné
rose to his feet and hurled his provocatively planned statement:

``À bas Euclide! Mort aux triangles!''36

``Down with Euclid! Death to triangles!''



Dieudonné’s statement was taken bymany as a slap to geometry. Coxeter discussed
it with like-minded individuals and was known to now and then unleash a scathingly
critical or derogatory comment, though he did not dwell on it, nor did he let the
Bourbaki venture as a whole ruffle his feathers. Dieudonné’s comment seemed a
succinct summary of the Bourbaki agenda—no diagrams—but the interpretation of
this event by Bourbaki sympathizers diverges from a geometer’s vantage point. Michel
Broué, director of the Institut Henri Poincaré, who studied under Bourbaki founder
Claude Chevalley in the 1960s, asserted the importance of distinguishing Dieudonné
from Bourbaki. Dieudonné, by 1959, was older than fifty and therefore no longer an
official member of the Bourbaki group. His “Death to Triangles!” statement is thus
disqualified from representing the larger Bourbaki mandate (Broué acknowledged all
the same that linking the two has become part of the Bourbaki mythology). “Others in
Bourbaki were horrified,” Broué said.37 Especially since Dieudonné stuck with this
opinion to his dying day. This was a source of embarrassment for some Bourbakists,
such as Cartier. “I was tormented,” he said. “The ideology of Bourbaki didn’t match
with me, it was going too far. Bourbaki was a mathematical priest—pure, pious, rigid.
It was a caricature of purity. Purity creates hypocrisy, because if the rule is too strict
then life forces you to break it.”38

Chevalley, for one, espoused the no-pictures dictum, but this belied his closeted
use of diagrams. He tried his best to operate by reasoning alone; he earnestly wanted
to avoid intuition in mathematics. But he didn’t always succeed. Cartier remembered
when Chevalley was his professor, and teaching at the front of the classroom he filled
the blackboard with symbols and equations. When a student raised their hand with a
question, Chevalley dramatically stepped back from the board, crossed his arms, and
squinted, contemplating his work through furrowed brow. He was stumped. Then he
walked toward the blackboard, standing rather closer than necessary. He huddled in,
with hunched shoulders, his arms creating blinders, hiding what he was up to from
the class behind. “He drew a picture,” said Cartier, “figured out the answer—AHA! he
said—and then quickly wiped out the diagram, stood back and continued.”39



After the “Death to Triangles!” incident at Royaumont, annual conferences on New
Math were held in Denmark, Zagreb, Athens, Bologna, elsewhere in Europe, and there
was a series of “inter-America” conferences in South America. The first convened in
Bogotá, Colombia, in 1961. The ringleader of the NewMath reformmovement was
Marshall Stone, who had been president of the Royaumont conference and led the
way internationally.40 As the mastermind of these international conferences, Stone
delivered stirring opening addresses, calling for the modernization of mathematics:

There are two major factors which require us to examine with fresh eyes the math-
ematics we propose to teach to young people in the secondary schools and in the
first years at the university. One is the extraordinary growth of pure mathematics
in modern times. The other is the increasing dependence of scientific thought upon
mathematical methods, coinciding in time with a more and more urgent social de-
mand for the services of scientists of every description.

The forces exerted by these two factors on our educational system are quite clearly
on the point of shattering the traditional framework of mathematical instruction
and thus preparing the way for an overdue modernization and improvement of our
teaching of mathematics. Like the crustacean which has to split and discard its old
shell in order to grow, we must at last burst the confines of a curriculum which is
plainly no longer suited to our current needs or our current conditions of life.41

At Bogotá, Howard Fehr, head of the Department of the Teaching of Mathematics at
Columbia University, delivered a lecture titled “Reform of the Teaching of Geometry.”
“Euclidean geometry,” said Fehr, “nowadays …is sterile, outside the main course of
mathematical advancement, and it can be filed in the archives, without any fear,
for the benefit of future historians.”42 Response was mixed. Professor Guillermo
Torres, from Mexico, challenged this position and argued that the presentation of
mathematics in an exclusively formal aspect “makes it appear to be an inhuman
activity and with no sense at all.” John Coleman, Coxeter’s early student, by then the
head of the math department at Queen’s University, also expressed doubts during
the debate following Fehr’s presentation. Based on his experience, he said, students
interested in mathematics were first enticed by geometry’s intrinsically tactile and
visual nature—geometry was the user-friendly interface of mathematics.43



NewMath sprouted in varied forms internationally. In the United States, the main
initiative was the School Mathematics Study Group (SMSG), which produced a new
series of textbooks—students renamed it “SomeMath SomeGarbage.”44 The American
Mathematical Monthly ran a “Letter of 75 Mathematicians” objecting to the emphasis
on abstraction. The leading antagonist was NYU professor Morris Kline, who later
sounded the death knell of the NewMath in America with his bookWhy Johnny Can’t
Add: The Failure of the NewMaths.45 And the horrors of it all entered the popular culture
via the genius of mathematician cummusical raconteur Tom Lehrer—he documented
the debacle on his album 1965: That Was The Year That Was with the song “NewMath.”
The lyrics poked fun at the fact that the math was so newfangled that parents couldn’t
make sense of it in helping their children with homework.46
In France, of all places—the cradle of Bourbaki—the newspaper L’Express ran the

headline LE CAUCHEMARDESMATHSMODERNES (The nightmare ofmodernmaths);
“Pornography, drugs, the disintegration of the French language, upheavals in math-
ematical education all relate to the same process; attacking the central parts of a
liberal society,” the subtitle continued. And a report to the French Academy of Sci-
ences decried: “The set-theoretic option in the definition of geometry is a dangerous
utopia …this reformmisappreciates the intellectual aptitude and needs of the adoles-
cents who attend our …high schools. The reform in progress seriously endangers the
economic, technical, and scientific future of the Nation.”47
In England, a telling cross section of the changes is found in the career of SirMichael

Atiyah. He was a student at Cambridge in the 1950s, when aspects of classical geome-
try were still hanging on as part of the university curriculum. But by the 1960s, this
last bastion had languished, linear algebra having been decreed fundamental and
geometry old fashioned and inessential.48 Sir Michael’s 1981 presidential address to
the Mathematical Association, titled “What Is Geometry?” bemoaned this unfortunate
turn in geometry’s history. “Of all the changes that have taken place in the mathe-
matical curriculum, both in schools and universities, nothing is more striking than
the decline in the central role of geometry,” he said. “Euclidean geometry has been
dethroned and in some places almost banished from the scene.”49
“The battle between geometry and algebra is like the battle between the sexes,” said

Sir Michael, contemplating the issue recently. “It’s perpetual. It’s an ongoing battle.
And it really is a battle in the sense that these are two sides of the same story, and
you’ve got to have both sides present.” Both algebra and geometry are essential, both



must be taught properly at all levels, and the resulting interaction in the highest tiers
of researchmove the frontier forward. “It’s the kind of problem that never disappears,”
he said. “It will never be dead and it will never get solved. The dichotomy between
algebra, the way you do things with formal manipulations, and geometry, the way you
think conceptually, are two main strands in mathematics. The question is what is the
right balance.”50

One outpost that kept the balance weighted toward geometry over algebra was East-
ern Europe—Latvia, Hungary, and Russia. The reason is the object of speculation.
Perhaps their prophylactic was the Iron Curtain—cut off from the rest of the world,
and poor, they continued on with the old-world ways. Russia had a long and finemath-
ematical tradition all its own. Certainly, the fact that the Russians printed Coxeter’s
works demonstrated that they liked their classical geometry.51
At the 1966 International Congress of Mathematicians in Moscow, Coxeter learned

of his considerable popularity in Russia. Prior to the congress he had no idea whether
his books had been published there—ostensibly, Russia had agreed to international
copyright laws but Russian editions, seldom the products of contractual agreement,
were pirated more often than not. If mathematicians wanted royalties, they had
to produce proof of publication, which was difficult if one was not in Russia. The
International Congress occasioned an olive branch in the form of a book exhibit
that allowed mathematicians to peruse a warehouse of all Russian mathematical
publications. If they found their books, they were entitled to collect royalties on the
spot. Coxeter walked around the warehouse with John Conway, who recalled that
Coxeter made a lengthy list of his books and then walked away with his pockets full of
rubles.52
Coxeter’s classical geometry also thrived in Italy. Geometer Emma Castelnuovo

was a Coxeter fan from afar, and vice versa. “I have all of Coxeter’s books,”53 said
Castelnuovo, now in her nineties. She devoted her life not to higher math like her
father, Guido Castelnuovo, but to teaching geometry in grade schools. She worked
with children aged eleven to fourteen, in Italy and Africa, doing geometry “by hand,”
and organizing exhibits of the children’s work. She attended all the congresses and
commissions onmathematics education, including the “Death to Triangles!” confer-
ence in Royaumont, and worked with Piaget on the Commission for the International
Study and Improvement of Education in Mathematics. In 1949, she published her



first book, La Geometria Intuitiva, and wrote many textbooks for students. Coxeter had
high praise for Castelnuovo’s work and cited her as an example worth following in
his report on geometry education. “In Italy today, Emma Castelnuovo has popular-
ized and developed a [new approach to Euclidean geometry],” he said. “Her book, La
Geometria Intuitiva, describes the teaching of geometry with apparatus resembling
Meccano.† The book, beautifully illustrated, shows how geometrical shapes are used
in the architecture of Italy.”54

Another beacon was the Netherlands, where German expatriate Hans Freudenthal
was credited with saving Holland from the NewMath. In his 1971 article “Geometry
Between the Devil and the Deep Sea,” Freudenthal cast it all in lyric terms:

Geometry is endangered by dogmatic ideas onmathematical rigor. They express
themselves in two different ways: absorbing geometry in a system of mathematics as
linear algebra, or strangulating it by rigid axiomatics. So it is not one devil menacing
geometry as I suggested in the title of my paper. There are two. The escape that is left
is the deep sea. It is a safe escape if you have learned swimming. In fact, that is the
way geometry should be taught, just like swimming.55

Coxeter had the same sensibility: “The ability to study, grasp, and master topics in
mathematics resembles in some ways the ability to swim or to ride a bicycle,” he said
in the geometry report, “each of which is, in a static sense, impossible of achievement.
There is a trick to it, and strong motivation is needed to learn the trick. Perhaps one
difference is that children seldom encounter oppressive authoritarian discipline in
connection with the technique of riding a bicycle.”56 Geometry, Freudenthal said,
would die of suffocation as a “prefabricated subject.” It could be saved if presented
as a field of wonderment and activity—folding, cutting, gluing, drawing, painting,
measuring, and fitting. “Coxeter’s Introduction to Geometry,” he said, “is a marvelous
demonstration of this attitude. The author knows, in any case, exactly where the
horizon is lying.”57



Canadian Mathematical Congress, Fredericton, 1959. Top (left to right): Irving
Kaplansky, Alex Rosenberg, Coxeter. Bottom: Werner Fenchel, Philip Wallace, Max
Wyman, C. Ambrose Rogers, Hans Freudenthal.

Introduction to Geometry circulated internationally, with translations into six lan-
guages—German, Japanese, Russian, Polish, Spanish, and Hungarian. The first was
the German translation, in 1963, which had a title Coxeter was very fond of: Unvergan-
gliche Geometrie—Everlasting Geometry, or Geometry which Survives Everything.58
With the publication of Introduction to Geometry in Japan, in 1965, architect, engineer,
and geometer Koji Miyazaki became one of Coxeter’s biggest fans. Also a professor
emeritus at Kyoto University and Teikyo-Heisei University, Miyazaki recalled: “At that
time, the name ‘Coxeter’ suddenly spread out in Japan as the biggest mathematician’s
name in the world. I am clearly remembering that time. And from that time I was
thinking that Prof. Coxeter is the god of the world of geometry.”59

Acounterinsurgency against the geometry-barrenNewMath curriculum—as against
Bourbaki—continued to take shape in all things Coxeter. From the beginning of his
career through the heyday of Bourbaki, Coxeter simply averted his eyes from the anti-
visual antigeometry trend, and went on a crusade to bring his passion for the intuitive
methods to any and all willing spectators. He lectured on “the beauteous properties



of triangles,” on “The Arrangement of Trees in an Orchard,” on the Fibonacci num-
bers (with nine slides and a pineapple as a prop). On a snowy January evening, he
took the night train from Toronto to Philadelphia, putting the final touches on his
presentation as he traveled. The following day, he noted in his diary: “About 40 broke
into spontaneous applause after my 10min. lecture on ‘Close Packing and Froth.’ ”‡
The next month he gave a version of the same lecture to seventy schoolteachers in
Toronto. Two months later he spoke to a group of forty prize-winning schoolchildren
on “Close Packing of Spheres,” this time drawing upon an eighteenth-century book
with a title he thought his young pupils might find amusing—it was called Vegetable
Statics, by Dr. Stephen Hales, wherein Hales investigated howmany peas, if as many
peas as possible were compressed into a large cubic pod, would abut a central pea.60
In 1967, Coxeter published twomore books that would become classics: Projective

Geometry and Geometry Revisited (the latter with S. L. Greitzer). He churned out papers
asking, “Whence Does a Circle Look Like an Ellipse?” and lectures wondering, “Why
Do Most People Call a Helix a Spiral?” In another talk he issued “A Plea for Affine
Geometry in the School Curriculum,” and in yet another he offered simply “Reflections
on Reflections,” which he delivered in Pittsburgh in 1967.61
After his Pittsburgh talk, he traveled toMinneapolis where he was coming to the end

of a long-running pet project, working for four years with a group of mathematicians
on educational geometry films, Dihedral Kaleidoscopes and Symmetries of the Cube (two
in a series of five films). The project, aiming to improve geometry teaching in high
schools and colleges with the introduction of exciting experimental films and an
accompanying series of textbooks, was part of the College Geometry Project at the
University ofMinnesota, well financedwith amillion-dollar-budget (funded entirely by
the National Science Foundation; classical geometry still had its champions). Coxeter
laboriously wrote and rewrote the scripts. And in Dihedral Kaleidoscopes, he took the
role as starring geometer.62
The film began with Coxeter scampering across a busy street, dodging traffic, want-

ing to get to the other side to look at his reflection in a mirrored store window (the
narrator explained: “H. S. M. Coxeter, of the University of Toronto, is a geometer.
To Professor Coxeter, reflections are of particular interest because of their implica-
tions for geometry and algebra…”). With a lively flute soundtrack, the film followed
Coxeter as he manipulated mirrors in a darkened studio. He peered into large kalei-
doscopes—constructed like tents or pens and illuminated from within,§ dropping



in colored paper triangles, watching as they fluttered into place, and grinning when
they landed and generated pleasing psychedelic patterns on the plane. The films won
many awards—in Canada and the United States, at the American Film Festival and the
Golden Eagle at the CINE Film Festival, and internationally, in Belgium, Czechoslo-
vakia, France, Italy, Argentina—broadening Coxeter’s fan base even further.63

Coxeter starring in the documentary Dihedral Kaleidoscopes.



Close-up of Coxeter positioning props in a kaleidoscope.

For themost part, Coxeter’s crusade was all rear-guard action. He simply continued
to make his contribution in the most hands-on way he could, propagating his passion.
He did, however, keep an eye on the land mines of curriculum committees with their
mandates for reform.64 He voiced his opinion and opposition, at times with unchar-
acteristic volume. Tim Rooney, a colleague of Coxeter’s in the math department at the
University of Toronto, remembered the only time he ever saw Coxeter angry: when
he perceived his geometry was under attack on home turf. Coxeter was graceful and
sweet, said Rooney; there existed no easier man to get along with. But when Rooney
bumped into him in the hall one day in the 1960s, Coxeter was fuming. He cornered
Rooney, pulled him aside, and gave him an earful about a report from a committee
studying the department’s roster of mathematics courses. Coxeter interpreted the
report as disrespectful and denigrating to geometry; it concluded there was an awful
lot of geometry on the department’s course list and some of it had to go. He interro-
gated Rooney about it: “What’s your committee doing recommending less geometry
be taught?”65



Coxeter peeking into a kaleidoscope taller than himself.

1

“He really was angry,” Rooney recalled. “I told him, first of all, I wasn’t on that
committee, at which point he cooled down a little. And then I told him I didn’t agree
with what the committee said about geometry, which cooled him down further.” Cox-
eter recruited another member of the department and they tackled the chair of the
committee and had a furious argument about the report.66

This prompted Coxeter to more directly assume the mantle of the curriculum con-
troversy, pulling himself and the dignity of his geometry together by the frayed laces
of his well-worn spectator shoes. He sat on the K-13 Geometry Committee, producing
the report Geometry, Kindergarten to Grade Thirteen in 1967. It baldly stated: “Some
recent innovations under the name of ‘modern mathematics’ are unsatisfactory and



ought to be discontinued …We have in mind an excessive tendency to abstractness
and rigour, a copying of procedures more appropriate to graduate school.” The net
effect, the report said, was that the “geometric literacy” of society was even lower than
its “numeric literacy”:

The ability to visualize geometrically is a basic part of the scientist’s mental equip-
ment…Thus scientific literacy is founded in part upon geometric abstraction …Ge-
ometry is perhaps the most elementary of the sciences that enable man, by purely
intellectual processes, to make predictions (based on observation) about the physical
world. The power of geometry, in the sense of accuracy and utility of these deductions,
is impressive, and has been a powerful motivation for the study of logic in geometry.
Unfortunately, however, in the teaching of geometry the role of logic is very likely to
overshadow the creative and intuitive aspect of the subject. In the past this tendency
has been reinforced by the conventional attitude that visual or intuitive “qualitative”
pattern work in geometry was a fit subject only for the kindergarten or lower grades.

We wish to emphasize as strongly as possible that we do not accept this view. Visual
and intuitive work are indispensable at every level of mathematics and science, both
as an aid to clarification of particular problems, and as a source of inspiration, of new
“ideas.”67

Classical geometry, for Coxeter, was one of the arts—the Seven Liberal Arts, as set
out bymedieval universities, were the Trivium, “the three roads” of grammar, rhetoric,
and logic; and the Quadrivium, “the four roads” of arithmetic, geometry, music, and
astronomy or cosmology. And so it followed that the justification for studying the
liberal arts applied equally to the study of classical geometry—theymay seem obsolete,
indulgent, and impractical courses of study, but the arts are fertile soil, fostering a
freedom and breadth of thinking from which more “modern” achievements grow. A
good number of the report’s 120 pages contained specific suggestions for reinstating
geometry and tips for teaching it in an inspiring way to primary, intermediate, and
senior grade levels—complete with practical instructions for nail and plywood con-
structions, skeletal models made from straws and pipe cleaners, the use of shadows
andmirrors, and how to draw a cube from a circular array of dots.68



In 1968, in a nice topological twist of history, the proper nouns “Coxeter diagrams”
and “Coxeter groups” finally made their debut in—of all places—the Bourbaki volume
on Lie algebras, considered by some as the most successful volume in the whole
series.69 Marjorie Senechal delights in recalling how she once looked through all the
Bourbaki volumes to see for herself the depressing dearth of diagrams. Apart from
the slippery-argument-caution-ahead S-curve, she found only one. It was in Coxeter’s
volume and it was the Coxeter diagram.70

Coxeter came to be included in Bourbaki after his work intrigued a Belgian mathe-
matician by the name of Jacques Tits, now at the Collège de France.71 Closely affiliated
with Bourbaki, Tits drew the group’s attention to Coxeter’s work, writing the first paper
ever on Coxeter groups—“Groupes et Géometries de Coxeter.” The paper went unpub-
lished until the Bourbaki volume, which Tits ghostwrote. Two-thirds of the volume
is taken up with expositions on Coxeter, baptizing not only the term “Coxeter group,”
but also “Coxeter graph” (also known as the Coxeter diagram), “Coxeter matrix,” and
“Coxeter number.”72

Coxeter was pleased with the Bourbaki nomenclature. It meant his name was writ
large into the history of mathematics. With the publication of the Bourbaki volume on
groups, nearly ten years had passed since Dieudonné proclaimed “Death to Triangles!”
When Dieudonné visited the University of Toronto in 1969, Coxeter and others took
himout for a sumptuous dinner at the Park Plaza hotel, its rooftop restaurant offering a
glittering viewof the city. Dieudonnéwas there to give two lectures, one onLie algebras,
the other on Bourbaki.73 “It…seems to me,” he commented, “that when examining
which tools should be included in Bourbaki, a decisive element was whether or not
they had been used by great mathematicians, and what degree of importance these
mathematicians had attached to these tools.”74 Coxeter had certainly found success
by these criteria.75 And in another address, in 1968 at the Roumanian Institute of
Mathematics, in Bucharest, Dieudonné stated, “[O]ne must never speak of anything
dead in mathematics because the day after one says it, someone takes this theory,
introduces a new idea into it, and it lives again.”¶76 Coxeter could hardly have said it
better himself.



One decade later again, in 1980, the bright yellow cover of a publication by the
MathematicalAssociationofAmerica showedahooded skeleton, the ghost of geometry,
his bony finger dangling over a ratty scroll with a diagram of the nine-point circle—one
of the first circle theorems studied in any course of elementary geometry. The title on
the cover asked: “Is Geometry Dead?”77

Cover of the January 1980 Two-Year College Mathematics Journal.

Inside the MAA volume, the first page depicted the cartoon of Coxeter as the king
of geometry, wearing a crown studded with gems in the shape of the Platonic solids,
followed by an article covering the 1979 Coxeter Symposium in Toronto. Eighty-
five geometers traveled from all corners of the world to celebrate (a bit belatedly)
Coxeter’s seventieth birthday and retirement. László Fejes-Tóth, from Hungary, a
giant of a geometer in his own right, opened the conference “with a fitting and loving
tribute to Professor Coxeter.” And he made a presentation on “Some researches
inspired by H. S. M. Coxeter,” highlighting the phenomenal impact “a remark [or] a
suggestion”from such an oracle had on the development of geometry over the last half-



century, inciting many a practitioner to a life’s work worth of inquiry (another cartoon
quipped: “My geometric broker is H. S. M. Coxeter, and Coxeter says…”—parodying a
popular commercial for the stock brokerage firmE. F. Hutton, with the tag line: “When
E. F. Hutton talks, people listen.”)78

The account of the festivities also provided a Q&A session with the legend himself,
accompanied by a caricature of Coxeter as a gravedigger, mounds of earth beside him,
with a shovel and crowbar strewn about, as he cracks open the lid of a coffin with
the gravestone: “GEOMETRY: 600BC-1900AD R.I.P.” His interviewer asked: “If I and
my colleague …start rhapsodizing about geometry, the reaction we frequently get is,
‘Oh, well, that’s a dead subject;# everything is known.’ What is your reaction to that
reaction?”

“Oh, I think geometry is developing as fast as any other kind of mathematics,”
Coxeter said. “It’s just that people are not looking at it.”79

Indeed, the cover of the same journal the following year read: “Geometry Lives!”
And inside was an article by none other than Jean Dieudonné, now singing geometry’s
praises. There was also an article announcing a new generation of ingenious “un-
Bourbakian” geometers, including future Fields Medalists William Thurston and
Shing-Tung Yau, both of whom had a hand in the recent solution, by Russia’s Grigori
Perelman, of the Poincaré conjecture, which had eludedmathematicians for over a
century.



* Senechal elaborated to say: “If you are thinking about a mathematical idea in the
Bourbaki style, you will be working upwards from definitions and. axioms and. trying
to continue through that logical line. If you are working in Coxeter’s style, you are also
working upward, but you start with some concrete object, asking questions about it,
asking how to put that in a more general way and. what that leads to. Coxeter’s is a
visual and. hands on approach, as opposed to a strictly logical approach.”

† Meccano is the trade name for colorful metal construction toys assembled with
nuts and bolts, invented in 1901 by Frank Hornby, of Liverpool, England.

‡

§ One of the documentary kaleidoscopes was taller than Coxeter himself and.
equally wide, gaping jaws ofmirrors (themirrors for the kaleidoscopeswere produced,
after a long search, by Litton Industries at a cost of $5,500). In an outtake, Coxeter
inserted his miniature daschund, Nico, into this monster Kaleidoscope to see what
would transpire—Nico was puzzled, if not petrified, and. stood frozen in place until
Coxeter rescued him (Nico died later the same year and. Coxeter honored him with a
dedication in his book Twelve Geometric Essays: “In memoriam NICO 1951–1967”).

¶ As for Bourbaki’s future, after the group’s great success its productivity stalled
in the 1970s during a clash with the publisher over royalties and translation rights,
resulting in a protracted legal dispute, which was settled in 1980. Bourbaki then
had a short resurrection, issuing revised editions of old books, and adding a few
volumes to the series. “But then silence,” said Pierre Cartier. “In a sense Bourbaki is
like a dinosaur, the head too far away from the tail,” he observed, of the subsequent
generations that inevitably strayed further and further from the group’s founding
ideals andmandate. Just as Bourbaki members were forced to retire at fifty, Cartier
joked that Bourbaki—himself or itself—should have retired at the half-century mark.
Regardless, for all intents and purposes, his judgment was that “Bourbaki is dead.”
There is, however, an annual “Bourbaki Seminar” in Paris. And there are rumblings
that further publications and revised editions might be in the works.

# In 1981, Coxeter’s friend and polymath Freeman Dyson, a professor of physics
at Princeton’s Institute for Advanced Study, sent him a copy of a talk he had given
recently, titled “Unfashionable Pursuits.” (See appendix 6 for an excerpt of Dyson’s
talk.) Coxeter’s unfashionable path was acknowledged again some years later by



University of Alberta mathematician Robert Moody, in a letter recommending Coxeter
for an honorary doctorate: “Modern science is often driven by fads and fashions, and
mathematics is no exception. Coxeter’s style, I would say, is singularly unfashionable.
He is guided, I think, almost completely by a profound sense of what is beautiful.”



Part II.

Coxeter Applied
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8 Bucky Fuller, and Bridging the “Ge-
ometry Gap”

Through natural selection, our mind has adapted to the conditions of the ex-
ternalworld…it has adopted the geometrymost advantageous to our species;
or, in other words, the most convenient.

—Henri Poincaré, La Science Et L'Hypothèse

Although Coxeter retired officially in 1977, at age seventy, he did not surrender to
conventional wisdom regarding the rusting mental cogs of mathematicians beyond
the half-century mark. He continued on his prolific way, adding more than eighty
items to his career bibliography, some being new editions and reprints of earlier
works, but these nonetheless required his meticulous attention, correcting the errata
that his hawk eye diligently hunted down.1 He had fought off pressure to retire for
years—“depressing letter from George Duff [head of the mathematics department]
about my impending retirement,”2 he noted in his diary. He yielded incrementally,
submitting to fractional reductions in pay. In 1975, he received notice that hewas soon
to be reduced to one-third his salary,3 the same year Buckminster Fuller dedicated
his book on the “geometry of thought” to Coxeter—praising him as the geometer of the
twentieth century.4

Coxeter andFuller’s geometric progenymet before themendid. For its international
debut, Fuller’s iconic geodesic dome served as the American Pavilion at Expo ‘67,
in Montreal. The dome’s name derived from its geometric construction: the spher-
ical structure takes shape from a scaffolding of struts arranged on great circles, or
“geodesics”—any circle on a sphere that divides the sphere into two hemispheres. All
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the Platonic solids can be made into geodesic domes by the process of “triangulation,”
dividing each face of the solid into triangles and puffing it outward until it approx-
imates a sphere. Fuller’s geodesic dome was constructed from an icosahedron, by
dissecting each of its faces into smaller triangles.5

Buckminster Fuller’s American Pavilion Dome, Expo ‘67, Montreal.

At Expo, Coxeter stood gazing at the geodesic American Pavilion for quite a while,
trying to calculate the frequency of its vertices. Hexagons surrounded most of the
vertices where the struts met, but every so often there was a pentagon instead (six
triangles were arranged around the new subdividing vertices, forming a hexagon,
while five triangles were positioned around the original icosahedral vertices, forming
a pentagon). Coxeter was trying to determine the number of steps from one pen-
tagon to the closest neighboring pentagon. The variation in hexagons and pentagons
lended Fuller’s dome its structural integrity, and accounted for its slightly puckered or
dimpled effect. Unfortunately, Coxeter did not meet Fuller at Expo, so he left baffled.6

When he returned to Toronto, he spent an hour looking at the Expo files in the
public library without finding an adequate photograph of the dome from which to
discern the frequency. Eventually he located one at the university with a professor of
microbiology—it was a very big photograph with an overlaid transparency framing



one pentagon with the inscription “Here I am!” But Coxeter could still not locate a
second pentagon. “We were still baffled,” he said in a letter to Fuller. The dome, Fuller
later informed him, had a frequency of sixteen—starting at any pentagon vertex, one
had to jump sixteen vertices in any direction before coming to another.7

Coxeter’s sketch of a geodesic dome, with highlighted vertices.

Fuller had long been designing structurally efficient and economically affordable
dwellings, hoping such abodes would alleviate the housing crisis in America. Accord-
ing to Fuller, “These new homes are structured after the natural system of humans
and trees with a central stem or backbone, from which all else is independently hung,
utilizing gravity instead of opposing it. This results in a construction similar to an
airplane, light, taut, and profoundly strong.”8 Fuller wanted to buildmaximum shelter
with minimum output—the spherical structure of the dome allowed for the largest
volume of interior space with the least surface area, thus saving on building materials
and expense. He wanted to “do more with less,” like the honeybees.9



With his broad vision to “wake up humanity,” Fuller was on amission to understand
the basic operating principles of the universe. For Glenn Smith, who had been a Fuller
devotee10 even before becoming Coxeter’s fan, one of the elements thatmost attracted
him to Fuller’s work was his interpretation of geometry. “I think for Fuller geometry
was a means to an end,” said Smith. “He was in search of the basic patterns used by
nature in what he felt was a perfect comprehensive design.”11
Coxeter and Fuller met less than a year after Expo, on March 1, 1968. Coxeter

had accepted an invitation to speak at the philosophy andmathematics departments
at Southern Illinois University, in Fuller’s hometown of Carbondale. Coxeter’s first
talk, for the philosophers and other non-mathematicians, was “Geometry of Time and
Space.” The secondwas a lecture for themathematicians, titled “Equiaffinities.” Fuller
attended the latter.12 Afterward, as Coxeter recorded in his diary, Fuller “treated R
andme to dinner, showed us his office and ‘dome’ house, gave me 4 of his books.”13
At this first meeting Fuller also asked if he could dedicate his upcoming book to
Coxeter—Synergetics, Explorations in the Geometry of Thinking, due to be published the
following year. The next month, Fuller sent a note of thanks for Coxeter’s agreement,
along with a copy of yet another book, The Dymaxion World of Buckminster Fuller by
RobertW.Marks. “To Dr. Coxeter. Whose ownworld ofmathematics has been ramified
with a mastery shared by but one or two other humans of all history,” Fuller wrote
inside the front cover (practicing for his effusive dedication). “There are others who
have made special contributions of extraordinary importance, but none with the
comprehensivity [sic] of Dr. Coxeter. In highest admiration and joy over the priviledge
[sic] of knowing him.”14
From there, Coxeter and Fuller developed a simpatico rapport, on the surface any-

way, sending letters and papers back and forth. On August 29, 1968, Coxeter delivered
an invited lecture at the 11th Nobel Symposium, held on the island of Lidingö, near
Stockholm. The focus of the symposium was “Symmetry and Functions of Biological
Systems at the Macromolecular Level.” Coxeter began his talk, “Helices and Concho-
spirals,” by asking: “What can a geometer contribute to a biochemical conference?
Is there any contact between the imaginary world of geometry and the real world of
living creatures? Perhaps a clue has been given by Dr. Monod in his philosophical
remarks about fixity and evolution. Sharing his fondness for the five Platonic solids, I
am tempted to give an account of Felix Klein’s enumeration of point groups. But that is
readily available in the literature (Coxeter, 1961, chap. 15). Instead, I propose to give



a simple pure-geometric treatment of the following six basic theorems concerning
motion and growth.”15 Coxeter sent a copy of his talk to Fuller, although under a
different title—“Thank you so much …for your ‘Man and His Environment’ lecture at
the 11th Nobel Symposium,” Fuller replied, “as well as your truly enchanting piece on
‘Mathematics and Music.’ ”16

Coxeter’s alternative title, “Man and His Environment,” turned out to be a tad ironic,
in a calamitous sort of way. When he and Rien returned home in September, having
spent the entire summer abroad, they found among the backlog of mail a letter in-
forming them that their cottage had burned to the ground in a lightning storm. Their
friends who sent the bad news had watched the fiery spectacle from across the lake.17
While Rien was heartsick with the loss of their second home, she often recalled how
Donald more regretted the destruction of one of its contents: a glass and brass lamp
in the form of a stellated dodecahedron.18

Buckminster Fuller

Later that September, Coxeter met with Fuller again when he came to Toronto to
give a lecture at the university’s stately Convocation Hall. The seventy-three-year-old
Fuller, sporting hiswhite crew cut and glasses strapped aroundhis headwith an elastic
band, lectured to an audience of 1,500, mostly students, warning them: “We don’t
have much time.” Fuller was primarily in town to open the first annual International
Building Show. At that gathering he pontificated:



Integration of the future will not be east-west as we have known it, but over the polar
ice cap. The shortest great-circle routes between this part of North America and 90
percent of the rest of humanity don’t go over either the Atlantic or Pacific …

Misunderstandings grow out of remoteness and different ways of approaching
problems, but enmity and fear won’t last forever. Either there will be no men on the
earth or we will learn to communicate …

At Convocation Hall, however, the Toronto Telegram reported that “Bucky” was more
“rapping,” rattling off his ideas: “the aggregate of all humanity’s consciously appre-
hended and communicated nonsimultaneous and only partially overlapping experi-
ences”—riffing on the “synergy” or “energetic geometry” that “governs the physical
Universe”—his bravado about humans all living on “Spaceship Earth”—and there be-
ing no such thing as “up” or “down.”* The newspaper reporter, poking fun, tried to
replicate Bucky’s dizzying string of sound bites and then added as a kicker: “You
know, he’s been this way since ‘27 when he first started out. And for a lot of those
years—people thought he was nuts. But they know he’s a genius now, so it’s all right.”
The students at Convocation Hall gave Fuller a standing ovation. Coxeter couldn’t bear
it till the end. He noted in his journal: “Out, disgusted, after 3/4 hour.”19

Smith, knowing bothmen, suspects that Coxeter respected the substance of Fuller’s
work, but didn’t have patience for his unorthodox modus operandi. Coxeter may have
found Fuller’s public persona hard to take,20 but he greatly admired his geodesic
domes. Nonetheless, when asked, Coxeter did not mince words in delivering his
verdict on Fuller: “Buckminster Fuller was a brilliant architect and engineer who
knew very little mathematics but was very proud of himself,” adding that Fuller “had
overblown his stars as a mathematician.”21

Coxeter was not the first to be frustrated by Fuller. Fuller was neither an architect
nor engineer nor mathematician by training, and he became a controversial figure
among experts in all those fields. He made awkward geometric mistakes, such as
howmany spokes are needed on a wheel to hold it rigid (Fuller said twelve instead of
seven).22 Coxeter had all the time in the world for amateurs and praised them highly.
But in Coxeter’s eyes, one of Fuller’s downfalls was his use of preexisting material
without acknowledgment.23



Where Coxeter sought to share credit almost to a fault, Fuller took out patents—on
his triangulated icosahedron, for example—and he defended his patents vigilantly.
In an unexpected triangle of interconnections, the artist M. C. Escher (whose Circle
Limit III prints Coxeter had inspired; see chapter 11) had a run-in with Fuller via his
son George. An engineer, George moved to Canada to become partner in a company
that manufactured portable domes much like Fuller’s. The small company won a
breakthrough contract to build these fiberglass “radomes” for the U.S. Air Force, but
their victory party did not last long. They received legal notice from Fuller that he was
due royalties on those and all domes the company sold. “Wewere livid at Buckminster
Fuller for having to pay HIM royalties on the design,” recalled George Escher. George
was appalled that Fuller patented shapes that Plato and Archimedes had invented.
“I still get hot under the collar thinking of how one would have the gall to patent a
geometry so entirely settled in the public domain.”24
M. C. Escher discussed this predicament, and Coxeter’s view of Fuller in a 1964

letter to their mutual friend, chemist and crystallographer Arthur Loeb, who had a
penchant for polyhedra and symmetry, and taught at the Carpenter Center for the
Visual Arts, at Harvard. Escher wrote:
About B.F. [sic], a few days ago I received some interesting information from my

Canadian son George (who is now naturalized) …I found it troubling to hear that my
friend Coxeter expressed himself in an extraordinarily negative manner with regard
to B.F. in a letter to Long Sault Woodcraft Ltd. (They were in contact with Coxeter, who
gave them theoretical advice.) He called B.F. a quack and wrote in such a derogatory
manner about him that George cut off a part of that letter and destroyed it before
permitting the letter to be filed. “In all probability, there was a considerable dose of
professional jealousy; not so unusual,” my son wrote to me …my own lay conclusion is
that there are indeed charlatan-like facets to thisman. A clever boy, thisBucky, for sure.
While Coxeter is without any doubt an extremely skilledmathematical theoretician.25
Coxeter, however, formed this scathing opinion of Fuller before he met the man,

and before he became intimately acquainted with his work. Over time, the geometer
brought himself to overlook the polymath’s indiscretions. When a reporter from
LIFE magazine called in 1970, Coxeter gave Fuller a somewhat backhanded—but
then accidentally glowing—compliment. In the article, a lengthy profile of Fuller, the
reporter recounted: “I made an effort at consulting various authorities and scholars,
nearly all of whom said Fuller was irrelevant to his field. To mathematicians, he was



an architect; to architects, an engineer. It was like calling around Seville to check out
Galileo …But then I called a Canadian mathematician H. S. M. Coxeter, ‘the world’s
leading geometer,’ in Fuller’s estimation, and at Coxeter’s urging I sent him a copy of a
speech in which some of [Fuller’s] lesser-known concepts were explained. Coxeter
sent back a letter saying that one equationwould be ‘a remarkable discovery, justifying
Bucky’s evidentpride,’ if only itweren’t too good tobe true. Thenextday, Coxeter called:
‘On further reflection, I see that it is true.’ ”26 Coxeter told Fuller how impressed he
was with his formula—on the cubic close-packing of balls. And he later took pleasure
in proving it, noting in his diary one day in September 1970: “I saw how to prove Bucky
Fuller’s formula,” and publishing it in a paper, “Polyhedral Numbers.”27 Of course,
more than anything, Coxeter fell in love with Fuller’s geodesic domes. Faced with the
loss of his cottage, Coxeter had realized in a flash that a geodesic cottage would be
the perfect replacement.† “It is a great pleasure to see howmany people all over the
world have used your structures for various purposes,” Coxeter commented in a letter
he addressed to “Bucky”(politely asking permission for the familiarity by asking: “…if
I may join the distinguished company of those who call you so”). “I should think a
dome (with no upstairs floor), much smaller than your house in Carbondale, would
be ideal for a summer cottage. Has this ever been done?” After Fuller sent an article,
“Making the Domes Available,” Coxeter asked: “This article made me wonder whether
it would be feasible to erect such a 4-frequency dome on a rock in the wilderness of
Georgian Bay …Rien and I have the feeling that such a domemight be both convenient
and attractive in that rural setting.”28
As things turned out, the Coxeters decided against a geodesic-dome cottage. But

Fuller’s concepts continued to occupy Coxeter’s mind. He noticed a connection be-
tween what he learned at the Nobel Symposium and his subsequent study of Fuller’s
domes. So, of course, he explored the interface of the two subjects with a paper—“Virus
Macromolecules and Geodesic Domes”—and sent a draft along to Fuller.29 In Stock-
holm Coxeter heard from the biochemists that they had recently refined a technique
for staining viruses in such a way as to be able to observe their external shape with
the electron microscope. “It must have been a thrilling experience,” wrote Coxeter in
his paper, “to find that, whereas some, such as measles, are long chains with a helical
structure, others, being ‘finite,’ have well recognizable icosahedral symmetry and look
like tiny geodesic domes.” Coxeter went on to draw direct correlations: Fuller’s 1955
dome built as bachelor officers’ quarters for the U.S. Air Force in Korea seemed to be



the shape of the REO (respiratory enteric orphan) virus; his thirty-one-foot geodesic
sphere at the top ofMountWashington, inNewHampshire, wasmatched by the herpes
virus and varicella (chicken pox); his U.S. Pavilion in Kabul, Afghanistan, found its twin
in the adenovirus type 12; and the “radome” standing guard at the Arctic Distant Early
Warning Line (a system of radar stations set up to detect Soviet bombers and missiles
during the Cold War), corresponded to the infectious canine hepatitis virus.30
Fuller, in this intellectual gift exchange, gave Coxeter an icosahedral world map. “I

had fun assembling the icosahedral world,” Coxeter replied, “which now adorns my
study mantelpiece.”31 And later Fuller sent him a hanging sculpture called Tensegrity.
Theword tensegrity, as Fuller explained in Synergetics,was an invention, a contraction of
“tensional integrity”—it described the structural relationship between the sculpture’s
two components, sticks and string.32 Coxeter was very fond of his Tensegrity and gave
it prominent display; nestled in its own alcove by the front door, the sculpture cast
a pleasingly symmetrical shadow of suspended sticks (the strings disappeared), lit
from above by Coxeter’s antique stained-glass Archimedean-solid light fixture from
Alicia Boole Stott.
In 1975, Fuller’s much-anticipated tome, Synergetics, Explorations in the Geometry of

Thinking, was finally published with its flattering dedication to Coxeter. Off the record,
Coxeter thought the book “a lot of nonsense.” He suggested Fuller would have done
better to consult a mathematician in the writing, rather than name-dropping in the
dedication.33 “Coxeter saw himself as a mathematician, and since Fuller attacked
the traditional mathematician,” noted Smith, “along with many other specializations,
it would be natural for Donald to react to that attack.” Smith wagered that Fuller did
not think of Coxeter as a typical mathematician, out to prove theorems, but rather a
mathematicianwho respected the intrinsic beauty in the patterns of the universe. And
Fuller, in turn, sincerely respected and appreciated Coxeter’s work.34 The dedication
certainly read as high praise:

To me no experience of childhood so reinforced self-

confidence in one's own exploratory faculties

as did geometry. Its inspiring effectiveness in

winnowing out and evaluating a plurality

of previously unknowns from a few given



knowns, and its elegance of proof

lead to the further discovery and comprehension of a

grand strategy for all

problem solving.

By virtue of his extraordinary life's work in mathematics,

Dr. Coxeter is the geometer of our bestirring

twentieth century, the spontaneously acclaimed

terrestrial curator of the historical

inventory of the science of

pattern analysis.

I dedicate this work with particular esteem for him

and in thanks to all the geometers of all time

whose importance to humanity

he epitomizes.35

The notion of the existential role of the geometer is something that Walter Whiteley,
director of applied mathematics at York University in Toronto, has also given a good
deal of thought. As an applied geometer, Whiteley searches for patterns to solve
problems—how the geometry of proteins affects their behavior in the body, how the
shapely hood of a Mercedes is modeled in such computer programs as CAD, how a
robot is instructed to reach out and grab three-dimensional objects when fed camera
pictures, andwhat shapes and structures of buildings and bridges stand or collapse.36
From his work in these areas, Whiteley has come to believe in the power of the

visual not only in doing mathematics, but also in applying it. Without a well-versed
knowledge of the visual and the geometric approach to mathematics, society suffers
what Whiteley calls a “geometry gap.” To remedy the situation, he has become an
ardent advocate for the visual method, and presents his ideas in a cogent presentation
called “Learning to See Like a Mathematician”—it explains howmathematicians and
scientists who use mathematics need to learn, or relearn, the visual and geometric
languages.37



“The visual is central to all levels of mathematics,” said Whiteley, delivering his
opinion one day to small amphitheater of schoolteachers at a mathematics education
conference at York University. “It changes the questions you ask, it changes the
methods you use, it changes the answers, and it changes the way mathematicians
communicate and teach. What you see is central to how you reason and problem
solve.”38
One of his vignettes recounted a problem during the SecondWorld War, when the

British were losing toomany aircraft. Mathematician and statistical theorist Abraham
Wald worked on the problem of how to save more planes; he was trying to determine
where extra armor plates would bemost beneficial. His first instinct was to add armor
to themost damaged areas of returning planes, but after analyzing the visual data—the
pattern of bullet holes on returning aircraft—Wald reached the opposite conclusion.
He conducted his analysis by drawing an outline of a plane and cumulatively marking
all the places where returning planes had been shot, which left almost the entire
image covered, except two crucial locations. Wald then correctly surmised that the
planes lost in battle had been hit in the unmarked areas—the cockpit and the tail
engine—indicating it was those areas that needed more armor.39
Whiteley also described a scenario wherein data was poorly represented visually

and this disinformation caused faulty analysis: the disastrous decision to launch the
space shuttle Challenger in 1986. The O-rings designed to seal the joints between the
rocket boosters were damaged by the cold temperatures of the launch day, but the all-
important piece of information—that the O-rings’ damage increased as temperature
decreased—was hidden in cluttered and convoluted charts. As Edward Tufte, arbiter of
the visual representation of information and professor emeritus at Yale, stated in his
book Visual Explanations: “Had the correct scatterplot or data table been constructed,
no one would have dared to risk the Challenger in such cold weather.”40
In doing math, Whiteley continued, our brain is not primarily number crunching.

It is seeking patterns. And as we explore, our visual cortex actually duplicates these
images and patterns in the brain. This is not just a metaphor—like “the mind’s eye” or
“a picture in the mind.” This process literally involves “thinking in pictures.”‡ Visual
images and patterns are actually built up in the brain, rather than being converted into
neurological code.41Whiteley told the story of a bizarre old psychological experiment
involving the retinotopic mapping of a monkey’s brain. While the monkey stared at
a visual image, a constellation of lights on a black screen arranged like a wheel with



spokes, radioactive fluid was pumped into the monkey’s bloodstream to follow the
blood’s path in the brain. The monkey was then sacrificed and its brain dissected.
The location of the radioactive fluid in the monkey’s brain physically reproduced, like
a photocopier, the image of the constellation.42
For Whiteley, it all comes down to underlining how visual perception builds into

reasoning in the brain. Even algebra is carried out using visual patterns within the
equations and symbols—the appearance can be transformed without changing the
content. “Algebra is cosmetics, not surgery,” Whiteley said, displaying an algebraic
equation translated into visual components of squares and circles. “Failure to do and
teach mathematics visually is excluding numerous people and making mathematics
harder,” Whiteley concluded. And he conjectured that the dearth of the visual, the
decline in classical geometry over the last hundred years, has had a regressive effect,
resulting in “the geometry gap.” This ismuch like “the ingenuity gap,” a concept raised
in the book of the same name—by Thomas Homer-Dixon, director of the University
of Toronto’s Trudeau Centre for Peace and Conflict Studies—chronicling examples
of people and societies facing a crisis of ingenuity or know-how, which leaves them
unable to solve problems of their own creation. Whiteley’s thesis holds that in the
realm of science, the sedentary, mathematical areas of our brains, and the consequent
lack of ingenuity—the inability to solve problems and make discoveries—results from
an ignorance of visual and geometrical tools.43
“We will probably end up having to rediscover some things because we won’t have

people like Coxeter to make the connections,” he said. Mathematicians and scientists,
ignorant of historic geometric insights, will have to redo investigations from scratch,
repeating the same pitfalls as their predecessors, until they reinvent the required
results. In mathematics this can be part of the joy of discovery (or rediscovery). But in
science, en route to urgent research, it could translate into unwelcome roadblocks
and delays.44
Whiteley cast a concrete example of the geometry gap during a gala dinner conclud-

ing the 2002 Budapest conference, held aboard the tour boat Europa. After dinner,
mathematicians gathered in the darkness of the upper deck as the boat passed be-
neath the Danube’s intermittent tunnel of bridges. Seizing on perfect timing, Whiteley
constructed a metaphor. He recalled a book he had read recently—Design Paradigms
by Henry Petroski, professor of civil engineering and history at Duke University—on
the theory of why and when bridges collapse, chronicling the problem of engineers



failing to learn their own history. “Petroski says that within the span of forty or fifty
years, the engineers who learned something from the last bridge disaster have left
the field,” said Whiteley, “and the next generation comes along and hasn’t learned the
same lessons.”45
The geometry gap has exacerbated this situation. In the past, geometers and engi-

neers were in constant communication—engineers knew geometry, and geometers
knew engineering. When projective geometry gained popularity in the nineteenth
century, for example, engineerswere quick to see that the structural question of statics
was “projectively invariant.” Statics is the study of how forces converge, and resolve or
fail to resolve—on the support structures of bridge, for example. Will a bridge retain
its structural integrity when all the forces of gravity and weight are projected and
converge on stress points? Projective geometry (to loosely draw the pure-to-applied
analogy), is the study not of the shape and size of figures, as with Euclidean geom-
etry, but the properties of these figures that are retained, or are invariant, under a
projection—that is, when the image of the figure is projected by straight lines that
converge on a plane or canvas, what qualities of the object are preserved? Engineer-
ing textbooks were filled with projective geometry until the mid-twentieth century,
when geometry was in the depths of its decline. So from that point in time onward,
engineering students were no longer exposed to geometry. Even the vocabulary of
their predecessors was foreign, let alone any clue of which questions to ask to close
the gap in knowledge.46 And by Petroski’s calculations, the world is overdue—knock
on wood it shall continue to be—for a bridge to collapse.47
In his book Projective Geometry, Coxeter described this branch of geometry as a

worthwhile way of “stretching our imagination.”48 And while for Coxeter stretch-
ing one’s imagination was application enough, the most fundamental application of
projective geometry stems from its earliest origins—the fine arts. In 1425, Italian
architect Filippo Brunelleschi put forth his ideas about the geometrical theory of
perspective (later consolidated into a treatise by Leon Battista Alberti, and developed
further by Albrecht Dürer, and Leonardo da Vinci). From projective geometry’s origin
in the art world, one can easily appreciate how its properties held the attention of
mathematicians like Coxeter.49 Much as how hyper-dimensional objects are studied
through projections down to lower dimensions, projective geometry explores how
three-dimensional objects appear when projected onto a two-dimensional canvas,
or plane. Investigations in projective geometry also consider the before-and-after



relationship, the properties of the original object versus its projected image. When an
artist draws a picture of a tiled floor on a vertical canvas, for instance, the square tiles
cease to be square in the projection and become trapezoids, as their sides and angles
are distorted by foreshortening (but the essential image is unchanged in the sense
that the lines remain straight). Similarly, when a lampwith a circular lampshade casts
a shadow, the circular rim of the shade becomes an elliptical shadow on the floor and a
hyperbolic shadow on a nearby wall. “Thus projective geometry waives the customary
distinction between a circle, an ellipse, a parabola, and a hyperbola,” said Coxeter;
“these curves are simply conics, all alike.” The property of parallel lines is also altered
under projection; parallelism is not preserved as parallel lines seem to meet, like
railway tracks, at the horizon. The horizon, in projective geometry terminology, is
called the “line at infinity” and parallel lines meet at a “point at infinity.”§

An illustration of the optical instrument used by Filippo Brunelleschi to render an
accurate perspective view.

Coxeter’s book Projective Geometry, published in 1964, was heralded as a worthy
contribution to the field’s illustrious ancestry.50 Reviewing the book, Gian-Carlo Rota,
a philosopher of mathematics and a leader in combinatorial geometry at MIT, gave a
glowing evaluation: “There is much to be said about a book that is perfect. If we were
asked to pick a worthy successor to Euclid’s Elements, wemight choose this one. Of
course, the synthetic method in geometry is now ‘out of fashion.’ This simply means
that it will be back in fashion in another five years …so we might as well gear up to
a few hours of highmathematical entertainment by reading his book on some cold
winter evening.”51



Everyday examples of projective geometry: parallel train tracks appear to meet at
the horizon; a circular lampshade casts a hyperbolic shadow.

Over the years, Coxeter’s classical geometry, as if on cue, was unearthed, a fragment
here and there, like an archaeological artifact, rediscovered by mathematicians and
scientistswhenneeded. Coxeter acted as a repository of forgotten solutions, amemory
bridge closing the gaps. As pockets of the old classical geometry recurred in mathe-
matics and became relevant in the applied sciences, Coxeter was an encyclopedic sage.
“In his mind he carried a lot of the connections for us,” said Whiteley, “from an earlier
period when this geometry was very active to a period now where it becomes active
again—but in betweenmany pieces of it were lost. He kept a culture alive.” Over the
course of his career, people sent Coxeter letters containing a diagram, a paper, a proof,
or theorem they had recently discovered—or rediscovered—and asked, ‘Have you seen
this before?’ Coxeter was able to look at this image, cross-reference it through his
brain, and say, ‘Yes, this is something that appears here and here and here.’

“It struckmehowessential it was that he had in his ownmind, in his own experience,
the capacity to make these connections,” Whiteley observed. “This is not something
we can do now with Google. You can’t put a diagram into Google and say findme other
diagrams that are ‘like this.’ But this is what people of his caliber could do, in their
minds. You could take Coxeter a picture and ask, ‘Have you ever seen anything like this



before?’ And he would provide you with a geometrical metaphor or an exact reference.
No computer is capable of answering those kinds of queries. How on earth are we
going to replicate that,” wondered Whiteley, “when we don’t have Coxeter? There will
be a lot of geometry that disappears into storage.”
Of course, Coxeter was only human and one geometrical image he found in his filing

cabinet he did not recognize. It was a particularly stunning and clever representation
of symmetries by a graph. He called his friend and graph theorist William Tutte, at the
University of Waterloo, and asked him if he had every seen it before. Tutte said, “Yes
Donald, I have. You discovered it.” Coxeter then wrote a paper about his rediscovery
of his own discovery, which he titled “My Graph.”52

In the early 1990s, Douglas Hofstadter wrote a few “Dear Professor Coxeter” letters.
Hofstadter wanted to tap into Coxeter’s mental archives and ask him if he had ever
seen what Hofstadter hoped was an original discovery in projective geometry—his
Garland theorem. Within the space of severalmonths, Hofstadter sent Coxeter a trilogy
of letters, eachmore than ten pages long, typed single-spaced and double-sided, albeit
with many diagrams interspersed.53

Coxeter’s graph, which he forgot he had invented.
In the introductory letter, Hofstadter began: “First of all, let me apologize for in-

truding on you with this long letter. You must have plenty to take care of besides
thinking about ideas foisted upon you by a stranger. But perhaps I am not entirely
a stranger. Although the letterhead gives my ‘official identity’ ”—it’s a long one: pro-
fessor of computer science and cognitive science; adjunct professor of psychology,



philosophy, and the history of philosophy of science; and director of the Center for
Research on Concepts and Cognition, at Indiana University, in Bloomington—“you
may perhaps knowme—or know of me—as the author of the book Gödel, Escher, Bach:
An Eternal Golden Braid.” Coxeter replied: “…clearly, you are no stranger.”54
Hofstadter divulged he had been on a “geometry binge,”¶ and he wanted to tell

Coxeter “of the deep debt I owe you.” Hofstadter grew up profoundly in love with
mathematics. He loved its “abracadabraic” and “mirabile dictu” qualities. He made a
number of modest but genuinely original discoveries in number theory as an under-
graduate, and then started his graduate studies in mathematics at Berkeley, in 1966.
But after a year or so, the relentless push toward abstraction and nearly total lack of
imagery “brought me to my knees. I got out of math in Berkeley,” as he recalled. “I
was fed up. It was a horrible experience for me to be suddenly repelled by what I had
always assumed would be the love of my life.”55
Eventually he carved his niche in an area of physics, solid-state theory. Doing his

PhD research, he discovered the energy spectrum he called Gplot, now known as the
“Hofstadter butterfly”—the first fractal, or multifractal, ever found in physics (this
preceded Mandelbrot’s fractal fame). When Hofstadter graduated, however, he was
ready for another switch, and he picked his longtime obsession with how the mind
works. In 1979, he published his Pulitzer Prize-winning Gödel, Escher, Bach, and before
long he had earned his status as a free agent at Indiana University; he had license to
explore the workings of the mind in any way he liked. He focusedmost of all on the
mechanisms of analogy. But one day he found himself caught up by a small problem
in plane geometry and the cognitive process it generated intrigued him.56
In a thought experiment, of sorts, Hofstadter chose the equilateral triangle as his

guinea pig. As his fascination grew, hewas caught off guard by the fact that the triangle
had more than one center. “I had heard words such as ‘orthocenter,’ or ‘centroid,’ or
‘circumcenter,’ and I sort of knew these things existed, but to tell the truth, when I
found out that any triangle hasmany centers, I was really thrown,” he said. “It seemed
like a miracle. In fact, the triangle has an infinite number of centers, but they are not
all equally interesting.”57
At one point he made a droll analogy between this startling profusion of triangle

centers and the numerous parts of the human body that might qualify as an analogy.
He recounted: “Suppose I asked a bunch of people to say what they think is the ‘most
important’—that is, the ‘most central’—part of their body. One person might shout out,



‘My brain!’ Somebody else might say, ‘No, my stomach!’ and other people might say,
‘My heart’ or ‘My sexual organ’ or even ‘My belly button.’ It could go on and on like
that, and …each person could surely defend their point of view. Someone might even
say, ‘My kneecap!’ although since there are two of them, that would break the body’s
natural symmetry, so maybe one would have to amend it to include both kneecaps.”
Looking back, Hofstadter finds this analogy flippant, but it helped him wrap his head
around the fact that a triangle has not just one center but many.58
Hooked by his triangle investigations, Hofstadter continued on and discovered new

centers of his own. Among the discoveries, there were a few rediscoveries, and at
times he was crestfallen to learn that he had come along a century or more too late.
He relayed his learning curve to Coxeter:
In a bookstore, I cameacross the book by you andSamuelGreitzer,Geometry Revisited.

It was electrifying. There is no better word for it. I just gobbled it up, at the same
time inventing new geometric ideas on my own …For example, smitten with duality, I
invented the idea of reciprocation in a circle before I came to the chapter in your book
where it was discussed, and I naïvely thought thatmaybe Iwas the first person on earth
to have come up with that idea! …Oh, well. In any case, all of this was astonishingly
beautiful, even intoxicating, and of course your books were the vehicles that conveyed
all this beauty to me.
Hofstadter had another epiphany, one he was sure was his own—“absolutely new,

something stunning, deep, and beautiful.” He called it the Garland theorem, for the
beauty of the interconnected results; and at the core of it was a new center for the
triangle, found within a cluster of triangles and circles. “All this gave me quite a bit
of hope that I was the first to see this gem,” wrote Hofstadter, this time in an article,
“Discovery and Dissection of a Geometric Gem,” a copy of which he sent along to
Coxeter.59
In contemplating whether or not his Garland theorem was in fact a new discovery,

Hofstadter noted: “Compared to a titan like H. S. M. Coxeter, I have but a minuscule
storehouse of knowledge.” So he asked Coxeter whether he had ever seen anything
like the Garland theorem before. In response, Coxeter recommended his two books on
projective geometry, which Hofstadter duly ingested. And Coxeter made a suggestion:
“Before seeking publication, you should compose a conventional proof” (and offered a
few hints). In the end, Hofstadter found that his Garland theorem was not the original
gem he had hoped. It was at once a deflating and educational moment. “It has been a



fabulous experience,” he told Coxeter, “and it is you whom I credit, in large part, for
launching me on this voyage and being my guide. I will never be quite the same, after
having drunk so deeply from the infinite well of geometry. My life is in some central
way forever changed, thanks to the mysteries and beauties of triangles and circles.”60

Hofstadter was grateful that triangle geometry had placed him in a revealing lab-
oratory of self-observation, a chance to watch himself in the discovery process. In
his article, he discussed his belief that the visual approach and the use of analogy
it generates is the primordial tool of mathematical discovery. Coxeter concurred,
mentioning that he too hadmade profitable use of analogy in discovery, referring to
his childhood paper “Dimensional Analogy” and all the fruit it bore.

Douglas Hofstadter wrote in one of his letters to Coxeter: “I am enclosing, for your
amusement, this design I did, called an ‘ambigram,’ which is intended to be readable
both right-side-up and rotated 180 degrees, as ‘Coxeter.’ I hope you canmake it out.”

In his article, Hofstadter also issued a critique, full of frustration, railing against
the “enormously abstract directions that math has gone in, over the last, say, 50 or 60
years.” He recounted a trip to the mathematics library at Indiana University, trying
to find books or journals that might provide some hint as to whether his discovery
was new. The Journal of Geometry was particularly dismaying. Hofstadter compiled
stats on the “picture density” of the journal. From three successive journals in 1991
and 1992 he recorded fifty-two articles, thirteen of which contained pictures. “The
page-level statistics are even more revealing,” he observed. “In these issues there
were 602 total pages, but only 39 of them had any pictures! In other words, on the
average, 75 percent of the articles (39/52) and 93 percent of the pages (563/602) in the
Journal of Geometry are pictureless. By contrast, Coxeter and Greitzer’s book Geometry
Revisited,which has 153 pages of text, has roughly 160 separate diagrams—an average
of over one per page! …I cannot really judge the articles in the Journal of Geometry,” he
concluded. “My intuition tells me that many of themmust be shallow despite their
air of depth, but surely some of them are genuinely deep and important. Sometimes



I feel positively daunted by the remoteness and incomprehensibility of the whole
journal, and I feel a kind of childish admiration for anyone who can think at such
abstract levels. But I oscillate between respect and disgust. It is a very strange and
uncomfortable feeling.”61
For Hofstadter, the visual is the absolute crux of mathematics. “I always have to

have a picture,” he said recently. “And I don’t like to make it sound as if, when I say
visual, that a blind person couldn’t have it. I think a blind person could have it just as
much. I feel the visual means thinking about space—however one represents space
in one’s head.62 A bat may be blind but certainly has a wonderful understanding of
space; I think a bat would be capable of geometry if it had the intelligence. So it’s not
the eyes so much. The word ‘visual’ for memeans something that goes on in the brain
that has direct contact with space and distance in space.”63
The lack of the visual inmodernmathematics Hofstadter can’t quite explain, though

not for lack of trying. It’s not quite a conspiracy, or deliberate dishonesty, he said. He
offers this analogy: “I feel that mathematicians have developed a paranoid fear of
non-rigor or of intuition. They almost don’t want to admit that they are human. It’s a
little bit like what’s happened since September 11th in the United States where airport
security has gone up and up and up, out of perhaps some genuinely correct fear but
also out of paranoia of terrorists …to the extent that you can’t even carry a nail clipper
onto a plane It’s as if mathematicians have this mania for turning everything into
prickly formal symbols and using as many symbols as possible. Even words like ‘if,’
‘then,’ and ‘is’ are routinely replaced by symbols, so that what could be understood if
you wrote it in words looks very technical and forbidding, and as if it hadmuch deeper
meaning than it really does. It pushes people away, even people who love math; not
only the Englishmajors whomaybe would never have been attracted to math, but also
people who are good at math. My feeling is that there is a great deal of obfuscation, of
obscurantism inmathematics. I don’tmean to say that rigor doesn’t have its place. But
I feel as if hidden behind what mathematicians say, there are often pictures. And that
mathematicians are frightened of showing these pictures. Why they are frightened I
don’t know.”64
Hofstadter feels on the whole that the pendulum is swinging back in favor of the

visual. As he said in one of his letters to Coxeter, “I have a sense thatwe are on the verge
of something of a turnaround. By distributing my article and getting back various
responses, I have learned that a number of important mathematicians are ‘closet



Euclideans.’ ”65 Walter Whiteley, then, is in decent company singing the praises of
geometry’s visual tool. He is joined by a chorus of mathematicians who quietly or
vociferously support a more prominent place for the visual perspective in math and
science. “The point of view of people like Coxeter, and many mathematicians like
myself,” said Sir Michael Atiyah, “is that geometry trains the imagination—it is sport
for imagination and inspiration—and that thinking about geometrical things is very
important not only for mathematicians but scientists and engineers in their attitudes
toward the three-dimensional world and how we see it.” After geometry disappeared
from the curriculum, university engineering departments complained that students
couldn’t understand three-dimensional geometry—they didn’t know where to start in
building machines because they didn’t know how to draw things in three dimensions.
As a backlash to these deficiencies, combined with the campaigning of Coxeter and
others, a movement is afoot to reintegrate geometry into the syllabus in a modernized
way, focusing on the intuitive as well as the formal side of mathematics. However, to
say the pendulum has swung back is an exaggeration. “Pendulums tend to wobble
around a bit, and this is not an easy task to get right,” said Sir Michael. “It keeps
changing with every generation and it is still very much a live issue.”66

In 2001, the Royal Society of London, the apogee of all mathematical and scientific
wisdom, published a report on the state of geometry education. It, too, argued for
reinstating the study of geometry to its deserving stature. One recommendation urged
the development not only of an awareness for the historical and cultural heritage of
geometry in society, but also the development of skills for applying geometry in real-
world contemporary contexts. That as many students as possible fully develop their
mathematical potential through geometry, the report stated, “is a matter of national
importance.”67

* “People in China are not upside down.” “Your head is out, your feet are in.” “I’m
going outstairs and instairs.” “We’re all on a space vehicle.” “Like it or not, you’re an
astronaut.”

† Coxeter recalled reading somewhere, “the Salvador Dali built himself an icosahe-
dral house (havingfifteen faces above ground and the remainingfive in the basement).”



‡ Another weapon in Whiteley’s arsenal is his deconstruction of the word theorem.
By standard definition, a theorem is a proposition proved by a chain of reasoning.
Whiteley takes it further. This word comes from the same root as theater, he says—from
the Greek word theoremameaning “spectacle” or “speculation.” A theorem, then, is
something that has played before ones eyes, been considered with adequate specula-
tion, to the point of epiphany when one can exclaim “I SEE!”
§ Artists use the terms the “ideal line” or the “vanishing line”; and the “ideal point”

or the “vanishing point.”
¶ In letter number three Hofstadter began by apologizing for once again “inflicting”

on Coxeter another enormous letter: “What is wrong with me? Geometromania, I am
afraid.”
CHAPTER 10
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You see, which parts of mathematics are applicable—not applied but applica-
ble—it is very hard to tell in advance.…And why mathematics can be applied
to other things, to physics—that's a mystery.

—HENRI CARTAN

One day in the early 1960s, Gord Lang, a communications man, visited Coxeter in
his ivory-tower office with an applied query about sphere packing—without classical
geometry and the age-old question of how best to pack spheres, like a grocer’s display
of oranges or a cannoneer’s stack of cannonballs, the information transmitted through
cyperspace would be garbled beyond recognition. In one of Coxeter’s papers there
is a very simple explanation of sphere packing, starting with the related “kissing
number” problem: “Every intelligent child knows that a penny on a table can be
surrounded by exactly 6 others, all ‘kissing it’ and that when the pattern is continued
the pennies arrange themselves in straight rows. Tangents at all the points of contact
form a tessellation of regular hexagons, one surrounding each disc. In other words,
the 2-dimensional ball-packing problem is completely solved. Packing billiard balls
in 3-space is less obvious.”1
Packing spheres in higher dimensions kept geometric minds reeling for centuries.

The problem dates to 1611, when the German astronomer Kepler conjectured that
the densest way to pack spheres was by following the method of the grocer stacking
oranges. Kepler was unable to prove his hypothesis, as were manymathematicians
through history. Eventually, Thomas Hales at the University of Pittsburgh proved
Kepler correct in 1998. After six years of work Hales produced a proof generated by
three gigabytes’ worth of computer programs, also known as “proof by exhaustion” or
the “brute force method.”2

207



The grocer’s arrangement allows twelve balls to congregate around a central ball,
which leads us back to the kissing number problem, in dimensions higher than two.
In 1694, Sir Isaac Newton bounced this problem around with Oxford mathemati-
cian David Gregory. They debated whether a rigid material sphere could be brought
in contact with thirteen other such spheres of the same size. Gregory thought yes,
Newton no.3 In 1727, Stephen Hales (no relation to Thomas) tried to figure it out by
compressing several fresh parcels of peas in the same pot, keeping the pot closed
and adding water (approximating a force of as much as 1,600 pounds). He observed
that the peas dilated and formed “into pretty regular Dodecahedrons” but his re-
sults were ultimately inconclusive.4 Various mathematicians eventually solved the
threedimensional kissing number problem in the nineteenth century—Newton was
correct.5
When Gord Lang first visited Coxeter at the University of Toronto, he was in the

early stages of developing a modem. Lang had previously overseen the design of
a centralized purchasing system for Trans Canada Airlines, which was installed at
the airline’s Toronto office. And he had been in charge of a communication system
for Datar, a Canadian Navy project. Lang noted proudly that Claude Shannon, the
progenitor of communications technology and author of “Mathematical Theory of
Communication,” reviewed the design concepts for Datar, which was considered the
world’s first digital data network. Shannon was completely satisfied and noted that
it was the first practical application of his information theory.6 Shannon’s theory,
published in 1948, addressed the problem of information capacity—the capacity of a
channel to transmit information in a manner that ensuredmessages were received as
error free as possible. He posited that the design of such a communication system
was analogous to the sphere-packing problem of the geometer—sphere packing was a
strategy for efficiently storing and encoding data to eliminate errors.7
During Coxeter and Lang’s many meetings, it was Coxeter’s job to point Lang in the

direction of any sphere-packing research thatmight be useful in developing amodem.
But first, it was Lang’s part to explain to Coxeter this application of geometry, to give
the pure mathematician a sense of what he was looking for.8
The challenge of sending information digitally is to do so with the least possible

amount of ethereal noise contaminating and confusing the data traveling down a
modem line, or the voice through a telephone line. All the information that travels
down the wires and through the skies is encoded as digits, as zeros and ones (or more



complicated symbols). The codingmust be done in away thatminimizes waste—waste
of money and power—and in a way that minimizes distortion. “So ‘cheese’ is not
distorted to sound like ‘choose’ or ‘geez,’ ” said Neil Sloane, at the AT&T Shannon Lab.
“Once you start trying to minimize distortion, you very quickly come up against the
questions of packing balls into a box in high dimensional space.”9
Think of the information signals as points, Sloane suggested; for information points

to be transmitted accurately and clearly, they need to be far apart, not interfering
with one another. So imagine that the points are positioned at the exact center of a
billiard ball. If the information points are then packed together and sent down the
wires, the outer circumference of the billiard ball’s sphere would serve as a protective
shield, insulating the central information from disruption or distortion; such an
arrangement would absolutely guarantee that points cannot be too close together and
that information would not be garbled.10
“Let’s solve the problem of how to pack lots and lots of balls, all the same size, in

1000 dimensions, a 1000-dimensional box,” said Sloane. “Why 1000 dimensions?
The number of dimensions simply corresponds to the number of numbers—ones and
zeros—in each coding, like a bar code. Say your mother is talking into the microphone
and youwant to convert her voice to zeros and ones. What you do is take a little snippet,
take one second, and you cut up her voice signal into little pieces. You chop it up so
you have little sausages coming out of her mouth. And each sausage is one second
long. Now, in order to send that voice code, you need to sample it. You look at its values
1000 times a second—think of that as the coordinates of a point [of information] in
1000 dimensions.”* And so, by figuring out the best arrangement of billiard balls in a
thousand-dimensional box—the number of dimensions corresponding to the number
of coordinates, such as (x, y, z …) up to one thousand—an answer presents itself as to
how information should be best encoded and sent down the wires. In our present-day
digital reality, however, the sample is done continuously, producing the problem of
packing spheres in infinite dimensions—one sample after another after another after
another, ad infinitum, chugging along endlessly, thus producing the coordinates of a
point in infinite-dimensional space.11
In the early days of communications research, telephony scientists likeLang focused

on much lower dimensions, such as eight. When Lang came calling on Coxeter, he
was interested in a packing called the E8 lattice—lattice because the center points of
packed spheres align in such a way that when connected they produce a crisscrossing



lattice of points. It was then Coxeter’s job to bring to Lang’s attention any relevant
sphere-packing research, useful fodder for his modem design. Coxeter provided
Lang with both historic research and scoops on ongoing research, the cutting-edge
developments on the ancient sphere-packing problem. AndLang convincedCoxeter to
do some pure research that might help Lang’s applied pursuit. Coxeter was reluctant,
but after somecoaxinghefinally decidedhemight be able, andwilling, to contribute.12

To this end, in 1963, Coxeter made a contribution to the ball-packing problem that
had been undertaken by Kepler, Gregory, and Newton. Coxeter showed that the “12
around 1” arrangement’†—known to produce a hexagonal arrangement of balls—could
be shifted a bit, or translated, by rolling the balls ever so slightly, and in doing so the
balls reconfigured into an icosahedral arrangement. Buckminster Fuller later named
this process the “jitterbug transformation.” Although Coxeter’s amount of wiggle room
wasn’t enough to accommodate a thirteenth ball, it did permit the twelve balls to be
arbitrarily rearranged (as Conway and Sloane later proved). Coxeter wrote the paper
“An Upper Bound for the Number of Equal Nonoverlapping Spheres That Can Touch
Another Sphere of the Same Size,” and gave Lang an early copy before publication.13

Coxeter showed that Kepler’s hexagonal close-packing of spheres, left, could be
transformed into the icosahedral arrangement by simply rolling the balls around.

When Lang refined Coxeter’s results for his purposes, he used the “brute force
method,” cobbling together time onmany computers, in Toronto and overseas. After
months andmonths, a box was shipped with the results in punch card format—the
Paleolithic precursor of computer disks—and in the early 1970s Lang submitted a
proposal for an E8 lattice modem.14 He then went to see Coxeter with his proposal to



show him results of their collaboration.15 “Lang was very pleased with himself, and
he was determined to show Coxeter how he had put the abstract theories to good use,”
said Bob Tennent, who went along for the ride that day (he was then an undergrad
studying engineering science at the University of Toronto, working a summer job as a
computer programmer for Lang). “Langmade an appointment with the greatman and
dragged me along to show him the results on the computer print outs,” said Tennent,
now a professor in the School of Computing at Queen’s University. “I think the only
reason I went with Lang to see Coxeter is that the former wanted a witness for his
(expected) triumphal demonstration and appreciation by the latter. Coxeter was polite
but noticeably cool to Lang’s exposition. Eventually Lang stopped and asked Coxeter
whether he felt gratified that a practical application had been found for his hitherto
purely abstract geometrical theorizing. Coxeter calmly replied that, on the contrary,
he was appalled that his beautiful theories had been sullied in this way. Lang, the
engineer and entrepreneur, departed disappointed and uncomprehending.”16
The incident was a nice sampling of the different mind-sets, the pure mathemati-

cian and the applied scientist. The bare bones of sphere packing, the study of packing
points into a given space as far apart as possible, lends itself naturally to applica-
tion. “But that’s not the reason I’m interested, and that’s not the reason Coxeter
was interested,” said John Conway, who also on occasion has found himself at sim-
ilar to-apply-or-not-to-apply crossroads. Coxeter and Conway are interested in the
sphere-packing problem because the nuances are exquisite, such as the symmetries.
In the E8 lattice, for example, Conway said the E stands for the “exceptional” symme-
tries generated. And—surprise, surprise—it turns out that in certain dimensions the
patterns of sphere packings and the symmetries generated correspond to Coxeter
groups and can be conveyed with the shorthand of Coxeter diagrams.17
The fact that Coxeter responded as he did to Lang’s work was in part a demonstra-

tion of his selective disinterest in applications. But he didn’t turn up his nose at every
application.18 Coxeter may have found Lang’s modem so off-putting in the moment,
when its potential to link and feed supercomputers was laid out before his eyes, be-
cause Coxeter despised, almost more than anything, the onslaught of the computer
age. “I deplored the attention that people gave to computing,” he said once. “I was
afraid they might neglect other subjects.” He was relieved when computer science at
the University of Toronto was separated from the math department. “I didn’t want to
have it in mathematics,” he asserted. “Lots of young people are tempted away from



pure mathematics when they find that computing is such an up-and-coming field.”19
Coxeter never used a computer, let alone a modem. Although, not wanting to be out of
touch with the world of fans that wanted to be in touch with him, he had his son-in-law,
Susan’s husband Alfred, send e-mails on his behalf.20 And, ironically enough, the
computer server in the University of Toronto math department has been named in
Coxeter’s honor—coxeter@ coxeter.math.toronto.edu.21

The alliance of the computer and geometry ultimately only served to bolster classi-
cal geometry’s cause. Over the years, mathematics departments have increasingly
aligned themselves with the computer science—the University of Innsbruck, in Aus-
tria, has a Department of Engineering Mathematics, Geometry, and Computer Science
as part of its faculty of civil engineering. And NASA’s Langley Research Center would
not be complete without its Geometry Laboratory, providing “expert assistance in the
construction and analysis of computer based geometry,” focusing on the engineering
program Computer Aided Design (CAD). Its main services, according to the “GEO-
LAB” mission statement, is its “availability of high capacity workstations on which
to develop and visualize the geometry” and “a team of geometry specialists with the
expertise to apply the tools and techniques to specific applications.” One of those
applications involves studying the arc of flight paths, and another simulating the
velocity of the airflow between the wheels of a plane’s landing gear, which contributes
to the noise during takeoff and landing. In the latter study, numerical data is mapped
by the “data viz group” into three dimensions, simulating a landing gear in operation.
Experimental results can then be displayed in stereo on a large screen, giving the
researchers the benefit of “immersive visualization”—they can rotate the model to see
directly between the wheels, for example, generating a better understanding of the
airflow field andmodifications to the gear geometry that will reduce the amount of
noise produced.22
Even the average home computer contains a graphics card that creates images

by projective geometry—images projected from one domain or dimension to an-
other, allowing higher dimensions to look like three-dimensional images on the two-
dimensional canvas, or computer screen. This technology is used in creating the
convincing animation that flies you around in a three-dimensional video game, and
movies by Pixar, such as its Academy Award winners The Incredibles and Geri’s Game, a
short film about an old codger who plays a game of chess against himself.23



Tony DeRose,24 a senior scientist and member of the “Tools Group” at Pixar, often
gives a lecture he calls “How Geometry Is Changing Hollywood” (sometimes he calls it
“Math and the Movies”). One example DeRose gives is the use of projective geometry
in transforming the three-dimensional image of Bob Parr onto the two-dimensional
screen.25 Pixar animation scientists also use Euclidean geometry to assemble inde-
pendent scenes—each little set piece and character is modeled in its own separate
Euclidean space, and then, by a geometric transformation, the separate components
are assembled into a common environment, or a scene in one of the films.26

The message in DeRose’s talk, however, is not only that geometry is an alive and
vibrant field, by illustrating that a lot of old geometry, from hundreds or thousands of
years ago, is nowadays used in animation. Rather, he wants to entrance kids with the
fact that animation is a field pushing the boundaries of newmathematics, and new
geometry. “Subdivision surfaces” is a new geometric tool that allows animators to
efficiently represent on a computer complex surfaces that “deform”—when a character
is speaking—say, the elderly Geri—the surface of his face must be represented in a
lifelike way as it deforms during speech. “Classical differential geometry tells you how
to look at curvatures with all sorts of theorems that allow you to analyze the surface,”
said DeRose, “but it doesn’t really give you any constructive tools—I want a surface
that looks like this, how do I represent it with a computer in a constructive fashion that
I can animate quickly, that I can render quickly? That’s the problem that subdivision
surfaces address.”27

Originally proposed in 1978 by Ed Catmull, the president and cofounder of Pixar,
subdivision surfaces operate by startingwith a coarse set of polygons stitched together
into a seamless surface. Realistic human skin or clothing is then created by repeatedly
splitting and smoothing the coarse polygons. This splitting and smoothing process,
together with other tools such as wavelets, provides Pixar animation scientists with
compact ways of vividly representing highly detailed surfaces—to create characters
that have a comicbook aura, all the while looking as convincing as people; characters
who, as the Pixar literature boasts, have “organic translucent skin that makes them
subtly glow from within.”28



Perhaps the most stunning by-product of the computer age, as far as the Coxeterian
perspective is concerned, is that his visual approach to geometry has received a
tremendous boost from the exactitude and certainties of computers; the mouse and
the computer screen have considerably improved upon the rawmaterials of pencil
and paper. As a result, computers and computer programs have instigated a classical
geometry renaissance in the classroom.29

A computer graphics tool successively subdivides a “control mesh,” left, to create
the face of the Pixar character Geri. © Pixar.
One program in particular, The Geometer’s Sketchpad, has happily overthrown

the geometry kit, taking it into the realm of virtual reality. It hit the market in 1991,
after five years of development with a grant from the National Science Foundation—a
small group of mathematicians and educators had again been rattling the cages at
NSF, saying, “What about geometry?” and insisting that more needed to be done to
rejuvenate the subject in classrooms.30 The computer program was designed quite
literally to provide a visual sketchpad to draw and construct geometric shapes that
could be stretched andmoved, keeping their special properties intact (such as lines
being perpendicular), allowing students to discover and verify geometric facts in an
interactive way. “It was a great leap forward,” said Doris Schattschneider, the senior



geometer on the project, and an emeritus professor at Moravian College in Bethlehem,
Pennsylvania.31 The program was mouse driven (no typing, typing, typing in BASIC
code, entering coordinates to produce a crude shape), and had high-tech graphic
demands—it was designed for the Macintosh, which was just then replacing Apple II
computers in classrooms (these were the days ruled by Commodore 64 and Atari).32
Geometer’s Sketchpad, now in its fourth edition, hasmetwith enthusiastic response.

According to educational surveys and studies of secondary classrooms, Sketchpad is
the software thatmathematics teachers findmost valuable for students; it is usedmore
than any other computer tool; and in 1993 a version was designed for the Windows
platform, at IBM’s request and expense.33
Coxeter, of course, never worked with Geometer’s Sketchpad. But many of his fans,

fans of classical geometry, are avid users. As a research tool it has penetrated the
academic scene, with William Thurston and Douglas Hofstadter lauding its utility.34
AndWalter Whiteley finds that the moving images of Sketchpad take his visual per-
spective to an entirely different level. Indeed, having geometric diagrams produced
by the computer eliminates any possibility of flaws, to which visual perception might
otherwise succumb. “This is suddenly a new level of precision,” said Whiteley. “The
mathematician no longer spends any time going down the wrong track because the
computer makes it obvious when reasoning in the diagram is wrong. We might be
fooled by an imprecise diagram, but the computer will show the error.” Almost as
important, in Whiteley’s opinion, is the process of “learning what to expect” and
“learning what to look for”—by observing a sufficient range of examples, dragging a
sketch around, or creating a series of sketches to expand one’s experiences. “At some
point, you are able to ‘image’ a new example, or rerun an old example, in your brain,”
said Whiteley, “—without the computer.”35
“When you work with Sketchpad,” Whiteley effused, “the image in your brain is

actually altered to have a different focus, a different precision. And then when you
reason without the computer you make different choices. It really does alter the kind
of reasoning you do with images. You have a different sense of what holds and what
doesn’t. And you may have a different conviction about your results. You do a sketch,
you drag the sketch around …and youmay be utterly convinced that the thing is true
without ever having seen a proof. And the absence of a proof doesn’t shake your
conviction. Because you know visually, and viscerally, you are on the right track.”36



In his liaisons betweenmath and science, Whiteley has often consulted with bio-
chemists and biophysicists, participating in geometrical mathematical modeling of
how protein molecules function in the human body. Given the shape of a protein,
Whiteley investigates how it will interact with the body or with a specific drug. He
tries to determine whether a protein’s regions will be rigid or flexible, because this is
the property that dictates how a protein interacts. Working in the York Math Lab,37
Whiteley and his students devise computer algorithms that shorten the biochemist’s
search, tinkering with the geometric models, adjusting their struts and nodes, trying
to discover howmany rigid and flexible vertices each sample protein structure might
have.38

There are several reasons why the shape of proteins matters in the body. “The
body expects a protein to fold, to take shape,” Whiteley said, opening and closing
the flexible model cage of an icosahedron that can be flattened and expanded as
desired. If the body sees a protein that is not taking shape, the protein is assumed
to be defective and the body then rips it apart and reuses it. That’s what causes
cystic fibrosis, an inherited disease of the mucus glands. A protein made by the CFTR
gene—cystic fibrosis transmembrane conductance regulator—fails to take shape and
fails to function, eventually resulting in a buildup of mucus in the lungs, pancreas,
and other organs.39

The opposite occurs when a protein is too rigid and lasts too long in the body—pro-
teins, on average, last a matter of seconds, or as long as one day. “There’s a normal
cycle where things are formed and then taken apart again and reused,” said Whiteley.
“If something is too stable, that also poses a problem. Something that is too stable
becomes a problem in the same way as gallstones become a problem.” Proteins that
are too stable cause mad cow and Alzheimer’s disease. In mad cow, misfolded pro-
teins known as prions refuse to break down, become sticky, and pile up in the form of
plaques that wreak havoc on normal brain function. In Alzheimer’s, the amyloid pre-
cursor protein jamsmitochondria—the so-called cellular power plants—causing the
suffocation and death of neurons. Our bodies are biochemically fine-tuned: proteins
cannot be sloppy and flexible or they will fail to function, but neither can they be too
rigid, or they won’t be broken down and recycled.40



Our immune systemworks according to this geometric jigsaw puzzle. The dynamics
of molecular interaction are either a “lock and key,” where two rigid molecular shapes
have to be exactly right to click and work together, or an “adaptive fit,” where at least
one protein is flexible, functioning like a catcher’s mitt and changing shape, enclosing
on the incoming protein.41
Immunoglobulin, the primary molecule in our immune system, is highly compli-

cated and flexible. Its structure is described by biochemists in terms of a “body” with
“arms,” “elbows,” “hands,” and “fingers” that grab or recognize antigens. These molec-
ular extremities are extremely dextrous and limber, their double-jointedness allowing
them to latch on to what they need, wherever it is. When attacked with the icosahedral
common cold virus, for example, the fingers change shape rapidly, producing both
lock-and-key and adaptive-fit receptors, trying tomake amatch with the viral antibod-
ies. “When you’ve built an immune response,” said Whiteley, “it means you’ve found
the production machine for the things [antibodies] that will respond and detect and
bind to the viruses. It has to be so specific because you don’t want the immune system
to attack the rest of your body—that’s what arthritis is, an autoimmune disease, it
starts eating your own body up. It’s a delicate balance: too active and you’re in trouble,
too passive and you’re in trouble. It’s a dance.”42
Knowledge about the shape ofmolecules and proteins influences the design of drugs

used to treat disease—successful “drug docking” depends on getting the fit precisely
right. In Whiteley’s opinion, some of the most interesting geometry in the last quarter
century has been in this field of analyzing and designing molecules to fit prescribed
purposes. Many drugs have mirror opposites, or molecular “chirality,” which often
have a very different effect, sometimes used to treat an entirely different disease. One
form of ritalin inhibits attention deficit disorder, the other form is an antidepressant;
one form of ketamine is an anesthetic, the other a hallucinogen. Everyday examples
of this “stereochemistry” (the study of the three-dimensional arrangement of atoms
in molecules) occur in flavors common to the taste buds: limonene’s left-handed
molecule is found in lemons, whereas the righthanded molecule is found in oranges;
and the mirror opposite of aspartame is a bitter substance.43
Over years of collaborating with scientists and engineers to find geometric solutions

to applied problems, Whiteley accumulated observations that led him to formulate his
theories about the crucial importanceof “seeing like a geometer,” and thephenomenon
he calls the “geometry gap.” All too often, students coming into these fields do not have



the visual geometrical background they need. “The nature of geometry as Coxeter did
it is really important in the way geometry rises up in these areas and is unavoidable,”
said Whiteley. “People have to be able to recognize, ‘Yes, we are dealing with such and
such a shape from geometry here. Yes, these are the historical roots that are relevant
to us.’ ”44

Whiteley recalled that at a conference on zeolites, the Coxeter entities were bandied
about with great regularity. Zeolites are naturally occurring crystals, porous like the
nooks and crannies of a kitchen sponge, and, to cite one application, are used to refine
gasoline. When the petroleum comes out of the ground, some of its molecules are
too big, too thick. Refinement filters out the small molecules that will burn faster
in your car, and cracks the bigger molecules into small pieces. Zeolites, referred to
as molecular sieves, do both simultaneously. The current problem involves refining
heavy oil, which is made up of even bigger molecules and requires a zeolite with
bigger holes. But such a zeolite does not exist naturally, andmaterial scientists are
trying to devise an artificial zeolite that will do the job. “It’s a multimillion-dollar
industry and chemists are busy with major funding,” said Whiteley. Yet without a
background in geometry, they find themselves scrambling to find solutions, mining
Coxeter’s classical geometrical oeuvre for patterns of infinite honeycombs, hyperbolic
tilings, crystallographic clues for new zeolite prototypes.45

Amineral zeolite, Tschörtnerite, showing its polyhedral building units.
The shape-selective properties of zeolites make them useful in filtering pollutants
from the atmosphere and water.



“There are so many layers and hierarchies of geometry,” said Whiteley. “And know-
ing which kind of geometry you should be looking at may be the central choice you
make on the way to a solution. In the absence of that knowledge—knowing which
geometry to choose—you are lost in a morass of detail and may never see the solution.
Several times in my own work I have had to trick applied mathematicians into sitting
down and looking at a problem in terms of a simpler geometry, where all of a sudden
they would be able to see what the solution to their problem is.”46

“Coxeter,” he said, “was a bridge that has lived through the period of the low points
of geometry and brought us through to the current day where there is a rising interest
in it again, with these essential problems we are grappling with. The geometry gap
that we’re still living with, and in some ways will struggle with to a greater extent [now
that] Coxeter is no longer around to be the bridge, is the gap between all the pieces of
geometry which practitioners have done all throughout history.”47

Geometry will continue to be more andmore relevant to scientific problems, and
the question is, as scientists are working on these problems, will they be able to
recognize the geometric content? If scientists do not have the ability to experience
these epiphanies themselves, will there be any geometers walking the earth in fifty
years to consult, to point them in the right direction? Or will scientists waste precious
time reinventing, spinning their wheels in past pitfalls, before they arrive at solutions
to urgent problems?

Whiteley’s perspective does seem to be penetrating, by osmosis perhaps, the collec-
tive consciousness of the mathematics and scientific communities. This is evident at
the funding level, where the approval of proposals is increasingly hitched to one crite-
rion: collaborative ventures betweenmathematicians and scientists. Both Canadian
and U.S. grant agencies have allotted considerable chunks of money for collabora-
tions. “They are saying, ‘Come to us with a team that includes a mathematician and
a biologist—only by having newmathematics come in do we think the problems are
going to be solved. Therefore we are going to pay you to collaborate.’ ” The sad side of
this equation, fromWhiteley’s standpoint, is that scientists in the natural course of
things are not learning enoughmathematics and geometry to be able to provide the
relevant insights themselves.48



The geometric knowledge gap also came to bear in astrophysics and chemistry
with the long hunt for the shape of a carbon molecule composed of sixty carbon
atoms—known as C60—which ultimately earned its discoverers the 1996 Nobel Prize.
Previously, chemists had been aware of two forms of carbon—graphite (used in pencil
lead), in which the atoms are stacked in hexagonally ordered sheets; and diamond,
with atoms lying in a threedimensional array linked by tetrahedrally oriented bonds.
Chemists had speculated there was another form of carbon, having measured its
vibrations indicating there should be sixty atoms, but the subsequent laboratory
search for the geometric structure was a tricky and protracted endeavor.

Sir Harry Kroto, then a professor of chemistry at Sussex University (now at Florida
State University), and his codiscoverers, Robert Curl and Richard Smalley, from Rice
University in Texas, worked long and hard to ascertain C60’s shape—the arrangement
that would allow sixty carbon atoms to wind themselves together and agglomerate in
a hollow cage. The search would have been easier had they known Coxeter’s classical
geometry, and, in particular, his book Regular Polytopes. “We were trying to figure
out the rules of engagement,” said Kroto, who admitted: “I knew nothing about the
geometry.”49

The earliest murmurings about large carbonmolecules in the black clouds of the
Milky Way galaxy came in the 1960s. Advances in molecular radioastronomy had
indicated these clouds were like archives, storing secrets of the universe—molecules
that played a crucial role in the birth of stars and planets were floating around in outer
space, making their presence known by emitting radio waves at very specific and
identifiable frequencies.50 Of particular interest to Kroto were long-chain molecules
with alternating single and triple carbon bonds. Kroto was one of the early adven-
turers, continuously upping the ante, gambling that larger and larger extragalactic
compounds of carbonmight exist, and training his scientific ear to the frequencies
these molecules emitted from the depths of constellations, such as Taurus.51 These
ventures initially were considered long shots—in the 1970s, molecules with more
than three or four “heavy atoms” (such as carbon, nitrogen, or oxygen) were believed
to be rare and undetectable. But Kroto and others played the long odds, and sure
enough he found compounds with chains of five and then seven carbon molecules in
the interstellar realm. The next quest he set for himself: “Solving the puzzle of how
they got there in the first place.”52



By the early 1980s Sir Harry wondered whether these carbon chains had been
blown out of giant red carbon stars, stars known to pump vast quantities of carbon
chains into space. He seized on an opportunity in 1985 to simulate the atmospheric
chemistry of these stars, working with Curl and Smalley in Texas, fitting the project
between higher-priority applied research on semiconductors.53

Setting out, Sir Harry was sure the simulation experiment would detect carbon
atoms of twenty-four or thirty-two molecules. As trial runs progressed, the team
confirmed that conjecture but, in addition, they found something altogether and
amazingly different. The measurements indicated that one carbon cluster was partic-
ularly strong, peaking consistently at 720 atomic mass units, which corresponded in
weight to a species of carbon compounds with sixty atoms. As Sir Harry recounted:
“What might this special ‘wadge’ of carbon be?”54

Soon they reached a consensus that C60’s structure might be that of a spheroid—a
figure not quite perfectly spherical, like a soccer ball. For Sir Harry, this brought
back memories of Buckminster Fuller’s geodesic dome, which he, like Coxeter, had so
closely examined and admired at Expo ‘67. Since then he had collected a file full of
photographs of the dome and cobbled together a homemade model with his children.
He now wished he could get his hands on the model, but it was across the ocean
at home. Over the next day or two, Smalley and Curl fashioned makeshift models,
matching the properties of Fuller’s dome—sixty vertices, with twenty hexagonal and
twelve pentagonal faces. That is how they found the structure of C60, or as it is more
commonly known, the Buckminsterfullerene.55

Schematic diagrams of Fullerenes, from left: C60, C240, C540, and C960.



Sir Harry and the others agreed on the name Buckminsterfullerene because Fuller’s
work had been the inspiring point of reference.56 “I knew Buckminster Fuller’s work,
but I didn’t know the Coxeter connection,” said Sir Harry. “Certainly, Coxeter’s book
Regular Polytopes would have been helpful.” It would have helped find the shape in the
first place, reducing the grappling in the dark, and later it would have been useful
in producing and confirming the structure of C60. Sir Harry didn’t find Coxeter’s
book until subsequent research, when he became bewitched by even larger carbon
compounds. He purchased a molecular model set, and using Regular Polytopes as
his instruction manual, constructed C240, C540, and C6000—the family of giant
Fullerenes.57
With the catchy name Buckminsterfullerene, and the Nobel Prize, C60 grabbed the

limelight outside scientific circles. In December 1991, confusion over the composition
of the Buckminsterfullerene and its future played out in Britain’s House of Lords.
LORD ERROLOFHALE ASKEDHERMAJESTY’S GOVERNMENT: “What steps [are

they] taking to encourage the use of Buckminsterfullerene in science and industry?”
THE PARLIAMENTARY UNDER-SECRETARY OF STATE, DEPARTMENT OF

TRADE AND INDUSTRY, LORD REAY: “My Lords, the Government have been
following with interest the emergence of Buckminsterfullerene and support research
currently being undertaken at Sussex University through the Science and Engineering
Research Centre. However, it must be left to the judgment of firms whether they wish
to pursue research into commercial applications of Buckminsterfullerene and other
Fullerenes.”
BARONESS SEEAR INTERRUPTED: “My Lords, forgive my ignorance, but can the

noble Lord say whether this thing is animal, vegetable or mineral?”
LORD REAY: “My Lords, I am glad the noble Baroness asked that question. I can

say that a Buckminsterfullerene is a molecule composed of 60 carbon atoms known
to chemists as C60. Those atoms form a closed cage made up of 12 pentagons and 20
hexagons that fit together like the surface of a football.”
LORD RENTON: “My Lords, is it the shape of a rugger football or a soccer football?”
LORDREAY: “My Lords, I believe it is the shape of a soccer football. Professor Kroto,

whose group played a significant part in the development of Buckminsterfullerenes,
described it as bearing the same relationship to a football as a football does to the
earth. In other words, it is an extremely small molecule.”
LORD CAMPBELL OF ALLOWAY: “My Lords, what does it do?”



LORD REAY: “My Lords, it is thought that it may have several possible uses; for
batteries, as a lubricant or as a semi-conductor. All that is speculation. It may turn
out to have no uses at all.”
EARL RUSSELL: “My Lords, can one say that it does nothing in particular and does

it very well?”
LORD REAY: “My Lords, that may well be the case.”58
Now that technology has caught up to C60, some of its more promising applications

are emerging. One employs C60 as a superconductor—superconductors are used to
make powerful electromagnets, such as MRI machines, as well as digital circuits and
microwave filters for cell phone base stations. A nanomedicine company, named C
Sixty Inc., was formed to investigate biopharmaceutical applications of Fullerenes.
Their current research explores C60 as a vehicle for drug delivery. In aqueous solu-
tions, Fullerenes are fairly stable, which suggests they might be useful for carrying
precise amounts of medication through the C60’s cagelike structure and depositing
their contents at exactly the right site. C Sixty Inc. is focusing its research on the
delivery of anesthesia and contrast imaging dyes. And the company is working with
the drug company Merck to test Fullerenes as antioxidants, for C60 seems to be adept
at soaking up cell-damaging free radicals, the by-product of oxygen reactingwith other
chemicals in the body. The small scale of Fullerenes facilitates their passage through
the bloodbrain barrier—a defense structure that blocks possibly poisonous molecules
in the blood from brain tissue—and thus creates potential for using their antioxidant
properties to treat degenerative neurological conditions, such as Alzheimer’s and Lou
Gehrig’s disease. Other medicinal applications include binding C60 to antibiotics to
target resistant bacteria, or cancer cells such as melanoma, and even AIDS.59
Sir Harry keeps himself apprised of C60’s applications, to an extent. He is a funda-

mental scientist—as Coxeter was a pure mathematician. “People like me,” he said, “in
a sense spend a lifetime avoiding applications.”60
Coxeter, however, was a bit more old-school, not hunting applications but appre-

ciating and exploring them when they came along. According to Whiteley, prior to
the twentieth century, there was no such chasm dividing pure and applied, with ge-
ometers working on a range of scientific problems. Archimedes was an engineer,
devising his Archimedean screw (still used for irrigation in developing countries), and
Euclid worked on applied problems pertaining to optics. James Clerk Maxwell was a
geometer and a physicist, highly regarded as the nineteenth-century scientist who



had the greatest impact on twentieth-century science. With the modern emphasis
on specialization and fragmentation of the disciplines, the tradition of the hybrid
mathematician-scientist, or scientist-mathematician, is slipping away—parallel to the
loss of geometry is the loss of connections, bridges from geometry and mathematics
to fundamental and applied science.61
* Taking a thousand samples a second would not be enough to get a good rendering

of your mother’s voice, Sloane said. The question, then, is how fast do you have to
sample the voice, at what frequency? One of Shannon’s theorems stated that the
sample must be taken at twice the bandwidth. “If the frequencies in your mother’s
voice are typical—she is a bit shrill at times—but typically you don’t have to do over
3000 Hertz to get pretty good fidelity of a voice,” said Sloane. “So double [3000] and
that’s the sampling rate: 6000 times a second.”
† As Coxeter liked to point out, “The 12 centres of these balls form the vertices

of a quasi-regular polyhedron, the cuboctahedron, which was described by Plato.”
Buckminster Fuller invented a new term for the cuboctahedron, calling it the “vector
equilibrium” (Coxeter did not approve).
CHAPTER 11



10 “COXETERING” WITH M. C. ES-
CHER (AND PRAISING OTHER
ARTISTS)

For some minutes Alice stood without speaking, looking out in all directions
over the country …``I declare it's marked out just like a large chessboard
…all over the world—if this is the world at all.''

—LEWIS CARROLL, THROUGH THE LOOKING-GLASS

Whereupon the Plumber said in tones of disgust, ``I suggest thatwe proceed
at once to infinity.''

—J. L. SYNGE, KANDELMAN'S KRIM

The penultimate conference Coxeter attended was “Aspects of Symmetry,” at the
Banff Centre for the Arts in 2001. As he prepared to speak, he flicked on the overhead
projector and slid on his first transparency. Due to a minor malfunction, at that
moment his entire being was bathed in a gigantic projection of colored fish on a
Poincarédisc, shrinking smaller and smaller, seeminglynever ceasing as they rounded
the vanishing line of the sphere’s horizon. “The topic of my paper,” Coxeter began, “is
one that has intriguedme and preoccupied me for nearly five decades. It’s about what
I call the ‘intuitive geometry’ of my friend M. C. Escher.”1
Coxeter found in Escher a soulmate based on their mutual affinity for infinity, and

they collaborated after a fashion (theirmethods being slightly at odds). The geometer’s
intersection with Escher demonstrated Coxeter’s humanism in the very broadest
sense, for he disregarded the endemic artsscience divide, which was much more
prevalent a half century ago than today. “Coxeter wasn’t just doing mathematics,”
observed one of his students, Ed Barbeau, now an emeritus professor of mathematics
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at the University of Toronto. “He saw himself as playing a role in the advancement
and preservation of human knowledge. And so all during his career he had contact
with people outside the narrow field of mathematics—architects, musicians, artists.
He really felt that mathematics was part of the humanities as well as science.2 And
this came through in his courses. He was doing geometry in a way that made it live.”3

Coxeter first set eyes upon Escher’s work in September 1954, at the International
Congress of Mathematicians (ICM), in Amsterdam. While Coxeter attended lectures,
and delivered his own on “Regular Honeycombs in Hyperbolic Space,” Rien joined
other spouses on a tour of the city. One stop was Amsterdam’s recently renovated
Stedelijk Museum, where the ICM had sponsored an exhibit featuring Dutch artist
M. C. Escher.4 Alongside the Van Goghs hung Escher’s hallmark drawings of reptiles,
birds, fish—periodic tilings of the plane in themanner of an interlocking jigsaw puzzle,
with each puzzle piece a congruent creature (there were also a few of Escher’s carved
wooden balls, and his warped, if not impossible, perspectives such as “House of Stairs”
or “Relativity”).5 Rien chatted in Dutch with Escher at the exhibit, and she mentioned
the similarities between his art and her husband’s math; she may not have been the
least bit mathematically minded, but she was well tuned to the intellectual desires of
her husband. Coxeter noted in his diary a few days after his lecture: “R showedme
the Escher drawings and sculptures.”6
In a glossy exhibit catalogue, Dutch mathematician N. G. de Bruijn prefaced the

show by saying: “Mathematicians will not only be fascinated by the geometric motifs.
Evenmore important, perhaps, is the same playfulness which one finds everywhere in
mathematics andwhich accounts for the charm that a greatmanymathematiciansfind
in their profession.”7 Escher also delivered a lecture at the ICM conference, though
Coxeter was unable to attend: “I wanted to come to your lecture,” he later apologized
by letter, “but unfortunately it clashed with other engagements.”8
By this stage in his career, Escher was able to pack lecture halls throughout Europe,

even though he considered himself a poor public speaker and frequently recycled his
speeches. Considering the close timing to a talk he delivered to a physics society one
year prior, Escher may well have reusedmuch of the samematerial yet again at the
ICM, beginning with a smattering of information on his materials and how he came to
think of them as extra appendages—his wood blocks, copper plates, and lithographic
stones, as well as his press, ink, andmany types of paper for printing. “Meanwhile,



all this technique is merely a means, not an end in itself,” Escher said. “The end he
[the artist] strives for is something else than a perfectly executed print. His aim is to
depict dreams, ideas or problems in such a way that other people can observe and
consider them.”9

Patrons at Escher exhibits characteristically displayednothing like “the usual solem-
nity and silent incomprehension” of visitors at the average modern art exhibit. They
laughed out loud in appreciation, or in awe, of Escher’s whimsy.10 Forever uncer-
tain of where his art fit, Escher was not so sure of his public. “The artist’s ideal is
to produce a crystal-clear reflection of his own self,” he once said. “[T]here is little
chance that we will succeed in getting through to a large audience, and on the whole
we are quite satisfied if we are understood and appreciated by a small number of
sensitive, receptive people.” Escher espoused a theory about two types of people:
“feeling people,” that is artists, interested in interpersonal relations, and “thinking
people,” the scientists, focused on the language of matter, space, the universe and
its objective existence. “Fortunately, there is no one who actually has only feeling or
thinking properties,” he said. “They intermingle like the colors of the rainbow and
cannot be sharply divided.”11 Escher nonetheless was troubled that therewas a divide
at all, the two camps holding in common a suspicion, irritation, and devaluation of
the other’s work. He wished a better understanding and rapport could exist between
the arts and sciences,12 a theme C. P. Snow would articulate in his famous lament on
“The Two Cultures” in 1959.13

Before the close of the congress in Amsterdam, Coxeter purchased two Escher
prints.14 Not long after, Coxeter’s and Escher’s meeting of minds flowered—their own
small rebuttal to the isolation of their respective fields. Coxeter developed an intense
appreciation of Escher’s intuitive sense for geometry, and Escher found Coxeter’s
mathematical illustrations to be just the catalyst he needed to spark his creativity. “By
keenly confronting the enigmas that surround us, and by analyzing the observations
that I have made,” Escher once remarked, “I ended up in the domain of mathematics.
Although I am absolutely innocent of training or knowledge in the exact sciences, I
seem to have more in common with mathematicians than with my fellow artists.”15



Following the Amsterdam meeting, Coxeter wrote to Escher, asking permission
to use two of his drawings—his winsome tessellations of beetles and horsemen—to
illustrate a paper he was preparing, his 1957 presidential address to the Royal Society
of Canada. His paper was titled, “Crystal Symmetry and its Generalizations,” as a
part of the gathering’s larger theme, “A Symposium on Symmetry.” Escher granted
permission, though he could never have expected how this decision would affect his
work in the years to come.

M. C. Escher’s regular division drawing of horsemen, 1946.

With his “regular division of the plane” drawings, as Escher called his jigsaw symme-
try creations that had caught Coxeter’s attention in Amsterdam, the artist had worked
out his ownmathematical ground rules, his own ad hoc methods for springboarding
seamlessly from two dimensions into three, or metamorphosing from the rigid lock-
step order of terra firma into a bird’s freedom of flight, and then swooping down again
into the shimmering fluidity of fish in a lake below.16 At first, Escher admitted, he had
no idea how to systematically build his interlocking congruent figures. The process
gradually came to him. He studied the literature on the subject, thought through
all the possibilities, and formed his own layman’s theory. “It remains an extremely
absorbing activity,” he said, “a real mania to which I have become addicted, and from
which I sometimes find it hard to tear myself away.”17



In geometry, the process of tiling the plane, or tessellation, involves covering a flat
surface—such as a floor, or more technically speaking, the Euclidean plane—with
a collection of shapes that fit together without any spaces or overlaps. Among the
infinite array of regular polygons, it turns out that only three fit the task of tiling the
plane by congruent copies of themselves: the equilateral triangle, the square, and the
hexagon* (analogously, in three dimensions, there are the five regular solids but only
one of these, the cube, can tile three-dimensional space in a similar manner, with no
overlaps or spaces).18

Escher had begun tiling as a child, carefully choosing the shape, size, and quan-
tity of cheese pieces to perfectly fill his slice of bread,19 but his formative influence
came later when he visited, and revisited many times, the Alhambra in Spain.20†
The time-honored art of filling a two-dimensional plane with a repeating pattern of
polygonal shapes reached its peak in thirteenth-century Spain with this sprawling
citadel-palace built by the Moorish monarchs of Granada—a complex begun by Ma-
homet Ibn al-Ahmar, founder of the Nasrid dynasty, and continued by his successors
in the fourteenth century. The Alhambra is a temple of geometric tilings, etched into
every surface, blanketed like a full-enclosure vinyl-wrap advertising campaign. The
Moors utilized repetitive patterns of geometric complexity, in tribute to the infinite
power of their God. Their unwavering preference for abstract patterns, Coxeter noted,
was due to their strict observance of the Second Commandment—“You shall not make
for yourself a graven image, or any likeness of anything that is in heaven above, or
that is in the earth beneath, or that is in the water under the earth; thou shall not bow
down to them or serve them …” But Escher, Coxeter said, “being free from the Moors’
scruples, makes an ingenious application of these groups by using animal shapes for
their fundamental regions.”21

The practice of tiling the plane, undertaken by Escher and Coxeter for its aesthetic
patterning appeal, provides another example of pure geometry finding inadvertent
application.22 Tilings are often found on floors, wallpaper, and brick walls. But,
as Coxeter instructed in Introduction to Geometry, within his chapter devoted to two-
dimensional crystallography, the tessellationof theplanefinds relevance in thenatural
world in the science of crystallography. Coxeter went so far as to say, “Mathemati-
cal crystallography provides one of the most important applications of elementary
geometry to physics.”23



The field of crystallography—amultidisciplinary science, occupied by physicists,
biologists, chemists, as well as mathematicians—investigates the internal structure
of crystals, the geometric patterns of their molecular makeup. The atoms of crystals
form a lattice arrangement with uncompromising regularity.24 For example, the
double-helical structure of DNA was deduced from crystallographic data, and the
tetrahedrally oriented bonds of a diamond produce the gem’s prized hardness.25

Crystals, in fact, are classified by their seventeen planar symmetry groups (planar
meaning 2-D; in 3-D there are 230 crystallographic space groups), the collection of
all motions—translations, rotations, reflections, glide-reflections, screwmotions, and
rotary reflections—that, when they act on the crystal structure, leave the structure
invariant. For that reason, Coxeter groups and Coxeter diagramsmake themselves
useful in crystallography.26

In discussing crystallography in Introduction to Geometry, Coxeter used as illustra-
tions the same two Escher drawings—the beetles and the horsemen. When Martin
Gardner reviewed Coxeter’s book in Scientific American—a book Escher referred to as
Coxeter’s “abracadabra high abstractions…Of course, I don’t understand one syllable,
except for some funny and profound observations at the beginning of each chap-
ter”—Gardner allocated a quarter of the review to Coxeter’s two pages featuring Escher.
And a colorized version of Escher’s regular division bird print was featured on the
cover of the magazine.27 (See appendix 7 for more on crystallography, and Sir Roger
Penrose’s tiling, once allegedly pirated for toilet paper quilting.)

By the time Escher met Coxeter, the artist’s regular division tessellations—most
often variations on birds or fish, but sometimes lizards and butterflies—had become
very popular and profitable. He was dazed by the success. It meant the labors of his
signature pieces would consume him for the foreseeable future, leaving scant time for
new work. After years and years of his mania for devising regular divisions, however,
Escher’s curiosity had begun to wander.28Hewanted to break free from the Euclidean
plane and portray a more convincing infinity—infinity was obscured by illusion, yet
he felt its pull as irresistibly fathomable and approachable.29 “The flat shape irritates
me,” Escher said of his regular division drawings. “I feel as if I were shouting to my
figures, ‘You are too fictitious for me; you just lie there static and frozen together; do
something, come out of there and showme what you are capable of!’ ”30



When Escher’s inventiveness stalled, he tackled the obstacle much as a mathemati-
cian does an intractable problem—with obstinacy.31 Mathematicians pose questions
that nag and pester, they keep chipping away at a problem, until the truth, a solution,
presents itself (or the enterprise crumbles and proves impossible). Escher plugged
away with tireless inquisitiveness, and in that sense he had amathematician’s soul.32
He logged weeks and months of brainwork before he ever reached the reward of man-
ually cutting the woodblocks, and the rhythmic relief of printing. Escher’s son, George,
recalled how his father’s work ethic dominated the atmosphere of their home:

A new concept could take months, sometimes years of incubation before it led to
a print …[h]is moods changed between irritated abstraction and relaxed discussion
of some small problem, between restless pacing behind his closed door and sudden
announcement that he had found some satisfying solution. During this period of ges-
tation father demanded complete quiet and privacy. The studio door was closed to all
visitors, including his family, and locked at night …One day the expectant atmosphere
in the home would ease. The studio door opened, and we were invited to look at the
new design, still on paper …In the weeks that followed …from the studio emanated
light-hearted whistling and the ritual sounds of woodcutting and printing.33

Escher at work in his studio.



Escher’s pencil tracings (enhanced) overtop Coxeter’s diagram showing a tiling of
the hyperbolic plane.
After Escher’s long hunt to capture a more convincing infinity,34 one day in 1958

he swung open his studio door and claimed victory in his battle to escape the flat
Euclidean plane. A letter fromCoxeter had dropped on his drawing table like a creative
bomb—it “gave me quite a shock,”35 he later told the geometer. After using Escher’s
prints in his “Symposium on Symmetry” presidential address, Coxeter had sent Es-
cher a copy of his paper as thanks. When Escher opened the package, he was proud
enough to see the reproduction of his regular divisions, the beetles and the horsemen.
However, when he set eyes upon the other illustrations—somemathematical figures
Coxeter used to evoke non-Euclidean symmetry, in the hyperbolic plane and on the
sphere—Escher’s long-awaited epiphany came to him with a jolt.36
Escher immediately set to work trying to glean from Coxeter’s paper, “a method for

reducing the size of a pattern from the centre of a circle to the periphery, where the
figures get progressively closer and smaller.”37 The only way Escher could figure out
the method was through the intuitive hands-on approach that he used for all his work.
Using trial and error, he tinkered until he hit upon something that worked. He used a
compass and traced over the figure in Coxeter’s paper—a symmetrical pattern of black
and white triangles filling Poincaré’s disk—attempting to decipher the pattern of circle



centers whose arcs outlined the triangles. He constructed a geometric scaffolding on
Coxeter’s original figure, and then graduated to his own reproduction, producing a
large drawing of intersecting circles.38 In a letter to his son, George, Escher raved
about the discovery:

[Coxeter’s] hocus-pocus text is no use to me at all, but the picture can probably
help me to produce a division of the plane which promises to become an entirely new
variation of my series of tessellations. A circular regular tiling, confined on all sides
by infinitely small shapes, is really wonderful …At the same time, it seems as though I
am distancing myself from whatever might be successful with the public. But what
can I do when a problem pulls at me so much that I can’t leave it alone? It is not as
easy as it looks. Try it. Put one (or four) squares of whatever size in the middle of
a circle (for instance, separated by two straight lines through the centre) andmake
them smaller leading outward, something like chess boards. It won’t work with only
fourfold axes; you have to alternate them with sixfold ones in a most peculiar way,
which is normally not possible on a flat surface. The borders are only partly straight
lines (only three crossing centre lines) and the rest are all circles. Without Coxeter’s
model I never would have thought of it.39

Soon thereafter, the artist’s first woodcut “inspired by the Coxeter system” was
finished. Escher called it Circle Limit I—“to me it is the most beautiful one that I have
made of the ‘smaller and smaller’ type.”40‡ He could not stop gazing at the circular
“all-encompassing limit of infinitely small shapes, all so logical and ordered …I am
anxious to hear the reaction of Mr. ‘Cokeseater’ himself, to whom I sent a copy.”41

Escher’s creation impressed Coxeter, who wrote back and offered advice on how
the pattern could be continued in the samemanner (he indicated this with a red dot
on Escher’s enclosed grid of circles, which he sent back). Coxeter also answered, with
great mathematical panache, a question Escher asked as to whether other systems,
besides this one, could reach a circle limit. “I say yes, infinitely many!”42 Coxeter
replied. And he elaborated with more of the “hocus-pocus text”43 that Escher found
so useless. “He is so frightfully clever in his answers,” Escher scoffed, “and throws
symbols aroundwhosemeaning I canhardly understand; but fortunately he has added
a few drawings …”44 Escher, through sheer artistic grit and tenacity, willed himself



toward the result he envisioned. “Maybe Coxeter could helpmewith a single word,” he
wrote, “but I would prefer to find itmyself …also because I’m so often at cross-purposes
with those theoretical mathematicians, on a variety of points. In addition, it seems to
be very difficult for Coxeter to write intelligibly to a layman.”45
Still, Coxeter was the consummate teacher. He delighted in drawing even amateurs’

attention to themost sophisticated subtleties ofwhat theyweredoing. Nomatterwhom
heengaged, and regardless ofwhether theywere struckdumbordisinterested, Coxeter
was always determined to share what he was seeing—the mathematically significant
insight.46 “He was always explaining to other people the mathematics of what they
did, even when they had no clue that stuff was there,” said Doris Schattschneider, an
Escher scholar. “He just saw that as his mission in life. He couldn’t help himself.”47
Coxeter no doubt thought he had been helpful in answering Escher’s question. In a

pattern that was to be repeated by his encounters with other artists, his mathematical
“help” often generated flummoxed reaction.48 But his technical assistance at once
forged the artists’ self-reliance, giving them a glimmering of what they might be onto,
and leaving them to figure things out for themselves. This jibed with the heuristic
approach to geometry that Coxeter advocated in the classroom: his belief that the best
path to learning was hands-on experience, leading to the thrilling intellectual buzz of
a self-made discovery.49

If ever asked why he did what he did—indeed, why he kept doing it into old age when
many of his colleagues had retired—Coxeter delivered a curt retort: “No one asks
artists why they do what they do. I’m like any artist. It’s just that the obsession that fills
my mind is shapes and patterns.”50 Coxeter was artistically inclined in discrete ways.
His mother being a painter and his father a sculptor meant that he was more than
familiar with the calling. As much as Escher and other artists worked mathematically,
Coxeter as amathematicianworked artistically, in his intuitive, visual, tactilemethods.
This said, Coxeterwasnot anaficionadoof fineart. He enjoyeda visit to anart gallery,

but the artwork on his walls included portraits and landscapes by his mother, a few
Escher prints, and varied renderings of polyhedra and polytopes. The latter collection
came to include geometrical works by artists and other geometrical amateurs who
orbited Coxeter from hither and yon, including the startlingly profound and frequent
offerings from George Odom, a resident of the Hudson River Psychiatric Center, in
Poughkeepsie, New York.



“I’ve been solipsistically sealed in my own world here for thirty years, which is what
I wanted,” said Odom. “The only reason I’ve stayed here as long as I have is because
there is a minimum of small talk here—I hate small talk. Here I could pursue my own
interests, domy painting, mymathematical models, my sculpture, with aminimum of
socialization. This is the loneliest place on Earth I could find.”51 Odom suffers from
flattening bouts of depression, though he tells the story of how he ended up where
he is with the rat-a-tat-tat pacing and nonchalant tone of someone very content with
his fate. Framing his story in terms of the trajectory that led him to Coxeter, Odom
begins at age eleven, when in the early 1950s he visited the Museum of Modern Art
and was taken by the polyhedral sculptures of Buckminster Fuller. At seventeen, he
dabbled in the gay scene in New York, became disenchanted, and went in search of
“something more substantial, something with lasting value.” The search led him to
Coxeter, who, Odom said, for three decades dating from the 1970s, was one of only
four contacts he had with reality and the human race.52 The other three men Odom
handpicked as correspondents, with whom he chronicled the development of his
thoughts, were his brother; his psychiatrist Charles W. Socarides, a clinical professor
at the Albert Einstein College of Medicine/Montefiore Medical Center in New York
(with Socarides, Odom discussed the connection between the seemingly unrelated
notions of Freud’s Oedipal complex andmathematical idealism); and Father Magnus
Wenninger, a mathematician and Benedictine monk at St. Augustine’s Monastery
and School in Nassau, the Bahamas (as it so happened, Wenninger was another of
Coxeter’s friends from afar).53
Odomwithdrew from the world and rented a furnished room in Yorktown Heights

where he started reading Western philosophy, Bertrand Russell, and Edna Kramer’s
book The Main Stream of Mathematics. He called Kramer in New York, and she sent him
a reading list on polyhedra, indicating the person he wanted to get in touch with was
a professor at the University of Toronto. After a suicide attempt, and a stay at New
York Hospital, Westchester Division, where the nurses and physicians marveled over
Odom—“He talks like a college professor”—Odom finally put down roots at the Hudson
River Center, and from there he began his correspondence with Coxeter.54
“Coxeter was an incredibly cultivated man,” said Odom. “A totally civilized human

being.” They corresponded on several subjects—on biblical interpretations, philoso-
phy, psychology, andmetaphysics, evenOdom’s flirtationswith death, regardingwhich
Coxeter cited an apropos quotation from Lewis Carroll’s Through the Looking Glass.55



But mostly their discussions focused on mathematics. With nearly every letter Odom
sent amodel, and bothmen segued from theirmathematical thoughts—withmasterful
gravitas—to the dismal state of the world. Said Odom in one letter, “The enclosed two
drawings pretty much reduce polyhedral symmetry to bare structure (I’m afraid most
people would not think it beautiful—they would prefer the mathematics of the atom
bomb).” And on another occasion, Odom said: “I thought you might enjoy having this
primary structure I discovered some time ago—I’m convinced that geometry is ‘not of
this world’—i.e. it is transcendent and aristocratic—even though ‘the world’ has used
it shamefully without any sense of the sublime or gratitude. If mathematics is ‘the
queen of the sciences’ what is the king?” To which Coxeter responded: “Maybe the
King of the Sciences is Ecology. I hope you agree that it is shameful for USA to be the
only one, among hundreds of countries, not to pledge to save endangered species.”
They also bonded artistically. A postcard arrived from Odom featuring The Clown by
Henri Matisse, with a short note: “Many thanks for themagazine and article. You are a
wonderful person and I love you madly.§ I didn’t know your parents were artists. That
explains a lot.”56

Odom often signed his letters “your admiring student.” But Coxeter, he said, treated
him as an equal. “Thank you for the copy of your historic study—you flatter me as I’m
not a mathematician as you well know. I’m an artist but you and I are both interested
in order and that leads us both to Beauty …Art and Science are quite different in that
art involves a lot of phenomena that Science would ignore as ‘trivial’—but both are
interested in the same end—of Beauty, Truth, Love—that is if the art is really art—and
the science is really science…”OdomconsideredCoxeter hismathematical “Other.” He
was the sounding board against which Odom developed his ideas, and Coxeter was his
biggest promoter.57 Odom discovered a construction for the golden ratio and Coxeter,
after recognizing its unexpected and beautifully simple method, formulated it as a
problem and sent it in for publication, in Odom’s name, in the American Mathematical
Monthly.58



Odom also discovered a compound of ten cubes, which he sent along to Coxeter.
Coxeter, once again, was delighted—another remarkably simple and beautiful discov-
ery. It demonstrated that the rotations of the cube into itself exactly correspond to
the permutations of four colors. He wrote Odom and promised to use the model in
his keynote address to the Mathematics and Art section of the International Congress
of Mathematical Education, in Quebec City in August 1992—“giving credit to you, of
course.”59

Odom’s third major discovery was a construction of four hollow interlocking tri-
angles. Again, he sent Coxeter a model.60 A remarkable likeness of this structure
crossed Coxeter’s desk a short while later, a gift from another geometrically inclined
and artistic soul, English sculptor John Robinson. Upon the recommendation of a
friend, Robinson had sent Coxeter a book of his most recent sculptures—Symbolic
Sculpture, The Universe Series.61 Coxeter appreciated what he saw: exquisite executions
in bronze, wood, and wool tapestry, of many geometrical concepts; the golden rule,
the Archimedean spirals, golden spirals, cones, knots, pyramids, triangles, ovoids,
Möbius bands, circles, and tangents.62

Coxeter with Odom’s discovery of four hollow interlocked triangles.



Robinson had begun his career with “representational” pieces—children playing, as
well as busts of President Ronald Reagan and Queen Elizabeth II.63 He described his
shift to mathematically inspired works by citing the words of Auguste Rodin: “I have
come to know that Geometry is at the very heart of feeling, and that each expression
of feeling is made by a movement governed by Geometry. Geometry is everywhere in
Nature. This is the Concert of Nature.”64 And he looked to Carl Jung’s writings inMan
and His Symbols: “The Artist is, as it were, not so free in his creative work as he may
think he is. If his work is performed in amore or less unconscious way, it is controlled
by laws of nature that, on the deepest level, correspond to laws of his psyche, and vice
versa.”65

Robinson insisted the inherent rigidity of his Intuition sculpture would make a self-
supporting roof for a building he hopes someday will be built; Coxeter believed such a
building would collapse of its own weight.

In particular, Robinson’s piece called Intuition caught Coxeter’s eye. Like Odom’s
model, it was an orderly tangle of interlocking hollow triangles, but Robinson’s sculp-
ture had only three. And while Odom’s was a brightly painted cardboard model that
fit nicely into the hands, Robinson’s was at least quadruple the size rendered in shiny
stainless steel, or a gargantuan 6-foot by 9-foot sculpture in wood.66 “Your title ‘Intu-
ition’ was well-chosen,” Coxeter informed Robinson, “because, although I am quite
sure that George never saw any work of yours, there is something uncanny in their



several points of resemblance: he and you had a similar ‘intuition.’ ”67 For Robinson,
the sculpture represented “a knotted core of stability within the centre of knowledge,
from which comes sparks of originality and invention, often for no apparent reason.
We call these sparks INTUITION. The sparks shoot in all directions, but come from
the core of experience.”68 For Coxeter, these two constructions represented a piece of
mathematical serendipity that deserved a paper.
Coxeter conducted a comparison of the two structures,69 wrote up his results, and

sent them along to Robinson (his article was published in theMathematical Intelligencer,
with Odom’s homemademodel on the cover).70 Robinson’s response to the mathe-
matical hieroglyphs was much like Escher’s. “I must confess,” he wrote in response,
“that I don’t understand the mathematics of your essay, but I do get immense satisfac-
tion in looking at the equations and knowing that they relate directly to something
that has ‘popped’ into my brain …The act of ‘popppin’ is why I called the sculpture
INTUITION.”71

Escher, similarly undauntedbyCoxeter’s “hocuspocus” suggestions, continuedwith
his quest to capture infinity, fiddling with his Circle Limit I to correct the shortcomings
in his first hyperbolic approach. He called the process of working on his Circle Limits
“Coxetering”—as in, “Today I finished my first printing of 14 impressions of my new
‘Coxetering,’ ”72 or “I think that ‘Coxeterings’ are the best solution to the plane-filling
patterns. I should use this exclusively for the time that is left to me, only it is so much
more difficult than my earlier puzzles.”73
Escher was elated with his Coxeterings, though he feared others would not see them

as he did. “I have tried to explain the ‘smaller and smaller’ print to several visitors,”
he said, “but it is clear that most of them are uninterested in the beauty of this infinite
world in an enclosed plane. Most people have no idea what it means. It saddens me
because I am busy with the next print, which will be much, much better.”74 Escher’s
“meaning” was “capturing the infinite.” He could wax philosophical about infinity,
governed as it was by an indiscernible set of laws:
There is something in such laws that takes the breath away. They are not discoveries

or inventions of the humanmind, but exist independently of us. In amoment of clarity,
one can at most discover that they are there and take them into account. Long before
there were people on the earth, crystals were already growing in the earth’s crust. One
day or another, a human being first came across such a sparkling morsel of regularity



lying on the ground or hit one with his stone tool and it broke off and fell at his feet,
and he picked it up and regarded it in his open hand, and he was amazed …We never
succeed in achieving completely that perfection which haunts the spirit: a perfection
we can only see with the inner eye.75
Coxeter might have nodded and said “Ah, yes. That’s quite nice!” to this articulation

of infinity. But by contrast, Coxeter’s articulation of infinity was much more literal,
a large numerical entity—as demonstrated by his “Up late, we washed ∞ dishes”76
notation in his diary after a dinner party, or his observation that “Rien made ∞ phone
calls.”77 He dismissed out of hand the notion that infinity somehow translated into
the hereafter; the only afterlife he believed in was on the molecular level of corporeal
decomposition.78 And thus, Coxeter may not have identified so easily with Escher’s
more poetic musings:
Human beings can’t imagine that the stream of time could ever come to a halt …That

is why we clutch at a chimera, an afterlife, a purgatory, a heaven, a hell, a rebirth, or a
nirvana, all of which would then be eternal in time and endless in space.…Deep, deep
infinity! Rest, dreaming removed from the nervous tensions of daily life; sailing over
a calm sea, on the bow of a ship, toward a horizon that always recedes; staring at the
waves that go by and listening to their monotonous, soft murmuring; dreaming away
toward unconsciousness …79
The correspondence between Escher and Coxeter contains no discussion about

Escher’s philosophical visions. Instead, the geometer’s letters with the artist, and
his series of Escher-inspired papers, are regimented by Coxeter’s interest in the
mathematical substructure of the drawings, quantifying their geometric foundations
and marveling at the unorthodox method that brought his friend to such precise
results.80
Escher finally achieved his ideal and sent Coxeter a print of Circle Limit III in May

1960—inscribed “With gratitude, M. C. Escher.”81 “It is intended to be an elaboration
of the first black-and-white print which you received before …it certainly succeeded
better this time,” Escher said to Coxeter, continuing in his somewhat awkward English:
“The whole area is filled up with series of theoretically an endless number of fish,
swimming head-to-tail in the same color. The white curved lines through their bodies
accentuate the continuity of every series.”82 Coxeter responded: “The picture is very
successful, both interesting and beautiful.”83 But still not picking up on Escher’s
illiteracy with the mathematical translations, Coxeter sent back three pages of anal-



ysis—about the picture’s symmetry group, generated by which rotations, the angles
of the vertices, and providing references to two of his books, Regular Polytopes and
Generators and Relations.84 “It’s a pity,” Escher said to his son, George, “that I can’t
understand a word of it.”85

Later that year, Escher had plans to visit his son in Montreal, and Coxeter arranged
invitations for him to give two talks in Toronto—one at the Ontario College of Art,
and another at the Art Gallery of Ontario. Coxeter made sure that mathematicians
attended the latter, and he arranged a reception afterward at his house, where Escher
was staying. The day after the talk, Escher sat in on Coxeter’s lecture on non-Euclidean
geometry at the university, for all the good it did him.86

In between visits (the Coxeters stopped in at the Eschers’ in Baarn on a number
of occasions, once receiving a tour of Escher’s studio87), Coxeter began his series
of Escher papers and lectures, which easily amounted to more than a dozen: his
interpretation of the artist’s work matured, insight by insight.88 In Coxeter’s first
analysis of Circle Limit III, for example, he stated his opinion that the woodcut would
have been still more beautiful without the white arcs artificially dividing each fish into
two unequal parts. These arcs, Coxeter said, “have no mathematical significance.”89
Three years later, when he allowed this paper to be reprinted in the book TheWorld of M.
C. Escher, he had changed his mind and deleted his assertion about the mathematical
irrelevance of those white arcs.90 Subsequently, he wrote two papers celebrating the
arc’smathematical virtues. “Of all Escher’s pictureswith amathematical background,”
Coxeter began in a 1979 paper in the arts and sciences journal Leonardo,

themost sophisticated is his 1959woodcut, Circle Limit III,whichused four colours in
addition to black and white. Queues of fishes of each colour are swimming along white
arcs that cut the peripheral circle at a certain angle …[We] shall see why all the white
arcs “ought” to cut the circumference at the same angle, namely 80°(which they do,
with remarkable accuracy). Thus Escher’s work, based on his intuition, without any
computation, is perfect, even though his poetic description of it ( …“perpendicularly
from the boundary”) was only approximate.91



Escher’s Circle Limit III, 1959.

In coming to this conclusion about Escher’s exactitude, Coxeter had recruited a
student to meticulously measure each of the arcs in Circle Limit III.He liked to recall
how one of Escher’s angles initially seemed to be off by a few degrees, suggesting a
sloppy, amateur error. Just to be sure, Coxeter had the arcs double-checked, and it
turned out not to be Escher’s error, but the student’s error. More specifically, what
Coxeter discovered from his microscopic analysis of the print was that the arcs were
not hyperbolic lines, as he and others assumed, but rather branches of equidistant
curves that cut through corresponding vertices of the octagons of the underlying
tessellation. “Escher did it by intuition, I did it by trigonometry,” Coxeter proclaimed
wondrously.92

In that revelation, Escher’s work brought the geometer to a new mathematical
understanding, seeing the hyperbolic plane in a way he hadn’t before considered.
This new perspective continued to ferment, and nearly two decades later, in 1996, at
the age of eighty-nine, Coxeter wrote another paper on those same white arcs, this
time providing a more elementary and pleasing proof. In his first paper, Coxeter used
a non-Euclidean method (hyperbolic trigonometry) to prove the angle measure of
the arcs to the boundary circle, even though the parameters of the model Escher
illustrated were, in fact, Euclidean. “I think it bugged Coxeter that his first proof used



hyperbolic geometry even though the Poincaré disc model of hyperbolic geometry is
really a Euclideanmodel,” said Schattschneider. “It’s a Euclideanmodel for hyperbolic
geometry. I think Coxeterwanted to show you could do it with only Euclidean geometry
and Euclidean trigonometry—that was his second paper, showing that all you needed
was ordinary Euclidean trigonometry. And I think hewas really quite proud of that.”93
Coxeter took infinite pleasure in his string of Escher papers, but he regretted that

the artist died (in 1972) before his papers devoted to Circle Limit III were published.94
One might assume that Coxeter’s approval hardly would have mattered to Escher. He
had suffered no small amount of anxiety over the years, worrying that the artisticmerit
of his work, the perception of his creativity, was diminished by its scientific content.
Escher always considered himself an outcast in the art world, never quite belonging.
He noticed a review of his work, with three prints, in the Saturday Evening Post in 1961
by the eminent E. H. Gombrich, an art historian at the University of London. Gombrich
was critical of his work on aesthetic grounds, but Escher noted hopefully, “He is still
moved by it because he goes on and on—more than three columns. Furthermore, the
publishers are even paying $140 for the reproduction rights for those three pictures!
This could snowball.”95 Coxeter kept in his Escher file a review by Globe and Mail
art critic John Bentley Mays. The headline read, HIGHER DOODLING AND OTHER
GIMMICKS. The derisive review of an Escher exhibit in 1996 at Canada’s National
Gallery began by saying, “Ottawa hippies have less than a week to bathe in nostalgia
about the really trippy kicks they got by staring at Escher’s puzzle-imageswhile stoned
on acid, and before they grew up …It’s enough to make a grown-up art critic weep.”96
Escher was distressed with the enthusiasm shown for his work by those young hip-

pies whomade him so popular at university poster sales. They saw in Escher’s work
not his sense of wonder at the cosmos: they saw a disorder and chaos that he never
intended.97 But neither was Escher a mathematician. He pondered abstract math-
ematical concepts and liberated mathematicians’ intellectual fantasies—his prints
illustrated obvious concepts such as groups, symmetry, and infinity, as well as more
the subtle concepts of reflection, duality, recursion, topology, and relativity.98 “But
the sad and frustrating fact remains that these days I’m starting to speak a language
which is understood by very few people,” Escher wrote, betwixt and between about
where he stood. “It makes me feel increasingly lonely. After all, I no longer belong
anywhere. The mathematicians may be friendly and interested and give me a fatherly
pat on the back, but in the end I am only a bungler to them.”99



Sculptor John Robinson didn’t worry so much about where he fit in. For Coxeter’s
ninetieth birthday, a sculpture of Intuition was installed in the front garden of the
Fields Institute, in Toronto (an identical Robinson sculpture graces the garden of the
Isaac Newton Institute for Mathematical Sciences at Cambridge). As a more personal
birthday gift, Robinson created another sculpture, inspired by the geometer’s fond-
ness for mutually tangent circles. With a bit of guidance in a letter from Coxeter—an
“easily solved” equation (of course, not so easily for Robinson; he was relieved the
letter also provided a solution)—Robinson produced a five-sphere sculpture he called
Firmament.100
“I called the sculpture Firmament,” said Robinson, “because it reminds me of the

marvelous 19th century working models of the Solar System that fascinated me as a
child in the London Science Museum. I didn’t understand what I was looking at then,
just as I don’t understand Donald Coxeter’s mathematics now. What I do understand
is that the Universe is a Miracle …and that this kind of Mathematics is part of the
Miracle.”101
* An infinite number of nonregular polygons can tile the plane, and similarly, any

number of abstract shapes.
† One would expect Coxeter to have visited the Alhambra as well. But he did not; he

boycotted Spain, bullfighting being the bridge too far for his beliefs in animal rights
and pacifism.
‡ It is interesting to note that the symmetries of Escher’s Circle Limit patterns display

the same symmetries of the Platonic solids, simply inflating them from spherical to
hyperbolic geometry.
§ On another occasion, Odom closed by telling Coxeter: “There are very few people

I admire—You are lucky enough to be one of them.”
CHAPTER 12



11 THE COXETERIAN SHAPES OF THE
COSMOS

1

Spirit of the Universe! Whither are we drifting, and when, where, and how is
all this to end?

—J. J. SYLVESTER, 1867

Coxeter passed the milestone of his ninety-fifth birthday demonstrating the same
alacrity with which he had caught trains in Cambridge and scraped through traffic in
Toronto: as he described (the former) in his diary, “by the skin of my teeth.”2 Another
fête was planned in his honor at the Fields Institute, and a few days before the big
event—on his actual birthday, February 9, 2002—Asia Ivić Weiss, Coxeter’s last PhD
student, threw a small luncheon at her downtown Toronto home. She baked Coxeter a
birthday cake in the shape of a hedgehog, with almonds stuck in the icing for its coat. It
was a lovely, intimate occasion, until thehorriblemoment duringdessertwhenCoxeter
suffered a heart attack and slumped from the table, unconscious. CPR administered
by Susan did nothing to resuscitate him; he appeared to have left the land of the
living. But then, as Weiss’s husband called 911, Coxeter revived himself, choking on
an almond from the cake. Despite surviving his heart spell, he was admitted to the
hospital for a visit his family truly expected would usher him into the hereafter.3
Coxeter lay in hospital as guests arrived in town for the Fields party. Three

guests—John Conway; Marc Pelletier, a geometric model-maker from Boulder,
Colorado; and geometry lover Glenn Smith from Texas—were staying at his house,
empty of the legend himself. No one knew quite how to deal with the apocalyptic
scenario.4 Having traveled all this way to celebrate Coxeter, they were greeted by his
daughter, Susan, and relics upon relics of his career: seventy-five years’ worth of
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five-year-at-a-glance pocket diaries, rows of filing cabinets full of A-Z correspondence,
Alicia Boole Stott’s polytope scrapbook, and his entourage of models worthy of a
Smithsonian collection. Smith recalled that it played like a scene from Zorba the
Greek, when the old woman dies, has no heirs, and her belongings are up for grabs.
Coxeter’s heirs had no attachment to his dusty memorabilia, so the devoted disciples
in attendance were left discussing, questioning, where Coxeter’s prized geometric
possessions would go.5

Coxeter handled the predicament with good-humored equanimity: “I’m not ready
to disappear from this life yet.”6 He rallied, with quiet and stoic determination. On
the day of the bash, he discharged himself from the hospital with a day pass and
arranged to be chauffeured by ambulance to the Fields Institute, Toronto’s interna-
tionally renowned mathematical think tank. He rolled in by wheelchair. As gallant as
ever, he received greetings from colleagues and fans. Festivities began in the atrium,
the fireplace lit for the occasion. Atop a wooden double-helix staircase, Coxeter’s
birthday present, a five-foot geometric wire sculpture, donated by a generous and
anonymous benefactor, was unveiled hanging from the ceiling—a welded stainless-
steel projection of the four-dimensional hyperdodecahedron into three dimensions,
made by Pelletier.* Coxeter gazed upward with pure joy, hardly the dozy appreciation
of an old man at death’s door; his polytopal muse still filled him with wonder. Staring
at the hyperdodecahedralmobile, Coxeter told Conway, standing beside him, about his
latest polytope ideas, and his plans for the paper he was due to deliver that summer
in Budapest.7

Coxeter fieldedmany compliments after his Budapest talk on four mutually tangent
circles. “That really was a proof from ‘The Book’ you gave this morning,” said Karoly
Bezdek, the secretary of the conference’s program committee, chatting with Coxeter
later in the day when Coxeter turned up at Bezdek’s afternoon lecture. “The other day
I opened your book on Regular Polytopes with my son,” continued Bezdek, “because
he had just seen Star Wars and he wanted to draw multi-dimensional shapes.” His
motivation for this remark may have been science fiction, but Bezdek called Coxeter’s
work a “prototype for discovery.”8



Having successfully delivered the opening lecture, Coxeter had the remainder of
the conference to relax and enjoy other presentations. The morning after his talk,
he awoke energized. He reinstated his exercise regime, abandoned only months be-
fore—push-ups (six) with his hands in his slippers to protect them from the hard floor,
sit-ups (maybe a dozen), arm circles backward and forward, and upside-down “air
bicycle,” hips in his hand and legs pedaling through space. His circulation revved and
ready to go, Coxeter sat on the edge of his bed in his pajamas and planned his day,
reading over the conference program and selecting the lectures he wanted to attend.9
Over the course of the week there were several: Weiss’s, John Ratcliffe’s, Ernest Vin-
berg’s “Hyperbolic Reflections Groups,” Igor Rivin’s “Geometry of Polyhedra,” and
“Hyperbolic Coxeter Groups of Large Dimension” by Poland’s Tadeusz Januszkiewicz
and Jacek Swiatkowski.10 At all of them, as he sat in the front row, his namesake
Coxeter entities were also front and center—cropping up repeatedly in the banter and
scribbled on overhead projectors, summoning their omnipresent symmetries.

On the second day of the conference one lecture in particular caught Coxeter’s
attention: “Visualizing Hyperbolic Geometry.” He arrived just in the nick of time and
flumped down into his seat. Soon enough, the audience was cocooned in a darkened
lecture hall, peering at a multimedia screen, their heads tilted congruently upward.
It was the common conference scene, except this time the mathematicians were
wearing stereoscopic 3-D glasses, with one red lens and one blue lens fitted to a
boxy white cardboard frame. They might well have been watching a 1950s 3-D-craze
flick such as House of Wax,with Vincent Price and Charles Bronson. But before them
stood Jeff Weeks, a freelance geometer from Canton, New York, and the recipient of
a 1999 MacArthur fellowship. Weeks is also the author of The Shape of Space, a book
exploring the possible shapes of the universe. At his Budapest talk, he presented his
custom-made computer-generated model of his latest hypothesis: the universe, he
conjectured, may be shaped like a dodecahedron. Plato might have been right after
all.11



Coxeter watching Jeff Weeks’s presentation in Budapest.

Weeks has been wondering about the shape of the universe since he was a teenager.
“It’s the sandboxwe’re born into,” he said. But his searchwas always theoretical—using
mental images and sketches, and later numbers and equations as his tools. The
attraction was pure aesthetics. “The different possible shapes for the universe are so
beautiful,” he said. “The appeal of geometry is describing real space, and the universe
is the ultimate space.”

Coxeter’s work appealed to Weeks for the same reasons. “Donald Coxeter is obvi-
ously a brilliant mathematician. But what really makes him special even among other
brilliant mathematicians, is his excellent taste, his sense of beauty and simplicity,”
said Weeks. “He works in these four-dimensional and curved spaces where it takes
a leap of the imagination to get there to begin with, but then when he gets there he
doesn’t get lost; he doesn’t fall into the trap of proving lots of obscure theorems. He
proves good theorems. He looks at things in very concrete and very simple ways, sort
of the equivalent to the beauty of a honeycomb pattern that bees might make with lots
of symmetry, except he’s doing something similar in four dimensions or in curved
spaces.”12



The intersection of Weeks and Coxeter’s geometric sensibilities was obvious from
the subject matter of Weeks’s three-dimensional movie: a computer-generated do-
decahedral universe, a magnified mass of honeycomb, each side of each cell flashing
in multicolor, the Earth spinning inside and the viewer rotating and gliding through
the nexus, as if traveling within a spaceship through a background of endless black.

Weeks came upon his “What is the shape of the universe?”13 project quite out of
the blue. He received an e-mail from a cosmologist asking a technical question about
the vibrational modes of a spatial manifold. Weeks did not have the answer, but he
offered to find it. When he discovered cosmologists were expecting hard data from
outer space that would allow them to test the actual shape of the real universe, his
usual wide-eyed demeanor widened somemore. “This was a dream come true for a
theoretical mathematician,” he said, “to finally have some data on the way.” Before he
knew it, he was collaborating with an international coterie of cosmologists.14

Weeks’s task, through continuous exchange with the cosmologists, was to provide
the rawmaterials. First, he determined which geometrical structures were plausible
shapes for the universe by playing around within the existing classes. Currently, there
are three classes of shapes considered to be contenders. The standard and favored
model is an infinite and flat universe, forever expanding under the pressure of an
as yet inexplicable “dark energy.” The other two are the hyperbolic model (saddle
shaped, with negative curvature, causing parallel lines to eventually diverge), and
the spherical model (with positive curvature; such a closed universe eventually stops
expanding, then contracts in a “big crunch”). The dodecahedron—a sphere shaved
slightly flat to form its twelve faces—fits within the spherical class.15



Within the dodecahedral model of the universe, computer-generated by Jeff Weeks.

Weeks also calculated how each shape would behave in space, and these first two
tasks involved a lot of sitting around, thinking with pen and paper (pens make darker,
firmer lines than pencils, he finds), fiddling with the mathematics of the models.16
Then he worked up formulas to prove his hypotheses. Finally, he devised computer
programs to run his formulas. Cosmologists pluggedWeeks’s geometric formulas into
simulations of the physics of the universe. The results would be compared to data
expected from NASA’s Wilkinson Microwave Anisotropy Probe (WMAP). The WMAP
probe was sent up to map cosmic microwave background radiation, the echo of the
origin of the universe—the assumed big bang—and provide data about its early history
and scale.17

One particularly useful indicator of universe topology is the temperature fluctu-
ations of radiation emanating from the big bang. In an article in Naturemagazine,
Weeks and his colleagues explained these fluctuations by comparing them with the
sound waves of musical harmonics:



Amusical note is the sum of a fundamental, a second harmonic, a third harmonic,
and so on. The relative strengths of the harmonics—the note’s spectrum—determines
the tone quality, distinguishing, say, a sustained middle C played on a flute from the
same note played on a clarinet. Analogously, the temperature map on the microwave
sky is the sum of spherical harmonics. The relative strength of the harmonics—the
power spectrum—is a signature of the physics and geometry of the universe.18
When the WMAP data arrived in February 2003, it only partially confirmed the

prevailing infinite-flat model of the universe. All the small and medium-size tempera-
ture waves were present as predicted, but the model failed to find any of the broad
wavelengths that should exist in such a large and infinite universe. One explanation,
said Weeks, is that outer space simply isn’t that big and thus could never produce
such large waves in the first place. “A violin is never going to play the low notes of
a cello because a violin’s strings aren’t long enough to support such a long sound
wave,” he said. “It’s the same with the universe. Its waves cannot be larger than space
itself.” Enter the finite-dodecahedron model. The behavior Weeks predicted for a
dodecahedral universe matched all the WMAP data. “It was a very pleasant surprise.
Our model fit even better than we expected.”19
The future of dodecahedral space still faces major challenges. The model’s cal-

culations of spatial curvature must be compared to more precise data from the
Planck Probe, scheduled to launch in 2007. The results of the probe could either
fine-tune Weeks’s model or refute it entirely. His model must also pass what’s called
the “circles-in-the-sky” test. If the dodecahedron model is correct, a computer-coded
search should be able to detect six pairs of matching circles across the cosmic hori-
zon—echoes from the big bang vibrating against the twelve faces of the dodecahedral
universe. So far, no circles have been found.20
While theyawait thefinal verdict,Weeksand thecosmologists are at onceholdingout

hope and exploring other options, such as the possibility of a universe that is finite in
somedirections and infinite inothers. “Youdon’twant to ignore theotherpossibilities,”
said Weeks. “But personally, I’m not ready to declare the circles missing.”21
The dodecahedron model, if it holds up, has implications for quantummechanics

and theories about the big bang. It could affect an exquisitely more insightful under-
standing of the blinking night sky, and crack open a sliver of potential for traveling
into its furthest depths. “Hypothetically,” said Weeks, “if you head off into a dodecahe-
dral universe you would travel in a straight line and come back to the starting point.



But it would take a long, long time.” The dodecahedron model will also open a new
conundrum of a question: If the universe is finite, what is beyond? “Nothing,” said
Weeks. “But it is a very profound nothing. The best way to answer that question is to
make the question go away.”22 And with some elaborate epistemological reasoning,
he can.

At the end of the Budapest presentation, enamored by Weeks’s dodecahedral uni-
verse, Coxeter stood from his seat, made his way toward him, and shook his hand.

“Very nice!” Coxeter said.

“Here’s the man responsible for a lot of the images you saw,” said Weeks (he was
wanting to give Coxeter at least as much credit as he deserved, and, out of reverence
to the legend before him, perhaps even a little more). The audience lingered while
Weeks replayed his movie. Coxeter left behind his cane and held his glasses to his
face with both hands, moving closer to the video screen to get an amplified 3-D view.
“It’s quite nice,” he said. “It looks like you’re inside some sort of network of lines and
polygons. Quite impressive!” He’d seen that sort of thing before, the honeycomb tiling
of space. But he thought it was quite something to see these familiar shapes alive
in such dynamic form—a polytopal universe that he could not only delve into with
research but almost literally dive into himself.23

A few months after Weeks’s presentation, the New York Times ran an article in its
science pages exploring the possibility of an infinite flat model for the “macroscopic
dimension” of the universe. “Very curious. Very surprising,” Coxeter said. “I would
have thought otherwise. I’d expect it to be like the surface of a hypersphere, elliptic
in the geometric sense.”24 The shape of the universe as a whole is still pretty much
anybody’s (or any cosmologist’s) guess. But a related realm of study is the interior
structural topology within the universe, or the “microscopic dimension.” Coxeter’s
work plays out here as well. Coxeter and John Petrie’s discoveries of the regular skew
polyhedra in 1926 resurfaced more than a half-century later to find application in
astronomy. “The astronomyapplication [of the regular skewpolyhedra] is a nice punch
line!” said J. Richard Gott III, the astrophysicist at Princeton responsible. “I think the
regular skew polyhedra have been somewhat overlooked …not as well publicized as
the regular polytopes.”25



Gott became acquainted with the regular skew polyhedra almost forty years after
Coxeter and Petrie made their discoveries. As an eighteen-year-old student at Mayme
S. Waggener High School, in Louisville, Kentucky, Gott rediscovered the same figures.
“The first one I found was hexagons-four-around-a-point,” he said. “I noticed four
hexagons could join in a saddle-shaped surface and this could be continued to make
a repeating sponge-like structure.” He did a project on his discovery, winning him
first place in mathematics at the National Science Fair-International in 1965. As an
undergraduate at Harvard he wrote up his findings and sent them to the American
Mathematical Monthly. “I don’t know who the referee was—but I’ve always fancied
that it might have been Coxeter himself!” The referee informed Gott—quite to his
surprise—that this class of figures had been discovered earlier, and that Coxeter later
proved these were the only three regular such figures by his criteria. Gott, however,
had discovered seven, employing less restrictive criteria.26 The referee accepted the
additional findings and Gott’s first scientific paper was published on the topic in 1967,
titled “Pseudopolyhedrons.”27

Pseudopolyhedrons were reprised in Gott’s later investigations on the cosmos when
he became an astrophysics professor at Princeton. In 1986, he was investigating the
topology of the structure within the universe. “At that time there was a debate over
the topology,” he said. “In one model there were isolated clusters of galaxies in a low
density background (ameatball topology), while in the othermodel therewere isolated
voids with a honeycomb structure (a Swiss-cheese topology), galaxies being located
on walls surrounding isolated voids.” From his high-school work, he knew there was
a third possibility—a sponge-like topology, since that was the topology of the regular
skew polyhedra. “I realized that this had to be the correct answer for the universe,
because the theory of inflation predicts that the clustering pattern of galaxies we see in
the universe today should have originated from random quantum fluctuations in the
early universe. Such random fluctuations have the property that positive and negative
fluctuations are equivalent …Therefore, the topology, the shape of the high-density
regions must initially be the same as that of the low-density regions. This was not the
case for the meatball topology or the Swiss-cheese topology.28



J.R. Gott’s spongy universe.
Gott, however, knew that a sponge’s structure was the same on the interior and exte-

rior, since this was true of the regular skew polyhedra. A marine sponge is permeated
by a series of tunnels, allowing water to trickle through. If you pour concrete into
those passageways, let it set and harden, and then dissolve the marine sponge with
acid, you are left with a concrete sponge. “This is the pattern of clustering galaxies we
can observe,” he said, “In other words, what a number of studies have now confirmed
is that we see a sponge-like pattern of galaxy clustering, with great clusters of galaxies
being connected by filaments, and voids being connected by tunnels to make a giant
sponge.” Gott published this theory in the Astrophysical Journal—titled “The Spongelike
Topology of Large Scale Structure in the Universe”—complete with pictures of the
Coxeter-Petrie regular skew polyhedra to illustrate the argument. The New York Times
picked up the story and ran it on the front page: RETHINKING CLUMPS AND VOIDS
IN THE UNIVERSE.29

In coming to grips with the omnipotence of geometry, a statement by Brian Greene,
a superstring physicist at Columbia University in New York,† stands out: “There is
perhaps no better way to prepare for the scientific breakthroughs of tomorrow than to
learn the language of geometry.”30
Implicitly Greene was referring to the long-standing conundrum of modern physics

with which Einstein wrestled in the latter half of his life: the search for a grand unified
theory, a single theory that can explain the fundamental physical laws of the universe,
on the big scale of our galaxy and all the other galaxies, and the small scale of a
nano-size speck of nothing. Such a theory seeks to unite Einstein’s general theory of
relativity, explaining the large-scale properties of the universe, with quantum theory,
explaining matter and energy on an atomic and subatomic level. The trouble with



these two theories of existence, currently held true, is that they are incompatible—they
cannot both be correct (quantum theory, which describes the behavior of elementary
particles assumes gravity is negligible, whereas the theory of general relativity, stating
that gravity equals space-time geometry, holds that quantummechanics is not needed
in the description of the laws of nature—the mathematics do not mesh).31

String theory replaces particles with strings, open-ended or closed as loops, and in
doing so resolves the incompatibility issues between quantummechanics and general
relativity (it isn’t obvious how this resolution occurs, but it is interesting to note that the
purpose of uniting these theories is all aesthetics—it would be simpler, more neat and
tidy, if the laws of the universe could be reduced to one formulation, if the component
parts were synthesized). The strings are so tightly curled into minuscule multiple
dimensions—ten or eleven dimensions, or even twenty-six, which are constrained by
precise symmetries—that they are invisible to the naked eye and even the eye armed
with the best scientific technology.32

String theory has becomemore complicated since it was introduced a few decades
ago, with a number of variations on the original theory. These theories have been
brought together in a grand multi-universe plot, known as M-theory. Edward Witten,
based at Princeton’s Institute forAdvancedStudy, is themathematical physicist behind
M-theory (some call him the “pope of strings”). “M stands for magic, mystery, or
matrix,” Witten said. “I think they speak for themselves, except possibly for matrix;
matrices are used in an approach to understanding M-theory. In addition, our present
understanding of M-theory is murky.”33 That is to say superstrings and M-theory are
still just theoretical children, joyous yet chaotic puzzles.

Coxeter was peripherally aware of string theory. It came to mind one day when dis-
cussing Through the Looking-Glass by Lewis Carroll.‡ This was one of Coxeter’s favorite
books due to its logically nonsensical nature. He especially liked the “Jabberwocky”
passage andwould say that word—“Jabberr-wOckAy!”—with such enjoyment. He could
recite entire stanzas with the same dramatic intonation. Coxeter often dipped into his
ratty copy of Alice, and after many readings he hadn’t tired of it at all. “It’s like reading
about a part of mathematics that you know is beautiful,” he explained, “but that you
don’t quite understand. Like string theory. That’s as much a mystery to me as it is to
anyone else who can’t make head nor tails of the eleventh or sixteenth dimension.”34



Therein, unwittingly, he was onto something. The enduring problem with string
theory is that string theorists themselves can’t even explain it. “Don’t askme to explain
what I just said,” demurred Stanford string theorist Lenny Susskind, speaking off the
top of his head at the Strings05 conference in Toronto. Among some string theorists,
the murkiness seems to be causing more consternation than joy. String theory may
holdpromise to unify all the forces of nature, but just as easily the enterprisemayprove
to be so grandiose and esoteric that it is beyond human intelligence. Participants at
Strings05 gathered one evening for a session pondering when “The Next Superstring
Revolution” would occur. Eight panelists, speaking in alphabetical order, professed to
their embarrassment that they had no idea when or how the next breakthrough would
come.35
Witten rose from the audience during the Q&A session and offered a “cautionary

tale about predicting the future.”36 Even if string theory does not turn out to be the
be-all-and-end-all model of the physical universe, he expects the theory and all its
infinitesimally small dimensions will ultimately evolve into a new branch of geometry.
“[S]tring theory does appear to contain a lot of rich geometrical ideas, so far not so
well understood, which I believe will have a lot of influence inmathematics over time,”
he said. “One reason I think so is that the little pieces that are so far discovered have
already had a considerable influence.”37
One little piece of the puzzle that has helped decipher the mysteries of string theory

is mirror symmetry. Brian Greene and Ronen Plesser, associate professor of math-
ematics and physics at Duke University, discovered the mirror symmetry of string
theory and in so doing revealed how elements previously thought to be totally unre-
lated were in fact intimately interconnected.38 As a result, a horrifically complicated
calculation, previously considered impossible even for the best mathematicians, be-
came breathtakingly easy in a mirror-opposite space. They called their discovery
“mirrormanifolds.” And, with the impasse broken, subsequent calculations proceeded
with “relative ease.” Greene elaborated in The Elegant Universe with a tangible analogy:
It’s somewhat as if someone requires you to count exactly the number of oranges

that are haphazardly jumbled together in an enormous bin, some 50 feet on each side
and 10 feet deep. You start to count them one by one, but soon realize that the task is
just too laborious. Luckily, though, a friend comes along who was present when the
oranges were delivered. He tells you that they arrived neatly packed in smaller boxes
(one of which he just happens to be holding) that when stacked were 20 boxes long,



by 20 boxes deep, by 20 boxes high. You quickly calculate that they arrived in 8,000
boxes, and that all you need to do is figure out howmany oranges are packed in each.
This you easily do by borrowing your friend’s box and filling it with oranges, allowing
you to finish your huge counting task with almost no effort.39

Or consider Greene’s analogy with Coxeterian tools. Imagine you are peering into
the same pile of oranges, but then realize the pile isn’t as big as you thought. You blink,
tilt your head for a new perspective, readjust your focus, and you see that it is actually
a smaller pile of oranges replicated again and again in an almost invisible mirrored
box, like one of Coxeter’s finite kaleidoscopes. In order to make the calculation, then,
all you have to do is count the oranges in the immediate box, and thenmultiply that
number by the mirrored reflections to get your total.

“Mirror symmetry is a nonclassical relation between spacetimes,” saidWitten, “that
are quite different in Einstein’s General Relativity but turn out to be equivalent in
string theory. This enables string theorists to do calculations that would otherwise
be out of reach, and has turned out to have surprisingly interesting applications in
geometry.”40

The mirror symmetry breakthrough was a boost for string theory and mathematics
alike. But rumblings are that if a bigger breakthrough doesn’t occur soon, and in
the form of streams of empirical evidence, string theory will at best be deemed a
branch of mathematics or philosophy, but not part of physics.§ Data is desperately
needed to confirm or refute the fundamental string theory hypothesis: Within these
microscopic eleven dimensions resides a new species of subatomic particles, known
as supersymmetric (SUSY) particles, or “sparticles.” Physicists are trying to detect
traces of these sparticles at such places as Fermilab, in Batavia, Illinois, and the CERN,
in Geneva—the latter, home of the world’s largest particle accelerator and the center
of the universe for determining the content of the universe in its first trillionth of a
second. And an evenmore powerful particle accelerator is being built at CERN—the
Large Hadron Collider (LHC), which, when it is switched on in 2007, will probe even
deeper into matter and smash nuclei together with even more collision energy. String
theorists are crossing their fingers; they hope the LHC will prove the existence of
string theory’s supersymmetric particles. The hunt for sparticles, like the hunt for
C60, is on.41



This raises a question: it sounds far-fetched, but could Coxeter’s templates of sym-
metries for shapes in multiple dimensions possibly unlock part of the puzzle of the
supersymmetric unified theory of everything? After conducting a survey of the exist-
ing literature—with Google, searching “Coxeter and M-theory”—the answer is yes. The
search revealed a paper by Marc Henneaux, a specialist in black holes, at the Free Uni-
versity, Brussels, and director of the Service de Physique Théorique et Mathématique.
It is titled, in big bold letters,

PLATONIC SOLIDS AND EINSTEIN THEORY OF GRAVITY: UNEXPECTED CONNEC-
TIONS42

It turned out it wasn’t so much scholarly paper as it was a PowerPoint presentation
intended for a general academic audience (though Henneaux has written scholarly
papers on this subject as well). His presentation read, in part:

GRAVITATION = GEOMETRY

Einstein revolution: gravity is spacetime geometry

General relativity has proved to be remarkably successful …but there are …

PROBLEMS

General relativity + QuantumMechanics = Inconsistencies
(e.g., infinite probabilities!)

Synthesis of both should shed light on the first moments of universe
(« big bang »), on black holes, and on the problem of why the vacuum energy is so
small.

Towards a solution: string (M-)theory?

SYMMETRIES: THE KEY?

Symmetry = invariance of the laws of physics under certain changes in the point of
view

What are the underlying symmetries of M-theory?
Platonic solids: the golden gate to symmetry

Platonic solids, of course, are those “toys” Coxeter played around with so often in
his work. And sure enough, a little further into the presentation, Coxeter’s work was
cited:

Coxeter groups may thus signal a much bigger symmetry43



“Coxeter’s work does make an unexpected appearance in Einstein’s theory of grav-
ity,” confirmed Henneaux. He and his collaborators44 found that Coxeter groups
“popped out” when studying particular solutions of Einstein’s equations.¶ “One can
show that the generic solution of Einstein’s equations contains singularities, places
where some fields become infinite. We studied the Einstein equation in the vicinity of
such singularities—in the cosmological context you have the big bang singularity and
you want to understand how the fields behave as you approach the big bang.”45

By analogy, Henneaux and his colleagues showed that the dynamics of the gravita-
tional equation are the same as the dynamics of a billiard ball moving on a hyperbolic
billiard table. “You would have a billiard ball moving in some portion of hyperbolic
space in higher dimensions,” he said, “and when the ball hits the border of the billiard
table you would have a reflection. We can show that all the possible reflections when
the ball hits the walls would generate a Coxeter group—the whole thing conspired to
give you a Coxeter group.” The team came upon this finding somewhat by accident.
They computed the trajectory of the billiard balls, and found that it worked out to a
very nice geometry. And they computed the angles between the walls of the hyperbolic
billiard table, and found that the angles were pi divided by an integer—pi over three, or
pi over two—just as in Coxeter’s kaleidoscopes, with angles separating mirrors being
fractions of pi.46

This research helps the hunt for the fundamental formulation of string theory
because the existence of the symmetries of a Coxeter groupmight be an indication
that the theory itself has a huge symmetry group. This in turn indicates there are
beautiful and elegant structures underlying string theory, and lends credence to the
theory’s potential. “We believe that exhibiting, explicitly, this huge symmetry will
help in understanding string theory and the generalization of string theory known
as M-theory,” said Henneaux. “[Presumably if we understand better the symmetries,
we would be able to make a step toward a deeper formulation of the theory. And we
believe that maybe this is a way to attack the problem.”47

The pope of strings also gives his blessing to Coxeter groups and their potential
role in unraveling the puzzle. “Maybe some unfamiliar infinite-dimensional groups
like E{10} will be important in string theory—at times people have made this con-
jecture—and if so maybe it will be helpful to understand the Coxeter groups,” said
Witten.48



“String theory is one place where there are a vast amount of links to different parts
of mathematics,” said Sir Michael Atiyah. “That’s what makes it one of the more
exciting things going at the present time …And if it hadn’t been for that, one might
have worried, because there are no experimental results for string theory, and if there
were no connections to mathematics, the critics might just say, ‘Well, these guys are
doing crossword puzzles.’ ”49

Sir Michael, whose realm of modern geometry also overlaps with the physics of
string theory, has been instrumental in bringing the two factions together. “Over the
last 25 years, I’ve been learning some physics, talking to physicists and helping to
bridge the gap. It’s a difficult gap to bridge,” he said, “because traditional mathemati-
cians tend to view with a lot of suspicion the work of physicists. The physicists’ work
is full of hypothetical ideas for which there are no proofs …Physicists’ intuition is
based on the world of experiments,” Sir Michael explained. “They think conceptually
when they think about physics because it’s about electrons and particles and forces
and fields—the electric field and the gravitational force and the magnetic field. By
definition these are meant to be forces that you can imagine. They have ideas in their
mind when they talk about the things they are discussing, and that is very similar
to the way a geometer thinks—in terms of space and pictures and so on …When they
get to the stage of converting intuition into formal arguments, to writing papers, then
physicists tend to resort to algebraic formulae …Then a lot of their conceptualizations
are converted to formulae and they write down the equations to say how the particles
and forces behave. So there are two sides to the story in physics, just as there are in
mathematics.”50

But when the physicists started thinking about string theory, the kind of geometry
they needed wasn’t at the intellectual ready. “The geometrical thinking did not come
very easily to physicists when they started getting involved with string theory,” said Sir
Michael. “They can think conceptually in terms of physical terms, particles and fields
and forces, but when it came time to translating these into mathematical geometrical
concepts, they weren’t too sure of their ground. Because the old fashioned simple
straight line geometry of Euclid wasn’t appropriate, and they hadn’t learned the new
modern curved and complex geometry.”51



The “hosepipe” model of string theory, drawn by Sir Roger Penrose, shows how
stringsmight be curled into small extra dimensions. A “being” who inhabits this world
straddles the extra dimensions and is therefore unaware they exist.
Subsequently, after physicists pulled at modern mathematics for what they needed,

the physics of string theory, in turn, spurred on modern geometry, producing a com-
plicated set of links that physicists predicted, but which mathematicians would not
have otherwise considered. “When you have unexpected links, they turn out to involve
lots and lots of things crisscrossing each other,” said Sir Michael. “Mathematics is a
very intricate pattern of beautiful designs. You discover unexpected links and you
increase the pattern, you explore and you drawmore analogies and you drawmore
pictures. It becomes one big mosaic. And it goes on and on and on.”52

By the end of the Budapest conference, continuing on and on with geometry was,
for Coxeter, top of mind. As he roamed the halls of Hungary’s Academy of Sciences,
visiting one lecture room after another, Coxeter noticed the many mirrors in the
building—lining the elevator, on the landings of grand sweeping marble staircases, in
hallway alcoves, and in the library. As he wandered by yet another mirror, he recited a
passage fromG. K. Chesterton’sManalive,which had become hismantra of late: “There
is something pleasing to a mystic in such a land of mirrors,” he said. “For a mystic
holds that two worlds are better than one. In the highest sense, indeed, all thought is
reflection.”53
Coxeter wasn’t at all mystical about his land of mirrors; he was driven, obsessed,

with a steely passion to experience everything he could about symmetry and polytopes.
And he wanted to keep at it. One evening in Budapest, he received a call in his hotel
room from Gyorgy Darvas, a local geometer and director of Symmetrion. Darvas was
off to another mathematics gathering a couple of hours away, but he’d heard Coxeter
would be in town and he did not want to miss the chance to meet him. Coxeter slowly
made his way downstairs to the lobby for an impromptu meeting with Darvas. “I’ve
wanted to meet you for 50 years,” Darvas said. He presented Coxeter with two copies



of a journal he edits, Symmetry: Culture and Science, published by the Symmetry Society.
Darvas added that he would be happy to publish anything Coxeter sent his way. And
he gave Coxeter an invitation to a conference, Symmetry Festival 2003#, in Budapest
the following summer.54
“Oh, how lovely!” Coxeter said, adding with a guffaw: “But I won’t be alive in 2003!”

Darvas gently pointed out that 2003 was only one year away.
“2-0-0-3,” said Coxeter slowly. “Those numbers look so odd.”55
By the last day of the conference, the rejuvenatedCoxeterwasn’t feeling hismortality

so much and had reconsidered Darvas’s invitation for a return visit. Departing for the
airport, bidding his good-byes, he told colleagues, fans, and friends gathered for his
send-off that he would see them back in Budapest the next year.56
* In total, Pelletier has made seven such sculptures, also called the 120-cell—a

Waldorf school in Texas is home to one, and Princeton’s math department another.
† Greene is the author of the Pulitzer Prize-nominated book The Elegant Universe,

and its sequel, The Fabric of the Cosmos.
‡ Lewis Carroll was the pen name for mathematician C. L. Dodgson. He wrote

mathematics books under his own name, but invented his pseudonym by translating
his first two names, Charles Lutwidge, into Latin, producing Carolus Lodovicus, which
he then Anglicised and reversed in order.
§ In the meantime, while the string theorists await the next breakthrough, Amanda

Peet, from the University of Toronto, proposed string theory become a “faith-based
initiative.” Whereas ever-the-jester Susskind said, “There’s nothing to do except hope
the Bush administration will keep paying us.”
¶ These are Einstein’s equations pertaining to gravity, not the famous E = mc2. The

Coxeter groups that pop up in these equations—that is, the Coxeter groups that here
prove to be usefulmathematical tools—are those informing themysterious infinite con-
tinuous symmetries that seem to underpin all existence (specifically, the hyperbolic
Coxeter groups: A{1}++, pure gravity; and E{10}, 11-dimensional supergravity).
# At Symmetry Festival 2003, Hungary’s Sándor Kabai and Szaniszló Bérczi were

due to give a talk exploring theusefulness of polyhedra in “SpaceStationsConstruction
and Modelling.”



Part III.

Aftermath
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12 Full Circle Symmetry

And summer's lease hath all too short a date.

—SHAKESPEARE, SONNET 18

“We have now reached the end of our journey,”1 wrote Coxeter, as if coming to
the end of a fable in the epilogue to Regular Polytopes—a book that had become, some
mathematicians reckoned, the most quoted geometry text of the century.
After his return fromBudapest, Coxeter acquiesced to the reality that hewas nearing

his end. He was more gaunt and ascetic looking than usual, his mind increasingly
betrayed by his body. After one particularly calamitous day, Coxeter invoked a limerick
from nonsense poet Edward Lear, lamenting: “I feel like the Old Man from Thermopy-
lae, who never did anything properly.” Mathematicians around the world had long
since put Coxeter on their “longevity watch.”2 And nearly all his contemporaries had
predeceased him, which gave him the minor advantage of knowing, somewhat, what
to expect.3
Coxeter and Pólya, his friend fromPrinceton, had kept in touch into old age. In 1978,

ninety-year-old Pólya wrote, “Dear Coxeter, You know everything about geometry,
elementary or otherwise, n or more dimensional …I have not seen you for a long time,
but perhaps we can meet sometime, somewhere, somehow …” They did not, but they
continued to write. Coxeter sent some of his latest papers and received Pólya’s final
return letter in 1985: “I am close to 100 years, and for my age not too badly off.” Pólya
died later that year, at ninety-seven.4
Coxeter had closely marked the birthdays of many of his friends and colleagues.

In 1992, on John L. Synge’s ninety-sixth, he wrote a mathematically laden letter of
congratulations:

Dear Jack,
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Wesend you ourwarmcongratulations on your 96th birthday. It is splendid to
have lived so long. And 96 is a very fine number, being the number of vertices
of the regular complex polygon 4 {4} 3. It has been known only for a few
months that these 96 points have the symmetrical coordinates …this is one
of the results in the new paper I am writing …

On Synge’s ninety-seventh, Coxeter commented on his success at having reached
“a nice prime number!” And for his ninety-eighth, Coxeter penned his best wishes on
Synge’s actual birth date, only seven days before his death in March 1995. Synge, in
his letters back to Coxeter, described his decline with fine detail: “The pulse-rate at
rest is normally 48 per min, but mine lies between 30 and that. I have a great lack of
energy.” Just before he died, Synge remarked with characteristic wit: “I’d be delighted
to wake up in the morning and find I’d died in the night.” His last days were in a
nursing home, and he told his daughter, themuch-decoratedmathematician Cathleen
Synge Morawetz, “Be sure to tell Coxeter to move into a nursing home. It’s the best
thing.”5
Despite the recommendation, Coxeter intended to avoid a nursing home at all cost.

When he was in his nineties, he nursed Rien through the horrors of Alzheimer’s,
bathing, dressing, and feeding her with superhuman compassion and devotion. Cox-
eter moved Rien into a home only in her final months, after a fall had broken her
hip and her will to live. Over the protracted period of his wife’s illness, Coxeter al-
lowed himself little respite. A nurse came to the house only one day a week, a day
Coxeter used for trips into his office at the university campus to catch up on mail.* He
received a much-treasured piece of mail from an eleven-year-old polytope prodigy,
Clifford Zvengrowski, living in Calgary, Alberta. Enclosing a photograph of a skeletal
polytope model he had constructed (nearly as tall as the boy himself), Clifford wrote
to say: “Dear Professor Coxeter, My three most favorite people that live or lived are
Archimedes, Brahms, and yourself. Most kids I know would like to get an autograph of
some rock singer or baseball player, yet I am hoping for yours.”6
Coxeter also managed to keep on top of the world’s political injustices. In 1997, he

gladly hand-delivered a petition to the president of the University of Toronto, signed
by one hundred professors, protesting plans to bestow an honorary degree on former
president George H. W. Bush.7 The event went ahead as planned, but scores of faculty
“robed up” for the convocation ceremony anyway, and then walked out en masse



during the proceedings. “We chose a point when the encomium to Bush was waxing
odious,” recalled mathematics professor Chandler Davis. “The ceremony was in the
Great Hall of Hart House, and by pre-arrangement the exiting profs marched straight
out of the building by the south door where over a thousand supporters had gathered
to cheer us.” More than half the total of sixty attending faculty exited. Coxeter, then
age ninety, preferred to simply stay home and boycott.8 He once said he never thought
there could be anything worse than President Bush until a second President Bush
came along.
When Rien died in 1999, Coxeter enjoyed a second wind of sorts. He threw around

his weight a bit when drafting his will. Initially, he had decided to donate his Rosedale
house (by then valued at $1.5 million) to the University of Toronto. He reconsidered
his offer, however, when he perceived a change in the university’s pedagogical ap-
proach—shifting from“learning for its own sake” to “learning for opportunity.” Coxeter
thought it particularly egregious that research chairs were endowed by corporations.
He rescinded the offer to the university and stipulated instead that the proceeds from
the sale of the house be divided equally between the Fields Institute and his alma
mater Trinity College, Cambridge.9
With his daughter Susan as his helpmate, he once again filled his itinerarywith inter-

national engagements, such as a trip to Stockholm for the Symmetry 2000 conference.
There he spoke on another of his signature subjects, the “Rhombic Triacontahedron,”
and he planned to use a new type of model invented by his friend, geometer and
geophysicist Michael Longuet-Higgins, at the Scripps Institution of Oceanography,
UCSD. Called RHOMBO, the model’s component parts are six-faced solid blocks that
click together by a patented system of magnets. Longuet-Higgins had sent Coxeter
samples as he developed the model, and Coxeter became an enthusiastic promoter,
saying: “Your RHOMBO blocks are very much more than a toy!” And on another
occasion he informed Longuet-Higgins: “I took both balls to the NATO meeting on
Polytopes, where many participants enjoyed pulling them apart and re-assembling
them.” At Symmetry 2000, in Stockholm, Coxeter delivered his lecture, using the
blocks, with Longuet-Higgins sitting in the audience. In themiddle of his presentation,
Coxeter fumbled the model and dropped it on the floor, causing it to fly into pieces.
Longuet-Higgins rushed to the rescue and reassembled it. “DidDonald drop the blocks
on purpose? I believe he did,” said Longuet-Higgins, “so as to give me a chance to
demonstrate my RHOMBO. That would have been just like Donald.”10



Coxeter also made one last trip to his native Cambridge, where he was anointed
an honorary fellow of Trinity College (the Master of Trinity, Amartya Sen, wondered
aloud why it had taken the College so long to do so11). He managed back-to-back con-
ferences in Vancouver and in Madison, Wisconsin, even though he was immobilized
and on painkillers with a cracked pelvis. He made two summer appearances at the
Canada/USA Mathcamp for math whiz kids; went to Banff for his talk on Escher; and
finally visited Budapest.12

And then there was a journey of another sort, the crowning celebration of his career,
his ninety-fifth-birthday party at the Fields. After the dedication ceremony with the
unveiling of the 120-cell, John Conway delivered a touching yet humorous ode to his
mentor. “My aim is to try to tell Donald Coxeter something about polytopes that he
doesn’t already know. I’m not at all confident that I can pull it off. But I am going to
try,” he said, trying to reassure Coxeter that the impact of his oeuvre was enduring.

“But before I do,” said Conway, “I want to step back 25 or so years, if I may, to Donald
Coxeter’s 70th birthday celebration. Nearly all the people there were students of
Coxeter’s, or grand-students or great grand-students, and they were all getting up and
saying how this man had been such a great inspiration in their lives. Well, I rather
brashly thought I’d do something different. I stood up and said I was there to forgive
Professor Coxeter for having tried to murder me. I then told a story which actually has
a few elements of the truth about it.”13

“A long time ago Professor Coxeter came to Cambridge to give a lecture when I was
a student there in the late fifties. I didn’t realize it during the lecture, but that was
his attempt to murder me. He chose as his weapon something Agatha Christie never
thought of: a mathematical problem—he ended his lecture asking for a solution to
a problem he’d been pondering.” It was a problem about geometrical groups, the
rotational polyhedral groups, and Coxeter groups. Conway walked out of the lecture
room, and crossed Trumpington Street, the main road in town. “Just as I was in the
middle of the road,” said Conway, “the solution to Professor Coxeter’s problem hit me.
Right when he calculated it would, I figure—he judged its level of difficulty precisely.
Because as it turned out, it was not the only thing that hit me. At the same time as the
solution hit me, or a fewmicroseconds later, a garbage truck also hit me. Fortunately,



it didn’t do too much damage; it was an unsuccessful attempt at murder. And after
being shouted at for being a damned fool by the men hanging off the back of the truck,
I limped back to the room and told Professor Coxeter all this and gave himmy solution,
which to this day I refer to as the ‘The Murder Weapon.’ ”14

Coxeter autographing a portrait of himself, with Glenn Smith (left) and John Conway,
at Coxeter’s ninety-fifth-birthday celebration, hosted by the Fields Institute, Toronto,
February 2002.

“I’m one of the greatest Coxeter lovers,” said Conway in closing. “He has a certain
way with presentation that is elegant and carries the reader along. With mathematics
what you’re doing is trying to prove something and that can get very complicated and
ugly. Coxeter always manages to do it clearly and concisely, with beauty. Coxeter kept



a little flame of geometry alive by doing such beautiful works. There is a quotation
from Walter Pater’s book The Renaissance. Pater was describing art and poetry. He
refers to a hard, gem-like flame: ‘To burn always with this hard, gem-like flame, to
maintain this ecstasy, is success in life.’ Somehow,” Conway said, “that always makes
me think of Donald Coxeter.”15

Coxeter enjoyed his Indian summer while it lasted. He identified with John Galswor-
thy’s interlude with that title in his book The Forsyte Saga. “People treated the old as if
they wanted nothing,” wrote Forsyte. But Coxeter, like Forsyte’s character “Old Jolyon,”

ached a little from sheer love of it all, feeling perhaps, deep down, that he had
not very much longer to enjoy it. The thought that some day—perhaps not ten years
hence, perhaps not five—all this world would be taken away from him, before he had
exhausted his powers of loving it, seemed to him in the nature of an injustice, brooding
over his horizon. If anything came after this life, it wouldn’t be what he wanted.16

Spells of resignation, grumpiness, and sadness came over Coxeter as he set out for
the trip home from Budapest. He grudgingly allowed Susan to whisk him around the
airport in awheelchair and through the “diplomats only” passport check. All the while,
he grumbled about the injury Susan had inflicted upon the pages of his lecture: “This
is what’s left of my precious Budapest paper,” he said, the sheets of his talk, minus a
jagged torn-off bottom half of the opening page, sitting atop his briefcase on his lap,
his fingers rapping away in annoyance.

“I’m sorry, Dad. I didn’t realize what it was. I just needed something fast to calculate
the tip so I ripped off a piece …”17

He could hardly be denied his rancor. But the cabin-fever antics between father
and daughter only escalated after Budapest. He precipitated music wars with his
daughter—Coxeter listened to Bruckner, which was like fingernails on a blackboard
to Susan, who blasted her country tunes in retaliation. Not long before he died, the
tension broke when Susan and her father shared a big laugh. Susan had made her
father his usual breakfast, toasting the rice bread twice (as recommended for his
digestive problems), buttering it with nondairy spread (he had become lactose intoler-
ant), cutting it twice into triangles (he was finicky, and triangles being far superior to
rectangles), only to have him take one bite and say he didn’t much feel like toast. This
pushed Susan past her limit.18



“Dad if you don’t want f*#!ing toast, tell me you don’t want f*#!ing toast!” The same
happened later that day with lunch when she made falafels. “Dad! Tell me if you don’t
want f*#!ing falafels!”† Midafternoon, Susan left her father on his bed and said she
was going to her room, in the maid’s quarters of Coxeter’s historic house, for a nap.
Twenty minutes, that’s all she asked. She pulled her blind, reclined, and closed her
eyes. At that very moment, her father began blowing his orange “emergency” whistle,
slung at the ready around his wrist. Muttering her frustration under her breath, Susan
was back at his side. “Susan,” he said, not even opening his eyes, “could you please
removemy f*#!ing shoes?” It was first time he’d used the word in his life. “I had taught
him to swear at 96,” recalled Susan. “And he taught me how horrible it sounded.”19
While his mind remained active, Coxeter had clearly entered the homestretch. He

occupiedhimself dailywith putting thefinal touches onhis Budapest paper, readying it
for publication. And he began to pull books from his library on “convexity,” preparing
his paper for Symmetry 2003. But soon his ailments and mishaps began to multiply.
He thought it terribly unfair, given his pure lifestyle and his long track record of near-
perfect health. What did him in was too many falls, out of bed or down the flight of
stairs from his bedroom. One tumble in particular warranted numerous stitches and
a Band-Aid the size of a rectangular half piece of toast. With that, his bedroommoved
from upstairs to the main floor—a makeshift bedroom in the dining room. Coxeter
insisted the arrangement was temporary, that he would move back upstairs when
he regained his strength. He still climbed the stairs to his bedroom and down to the
basement each day for exercise, his arms clutching the railing, pulling his bowed body
along behind him like a mountain climber scaling a peak. A visitor commented that
his task did not look easy. He said, “It’s been my experience that nothing worth doing
in life is.”20
On a Saturday at the end of March, Coxeter put the final touches on his Budapest

paper. He so relished making corrections that he could not quite believe no more
“errata” were to be found.21 Having polished his thoughts on four mutually tangent
circles to perfection, Coxeter died two days later, on March 31, 2003, with his cat Amy
curled on his stomach. He had no illusions about infinity or hyperspace materializing
in the hereafter. He had reachedmortality’s event horizon. And he stipulated there
be no funeral. Susan and Edgar poured his ashes under a tree to the west of the front
door at the Rosedale house, his final nod to symmetry, balancing the spot where he
left Rien’s ashes to the east.22



One final Coxeterian act of symmetry had been set in motion prior to his death.
Coxeter traveled to McMaster University, in Hamilton, Ontario, where neuroscientist
Sandra Witelson has accumulated a “brain bank”—she acquired a specimen of Ein-
stein’s brain,23 and arranged to acquire Coxeter’s (she also invited John Conway’s
brain, and he accepted24). Witelson investigates anatomical manifestations of genius.
“Behind every beautiful mind is a beautiful brain,” she told Coxeter when he visited to
hear about results so far. “Sir Donald,” as Witelson called him, had undergone some
pre-postmortem tests—a neuropsychological analysis and a full-brain MRI. Dr. Witel-
son explained that she was interested in his parietal lobe in particular—the region
of the brain crucial to conjuring intuitive concepts, visual images, multidimensional
images of time and space. “Einstein’s parietal lobe was twice as large as that of a
normal brain,”25 said Witelson.

The last portrait of Donald Coxeter, photographed at home in Toronto, November
2002.



Since Coxeter’s death, further testing on his brain has so far confirmed the prelimi-
nary research. The results seem to reveal that Coxeter had a bilateral expansion of his
parietal lobe—not quite the same type of enlargement Einstein displayed, but similar,
and a large parietal lobe nonetheless. Indeed, as Witelson had pointed out to Coxeter,
one could see the bump on the top of his bald head. She also explained that the right
and left hemispheres of average brains do not display mirror symmetry. Coxeter’s
and Einstein’s brains, however, were “more mirror-image” than usual.26 Coxeter was
clearly pleased. “So,” he said, “my interest in symmetry has not been misplaced.”27
* One piece of mail he tended to on August 10, 1997, pertained to a recent royalties

statement. “Dear Ms. Falaster, Thanks for the royalty statement. I regret that only
13 copies of TGE [Twelve Geometric Essays] were sold. The trouble seems to be that
few people have heard of the book, although it contains some of my most original
articles, frequently cited by other authors. Could you do something about promotion?
Tell the public that I have just been awarded, by the Royal Society of London, this
year’s ‘Sylvester Medal,’ which is the mathematical equivalent of a Nobel Prize. Yours
sincerely, Donald Coxeter.”
† Usually he was easy to please: another day, for lunch, he ate pea soup from the

can and declared: “Ahhh! Pianissimo!”





13 APPENDIX 1

FIBONACCI AND PHYLLOTAXIS
The pineapple displays a botanical phenomenon Coxeter was very fond of: phyl-

lotaxis, literally meaning “leaf arrangement,” but pertaining generally to buds, and
also present in sunflowers, daisies, and pine cones,* which grow in patterns described
by the golden ratio.
The golden ratio is derived from a celebrated sequence of numbers discovered in

1202byLeonardo of Pisa, also knownasFibonacci (his fatherwasnicknamedBoNacci,
or “the good natured guy,” so he was “the son of good nature”). Fibonacci noticed
this special sequence of numbers by watching rabbits reproduce. “He assumed that
rabbits live forever, and that every month each pair begets a new pair which becomes
productive at the age of two months,” Coxeter recounted in his book Introduction to
Geometry. “In the first month the experiment begins with a newborn pair of rabbits.
In the second month there is still just one pair. In the third month there are 2; in
the fourth, 3; in the fifth, 5; and so on.” The Fibonacci numbers 1, 1, 2, 3, 5, 8, 13
are special, because each successive number is the sum of the previous two; and the
golden ratio is obtained by dividing any number in the set of Fibonacci numbers by
the previous number, which always gives a result in the neighborhood of 1.618.1
In the botanical application of the Fibonacci numbers, plant outgrowths seek an

optimum amount of living space and in so doing sprout in a pattern of intercrossing
“whorls.” In a sunflower, where the buds become seeds, one family of 55 clockwise
whorls intersects another family of 89 counterclockwise whorls—55 and 89 being
successive Fibonacci numbers. With a pine cone, there are 8 “dextral” and 13 “sinis-
tral” whorls (these terms refer to spirals like a corkscrew, and like the mirror image
of a corkscrew, respectively). With a pineapple, the dextral and sinistral whorls are
always Fibonacci numbers, but not always the same Fibonacci numbers. The ratios
of alternate Fibonacci numbers measure the fraction of a turn between successive
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leaves, buds, or organs, emanating from a plant’s stalk—Coxeter gave the examples
of 1⁄2 for elm and linden, 1⁄3 for beech and hazel, 2⁄5 for oak and apple, 3⁄8 for poplar
and rose, 5⁄13 for willow and almond.2 A similar scenario occurs with pineapples, pine
cones, daisies, and so on.

Coxeter’s diagram investigating a pineapple’s pyllotaxis.
In a lecture titled “Chirality and Phyllotaxis,” Coxeter stated that the botanical

application of the Fibonacci numbers was introduced by Kepler in 1611 with two
paragraphs of his book A New Year’s Gift,which Coxeter quoted: “Wemay ask why all
trees and bushes—or at least most of them unfold a flower in a five-sided pattern, with
five petals. In apple-and pear-trees this flower is followed by a fruit likewise divided
into five …Inside there are always five compartments to hold the seeds …,”3
Coxeter concluded his exposition in Introduction to Geometry by saying: “[I]t should

be frankly admitted that in some plants the numbers do not belong to the sequence
…Thus wemust face the fact that phyllotaxis is really not a universal law but only a
fascinatingly prevalent tendency.”4
* Soaking a pine cone in water for thirty minutes causes the buds to close and

accentuates the phyllotaxis pattern.



14 APPENDIX 2

SCHLÄFLI SYMBOLS OF THE 3-D AND 4-D REGULAR POLYTOPES1
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15 APPENDIX 3

COXETER DIAGRAMS
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16 APPENDIX 4

COXETER GROUPS

Coxeter groups are the algebraic equivalent of Coxeter diagrams. The Coxeter
diagram for the icosahedron, having three mirrors or nodes, would be translated into
symbolic algebraic terms, the mirrors, or the mirror reflections, being represented by
x, y, and z.

The algebraic language created by Coxeter groups is governed by the equivalent
of grammatical rules. But in fact, the rules are better described by a mathematical
analogy—the way in which reflections combine with one another in Coxeter groups is
much like a multiplication table.

For example, let’s take a Coxeter group of order 4, which is generated by just two
mirrors.

Here, the symmetries generated by the reflections in the two mirrors (which are
hinged at a 90° angle) can be denoted by the lower case letters e, a, b, c, where e
commonly describes the identity symmetry, corresponding to the real image. The two
mirror images would be a and b, and the peculiar fourth image behind the seam of the
mirrors would correspond to c. Here the magic appears: the seam image c is equal
to the image in mirror a being reflected by mirror b—image c is the result of the real
image bouncing first in mirror a and then mirror b. In order to get the fourth image c,
you “multiply” a times b. The “multiplication table” of symmetries fills in like this:
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The chart lays out how the images reflect in multiple fashion in the mirrors. The
identity element, or the original image, results from reflecting only in mirror a, and
again in that same mirror. As we saw previously: a2 = 1 (or a2 = c). But when the
original image is reflected through mirrors a and b, another image results, namely,
image c. The entire chart can be completed in this manner. So again, if you have
one reflection in mirror a, you see just your mirror image; if have one reflection in
mirror b, you just see your mirror image. But when you look at that image behind the
crack between the mirrors, the light is actually bouncing first off mirror a, then off
mirror b, and back into your eyes, and it is that double bounce that gives you the very
unexpected extra image. And somehow c is different in a geometrical way, as you can
check by waving your right hand at images a, b, and then c.1
Thus, the Coxeter group of order 4 is a collection of the symmetry transformations

e, a, b, and c, which comes equipped with a multiplication table governing how the
transformations interact.
Coxeter groups of higher order progress in the same manner, with larger multi-

plication tables, adding to the algebraic language. Each Coxeter group has its own
algebraic characterization, which, whenmemorized, evokes the symmetry properties
of that particular group.2 Or mathematicians can look it up in Regular Polytopes, where
Coxeter has already done all the work.3



17 APPENDIX 5

MORLEY’S MIRACLE
A quintessential sampling of Coxeter’s mathematical spirit is found in his book

Introduction to Geometry. His opening chapter was titled “Triangles,” which focused
first on Euclid (perhaps a logical place to start but also a nice volley in response to
the “Down-with-Euclid-Death-to-Triangles!” mantra). Therein he laid out Morley’s
theorem, aka Morley’s Miracle, a theorem Coxeter much appreciated.1
He also included Morley’s Miracle in his book Geometry Revisited, coauthored with

Samuel Greitzer, which featured a purple and yellow construction of the theorem on
the cover (but oddly, the construction is faulty, not possessing exact trisectors).
“One of themost surprising theorems in elementary geometry”—surprising because

it was so simple and went undiscovered for two thousand years—“was discovered
about 1899 by Frank Morley,”2 wrote Coxeter. A shy but deliberate man, Morley did
not go public with his theorem and it was first published by another party, F. G. Taylor
andW. L. Marr, in 1914.3 Morley was born in England, graduated from Cambridge in
1884, and later moved to the United States and became a professor of mathematics at
Haverford College, in Pennsylvania; after his triangle discovery, he was appointed a
professor at Johns Hopkins, in 1900.4
The theoremMorley discovered states: “The three points of intersection of the adja-

cent trisectors of the angles of any triangle form an equilateral triangle.”5 According
to Conway, “The property of equilaterality surprises everybody.”6
Morley’s son, Frank V. Morley,7 remembered his father’s discovery: “I was a school-

boy when my father, who was almost forty years older than I was, sketched for me,
free-hand, a penciled diagram of the simplest form of the above-discussed theorem
in plane geometry. I tested it once with my own drawing instruments. No matter what
shape of the original triangle I started with, there in its midriff was an equilateral
triangle, picked out by the trisectors. It was wizard, it was weird—and it was True!”8
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As Coxeter told the tale, Morley mentioned the theorem to his friends, who in turn
spread it around the world as mathematical gossip. It was heralded as one of the most
astonishing and unexpected theorems inmathematics, and a gemwhose sheer beauty
allows few rivals. After twenty years, Morley published his theorem in Japan. The
first two proofs of the theorem included a trigonometrical proof by M. Satyanarayana
and an elementary proof by M. T. Naraniengar. The theorem continued to evoke proof
after proof—150 within 50 years—and still does.9

John Conway invented the latest proof in 1995, which he first announced by e-
mail to a geometry newsgroup. His proof is widely appreciated because it avoids
trigonometry, making it unnecessary to handle all six triangles separately. Here is
Conway’s proof (* in the proof corresponds to + in the diagrams):

Path: world!forum.swarthmore.edu!gateway

From: conway@math.princeton.edu (John Conway)

Newsgroups: geometry.puzzles

I have the undisputedly simplest proof of Morley’s Trisector Theorem.

Here it is:

Let your triangle have angles 3a,3b,3c and let x* mean x+pi/3, so that a + b + c = 0*.
Then triangles with angles

0*, 0*, 0*

a, b*, c* a*, b, c* a*, b*, c

a**, b, c a, b**, c a, b, c**

exist abstractly, since in every case the angle-sum is pi.

Build them on a scale defined as follows:

0*, 0*, 0*-this is equilateral-make it have edge 1

a, b*, c*-make the edge joining the angles b* and c* have length 1

-similarly for a*, b, c* and a*, b*, c

a, b**, c (and the other two like it)-let me draw this one:



(Note: in these pictures alpha = a, beta = b, gamma = c)

Let the angles at A, X, C be a, b**, c, and draw lines from X cutting AC at angle b* in
the two senses, so forming an equilateral triangle XYZ.

[Z and Y are where the red linesmeet the CA line in the bottom triangle, X is its other
vertex]

Choose the scale

so that XY and XZ are both 1.

Now just fit all these 7 triangles together! They’ll form a figure like:

To make it a bit more clear, let me say that the angles of APX are a (at A), b* (at P), c*
(at X).



Why do they all fit together? Well, at each internal vertex, the angles add up to 2pi,
as you’ll easily check. And two coincident edges have either both been declared to
have length 1, or are like the common edge AXZ of sorry-AX of triangles APX and AXC.
But APX is congruent to the subtriangle AZX of AXC, since PX = ZX = 1, PAX = ZAX =

a, and APX = AZX = b*.
So the figure formed by these 7 triangles is similar to the one you get by trisecting

the angles of your given triangle, and therefore in that triangle the middle subtriangle
must also be equilateral.
John Conway10
“Triangle geometry refuses to die,” said Conway, who is currently completing The

Triangle Book. Containing hundreds and hundreds of theorems on triangles, The
Triangle Book has been in theworks for a decade ormore. It is a collaborative effort with
award-winning high school mathematics teacher Steve Sigur, of the Paideia School,
in Atlanta, Georgia. Conway intends that the book will be produced in the shape of a
triangle. “It is going to be the standard book on triangles forever,” said Conway. “Or at
least for a very long time.”11



18 APPENDIX 6

FREEMAN DYSON ON “UNFASHIONABLE PURSUITS”
In 1981, Freeman Dyson sent his friend Coxeter—“one of my favourite people”—a

recent lecture he had delivered, “Unfashionable Pursuits.” One of the most famous
physicists (famed for both his physics and his elegant essays), based at Princeton’s
Institute for Advanced Study, Dyson met Coxeter through Leopold Infeld (who had
been at the institute and subsequently the University of Toronto), and they main-
tained a leisurely correspondence over the years1—leisurely in that they conversed,
of course, about polyhedra, but for Dyson this was just a sideline. Dyson is a polymath
if ever there was one. He is known widely for his books on science for the general
public, such asWeapons of Hope, on the ethical problems of war and peace (Coxeter
also enjoyed his book Disturbing the Universe, about the people Dyson encountered over
his scientific career); for his work on the Orion Project, proposing space flight using
nuclear propulsion; and for his “Dyson Tree,” a genetically engineered plant capable
of growing on a comet. He was also the winner of the Templeton Prize for Progress in
Religion in the year 2000, netting him 795,000 sterling.
Dyson delivered his “Unfashionable Pursuits”2 lecture at the institute, and sent it

along to Coxeter, “With all good wishes from one unfashionable character to another.”
A short way into his talk, Dyson recalled the early days of his career:
It has always been true, and it is nowmore than ever, that the path of wisdom for

a young scientist of mediocre talent is to follow the prevailing fashion. Any young
scientist who is not exceptionally gifted or exceptionally lucky is concerned first of all
with finding and keeping a job. To find and keep a job you have to do competent work
in an area of science which themandarins who control the job-market find interesting.
The scientific problems which themandarins find interesting are almost by definition,
the fashionable problems …It is no wonder that young scientists who care for their
own survival keep close to the beaten paths …
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Our Institute here is no exception. When I first came here as a visiting member
thirty-four years ago, the ruling mandarin was Robert Oppenheimer. Oppenheimer
decided which areas of physics were worth pursuing. His tastes always coincided
with the most recent fashions. Being then young and ambitious, I came to him with a
quick piece of work dealing with a fashionable problem, and was duly rewarded with
a permanent appointment …

The running of young scientists after quick success and quick rewards is not in itself
bad. The concentration of their efforts into narrow areas of fashionable specialization
is not necessarily harmful. After all, the fashionable problems become fashionable not
by the whim of some dress-designer but because a substantial majority of scientists
judges them to be important.

Nonetheless, Dyson argued that scientists and mathematicians would do well to
employ more creative free rein and less pragmatic ambition in directing their studies,
and that the sciences on the whole would benefit from conscientiously making room
for the unfashionable characters, such as Kurt Gödel, “an independent and recalci-
trant spirit …one of the few indubitable geniuses of our century, the only one of our
colleagues who walked and talked on equal terms with Einstein.” And he pointed to a
few invaluable examples in “ancient history.”

As an example of a greatmathematical physicistwhosework is of crucial importance
to the development of physics at the present time, I mention the name of Sophus
Lie. Lie has been dead for 80 years. His great work was done in the 1870’s and
1880s, but it has come to dominate the thinking of particle physicists only in the last
twenty years. Lie was the first to understand and state explicitly that the principles of
mechanics, which in his day were synonymous with the principles of physics, have
a group-theoretic origin. He constructed almost single-handed a vast and beautiful
theory of continuous groups, which he foresaw would one day serve as a foundation of
physics. Now, a hundred years later, every physicist who classifies particles in terms
of broken and unbroken symmetries is, whether he is aware of it or not, talking the
language of Sophus Lie. But in his lifetime Lie’s ideas remained unfashionable …A
more recent example of a great discovery in mathematical physics was the idea of a
gauge field, invented by HermannWeyl in 1918. This idea has taken only 50 years to
find its place as one of the basic concepts of modern particle physics.



Dyson continued, casting a glance around the world of mathematics to find some
unfashionable ideas in the moment which, by his foresight, might later emerge as es-
sential building blocks for the physics of the twenty-first century. “Roughly speaking,”
Dyson said, “unfashionablemathematics consists of those parts ofmathematicswhich
were declared by the mandarins of Bourbaki not to be mathematics.” One example of
such accidental beauty, an isolated curiosity seemingly not leading anywhere, offered
Dyson, was the discovery of the “Monster group,” resuming the hunt for sporadic finite
groups, first discovered by Frenchman Emile Mathieu in the nineteenth century, but
then abandoned.

Rather suddenly, in the last twenty years, a magnificent zoo of new sporadic groups
has been discovered by a variety of mathematicians working with a variety of methods
…The only thing these various discoveries had in common was a concrete, empirical,
experimental, accidental quality, directly antithetical to the spirit of Bourbaki.…

What has all this to dowith physics? Probably nothing. Probably the sporadic groups
are merely a pleasant backwater in the history of mathematics, an odd little episode,
far from the mainstream of progress. We have never seen the slightest hint that the
symmetries of the physical universe are in any way connected with the symmetries
of the sporadic groups.…But we should not be too sure that there is no connection.
Absence of evidence is not the same thing as evidence of absence. Stranger things
have happened in the history of physics than the unexpected appearance of sporadic
groups. We should always be prepared for surprises. I have to confess to you that I
have a sneaking hope, a hope unsupported by any facts or any evidence, that sometime
in the twenty-first century the physicists will stumble upon the Monster group, built
in some unsuspected way into the structure of the universe. This is of course only
a wild speculation, almost certainly wrong. The only argument I can provide in its
favor is a theological one. We have strong evidence that the creator of the universe
loves symmetry, and if he loves symmetry, what lovelier symmetry could he find
than the symmetry of the Monster?3 The sporadic groups are only one example
out of the treasure-house of weird and wonderful concepts which unfashionable
mathematicians have created. I could mention others. Can you imagine a regular
polyhedron, a body composed of perfectly symmetrical cells arranged in a perfectly
symmetrical structure, having a total of eleven faces? Last year, my friend Donald
Coxeter in Toronto discovered it …



Coxeter, to be sure, appreciated Dyson’s paper and the moral of his story. He was
still being made to feel very out of style. “Dear Freeman,” Coxeter wrote in response.
“Many thanks for your splendid lecture on ‘Unfashionable Pursuits,’ which seemed
particularly relevant as it arrived at the same time as a letter from the Editor of the
LMS [London Mathematical Society] enclosing the referee’s report on ‘My Graph.’
That report began as follows: ‘I recommend the paper be accepted, subject to the
modification suggested below. It is difficult to evaluate, since its subject-matter and
style are so unfashionable …I think it is up to the standard of things like his “Regular
Polytopes,” thoughof coursemuchmore limited in scope. However, because of the very
special nature of the subject,my recommendation cannot be a very strong one—papers
on topics of greater generality must take precedence’ …I still take pleasure in your
remark that Plato would have been delighted if he had known about 5{3,5,3}5”4—this
was Coxeter’s symbol for the eleven-faced object described by Dyson: Can you imagine
a regular polyhedron, a body composed of perfectly symmetrical cells arranged in a perfectly
symmetrical structure, having a total of eleven faces?5



19 APPENDIX 7

CRYSTALLOGRAPHY AND PENROSE TOILET PAPER

Around the same time Coxeter and like-minded mathematicians happened upon
M. C. Escher, the crystallographers did as well. Escher’s symmetry drawings, his
tessellations of the plane, are often used in teaching crystallography—and in fact,
Escher’s works anticipated crystallographic research by decades.1

In 1891, Russian crystallographer E. S. Fedorov proved that all periodic tilings of the
plane belong to one of seventeen symmetry groups (later rediscovered by Coxeter’s
Princeton friend, George Pólya, together with P. Niggli).2 Finding tiles that would
produce only non-periodic tilings (featuring shapes in patterns that do not repeat by
translation) was an unsolved geometric puzzle, until Robert Berger developed the first
set of tiles in 1966. His set consisted of 20,426 tiles, which he soon reduced to 104. In
the early 1970s, Raphael Robinson created a set of six tiles, with various notches and
extensions to prevent a periodic pattern.3

Sir Roger Penrose discovered the lowest limit as yet, a two-tile set of rhombs, essen-
tially skinny and fat diamonds that interconnect in a field of five-pointed stars (a tiling
of darts and kites can also be derived from the same tiles). “I tend to doodle and tilings
were one of the things I used to play around with,” said Sir Roger, who attended the
ICM in 1954 and was taken with Escher’s work, as was Coxeter, but less by his periodic
tilings than by his impossible pictures. “I came away from the meeting feeling I’d
like to do something similar,” he said, “something impossible.” With his father, the
psychiatrist Lionel S. Penrose, he created the impossible “tribar” and “stairs.” They
published their creations in the British Journal of Psychology and sent them to Escher,
who later made use of the ideas in his printsWaterfall and Ascending and Descending.
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“My interest in the non-periodic tiles I suppose was partly stimulated bymy interest in
physics—I was looking for something which was simple, on the small scale, something
that had rules but produced complicated structures, because one sees that sort of
thing in the universe. One hopes that the laws are ultimately simple.”4

Sir Roger had been playing around with six tiles for a while, and wondered whether
he could do better. Within a few hours, drawing in a notebook, he got them down to
two. “I thought, ‘This is too easy, somebody must have thought of it before.’ But it was
the first time anybody had got it down to two. Unless you can find it somewhere in
some Moorish design. But they haven’t found them yet.”5

Penrose aperiodic tiles: the kites and darts, and the skinny and fat rhombs. When
adjoining tiles to produce a Penrose tiling, all tile markings must match. Shown are
legitimate vertex configurations (there is a “split and glue” process that turns either
configuration into the other, nicely explained in Quasicrystals and Geometry, byMarjorie
Senechal).

It may seem like a trivial discovery. But whenever he lectured about his Penrose
tilings, as they are known, somebody would always ask: “Does this raise an issue of a
new type of crystallography where you could have these forbidden symmetries, five-
fold symmetries in crystals?” “Andmy response to such a question tended to be ‘Yes,
indeed, in principlewhat you say is true. But I can’t seehownaturewouldproduce such
things.’ ” Nature didn’t. Science did. In 1982 Dan Shechtman, then at Johns Hopkins



University, observed quasicrystals (short for quasi-periodic crystals)—a form of solid
in which the atoms are configured in an apparently regular but yet nonrepeating
structure. And as with the study of crystallography, Coxeter groups and Coxeter
diagrams find application in the investigation of quasicrystals.6

Anymaterial, such as aluminum, is characterized by the pattern of its crystals. Qua-
sicrystals alter the properties of the substance, often making it harder. Quasicrystals
have found application, for example, as a nonstick coating for cookware named Cyber-
nox. Upon the discovery of quasicrystals, the International Union of Crystallographers
redefined the term crystal to allow for their acceptance. “It was a surprise to me,” said
Sir Roger. “But they were manufactured objects. Nobody has found such things in a
cave.”7

A less pleasant surprise came when Sir Roger discovered his Penrose tilings on a
“Kleenex quilted” brand of toilet paper his wife brought home from the supermarket.
Sir Roger and Pentaplex Ltd., the company that has licensing rights to the image of the
Penrose tiling, took legal actionagainst themanufacturer, Kimberly-ClarkCorporation,
the British division of the Dallas-based Kleenex. “When it comes to the population of
Great Britain being invited by a multinational to wipe their bottoms on what appears
to be the work of a Knight of the Realm without his permission, then a last stand must
be taken,” said a director of Pentaplex Ltd., as reported in theWall Street Journal.8

The newspaper also reported that just as Penrose tilings applied to quasicrystals
provided for a better frying pan …

The same logic also makes for better toilet paper. A premium brand launched
in the United Kingdom in 1993, Kimberly-Clark’s Kleenex quilted toilet tissue is
embossedwith a pattern to fluff up the tissue,making it “thicker and softer,” according
to company literature. Sir Roger’s writ argues that making the tissue fluffier allows
manufacturers to reduce the amount of paper used on each roll. But if the pattern
repeats itself, the tissue would likely bunch up, looking unattractive. That can be
corrected using a Penrose-type pattern which lets the paper sit evenly on the roll, the
suit contends. If the plaintiffs win, they can claim damages under British law equal to
the Kleenex brand’s U.K. profits. They can also demand that all remaining examples
of the toilet paper be destroyed.



The parties ultimately reached an out-of-court settlement. One of the settlement
conditions prevents Sir Roger from discussing the matter further (clearly, Kimberly-
Clark’s butt was at least somewhat kicked). He does make clear, however, that as a
mathematical concept, Penrose tilings are free for the taking. As a graphic image,
however, those skinny and fat diamonds are patented. The implication being that the
chances were slim that a toilet paper company was borrowing a mathematical idea.9
The Penrose toilet paper is now a collector’s item. At a recent Bridges conference

(“Mathematical Connections in Art, Music, Science”), an annual gathering held in 2005
at the Banff Centre, in Alberta, Marion Walter, professor emeritus of mathematics
education at the University of Oregon, brought a roll of the notorious Penrose toilet
paper, and dolled out single squares to worthy participants.10
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64. After a lot of thinking and pages and pages of calculations, Conway figured
out the Monster group had 196,884 dimensions by inputting certain conditions into
his programmable calculator, setting the machine to find the solution, and letting it
run overnight. “In the morning, there it was,” he said. “It was as much a surprise
to me that I found it as it was to anyone else.” Conway also calculated the group’s
order—this number has fifty-four digits, which he can recite off the top of his head
in the following groupings: “8080 17424 79451 28758 86459 90496 17107 57005
75436 80000 00000.” (See appendix 6 and endnotes for more on the Monster group,
as well as the Monster Moonshine conjecture.) Conway, interviews, April 2005; see
also John Horton Conway and Neil J. A. Sloane, Sphere Packings, Lattices and Groups.
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74. Ibid., 119.
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97. Ibid.
98. An integral, a fundamental concept in calculus, is a mathematical object that

can be interpreted as an area or a generalization of area. A definite integral is an
integral with an upper and lower limit and is a way of defining certain regions in the
plane. Weisstein, “Definite Integral,” http://mathworld.wolfram.com/Definite
Integral.html.
99. Coxeter, “Mathematical Notes,”Mathematical Gazette, 205.
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supervisor, H. F. Baker, enjoyed a distinguishedmathematical career based only on
a first degree, which remained an adequate demonstration of one’s credentials well
into the mid–twentieth century. In creating the PhD degree, British universities were
responding to strong political pressure. “Imperial considerations were important.
There had long been anxiety that students from the dominion would go to Germany or
the United States and be weaned away from the mother country.” John Aldrich, “The
Mathematics PhD in the United Kingdom.”
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6. DameMary Cartwright (1900–98) had studiedwithG. H. Hardy at Oxford, working
toward her PhD in 1928. In 1930, Cartwright received a fellowship that brought her to
Girton College, Cambridge, where she continued working on her doctoral thesis and
produced Cartwright’s theorem. June Barrow-Green and Jeremy Gray, “Geometry at
Cambridge, 1863–1940,” in Historia Mathematica, 27 (prepress copy); O’Connor and
Robertson, “Dame Mary Lucy Cartwright,” http://www-groups.dcs.st-and.ac.
uk/~history/Mathematicians/Cartwright.html (accessed January 21, 2006).

7. Gray and Barrow-Green (both at the Open University), chronicle the ancestry of
illustrious practitionerswho built Cambridge’s reputation as a place to study geometry,
especially the classically based projective geometry: Cayley with his “botanist’s eye,”
William Clifford, “a spellbinding lecturer,” as well as Francis Macaulay, Bertrand
Russell, A. F. Whitehead, and H. F. Baker—the latter more than any of his predecessors
vaulted geometry at Cambridge to high status. However, in the early 1960s, “when the
pressure built up to revise the syllabus and install key features of Bourbaki’s vision
of mathematics—much of it in response to the work of Hilbert and Emmy Noether
in any case—projective geometry was a natural candidate making way for the new
mathematics. And that is what happened: projective geometry …moved into the area
of specialist options and out of the core, mainstream provision. From there, it fell
somewhat into disrepute, criticized for its various imprecisions …The status of the
subject has fluctuated ever since, as has its claim on the school syllabus, because the
subject can seem less than rigorous and, even if rigorous, baroque.” Ibid.

8. Coxeter’s teachers were P. W. Wood (analytic geometry), Herbert Richmond
and Thomas Room (projective geometry), Frank Ramsey (differential geometry) and
his father, Arthur Ramsey (electricity), Max Newman (topology), Philip Hall (theory
of groups), Albert Ingham (theory of numbers), S. Pollard, Abram Besicovitch, and
Littlewood (analysis), and George Birtwistle (mechanics). A. A. Robb delivered the
lecture on the geometry of time and space, which stressed, Coxeter recalled, “that
the special theory of relativity becomes most neutral in terms of a real affine 4–space
with a Minkowski metric determined by a cone.” In this class, Coxeter said that his
friend Patrick Du Val sat beside him, and was way ahead of the game—“he already
understood the analogous geometric interpretation of [the Dutch mathematician and
Einstein collaborator] Willem de Sitter’s world [proposing that at a four-dimensional
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space-time would fit in with cosmological models based on general relativity] …a
model that provides a most convincing explanation for the expanding universe in
terms of a zigzag of world lines.” Coxeter, Personal Records of Fellows of the Royal
Society.

9. June Barrow-Green, interview, London, September 12, 2003; and Gray, inter-
views.

10. Coxeter was known to misplace his bicycle, and once reported it stolen to the
police; somewhat later, “Walking along one day I saw it nicely parked by the side
of the road, exactly where I had left it.” Coxeter was also absent-minded about his
appearance: “I should like to know who has been grumbling about my clothes this
time,” he groused in a letter home. “All right, I will try to remember about the flannel
trousers and sports jacket when I next see Forbes.” And he was too distracted to keep
track of his keys: “Thought for three hours I had lost my keys. At last found them
in trouser pocket.” Coxeter, interviews; Michael Longuet-Higgins (geophysicist and
geometer, UCSD, and Trinity Fellow), interviews, Cambridge, August–September 2003,
andToronto,May 2004; andCoxeter toKatie Coxeter, 13 February 1932, Coxeter Fonds,
University of TorontoArchives; andCoxeter diaries, 11November1961, CoxeterFonds,
University of Toronto Archives.

11. Longuet-Higgins.

12. “A Simple Story,” The Trinity Magazine, December 1926, 18.

13. Coxeter, interviews.

14. Longuet-Higgins.

15. Gleick.

16. Gleick, 56.

17. Gleick.

18. O’Connor and Robertson, “Sir Isaac Newton,” http://www-groups.dcs.st
-and.ac.uk/~history/Mathematicians/Newton.html (accessed November,
2005).

19. Ibid.

20. Gleick.

21. Gleick, 130; and Gleick, interview, November 19, 2004.

22. O’Connor and Robertson; Gleick, 15.
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23. Coxeter indicated that Kepler followed an illustrious line of polyhedron
buffs—Pythagoras, Plato, Euclid, Archimedes, Archbishop Thomas Bradwardine,
Albrecht Dürer, and Leonardo da Vinci. Dürer (1471–1528), the German Renaissance
painter whose woodcutMelancholia I depicts an exasperated-looking thinker sitting
staring at an unusual polyhedron, made a significant contribution to the literature on
polyhedra with his book Painter’s Manual. Leonardo da Vinci (1452–1519) made his
contribution in Luca Pacioli’s book The Divine Proportion (though many of Leonardo’s
sketches show polyhedra). In The Divine Proportion, Leonardo employs his deft artist’s,
mathematician’s, and engineer’s hand by presenting a new view of polyhedra, as
hollow cages with solid edges, giving a view of both the front and back of the polyhedra
at the same time. Coxeter said approvingly: “[Leonardo] made skeletal models of
polyhedra, using strips of wood for their edges and leaving the faces to be imagined.”
Coxeter, “Kepler and Mathematics,” in Vistas in Astronomy, 661–64.

24. Of Kepler’s attempts, Coxeter commented, “He sought a connection between
the five solids and the six planets that were known in his time. Although he later
discovered two new semi-regular polyhedra, there is no evidence that he predicted
the discovery of Uranus and Neptune. In 1810 Louis Poinsot discovered another
pair of regular polyhedra, and the astronomers responded with the asteroids …and
Pluto …but we must resist these numerological temptations!” Coxeter, “Kepler and
Mathematics,” 661–70; and Kitty Ferguson, Tycho and Kepler, 181–99.

25. Ferguson, 191.

26. Coxeter, “Kepler and Mathematics,” 665, quoted from Koestler’s The Sleepwalkers (A
History of Man’s Changing Vision of the Universe).

27. Ferguson, 197.

28. O’Connor and Robertson, “Tycho Brahe,” http://www-groups.dcs.st-and
.ac.uk/~history/Mathematicians/Brahe.html (accessed January 21, 2006);
and http://www.learningmatters.co.uk/education/a_to_z/maths/b.html
(accessed January 21, 2006).

29. Ferguson, 337–51.
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30. The solids attributed to Archimedes (287–212 BC) can be constructed from
the Platonic solids in very specific ways—by truncating (cutting off their corners) or
exploding them in such a way that when the interstices are filled in with regular poly-
gons they meet the “semi-regular” criteria. The truncated tetrahedron, for example,
is comprised of hexagons and equilateral triangles; the truncated icosahedron is a
patchwork of hexagons and pentagons—the shape on which a soccer ball is modeled.
Conway, interviews; Coxeter, Regular Polytopes, 30; and Sutton, 32–33.
31. The two-dimensional cousins of the star polyhedra are the star polygons. Just

as there are an infinite number of ordinary regular polygons, {3}, {4}, {5}, {6} …{n}, there
are also infinitely many star polygons, {5/2}, {7/2}, {7/3}, {8/3}. The symbol for the star
polygon {nld} indicates that a star polygon is formed inside an ordinary regular n-gon
by connecting one vertex to another that is d vertices away (counting clockwise), then
repeating the process from that vertex, and so on. Or, arrange n number of dots in a
circular configuration, equally spaced apart, and join the dots at the interval of d—so
5/2 requires five dots arranged equidistant in a circular pattern, every second dot
to be joined until the polygon is closed; and 7/3 requires seven dots, every third dot
joined until the polygon is closed. Also, just as there are only finitely many regular
polyhedra—the Platonic solids: {3,3}, {4,3}, {3,4}, {5,3}, {3,5}—there are also only finitely
many regular star-polyhedra, namely, {5/2,3} and {5/2,5}. Coxeter, Regular Polytopes,
93–97. Conway, interviews; Sutton, 28–29.
32. Coxeter (with P. Du Val, H. T. Flather, and J. F. Petrie), The 59 Icosahedra.
33. Wilker, Coxeter interview.
34. The 59 Icosahedra was coauthored by Flather as well as Coxeter’s classmate at

Trinity, Patrick Du Val, with illustrations done by John Petrie, and published in 1938
by the University of Toronto Press. They tried to get it published by the Royal Society
of Edinburgh (RSE), but plans fell through, pursuant to this 1936 letter from RSE’s
president, Sir D’Arcy Thompson: “My dear Coxeter, I can’t help telling you that you
have given us a great deal of trouble with your paper, and that trouble is not over
yet …Your paper will cost us a very considerable sum, a large sum, to print; and it
is only worth that expenditure if it is to be, in its way, a standard work, as sort of
locus classicus for the Icosahedron. The text is not written up with anything like
sufficient care to make it so; and the Bibliography, which Du Val has appended to it is
simply childish—simplymaking fools of us! …The Paperwill come before us in October,
and what the Council then says or does will, of course, depend entirely on what the



Reporters tell them. I expect they will advise postponement, and revision. Youmay
be quite sure they will not accept the paper, in its present state, with open arms. I am
really astonished, my dear Coxeter, that among you, you have not spent more care and
pains upon it; you have not treated it seriously.” To this day, one set of Flather’smodels
resides at Cambridge, and another at York University in Toronto. During the First
World War, Flather sent his second set to Coxeter in Toronto for safekeeping. Coxeter
subsequently gave it to his last PhD student, Asia Ivić Weiss. Conway, interviews;
correspondence Thompson to Coxeter, Coxeter Fonds, University of Toronto Archives.
35. Barrow-Green; and Trinity College student records.
36. Coxeter to Katie Coxeter, 1November 1931, Coxeter Fonds, University of Toronto

Archives.
37. Coxeter to Katie Coxeter, 21 July 1932, Coxeter Fonds, University of Toronto

Archives.
38. Coxeter to Katie Coxeter, 2 August 1932, Coxeter Fonds, University of Toronto

Archives.
39. “Magpie & Stump,” The Trinity Magazine, December 1928.
40. Coxeter, interviews.
41. Coxeter, interview, March 14, 2003.
42. Coxeter, interview, March 14, 2003.
43. Ibid.
44. Coxeter, Personal Records of Fellows of the Royal Society.
45. Coxeter, interviews.
46. Ibid.
47. In another relevant passage, Stekel addressed disguises of “love urges,” includ-

ing shame, anxiety and disgust, and said: “Howmany disorders of the stomach are
only nervous and can be traced back to unconscious feelings of disgust! Many girls
who suddenly cease to eat meat have within them a disgust of the “flesh,” which they
transfer to the process of nutrition. This manifestation is also to be seen in men; and
especially in some fanatical vegetarians one can, here and there, detect these origins.
Naturally, the disgust at meat (flesh) is then rationalized with social and humanitarian
motives. Such people attach themselves all the more easily to a great movement,
because they seek social explanations for their individual struggles and conflicts.”
Wilhelm Stekel, Disguises of Love, 32, 41.



48. Coxeter, dream diary, 20 June 1928–7 August 1928, dreams IV, VI, LXI, VIII,
XXVI, VLII, XXXVII, XLVIII, Coxeter Fonds, University of Toronto Archives.
49. Ibid., dreams IX, VII, X, XV, XLVII.
50. Coxeter, interviews.
51. Coxeter, Personal Records of Fellows of the Royal Society.
52. Smith, interview.
53. The others hementioned, in Regular Polytopes,were British Cambridge professor

Arthur Cayley (1821–95), PolishHermannGünter Grassmann (1809–77), and German
August Möbius (1780–1868). Coxeter, Regular Polytopes, 141.
54. Ibid., 118; and Conway, interviews.
55. Coxeter, Regular Polytopes, 118–64, 292–95; and Conway, interviews.
56. Coxeter; Conway; and Schattschneider, e-mail correspondence “Re: diagrams,

and a question,” December 29, 2005.
57. Schläfli called the hypercube the “measure polytope,” because it was considered

the unit of measurement; and the generalized octahedron the “cross polytope,” be-
cause it can be constructed by drawing a cross (of either two or three lines, depending
on the dimension), and joining the ends. Ibid.
58. Nearly thirty years after Schläfli’s inventions, some of the same ideas were

rediscovered by an American. “The result was,” said Coxeter, “that many people
imaginedW. Stringham to be the discoverer of the regular polytopes.” And incidentally,
Coxeter noted, the time he spent sitting reading Schläfli’s work in the University
Library “gave me the proper method for treating those integrals which had aroused
Hardy’s interest.” Coxeter, Regular Polytopes, 143. Coxeter, Personal Records of Fellows
of the Royal Society.
59. Schläfli’s work book-ended Coxeter’s oeuvre, figuring into both his PhD and his

last paperdeliveredat theBudapest conference. In concludinghis lecture “AnAbsolute
Property of Four Mutually Tangent Circles,” Coxeter gave a theorem by Schläfli, and
then asked, “Is there, for this elementary theorem, a demonstrationmore simple than
the one derived from the theory of cubic forms?”—almost as if Coxeter was co-opting
Schläfli’s query to provide himself with one final question to leave to the world of
mathematics. Harold Scott MacDonald Coxeter, PhD diss., “Some Contributions to the
Study of Regular Polytopes,” December 18, 1931; and Coxeter, “An Absolute Property
of Four Mutually Tangent Circles.”
60. Coxeter, interview, March 14, 2003; “University of Toronto Oral History Project.”



61. Barrow-Green and Gray, 21–22.
62. Ibid.
63. Ibid., 21.
64. In his day, Coxeter attended with Patrick Du Val, John A. Todd, Jack G. Semple,

William V. D. Hodge, William L. Edge, T. G. Room, and Gilbert de Beauregard Robinson,
who was studying abroad from Toronto. Most of Baker’s followers were keen, though
some found these inescapable meetings rather tiring (this came out in one of Baker’s
obituaries). “Baker was not very inspiring as a lecturer,” remembered Coxeter. “He
went steadily on. I was apt to find it a little bit dry. One time I was asleep and then
suddenly awake and heard Baker say, ‘I see Coxeter is asleep.’ That was a little embar-
rassing.” Coxeter, Personal Records of Fellows of the Royal Society; and Barrow-Green
and Gray.
65. “Henry Frederick Baker,” obituary, The Eagle, 6.
66. Gray, interviews.
67. A distinction must be made between the liking for recondite but elementary

geometry of triangles, conics, etc., elevated to n dimensions, and the serious geometry
of algebraic curves, surfaces, and higher dimensional varieties in the Italian tradition.
Coxeter liked the elementary branch, as later demonstrated in his book Introduction to
Geometry, and thiswasalso aBritish taste among thehigher reaches of themathematics
profession. As Gray noted, to boil it down, there were three strains of geometry
going on in Cambridge: (1) work in the Italian tradition of algebraic geometry, which
was solid enough but the practitioners themselves knew it wasn’t truly brilliant; (2)
Coxeter’s new departure, which has proved to be much more lasting; and (3) fun with
elementary geometry. There was an affinity, if not an overlap, among these strains;
certainly as far as Coxeter was concerned there was an intersection between the latter
two branches. Ibid.
68. Coxeter, Personal Records of Fellows of the Royal Society.
69. WhenCoxeter independently rediscovered theseArchimedeanpolytopes he had

stumbled upon the same intellectual revelation that struck hobby geometer Thorold
Gosset (1869–1962) a quarter century before. Gosset was a lawyer by training, but
as Coxeter recounted, “Having no clients, he amused himself by trying to find out
what regular figures might exist in n dimensions.” After rediscovering all of them
he proceeded to enumerate the “semi-regular figures.” Following this path he dis-
covered three polytopes in six, seven, and eight dimensions that are analogs of the



Archimedean polyhedra. He recorded the results in an essay “On the Regular and
Semi-regular Figures in the Space of n Dimensions,” and it was sent to three reputable
mathematicians at Cambridge to be evaluated for publication. One of them said “the
author’s method, a sort of geometrical intuition,” failed to appeal to him; he found
the ideas “fanciful.” It was published with only the barest outline in the Mathemati-
cal Messenger in 1900. “That published statement remained unnoticed until after its
results had been rediscovered by E. L. Elte andmyself,” wrote Coxeter. “As [Gosset]
was a modest man, [he] let the subject drop, and pursued his career as a lawyer.” Ibid.;
Coxeter, Regular Polytopes, 162–64.

70. A Del Pezzo surface is a complex two-dimensional algebraic surface, named
after Italian Pasquale de Pezzo (1859–1936), which Coxeter described in terms of
Cayley numbers (named after Arthur Cayley). Weisstein, “Del Pezzo Surface,” http:
//mathworld.wolfram.com/DelPezzo-Surface.html (accessed January 22,
2006).

71. Coxeter, Personal Records of Fellows of the Royal Society.

72. This was one of a triumvirate of papers on the topic Coxeter published in The
Proceedings of the Cambridge Philosophical Society. In a paper in 1934, he acknowledged
that a chance question by Du Val had launched him on the study of groups generated
by reflections—what became known as Coxeter groups. Coxeter stated: “In connection
with his work on singularities of surfaces, Du Val asked me to enumerate certain
subgroups in the symmetry groups of the ‘pure Archimedean’ polytopes n21 (n < 5),
namely those subgroups which are generated by reflections …Thework involved being
somewhat intricate, several slips would have been overlooked but for the information
thatDuValwasable to supply fromthe (apparently remote) theoryof surfaces.” Barrow-
Green and Gray; and see appendix 8.

73. Coxeter, Personal Records of Fellows of the Royal Society.

74. An 8-D polytope, which Coxeter called the “Gosset polytope,” can be represented
by Coxeter’s notation as 421. In the context of the arrangement of kaleidoscopic
mirrors, which Coxeter used to investigate polytopes, and the components of the
Coxeter diagramhe invented (see chapter 4), the notation reads as such: the 4 pertains
to the “trunk” of four nodes, or mirrors, of a Coxeter diagram, while the 2–1 pertains
to two separate “tails” of two nodes and one node each (the central eighth node adjoins
the trunk and tails). The node on which the blob is indicated is said to be the “root.”
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This polytope belongs to the Coxeter group E8—the E standing for “exceptional.” Using
Coxeter’s notation, the other Gosset polytopes would be represented by 221 (in 6-D),
and 321(in 7-D). Ibid; Coxeter, Regular Polytopes, 150–53, 162–64, 202–4; and Conway,
interviews.

75. See appendix 8.

76. Coxeter to Katie Coxeter, 1November 1931, Coxeter Fonds, University of Toronto
Archives.

77. Coxeter, interviews; Conway, interviews; and Coxeter, “Some Examples of Hyper-
dimensional Awareness,” The Journal for the Study of Consciousness, 84–85; and Coxeter,
Regular Polytopes, vi, 258–59.

78. Coxeter, Regular Polytopes, 258.

79. Ibid.

80. Ibid.

81. Coxeter, Regular Polytopes, 258–59.

82. Coxeter, Personal Records of Fellows of the Royal Society.

83. Coxeter, “Some Examples of Hyperdimensional Awareness,” 85.

84. Coxeter diaries, 20 October 1933.

85. Coxeter, PhD diss.; andO’Connor andRobertson, “GodfreyHaroldHardy,” http:
//www-groups.dcs.st-and.ac.uk/~history/Mathematicians/Hardy.html (
accessed January 22, 2006).

86. Barrow-Green, interview.

87. Trinity College, Cambridge, Ordinances, 1931, 107–35.

88. O’Connor and Robertson.

89. Mirrors are the object of many ancient myths—they reflect our souls or foretell
the future (before the days of mirrors, gods and goddesses peered into the still water
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are no “evil elements” in an infinite Coxeter group, and the paper “Evil Elements in
Coxeter Groups,” showing that there are no evil elements in a finite Coxeter group.
Said one of the authors, Sarah Perkins: “The two results together show that there are
no evil elements in ANY Coxeter groups (I always like to vanquish evil, don’t you?).”
Conway, interviews; Vakil, interviews; and Goodman, interview; Sarah Perkins (Lec-
turer in Mathematics, University of London), e-mail correspondence, January 2006;
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had to argue to get approval even for the refugee postings; the opinion of at least one
faculty member was that, “If these distinguished people come and take the positions,
the young American mathematicians will become hewers of wood and drawers of
water.”



101. That the book should be passed on to Coxetermade him heir to amathematical
classic. And the ancestry fit: one of Ball’s tutees at Cambridge, in 1903, was J. E.
Littlewood; and since Littlewood directed Coxeter’s undergraduate studies, Coxeter
could legitimately be regarded as Ball’s “grand student.” Coxeter to Harold Coxeter, 18
December 1934, Coxeter Fonds, University of Toronto Archives.
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27. Coxeter had proposed once before, to a long-term girlfriend at Princeton. He
wrote home, “Dorothy Henry really does give me a feeling of companionship …being
interested in the right sort of things. She is a vegetarian because she once saw the
Chicago Stockyards. She is religious without being sectarian. And she actually seems
to like me (which is such a new complication that I am not quite sure which way to
turn.)” But when his father met Dorothy during a visit to America, Harold concluded
his son had made a mess of the relationship, as he recounted in a letter to Katie:
“Donald, now, has duly proposed to her (after waiting and waiting too long, in my
opinion). She is fond of him and has enjoyed him as a friend but she is very sensible
and understanding and realizes that he is not really in love with anyone but himself,
nor likely to be. She sees his lack of development clearly enough and as she says
to me, she does not want to mother him as well as children. I don’t think there is
much likelihood of her marrying him—unless by somemiracle he should want her so
much that he changes and becomes less self-centered. I must say he has been very
charming and considerate during the whole long time we have been together—quite
a test, I think—but he is not very considerate really of anyone else and very greedy
and anxious to have the best possible, always.” As Harold predicted, Dorothy rejected
Coxeter’s proposal. Coxeter diaries, 24May 1936, Coxeter Fonds, University of Toronto
Archives; and Coxeter correspondence to Katie Coxeter, 15 June 1933, Coxeter Fonds,
University of Toronto Archives; and Harold Coxeter to Katie Coxeter, 9 August 1933,
Nesta Coxeter, family papers.

28. Rien Brouwer, May/June 1936 diary translation notes, Susan Thomas, family
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29. Congratulations also arrived from Coxeter’s psychoanalyst, Wilhelm Stekel. It
read (as written in the original): “Dear Donald, I am very glad, you will be maaried
and finish the periode of childhood, infantilisme. I am shur, you got the right life-
compagnon andmuch better she does not understandmathematics—there can’t be
rivalry and contest in ambition. I wish I could be present at your wedding but in my
phantasy I shall accompagny you the road to manhood and fathership. My advice:
Give up horse riding only for a while. Perhaps after getting injured to the pleasure of a
real man, you will laugh at the hobby-pleasure.” Stekel concluded by advising that the
secret of happiness was not to expect too much. Wilhelm Stekel to Donald Coxeter, 6
June 1936, Coxeter Fonds, University of Toronto Archives.
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34. Coxeter diaries, 14–17 July 1936, Coxeter Fonds, University of Toronto Archives.
35. O’Connor and Robertson, “John Lighton Synge,” http://www-groups.dcs.

st-and.ac.uk/~history/Mathematicians/Synge.html (accessed January 23,
2006); and Coxeter, interviews.
36. Coxeter, Introduction to Geometry, 135.
37. “The Fields Medal,” http://www.fields.utoronto.ca/aboutus/jcfie
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surfaces connecting and determined by some fixed boundary.” Coxeter was not one
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SecondWorld War. Also, the Fields is given for a bombshell of a mathematical contri-
bution, such as solving Fermat’s last theorem (AndrewWiles might have received it
for doing exactly that, except he was over forty). Coxeter’s contribution with polytopes
did move the mathematical firmament, but years after the fact, and in a more organic,
ever-evolving way. In 1995, Coxeter was awarded the first Fields-CRM Prize (given
jointly by the Fields Institute and the Centre de Recherches Mathématiques in Mon-
treal), an award acknowledging either overall career contribution or a startling piece
of work. “There was a confidential discussion about who were possible candidates,”
said Davidson. “Once Coxeter’s name came up there was general agreement that he
had both [he met both criteria]. Coxeter was the first premier mathematician in this
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country. And you could argue that there aren’t many in this country that have since
achieved comparable stature. He was a remarkable man and certainly doing the work
he did back in the 1940s, when there was almost no mathematical research here, he
was centre stage in the world as a mathematician.” Ibid.; “Mittag-Leffler and Nobel”;
http://www.fields.utoronto.ca/aboutus/jcfields/fieldsnobel.html
(accessed January 23, 2006); and Ken Davidson (professor of mathematics, University
of Walterloo), interview, May 17, 2005.
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Toronto Archives.
46. Coxeter was familiar with Soddy’s creation. “I was so impressed by Soddy’s

poem that I wrote to him to letme visit himand take himout to lunch,” Coxeter recalled.
They kept in touch over the years, and in one letter Soddy confessed: “Dear Professor
Coxeter, Naturally I was very much interested in your letter of 21st, and your enclosed
paper ‘Interlocked Rings of Spheres’. As you know I’m nomathematician andmy ‘Kiss
Precise’ and ‘The Hexlet’ you quote were tour de force hammered out by sheer algebra
and luck. They depended on the reduction of a biquadratic equation of I think 23 terms
to a quadratic by a transformation I have never really understood.” Coxeter credited
Soddy with having influenced four of his papers—the above-mentioned “Interlocked
Rings of Spheres” as well as “Loxodromic Sequences of Tangent Spheres,” “Numerical
Distances among the Spheres in a Loxodromic Sequence,” and “Numerical Distances
among the Circles in a Loxodromic Sequence.” Frederick Soddy to Donald Coxeter, 23
February 1951, Coxeter Fonds, University of TorontoArchives; andCoxeter, “Descartes
Circle Theorem,” in The Changing Shape of Geometry, 191.
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8. A paper with J. A. Todd, “An ExtremeDuodenary Form,” a formof twelve variables,

in the Canadian Journal of Mathematics, was not on the topic of his gastrointestinal
difficulties but with its pun perhaps a fine example of Coxeter’s sense of humor (the
intestinal duodenum is so called because it is 12 inches long). See appendix 8; and
Conway, interview, April 2005.
9. Thomas, interviews.
10. Coleman, interviews.
11. Coxeter diaries, 5 March 1937.
12. Jeremy Gray, The Hilbert Challenge, 241–82.
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17. The back and forth in mathematics and science regarding the power and sanc-
tity of images was recently chronicled at the 2002 exhibit in Karlsruhe, Germany,
“Iconoclash: Beyond the Image Wars in Science, Religion, and Art.” As one of the con-
tributors, Peter Galison articulated the constant push and pull on the use of images
and pictures in science with his contribution, “Images Scatter into Data, Data Gather
into Images.” In the exhibit catalogue (edited by Bruno Latour and Peter Weibel),
Galison summed up this phenomenon with the statement: “Wemust have images;
we cannot have images.” In elaborating, he wrote, “Wemust have scientific images
because only images can teach us. Only pictures can develop within us the intuition
needed to proceed further toward abstraction …We are human, and as such, we de-
pend on specificity andmateriality to learn and understand …What are we humans
good at? We are good at recognizing and seizing upon visual patterns …Perhaps this
is because the long process of evolution has left us with a pattern-recognition capa-
bility well matched to the world …And yet: we cannot have images because images
deceive …We are human and as such are easily led astray by the siren call of material
specificity. Logic, not imagery, is the acid test of truth that strips away the shoddy
inferences that accompany the mis-seeing eye.” The visual vs. anti-visual played out
in quantummechanics. Werner Heisenberg was anti-visual, while Erwin Schrodinger
was “furiously pro-visual” and repelled by “transcendental algebra”; Heisenberg, in
turn, found Schrodinger’s visual theories “disgusting.” Niels Bohr brought both ap-
proaches together in his “complementarity,” allowing the practitioner to choose. As
far as relativity went, J. A. Wheeler’s classic textbook, Gravitation (coauthored with
Charles Misner and Kip Thorne, 1973), decries the abstract and is full of images, rods
perforating egg cartons triggering ringing bells, while Nobel laureate Steven Wein-
berg’s textbook, Gravitation and Cosmology (1972), contains no pictures, in keeping
with his belief that shapes delude logical understanding. Galison, interview; and Ibid.

18. Yaglom, 258.

19. Liliane Beaulieu, “A Parisian Café and Ten Proto-Bourbaki Meetings
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33. Privately, Bourbakis invented terminology for every branch of mathematics
they studied. For example, they called topological vector spaces “bornographic”
space. They used “sexy-linear” for sesquilinear forms. And stated comparatively: “the
spectral sequence is like the mini-skirt; it shows what is interesting while hiding the
essential.” And they often used the word “member” to refer not only to any Bourbaki,
but also the “membrum virile.” Halmos, 94; and Beaulieu.

34. Toth, interviews.

35. Coxeter, interviews; Senechal, interviews.

36. Halmos, 93.

37. As the Bourbaki society evolved, its membership ranged from ten to twenty in-
dividuals at a time, with newmembers invited first as a “cobayes,” or “guinea pigs,” to
determine whether they were worthy. Members formed a “close-knit, inbred company
with shared social and intellectual roots as well as mathematical tastes.” The privi-
leged were bound by an unstated vow of secrecy forbidding the naming of members.
Almost all members of this private coterie were French, one exception being Samuel
Eilenberg—he was known as S2P2, short for Smart Sammy the Polish Prodigy. Denis
Guedj (translated by Jeremy Gray), “Nicholas Bourbaki, Collective Mathematician: An
Interview with Claude Chevalley,” The Mathematical Intelligencer, 18; Senechal, “The
Continuing Silence of Bourbaki: An Interview with Pierre Cartier,” The Mathematical
Intelligencer, 22; Beaulieu, “Bourbaki’s Art of Memory”; and Halmos, 94.

38. Cartier, interviews, Montreal, April 12 and 13, 2003.

39. Jean Dieudonné, “The Work of Nicholas Bourbaki,” in American Mathematical
Monthly, 134–36.

40. Martin Jay, Downcast Eyes: The Denigration of Vision in Twentieth-Century French
Thought; Jay (Sidney Hellman Ehrman Professor of History, University of California,
Berkeley), interview, July 2004; and Cartier, interviews.

41. Jay, 212–13.

42. Cartier calls the Bourbaki endeavor that of a “mathematical surrealist,” sur-
realism being the artistic movement pervading France in the interwar era. Cartier
gave the example of the surrealist game “the exquisite corpse”: A piece of paper is
folded accordion style into four sections; one participant draws the feet, the other the
torso, the other the arms, and finally the neck and the head. What results is an oddly



disjointed creature. This, Cartier said, “is similar to the Bourbakimandate,” producing
a beast whose head is too far removed from its tail. The surrealists’ style was to create
fantastic visual imagery from the subconscious mind, or, as its philosophical founder
André Breton put it: “to bewilder the senses.” Cartier, interviews.
43. Jay, Downcast Eyes, and interview.
44. Ibid.
45. Toth, interviews.
46. Pitting Coxeter versus Bourbaki works ideologically, but not on a personal level.

Bourbaki distinguished between the mathematics that did not fit into its grand edifice
and the mathematician responsible for the work. This distinction may have been
clearer to Bourbaki than to the mathematicians involved, as it is human nature to
identify oneself with one’s creations and take criticism to heart. But there was no
Bourbaki animus toward Coxeter the man (and Coxeter seems never to have criticized
the Bourbaki mandate in any lecture or publication). Fields Medal winner and Bour-
baki member Jean-Pierre Serre is adamant that this portrayal of Bourbaki versus
Coxeter not be misinterpreted. Bourbaki had no professional contempt for Coxeter, or
any geometer. It is a mistake, he said, to interpret that Bourbaki had some fixed and
prejudiced opinion of any given mathematician. “On the contrary, Bourbaki was very
careful in writing his books: he spoke only of the ideas and of the theorems, but not of
the persons,” said Serre in an e-mail discussion of the issue. A telephone interview
to discuss Bourbaki’s perspective on geometry in general—and the public interpreta-
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52. Conway, interviews.
53. Lister Sinclair, “Math and Aftermath,” CBC Ideas,May 13 and 14, 1997.
54. Coxeter diaries, 18 April 1945.
55. “University of Toronto Oral History Project.”
56. Coxeter became good friends with Robinson, though ultimately their friendship

ended with a falling-out spurred by professional rivalry. Thomas, interviews; Synge
Morawetz, interview.
57. Mandelbrot did his part reviving geometry in the twentieth century, discov-

ering the Mandelbrot set, and generating interest in fractal geometry by showing
how fractals are ubiquitous in both mathematics and nature. Fractal derives from
the Latin word fractus, “irregular or broken up”—fractals formed a new geometry of
nature, finding order in chaotic shapes and processes, everywhere from the coastline
of Britain, to the branches of trees, the flow of blood our veins, and the behavior of the
stockmarket—Mandelbrot’s latest book is The (Mis)behaviour of Markets: The Fractal View
of Risk, Run and Reward. The Bourbakists, ever the jokesters, made fun of Mandelbrot
and his fractals—melding their obsession with mathematics and food, they pondered
the “problem of confinement for fractal-like pancakes.” Benoit Mandelbrot (Sterling
professor of mathematics, Yale University, IBM Fellow), interviews, October 2004,
March 2005; and Beaulieu, “Bourbaki’s Art of Memory.”
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60. Ibid.
61. Ibid.
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63. In 1944, Coxeter prefaced his diary with his horoscope: “Aquarius people

achieve what others deem impossible, even though not always correct in judging
practical matters.” Coxeter diaries, 1944 end paper.
64. Coxeter, interviews; and Thomas, interviews.
65. Coxeter, interviews.
66. Monson, interviews; Chris Fisher (professor of mathematics, University of

Regina), interview, January 26, 2005.
67. Monson, interviews.
68. Monson, interviews; andWeiss, interviews.



69. Sherk, McMullen, Thompson, andWeiss, Kaleidoscopes, xiv.

70. Coxeter, Personal Records of Fellows of the Royal Society.

71. Alan Robson to Donald Coxeter, Coxeter Fonds, University of Toronto Archives.

72. Coxeter, Regular Polytopes, vi.

73. Coxeter, vii, 191.

74. If a mathematician chooses not to use a graphical shorthand (perhaps due to a
discomfort or lack of familiarity with visual-geometric presentation of information),
then an algebraic shorthand would be similarly useful in making the whole message
more compact than a disjointed series of statements. Conway, interviews; Monson,
interviews; Senechal, interviews; andWeiss, interviews; C. Davis, interviews.

75. Although Lagrange initiated work in this field, Evariste Galois (1811–32), whose
story has all the elements of a Shakespearean tragedy, developed group theory in
1830 and is considered its founder. Whenever Coxeter told the Galois tale he launched
into it as if it were a yarn about an ill-fated friend from college. “Oh!” he’d gasp. “The
terrible tragedy of Evariste Galois!” In his historical remarks section in Regular Poly-
topes, Coxeter recounted the foundations of groups with a chronology of its pioneers:
Joseph-Louis Lagrange (1736–1813), Niels Henrik Abel (1802–29), Galois, Augustin
Louis Cauchy (1789–1857), and Camille Jordan (1838–1922). However, he concluded
by saying, “Galois made such important contributions to the subject that he eventu-
ally became recognized as the real founder of group theory; yet his contemporaries
scorned him and he was murdered at the age of twenty.” Galois was killed in a pistol
duel, in an argument over a woman. The night before the duel, which he seemed
to know he would lose, Galois spent his last hours desperately writing down all his
mathematical ideas. “I have made some new discoveries,” he said. He filled eleven
pages, explaining some vagaries apologetically, “I have no time and my ideas are
not sufficiently developed on that terrain—which is immense.” Historian E. T. Bell
observed: “What he wrote in those last desperate hours before the dawn will keep
generations of mathematicians busy for hundreds of years. He had found, once and
for all, the true solution of a riddle which had tormented mathematicians for cen-
turies: under what conditions can an equation be solved?” Broadly speaking, the
increasing abstraction in geometry in the nineteenth century—with the rising tides of



^-dimensional and projective geometry, and non-Euclidean geometries, later united
under the umbrella of symmetry by Klein’s Erlangen Program—contributed to the rise
of group theory (together with the burgeoning number theory and theory of algebraic
equations). Coxeter, Regular Polytopes, 55–56, 141; and Bell, 362–77.
76. Gray, interviews.
77. Monson, interviews; Conway, interviews.
78. In their book Symmetry, Christopher Hill and Leon Lederman give a whimsical

and illuminating account of a symmetry group, using the equilateral triangle as their
guinea pig. “The equilateral triangle presents us with one of the simplest, yet non-
trivial, examples of symmetry,” they wrote. “All …equilateral triangles, irrespective of
color, size, position, orientation, or whatever, share [as] a common abstract feature
their unique symmetry—which is the defining symmetry of the equilateral triangle, or
what it means to be an equilateral triangle. If we could somehow communicate the
essence of the symmetry of an equilateral triangle to Martians, they could reconstruct
what we are talking about, but they wouldn’t know how big or what color or what
position of equilateral triangle we are communicating to them. It doesn’t matter—the
particular symmetry is the essence of what it means to be an equilateral triangle.”
Lederman and Hill, 295–96.
79. Schattschneider, e-mail correspondence, “Re: Symmetry of the Square,” De-

cember 2005, January 2006.
80. C. Davis, interviews.
81. Conway, interview, Princeton, April 2005.
82. Stephen Strauss, “Art Is Math Is Art for Professor Coxeter,” The Globe and Mail,

May 9, 1996.
83. Coxeter’s main interest was symmetry groups generated by reflections, but in

the broader study there are many kinds of symmetry groups. There are infinitely
many groups—any set with an operation that combines elements so as to satisfy the
group laws forms a group. For example, the set of integers, under the operation of
addition, forms a group. Schattschneider, e-mail correspondence.
84. Coxeter, Regular Polytopes, 75.
85. Monson, interviews.
86. Ibid.
87. Ibid.
88. Ibid.



89. Goodman, interview.

90. Ratcliffe, interviews.

91. Simon Kochen, interview, August 2005.

92. Vakil, interview.

93. Atiyah, interview.

94. Coxeter acknowledged the transcendent nature of his oeuvre—even if it was
going places he might not himself investigate any further—in the preface to Regular
Complex Polytopes, his 1974 sequel to Regular Polytopes, “Its relationship to my ear-
lier Regular Polytopes,” he said, “resembles that of Through the Looking-Glass to Alice’s
Adventure in Wonderland. The sequel is more profound …I have made an attempt to
construct it like a Bruckner symphony, with crescendos and climaxes, little foretastes
of pleasure to come, and abundant cross-references. The geometric, algebraic and
group-theoretic aspects of the subject are interwoven like different sections of the
orchestra.” These crosscurrents of the Coxeter oeuvre butted heads not long ago,
when organizers of the Coxeter Legacy conference (held in Toronto in 2004) tried to
decide whom to enlist as invited lecturers. One faction of the organizing committee
insisted that geometers with a classically Coxeterian spirit, such as John Conway,
and Branko Grünbaum, at the University of Washington, should be the heart of the
legacy conference. On the other hand, the more mainstream Coxeterian legacy re-
sides with mathematicians not quite of Coxeter’s tradition—the more modern and
algebraic geometers who work with Coxeter groups in a way that has transcended
Coxeter’s original intent, such as Ravi Vakil; Alexandre V. Borovic, from the University
of Manchester Institute of Science; BertramKostant, fromMIT; andMichel Broué. The
desire among some of the organizers for a healthy representation of the latter spurred
recrimination among the faithful. They argued that Coxeter would find such a roster
of lecturers “preposterous, it would be an abomination.” Surely the Coxeter Legacy
conference should be a conference that Coxeter himself would find interesting and
want to attend. Ultimately, it was resolved amicably, with no great drama, achieving a
fine balance of both the classical andmodern Coxeterians. Weiss, interviews; C. Davis,
interviews; Vakil, interviews; Coxeter, Regular Complex Polytopes, xi.

95. Vakil, interview.



20.8 CHAPTER 7—TANGENTS ON POLITICS AND FAMILY VALUES

1. Linear programming was invented in 1947 by Stanford professor George Dantzig,
spurred by his work at the Pentagon during the SecondWorld War, as mathematical
advisor to the U.S. Air Force Comptroller. According to Walter Whiteley, director of
applied research at York University, in Toronto, there is a funny story—perhaps true,
perhaps apocryphal—that goes along with its genesis: “One of the early problems
of linear programming was to find the cheapest diet for soldiers that meets all the
minimum daily nutritional requirements. The claim was that when they first ran
the problem with linear programming, the answer they got was a diet of 100 per-
cent carrots because there was no variable or equation that stipulated the need for
variety, or a maximum amount of anything.” Linear programming is also used for
scheduling airlines—with a variable for every plane, every departure and destination
airport, every pilot and crewmember. And its awesome power is applied in allocating
resources, planning production, scheduling workers, managing investment portfolios,
and devising marketing and military strategies. Linear programming pertains to
Coxeter and his polytopes because polytopes provide 3-D models of the problems. As
Whiteley explained, if there are three variables in a problem, then the model would be
a 3-D polytope, but the beauty of this method is that it can be done in n-dimensions
and thus can handle a massive number of variables. Each side of the polytope, or
the intersecting dimensional planes, delineates the constraints. So all the possible
solutions that satisfy the constraints lie within the convex shape. “The solution space
is the convex polyhedron,” said Whitely. “Then you add one more condition, you say I
want the cheapest solution. The optimal result, then, is found at the uppermost corner,
or the uppermost edge or face of the polytope. Certainly not the interior. The principle
of linear programming is how do I find the top spot, the optimal solution to the given
problem.” Whiteley, interviews.
2. “University of Toronto Oral History Project”; and Coxeter diaries, 1947–1952.
3. Coxeter, Regular Polytopes, viii.
4. He added, prophetically: “On the other hand, a reader whose standpoint is

more severely practical may take comfort in [Russian mathematician Nikolai] Lo-
batchevsky’s assertion that ‘there is no branch of mathematics, however abstract,
which may not some day be applied to phenomena of the real world.’ ” Ibid., vi.
5. Hardy, AMathematician’s Apology, 80.



6. John Bryden, Best-Kept Secret, 47–48.
7. Ibid.
8. Sinkovwas one of three people (Neil Sloane and John Leech, the latter best known

for his Leech lattice, at the University of Stirling in Glasgow, being the other two) whom
Coxeter called upon when his calculations required more might than mere pencil and
paper provided and he had to defer to computers. Coxeter never used a computer
himself. Coxeter, “University of Toronto Oral History Project.”
9. Coxeter diaries, 30 April 1941.
10. Coxeter, interviews; “Coxeter, University of Toronto Oral History Project.”
11. Ibid.
12. Coxeter always spoke his mind, and managed a pointed comment about the

SecondWorld War even in the preface to Regular Polytopes, published three years after
the war ended: “The history of polytope-theory provides an instance of the essential
unity of our Western civilization and the consequent absurdity of international strife.
The Bibliography lists the names of thirty German mathematicians, twenty-seven
British, twelve American, eleven French, eight Swiss, seven Dutch, four Italian, two
Austrian, two Hungarian, two Polish, two Russian, one Norwegian, one Danish, and
one Belgian. (In proportion to population the Swiss have contributed more than any
other nation.)” He was also known to drop his opinions into his lectures—obiter dicta,
like a judge letting loose a side remark not relevant to the case being heard. John
Coleman recalls Coxeter finishing a lecture on the blackboard and concluding that
the proof in question “leaves us with one.” Thereupon Coxeter slipped in a comment
about his latest religious dalliance, with theUnitarians, believers in the oneness of God
(as opposed to the Christian Trinity) and known through the ages as free thinkers and
dissenters, evolving their belief system toward freedom, tolerance, and humanism. It
would seemaperfect fit for Coxeter, but his liaisonwith theUnitarianswas brief. As his
daughter explained, “He was more a naturalist, not a humanist, because humanists
place themselves above animals, which he would never do.” Coxeter, Regular Polytopes,
vii; Coleman, interviews; Thomas, interviews; and Coxeter diaries, August 14 and 30,
1945.
13. TimRooney (retired professor ofmathematics, University of Toronto), interview,

Toronto, March 24, 2003.
14. Coxeter diaries, 21 January 1942.
15. Coxeter diaries, 2 January 1940.



16. Coxeter diaries, 11 May 1943.

17. Coxeter diaries, 28 October 1944.

18. Coxeter diaries, 18 June 1940.

19. Lee Lorch (emeritus professor of mathematics, York University, Toronto), inter-
view, Toronto, March 3, 2005.

20. Coxeter diaries, 17 July 1942.

21. Coxeter diaries, 19 May 1978—“Globe & Mail questionnaire proves I agree with
NDP [New Democratic Party].”

22. Eric Infeld, interview and e-mail correspondence, January, February, 2005; He-
len Infeld to Donald Coxeter, 6 January 1975, University of Toronto Archives, Coxeter
Fonds; “Mathematician Hard to Figure, Prof. Infeld Stays in Poland but Doubt He Took
A-Secrets,” Globe and Mail, August 22, 1950; and “Drew Demands Gov’t Investigate
UofT Professor,” Canadian Press,March 17, 1950.

23. C. Davis, interviews; and Davis, “The Purge,” in A Century of Mathematics in
America, vol. 1, 413–28.

24. Steve Batterson, Stephen Smale: The Mathematician Who Broke the Dimension
Barrier, 140.

25. Lee Lorch, a longtime activist against racism, sexism, and militarism, also
personally felt Coxeter’s support. Coxeter made an impression when he was a visiting
professor to Columbia University, in New York, shortly after the war. Coxeter showed
his solidarity with his Columbia colleagues’ protesting Lorch’s dismissal from nearby
City College due to Lorch’s activism against racism in the Stuyvesant Town housing
project. Lorch was also grateful for Coxeter’s backing when he was vice president
of the American Mathematical Society. The National Convention of the Democratic
Party National Convention was held in Chicago, in preparation for the 1968 elections.
Many protestors demonstrated against the Vietnam war at the convention, and the
Chicago police suppressed the demonstration with ferocious brutality. The American
Mathematical Society had scheduled a regional meeting in Chicago, to be held in 1969.
At the AMS annual general meeting in 1968, Lorch introduced a motion to move the
AMS meeting away from Chicago in protest of the violence. The AMS by-laws give
little or no power to the general membership, placing all the power in the hands of the
council. At that time Coxeter, as one of three AMS vice presidents, was automatically



on council. “I spoke with him about this matter. He expressed the view that council
would comply with our motion and promised without hesitation his own support,”
recalled Lorch. By a nearly unanimous vote, the pending Chicago meeting was moved
to Cincinnati. Lorch, interview; C. Davis.
26. Coxeter diaries, 11 February 1960.
27. Coxeter diaries, 23 November 1959.
28. Seymour Schuster (emeritus professor of mathematics, Carleton College, Min-

nesota), interview, Toronto, May 13, 2004, and January 14, 2006; Schuster to Coxeter,
28 February 1967, and Coxeter to Schuster, 7 March 1967, Schuster’s personal papers.
29. Marie-Jeanne Coleman, interview, Kingston, Ontario, March 8, 2005.
30. Thomas, interviews.
31. Coxeter, interview, Toronto, February 28, 2003.
32. Coxeter diaries, 13–15 July 1944.
33. Coxeter diaries, 24 December 1947.
34. Coxeter diaries, 4 June 1944.
35. Coxeter diaries, 16 February 1948.
36. Coxeter diaries, 15 November 1955, 16 February 1956.
37. Coxeter diaries, 19 December 1955.
38. Coxeter diaries, 22 June 1959; and Thomas, interviews.
39. H.H. Punke, “The Family and Juvenile Delinquency,” Peabody Journal of Education,

98.
40. Coxeter to H. H. Punke, 7 February 1957, Coxeter Fonds, University of Toronto

Archives.
41. According to Plutarch, Archimedes was infatuated with geometry with every

ounce of his being: “Oftimes Archimedes’ servants got him against his will to the
baths, to wash and anoint him, and yet being there, he would ever be drawing out of
the geometrical figures, even in the very embers of the chimney. And while they were
anointing of him with oils and sweet savours, with his fingers he drew lines upon his
naked body, so far was he taken from himself, and brought into ecstasy or trance, with
the delight he had in the study of geometry.” O’Connor and Robertson, “Archimedes
of Syracuse,” http://www-groups.dcs.st-and.ac.uk/~history/Mathematici
ans/Archimedes.html (accessed January 29, 2006); and Ibid.
42. Coxeter diaries, 17 June 1949.

http://www-groups.dcs.st-and.ac.uk/~history/Mathematicians/Archimedes.html
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43. They had explored commissioning a house designed by Coxeter’s friend and
university colleague, architect Eric Arthur, but in the end they found a fittingly cubic
house, in the early modernist or international style with octagonal windows flanking
the front door. Built in 1935, and designed by architectMackenzieWaters, an associate
architect of Maple Leaf Gardens, it is now a Toronto heritage property. City of Toronto
Inventory of Heritage Properties, http://app.toronto.ca/heritage/browseLe
tter.do?letter=R (accessed January 29, 2006); Coxeter diaries, 8 April 1953.
44. Coxeter diaries, 8 December 1938–15 April 1941.
45. Coxeter diaries, 4 December 1942.
46. Thomas, interviews.
47. Coxeter diaries, 23 October 1941.
48. Coxeter diaries, 6 April 1956.
49. Coxeter diaries, 27 November 1939.
50. Coxeter diaries, 1 January 1946.
51. Coxeter diaries, 17 December 1941, 4 and 5 October 1946, 4 November 1946.
52. Marie-Jeanne Coleman, interview.
53. Coxeter diaries, 25 November 1944.
54. Coxeter diaries, 19 February 1943, 25 November 1944.
55. Senechal, “Coxeter and Friends.”

20.9 CHAPTER 8—BOURBAKI PRINTS A DIAGRAM

1. Coxeter published one of the most interesting papers on polyhedra in 1952, in
the Philosophical Transactions of the Royal Society of London. It numbered more than
fifty pages, and its title read: “H. S. M. Coxeter and Others on Uniform Polyhedra.”
The “others” were Coxeter’s former research student at Cambridge, J. C. P. Miller,
and distinguished geophysicist and geometer Michael Longuet-Higgins. Longuet-
Higgins connected with Coxeter in the early 1950s via a mutual friend—Freeman
Dyson, a celebrated theoretical physicist at Princeton’s Institute for Advanced Study.
Dyson was in Toronto for a physics conference and paid a visit to his friend Coxeter,
with whom he’d had leisurely interactions over the years (leisurely, as polyhedra, for
the polymath Dyson, were one of those Sunday-afternoon activities that he enjoyed
very much). Dyson drew Coxeter’s attention to some work by Longuet-Higgins and
his brother, Christopher Longuet-Higgins, the distinguished chemist and cognitive

http://app.toronto.ca/heritage/browseLetter.do?letter=R
http://app.toronto.ca/heritage/browseLetter.do?letter=R


scientist. As high school students, the brothers and Dyson had been inspired by
Coxeter’s book The 59 Icosahedra. This has led the brothers to try to enumerate the
class of uniform polyhedra. And Michael began constructing edge models using a
novelmaterial of galvanized ironwire, or gardenwire (the constructionwas innovative,
requiring no solder at the vertices; a kink in the wire allowed them to click into place).
He producedmodels for each of their discoveries; though for the most complicated,
with ten edges passing through some vertices, he devised an alternative method:
he soldered a wire frame, painted it black, and then used the frame to string white
cotton threads representing the edges. Little did the Longuet-Higgins brothers know
that, not long before, Coxeter and Miller had embarked on a similar enumeration at
Cambridge. Coxeter and Miller believed their list to be complete, but because they
lacked a rigorous proof, they sat on their results. When Coxeter learned of the Longuet-
Higginses’ enterprise, he and Miller had given up hope for finding a proof and were
at long last writing up their results for publication. Coxeter wrote to the brothers,
enclosing his list of the uniform polyhedra, and asked howmany they had found. They
had all but one on the list, the one Coxeter had dubbed “Miller’s monster.” Coxeter
and Miller went to see the models, and it proved fortuitous timing. Miller was just
drawing all the polyhedra, and the model with the white threads allowed Miller “to
detect an error before its consequences became serious,” as Coxeter said. Coxeter
invited Michael to become a coauthor of the paper, with photographs of his models
providing additional illustrations. Coauthorship was also on the merit of Michael’s
discovery of some relevant theoretical relations between certain chains, or sequences,
of the uniform polyhedra; and he discovered a uniform tessellation that Coxeter and
Miller had missed. The paper was of particular interest because it surveyed the many
approaches to these polyhedra through history, and then presented a unified method
for their construction. The authors still could not claim to have proven completeness
for their enumeration, but they expressed hope that it was indeed complete. This
was proven to be true in 1975, by John Skilling—with the aid of a computer—and
published in his paper, “The Complete Set of Uniform Polyhedra.” Longuet-Higgins,
interviews; Coxeter–Longuet–Higgins correspondence, Coxeter Fonds, University of
Toronto Archives; Longuet-Higgins, personal papers; and Coxeter et al., “Uniform
Polyhedra,” Philosophical Transactions of the Royal Society, 401–50, see appendix 8.

2. Coxeter, Introduction to Geometry, x.



3. While the upper echelons of research mathematicians at the university
level—those who populated the prestigious American Mathematical Society and
concerned themselves with producing the next generation of mathematicians
proper—appreciated Coxeter’s pioneering work in group theory, they more often than
not dismissed his prediliction for the gems of classical geometry, the trivial tinkering
with toys. Math educators, however—college and high school teachers who populated
the MAA—recognized Coxeter’s appeal as a wizard of a teacher, his ability to lure
young students and engage them with mathematics through the playful, and yet still
profound, magic of elementary geometry (of course, somemathematicians belonged
to both the AMS and the MAA, and were concerned with the quality and continuity of
mathematics education on all levels, but generally the distinction holds). With a solid
grounding in classical geometry absent at the university level, teachers needed to
be trained elsewhere on this subject, and there was no better geometry teacher for
teachers than Coxeter. Schuster, interview; Senechal, interviews; Schattschneider,
interviews; and Martin Gardner, “Math and Aftermath.”
4. Otherwise a man of measured tempo, Coxeter was known among his students as

a frightfully reckless driver who sped through traffic, zigzagging with scarcely an inch
of space to spare. On a number of occasions he landed himself in traffic court. He had
numerous accidents—“200 degree skid”—and his cars—Citroën, MG, Triumph—were
forever in the shop. Then he traveled by bus, but one day a friend of Rien’s spied
him hitchhiking home on a busy downtown Toronto street (he lived no more than a
thirty-minute walk away). Weiss, interviews; Monson, interviews; Fisher, interviews;
Thomas, interviews; Coxeter diaries, 31 December 1938.
5. Willy Moser, whose brother was mathematician Leo Moser, in fact made break-

through contributions to geometry in his own right. His first book, coauthored with
Coxeter, was the highly regarded Generators and Relations for Discrete Groups. Known as
a “definitive handbook in the area,” for a time it was miscatalogued at the University
of Toronto library andmisshelved in the genealogy section. Moser, interviews.
6. Coxeter, Introduction to Geometry, p. ix.
7. Weiss, interviews; and Moser, interviews.
8. Martin Gardner, “Math and Aftermath.”
9. Coxeter, “Math and Aftermath.”
10. Martin Gardner,Martin Gardner’s NewMathematical Diversions from Scientific

American, 196.



11. To wit: polygons, circles, spheres, regular polytopes, complex numbers, the
pseudosphere, the five Platonic solids, and a statistical honeycomb, the product of two
reflections, isometry in the Euclidean plane, dominoes to illustrate the space groups
of two-dimensional crystallography, the close packing of equal spheres, the golden
section and phyllotaxis, tensor notation and reciprocal lattices, projective geometry
andDesargues’s theorem, geodesics and the Euler-Poincaré characteristic, topology of
surfaces and the four-color problem, the correction of a “prevalent error” concerning
the shape of the monkey saddle, absolute geometry and the polyhedral kaleidoscope,
hyperbolic geometry and the finiteness of triangles, differential geometry of curves
and the circular helix, the simplest construction of four-dimensional figures, ordered
geometry and Sylvester’s problem of collinear points. Coxeter, Introduction to Geometry,
xi–xvi, 295.
12. Atiyah, interviews.
13. DavidMumford (professor ofmathematics, BrownUniversity), interviewNovem-

ber 18, 2005.
14. Mumford offered a recent ode of sorts to Coxeter, with this description of his role

in twenty-first-century mathematics: “In my book, Coxeter has been one of the most
important 20th century mathematicians—not because he started a new perspective,
but because he deepened and extended so beautifully an older esthetic. The classical
goal of geometry is the exploration and enumeration of geometric configurations
of all kinds, their symmetries and the constructions relating them to each other.
The goal is not especially to prove theorems but to discover these perfect objects
and, in doing this, theorems are only a tool that imperfect humans need to reassure
themselves that they have seen them correctly. This is a flower garden whose beauty
has almost been forgotten in the 20th century rush to abstraction and generality. I
share Coxeter’s love of this perspective, which has deep roots in algebraic as well as
Euclidean geometry. I always found the algebraic roots-and-weights approach to Lie
groups arid and unsatisfying until I found Coxeter’s work fleshing this out with a rich
tapestry of examples.” Ibid.; and Jonathan M. Borwein, Mathematics by Experiment:
Plausible Reasoning in the 21st Century, 86.
15. Of Bourbaki’s influence on themathematicalworld, andhis pride at the enormity

of the Bourbaki project, Chevalley once commented: “I absolutely had the feeling of
bringing light into the world—the mathematical world …It went hand in hand with the
absolute certainty of our superiority over other mathematicians—a certainty that we



held something of a higher level than the rest of mathematics of the day. For example,
there is a word which was—which still is—in current usage, to bourbakise (bourbachiser).
This means to take a text that one considers screwed up and to arrange it and improve
it.” Guedj andGray, “An Interviewwith Claude Chevalley,” 20; O’Connor andRobertson,
“Claude Chevalley,” http://www-groups.dcs.st-and.ac.uk/~history/Mathe
maticians/Chevalley.html (accessed January 30, 2006).

16. O’Connor and Robertson, “Jean Alexandre Eugène Dieudonné,” http://ww
w-groups.dcs.st-and.ac.uk/~history/Mathematicians/Dieudonne.html
(accessed January 30, 2006).

17. R. P. Boas, “Bourbaki and Me,” The Mathematical Intelligencer, 84.

18. Beaulieu, “Bourbaki’s Art of Memory.”

19. Beaulieu, “Bourbaki’s Art of Memory”; and Halmos; Borel; Cartan; Senechal,
“The Continuing Silence of Bourbaki,” The Mathematical Intelligencer, 22–28; and Pierre
Cartier, interviews.

20. Beaulieu, “Bourbaki’s Art of Memory.”

21. Ibid.

22. Dieudonné, “The Work of Nicholas Bourbaki,” 142.

23. Cartier, interviews.

24. Senechal, “The Continuing Silence of Bourbaki.”

25. Thomas, interviews.

26. Beaulieu; Halmos.

27. Dieudonné, “The Work of Bourbaki during the Last Thirty Years,” Notes of the
AMS, 620.

28. Senechal, “The Continuing Silence of Bourbaki.”

29. Senechal, interviews.

30. “The Bourbakists play the sort of evil Darth-Vader figure here with their ultra
formalism …It was mini Bourbakist,” observed William Higginson, a professor in
the Mathematics, Science and Technology Education Group at Queen’s University,
Kingston, Ontario.

31. William Higginson, interview, March 2005; and Bob Moon, The “New Maths”
Curriculum Controversy.
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32. Euclid and his geometry also met criticism as being pedagocially difficult.
One of Euclid’s theorems, stating that the angles at the base of an isosceles triangle
are equal, was named “pons asinorum,” meaning bridge of asses, which, as Coxeter
explained, “probably arose from the bridgelike appearance of Euclid’s figure (with
the construction lines required in his rather complicated proof) and from the notion
that anyone unable to cross this bridge must be an ass.” Coxeter, “The Ontario K-13
Geometry Report,” Ontario Mathematics Gazette, 12–16; and Geometry, Kindergarten to
Grade Thirteen, Report of the (K-13) Geometry Committee; and Coxeter, Introduction to
Geometry, 6.

33. Ibid.

34. “The Mystique of Modern Mathematics,” in Black Paper Two, as cited in The “New
Maths” Curriculum Controversy, 146–47.

35. Moon.

36. Dieudonné, “New Thinking in School Mathematics;” Moon, 5, 99; and Toth.

37. Liliane Beaulieu, writing the unauthorized Bourbaki biography to be published
by Springer-Verlag, has gathered her own observations, during her decade of research,
on the interpretation of Bourbaki as antigeometry. “The reasons for Bourbaki being
labeled as anti-geometry are manifold,” she said. “Yes, Dieudonné’s cry had its effect
especially since, tomyknowledge, therewasnoofficial disclaimer from the group itself.
This does not mean that the group as a whole endorsed his ideas, or that they were
rejected. It just means that it [Bourbaki] didn’t address the issue officially, which is a
common way of dealing with various issues within the group, up to this day.” Beaulieu
continued to point out that there was some geometry in Bourbaki’s Elements, though
swallowed up by algebra and analysis. She also shed light on the lack of diagrams,
pertaining to geometry or not. “The near absence of figures in the published treatise
was unusual in ‘Analysis’ and thus rightly gave the impression that this team did
not wish to foster their use,” she said. “Some [diagrams] appear, nevertheless, in the
unpublished drafts before they are left out, once the idea is conveyed and integrated
into a more abstract or general conceptual setting.” Beaulieu, e-mail correspondence,
“Re: Coxeter and Bourbaki,” March–May 2005; and Broué, interviews.

38. Cartier, interviews.

39. Cartier; Broué.



40. Moon; Ángel Ruiz andHugo Barrantes, TheHistory of the Inter-American Committee
on Mathematics Education; and Á. Ruiz (professor of mathematics, University of Costa
Rica and the National Unversity; director, Research Center for Mathematics and Meta-
Mathematics), e-mail correspondence, November 18, 2005.

41. Moon, 49.

42. Ruiz and Barrantes.

43. Another Canadianmathematician, Irving Kaplansky, an algebraist and group
theorist, discussed the second-class status of geometry with lively prose andmixed
metaphors in the preface to his book Linear Algebra and Geometry: “Linear algebra,
like motherhood, has become a sacred cow. It is taught everywhere; it is reaching
down into the high schools and even the elementary schools; it is jostling calculus
for the right to be taught first. Yet all is not well. The courses and books all too often
stop short just as the going is beginning to get interesting. And classical geometry,
linear algebra’s twin sister, is a bridesmaid whose chance of getting near the altar
becomes ever more remote. Generations of mathematicians are growing up who are
on the whole splendidly trained, but suddenly find that, after all, they do need to
know what the projective plane is.” Kaplansky, who received his undergraduate and
master’s degrees in mathematics at the University of Toronto, appreciated Coxeter’s
“incredible geometric visualization—he could really see things.” He took a few courses
from Coxeter, who was then just starting out, a “genial, shy, diffident, somewhat
bashful” lecturer. Nonetheless he answered questions—“even questions on the stupid
side”—in a polite and illuminating way. Kaplansky recalled: “I was never on a plane of
equality.” Kaplansky, interviews; Coleman, interviews; and Conway, interview, June
2004, discussing views expressed by William Thurston (a mathematician at Cornell
University); and Ruiz and Barrantes.
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friends, people who claimed they didn’t like mathematics, not only the theorem but
the entire proof in about 15 minutes. All they needed to understand was high school
math notions and colored nested boxes.” The best part (or the worst, depending on
which way you look at it) was that Hofstadter later came upon an article written by
Van der Waerden describing the discovery of the original proof. “This article showed
the very pictures that I had drawn!” said Hofstadter. “And it showed that Van der
Waerden and the other two people who found the proof had done so only through
pictures. There was not a single formula in the whole article. It confirmed,” Hofstadter
said, “my intuitive belief that nobody could understand the proof in Khinchin’s book
without constructing these diagrams, whether on paper or in their mind.” Ibid.

65. He named John Conway and William Thurston. Thurston is a “modern” geome-
ter who won the Fields, but also a geometer clearly very fond of the visual; his ideas
about visualizing hyperbolic geometry are explained in the much-lauded computer
graphics video Not Knot. Conway and Thurston, when together at Princeton, taught
a “wildly popular” mathematics course for undergraduates, relaying cutting-edge
geometric and topological ideas via visual and hands-on exercises more commonly
found in grade schools. Ibid.; Conway, interviews.



66. A quick litmus test for the pendulum’s recent wobble toward geometry is seen
by the proliferation of books on the subject, such as The Changing Shape of Geometry.
Published in 2003, it contains one of Coxeter’s last contributions to the collective
geometry oeuvre (his Budapest paper was the last, the conference proceedings pub-
lished belatedly in 2006). The Changing Shape of Geometry culls an archive of articles
and essays published over the last century, testimonies to the status of geometry,
opening with G. H. Hardy’s 1925 essay, “What Is Geometry?” Another entreaty was
penned in 1973 by J. V. Armitage, an honorary senior fellow in the department of
mathematical sciences at the University of Durham, in northeast England. In pleading
geometry’s case, Armitage cites a lesson from Euclid, who faced a question from one
of his students as to whether there was not an easier, shorter way to study geometry
than to learn the salient lessons from Elements. “There is no royal road to geometry,”
Euclid famously replied. Armitage elaborated: “Mathematics is an attractive subject
because it is difficult. Obstinacy and the ability to concentrate are a necessary part of
the equipment of the mathematician and, in other contexts, they are desirable for life
in general …Geometry is a good discipline in which to encounter difficulties for the
first time, because its problems lend themselves to pictorial exploration and investiga-
tion and that combination of intuition and logic which is the essence of mathematics
…The real answer is Euclid’s own; those who expect education to produce a return
in kind for financial investment will always seek to weigh andmeasure its fruits and
ultimately impoverish the human spirit. But if one believes that the intellect and the
ability to reason should be developed for their own sakes, then geometry, like the
classics, has a value which cannot be measured.” Not long ago Armitage reread his
article, in between supervising andmarking exams for the course “Foundations of
Mathematics”—takenmostly by chemistry and natural science students, as well as a
few arts majors. After refreshing his memory, Armitage said his argument holds, still
relevant today, if not more so. Classical elementary geometry is a timeless archetypal
approach to mathematics and the sciences. Armitage, however, isn’t as optimistic as
Atiyah. He worries that all the pleading has been a losing battle. Coxeter raised the
specter of geometry, to be sure, and gave it a grassroots surge, but the subject has
not been reinstated in the educational curriculum, at the grade school nor university
level, to the extent he believes it should. Increasingly, he finds that students coming
to university don’t knowmuch geometry at all. “But there are some honourable ex-
ceptions,” he said. He taught a girl fromManchester not long ago, who had been at an



ordinary high school and was keen, keen on classical geometry. Armitage observed
that she clearly had a teacher who had just stepped out of a timemachine and who, by
all indications, had ignored the Euclid-barren syllabus. He encouraged this student
to record her favorable experiences with the Royal Society of London, the apogee of
all mathematical and scientific wisdom, where a report on the status of geometry
education was in the works. J. V. Armitage, “The Place of Geometry in Mathematical
Education,” in The Changing Shape of Geometry,” 515–26; Armitage, interview, May 27,
2005; and Atiyah, interviews.

67. “Teaching and Learning Geometry, 11–19,” a report of a Royal Society/Joint
Mathematical Council working group, July 2001.
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1. Coxeter, “The Problem of Packing a Number of Equal Nonoverlapping Circles on a
Sphere,” Transactions of the New York Academy of Science, 320–31.

2. Ibid.; Conway and Sloane, SPLAG; and Conway, interviews; Sloane, interviews;
and George G. Szpiro, Kepler’s Conjecture.

3. Ibid.

4. In 1956, a friend of Coxeter’s, Scottish mathematician John Leech, provided a
simple proof. Coxeter, Twelve Geometric Essays, 179–188.

5. Ibid., 180–181.

6. Lang, interviews; O’Connor and Robertson, “Claude Elwood Shannon,” http://
www-groups.dcs.st-and.ac.uk/~history/Mathematicians/Shannon.html
(accessed February 3, 2006); Sloane, interviews.

7. Ibid.

8. Lang, interviews.

9. Sloane, interviews.

10. Ibid.

11. Ibid.

12. Lang, interviews; and Conway, interviews.
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13. In sphere packing, the problem of finding the right answer for all dimensions
still is unsolved. In some dimensions, the potential answer to the problem has been
narrowed, whittled to within upper and lower bounds. In his paper, Coxeter gave a for-
mula that proposed new bounds. In four dimensions his kissing number bound—the
number of billiard balls that fit around a central ball—was between twenty-four and
twenty-six (twenty-four had been known as the lower bound for a century or so, but
Coxeter produced the new upper bound of twenty-six). In eight dimensions, Coxeter
produced an upper bound of 244, as against the long-known lower bound of 240, from
the E8 Lattice. Coxeter’s work required difficult calculations, and so this was one of
those occasions when he recruited his friend in Scotland, John Leech, whom he called
a “computing man,” to do the messy computer calculations for him.
In twenty-four dimensions, some progress on this problemwas latermade by Leech

and John Conway—Leech “dangled under a few noses” his structure for a twenty-four-
dimensional grid, now known as the Leech lattice—the noses including Conway’s and
Coxeter’s. Leech needed someone to determine the symmetries of his lattice (knowing
it would have multiple symmetries, which would form a group), as he didn’t have the
group theory skills to do the investigation himself. Conwaywas the first to take the bait.
In the book Kepler’s Conjecture by George G. Szpiro, the author recounts: “Conway told
his wife that this was something important and difficult, and that he was going to work
on itWednesdays from six tomidnight and Saturdays from noon tomidnight. He need
not have planned that far ahead. It took him only a single Saturday session to crack
the puzzle.” What Conway discovered that evening was that the group describing the
symmetries of the Leech lattice was none other than one of the sporadic simple groups
that had eluded discovery until then.” The discovery of the “Conway group” catalyzed
the detection of additional sporadic simple groups a breakthrough that catapulted
the global classification effort a magnificent leap forward. And Conway, who was
then rather down in the dumps about his mathematical productivity, or lack thereof,
received a welcome shot to his ego—almost instantaneously he was installed as a
Fellow of the Royal Society, and he has never looked back as one of the front-running
mathematicians in the world. However, Conway complained recently of suffering from
the chronic disease called laziness, playing and puzzling his mathematical days away
in the math department common room at Princeton, though occasionally he catches
the bug of a heady topic, such as “the free will theorem,” which he and Simon Kochen
have been developing with a vengeance.



In 2004, sphere-packing’s translational case was entirely solved for twenty-four
dimensions by Henry Cohn and Abhinav Kumar. In four dimensions, Neil Sloane and
Andrew Odlyzko reduced the bound to twenty-five a few years later; and subsequently
Ronald Hardin cut it down to twenty-four; Sloane and Odlyzko knew twenty-five was
impossible but couldn’t prove it. In eight dimensions, Sloane and Odlyzko reduced
the bound to 240. Their method was much easier than Coxeter and Leech’s crude
computing, because they utilized the powers of linear programming. Coxeter, “An
Upper Bound for the Number of Equal Nonoverlapping Spheres That Can Touch
Another of the Same Size,” Proceedings of the Symposia in Pure Mathematics, 53–71;
Coxeter, interviews; Conway, interviews; Conway and Sloane, SPLAG; O’Connor and
Robertson, “John Leech,” http://www-groups.dcs.st-and.ac.uk/~history
/Mathematicians/Leech.html (accessed February 5, 2006); Szpiro, 95; Sloane,
interviews; Smith, interviews.
14. Lang submitted his proposal to a precursor of the International Telecommunica-

tions Union—a United Nations agency fostering cooperative standards for telecommu-
nications equipment and systems, located in Geneva, Switzerland. Lang, interviews.
15. Lang showed Coxeter his proposition on paper, since it wasn’t until 1986 that a

practical E8 LatticeModemwas produced. Andwith technology’s ever-forwardmarch,
the E8 was soon superseded. “That modem was short-lived as there was a great push
on in the industry for further increasedmodem performance,” said Lang. Motorola
produced the Leech Lattice Modem in twenty-four dimensions. It became particularly
popular in Sweden, put to use by large companies with lots of offices that needed to
communicate computer-to-computer. The Leech modem was soon superseded by
Motorola’s Trellis Modem, and so on. Lang, interviews.
16. Robert Tennent (professor in semantics and design of programming languages

at the School of Computing, Queen’s University, Kingston, Ontario), interview, e-mail
correspondence “Re Coxeter anecdote,” January 2004–June 2005.
17. Conwayhasworkedon themore theoretical sideof spherepacking. “Iwasalmost

seduced into that against my will,” Conway said. “One of the things that made my
mathematical name, in fact THE thing thatmademymathematical namewas studying
the symmetry of a certain packing of spheres in 24 dimensions,” he said, referring to
his collaboration with John Leech (see endnote 13). And a friend of Conway’s, Neil
Sloane, dragooned him into writing a book, the standard book on the subject—Sphere
Packing, Lattices, and Groups, also known as SPLAG—a book that now generates a nice
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nest egg of a royalty check annually. “So I’m personally grateful in a way. But I wasn’t
really interested in the sphere-packing problemmyself, as an [applied] problem. I
was interested in the symmetry and the beauty of this particular arrangement, which
is what Coxeter was interested in.” But, as Conway said, almost ruefully, any good
piece of mathematics has applications. Conway, interviews.

18. Indeed, Coxeter didn’t hold any grudges against Lang andhiswork, and they kept
in touch. Years later, Lang invited Coxeter for a visit at ESE, the Canadian subsidiary
of Motorola, where Lang was then vice president of research. Another visitor that
day was G. David Forney Jr., now adjunct professor in the department of electrical
engineering and computer science at the Massachusetts Institute of Technology, and
formerly a Codex Motorola scientist. Forney is regarded as the founder of the modem
industry; in 1970 he invented the first reliable high-speed modem, later adopted as
an international standard from which modem technology exploded. Forney, whose
current interests include coding and decoding for Euclidean-space channels, recalled
meeting Coxeter that day. “I made a special trip to Toronto at the invitation of Gord
Lang, to be present at Coxeter’s visit to ESE Ltd, our sister company,” said Forney, who
was then group vice president in the Motorola Information Systems Group, located
in Mansfield, Massachusetts. The visit entailed a long social lunch, a brief tour of
ESE, with a Leech lattice modem to look at. Forney found Coxeter in dandy form: “a
courteous, distinguished-looking professorial gentleman with an amiable air and his
wits very much about him,” Forney says. “He was almost ninety then and he was
fascinating.” David Forney, e-mail correspondence “Re: Gord Lang, E8, and Coxeter,”
May 31, 2005; and Robert Gallager, “A Conversation with G. David Forney, Jr.,” IEEE
Information Theory Society Newsletter, http://www.itsoc.org/publications/nlt
r/97_jun/jdvcon.html (accessed February 4, 2006).

19. Coxeter, “University of Toronto Oral History Project.”

20. Coxeter, interviews; Thomas, interviews.

21. C. Davis, interviews.

22. Pat Kerr (Engineering Directorate, NASA Langley Research Center), e-mail
correspondence, January 31, 2006; and Kurt Severance, Paul Brewster, Barry Lazos,
and Kaniel Keefe, “Wind Tunnel Data Fusion and Immersive Visualization: A Case
Study,” NASA Langley Research Center.

23. Whiteley, interviews; andWeeks, interviews.
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24. Studying physics and then computer graphics at Berkeley in the 1960s—at a time
when geometry was “non-constructive, not tangible, abstract”—DeRose learned all
the geometry he could, but on his own, browsing through the library stacks for works
published in the 1800s, by Hamilton and Caley, and by the anachronistic Coxeter.
He also plumbed the works of Austrian and German practitioners. “There is a nice
tradition of geometry there,” he said. The dearth of geometry in the classrooms, he
feels, is a crisis, and one nearer and dearer to his heart as his children get older.
“The people teaching mathematics and geometry at the elementary and secondary
levels don’t understand it. They don’t understand the ways in which it can be made
relevant,” he said. “This turns kids off mathematics in general and geometry in
particular, as being irrelevant and not very interesting. I’ve got an eleven-year-old and
a seven-year-old. We spend lots of time wandering around the world seeing geometry
everywhere we look: ‘Oh, look, the shape of the outline of that headlight on the ground
is a parabola!’ ” Tony DeRose, Pixar senior scientist, interview, November 22, 2005.
25. DeRose demonstrated by walking through the creation of Bob Parr: “Imagine

you’ve got, say Bob Parr from The Incredibles, standing with his arms out. He’s a three-
dimensional character, and the computer understands him as a three-dimensional
hunk of geometry,” said DeRose. “Now place a virtual camera in front of him, ten
feet away. We’re going to model that camera as a point, directed toward Bob. And
then we’re going to erect in front of the camera a square that is perpendicular to the
direction of the camera. That’s where the image is formed, the two-dimensional image
that people see in the theatres. So what we’ll do is conceptually the following thing:
if we want to figure out where the tip of his nose goes in the image, we’re going to
draw a line from that camera center point, out to his nose, and at some point that
line is going to cross the image plane—that’s where the image of his nose is going
to appear. And we do that for all the other points on him and that way we form a
two-dimensional projection of Bob on the picture plane. In geometric terms, what
we are doing is we are taking a three-dimensional set of geometry and constructing
from it a two-dimensional set of geometry on the image plane, and that’s a projective
transformation.” DeRose, interview.
26. Ibid.
27. Ibid.
28. Ibid.; and “The Pixar Process,” http://www.pixar.com/howwedoit/index.

html (accessed February 3, 2006).
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29. Whiteley, interviews.

30. In 1996, ten mathematicians and computer scientists, led by Egon Schulte, at
NorthwesternUniversity, submitted a proposal to theNSF-fundedGeometry Center, in
Minneapolis, for a 3-D program analogous to the 2-D Geometer’s Sketchpad—allowing
play with virtual tiles and blocks. The suggested names for the program were the Cox-
eter Project, or Project Coxeter. In e-mail correspondence among the group, University
of Alberta’s Robert Moody pointed out: “There is a possible acronym from his initials:
Hands-on Synthetic Manipulation (of 3d graphics). I am pretty sure [Coxeter] would
not approve of that!” To which Marjorie Senechal replied: “Coxeter might not approve
of his initials being interpreted as ‘Hands-on Synthetic Manipulation’ but I’ll bet his
wife would! I’ve heard her tell him several times that he should get with it and learn
to use computers. She could talk him into giving it his blessing even if the HSM part
is a joke.” Unfortunately, the proposal was not approved, as the Geometry Center’s
funding was cut later that year and the center shut its doors. Senechal, “Donald and
the Golden Rhombohedra,” The Coxeter Legacy, 159–77.

31. The principal investigator was Eugene Klotz, and the program designer was
Nicholas Jackiw.

32. Schattschneider, interview, November 2005.

33. When the program became a success, IBM wanted it as well, but it had been
written for Mac. The cost of translating the program to a new platform initially seemed
like a deterrent for Key Curriculum, the publisher of Geometer’s Sketchpad, until IBM
gladly agreed to front the money. In the United States, Sketchpad is used in 60 per-
cent of courses. Elsewhere, its reach can be based only on licensing and distribution
agreements. There are national licenses for the software in Malaysia and Thailand;
there are strong international cultures of Sketchpad use in South Korea, Singapore,
Costa Rica, Taiwan, and a growing interest in China; and there is “substantial pene-
tration and broad familiarity” in Canada (including an Ontario provincial license for
all schools and home users, the goal being one free license per student), the United
Kingdom, and Australia. Two similar programs are Cabri and Cinderella. Ibid; and
Steven Rasmussen (president, Key Curriculum Press), e-mail to Siobhan Roberts “Re:
Sketchpad Stats,” June 7, 2005.



34. When Hofstadter had his reunion with geometry in the early 1990s, it occurred
to him that he could probably write a computer program that would enable him to
construct interrelated circles and triangles in such a way that he could drag points or
lines around on the screen with the geometric consistencies of their constructions
adapting in real time. When he mentioned this hope to a visually minded friend, he
was surprised to learn the program already existed. Hofstadter tried out Geometer’s
Sketchpad and immediately was hooked. In one of his letters to Coxeter, Hofstadter
asked if he had seen this modern tool, describing how this mind-blowing new way of
doing geometry assisted in one of his discoveries: “I ran to my computer and fired
up the astonishing program Geometer’s Sketchpad,with which youmay be familiar.
If not, I hope you have a chance to see it. It is absolutely revolutionary. You make
any geometric construction on the screen, no matter how complex, and then you can
dynamically move points about on the screen and all the constraints will be obeyed.
You had praise in your book for the movie Simson Line by T. J. Fletcher—well, all I
can say is, if you liked that movie, you would go wild about Geometer’s Sketchpad.
Every single construction youmake in GS is as good as the Simson Linemovie! With
GS, you see straight to the heart of geometry …I truly wish some of the old-time
geometers—Poncelet, Steiner, Coolidge, Brocard—could have seen it. They would
have gone crazy.” Coxeter–Hofstadter correspondence, Coxeter Fonds, University of
Toronto Archives; and Schattschneider, interview.
35. Whiteley, interviews.
36. Ibid.
37. The Math Lab holds several large circular worktables, Mac computers in each

corner, and cupboards full of “toys” for geometric modeling. Whiteley makes some of
his ownmodels by cuttinghigh-gradeplastic strips, withbolt-and-screw joints forming
the vertices of shapes (a homemade model made ages ago by Coxeter is still lying
around; hand-colored cardboard strips held together with rivets). The geometrical
gadget of late is ZomeTool, a kit of struts and nodes that assemble into any of Coxeter’s
polytopes (Coxeter’s signature on the box endorses the product, with his statement:
“Zome System considerably simplifies the procedure of construction and unifies the
study of space frame structures into one coherent system, of great educational value
in teaching of solid geometry, science, art, engineering and architecture”). Other
popular modeling systems include UniStrut, an old system produced for engineers;
Polydron, with hollow and solid regular polygons in red, blue, green, and yellow, which



click together to form hingelike joints and aremarketed toward school kids; Molecular
Visions, specifically intended for the assembly of the Bucky Ball C60; Tensegritoys;
Molymodmade for organic chemistry; and “the latest rage,” as Whiteley described it,
Deluxe Magnetic Kit, with colored plastic struts connected to magnetic balls at the
vertices (manufactured by Lee Valley Tools, specialists in woodworking and gardening
tools). Whiteley, interviews.
38. Whiteley, interviews.
39. Ibid.
40. Ibid.
41. Ibid.
42. Ibid.
43. Ibid.; and John Andros (professor of chemistry, York University, Ontario), CHEM

3070 Handout #6, “Where Chemistry Meets Society: Current Examples.”
44. Whiteley, interviews.
45. Material scientists are trying to classify all the possible patterns and give some

order to their search. Broadly speaking, this is “reticular science” (a reticulum being a
netlike structure). It is a serendipitous science self-criticized for its “shake and bake,”
“mix and wait,” and “heat and beat” methods. The classification system inherent in
Coxeter groups holds potential to provide somemuch-needed order.
46. Whiteley, interviews.
47. Ibid.
48. Ibid.
49. Kroto, interviews; Moody, interviews.
50. Kroto described it as a “plethora of exotic molecules in a wide range of physico-

chemical environments.” And these exotic molecules were in addition to the “well-
known species such as ammonia, water, and ethanol—enough for 1028 bottles of
schnapps in Orion alone.” Kroto, “C60.: Buckminsterfullerene, The Celestial Sphere
That Fell to Earth,” Angewandte Chemie, 111–29.
51. One of the first compounds subjected to a microwave study—trying to find the

compound’s frequency in outer space using a piece of equipment called a microwave
spectroscope—was the extragalactic molecule HC^N. After this was successfully de-
tected, Kroto decided he wanted to trawl outer space for a slightly larger compound,
HC5N, since he and a group of scientists had determined its frequency. Hewrote to his
colleague Takeshi Oka, at National Research Council (NRC) laboratory in Ottawa—“the



Mecca for spectroscopists.” Oka responded that he was “very, very, very, very, very
much interested.” In 1975, Kroto and a cluster of Canadian astronomers were suc-
cessful in discovering HC5N. Then Kroto upped the ante. Why not see if HC N was
present as well? Since his team’s allotted time with the radio telescope was coming to
an end, they had to race to find the frequency of the molecule. By the time Kroto and
his crew set up the radio telescope apparatus in the dark woods of Algonquin Park,
Ontario, they were still awaiting word on the frequency from the colleague calculating
it in England. The frequency arrived (via telephone and then radio transmission to the
Algonquin hinterland) with not amoment to spare, just as Taurus climbed the horizon
of the night sky. Kroto recounted the emotionally charged finale to the experiment in
the magazine Angewandte Chemie: “The next few hours were high drama. We dashed
out to the telescope and tuned the receiver to the predicted frequency range …We
tracked the extremely weak signals from the cold dark cloud throughout the evening.
The computer drove the telescope and stored incoming data, but to our frustration we
could not process the data on-line while the telescope was running. The system did,
however, display individual ten-minute integrations, and as the run progressed we
watched the oscilloscope for the slightest trace of the predicted signal in the receiver’s
central channel …Desperate for even the faintest scent of success, we carried out a
simple statistical analysis in order to determinewhether the signal level of the channel
was greater than the noise. As the night wore on, we becamemore and more excited,
convinced that the signal was significantly more often high than low; we could hardly
wait for Taurus to set. By 1:00 a.m. we were too excited and impatient to wait any
longer, and shortly before the cloud vanished completely, Avery stopped the run and
processed the data. The moment when the trace …appeared on the oscilloscope was
one of those that scientists dream about and which, at a stroke, compensate for all the
hard work and the disappointments which are endemic in life.” Ibid.

52. Ibid.

53. Kroto, interviews; and Kroto, “The Celestial Sphere That Fell to Earth.”

54. Smalley had never come across the British term “wadge” for a cluster and liked
it so much that he started to refer to C60 as the “Mother Wadge.” The omnipresence
of the wadge led Sir Harry to call it the “Godwadge.” Ibid.

55. Ibid.



56. Coxeterwasn’t thrilledwith thenameBuckminsterfullerene. “He argued that the
structure already had a beautiful name—the truncated icosahedron,” recalled Glenn
Smith, who suggested there were any number of names that would have beenmore
appropriate. The truncated icosahedron had been discovered by Archimedes—how
about the Archimedene? Or, named after Leonardo da Vinci for his beautiful ren-
derings? Or—although Coxeter would never suggest such a thing—how about the
Coxeterene, acknowledging the twentieth century’s curator of such shapes? Coxeter,
interviews; Smith, interviews.
57. This work was done together with his colleague Ken McKay in the UK. Kroto,

interviews; and Kroto, “The Celestial Sphere That Fell to Earth.”
58. Hansard, House of Lords, December 2, 1991–January 9, 1992, 590.
59. “C Sixty Inc.,” http://www.csixty.com/ (accessed February 4, 2006).
60. Kroto, interviews.
61. Whiteley, interviews.

20.12 CHAPTER 11—“COXETERING” WITH M. C. ESCHER (AND PRAISING OTHER
ARTISTS)

1. Coxeter, “Aspects of Symmetry,” Banff, Alberta, August 27, 2001.
2. One public lecture in Coxeter’s repertoire was “The Mathematics of Leonardo

da Vinci,” in which he stated: “Leonardo became interested in regular polygons and
their symmetry groups through his desire to design buildings with symmetrical plans,
such as the hexagonal Capella Emiliana in Venice and the octagonal San Maria degli
Angeli in Florence …Surely Leonardo would have agreed with Professor J. L. Coolidge
of Harward, who said (in 1929): ‘It is my personal credo that Geometry is a branch of
Art.’ ” Coxeter, “The Mathematics of Leonardo da Vinci,” Coxeter Lectures File, Coxeter
Fonds, University of Toronto Archives.
3. Ed Barbeau (emeritus professor of mathematics, University of Toronto), inter-

views, Toronto, February 26, 2003, February 24, 2005.
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9. Locher, 70–71.

10. J. L. Locher, TheWorld of M. C. Escher, 48.

11. Locher et al.,M. C. Escher: His Life and Complete Graphic Work, 71–73.

12. Ibid.

13. Snow was a Cambridge man of Coxeter’s vintage and, like Escher, based his
ideas on a meeting of the two cultures in his own experience. As Snow described,
he was by training a scientist and by vocation a writer (Escher’s father and brothers
were scientists, whereas he studied at the School for Architecture and Decorative
Arts in Haarlem, and there found a mentor in teacher Samuel Jessurun de Mesquita).
In his lecture, Snow recounted an anecdote of Cambridge lore demonstrating the
tepid interaction between artistic and scientific minds at the Trinity high table. An
artistically inclined visitor tried to engage his neighbor to his left in conversation
and “got a grunt” in response. “He then tried the man on his own right hand and got
another grunt.” The president of Trinity, sitting at the table, explained: “Oh, those are
the mathematicians! We never talk to them!” Snow, however, was worried about, as
he said, “something more serious. I believe intellectual life of the whole of Western
society is increasingly being split into two polar groups…I remember G. H. Hardy once
remarking to me in mild puzzlement, some time in the 1930s: ‘Have you notice how
the word “intellectual” is used nowadays? There seems to be a new definition which
certainly doesn’t include Rutherford or Eddington or Dirac or Adrian or me. It does
seem rather odd.’ ” Snow agreed. “[I]t is bizarre how very little of twentieth-century
science has been assimilated into twentieth-century art.” The divide didn’t hold with
Escher and Coxeter. C. P. Snow, The Two Cultures.

14. Coxeter diaries, 14 September 1954.

15. Coxeter focused the opening section of his paper, “The Mathematical Implica-
tions of Escher’s Prints,” on Escher’s depiction of the Platonic solids: “Like Leonardo
daVinci andAlbrecht Dürer, Escher has a strong appreciation of the five Platonic solids
…‘They symbolize,’ he says, ‘man’s longing for harmony and order, but at the same
time their perfection awes us with a sense of our own helplessness. Regular polyhedra



are not inventions of the humanmind, for they existed long beforemankind appeared
on the scene.’ ” Coxeter, “The Mathematical Implications of Escher’s Prints,” 49, in
The World of M. C. Escher (citing Escher, in The Graphic Work of M. C. Escher, 9, Ballentine
Books, New York, 1967).

16. Doris Schattschneider,M. C. Escher: Visions of Symmetry, 2.
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sense, Coxeter is an influence on my own work, and the work of people doing similar
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farther than 14 billion light-years. This limits us in what we can see and what data
we can gather.” The only way there will be enough data, according to Starkman, is
if the universe ceases with its expansion. “It might stop its accelerated expansion,
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an infinite set of new universes, the laws of which are within our reach, though we
can never set foot in them.” Coxeter, “Royal Astronomical Society Club,” March 10,
1972, Lectures File, Coxeter Fonds, University of Toronto Archives; László Fejes-Tóth,
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Gerald Alexanderson, Brenda Fine, Geoffrey Hinton, Egon Schulte, Douglas Dunham,
John McKay, Peter McMullen, Barry Shell, Ken Davidson, Larry Schmidt, Peter Taylor,
Bob Erdahl, and William Higginson.

Jean-Pierre Serre, Pierre Cartier, Michel Broué, Jacques Tits, and Liliane Beaulieu,
helped in my attempt to get to the bottom of the Bourbaki myth.



On the intersection between Coxeter’s geometry and scientific applications, I am
grateful to Jeff Weeks, Neil Sloane, Sir Harry Kroto, Marc Henneaux, J. R. Gott III,
Leon Lederman, Gordon Lang, Bob Tennent, László Lovász, John Moffat, Edward
Witten, Tony DeRose, Laurence Johnson, and on a quirky neurological tangent, Sandra
Witelson. The expertise of Robert Craig and Charles Small informedmy consideration
of Coxeter’s musical compositions.
Coxeter’s story could not have been told without pictures. Thank you to Faith Lo-

gothetti for allowing the reproduction of David Logothetti’s cartoon Coxeters; Marc
Pelletier for his 120-cell sculpture (and Amina Allen for her photographs) and for
the Donchian images; Stan Sherer and MarionWalter for photographs of Coxeter at
work and play; Michel Proulx for the Fuller geodesic dome; Eden Robbins for the cover
photo; and Nigel Dickson, who gallantly traded a bottle of Bordeaux for my jacket
photo (and who took the last portrait of Coxeter, which appears in chapter 13).
Marnee Gamble and GarronWells at the University of Toronto Archives were very

patient with my process; Ken Rose at the Rockefeller Archive Center obliged beyond
the ordinary requests; copies of the Fuller-Coxeter correspondencewere sent from the
Department of Special Collections at the Stanford University Libraries; and Escher’s
letters to his family from the National Gallery of Canada, as well as the Coxeter-Escher
exchange housed at the National Gallery of Art in Washington, D.C. I was lucky as well
to find George Escher and get his memories of his father’s friendship with Coxeter.
During research in the UK, Trinity College, Cambridge, kindly let me stay in resi-

dence for threeweeks during the summer of 2003. Many people at the university aided
my archival dig, tunneling seventy-five years into the past: Catherine Boyle, Raymond
Lickorish, Samantha Pinner, Jonathan Smith, Jacqueline Cox, Adam Perkins, Malcolm
Underwood, and many others.
Nesta Coxeter opened her stash of family archives in London, and Eve Coxeter

invited me to stay in Liverpool (and Joan Coxeter reminisced over the phone from
California). Jane and Royston Carpenter allowed a complete stranger to sleep in one
of Coxeter’s childhood homes; Timothy Prus agreed to let me to wander through
34 Holland Park Road. John and Margie Robinson were gracious hosts at Agecroft,
Galhampton, and proffered all sorts of sustenance, then and since.
Coxeter’s children, Susan Thomas and Edgar Coxeter, eagerly read the manuscript,

and offered a steady stream of personal reflections that deepened the portrait of
Coxeter, the man.



Infinite thanks to Doris Schattschneider, for her intricate reading of themanuscript,
and for providing many of the book’s illustrations (and more).
Monster-sized thanks to Princeton’s John Horton Conway, who—his daunting eru-

dition notwithstanding—is a joy to know. His contribution was invaluable in every
respect, and, in particular, is valued to a magnitude of a very high order for his vetting
of the manuscript not once, but thrice (and thank you to Diana and Gareth Conway,
who welcomedme in their home during those three extended visits).
Both the book and I were sustained with financial support from the Ontario Arts

Council, the Canada Council for the Arts, and the Writers’ Trust Woodcock Fund.
Many fellowwriters, editors, and colleagues, have inspired andencouragedmealong

the way: Stuart McLean, David Hayes, Tim Falconer, Virginia Smart, Sarah Galashan,
Maya Gallus, Justine Pimlott, Don Obe, Lynn Cunningham, Lindalee Tracey, David
MacFarlane, Ian Brown, Rick Boychuk, Ken Alexander, Paul Wilson, Noah Richler, Jeet
Heer, and many others.
Shannon Black is a strong and steady friend with sharp advice.
Douglas Bell is brilliant and funny and, like water, essential in every way.
And I owe it all, really, to H. S. M. Coxeter, who tolerated me chasing him around

for two years, asking at once simple and complex questions. He launchedme on an
all-consuming journey that opened my perspective on the world and took me places I
otherwise would never have found—all of which, looking back, was a huge amount of
fun.
With special thanks for the new edition to Diana Gillooly, Whitney Rauenhorst, Terri

O’Prey, Mark Bellis, and company at Princeton University Press.



BIBLIOGRAPHY

For a full list of Publications by H. S. M. Coxeter, see appendix 8.
Abbott, Edwin A. Flatland: A Romance of Many Dimensions. New York: Dover Publica-

tions, 1952.
Abbott, Edwin A. With notes by Ian Stewart. The Annotated Flatland. Cambridge, MA:

Perseus Publishing, 2002.
Abercrombie, W.E. “Geometry—An Interlude or an Essential,” Ontario Mathematics

Gazette 5, no. 3 (1967): 17–24.
Abraham, Carolyn. Possessing Genius. Toronto: Penguin Canada, 2001.
Albers, Donald, ed. “Is Geometry Dead?” The Two-Year College Mathematics Journal

11, no. 1 (January 1980).
Albers, Donald J., and G. L. Alexanderson, eds. Mathematical People: Profiles and

Interviews. Boston: Birkhäuser, 1985.
Aldrich, John. “The Mathematics PhD in the United Kingdom.” http://www.econ

omics.soton.ac.uk/staff/aldrich/PhD.htm
Anderson, Marlow, Victor Katz, and RobinWilson, eds. Sherlock Holmes in Babylon

and Other Tales of Mathematical History. Washington, D.C.: Mathematical Association of
America, 2004.
Armitage, J. V. “The Place of Geometry in a Mathematics Education,” The Changing

Shape of Geometry. New York: Cambridge University Press, 2003, 515–26.
Aspray, William. “The Emergence of Princeton as a World Center for Mathematical

Research, 1896–1939,” in A Century of Mathematics in America, vol 3. Edited by Peter
Duren. Providence: American Mathematical Society, 1989, 195–215.
Baake, M., and R. V. Moody, eds. Directions in Mathematical Quasicrystals. Providence:

American Mathematical Society, 2000.
Baake, M., Uwe Grimm, and Robert V. Moody. “What Is Aperiodic Order?” Spektrum

der Wissenschaften, February 2002, 64–74.

423

http://www.economics.soton.ac.uk/staff/aldrich/PhD
http://www.economics.soton.ac.uk/staff/aldrich/PhD


Ball, W. W. Rouse. A Short Account of the History of Mathematics. London: Macmillan,
1912.
_______. Cambridge Papers. London: Macmillan, 1918.
_______. Mathematical Recreations and Essays, Tenth Edition. London: Macmillan,

1931.
Ball, W. W. Rouse. Revised by H. S. M. Coxeter. Mathematical Recreations and Essays,

11th ed. New York: Macmillan, 1939.
Ball, W. W. Rouse, and H. S. M. Coxeter. Mathematical Recreations and Essays, 13th ed.

New York: Dover Publications, 1987.
Banchoff, Thomas F. Beyond the Third Dimension: Geometry, Computer Graphics,

and Higher Dimensions. New York: Scientific American Library, 1990.
Banchoff, Thomas F. “Interview with Fr. Magnus J. Wenninger,” Symmetry: Culture

and Science 13, nos. 1–2 (2002): 63–70.
Barrow-Green, June, and Jeremy J. Gray. “Geometry at Cambridge, 1863–1940,”

Historia Mathematica, June 2006, 42.
Barwell, Noel. Cambridge. London: Blackie & Son Limited, n.d.
Batterson, Steven L. Stephen Smale: TheMathematicianWhoBroke the Dimension Barrier.

Providence: American Mathematical Society, 2000.
Beaulieu, Liliane. “A Parisian Café and Ten Proto-Bourbaki Meetings (1934–1935),”

The Mathematical Intelligencer 15, no. 1 (1993): 27–35.
_______. “Bourbaki’s Art of Memory,” Osiris 2, second series, vol. 14, Commemorative

Practices in Science: Historical Perspectives on the Politics of Collective Memory,
1999, 219–51.
_______. “Dispelling a Myth: Questions and Answers about Bourbaki’s Early Work,

1934–1944,” The Intersection of History andMathematics. Basel: Birhäuser, 1994, 241–52.
Beckwith, Philip. “Paul S. Donchian Opens Door to Fairyland of Pure Science: His

Wire and Cardboard Models Explain Highest Mathematics,” The Hartford Daily Courant,
January 20, 1935, E3.
Bell, E. T. The Development of Mathematics. New York: McGraw-Hill, 1945.
_______. Men of Mathematics. London: Victor Gollancz, 1937.
Bell, Jordan. “The Geometrical Foundations of Coxeter Groups.” Honours Project,

Carleton University, School of Mathematics and Statistics, January 14, 2005.
Benn, John. “Universities and Public Life: A Contrast between England andAmerica

in Which Room for Improvement Is Noted,” Princeton Alumni Weekly,March 17, 1933.



Berberian, S. K. “Bourbaki, the Omnivorous Hedgehog: A Historical Note?” The
Mathematical Intelligencer 2 (1980): 104–5.
Blackburn, David, and Jonathan Rosenhead. “Cambridge Mathematics,” The Eagle,

EL 8, 46–49.
Blay, Michel. Reasoning with the Infinite. Chicago: University of Chicago Press, 1998.
Boas, R. P. “Bourbaki and Me,” The Mathematical Intelligencer, no. 4 (1986): 84.
Bodanis, David. E =mc2. Toronto: RandomHouse, 2001.
Bogomolny, Alexander. http://www.cut-the-knot.org.
Bonpunt, Louis. “The Emergence of Symmetry Concepts by the Way of the Study of

Crystals (1600–1900),” Symmetry: Culture and Science, 10, no. 1–2 (1999), 127–41.
Borel, Armand. “Twenty-Five Years with Nicolas Bourbaki, 1949–1973,” Notices of

the AMS 45, no. 3 (March 1998): 373–80.
_______. “The School of Mathematics at the Institute for Advance Study,” A Cen-

tury of Mathematics in America, vol 3. Edited by Peter Duren. Providence: American
Mathematical Society, 1989, 119–47.
Borwein, Jonathan M., and David H. Bailey. Mathematics by Experiment: Plausible

Reasoning in the 21st Century. Natick: A. K. Peters, 2004.
Bourbaki, Nicolas. “The Architecture of Mathematics,” American Mathematical

Monthly 57 (April 1950): 221–32.
_______. Groupes et Algèbres de Lie, 4–6. Paris: Hermann, 1968 (reprinted New York:

Masson, 1981).
_______. Elements of the History of Mathematics. New York: Springer, 1999.
Brannan, David A., Matthew F. Esplen, and Jeremy J. Gray. Geometry. New York:

Cambridge University Press, 1999.
Brewster, Sir David. The Kaleidoscope: Its History, Theory, and Construction. Holyoke:

Van Cort Publications, 1987.
Brown, Ronald. “Sculptures by John Robinson at the University of Wales, Bangor,”

The Mathematical Intelligencer 16, no. 3 (1994): 62–64.
Bruhn, Jörn. “Mathematics Education and Comparative Studies: Two Examples,”

Reflections on Educational Achievement, Papers in Honour of T. Neville Postlethwaite.
New York: Waxmann-Verlag, 1995, 69–74.
Brunés, Tons. The Secrets of Ancient Geometry, and Its Use. Copenhagen: Rhodos, 1967.
Bryden, John. Best-Kept Secret: Canadian Secret Intelligence in the SecondWorld

War. Toronto: Lester Publishing, 1993.

http://www.cut-the-knot.org


Bursill-Hall, Piers. “Why Do We Study Geometry? Answers Through the Ages,”
Lecture delivered at the opening festivities of the Faulkes Institute for Geometry,
University of Cambridge, May 2002.
Calaprice, Alice. The New Quotable Einstein. Princeton: Princeton University Press,

2005.
Cambridge University. Cambridge University Reporter. Cambridge: Cambridge Univer-

sity Press, October 8, 1926.
Canadian Press. “Drew Demands Gov’t Investigate U of T Professor,” The Daily Press,

March 17, 1950.
Carroll, Lewis. Euclid and His Modern Rivals. New York: Dover Publications, 1973.
Carroll, Lewis. With introduction and notes by Martin Gardner. The Annotated Alice.

New York: Clarkson N. Potter, 1960.
Cartan, Henri. “Nicolas Bourbaki and Contemporary Mathematics,” The Mathemati-

cal Intelligencer 2 (1980): 175–80.
Chaplin, Virginia. “Princeton Mathematics: A Notable Record,” Princeton Alumni

Weekly,May 1958, 9, 6–15.
Church, A. H. On the Relation of Phyllotaxis to Mechanical Laws. London: Williams &

Norgate, 1904.
Coleman, A. J. “Algebraic Methods,” Encyclopedia of Applied Physics, vol. 1. VCH

Publishers, 1991, 515–37.
Conway, John Horton, and Neil J. A. Sloane. Sphere Packings, Lattices, and Groups. New

York: Springer, 1999.
Conway, John H., and Richard K. Guy. The Book of Numbers. New York: Copernicus,

1996.
Coxeter Fonds, B2004–0024, University of Toronto Archives.
Coxeter, Harold Scott Macdonald. “Some Contributions to the Study of Regular

Polytopes,” PhD. diss., December 18, 1931, Cambridge University Library.
_______. University of Toronto Library Oral History Project. B1986–0088, Univer-

sity of Toronto Archives.
_______. Rockefeller Fellowship Record Card, Rockefeller Archive Center, Sleepy

Hollow, New York.
_______. Student File, Alumni Records, Trinity College, Cambridge.
_______. “Chirality and Phyllotaxis,” Coxeter Lectures File, Coxeter Fonds, Univer-

sity of Toronto Archives.



_______. “The Mathematics of Leonardo da Vinci,” Coxeter Lecture Files, Coxeter
Fonds, University of Toronto Archives.
_______. “Royal Astronomical Society Club,” March 10, 1972, Coxeter Lectures File,

Coxeter Fonds, University of Toronto Archives.
Dakers, Caroline. The Holland Park Circle: Artists and Victorian Society. New Haven:

Yale University Press, 1999.
Davenport, Guy. “The Kenner Era,” National Review, December 31, 1985.
Davies, John D. “The Curious History of Physics at Princeton,” Princeton Alumni

Weekly, October 1973, 2, 8–11.
Davis, Chandler. “The Purge,” in A Century of Mathematics in America, vol. 1. Edited

by Peter Duren. Providence: American Mathematical Society, 1988, 413–28.
_______. “Where Did Twentieth-Century Mathematics GoWrong?” The Intersection

of History and Mathematics. Edited by Sasaki Chikara et al., Boston: Birkhäuser, 1994.
Davis, Chandler, andErichW.Ellers, eds. TheCoxeter Legacy: Reflections andProjections.

Toronto/Providence: American Mathematical Society/Fields Institute, 2006.
Davis, Chandler, Branko Grünbaum, F. A. Sherk, eds. The Geometric Vein, The Coxeter

Festschrift. New York: Springer-Verlag, 1981.
Davis, Chandler, and Marjorie Senechal, eds. “The World of Coxeter,” The Mathemati-

cal Intelligencer 26, no. 3 (Summer 2004).
Davis, Philip J. “The Rise, Fall, and Possible Transfiguration of Triangle Geometry:

A Mini History,” American Mathematical Monthly 102 (1995): 204–14.
_______. Thomas Gray, Philosopher Cat. Boston: Harcourt, Brace, Jovanovich, 1988.
Dehaene, Stanislas, et al. “Core Knowledge of Geometry in an Amazonian Indigene

Group,” Science 20 (January 2006): 381–84.
Derbyshire, John. Prime Obsession: Bernhard Riemann and the Greatest Unsolved

Problem in Mathematics. Washington, D.C.: Joseph Henry Press, 2003.
Devlin, Keith. The Language of Mathematics: Making the Invisible Visible. New York:

W. H. Freeman, 2000.
Devlin, Keith. Mathematics: The Science of Patterns. New York: Scientific American

Library, 1997.
Dickson, Paul. Sputnik: The Launch of the Space Race. New York: Walker & Company,

2001. Dieudonné, Jean. “New Thinking in School Mathematics,” in New Thinking in
School Mathematics. Organisation for European Economic Co-operation, 1961, 31–45.



_______. “The Work of Bourbaki during the Last Thirty Years,” Notices of the AMS 29
(1982): 618–23.
_______. “The Work of Nicholas Bourbaki,” American Mathematical Monthly 77

(February 1970): 134–45.
Dunne, J. W. An Experiment with Time. Charlottesville: Hampton Roads Publishing

Company Inc., 2001.
Duren, Peter, et al., eds. A Century of Mathematics in America, vols. 1–3. Providence:

American Mathematical Society, 1988–89.
Dyson, Freeman. From Eros to Gaia. New York: Pantheon Books, 1992.
Einstein, Albert. Sidelights on Relativity. New York: Dover Publications, 1983.
Ellers, Erich W., Branko Grünbaum, Peter McMullen, and Asia Ivić Weiss. “H. S. M.

Coxeter (1907–2003),” Notices of the AMS 50, no. 10 (November 2003): 1234–40.
Emmer, Michele, ed. Mathematics and Culture, vol 1. New York: Springer, 2000.
_______. Mathland: From Flatland to Hypersurfaces. Basel: Birkhäuser, 2004.
_______, ed. The Visual Mind: Art and Mathematics. Cambridge, MA: The MIT Press,

1995.
Eriksson, Tommy et al. “Enantiomers of Thalidomide: Blood Distribution and the

Influence of Serum Albumin on Chiral Inversion and Hydrolysis,” Chirality 10 (1998):
223–28.
Ernst, Bruno. The Magic Mirror of M. C. Escher. New York: RandomHouse, 1976.
Escher, M. C. Correspondence, Library and Archives, National Gallery of Canada,

Ottawa, Ontario.
_______. Correspondence, Haags Gemeentemuseum, The Hague, the Netherlands.
_______. Archives, National Gallery of Art, Washington, D.C.
_______. Escher on Escher: Exploring the Infinite. New York: Harry N. Abrams, 1989.
Farrell, Barry. “The View from the Year 2000,” LIFE, February 26, 1971, 46–58.
Ferguson, Kitty. Tycho & Kepler. New York: Walker Books, 2002.
“The Fields Medal,” http://www.fields.utoronto.ca/aboutus/jcfields/

fields_medal.html.
Fillmore, Peter, ed. Canadian Mathematical Society, 1945–1995. Ottawa: Canadian

Mathematical Society, 1995.
Fitzgerald, Penelope. The Gate of Angels. New York: Houghton Mifflin Company,

1998.

http://www.fields.utoronto.ca/aboutus/jcfields/fields_medal.html
http://www.fields.utoronto.ca/aboutus/jcfields/fields_medal.html


Fosdick, Harry Emerson. On Being a Real Person. London: Student Christian Move-
ment Press, 1954.
Fosdick, Raymond B. The Story of the Rockefeller Foundation. New York: Harper &

Brothers, 1952.
Friedman, Martin L. The University of Toronto: A History. Toronto: University of

Toronto Press, 2002.
Freudenthal, Hans. “Geometry Between the Devil and the Deep Sea,” Educational

Studies in Mathematics (1971): 413–35.
Fuller, R. Buckminster, Papers, M1090, Department of Special Collections and Uni-

versity Archives, Stanford University Libraries.
_______. Critical Path. New York: St. Martin’s Press, 1981.
_______. Synergetics: Explorations in the Geometry of Thinking. New York: Macmil-

lan, 1975.
_______. Synergetics 2: Further Explorations in the Geometry of Thinking. New

York: Macmillan, 1979.
Galison, Peter. “Images Scatter into Data, Data Gather into Images,” in Iconoclash.

Edited by Bruno Latour and Peter Weibel. Cambridge, MA: MIT Press, 2002, 300–23.
Gallager, Peter. “A Conversation with G. David Forney, Jr.,” IEEE Information Theory

Society Newsletter, February 2006.
Galsworthy, John. The Forsyte Saga. Middlesex: Penguin Books Canada, 1986.
Gardner, Howard. Intelligence Reframed. New York: Basic Books, 1999.
Gardner, Martin. Martin Gardner’s New Mathematical Diversions from Scientific Ameri-

can. New York: Simon & Schuster, 1966.
_______. The New Ambidextrous Universe: Symmetry and Asymmetry fromMirror

Reflections to Superstrings. New York: W. H. Freeman Company, 1990.
Ghyka, Matila. The Geometry of Art and Life. New York: Dover Publications, 1977.
Gleick, James. Isaac Newton. Toronto: RandomHouse Canada, 2003.
_______. Chaos: Making a New Science. New York: Penguin Books, 1988.
_______. “Rethinking Clumps and Voids in the Universe,”New York Times,November

9, 1986, A1.
Goggin, P. M. and J. N. Gordon. “Thalidomide and Its Derivatives: Emerging from

the Wilderness,” Postgraduate Medical Journal, 79, no. 929 (March 2003), 127–32.
Gombrich, E. H. et al. Art, Perception, and Reality. Baltimore: The Johns Hopkins

University Press, 1972.



Gombrich, E.H.Art and Illusion: AStudy in thePsychology of Pictorial Representation.
Princeton: Princeton University Press, 1969.
Goodman, Roe. “Alice Through Looking Glass after Looking Glass: TheMathematics

of Mirrors and Kaleidoscopes,”Mathematical Association of America Monthly 111 (April
2004): 281–98.
Gosset, Thorold. “The Hexlet,” Nature 139 (January 1937): 62.
Gott, J. R. III. “Pseudopolyhedrons,” American Mathematical Monthly 74, no. 5 (May

1967): 497–504.
Gott, J. R. III, and A. Melott. “The Spongelike Topology of Large Scale Structure in

the Universe,” Astrophysical Journal, 1986.
Gott, J. R. III, A. Melott, and M. Dickinson. “The Spongelike Topology of Large Scale

Structure in the Universe,” Astrophysical Journal 306 (1986): 341–57.
Gray, George W. Education on an International Scale. New York: Harcourt, Brace and

Company, 1941.
Gray, Jeremy J. The Hilbert Challenge. New York: Oxford University Press, 2000.
_______. JánosBolyai, Non-EuclideanGeometry, and theNature of Space. Cambridge,

MA: Burndy Library Publications, 2004.
_______, ed. The Symbolic Universe: Geometry and Physics 1890–1930. Toronto:

Oxford University Press, 1999.
Green, Christopher. “Classics in the History of Psychology, Timaeus.” http://ps

ychclassics.yorku.ca/Plato/Timaeus/timaeus2.htm, York University.
Greene, Brian. The Elegant Universe: Superstrings, Hidden Dimensions, and the

Quest for the Ultimate Theory. New York: Vintage Books, 1999.
_______. The Fabric of the Cosmos: Space, Time and the Texture of Reality. New

York: Alfred A. Knopf, 2004.
Guedj, Denis. “Nicholas Bourbaki, Collective Mathematician: An Interview with

Claude Chevalley,” The Mathematical Intelligencer 7, no. 2 (1985): 18–22.
Hadamard, Jacques. The Psychology of Invention in the Mathematical Field. New York:

Dover Publications, 1954.
Halmos, Paul R. I Want to Be a Mathematician: An Automathography. New York:

SpringerVerlag, 1985.
_______. “ ‘Nicolas Bourbaki,’ ” Scientific American 196, no. 5 (May 1957): 88–99.
Hancock, Geoff. “The Many Sides of Donald Coxeter,” Graduate 7, no. 1 (Septem-

ber/October 1979): 10–12.

http://psychclassics.yorku.ca/Plato/Timaeus/timaeus2.htm
http://psychclassics.yorku.ca/Plato/Timaeus/timaeus2.htm


Hansard, Parliamentary Debates, House of Lords, Official Records. London: HMSO,
December 10, 1991, 590.
Hardy, G. H. “What Is Geometry?” The Changing Shape of Geometry. New York: Cam-

bridge University Press, 2003, 13–23.
_______. AMathematician’s Apology. Cambridge: Cambridge University Press, 1940.
Hardy, G. H. With a foreword by C. P. Snow. AMathematician’s Apology. Cambridge:

Cambridge University Press, 2004.
Hargittai, István, “Lifelong Symmetry: A Conversation with H. S. M. Coxeter,” The

Mathematical Intelligencer 18, no. 4 (1996): 35–41.
_______. “John Conway—Mathematician of Symmetry and Everything Else,” The

Mathematical Intelligencer 23, no. 2 (November 2001): 6–14.
Hargittai, István, and Magdolna Hargittai. Symmetry, A Unifying Concept. Bolinas:

Shelter Publications, 1994.
Hargittai, István, and T. C. Laurent, eds. Symmetry 2000, parts 1 and 2. Wenner-Gren

International Series, vol. 80. London: Portland Press, 2002.
Hart, George. Virtual Polyhedra: An Encyclopedia of Polyhedra, http://www.george

hart.com/virtual-polyhedra/vp.html
Heath, Sir Thomas L., trans. Euclid: The Thirteen Books of the Elements, vols. 1–3. New

York: Dover Publications, 1956.
Heilbron, J. L.Geometry Civilized: History, Culture, and Technique. Oxford: Clarendon

Press, 2000.
Henderson, David W., and Daina Taimina. Experiencing Geometry: Euclidean and

Non-Euclidean with History. Upper Saddle River: Pearson Prentice Hall, 2005.
Henderson, Linda Dalrymple. The Fourth Dimension and Non-Euclidean Geometry in

Modern Art. Princeton: Princeton University Press, 1983.
Henneaux, Marc. “Platonic Solids and Einstein Theory of Gravity: Unexpected

Connections,” Francqui Chair Seminar, February 26, 2003.
Henneaux, Marc, et al. “Cosmological Billiards,” Classical and Quantum Gravity 20

(2003).
_______. “E(10) and BE(10) and Arithmetical Chaos in Superstring Cosmology,”

Physical Review Letters 86 (2001): 4,749–52.
_______. “Einstein Billiards and Overextensions of Finite Dimensional Simple Lie

Algebras,” Journal of High Energy Physics, June 2002.

http://www.georgehart.com/virtual-polyhedra/vp.html
http://www.georgehart.com/virtual-polyhedra/vp.html


Herbst, Patricio G. “Establishing a Custom of Proving in American School Geometry:
Evolution of the Two-ColumnProof in the Early Twentieth Century,” Educational Studies
in Mathematics 49 (2002): 283–312.
Hermann, Robert. “Mathematics and Bourbaki,” The Mathematical Intelligencer 8, no.

1, 1986): 32–33.
Hilbert, David and S. Cohn-Vossen. Geometry and the Imagination. New York: Chelsea

Publishing Company, 1952.
Hoffman, Donald D. Visual Intelligence: HowWe Create What We See. New York: W. W.

Norton, 1998.
Hoffman, Paul. The ManWho Loved Only Numbers. New York: Hyperion, 1998.
Hofstadter, DouglasR. “FromEuler toUlam: Discovery andDissectionof aGeometric

Gem,” Center for Research on Concepts and Cognition, 1992 (also published in a
shorter version: “Discovery and Dissection of a Geometric Gem,” Geometry Turned On!
Edited by J. King and D. Schattschneider. Mathematical Association of America, 1997,
3–14).
_______. Gödel, Escher, Bach: An Eternal Golden Braid. New York: Basic Books, 1999.
Holden, Alan. Shapes, Space, and Symmetry. New York: Columbia University Press,

1971.
Homer-Dixon, Thomas. The Ingenuity Gap: CanWe Solve the Problems of the Future?

Toronto: Vintage, 2001.
Horne, R. W., “The Structure of Viruses,” Scientific American 208, no. 1 (January

1963): 48–56.
Howson, Geoffrey. “Geometry: 1950–1970,” in One Hundred Years of L’Enseignmement

Mathématique, edited by Daniel Coray et al. Geveva: L’Enseignement Mathématique,
2003, 115–31.
Howson, Geoffrey. “Milestone or Millstone?” in The Changing Shape of Geometry. New

York: Cambridge University Press, 2003, 505–14.
Infeld, Leopold. “He Renounced Canada for Poland,” The Globe and Mail, February

26, 1951.
_______. Quest: The Evolution of a Scientist. New York: Doubleday, Doran & Co., Inc.,

1941.
Infeld, Leopold. Whom the Gods Love: The Story of Evariste Galois. New York: McGraw-

Hill Book Company, Inc., 1948.



Ivins, William M. Jr. Art & Geometry: A Study in Space Intuitions. New York: Dover
Publications, 1964.
Jackson, Allyn. “Interview with Henri Cartan,” Notices of the AMS 46, no. 7 (August

1999): 782–88.
James, Ioan. Remarkable Mathematicians: From Euler to von Neumann. Cambridge

University Press/Mathematical Association of America, 2002.
Jay, Martin. Downcast Eyes: The Denigration of Vision in Twentieth-Century French

Thought. Berkeley: University of California Press, 1994.
Jones, C. Sheridan. London in War-Time. London: Grafton & Co., 1917.
Jowett, Benjamin. “Selections from Plato’s Timaeus,” in The Collected Works of Plato.

Princeton: Princeton University Press, 1980.
(K-13) Geometry Committee. Geometry, Kindergarten to Grade Thirteen, Toronto: On-

tario Institute for Studies in Education, 1967.
Kanigel, Robert. TheManWhoKnew Infinity: ALife of theGeniusRamanujan. Toronto:

Washington Square Press, 1992.
Kaplan, Robert, and Ellen Kaplan. The Art of the Infinite. New York: Oxford University

Press, 2003.
Kaplansky, Irving. Linear Algebra and Geometry. New York: Chelsea Publishing

Company, 1974.
Kaku, Michio. Parallel Worlds: A Journey Through Creation, Higher Dimensions, and

the Future of the Cosmos. Toronto: Doubleday, 2005.
Kepler, Johannes. The Six-Cornered Snowflake. London: Oxford University Press,

1966.
Kline, Morris. Mathematics for the Nonmathematician. New York: Dover Publications,

1967.
Kosslyn, Stephen M. Image and Brain: The Resolution of the Imagery Debate. Cam-

bridge, MA: MIT Press, 1994.
Kostant, Bertram. “The Graph of the Truncated Icosahedron and the Last Letter of

Galois,” Notes of the AMS 42, no. 9 (September 1995): 959–68.
Kroto, Harold, J. R. Heath, S. C. O’Brien, R. F. Curl, and R. E. Smalley. “C60: Buck-

minsterfullerene,” Nature 318 (November 1985, 14): 162–63.
Kroto, Harold W. “C60: Buckminsterfullerene, The Celestial Sphere that Fell to

Earth,” Angewandte Chemie 31, no. 2 (February 1992): 111–29.
_______. “Space, Stars, C60, and Soot,” Science 242 (November 1988, 25): 1139–45.



Lai, Jonathan. “Finite Coxeter Groups.” PhD thesis, CarletonUniversity, Department
of Mathematics and Statistics, January 16, 1984.
Laurence, William I. “The Week in Science: Measuring the Earth’s Age … Projecting

HyperCubes,” The New York Times, July 1935 21, 6 (Science).
Lederman, Leon, and Christopher Hill. Symmetry and the Beautiful Universe. Amherst:

Prometheus Books, 2004.
Lehrer, Tom. “NewMath,” The Year That Was, http://www.lyricsfreak.com/tZ

tom-lehrer/.
Leitch, Alexander. A Princeton Companion. Princeton: Princeton University Press,

1978.
Lightman, Alan. The Discoveries: Great Breakthroughs in Twentieth-Century Sci-

ence. Toronto: Alfred A. Knopf Canada, 2005.
Littlewood, J. E. Littlewood’s Miscellany. New York: Cambridge University Press, 1986.
Livio, Mario. The Equation That Couldn’t Be Solved: How Mathematical Genius

Discovered the Language of Symmetry. Toronto: Simon & Schuster, 2005.
Locher, J. L. The World of M. C. Escher. New York: Harry N. Abrams, Inc., 1971.
_______, ed. M. C. Escher: His Life and Complete Graphic Work. New York: Harry N.

Abrams, Inc., 2000.
Logothetti, Dave. “An Interview with H. S. M. Coxeter, the King of Geometry,” The

Two-Year College Mathematics Journal 11, no. 1 (January 1980): 2–18.
Longuet-Higgins, Michael S. “Encounters with Polytopes,” Symmetry: Culture and

Science 13, nos. 1–2 (2002): 17–31.
Loomis, Elisha S. The Pythagorean Proposition. Berea: Ohio Mohler Print Co., 1927.
Lord, E. A., and S. Ranganathan. “Sphere Packing, Helices and the Polytope {3,3,5},”

European Physical Journal 15 (2001): 335–43.
Luminet, Jean-Pierre, Jeffrey R. Weeks, Alain Riazuelo, Roland Lehoucq, and Jean-

Philippe Uzan. “Dodecahedral Space Topology as an Explanation forWeakWide-angle
Temperature Correlations in the CosmicMicrowave Background,”Nature 425 (October
9, 2003): 593–95.
Lundy, Miranda. Sacred Geometry. New York: Walker & Company, 2001.
MacHale, Desmond. George Boole: His Life andWork. Dublin: Boole Press, 1985.
MacGillavry, Caroline. Fantasy and Symmetry——The Periodic Drawings of M. C. Es-

cher. New York: Harry N. Abrams, 1976.

http://www.lyricsfreak.com/tZtom-lehrer/
http://www.lyricsfreak.com/tZtom-lehrer/


MacLane, Saunders. “Topology and Logic at Princeton,” in A Century of Mathematics
in America, vol 2. Edited by Peter Duren. Providence: American Mathematical Society,
1989, 217–21.
“Magpie & Stump,” The Trinity Magazine, December 1928.
Malatyh, George. “Geometry for All and for Elite,” Tenth International Congress on

Mathematical Education, Copenhagen, July 2004.
Malkevitch, Joseph, ed. Geometry’s Future. Arlington: COMAP, 1991.
Mammana, Carmelo, and Vinicio Villani. Perspectives on the Teaching of Geometry for

the 21st Century, An ICMI Study. Boston: Kluwer Academic Publishers, 1998.
Mandelbrot, Benoit. “Chaos, Bourbaki, and Poincaré,” The Mathematical Intelligencer

11, no. 3 (1989): 10–12.
Mandelbrot, Benoit. Fractals, Form, Chance, and Dimension. San Francisco: W. H.

Freeman and Company, 1977.
_______. The Fractal Geometry of Nature. New York: W. H. Freeman and Company,

1983.
Maor, Eli. To Infinity and Beyond. Boston: Birkhäuser, 1986.
Marks, Robert W. The DymaxionWorld of Buckminster Fuller. Carbondale: Southern

Illinois University Press, 1960.
Mathias, A. R. D. “The Ignorance of Bourbaki,” The Mathematical Intelligencer 14, no.

3 (1992): 4–13.
McMullen, Peter, and Egon Schulte. Abstract Regular Polytopes. New York: Cambridge

University Press, 2002.
Merzback, Uta C. “The Study of theHistory ofMathematics in America: A Centennial

Sketch,” inACentury ofMathematics inAmerica, vol 3. EditedbyPeterDuren. Providence:
American Mathematical Society, 1989, 639–66.
Miyazaki, Koji. An Adventure in Multidimensional Space: The Art and Geometry of

Polygons, Polyhedra, and Polytopes. Toronto: JohnWiley & Sons, 1986.
_______. Science of Higher-Dimensional Shapes and Symmetry. Kyoto: Kyoto Univer-

sity Press, 2004.
Mlodinow, Leonard. Euclid’s Window: The Story of Geometry from Parallel Lines to

Hyperspace. Toronto: Simon & Schuster, 2002.
Monk, Ray. Ludwig Wittgenstein: The Duty of Genius. London: Vintage Books, 1991.
Monson, Barry. Geometry in a Nutshell, Notes for Math 3063. Fredericton: Department

of Mathematics & Statistics, 2000.



Moon, Bob. The NewMaths Curriculum Controversy, An International Story. London:
The Falmer Press, 1986.
Muir, Jane. Of Men and Numbers. New York: Dover Publications, 1996.
Nasar, Sylvia. A Beautiful Mind. Toronto: Simon & Schuster, 1998.
Ne’eman, Yuval. “Symmetry as the Leitmotif at the Fundamental Level in Twentieth

Century Physics,” Symmetry: Culture and Science, 10, no. 1–2 (1999), 143–62.
Nebeker, Frederik. The Princeton Mathematics Community in the 1930s: An Oral History

Project. Princeton, NJ: The Trustees of Princeton University, 1985.
Neiger, Brad L. “The Re-emergence of Thalidomide: Results of a Scientific Confer-

ence,” Teratology, 62, no. 6 (2000), 432–35.
O’Connor, John J., and Edmund F. Robertson. The MacTutor History of Mathematics

Archive. http://www-history.mcs.st-andrews.ac.uk/history/.
Odom, George. “Problem E 3007,” American Mathematical Monthly, Vol. 90, 1983,

482.
Okumura, Hiroshi. “Geometries in the East and the West in the 19th Century,”

Symmetry: Culture and Science, 10, no. 1–2, 189–97.
Osserman, Robert. “The Geometry Renaissance in America: 1938–1988,” in A

Century of Mathematics in America, vol. 2. Providence: American Mathematical Society,
1989, 513–26.
Pantalony, David. “H. S. M. Coxeter’s Unusual Collection of Geometric Models,”

Rittenhouse, Journal of the American Scientific Enterprise 15, no. 1: 11–20.
Pauling, Linus. No More War! New York: Dodd, Mead & Company, 1958.
Pedersen, Jean J. “Geometry Is Alive andWell: The Coxeter Symposium in Toronto,”

The Two-Year College Mathematics Journal 11, no. 1 (January 1980): 19–24.
Pedoe, Daniel. “In Love with Geometry,” The College Mathematics Journal 29, no. 3

(May 1998): 170–88.
Pendergrast,Mark. MirrorMirror: AHistory of theHumanLoveAffairwithRe-flection.

New York: Basic Books, 2004.
Penrose, Roger. The Road to Reality: A Complete Guide to the Laws of the Universe.

London: Jonathan Cape, 2004.
Perkins, Sarah B., and P. J. Rowley. “Bad Upward Elements in Infinite Coxeter

Groups,” Advances in Geometry, 4 (2004), 497–511.
_______. “Evil Elements in Coxeter Groups,” Journal of Algebra, 251 (2002), 538–59.

http://www-history.mcs.st-andrews.ac.uk/history/


Petroski, Henry. Design Paradigms: Case Histories of Error and Judgment in Engi-
neering. New York: Cambridge University Press, 2000.
_______. “Past and Future Failures,” American Scientist 92 (November–December

2004): 500–4.
_______. “Predicting Disaster,” American Scientist 81, March–April 2003): 110–13.
_______. Success through Failure: The Paradox of Design. Princeton: Princeton Univer-

sity Press, 2006.
“Poll on Campus,” Princeton Alumni Weekly,November 4, 1932.
Polo, Irene. Alicia Boole Stott, a Geometer in High Dimension. Preprint.
Pritchard, Chris, ed. The Changing Shape of Geometry. New York: Cambridge Univer-

sity Press, 2003.
Punke, H. H. “The Family and Juvenile Delinquency,” Peabody Journal of Education,

1955, 98.
R.E. “Obituaries: Henry Frederick Baker,” The Eagle, EL 7: 80–83.
Read, A. H. A Signpost to Mathematics. London: C. A. Watts & Co., 1951.
Reist, Marianne, et al. “Chiral Inversion and Hydrolysis of Thalidomide: Mecha-

nisms and Catalysis by Bases and Serum Albumin, and Chiral Stability of Teratogenic
Metabolites,” Chemical Research in Toxicology, 11 (1998), 1521–28.
Rider, Robin E. “Alarm and Opportunity: Emigration of Mathematicians and Physi-

cists to Britain and the United States, 1933–1945,” Historical Studies in the Physical
Sciences 15 (1984): 107–76.
Roberts, Siobhan. “Figure Head,” Toronto Life, January 2003, 82–88.
_______. “I’ve Been Coxetering Today,” National Post, September 2001, 1, B3.
Roberts, Siobhan, and Asia Ivić Weiss. “Donald in Wonderland: The Many-Faceted

Life of H. S. M. Coxeter,” The Mathematical Intelligencer 26, no. 3 (2004): 17–25.
Robinson, Floyd G. “Book Review, Geometry: Kindergarten to Grade Thirteen,” Ontario

Journal of Educational Research 10, no. 1 (Autumn 1967): 67–70.
Robinson, Gilbert de Beauregard. The Mathematics Department in the University of

Toronto, 1827–1978. Toronto: University of Toronto Press, 1979.
_______. Recollections: 1906–1987. Toronto: University of Toronto Press, 1987.
Robinson, John. Symbolic Sculpture. Carouge-Geneva: Edition Limitée, 1992.
Rose, Matthew. “Mathematician Sues Kimberly-Clark Unit over Its Toilet Paper—At

Heart of the Messy Issue Is Tissue’s Quilted Design; Is It the ‘Penrose Pattern’?” The
Wall Street Journal, April 14, 1997.



Rosen, Joe. Symmetry Discovered: Concepts and Applications in Nature and Science.
New York: Cambridge University Press, 1975.
Rota, Gian-Carlo. “Book Reviews,” Advances in Mathematics 77 (1989), 263.
_______. “Fine Hall in Its Golden Age: Remembrances of Princeton in the Early

Fifties,” in ACentury ofMathematics in America, vol 1. Edited by Peter Duren. Providence:
American Mathematical Society, 1989, 223–26.
_______. Indiscrete Thoughts. Boston: Birkhäuser, 1997.
Rowe, David. “Coxeter on People and Polytopes,” The Mathematical Intelligencer 26,

no. 3 (2004): 26–30.
Ruiz, Ángel. “A Bridge Across the Americas: The History of the Inter-American

Committee on Mathematics Education,” The Mathematical Educator 9, no. 2 (Spring
1999): 50–53.
Ruiz, Ángel, and Hugo Barrantes. The History of the Inter-American Committee on

Mathematics Education. Bogotá: Colombian Academy of Exact, Physical, and Natural
Sciences, 1998.
Sadoc, J. F., and N. Rivier. “Boerdijk-Coxeter Helix and Biological Helices,” European

Physical Journal, Vol. B12, November, 1999, pp. 309–18.
Sawyer, W.W.Mathematician’s Delight. Suffolk: Penguin Books, 1944.
_______. Prelude to Mathematics. Middlesex: Penguin Books, 1955.
Schattschneider, Doris. “Coxeter and the Artists: Two-Way Inspiration,” in The

Coxeter Legacy: Reflections and Projections. Providence/Toronto: AmericanMathematical
Society/Fields Institute, 2006, 255–80.
_______. “Coxeter and the Artists: Two-Way Inspiration, Part II,” in Renaissance

Banff Bridges: Mathematical Connections in Art, Music, and Science, Conference Proceedings.
Edited by Reza Sarhangi. Kansas: Winfield, 2005, 473–80.
_______. “Escher: A Mathematician in Spite of Himself,” Structural Topology, No. 15,

9–42.
_______. “Escher’s Metaphors,” Scientific American,November 1994, 48–53.
_______. “In Praise of Amateurs,” in The Mathematical Gardner. Boston: Prindle,

Weber & Schmidt, 1981.
_______. M. C. Escher, Visions of Symmetry. New York: W. H. Freeman Company, 1999.
Schattschneider, Doris, and Michele Emmer, eds. M. C. Escher’s Legacy. New York:

Springer, 2003.
Schechter, Bruce. My Brain Is Open. New York: Touchstone, 2000.



Schmidt, Lawrence E. “SimoneWeil’s Characterization of Algebra as a ‘Monster of
ContemporaryCivilization’—APaperPresented to theAnnual Colloquyof theAmerican
Weil Society,” May 2, 2003.
Scholz, Erhard. “HermannWeyl’s Contribution to Geometry, 1917–1923,” in The

Intersection of History and Mathematics. Basel: Birkhäuser, 1994, 203–29.
Schrag, Lex. “Mathematician Hard to Figure, Prof. Infeld Stays in Poland but Doubt

He Took A-Secrets,” The Globe and Mail, September 22, 1950.
Sen, Amartya. Trinity College: Cambridge, Annual Record 2001. Cambridge: Cambridge

University Press, 2001.
Senechal, Marjorie. “The Continuing Silence of Bourbaki—An Interview with Pierre

Cartier, June 18, 1997.” The Mathematical Intelligencer 20, no. 1, 1998: 22–28.
_______. “Coxeter and Friends,” The Mathematical Intelligencer 26, no. 3 (Summer

2004): 16.
_______, ed. The Cultures of Science. Commack: Nova Science Publishers, 1994.
_______. “Donald and the Golden Rhombohedra,” in The Coxeter Legacy: Reflections

and Projections. Providence/Toronto: MAA/FI, 2006, 159–77.
_______. Patterns of Symmetry. Amherst: University of Massachusetts Press, 1977.
_______. Quasicrystals and Geometry. New York: Cambridge University Press, 1995.
Senechal, Marjorie, and George Fleck, eds. Shaping Space: A Polyhedral Approach.

Boston: Birkhäuser, 1988.
Senechal, Marjorie, and George Fleck. AWorkbook of Common Geometry. Northhamp-

ton: Clark Science Center, Smith College, 1988.
Severance, Kurt, Paul Brewster, Barry Lazos, and Kaniel Keefe. “Wind Tunnel Data

Fusion and Immersive Visualization: A Case Study,” NASA Langley Research Center,
2001.
Shakespeare, William. Complete Works of William Shakespeare. New York: Avenel

Books, 1975.
Shaplen, Robert. Toward the Well-Being of Mankind: Fifty Years of the Rockefeller

Foundation. New York: Doubleday & Company, 1964.
Shell, Barry. “Donald Coxeter, Mathematician and Geometer,” http://www.scie

nce.ca/scientists/scientistprofile.php?pID= 5.
Shenitzer, Abe, and John Stillwell, eds. Mathematical Evolutions. Washington, D.C.:

Mathematical Association of America, 2002.
Sherk, Arthur. “Remembering Donald Coxeter,” CMS Notes, September 2003, 4–6.

http://www.science.ca/scientists/scientistprofile.php?pID=
http://www.science.ca/scientists/scientistprofile.php?pID=


Sherk, F. Arthur, Peter McMullen, Anthony C. Thompson, and Asia Ivić Weiss. Kalei-
doscopes: Selected Writings of H. S. M. Coxeter. Toronto: JohnWiley & Sons, 1995.
Shubnikov, A. V., and V. A. Koptsik. Symmetry in Science and Art. New York: Plenum

Press, 1974.
Sieden, Lloyd Steven. Buckminster Fuller’s Universe: His Life and Work. Cambridge MA:

Perseus Publishing, 2000.
“A Simple Story,” The Trinity Magazine, December 1926, 18.
Sinclair, Lister. “Explorations: Space, Time, and the Atom Bomb,” CBC Television,

February 26, 1957.
_______. “Magic Number,” CBC Ideas,March 12, 1996.
_______. “Math and Aftermath,” CBC Ideas,May 13, 14, 1997.
Sinclair, Nathalie. History of the Geometry Curriculum of the United States (Center for

the Study of Mathematics Curriculum Monograph Series, volume 2). Lansing, MI:
Information Age Publishing Company.
Singh, Simon. Fermat’s Enigma. Toronto: Penguin Books, 1998.
Sion, Maurice, ed. A Pictorial Record of the International Congress of Mathematicians,

Vancouver, Canada, August 21–29, 1974. Vancouver: Canadian Mathematical Congress,
1977.
Smith, Kenneth B. “Fuller Sees Housing Service Industry by ‘72,” Globe and Mail,

October 1, 1968.
Smith, Michael. “Geometric Progression,” University of Toronto Magazine 24, no. 3

(Spring 1997): 12–15.
Snow, C. P. The Two Cultures. New York: Cambridge University Press, 2000.
Soddy, Frederick. “The Kiss Precise,” Nature 137 (June 1936) 1021.
Stekel, W. Disguises of Love: Psycho-Analytical Sketches. London: Kegan Pau, Trench,

Trubner & Co., 1922.
Stekel, W. Sexual Aberrations: Disorders of the Instincts and the Emotions. New York:

Liveright Publishers, 1940.
Stern, BeatriceM.AHistory of the Institute for Advanced Study, 1930–1950. Princeton,

May 1964.
Strauss, Stephen. “Art Is Math Is Art for Professor Coxeter,” The Globe and Mail,May

9, 1996.
Sutton, Daud. Platonic and Archimedean Solids. New York: Walker & Company, 2002.



Swift, Jonathan. AModest Proposal and Other Satires. New York: Prometheus Books,
1995.
Szpiro, George G. Kepler’s Conjecture. Hoboken: JohnWiley & Sons, 2003.
Taylor, Kevin. Central Cambridge: A Guide to the University and Colleges. Cambridge:

Cambridge University Press, 1994.
Taylor, A. E. Plato: The Man and His Work. London: Methuen & Co., 1929.
Thom, René. “ ‘Modern’ Mathematics: An Educational and Philosophic Error? A

Distinguished French Mathematician Takes Issue with Recent Curricular Innovations
in His Field,” American Scientist 59 (November–December 1971): 695–99.
Thompson, D’Arcy. On Growth and Form. New York: Cambridge University Press,

2000.
Thurling, Peter. “Fuller Advises Students Go Outstairs Not Upstairs,” Telegram,

October 1, 1968.
Tierney, John. “Paul Erdös Is in Town. His Brain Is Open,” Science, October 1984,

40–47.
Tits, Jacques. “Groupes et Géométries de Coxeter,”Wolf Prize inMathematics 2 (2001):

740–54.
Toole, John Kennedy. A Confederacy of Dunces. New York: Grove Press, 1980.
Tóth, Imre. Palimpseste: Propos avant un triangle. Paris: Presses Universitaires de

France, 2000.
Trevelyan, G. M. Trinity College: An Historical Sketch. Cambridge: Master and Fellows

of Trinity College, Cambridge, 1990.
TrinityCollegeCouncil. TrinityCollege, Cambridge, Ordinances. Cambridge: Cambridge

University Press, 1931.
Trudeau, Richard. J. Introduction by H. S. M. Coxeter. The Non-Euclidean Revolution.

Boston: Birkhäuser, 1987.
Tufte, Edward R. Envisioning Information: Narratives of Space and Time. Connecticut:

Graphics Press, 2003.
_______. Visual Explanations: Images and Quantities, Evidence and Narrative.

Connecticut: Graphics Press, 2003.
Veblen, Thorstein. The Higher Learning in America. http://socserv2.socsci.mc

master.ca/~eeon/ugcm/3113/veblen/higher.
Wainer, Howard. Visual Revelations: Graphical Tales of Fate and Deception from

Napoleon Bonaparte to Ross Perot. New York: Copernicus, 1997.

http://socserv2.socsci.mcmaster.ca/~eeon/ugcm/3113/veblen/higher
http://socserv2.socsci.mcmaster.ca/~eeon/ugcm/3113/veblen/higher


Washburn, Dorothy K., and Donald W. Crowe. Symmetries of Culture: Theory and
Practice of Plane Pattern Analysis. Seattle: University of Washington Press, 1988.
Weeks, Jeffrey R. The Shape of Space: How to Visualize Surfaces and Three-

Dimensional Manifolds. New York: Marcel Dekker, Inc., 1985.
Weil, André. The Apprenticeship of a Mathematician. Boston: Birkhäuser, 1992.
_______. “History of Mathematics: Why and How,” in Proceedings of the International

Congress of Mathematicians, 1978. Helsinki: Academia Scientiarum Fennica, 1980,
229–36.
Weil, Simone. Gravity and Grace. London: Routledge & Kegan Paul, 1952.
_______. Notebooks I. London: Routledge & Kegan Paul, 1956.
Weiss, Asia Ivić. “Dedication of Sculpture in Honour of H. S. M. Coxeter’s 95th

Birthday,” The Fields Institute Newsletter, June 2002.
Weisstein, Eric. W.MathWorld—AWolframWeb Resource. http://mathworld.wo

lfram.com.
Wells, David. The Penguin Dictionary of Curious and Interesting Geometry. Toronto:

Penguin Books Canada, 1991.
Wells, H. G. The Time Machine. New York: Tor Books, 1986.
Wenninger, Magnus J. Polyhedron Models. Cambridge: Cambridge University Press,

1996.
_______. Spherical Models. New York: Cambridge University Press, 1979.
Wenninger, Magnus J. Dual Models. New York: Cambridge University Press, 1983.
Weschler, Lawrence. A Wanderer in the Perfect City. St. Paul: Hungry Mind Press,

1998.
Weyl, Hermann. Symmetry. New Jersey: Princeton University Press, 1952.
_______. “Discrete Groups Generated by Reflections,” by H. S. M. Coxeter in The

Structure and Representation of Continuous Groups. Princeton: Institute for Advanced
Study, 1935.
Whitehead, A. N. “Geometry,” The Encyclopaedia Britannica, 11th ed., 1910.
Whiteley, Walter. “The Decline and Rise of Geometry in 20th Century North Amer-

ica,” Proceedings of the Canadian Mathematics Education Study Group, June 1999. CMESG,
1999.
_______. “Learning to See like a Mathematician,” Visual Representation and Interpre-

tation. Elsevier, 2004.

http://mathworld.wolfram.com
http://mathworld.wolfram.com


_______. “Working with Visuals in the Mathematics Classroom: Why It Is Needed,
Hard and Possible,” 2005 OAME Conference Paper.
Wilde, Oscar. The Works of Oscar Wilde. London: Collins, n. d.
Worth, Ruth. “U. of T. Heads Seeking End to Nuclear Testing,” The Globe and Mail,

November 23, 1959, A1.
Yaglom, I. M. “Elementary Geometry, Then and Now,” in The Geometric Vein: The

Coxeter Festschrift. New York: Springer, 1981, 253–69.
_______. Geometric Transformations, vols. 1–3. Toronto: RandomHouse, 1962, 1968,

1973.
Young, Grace Chisholm, and W. H. Young. Beginner’s Book of Geometry. New York:

Chelsea Publishing Company, 1970.
Zwicky, Jan. Wisdom and Metaphor. Kentville: Gaspereau Press, 2003.





Index

445





NOTE: DC refers to Donald Coxeter
Abbott, Edwin A., 47, 51
Academy of Sciences (Hungary), 17–18, 35, 245
Adams Prize, 107
Addams, Charles, cartoon by, 135
The Adventures of Alice in Wonderland (Carroll), 211, 221, 239–40
Ahlfors, Lars Valerian, 113
Alberti, Leon Battista, 185
algebra
and Coxeter diagrams, 130–31
Descartes’ views about, 53
and fourth dimension, 51
function of, 160
geometry’s relationship to, 29, 54, 126, 131–36, 152–53, 160
and intuition, 52–53
and visual patterns, 183
Alhambra (Spain), 215, 215n
Alzheimer’s disease, 203, 210, 250
Ambrose, Alice, 106
Amellaibian (language), 42–44
American Mathematical Monthly, 159, 222, 237
American Mathematical Society (AMS), 104, 153
analogies, 51–52, 54, 56, 71, 136, 190, 245
analytic geometry, 53–54, 62, 131
ancient world, 22. See also specific person animation, 199–200
Annals of Mathematics, 94, 96
Apollonius, 54
apple, symmetry of, 4
applications. See specific application
applied sciences, rediscovery of classical geometry by, 187
Archimedes, 45, 54, 64, 113, 179, 210, 250
A rchimedean light fixture, 181
A rchimedean polytopes, 71–72
Archimedean screw, 210



Archimedean solids, 64, 71
Archimedean spirals, 223
Aristotle, 52, 150
art, 37, 38, 108, 212–13, 220–25. See also Escher, M. C.
Arts-sciences relationship, 211–12, 213, 222
“Aspects of Symmetry” Conference (Banff Centre, 2001), 211
Association for the Improvement of Geometrical Teaching, 46
a stronomy/astrophysics, 206–10, 237
A tiyah, Michael, 29, 137, 152, 159–60, 192–93,244–45
axiomatic method, 51–52
Baker, Henry F., 70–71, 72, 74n, 105, 108, 154
Ball, W.W. Rouse, 49, 103, 124–25
Barbeau, Ed, 211–12
Barrow, Isaac, 62
Beatty, Samuel, 108, 140
Beaulieu, Liliane, 154
Beecroft, Philip, 18
Bell, E. T., 11, 54
Bérczi, Szaniszló, 246n
Berger, Robert, 272
Bezdek, Karoly, 32, 231
big bang, 235, 236
biochemistry, 180–81, 202–4
Bogotá, Colombia, “inter-America” conference (1961) in, 158–59
Bohnenblust, Henri Frederic, 87
Bold, Benjamin, 6
Bolyai, Farkas, 28
Bolyai, János, 28–29, 30, 31, 46
“The Book,” 33, 33n, 231
Bourbaki group, 13–14, 119–22, 126, 127, 149, 152–58, 155n, 163, 167–68, 168n,

269
Brahe, Tycho, 62, 64, 64n brain
of Conway, 256
of DC, 19, 256–57



of Einstein, 19, 256–57
mirror symmetry of, 257
Brewster, David, 75, 76
Britain
Buckminsterfullerene discussion in, 208–9
math curriculum in, 159–60
See also Cambridge University; Trinity College
Broué, Michel, 3, 157
Brouwer, Hendrina (Rien). See Coxeter, Rien (Hendrina) Brouwer
Brunelleschi, Filippo, 185
Buckminsterfullerene, 206–10
Budapest, Hungary
János Bolyai Conference in, 6, 17–21, 31–36, 231–36, 245, 252
Symmetry Festival 2003 in, 246, 246n
Bush, George H.W., 251
Bush, George W., 251
Byrne, Oliver, 26–27
C Sixty Inc., 209–10
C60molecule, 24, 206, 208–10, 242
California Institute of Technology, DC lecture at, 126, 127
Cambridge University
Adams Prize at, 107
DC’s lectures at, 252
DC’s tutelage for, 56–57, 130
entrance exams for, 56–57
Fourth International Congress of Mathematics (1912) at, 70
geometry curriculum at, 159–60
Lowndean Chair at, 105–6, 107–8
Newton Institute for Mathematical Sciences at, 62, 229
See also Trinity College; specific person
Canada/USA Mathcamp, 252
Canadian Civil Liberties Union, 141
Canadian Journal of Mathematics, 128
Canadian Mathematical Congress (Fredericton, 1959), 162



carbonmolecule, 206–10
Carroll, Lewis, 211, 221, 239–40, 239n
Cartan, Henri, 120, 194
Cartesian coordinates, 53–54
Cartier, Pierre, 122, 154, 158, 168n
Cartwright, Mary, 60
Castelnuovo, Emma, 161
Castelnuovo, Guido, 70, 161
Catmull, Ed, 200
Cercle Culturel de Royaumont (France, 1959), conference at, 157, 158, 161
CERN (Geneva, Switzerland), 99, 241–42
Challenger space shuttle, 183
Chandrasekhar, Subrahmanyan, 96
chemistry
and geometry gap, 206–10
See also biochemistry
Chesterton, G.K., 245
and his playMagic, 38
Chevalley, Claude, 120, 153, 157, 158
Circle Limit patterns (Escher), 219, 219n, 225–28
circles
Descartes theorem of, 17
and Escher’s work, 219, 219n, 225–28
mutually tangent, 6–7, 17–18, 31–33, 35, 114–15, 229, 231, 255
and topology, 86n
“circles-in-the-sky” test, 235
civil libertarianism, 142
classical geometry. See geometry
Coleman, John, 118, 159
College Geometry Project (University of Minnesota), 163
Comessatti, Annibale, 70
Commission for the International Study and Improvement of Education in Mathe-

matics, 161
communications research, 195–97, 196n communism, 141–42



computer science, 199
computers, 6–7, 199–202, 233–36
Conway, John Horton, 5, 49–51, 94, 125, 126, 133, 160, 197, 198, 230, 231, 252–54,

256, 265, 266–67
Copernicus, 62
cottage, Coxeter family, burning of, 176–77, 180
Coxeter, Donald
ambitions of, 68, 118
appearance of, 3, 32, 60–61, 249
awards and achievements of, 54–55, 65, 79–81, 90, 96, 250n, 252
birth of, 37
brain of, 19, 256–57
childhood and youth of, 5, 38–45, 47–49, 51–52, 54–58
contributions and influence of, 3–7, 13, 13–14, 20, 29, 34–35, 88, 102, 126, 128,

130–39, 146, 149, 152–53, 160, 162, 164, 165, 168, 169, 170n, 173, 187–90, 197, 204,
205, 233, 236, 249
courtship and wedding of, 108–10, 111, 113–16
death of, 255
diet of, 35n, 60, 84, 254–55
education of, 5, 36, 41–43, 54–58
family of, 3, 143–45, 147–49
first discoveries of, 4–5
Fuller’s dedication to, 5, 173, 176, 181–82
geometric epiphany of, 48–49
health of, 19, 60–61, 118, 230–32, 249–54
influences on, 47–48, 68, 70, 228
inheritance of, 147
make-believe world of, 42–44
mantra of, 245
memory of, 187–88
Moser saves life of, 151
motivations of, 6
Mr. Polytope as nickname for, 9, 89
as musician, 38–41, 154



naming of, 38
ninety-fifth birthday of, 230–31, 252–54
personality and character of, 3–5, 45, 65–67, 117–18, 127–29, 148–49, 165–66
poem about, 60
professional regrets of, 33
psychoanalysis of, 67–68
retirement of, 169–70, 173, 220
seventieth birthday of, 252
social life of, 83, 84, 88–89, 97, 104, 143–44, 148–49
See also Coxeter, Donald—lectures of; Coxeter, Donald—writings of
Coxeter, Donald—lectures of
at Cal Tech, 126, 127
at Cambridge, 252
“Close Packing of Spheres,” 163
and DC’s crusade for the visual and intuitive methods, 163, 163n
“Equiaffinities,” 176
about Escher’s work, 226–28
“Geometry of Time and Space,” 176
at Harvard, 153
“Helices and Concho–spirals,” 176–77
to International Congress of Mathematical Education (1992), 222
“Man and His Environment,” 176–77
about non-Euclidean geometry, 226, 228
and Odom’s work, 222
in Philadelphia, 163
“Regular Honeycombs in Hyperbolic Space,” 212
“Rhombic Triacontahedron,” 251
at Southern Illinois University, 176
in Toronto, 163
at University of Toronto, 89–90, 105, 226
on U.S. tour, 150–51
See also specific conference or symposium
Coxeter, Donald—writings of
“An Absolute Property of Four Mutually Tangent Circles,” 6, 17–18, 255



in Annals of Mathematics, 94, 96
about Ball’s “Mathematical Recreations,” 49, 124–25
The Beauty of Geometry, 6
“Crystal Symmetry and its
Generalizations,” 213–15, 218–19
“Dimensional Analogy,” 51–52, 54, 56, 71, 190
“Discrete Groups Generated by Reflections,” 96, 101, 102
“An Easy Method for Construction Polyhedral Group-Pictures,” 125
about Escher’s work, 226–28, 252
The 59 Icosahedra, 65
Generators and Relations, 226
Geometry, Kindergarten to Grade Thirteen, 166–67
Geometry Revisited (with Greitzer), 163, 190, 191, 265
Introduction to Geometry, 6, 7, 12, 25, 35, 112, 150, 151–52, 153, 162, 215, 216, 265
in Leonardo journal, 227–28
listing of all, 275–88
inMathematical Gazette, 57–58
inMathematical Intelligencer, 224–25
“Mathematics and Music,” 176
musical arrangement,Magic, 38, 39
“My Graph,” 187, 188, 270–71
“The Nine Regular Solids,” 125
about non-Euclidean geometry, 226, 228
in Philosophical Transactions of the Royal Society, 72
“A Plea for Affine Geometry in the School Curriculum,” 163
“Polyhedral Numbers,” 180
“The Polytope 221, whose 27 Vertices Correspond to the Lines on the General Cubic

Surface,” 125
“The Polytopes with Regular–Prismatic Vertex Figures,” 72
“A Problem of Collinear Points,” 125
in Proceedings of the Cambridge Philosophical Society, 71
“The Product of Three Reflections,” 125
Projective Geometry, 163, 185, 186–87
“The pure Archimedean polytopes in six and seven dimensions,” 71



“Quaternions and Reflections,” 125
“Reflections on Reflections,” 163
“Regular and Semi–regular Polytopes,” 125
Regular Polytopes, 6, 10–11, 35, 51, 53, 102–3, 130–41, 144, 149, 152–53, 206, 208,

226, 231, 249, 264, 271
“Regular Skew Polyhedra in Three and Four Dimensions and Their Topological

Analogues,” 125
“The Regular Sponges, or Skew Polyhedra,” 125
“Some Contributions to the Study of Regular Polytopes,” 79
“The Space-Time Continuum,” 88
on sphere packing, 194
style of, 125–26, 125n
Twelve Geometric Essays, 164n, 250n
“An Upper Bound for the Number of Equal Nonoverlapping Spheres that Can Touch

Another Sphere of the Same Size,” 197–98
“Virus Macromolecules and Geodesic Domes,” 88, 180–81
“Whence Does a Circle Look like an Ellipse?,” 4, 163
“Why Do Most People Call a Helix a Spiral?,” 163
“OnWigner’s Problem of Reflected Light Signals in the Sitter Space,” 88
in TheWorld of M. C. Escher, 227
Coxeter, Edgar (son), 124, 144, 145, 147, 255
Coxeter, Harold Samuel (father) artistic interests of, 37, 220, 222
and DC at Princeton, 89
and DC-Rien relationship, 109–10
and DC’s editing of Ball’s work, 103
and DC’s future, 83
and DC’s mathematical abilities, 55
and DC’s mirrors, 79
DC’s relationship with, 44–45, 68, 95–96, 105, 109, 110–11
and DC’s romantic life, 88–89
and DC’s Toronto job offer, 108
death of, 113, 116
divorce of, 41–42, 44, 45, 67, 110
and naming of Donald, 38



professional life of, 37
remarriage of, 44
U.S. visit of, 95–96
Coxeter, Eve (half sister), 45
Coxeter, Joan (half sister), 45, 103
Coxeter, Katie Gabler (stepmother), 41, 44, 66, 67, 68, 95, 110, 113, 116
Coxeter, Lucy Gee (mother) as artist, 37, 38, 108, 220, 222
and DC at Cambridge, 57, 60–61
and DC-Rien relationship, 110
and DC’s leaving England, 116
and DC’s mirrors, 78
and DC’s musical interests, 41
DC’s relationship with, 36, 41–42, 44, 45, 68, 108, 109
and DC’s romantic life, 88–89
and DC’s Toronto job offer, 108
death of, 147
divorce of, 41–42, 44, 45, 110
health of, 109, 113
Coxeter, Nesta (half sister), 45
Coxeter, Rien (Hendrina) Brouwer (wife) courtship and wedding of, 108–10, 111,

113–16
DC’s relationship with, 118, 127–28, 143–44, 148–49
death of, 250, 251, 256
early married life of, 118
family life and household of, 148
health of, 149, 250
at ICM conference, 212
journey to Canada of, 116
personality and character of, 118, 148–49
Coxeter, Susan (daughter), 19–20, 34–35, 124, 144, 145, 145«, 230, 251, 254–55
coxeter@coxeter.math.toronto.edu, 199
Coxeter & Son Limited, 37
Coxeter diagrams, 7, 90–95, 102, 130–31, 135–36, 167–68, 191, 198, 216, 218, 262
Coxeter groups



applications of, 88
Bourbaki acknowledgement of, 167–68
Budapest papers about, 232
and consideration of DC for Cambridge professorship, 107
and Conway’s “murder,” 252–53
and crystallography, 216
and DC’s contribution to geometry, 29, 107
and Einstein’s theories, 243, 243n hyperbolic, 243n
importance of, 7, 11, 135–37
and infinity, 243, 243n
and M–theory, 243
andmirrors, 133–35
overview about, 263–64
and polytopes, 131, 133–37
and sphere packing, 198
and string theory, 243–44
symmetry of, 243, 263–64
Tits paper about, 168
as tool for exploring group theory, 9
Vinberg’s study of, 35
Coxeter matrix, 168
Coxeter number, 168
Coxeter-Petrie polyhedra, 58, 238
Coxeter Symposium (Toronto, 1979), 169–70
creativity, DC’s views about, 145–47
cryptographers, 140–41
crystallography, 213–16, 272–74
cube, 10, 23–24, 24n, 49–50, 77–78, 86n, 222
cuboctahedron, 197n
Curl, Robert, 206, 207–8
curriculum. Seemathematics education curved complex geometry, 29, 30, 200
da Vinci, Leonardo, 185
d’Alembert, Jean le Rond, 62
Darvas, Gyorgy, 245–46



Darwin, Charles, 11
data mining, 6–7, 32
Davis, Chandler, 142, 251
de Bruijn, N. G., 212
de Possel, René, 120
death/afterlife, DC’s views about, 225
“Death to Triangles,” 13–14, 122, 154, 157–58, 161, 168
Delsarte, Jean, 120
DeRose, Tony, 200
Descartes, René, 17, 53–54, 62, 131
diagrams. See Coxeter diagrams; visual approach
Dieudonné, Jean, 120, 123, 153, 154, 155, 157–58, 168
differential geometry, 29, 30, 200
Dihedral Kaleidoscopes (film), 163–64, 164n, 165
dimensional geometry, 10, 51–52, 90–94, 115, 128–30, 192, 215, 233–36. See also

four dimensions; three dimensions
diseases, 203–4, 210
dodecahedral hedgehogs, 64
dodecahedron, 10, 24, 24n, 25, 53, 78, 93, 177, 195, 232–36
Donchian, Paul S., 94, 95–96, 95n
“double parallax,” 50
Douglas, Jesse, 113
dream diaries, 68
drugs, 204
Du Val, Patrick, 71, 72, 96–97, 104, 105, 108, 109
duality, and Escher’s work, 229
Duff, George, 173
Dürer, Albrecht, 185
Dyson, Freeman, 170n, 268–71
E8 lattice, 196–97, 198
Eastern Europe, DC’s reputation in, 160
École Normale (Paris, France), 123
Eddington, Arthur, 48
Eilenberg, Samuel, 154–55



Einstein, Albert
brain of, 19, 256–57
at Chicago World’s Fair, 96
DC’s interactions with, 100–101
as Erdös No. 2, 33
geometry views of, 98
Gödel compared with, 269
gravity theory of, 243, 243n
importance of symmetry to theories of, 98–99, 100
andmathematicians, 97–98
as Nobel Prize winner, 97n Noether as friend of, 99
and photoelectric effect, 97n at Princeton, 85, 95, 96, 97, 99
relativity theories of, 30, 48, 85, 95, 97–99, 97n, 239, 241–43
simplicity of theories of, 133
social life of, 97
unified field theory of, 97, 238
elements, four, 23–24
The Elements (Euclid), 26–27, 35, 40, 46, 187, 122
Elements of Mathematics. See Bourbaki group
engineering, 184–85, 192, 210
Enriques, Federigo, 70
Erdös, Paul, 33–34, 148
Escher, George, 178–79, 217, 219, 226
Escher, M. C., 5, 178–79, 211–13, 216–20, 219n, 224–29, 252, 272
Euclid
and analytic geometry, 54
and applied problems, 210
as boring, 156
and Bourbaki, 122
DC’s study of, 48–49, 265
and DC’s views about music, 40–41
DC’s work as addendum to, 130
down with, 13, 154, 157
The Elements of, 26–27, 35, 40, 46, 122, 187



and fourth dimension, 49
geometry as founded on work of, 45
and Hilbert’s work, 46
overview of work of, 25–29
and parallel postulate, 27–28
See also Euclidean plane; Euclidean trignometry; geometry
Euclidean plane, 215, 216, 218
Euclidean trignonmetry, 228
Euler, Leonhard, 86n
Everest, Mary, 73
Expo ‘67 (Montreal, 1967), 173–75, 206
Fedorov, E. S., 272
Fehr, Howard, 159
Fejes-Tóth, László, 169
Fenchel, Werner, 162
Fermi, Enrico, 82
Fermilab (Illinois), 241
Fibonacci, 259–60
Fields, John Charles, 112
Fields Institute (Toronto, Canada), 229, 230, 231, 252–54
Fields Medal, 112–13, 137, 152
films, educational geometry, 163–64
Firmament (Robinson sculpture), 229
Flather, H. T., 64–65
Flatland (Abbott), 47, 51, 52
Forder, H. G., 117
The Forsythe Saga (Galsworthy), 254
four dimensions, 10, 47–53, 47n, 56, 69, 74, 92, 94, 98, 130, 131, 135, 145–46, 231,

233, 261
fractals, 29, 189
France
NewMath in, 159
reform of math education in, 157
See also Bourbaki group



French Academy of Sciences, 159
Freud, Sigmund, 67, 221
Freudenthal, Hans, 11–12, 161–62
Friends of Scripta Mathematica, 150
Fuller, Buckminster, 5, 173–82, 197, 197n, 206–7, 221
Gabler, Katie. See Coxeter, Katie Gabler
Gabler, Rosalie, 41, 44, 45, 67, 108
Galileo Galilei, 33n, 62
Galison, Peter, 119
Galloway, Ernest, 38
Galsworthy, John, 254
Game of Life, 49
Gardner, Martin, 152, 216
Garland theorem, 188, 190
gauge theories, 100
geodesic domes, 173–75, 178, 180–81, 206–7
Geometer’s Sketchpad, 201–2
La Géometrie (Descartes), 53, 54
geometry
algebra’s relationship to, 29, 54, 126, 131–36, 152–53, 160
and animation, 200
Bourbaki views about, 122
call for reform of, 159
at Cambridge University, 60, 159–60
and computer science, 199
DC as preserver/popularizer of, 20, 124, 150, 152, 155, 170, 187, 253–54
DC’s applications of, 6–7
DC’s contributions to, 14, 151–53
DC’s formative encounter with, 38, 45
DC’s heuristic approach to, 220
as DC’s passion/love, 67, 100, 127, 165, 220, 245
DC’s views about, 40, 161, 166–67, 211–12
decline of interest in, 11–14, 45, 54, 118, 119, 124, 137, 156, 160, 169, 183, 192
definition of, 4, 29, 87



function of, 160
goal of, 7
golden age of, 45–47, 70
Hilbert’s impact on, 46
history of, 21–25
importance of, 13, 20–21, 45, 62, 167, 193, 206, 238
in Italy, 161
as liberal art, 22, 167
mathematics’ relationship to, 11–12
andmind-set of geometer, 12
andmotion, 62
and nature of space, 31
and NewMath, 159
non-Euclidean, 17, 28–31, 46, 47, 95, 226, 228
and physics, 244–45
pure and applied, 210, 215
questions in, 119, 137
rediscovery/renaissance of, 151–52, 187, 201, 206
revolution in, 47
in Russia, 160
and science, 88, 184, 187, 206
as training for imagination, 192
types and branches of, 29–31
universality of, 4, 6, 15, 21
See also geometry education; geometry
gap; intuition; visual approach;
specific person, type or branch
geometry education
DC’s report about, 161, 166–67
films about, 163–64
Royal Society of London report on, 193
See alsomathematics education geometry gap, 182–85, 183n, 204–10
Ginsburg, Jekuthiel, 150
Gleick, James, 62



Gödel, Kurt, 269
golden ratio, 222
Gombrich, E. H., 228
Goodman, Roe, 136
Goodstein, Louis, 106
Gosset, Thorold, 113–14, 139
Gott, J. Richard III, 237–38
Göttingen University, 82, 84, 98, 120
Graham, Ron, 33
“graphical symbols,”
invented by Coxeter, 90
graphics cards, 199–202
gravity, 62, 85, 243, 243n
Gray, Jeremy, 27, 29, 32, 45–46, 70–71
Greene, Brian, 238–39, 238n, 240–41
Gregory, David, 195, 197
Greitzer, Samuel L., 163, 190, 191, 265
groups
continuous, 101–2
and Conway’s “murder,” 252–53
and Escher’s work, 229
and geometry-algebra interface, 131–33
mathematical, 9, 29
andmirrors, 134n reflection, 101, 102
and symmetry, 131–36
Weyl’s work on, 101–2
See also Coxeter groups
Grünbaum, Branko, 34
Hales, Stephen, 163, 195
Hales, Thomas, 194
Halmos, Paul R., 120
Hardy, Godfrey H., 33, 40, 57–58, 74, 75, 79, 103, 106, 108, 140
Hart, George, 21
Harvard University, DC invited to lecture at, 153



Heisenberg, Werner, 82, 85
Henderson, May, 36, 41–42, 44, 68
Henneaux, Marc, 242–44
Henri Poincaré Institute (Paris, France), 82
hexagon, 197, 215
Hilbert, David, 46–47, 59, 82, 86, 98, 118–19, 122
Hinton, Carmelita, 103, 104
Hinton, Charles Howard, 47, 73–74
Hinton, James, 73
Hinton, Sebastian, 103
Hodge, William, 107
Hoffman, Paul, 33
Hofstadter, Douglas, 5, 187–92, 188n, 202
Holst, Gustav, 41
Holt, Governor, 88
Homer-Dixon, Thomas, 183–84
homosexuality, 68
House Un-American Activities Committee (HUAC), 142
humanities, mathematics as part of, 212
Hungary
geometry in, 160
See also Budapest, Hungary
hyperbolic mathematics, 212, 218, 219n, 228, 232–36, 243, 243n
“Hyperbolic Reflections Groups,” Budapest paper about, 232
hyperdodecahedron, four-dimensional, 231
icosahedron
and biochemistry, 180–81
and Coxeter diagram, 91, 92, 94, 263
and Coxeter groups, 134
and Flather’s models, 64–65
and four dimensions, 53
and Fuller’s geodesic dome, 174
and Fuller’s icosahedral world map, 181
and group theory, 135



and kaleidoscope, 91, 92, 94
as Platonic solid, 10, 23, 24n, 64–65
and protein molecules, 203, 204
and sphere packing, 197
and symmetry, 100, 180–81
triangulated, 178–79
immune system, 203–4
Infeld, Leopold, 85, 141–42, 148, 268
infinity
and Coxeter groups, 243, 243n
DC’s views about, 225–26
and Escher’s work, 211, 216, 218, 219, 225, 226, 229
and polyhedra, 10
and string theory, 244
and symmetry, 9
andWeeks’s work, 232–36
“ingenuity gap,” 183–84
Institute for Advanced Study, 96, 103, 268–69
“inter-America” conferences, 158–59
interlocking triangles, 222–23
International Congress of Mathematical Education (Quebec City, 1992), 222
International Congress of Mathematicians Amsterdam (1954), 212–13
Cambridge University (1912), 70
Edinburgh (1958), 157
Moscow (1966), 160
Oslo (1936), 110–13
Paris (1900), 118–19
intuition
and Bourbaki, 122, 158, 163
DC’s powers of, 128–29
DC’s views about, 51, 52–53, 163, 167
decline of use of, 46–47, 119, 122
and Escher’s work, 211–12, 218–19, 228
and Hofstadter’s work, 191, 192



mathematicians’ fear of, 192
methods for checking, 52–53
of physists, 244
and proofs, 202
and rejuvenation of geometry, 163, 192–93
andWhiteley’s work, 202
Intuition (Robinson sculpture), 224, 225, 229
Italy, geometry in, 161
Januszkiewicz, Tadeusz, 232
Japan, 162
Jeans, James, 40
jigsaw symmetry, 214
“jitterbug transformation,” 197
Journal of Geometry, 191
Jung, Carl, 223
Kabai, Sándor, 246n
Kahn, Louis, 8
kaleidoscopes
and Coxeter diagrams, 90–94
and DC-Rien courtship, 109
DC’s work with, 75–79, 90–94, 96, 130, 131, 133–35, 134n
as film topic, 163–65, 164n invention of, 75
and string theory, 243
and symmetry, 75–79, 90–94
and tiling, 77n
types of, 76–77
Kant, Immanuel, 26
Kaplansky, Irving, 162
Kepler, Johannes, 24, 62, 63–64, 65, 194, 197
“The Kiss Precise” (Soddy), 105, 113–15
“Kissing Circles Theorem,” 115
“kissing number” problem, 194–95
Klein, Felix, 89, 176
Kline, Morris, 159



Kochen, Simon, 136
Koestler, Arthur, 63
Kramer, Edna, 221
Kroto, Harry, 206, 207–8, 210
La Tribu (Bourbaki newsletter), 153
Lagrange, Joseph-Louis, 131
Lang, Gord, 194–98
Langley Research Center (NASA), 199
Lear, Edward, 249
lectures, Coxeter’s. See Coxeter, Donald, lectures of
Lederman, Leon, 98, 99, 100n
Lefschetz, Solomon, 81, 83, 85–86, 89, 94, 100, 101, 107
Lehrer, Tom, 159
Leonardo (journal), 227–28
Levi van Oss, Salomon, 93
liberal arts, 22, 167, 211–12, 213, 222
Lickorish, Raymond, 74n
Lie algebras (Bourbaki), 167–68
Lie, Sophus, 269
Littlewood, John E., 57, 59, 60, 64–65, 108
Loeb, Arthur, 179
Longuet-Higgins, Michael, 251
Lovász, Lászlo, 6
M-theory, 238, 242–44
MacLane, Saunders, 155
Magic (Coxeter), 38, 39
magic squares, 50, 50n
Mandelbrojt, Szolem, 120, 126–27
Mandelbrot, Benoit, 126–27, 189
Manilius, 113
Marks, Robert W., 176
Marlborough College (England), 56–57
Masterman, Margaret, 106
Mathematical Association (England), 57, 160



Mathematical Association of America (MAA), 150, 168–69
Mathematical Gazette, 57–58
The Mathematical Intelligencer, 121–22
mathematics education
decline of geometry in, 192
reform of, 157
reintegration of geometry into, 192
at University of Toronto, 165–66
See also geometry education
mathematics/mathematicians
algebraization of, 119
in ancient world, 22–23
Bourbaki approach to, 119–24, 154
and computer science, 199
DC’s contributions to, 150, 152–53
DC’s early interest in, 42, 44
DC’s enthusiasm for, 80, 143
DC’s influence on, 7, 32, 131, 135, 149, 152
and Einstein, 97–98
and Escher’s work, 212, 229
fear of intuition and non-rigor by, 192
formalism in, 46–47
and geometry gap, 184, 206
geometry’s relationship to, 11–12
Hardy’s views about, 79
Hilbert’s questions concerning, 118–19
intractable problems of, 216–17
invention of new geometries by, 31
andmusic, 38, 40–41
and physics, 87, 97–98, 100, 244
pure vs. applied, 87–88, 100, 194, 198, 210
questioning of Euclidean geometry by, 46
and rationality, 13
rediscovery of classical geometry by, 187, 206



as religion, 22
revolutionizing of university-level, 154
Robinson’s views about, 229
and science, 87–88, 206, 210
Stone’s call for modernization of, 158
views about DC of, 6, 7, 14
visualization in, 191–92
during World War II, 140–41
as “young man’s” game, 33
See also algebra; geometry; mathematics education; specific person or topic
Mathieu, Emile, 51, 270
Matisse, Henri, 222
Maxwell, James Clerk, 210
Mays, John Bentley, 229
McMaster University, 19, 256–57
Merck, 210
metric spaces, 30
Mirbeau, Octave, 121–22
mirrors
at Budapest conference, 245
and Coxeter’s groups, 133–35
and DC’s work at Princeton, 90–94
as film topic, 164, 164n, 165
and fourth dimension, 47n
and group theory, 133–35, 134n, 135
and optical instruments, 185
and string theory, 240–41
and types of symmetry, 8–9
See also kaleidoscopes; symmetry
Miyazaki, Koji, 162
Möbius, August, 47n, 77
models
Coxeter’s, 4, 10, 10n, 20, 230–31
See also specific person



Moffat, John, 101
Monod, Jacques, 176
Monson, Barry, 128–29
Monster group, 51, 270
Moody, Robert, 170n
Morawetz, Cathleen Synge, 250
More, Henry, 51
Morley, Edith, 55
Morley, Frank, 119, 265–67
Moser, Willy, 150–51
motion, and geometry, 62
Mumford, David, 152–53
“The Murder Weapon,” 253
music
DC’s interest in, 38–41, 176, 254
andWeeks’s work, 235
Mystery of the Cosmos (Kepler), 63–64
mysticism, 245
Naraniengar, M. T., 266
National Aeronautical and Space Agency (NASA), 235
National Defense Education Act, 157
National Research Council, 140
National Science Fair-International (1965), 237
National Science Foundation, 150, 201
Naturemagazine, 115, 235
Netherlands, 161–62
Neville, Eric H., 55–56, 108
NewMath, 156–59, 161, 162–63
Newton, Isaac, 61–62, 63, 85, 130, 195, 197
Nobel, Alfred, 112
Nobel Prize, 112, 206, 208
Nobel Symposium (Lidingö, Sweden, 1968), 176–77, 180
Noether, Emmy, 99–100, 100n
North Atlantic Treaty Organization (NATO), 251



Norway, DC’s trip to, 111–13
nuclear disarmament, 142–43
O’Connor, Frank, 83, 84
octahedron, 23, 24n
Odom, George, 10n, 11, 220–24, 222n, 224
120-cell, 94, 231n, 252
On-Line Encyclopedia of Integer Sequences, 90
Oppenheimer, Robert, 268–69
Organization for European Economic Cooperation (OEEC), 157
pacifism, 141
parallel postulate, 27–29, 30–31, 46
patents, of Fuller, 178–79
Pater, Walter, 254
patterns
buying, 6–7
Circle Limit, 219, 219n, 225–28
and Escher’s work, 218–19, 220
and Fuller’s work, 176
and geometry gap, 182–84, 183n
and tiling the plane, 215
Peet, Amanda, 241n
Pelletier, Marc, 230, 231, 231n
Penrose, Lionel S., 272
Penrose, Roger, 22, 216, 272–74
pentagon, 12, 25–26, 174–75, 208–10
Petrie, John Flinders, 44, 48–49, 57–58, 68, 79, 236–37
Petrie, WilliamMatthew Flinders, 44
Petroski, Henry, 184, 185
Philadelphia, Pennsylvania, DC’s lecture in, 163
photoelectric effect, 97n
phyllotaxis, 4, 259–60
physics, 87, 97–99, 100, 206–10, 244–45, 268–271
Piaget, Jean, 161
Pixar, 200, 201



Planck Probe, 235
planetary laws, of Kepler, 63–64
Plato, 21, 22, 23–24, 25, 179, 197n, 233. See also Platonic solids
Platonic solids
and Coxeter’s groups, 133–35
DC’s extension of work on, 130
DC’s views about, 176
and Escher’s work, 219n and Euclid, 25–26
as famous polyhedra, 10, 21–22
and fourth dimension, 49
and Fuller’s geodesic dome, 173–75
and history of geometry, 21–22
interconnectedness of, 24n and kaleidoscopes, 77–78
and Kepler’s work, 63, 64
Möbius’ study of, 77
and M-theory, 243
overview of, 23–25
Princeton emblem of, 85
and Schläfli’s work, 69
symmetry of, 24n, 77–78, 219n
See also specific form
Plesser, Ronen, 240
Poincaré, Henri, 51, 117, 173
Poincaré disc, 211, 219, 228
Polanyi, John, 142
politics, 251
Pólya, George, 87, 249, 272
polygon, 10, 23, 24–26, 40–41, 63, 200, 201, 215, 215n
polyhedra
Budapest papers about, 232
and Conway’s “murder,” 252–53
Coxeter-Petrie, 58, 238
and DC’s art collection, 220
DC’s reason for studying, 140



and Dyson-DC correspondence, 271
as form of polytope, 10
Fuller’s sculptures of, 221
and history of geometry, 21–22
and Kepler’s work, 63–64, 65
pseudo-, 237
regular skew, 237
and sphere packing, 197n
symmetry of, 75–79, 271
and topology, 86n
See also Platonic solids; specific form
polytopes
Archimedean, 71–72
and Coxeter groups, 131, 133–37
and DC’s art collection, 220
and DC’s Budapest paper, 231
DC’s obsession with, 56, 59
and DC’s reputation, 130–38
DC’s views about, 245
DC’s work on, 47, 71–72, 79, 89–94, 102–3, 124–25, 126, 130–38
and four dimensions, 10, 50, 261
and kaleidoscopes, 90–94, 130, 131, 133–35, 134n
NATOmeeting on, 251
and Schläfli’s work, 69, 261
Stott’s introduction of word, 72
Stott’s scrapbook about, 230
symmetry of, 9–11, 90–94, 95, 100, 131, 133–37
andWeeks work, 236
See also Coxeter, Donald, writings of: Regular Polytopes; type of polytope or work of

specific person
Prékopa, András, 20, 33
Princeton University
architecture of, 85
DC at, 5, 9, 84–98, 100, 102–3, 104, 140



Fine Hall at, 85, 87, 96, 96n, 97, 99, 101
interest in DC as professor at, 139
Pelletier sculpture at, 231n
See also specific person
Proceedings of the Cambridge Philosophical Society, 71
Procter Fellowships, 96, 96n
projective geometry, 29, 93, 184–86, 190, 199–202
proof
and “brute force method,” 194, 198
and hyperbolic plane, 228
Lefschetz’ views about, 86
mathematical, 32–33
of Morley’s theorem, 266–67
and visual approach, 202
protein molecules, 202–4
pseudopolyhedrons, 237
Punke, Harold H., 145
Putney School (Vermont), 103, 104
Pythagoras, 21, 22, 26, 40, 45, 140
quantummechanics, 236, 242
quantum theory, 239
Ramanufan, Srinivasa, 55
Ratcliffe, John, 35, 232
recursion, and Escher’s work, 229
reflection
DC’s views about, 245
and Escher’s work, 229
as film topic, 163–64
See also kaleidoscopes; mirrors; symmetry
regular skew polyhedra, 237
relativity theories, 30, 48, 85, 95, 97–99, 97n, 229, 239, 241–43
RHOMBOmodel, 251–52
ritalin, 204
Rivin, Igor, 232



Robertson, Irving, 88
Robinson, Gilbert de Beauregard, 89–90, 126, 140
Robinson, John, 222–23, 224–25, 229
Robinson, Raphael, 272
Robson, Alan, 56–57, 59, 71, 130
Rockefeller Foundation/Fellowships, 81–83, 87, 96, 96n
Rodin, Auguste, 223
Rogers, C. Ambrose, 162
Rooney, Tim, 165–66
Rose, Wickliffe, 81–83
Rosenberg, Alex, 162
Rota, Gian-Carlo, 186
Royal Society of Canada, 3, 130, 213–15, 218–19
Royal Society of London, 130, 193, 250n
Royaumont conference (1959), 157, 158, 161
Russell, Bertrand, 55, 57, 106, 141, 221
Russia, 156–57, 160
Santos, Bernardo Recáman, 90
Sartre, Jean-Paul, 106
Satyanarayana, M., 266
Schattschneider, Doris, 201, 220, 228
Schechter, Bruce, 33
Schläfli, Ludwig, 68–70, 72, 261
School Mathematics Study Group (S.M.S.G.), 159
Schoute, Pieter H., 74
Schuster, Seymour, 143
science
and arts-sciences relationship, 211–12, 213, 222
DC’s influence on, 7
and geometry, 88, 184, 187, 206
andmathematics, 87–88, 206, 210
Platonism as method for modern, 23
pure vs. applied, 198, 210
and rationalism, 46



See also intuition; visual approach
Scientific American (journal), 47n, 120, 121, 122, 152, 216
Scott, Giles Gilbert, 38
scrapbook, polytope, 230
Segre, Corrado, 70
Sen, Amartya, 252
Senechal, Marjorie, 4, 94, 149, 154, 155, 155n, 167–68
September 11, 2001, 192
Shannon, Claude, 195, 196n
Shechtman, Daniel, 273
Sheffield University, DC’s job offer from, 139
Sinclair, Lister, 126
Sinkov, Abraham, 140
600-cell, 92, 94
Skinner, Francis, 106
Sloane, Neil, 90–91, 195–96, 196n, 197
Smalley, Richard, 206, 207–8
Smith, Glenn, 20–21, 31, 175–76, 178, 181, 230, 231, 253
Socarides, Charles W., 221
social justice, DC’s views about, 141–42, 143
Soddy, Frederick, 105, 113–15
solar eclipses, 48, 84
Southern Illinois University, 176
space, 31, 50, 62
“spacetime geometry,” 48
sparticles (supersymmetric (SUSY) particles), 241–42
sphere
symmetry of, 9
and topology, 86n
sphere packing, 90–91, 194–99
spherical geometry, 30, 219n
sponge-like topology, 237–38
Sputnik, 156–57
square, 9, 25–26, 50, 50n, 77, 132–33, 132n, 136, 215



St. George’s School (England), 44, 45, 48–49, 51–52
Stanford, C.V., 41
statics, 184–85
Stedelijk Museum (Amsterdam), 212
Stekel, Wilhelm, 67–68
stereochemistry, 204
Stockholm, Sweden, Symmetry 2000
conference in, 251–52
Stone, Marshall, 154–55, 158
Stott, Alicia Boole “Aunt Alice,” 72–74, 74n, 79, 83, 103, 105, 116, 126, 181, 230
Stott, Walter, 74
string theory, 7, 95, 101, 238–45, 241n
Strings05 conference (Toronto, 2005), 240
Susskind, Lenny, 240, 241n
Swiarkowski, Jacek, 232
Sylvester, J.J., 230
Symmetries of the Cube (film), 163
symmetry
algebraic study of, 126
of apple, 4
of brain, 257
as central to DC’s work, 7–8
continuous, 102
of crystals, 213–16
and DC’s death, 256
DC’s views about, 245
DC’s work on, 75–79, 90–94, 130–38, 233
discrete, 102
and Einstein’s theories, 98–99, 100
and Escher’s work, 219n, 229
examples of, 8
finite/infinite, 9
and four dimensions, 10, 49–51
graphic representation of, 187, 188



and group theory, 131–36
importance of, 98
Introduction to Geometry as one of first textbooks about, 152
jigsaw, 214
andmusic, 41
and physics, 98–99
of Platonic solids, 24n, 77–78
of polyhedra, 75–79
rotational, 9
and sphere packing, 198
and string theory, 238–45
traditional, 9
translational, 9
types of, 8–9
See also Coxeter groups; dimensional geometry; groups; kaleidoscopes; mirrors;

polytopes; reflection; specific person or shape
Symmetry: Culture and Science (journal), 246
Symmetry 2000 conference (Stockholm), 251–52
Symmetry Festival 2003 (Budapest), 246, 246n, 255
Symmetry Society, 246
Synge, Elizabeth, 141
Synge, J.M., 112
Synge, John L., 37, 112, 211, 249–51
taxicab geometry, 29, 29n
Taylor, A.E., 23
teacher, DC as, 128, 129–30
and Escher’s work, 220
teaching
DC’s early job offers for, 103, 104
DC’s views about, 156
Veblen’s views about, 103–4
Tennent, Bob, 198
tessellation. See tiling
tetrahedron, 10, 23



Thales, 21, 26
theorem, definition of, 183n
Thomas, Alfred, 199
Thomas, Susan. See Coxeter, Susan
three dimensions, 10, 185, 192, 200, 204, 215, 216, 261. See also dimensional

geometry
Thurston, William, 202
tiling, 77n, 214–16, 218, 236, 272–74
Timaeus (Plato), 23
time, Newton’s notion of, 62
The Time Machine (Wells), 48
Tits, Jacques, 168
Todd, J. A., 66–67
tools, 7, 131, 149, 154, 168, 190, 241.
See also Coexter diagrams; Coxeter groups; kaleidoscopes
topology (aka “rubber-sheet” geometry), 29, 30, 86, 86n, I07, 229, 236–38
Torres, Guillermo, 159
Toth, Imre, 124
triangle
DC’s food cut in, 254
death to, 13, 154, 157–58, 161, 168
equilateral, 25–26, I89, 215
and Escher’s work, 219
and Hofstadter’s work, 190
interlocking, 222–23
and kaleidoscopes, 77
and Morley’s miracle, 265–67
and tiling the plane, 215
and triangulated icosahedron, 178–79
trisecting angles of, 119
Trinity College (Cambridge University)
DC as honorary fellow of, 252
DC as lecturer at, I05
DC as student/fellow at, 5, 57–61, 64–67, 70–71, 74–75, 75n, 79–80, 95, 105–7



DC’s acceptance to, 57
DC’s invitation to return as emeritus fellow at, 36
and DC’s will, 251
“eureka” moment of DC at, 146
mathematics curriculum at, 59–60, 80
Mathematics Tripos examination at, 60, 65
as sanctum for research, 104
See also specific person
Tufte, Edward, 183
Turing, Alan, I4I
Tutte, William, I40–41, I87
Two–Year College Mathematics Journal, 169
unified field theory, 97, I01, 238, 242
United Nations Educational Scientific and Cultural Organization (UNESCO), 157
United States
DC’s road trip in, 95–96
DC’s visits to, 81–104
universe
dodecahedron as model for, 24
Fuller’s quest for basic operating principles of, 175–76
interior structural topology of, 236–38
Robinson’s views about the, 229
Weeks’s work on shapes of the, 232–36
University of Chicago, Bourbaki at, 154–55
University of Minnesota, 163
University of Toronto
Bush honorary degree from, 251
computer science at, 199
computer server at, 199
Davis at, 142
DC at, 4, 117–18, 124–25, 130
DC’s first lecture at, 89–90, 105
DC’s job offer from, 105, 106, 107–8
and DC’s job offers from other institutions, 139



and DC’s will, 251
Dieudonné’s visit to, 168
founding of applied mathematics department at, 112
Fuller’s lecture at, 177–78
math curriculum at, 165–66
Vakil, Ravi, 9, 102, 136–38
Veblen, Oswald, 86–87, 95, 97–98, 103–4
Veblen, Thorstein, 103
vector equilibrium, 197n
Vienna, Austria, DC in, 67–68
VietnamWar, 143
Vinberg, Ernest, 35, 232
visual approach
and Bourbaki, 13–14, 122, 123–24, 155n, 158, 163
and computers, 200–201
and DC’s rejuvenation of geometry, 163
DC’s views about, 167
decline of use of, 46–47, 119, 122, 123–24
as enticing to students interested in mathematics, 159
and geometry gap, 182–84, 183n
and Hofstadter’s work, 190, 191–92
importance of, 191–93
and importance of DC’s work, 204
and proofs, 202
and theorems, 183n
Weeks’ work using, 232–36
andWhiteley’s work, 182–84, 183n, 192, 202
“Visualizing Hyperbolic Geometry” (Weeks lecture), 232–36
von Neuman, John, 87
Wald, Abraham, 182
Wallace, Philip, 162
Walter, Marion, 274
Weeks, Jeffrey, 232–36
Weil, André, 120, 121, 154–55



Weil, Simone, 120
Weiss, Asia Ivić, 129–30, 230, 232
Wells, H. G., 47–48
Wenninger, Magnus, 221
Weyl, Herman, 99, 100–103, 107, 269
Whiteley, Walter, 12–13, 182–84, 183n, 187, 192, 202–6, 210
Wigner, Eugene Paul, 87
Wilde, Oscar, 68, 108
Wilkinson Microwave Anisotropy Probe (WMAP) (NASA), 235
Witelson, Sandra, 19, 256–57
Witten, Edward, 7, 238, 240, 241, 244
Wittgenstein, Ludwig, 106–7
World War I, 123
World War II, 140–41, 182
World’s Fair (Chicago, 1939), 95–96
writings, Coxeter’s. See Coxeter, Donald, writings of
Wyman, Max, 162
Wythoff, Willem Abraham, 78, 91–92
zeolites, 204–5
Zvengrowski, Clifford, 250
Zwicky, Fritz, 9n





Todo list

483


	Dedication
	Epigraph
	Foreword
	Pure Coxeter
	Introducing Donald Coxeter
	Young Donald In Wonderland
	Aunt Alice, And The Cambridge Cloister
	Coming of Age at Princeton with the Gods of Symmetry
	Love, Loss, And Ludwig Wittgenstein
	``Death To Triangles!''
	Tangents on Politics and Family Values
	Bourbaki Prints a Diagram

	Coxeter Applied
	Bucky Fuller, and Bridging the ``Geometry Gap''
	C60, IMMUNOGLOBULIN, ZEOLITES, AND COXETER@COXETER.MATH.TORONTO.EDU
	``COXETERING'' WITH M. C. ESCHER (AND PRAISING OTHER ARTISTS)
	THE COXETERIAN SHAPES OF THE COSMOS

	Aftermath
	Full Circle Symmetry
	APPENDIX 1
	APPENDIX 2
	APPENDIX 3
	APPENDIX 4
	APPENDIX 5
	APPENDIX 6
	APPENDIX 7
	APPENDIX 8
	ENDNOTES
	CHAPTER 0—INTRODUCING DONALD COXETER
	CHAPTER 1—MR. POLYTOPE GOES TO BUDAPEST
	CHAPTER 2—YOUNG DONALD IN WONDERLAND
	CHAPTER 3—AUNT ALICE, AND THE CAMBRIDGE CLOISTER
	CHAPTER 4—COMING OF AGE AT PRINCETON WITH THE GODS OF SYMMETRY
	CHAPTER 5—LOVE, LOSS, AND LUDWIG WITTGENSTEIN
	CHAPTER 6—``DEATH TO TRIANGLES!''
	CHAPTER 7—TANGENTS ON POLITICS AND FAMILY VALUES
	CHAPTER 8—BOURBAKI PRINTS A DIAGRAM
	CHAPTER 9—BUCKY FULLER, AND BRIDGING THE ``GEOMETRY GAP''
	CHAPTER 10—C60, IMMUNOGLOBULIN, ZEOLITES, AND COXETER@COXETER. MATH.TORONTO.EDU
	CHAPTER 11—``COXETERING'' WITH M. C. ESCHER (AND PRAISING OTHER ARTISTS)
	CHAPTER 12—THE COXETERIAN SHAPES OF THE COSMOS
	CHAPTER 13—FULL CIRCLE SYMMETRY
	APPENDIX I—FIBONACCI AND PHYLLOTAXIS
	APPENDIX 2—SCHLäFLI SYMBOLS OF THE 3-D AND 4-D REGULAR POLYTOPES
	APPENDIX 3—COXETER DIAGRAMS
	APPENDIX 4—COXETER GROUPS
	APPENDIX 5—MORLEY'S MIRACLE
	APPENDIX 6—FREEMAN DYSON ON ``UNFASHIONABLE PURSUITS''
	APPENDIX 7—CRYSTALLOGRAPHY AND PENROSE TOILET PAPER
	APPENDIX 8—THE MATHEMATICAL PUBLICATIONS OF H. S. M. COXETER

	Acknowledgements
	Index
	Todo List


