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Epigraph


     


I could be bounded in a nutshell and count myself a king of infinite space.

 
—William Shakespeare, Hamlet, Act II, Scene 2 (As cited by Coxeter regarding
‘‘The Finiteness of Triangles, Introduction to Geometry’’)
 


  



 



  
Foreword




SOME PERSONAL REMINISCENCES OF DONALD COXETER

 
  DOUGLAS R. HOFSTADTER

 
  CENTER FOR RESEARCH ON CONCEPTS AND COGNITION

 
  INDIANA UNIVERSITY

 
  It is a great honor to have my name linked with that of Donald Coxeter.

 
  As a mathematics and physics student in the 1960s and 1970s, I often ran across the
intriguing name H. S. M. Coxeter. I knew that this man’s books were world famous, had
heard that they were elegant and concise, and, on flipping through them once or twice,
had even seen that they were filled with beautiful, enticing diagrams. But somehow,
I had other things on my mind and I paid them little heed. When, decades later, I
finally came under the spell of Coxeter’s words, images, and ideas, I fell in love with
geometry.

 
  What eventually launched me on a collision course with geometry was a spectacular course on
complex analysis that I took at Stanford University way back in 1962. This course was given by a
young professor named Gordon Latta, who hailed from Toronto, the city in which English-born
Donald Coxeter eventually settled. Latta, without doubt the best mathematics teacher I ever
had, was extremely visual in his teaching, and he conveyed the depth and power of calculus in

the two-dimensional arena of complex numbers in an inimitable fashion. One image from that
course stuck with me for three decades—that of a circle turning the complex plane inside out,
flipping the finite disk inside the perimeter into the infinite region outside the perimeter, and vice
versa.

 
  One fateful morning in 1992—thirty years after Latta’s course—I woke up with that image of
circular inversion in my head, for God knows what reason, and in particular with the vague
memory that any circle outside the disk was carried, by this strange but lovely operation, into a
circle inside the disk (and vice versa). This weird geometric fact, which I knew Latta must have
proven, struck me as so marvelous that I immediately decided to try to prove it myself. Actually,
I wasn’t entirely sure that I was remembering the statement correctly, and this made my idea
of proving it a little dicier. Indeed, my first attempt, rather ironically, showed that
a random circle did not become another circle! However, my sense of mathematical
aesthetics insisted that this statement had the ring of truth, and compelled me to try
again. The second time around, I caught my dumb mistake (the center doesn’t go to
the center!) and proved that circles indeed remain circles when flipped inside out by
circles.

 
  This small but joyful excursion into inversion was the tiny spark that ignited a forest fire in my
brain, and over the next few months, as geometric imagery started cramming my
head fuller and fuller, I knew I needed an external guide. Where else to turn but to
the person whose name for me was synonymous with the word ‘‘geometry’’—H. S. M.
Coxeter? I bought a copy of the thin volume he had written with Samuel Greitzer, called
Geometry Revisited, and went through it from beginning to end, absorbing the ideas
with passion. Some of them, as it happened, I had already invented on my own, but
by far the majority were brand new to me and served as springboards for countless
geometrical forays that I made over the next several years. Thanks to Coxeter and
Greitzer, I was flawlessly launched on one of the richest and happiest explorations in my
life.

 
  Somewhere around six months into my geometrical odyssey, I used a chain of analogies to make
a discovery that excited me greatly, and I wrote up the story of this discovery in a short essay. I
wanted to find out if my discovery was new or old, so I decided to seek the reaction of a number
of geometers whose books I admired. First and foremost was Donald Coxeter, and so I took the
plunge and sent him my essay along with a cover letter. Not wishing to impose, I tried to be very

brief (a mere ten pages!), but felt I at least had to tell him how much his book had meant to me.
In a most cordial and prompt reply, he suggested I take a look at a couple of books he
had written on projective geometry, and so, without hesitation, I purchased them
both.

 
  The older of the two was a concise opus entitled The Real Projective Plane, and I have to say
that reading this was another dazzling revelation to me. As Coxeter points out in his preface, the
restriction to the real plane in two dimensions makes it possible for every theorem
to be illustrated by a diagram. And not only is this possible, but in the book it is
done. By itself, this simple fact makes the book a gem. Moreover, Coxeter strictly
adheres to the philosophy of proving geometric theorems using geometric methods,
not using algebra. This means that a reader of The Real Projective Plane comes to
understand projective geometry through the ideas that are natural to it, building up an
intuition totally unlike the intuition that comes through formulas. I am not impugning
what is called the analytic style of doing geometry; I am just saying that coming to
understand projective geometry using the synthetic style was among the most gratifying
mathematical experiences I have ever had. I will never forget the many nights I spent in bed
reading Coxeter’s monograph with only a tiny reading light perched on it (in fact, inside
it), in order not to wake up my wife, who had nothing against my infatuation with
geometry but who seemingly couldn’t sleep a wink if even a single photon impinged on her
eyelids.

 
  I cannot resist quoting a sentence in the preface to The Real Projective Plane. It says this:
‘‘Chapter 10 introduces a revised axiom of continuity for the projective line, so simple that only
eight words are needed for its enunciation.’’ I think Donald Coxeter must have felt not only
pleased but also proud as he wrote this down, because he was so in love with simplicity, elegance,
and economy of means. Here is the eight-word definition to which he was referring: ‘‘Every
monotonic sequence of points has a limit.’’ What a delight! As you probably can tell, my
copy of The Real Projective Plane is one of my most lovingly read and most prized
possessions.

 
  Speaking of doing geometry with a minimum of photons, I have to relate one of the most
absurd and yet enriching geometrical experiences I have ever had. Somewhere in my many
readings on geometry, I came across a vignette about a famous nineteenth-century German
geometer—probably Steiner, Plücker, von Staudt, or Feuerbach—who was so suspicious of the
insidious dangers supposedly lurking in diagrams that he insisted on teaching his students
geometry in a pitch-dark room, using words and words alone to convey all the ideas. When I first

read about this, I was nonplussed, thinking it to be among the silliest notions I had ever heard
of. But perhaps precisely because it was so silly, this scene kept bouncing around in my head
for a long time, and eventually, years later, when I myself was teaching a course on
triangle geometry that often met at my house at night, I couldn’t resist pulling down all
the shades, turning off all the lights, and trying out this technique myself. The room
became absolutely pitch dark, so dark that the students couldn’t even see my arms
move when I traced geometric shapes in the air. All they ever knew about were my
spoken words, not my physical gestures. And what theorem did I prove to them in that
darkest darkness of night? None other than the gleaming jewel known as Morley’s
theorem, which states that the ‘‘taboo’’ trisectors of the three angles of a random triangle
join each other at the corners of an equilateral triangle floating somewhere inside
the random triangle. Did they see it in their mind’s eyes? I am sure they did! And
what proof did I relate to my assembled students? Well, naturally, it was the one
I had found in the pages of Coxeter and Greitzer’s little volume and had made my
own, although of course I had to adapt it to fit my brave new light-free, diagram-free
circumstances.

 
  This whole episode may seem like an exercise in utter craziness, but in retrospect, I don’t think
so. Quite the contrary, it was an unforgettable exercise in visualization without vision. One has
to remember that some of the greatest of all mathematicians have been blind, and yet that didn’t
stop them from making astounding discoveries. I was reminded of this as I perused Coxeter’s
famous book Introduction to Geometry, chock-full of literary quotes (the index includes
Aeschylus, Aristophanes, Plato, Shakespeare, Goethe, Lewis Carroll, H. G. Wells, Dorothy L.
Sayers, and even Tom Sawyer), and found the following sentence, which he took from
E. T. Bell’s book The Development of Mathematics: ‘‘Euler overlooked nothing in the
mathematics of his age, totally blind though he was for the last seventeen years of his
life.’’

 
  There is a vast difference, I feel, between having no diagrams before one’s eyes and having no
diagrams inside one’s head. They are not the same thing at all; indeed, internal imagery is
indispensable. For that reason, one of the most regrettable and baffling tendencies in the
mathematics of the twentieth century was a mad stampede toward obliteration of the
visual and even the visualizable. Donald Coxeter, however, as everything he wrote
vividly demonstrates, was among the people who most systematically opposed this
madness.


 
  I will never forget how, at age fifteen or so, I came across the book General Topology by John
L. Kelley. This austere volume, the first treatise I had ever seen on ‘‘rubber-sheet
geometry,’’ that mysteriously alluring branch of mathematics I thought was populated by
Möbius strips and distorted doughnuts, did not, in its hundreds of pages, contain a
single diagram; instead, it was filled with incredibly dense and prickly notation using
all sorts of arcane symbols (many of which, I realized years later, stood for rather
simple, bland words, but were used in their place for the dubious sake of maximal
symbolic compression). Being young and naïve and in love with mathematics, and
not yet having had the experience of struggling with it, I merely thought to myself,
‘‘Oh, so this is the kind of thing I will have mastered in just a few years! Won’t that
be wonderful!’’ I wasn’t dismayed in the least by the prospect of reading long and
picture-free works of mathematics, and writing such things myself; it struck me as a
natural part of the process of reaching the mythical status known as ‘‘mathematical
maturity.’’

 
  Within a few years, however, I discovered that I personally could not survive in such an arid
atmosphere. Diagrams (or at least mental imagery that could be thought of as personal,
inner diagrams) were the oxygen of mathematics to me, and without them I would
simply die. And thus, when the air of abstraction for abstraction’s sake became too thin
for me to breathe, I wound up with no choice but to bail out of graduate school in
mathematics. It was a terrible trauma. If, at that crucial moment in my life, someone had
suggested that before abandoning mathematics, I take a look at geometry, I might
have discovered the works of Donald Coxeter and followed a very different pathway in
life.

 
  In 2000, several years after my correspondence with Donald Coxeter, I went to the University
of Toronto to give two colloquia in the Physics Department. After the first (a talk describing the
key role played by analogies in physics), a very thin and well-dressed elderly gentleman walked
up and softly said to me that he was Donald Coxeter. You could have knocked me over with a
feather. At the time, he was ninety-three years old! We walked out to an informal reception
together and ate cookies and chatted for a little while. Mentally speaking, he was
completely at the top of his game, and we talked in a lively fashion about the importance
of analogies in both math and physics. I was deeply touched by his presence at my
lecture.


 
  But the capper came at my second physics colloquium. Just as I started speaking, I spied
Donald Coxeter once again in the audience. And after I had finished, we once again met and
chatted for a little while. This time, after we had touched on the family of geometries about
which I had written to him some eight years earlier, the conversation somehow veered to the
topic of Coxeter’s vegetarianism and his incredible daily exercise program, which at that time he
was still religiously following.

 
  How honored I felt that this great man, this icon of twentieth-century mathematics, had come
to hear me not just once but twice, and had presented himself to me as if he were an admirer of
mine rather than the reverse. The logic was simply upside down. Moreover, here was someone
who for almost his entire life had stuck to a moral principle that I, too, had found central: the
sacredness of life, whether that of humans or that of ‘‘lower’’ creatures. Altogether, the
message that came straight to me was that this was a human being entirely without
pretension, the kind of person that I had grown up hearing described as a ‘‘mensch’’—the
best kind of person that exists. I had the privilege of meeting this marvelous mensch
face-to-face on only those two occasions, but they remain indelibly imprinted on my
mind.

 
  This concludes my personal reminiscences of Donald Coxeter, but I would like to add a few
words about Siobhan Roberts’s book. I have never met Siobhan, but we have corresponded a
little bit. What I know of her comes almost entirely from reading her words about Donald
Coxeter, and what emerges loud and clear is that she understands the man’s spirit very deeply.
She understands what drove him, and she knows just how to put into words the fire that always
inhabits a great mathematician’s soul. I hope that Siobhan’s book will bring to many people not
only a sense for the beauty of mathematics itself, but also a sense for how the very
human love of hidden patterns and symmetries can result in a hundred years of exultant
exploration.



 



  

 



 



  
Part I
Pure Coxeter




 



  

 




  

 




  

 




  

 




  

 




  

 




  

 




  

 

  



 



  
0  Introducing Donald Coxeter

     
Tell me something is impossible and I will set about it immediately.

 
—H. S. M. Coxeter
 


On a cold and crystalline night in January 2002, the geometer Donald Coxeter sat waiting for the
formalities to begin at a reception put on by the Royal Society of Canada, a club of distinguished
scientists modeled after the Royal Society in Britain. Coxeter, age ninety-four, sat near the
fireplace in the library of the University of Toronto president’s mansion, holding in one hand a
glass of red wine tilted dangerously toward a spill, and in the other an exploding pastry.
‘‘This cream puff is not very sensible,’’ he said, fastidiously dressed—as he always was,
even for breakfast—in a suit and tie. He waited contentedly, the elder Genius among
geniuses.1

 
  Donald Coxeter was a man whom most admirers only ever knew as old. Encountering Coxeter
in his tenth decade, fledgling mathematicians were often taken aback by his preternaturally
ancient appearance, the patina of time at once smoothing and wrinkling his face with a certain
cosmic glow. The standard joke among his longtime colleagues was that Coxeter had looked
equally ancient a quarter century before.2 In the memory of his children, he was always balding,
and what hair he had was gray. His great-grandchildren found him a frightening presence and
avoided his company.3 Michel Broué, director of the Institut Henri Poincaré in Paris, became
acquainted with Coxeter while a student in the 1960s, but only by the coattails of
Coxeter’s reputation. ‘‘I was amazed to hear he was still alive. I thought he had lived in
the nineteenth century,’’ Broué recalled. ‘‘His name was everywhere. He was such a
legend.’’4

 
  At the Royal Society gathering, between the advances of fans and well-wishers, Coxeter—never
one to waste an idle moment when he could instead pounce on a geometry problem—gestured
toward the middle distance and asked, ‘‘What shape is that table?’’ It seemed like a trick
question. Anyone could see the table was round, it was a circle. But Coxeter begged to differ: ‘‘If
I were suspended from the ceiling looking down upon the table,’’ he said, ‘‘then it would be a

circle.’’ From Coxeter’s coordinates across the room, however, his perspective was slanted and
transformed. ‘‘I see it as an ellipse,’’ he declared, adding as a footnote that he had written a
paper on this exact subject, titling it poetically ‘‘Whence Does a Circle Look like an
Ellipse?’’5

 
  This was quintessential Coxeter, ruminating about the romance of shapes—ellipses and circles,
hexagons and icosahedrons. Coxeter’s definition of his discipline, often recited, was this:
‘‘Geometry is the study of figures and figures. Figures as in shapes’’—triangles, cubes,
dodecahedrons—‘‘and figures as in numbers.’’6 He delighted in the geometry of frothy bubbles,
porous sponges, the cells of honeycombs, the buds on pineapples, and sunflowers. During his
professorial days, Coxeter picked towering sunflowers from his garden, taller than the diminutive
man himself, and toted their yellow-rayed faces along on the city bus to the University of
Toronto, where he employed them as teaching devices. He dabbed a dot of glossy red nail polish
on each of the sunflower’s seeds, highlighting the geometrically perfect golden ratio of their
graceful whorl—a phenomenon known as phyllotaxis.7 (For further discussion of phyllotaxis, see
appendix 1.)

 
  Coxeter was also known to be both instructive and entertaining in revealing the
hidden symmetry of an apple. Around the dinner table with colleagues gathered for the
American Math Society conference in 1981, he asked: ‘‘Did you know that apples do
not have cores?’’ They thought he was pulling their leg, until the hostess, Marjorie
Senechal, a mathematics professor at Smith College, procured an apple and placed it
before him with a knife, as requested. He filleted the fruit into thin horizontal sections,
demonstrating that there was no stem-to-stern core, but rather elongated pods of seeds
suspended within. The pièce de résistance occurred when he reached the center of
the apple and sliced through its equator. There lay its secret symmetry—not nature’s
sloppy attempt at spherical symmetry, as suggested by an apple’s exterior, but rather
perfect fivefold symmetry, hidden at the apple’s heart: the apple seeds were arranged
in a five-pointed star. Everyone around the table gasped when they saw it. ‘‘It just
shows,’’ said Senechal, ‘‘that he was looking everywhere, and looking deeply. Coxeter
delighted in the geometry of everyday objects, and, because he was so curious and
astute, he found symmetries and regularities in these objects that the rest of us never
suspected.’’8


 
  Everyday patterns grabbed Coxeter’s attention, played in his mind, and provoked his
geometer’s passion for over eighty years (he made his first discoveries at age thirteen, and was
still practicing, still pulling books from his library for yet another paper, at age ninety-six).9 The
renowned futurist and innovator Buckminster Fuller captured Coxeter’s century-spanning
stewardship of classical geometry with this dedication in his book on the geometry of
thought:

 
     
By virtue of his extraordinary life’s work in mathematics,
Dr. Coxeter is the geometer of our bestirring
twentieth century, the spontaneously acclaimed
terrestrial curator of the historical
inventory of the science of
pattern analysis.
I dedicate this work with particular esteem for him
and in thanks to all the geometers of all time
whose importance to humanity
he epitomizes.10
 


  For a figure of such majestic status—perfectly pedigreed at Cambridge and Princeton, muse to
such titans as Fuller and M. C. Escher, and masterminds the likes of Douglas Hofstadter and
John Horton Conway—Coxeter was first and foremost a humble, hands-on geometer who
appreciated the feel of his shapes and models, turning them in his fingers, peering
through their corners with x-ray vision to get a reading on their intrinsic symmetrical
properties. Above all, he valued visual input to feed his vivid geometric intuition. As a
geometer, as a number of mathematicians have commented, ‘‘Coxeter could really see
things.’’11

 
  [image: PIC]

 
  One in a series of ‘‘cartoon Coxeters’’ drawn by the geometer David Logothetti.

 
  The honorifics only continue. He was reverentially called the ‘‘King of Geometry.’’12 However,
while his contributions to geometry were formidable, in person he was never one to wield his
status with even a trace of blustery bravado—Coxeter was modest, self-effacing, and
soft-spoken.13 Others likened him to a modern-day Euclid, the greatest classical geometer of the
twentieth century. And, he was considered the man who saved geometry from near

extinction in a mathematical era characterized by its penchant for all things algebraic and
austere.14 In the twentieth century, jungles of symbols and equations, a tangle of
subscripts and superscripts, overtook mathematics, leaving a dearth of diagrams and
shapes.
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  Coxeter’s obsession with geometry was motivated exclusively, almost with an elitist bent, by
beauty. And yet, classical geometry is not merely a paean to the beauty of patterns and shapes.
It is also intensely practical. While we no more notice geometry and its crucial impact on
our lives than we notice the curve of the Earth when walking upon it, geometry is
everywhere and its reach is infinite. Geometric algorithms produce the computer-designed
curves of a Mercedes-Benz, animated films such as Pixar’s The Incredibles, and the
fluid contours of detergent bottles.15 László Lovász, mathematician-in-residence at
Microsoft, discerned an important application in Coxeter’s last paper (delivered at a
conference in Budapest when he was ninety-five), addressing the properties of four
mutually touching circles. In the field of computer algorithms, the elementary classical
interest in four mutually touching circles is ‘‘a hot topic,’’ said Lovász. ‘‘It’s a central
topic in the geometric representation of graphs. These geometric representations are
related to issues in data-mining programming.’’ Data mining is the technology of finding
patterns in massive amounts of raw information. It powers e-commerce engines such as
eBay, and the American government’s surveillance software MATRIX (Multistate
Anti-TeRrorism Information eXchange).  Amazon.com exploits this technology when
you buy or search for a book and the site prompts you with recommendations—when
you click into your shopping cart Coxeter’s book The Beauty of Geometry, you learn
that customers who bought this book also bought Coxeter’s bestseller Introduction
to Geometry, his Regular Polytopes, and Famous Problems of Geometry and How to
Solve Them by Benjamin Bold. ‘‘Each customer is a data point,’’ Lovász explained,
‘‘spending this much money here and that much money there, and so you get a set
of points associated with each particular visit to the site. You get a huge number
of points, because there are a huge number of customers. This generates points in
some space that is higher-dimensional than three.’’ Patterns amass on graphs in these
multiple dimensions and become computerized geometric representations of who buys
what.16


 
  The inadvertent applications of Coxeter’s pure geometry go on and on and on, appearing in
linear programming, modern technology, and immunology, to name but a few.17 Most often the
applications involve mathematical tools that Coxeter invented, which in time have revolutionized
the way mathematicians and scientists create and investigate. Coxeter pioneered tools
that are now called ‘‘Coxeter groups’’ and ‘‘Coxeter diagrams’’—tools that shed new
light on symmetry, and deepen its study. Symmetry underpins all mathematics—an
equation being an expression of perfect balance. And symmetry describes the forces
of nature—everything from the smallest spec of a subatomic particle, to a sunflower,
to the shape of the universe and the hypothetical parallel universes that mirror our
own.18

 
  Mathematicians today can’t say enough good things about these Coxeterian innovations. They
are ‘‘one of the pillars of mathematics,’’19 ‘‘part of the substrate …the air we breathe’’20 and
almost as essential as numbers themselves.21 Papers have been written on why Coxeter groups
pop up so much, why they are such a versatile and omnipresent tool that can be deployed in such
a diversity of domains in both mathematics and science. They crop up even in our existential
search for the shape of the universe. The physics of superstring theory, the much-lauded ‘‘theory
of everything,’’ rests on the concept of supersymmetry. Some physicists conjecture
that infinite-dimensional symmetries will be important in unraveling the puzzle of
string theory.22 ‘‘[A]nd if so,’’ said Ed Witten, the ‘‘pope of strings,’’ at Princeton’s
Institute for Advanced Study, ‘‘maybe it will be helpful to understand the Coxeter
groups.’’23
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  Symmetry was the center of gravity for Coxeter’s geometry—he was incessantly searching
for the symmetries of shapes. Coxeter was a classical geometer, the classical goal of
geometry being not so much to prove theorems but to discover gem-like geometric
objects. He explored and enumerated diverse species of geometric configurations, and
uncovered how they relate to one another through their symmetrical properties. Prefacing
Introduction to Geometry, Coxeter stated: ‘‘The unifying thread that runs through the whole
work’’—and indeed that ran through his whole life and career—‘‘is …in a single word,
symmetry.’’24
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  Louis Kahn’s geometrically inspired National Assembly Building in Dhaka, Bangladesh.


 
  Etymologically the word breaks down to sym, meaning ‘‘together,’’ and metry, meaning
‘‘measure,’’ and implies that different parts ‘‘measure together.’’25 Symmetry is ubiquitous, with
faces, feet, and much of the human body being approximately symmetrical. The music
of Bach has many symmetrical qualities, as does the art of Leonardo da Vinci, the
metrical rhythm and rhymes of poetry, and the designs by architects such as Louis
Kahn.26

 
  Symmetry, generally speaking, occurs when two halves of a whole are each other’s reflection in
a mirror (bilateral symmetry). Examples of symmetry abound in the chemistry of life, though
often the symmetry of life is ‘‘chiral’’ or ‘‘handed,’’ meaning the halves or mirror images are
different. The spearmint molecule and caraway molecule are chiral twins—one molecule is the
mirror reflection of the other, and with that minor difference the molecules have considerably
different effects on our taste buds.27

 
  The chirality of pharmaceuticals (drugs often being compounds of left-handed and
right-handed molecules) was demonstrated with tragic consequences in the use of Thalidomide28:
one of its molecular geometries was therapeutic as a sedative quelling morning sickness, but the
mirror opposite caused unexpected birth defects.29 Mirror symmetry is not the only type of
symmetry. There is also rotational symmetry (a pinwheel), or translational symmetry (repeating
rail ties spaced equally apart), and then many combinations thereof (a trail of footprints is
symmetrical in the sense that it is produced by ‘‘glide reflection,’’ a composition of translation
and reflection).30

 
  In geometry, a finite object is symmetrical if it looks the same after being subjected to a
geometric change (a rotation, or reflection), called a symmetry operation, or a transformation.
The sphere can be rotated and reflected in an infinite number of ways and always remain exactly
the same; a sphere is invariant under an infinite number of symmetry operations.31 However,
these infinite symmetries are predictable and thus hold less allure than the shapes with discrete
symmetries that Coxeter preferred to investigate.* A square, for example, has only eight
symmetries, eight precise ways in which its position can be moved or changed, all the
while leaving the square looking the same (see chapter 6). This mathematical study of
symmetry is systematized in ‘‘group theory.’’ The meaning of a group in mathematical
terms is distinctly different from the everyday meaning of the word. While a group in
ordinary language can be defined as a number of people or objects located, gathered, or
classed together based on some distinguishing characteristic, a group in mathematical
terms is the set of eight actions—the symmetry operations—that preserve the square’s
appearance.32


 
  A Coxeter group is a tool for exploring the world of group theory. But Coxeter investigated
shapes more complex than the square—he liked shapes with a complexity analogous to that of an
exquisite crystal. He studied how the facets of a crystal, the angles between its corners and edges
align ‘‘just so’’ and make it a highly symmetric object. A Coxeter group pertains to these finite
symmetries, the finite number of rotations that preserve a crystal’s appearance. ‘‘It is this
finiteness,’’ said Ravi Vakil, a geometer at Stanford, ‘‘within the infinite group that makes some
sort of magic happen mathematically.’’33

 
  Coxeter followed in a tradition of classical geometers who extended the investigation of
symmetries into multiple dimensions,34 where shapes rotate and reflect upon themselves,
replicating their properties in the hall of mirrors that is hyperspace. These multidimensional
shapes are called polytopes. Coxeter’s preoccupation with polytopes was so conspicuous that
during his stint at Princeton in the 1930s he earned the nickname ‘‘Mr. Polytope.’’35

 
  Polytopes, meaning ‘‘many shapes,’’ are a broad class of geometric figures whose subsets of
families, related like cousins by their symmetries, live in various dimensions.36 The
two-dimensional polytopes are called polygons (meaning ‘‘many angles’’—gon derives from the
Greek word gonu meaning ‘‘knee,’’ a knee often being bent at an angle).37 Everyone is
acquainted with some of the regular polygons, having equal sides: we test our geometrical skills
in grade school with an equilateral triangle; the square, as Coxeter said, ‘‘confronts us all over
the civilized world’’; then there’s the Pentagon Building; the hexagonal snowflake; the eight-sided
octagon of a stop sign; and the twelve-sided dodecagon of the old Canadian nickel or British
threepenny bit.38
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  The dimensional progression from a point to a hypercube.

 
  The three-dimensional polytopes are called polyhedra (meaning ‘‘many surfaces’’—hedron is an
Indo-European word meaning ‘‘seat,’’ so a polyhedron has many seats, or surfaces on which one
could sit).39 The most famous polyhedra are the Platonic solids: the tetrahedron,
octahedron, icosahedron, cube, and dodecahedron. Analogous figures exist in higher
dimensions—the fourth dimension, for example, contains the simplex (the 4-D analog to the
tetrahedron), and the hypercube (the 4-D analog to the cube). And in higher dimensions still,
polytopes morph into more and more complex cousins of the originals, some continuing to
infinity.40


 
  Coxeter’s house was a veritable zoo of polytopes, overtaking every available surface. He hung
posters of higher-dimensional polytopes as art on his wall; he had polyhedral lamps and
polyhedral bookends. Polyhedra—made of cardboard, wood, marble, plastic straws, string and
sticks, plaster, soldered wires, and stained glass41—filled the china cabinet, lurked among plants,
encroached on the window seat, on the fireplace mantel, on side tables, and sometimes the dining
room table.† Coxeter’s book Regular Polytopes became a best-seller and a mathematical classic,
the geometrical analog of Darwin’s Origin of Species. With his Coxeter groups, Coxeter did for
polytopes what Darwin did for organic beings42—he classified and quantified their very
existence.
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  Around the time Coxeter chose classical geometry for his career, however, circa 1930, the
classical tradition—of hands-on visual reasoning, using antiquated treasures such as
triangles, circles, and polyhedra as specimens of study—was exiting its golden age.
Historian E. T. Bell pronounced in 1940: ‘‘The geometers of the 20th century have
long since piously removed all these treasures to the museum of geometry where the
dust of history quickly dimmed their luster.’’43 Geometry was being recast, like a
remake of a cinematic classic, in an abstract and dry format. Geometry was being
subsumed by algebra and analysis—it was all equations and no shapes, like prose without
poetry.44

 
  The eminent German mathematician Hans Freudenthal (1905–90) lamented classical
geometry’s dethronement in a 1971 essay, ‘‘Geometry Between the Devil and the Deep Sea.’’ For
a long time, he said, mathematics was synonymous with geometry, but today it is rejected as not
firmly enough rooted in reality. Freudenthal countered with a ‘‘haphazard’’ list of questions that
evoke the singular mind-set of a geometer, some of them very much related (on varying levels) to
the space in which we live.

 
  Why does a rolled piece of paper become rigid?

 
  How do shadows originate?

 
  What kind of curve is the terminator on the moon?

 
  What is the intersection of a plane and a sphere, or two spheres?

 
  Why can the radius of a circle be transferred six times around the periphery?

 
  How come a beautiful star arises by this construction?

 
  Why is the straight line the shortest?

 
  Why do congruent triangles fit to cover the plane and why do congruent pentagons in general
fail to do so?


 
  How can people measure big distances on the earth, the diameter of the earth, and distances of
celestial bodies?

 
  What is the shortest path for a light ray to travel from one point to another while touching a
mirror?

 
  How does a kaleidoscope work?

 
  If a cube is split into six square pyramids with their vertices in the center and these pyramids
are turned outside upon the corresponding faces, why does a rhombic dodecahedron
arise?

 
  Why can a table with four legs wobble, and what is the difference with a table with three
legs?

 
  Why does a door need two hinges, and how can we add a third?

 
  And finally the old question: why does a mirror interchange right and left though not above
and below?45
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  George Odom with one of his models, which he sent to Coxeter.

 
  Another of Freudenthal’s questions matched a geometric trick Coxeter demonstrated whenever
he found the chance: ‘‘Why does a tied paper ribbon show a regular pentagon?’’ Coxeter’s
instructions for folding a five-sided polygon are simple. ‘‘The figure of a pentagon with diagonals
can be neatly displayed,’’ he said in his best-selling book Introduction to Geometry, ‘‘by tying a
simple knot in a long strip of paper and carefully pressing it flat.’’46 It is easy enough to do. Tear
a 2 × 15 inch strip of paper with a ruler to keep the edge straight. Loop the ends as if beginning
to tie two shoelaces. Slide the edges together until they jimmy into place, meeting flush with the
fold, and then press the woven strips flat. There you have a very practical pentagonal
bookmark.

 
  Geometer Walter Whiteley, director of Applied Mathematics at York University, in Toronto,
asked similar questions in his course ‘‘Introduction to Geometries.’’ Do the tracks of a bicycle
indicate it was traveling forward or backward? Why does a piece of paper fold along a
straight line? Whiteley called all this ‘‘Learning to See Like a Mathematician.’’ And in a
paper titled ‘‘The Decline and Rise of Geometry in 20th Century North America,’’
Whiteley warned that if this visual perspective had met its demise during the dark ages of
classical geometry, the consequences would be profound and far-reaching. Should classical
geometry ever become extinct, he reckons a ‘‘geometry gap’’ would haunt Western

civilization for generations to come.47 Without classical geometry, as without Mozart’s
symphonies or Shakespeare’s plays, our culture, our understanding of the universe, would
be impoverished and incomplete. Donald Coxeter did much to save us from such a
loss.
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  A tied paper pentagon, from Coxeter’s Introduction to Geometry.

 
  According to mathematical folklore, the shift away from classical geometry manifested
itself most dramatically with a statement by a bombastic French mathematician, who
declared:

 
  ‘‘À bas Euclide! Mort aux triangles!’’—‘‘Down with Euclid! Death to triangles!’’48

 
  Legend has it that this war cry came from one Nicolas Bourbaki. He believed mathematical
education in France was falling behind the international standard. He wanted to overhaul the
entire structure of mathematics. In so doing, he sought to stamp out the use of diagrams.
Bourbaki endeavored to write an algebraic encyclopedia of mathematics without a single picture.
This aversion to shapes was defended as serving the interest of purity: all mathematical results
were to be reached by reason alone—by rationality—rather than by the corruptible visual sense.
According to Bourbaki, our visual perception of the world was unreliable, our eyes leaving us
victim to subjectivity and error.49
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  ‘‘General Bourbaki,’’ as depicted in a Scientific American article, 1957.

 
  More than forty years later, when reminded of Bourbaki and the ‘‘Death to Triangles!’’ rant,
Coxeter was cool and calm, with the retrospection of old age. ‘‘Everyone is entitled to their
opinion,’’ he said. ‘‘But Bourbaki was sadly mistaken.’’50 Coxeter had by then become
geometry’s apostle. He ignored the fads and fashions, and through steadfast rear-guard action,
simply persevering with the shapes he loved, he preserved the classical tradition of geometry and
sustained it through its lean years.51 For this he has become a hero for many mathematicians the
world over.52
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  Even if you have never before heard of Coxeter, let alone his Coxeter groups or Coxeter
diagrams, you will nonetheless find it hard to resist a tumble down the Coxeterian rabbit-hole
into his geometrical wonderland. There is something marvelous in witnessing Coxeter’s seemingly
esoteric and arcane obsession, his intense focus and all-consuming passion for classical geometry
that lifts him above the humdrum of the everyday and makes his life take flight.53 It’s easy to
get hooked by his devotion and stoicism in fighting for his beloved geometry. And, by

following Coxeter as an ambassador and interpreter in these foreign parts, you may find
yourself viewing the world from a new and illuminating lens—Coxeter’s perspective—seeing
a hypertext reality where everything takes on shades and shapes of geometry. For
example, not long ago a billboard at a small-town Di$count car rental lot beckoned with a
truly Coxeterian double entendre. Rising out of the cultural wasteland of fast-food
joints, car dealerships, and gas stations lining the main road into town, the billboard
read:
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  Front Street North, Belleville, Ontario, January 2002.

 
  * Astronomer Fritz Zwicky (1898–1974) was notorious for calling people ‘‘spherical bastards’’ if
he found them uninteresting and dislikable—no matter which way he considered these people,
they were equally offensive.

 
  † Many of Coxeter’s models were sent to him as gifts from strangers, fans from afar, such as
George Odom, a resident of the Hudson River Psychiatric Center, in Poughkeepsie, New York.
Odom sent so many models over the years that Coxeter, though grateful, eventually
ordered him to stop. As Odom recalled, Coxeter begged him: ‘‘ ‘Please! NO MORE
MODELS!’ ’’

 
  chapterMr. Polytope Goes to Budapest

 
     
Geometry will draw the soul towards truth.

 
—PLATO, THE REPUBLIC
 


  Bursts of white light lit up the splendidly restored auditorium of Hungary’s Academy of
Sciences as Donald Coxeter inched toward the lectern, leaning only slightly on his cane.
Photographers had descended upon the academy, located on the east bank of the Danube in
Budapest, to capture a few shots of the president of the Republic of Hungary, Ferenc Madl, who
was there making a rare public appearance at the opening ceremony of the János Bolyai
Conference on hyperbolic geometry, in July 2002. But afterward, the photographers stayed to
snap a few shots of Coxeter as well.1


 
  Flash from the cameras reflected off his pale pate and the bejeweled turtle brooch pinned to his
lapel. Well into his nineties, Coxeter still traveled the international conference circuit. He had
been invited to give the opening lecture at this event, commemorating the two hundredth
birthday of Hungary’s sainted Bolyai, who, with his discovery of non-Euclidean geometry in 1823,
changed forever our perception of space.2

 
  When a long-retired mathematician is asked to give an address at a conference, his audience
would be forgiven in assuming that he’ll provide an autobiographical synopsis of his career.
Coxeter, however, wrote a scholarly paper, months and months in the preparation. Titled ‘‘An
Absolute Property of Four Mutually Tangent Circles,’’3 it addressed a topic tangentially related
to Descartes’ Circle theorem, one of Coxeter’s favorites.4 As he was announced to the
audience, Coxeter shuffled the pages of his talk, and readied his visual aids—numerous
transparencies and a geometrical model, a cubic nexus of multicolored straws. Three
hundred or so mathematicians awaited his presentation, a discrete group of individuals
more than willing to forfeit July’s summer sun for the somnolent glow cast by the
lecture hall’s overhead projector. Most were a fraction of Coxeter’s age. Many, the
organizers included, had been skeptical that he would be able to make the journey. A
similar number no doubt wondered whether he could possibly have anything left to
profess.5

 
  Coxeter began slowly, enunciating meticulously with his lingering British accent: ‘‘The absolute
property of four mutually tangent circles that I am describing seems to have been discovered
by Mr. Philip Beecroft, of Hyde Academy, Cheshire, England, and published in The
Lady and Gentleman’s Diary …In Beecroft’s own words, [the theorem states,] ‘If any
four circles be described to touch each other mutually, another set of four circles of
mutual contact may be described whose points of contact shall coincide with those of
the first four.’ ’’6 He waded into an examination of what he believed to be his new
proof—a simple, elegant proof—of Beecroft’s theorem, delineating the four mutually
tangent circles, a1, a2, a3, a4, and another set, b1, b2, b3, b4. ‘‘This figure makes the
theorem almost obvious,’’ he said, fixing his transparency into position, ‘‘but for the
sake of completeness it seems desirable to consider further details.’’ He proceeded,
pausing here and there, whistling lightly under his breath, as he often did to focus his
concentration.7
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  The diagram of four mutually tangent circles used by Coxeter in his Budapest talk.
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  When Donald Coxeter barely squeaked by his ninety-fifth birthday, his doctor diagnosed that
he was in that final and waning stage of life warranting palliative care—there was no cure for
what ailed him. He was creaky and tired, acute pointy parentheses wrinkling around
his subtle smile. He had weathered cancer of the prostate and the right eye, and a
heart attack, and now suffered chronic digestive troubles. Nonetheless, against doctor’s
orders, he was determined—ever the obstinate optimist—to make the trip to the Bolyai
conference.8

 
  In an attempt to be as prudent as possible in planning his journey, Coxeter tended with
grandfatherly gumption to life-and-death details such as buying travel health insurance (he was
refused), and determining what to do with his brain should he die while away. Coxeter’s brain
functioned so impressively over the years that he had received a request for its mass of synapses
to be seized swiftly, no more than twelve hours’ postmortem, in order to undergo
scientific research at McMaster University, in Hamilton, Ontario,9 where a specimen
of Einstein’s well-traveled and well-dissected brain resides.10 As Coxeter recalled,
McMaster’s Dr. Sandra Witelson rang and asked with pardonable clinical insensitivity: ‘‘Dr.
Coxeter, when you die can we have your brain?’’ He took it as a compliment and
agreed.11

 
  On the day of departure, Coxeter sat at his cluttered kitchen table and set about the task of
testing his hearing aids. He snapped his fingers from one ear to the other, then tried a ticking
pocket watch. ‘‘Dead as a doornail! I get the best results when I don’t have any hearing aid in at
all!’’ he concluded, at once confused and bemused. He glanced out the window to find the
airport limousine waiting at the sidewalk. ‘‘Oh, bother!’’ he cursed (that was the extent
of his cursing, for a minor mishap or a major flood in the basement). ‘‘How very,
very awkward. I’m not ready!’’ Coxeter checked and rechecked that his passport and
airline ticket and envelope stuffed with Hungarian money were safely stowed in his
briefcase. He packed his hearing aids and the Tupperware container full of dead and fresh
batteries (‘‘A terrible nuisance that they were somehow mixed together’’). He gathered all
the parts of his electric shaver and stowed his high-altitude antiembolismic socks in
the waistband of his daughter’s skirt, like Kleenex at the ready under the cuff of a
sleeve.12

 
  Coxeter’s daughter, Susan Thomas, a retired nurse, was his escort. With the chauffeur
patiently standing by outside, Coxeter checked for his passport yet again, then snapped his
briefcase shut. He inched down the stairs, taking each step two feet at a time, and finally passed
the cuckoo clock in the foyer embossed with the motto ‘‘Delay Not the Hour Flies.’’ He

shuffled along the front walk, and slid his stiff, angular body, not an ounce of body fat
for cushioning, onto the limo’s leather seat. He was off, venturing forth on one more
journey into what he termed ‘‘the wild wicked world’’—a world, according to the classical
definition of ‘‘geometry,’’ which he had spent more than three-quarters of a century
measuring.13

 
  One day after Coxeter arrived in Budapest, he attended a welcoming luncheon at his posh
Hyatt hotel. There to greet him was the conference organizer, András Prékopa. A member of the
Hungarian Academy of Sciences, and a professor of mathematics and operations research at
Rutgers University, Prékopa had never before met Coxeter. When he did he shook his hand and
announced with a beaming smile: ‘‘Dr. Coxeter is the world’s greatest living classical geometer.
No question!’’14

 
  Later that evening, relaxing in the hotel lobby, Coxeter met with another fan, Texan Glenn
Smith, a self-described ‘‘geometry groupie,’’ who makes a successful living in the sesame business.
Smith brought to Budapest the geometric model for Coxeter’s presentation—constructed by
special order—as well as an antique set of wooden geometric solids, circa 1850, which he had
purchased during a stopover in London. Smith always travels with models in his suitcase that can
be assembled and disassembled like LEGO; it’s how he kills time in airports and keeps himself
company in hotel rooms.15

 
  Even with his hobbyist’s perspective, Smith had a cogent argument for Coxeter’s designation
as the savior of classical geometry. ‘‘Coxeter so understood the importance of geometry that he
stuck with it. He went out on a hilltop—when all the rest of us were down in the valley—and he
saw what was out in front of us and how important geometry was going to become,
and he led us out of the darkness. We’ve been in a dark age,’’ said Smith. ‘‘And I
think we’re still trying to come out of that age. The more we investigate geometry, the
better off we all will be.’’ Smith also provided an interesting way of explaining the
importance of geometry in the world. ‘‘Geometry is at the root of everything, whether we
recognize it or not. If you take everything and strip it down—start out with the universe
and galaxies and stars and planets and solar system and the Earth, then the Earth is
organized into countries and countries become communities and communities are made
of families, families are made up of people, people have organs, organs have cells,
molecules, atoms, subatomic—strip all that away, and at every stage there are certain
geometries or configurations of patterns. If you study those patterns, you will see

them almost wherever you go, they will always exist. That’s the nice thing about
geometry, about polytopes or polyhedra—we could be anywhere in the universe and have
the same thoughts. In other words, geometry is not particular to this planet we live
on.’’16

 
  ‘‘What I told my children when they were young,’’ he continued, ‘‘is that you need to learn
geometry because if you are ever picked up by a flying saucer, you’ll need to show the aliens that
you know geometry. They will know geometry for sure. You’ll need to be able to make a
tetrahedron like this’’—he placed his right hand on his forehead and his left hand on his right
elbow, forming the frame of a tetrahedron. ‘‘If you see somebody from another planet, do that
and they’ll know you have some intelligence, and they won’t treat you like an insect and pull off
your arms and legs.’’17

 
  Coxeter, not long before, had articulated much the same sentiment when speaking of the
Platonic solids: ‘‘I don’t think they were invented. I think they were discovered. Somebody on a
different planet, with the right kind of mind, would find the same thing.’’18 That evening in
Budapest, Coxeter added as a footnote: ‘‘It was Plato’s idea that everything that is true
has always been true and people simply reconstructed true things by thinking about
them.’’19
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  Researching the family tree of geometry, tracing the ancestry from Thales who begat
Pythagoras who begat Plato, is comparable to retelling tales from the Bible, since most of what
is known about these single-name ancients comes from unattributed or biased sources, anecdotes
passed down and spun together to form a grand mythology.20

 
  The five regular polyhedra, for example, the mainstays of geometry, are also called Platonic
solids even though they were known before Plato (427–347 BC). But Plato took a
special interest in these solids and left us the earliest surviving description in his book
Timaeus (the sequel to his Republic).21 In Scotland, a complete set of five carved out of
stone have been attributed to Neolithic people dating back some 4,000–6,000 years. In
fact, according to George Hart’s Web-based Encyclopedia of Polyhedra,22 hundreds of
stone spheres have been found with carved edges roughly corresponding to the regular
polyhedra, and ranging in material from sandstone to granite and quartzite. Ornate bronze
dodecahedra by the dozens, dating to Roman times from the second to fourth century, have
been unearthed across Europe, in the United Kingdom, Belgium, Germany, France,

Luxembourg, the Netherlands, Austria, Switzerland, and Hungary. Their function has not
been confirmed—perhaps candle stands, flower stands, staff or scepter decorations,
surveying instruments, leveling instruments, finger ring-size gauges, or just plain geometric
sculpture.23

 
  Coxeter liked to note that a pair of icosahedral dice of the Ptolemaic dynasty reside in one of
the Egyptian rooms of the British Museum in London, and that excavations on the Monte Loffa,
near Verona, extracted an Etruscan dodecahedron, revealing that this figure was enjoyed as a toy
at least 2,500 years ago.24 Known for meticulously sourcing his ideas, Coxeter provided perhaps
the best summation of origins: ‘‘The early history of these polyhedra is lost in the shadows of
antiquity. To ask who first constructed them is almost as futile as to ask who first used
fire.’’25

 
  In the ancient Greek tradition, geometry was elevated beyond its practical Egyptian and
Babylonian usage (5000–500 BC) to the rank of science.26 The Greek word mathemata
translated to ‘‘science of learning’’—and mathematics in those days essentially comprised
geometry.27 Geometry was the purest measure of truth and the highest form of knowledge, with
schools dedicated to its study. The Pythagorean School, which became part of the zeitgeist,28
was attended by citizens of all social strata, especially the upper class. Women disregarded a law
forbidding their presence at public meetings and flocked to hear Pythagoras speak.29 The
ingenuity of the Pythagorean theorem—stating that the square of the hypotenuse of a
right-angled triangle is equal to the sum of the squares of the other two sides—provided
early affirmation of the direct relationship between number and space. However, when
Pythagoras squared the hypotenuse, he did not do ‘‘modern’’ mathematics, multiplying
the hypotenuse by itself. Rather, he literally constructed a geometrical square on top
of the hypotenuse. Likewise, the sum of two squares being equal to a third meant
that the two squares could be physically cut up and reassembled to form the third
square.30

 
  Pythagoras (569–475 BC) believed that mathematics was religion, capable of purifying the
spirit and uniting the soul with the Divine. He made the study of geometry part of a liberal
education, probing theorems in an intellectual manner.31 His heir was Plato, who proclaimed,
‘‘God ever geometrizes.’’32 And when Plato started his own school, the Academy, the sign
hanging over the entrance indicated he did not suffer geometrical fools gladly: ‘‘Let none ignorant
of geometry enter my door.’’33


 
  Plato, too, held that mathematics was the finest training for the mind, the secrets of the
universe being embedded in number and form. He believed the ideal geometrical shapes—circles,
spheres, squares, cubes—did not exist in reality but only in a higher realm of their own,
independent from the physical world; a sphere in the physical world was only an approximation
of the perfect form of a sphere.

 
  ‘‘The ideal notion is the mathematical concept,’’ said mathematical physicist Sir Roger
Penrose. ‘‘A mathematical concept or mathematical structure, in a certain sense, conjures itself
into existence. Mathematicians tend to think of mathematics as having its own existence …of
mathematical notions and mathematical truths as having a timeless existence. And
mathematicians are somehow explorers in that world.’’ The notion that mathematical structures
contain an inviolable reality of their own is somehow reassuring. The human mind operates with
significant margin of error, so often imprecise, inconsistent, and selective in its judgments. In
mathematics, there exists logical rigor, an absolute purity. Plato’s world of mathematical forms
provided a methodology that modern science has followed ever since—scientists propose models
of the world, and the models are tested against observations from previous or new
experiments.34

 
  Plato himself had a model of the world, based on his namesake solids. In his book Timaeus,
four interlocutors gather to discuss cosmology and natural science. The main character, Timaeus,
constructs a story for the creation and composition of the universe. As one Plato biographer, A.
E. Taylor, recounted, ‘‘What Timaeus is really trying to formulate is no fairy tale, but, as we
shall see, a geometrical science of nature.’’ In devising his theory of everything, Plato paired the
classical elements with the five regular solids.35 These shapes, Plato said, were ‘‘forms of bodies
which excel in beauty,’’36 their beauty residing in the criteria they meet for being
‘‘regular,’’ or uniform. First, each solid’s surfaces are all the same regular polygon—a
shape with all sides and all angles equal (the equilateral triangle, the square …). The
classification of the Platonic solids as ‘‘regular’’ also depends on a second criterion: the
same number of regular polygon faces must meet in the same way at each corner, or
vertex.37

 
  There are three Platonic solids constructed solely with the equilateral triangle. The
simplest is the tetrahedron, composed of four equilateral triangles, three at each of
its four vertices. In his scheme of the elements, Plato chose the tetrahedron, due to
its simplicity and sharp corners, to represent fire, the fiercest and most basic of the
elements—with its ‘‘penetrating acuteness …the pyramid is the solid which is the original
element and seed of fire.’’38 The octahedron is built from eight equilateral triangles,

four at each vertex, and Plato considered it symbolic of air, because this solid spins
nicely in the wind (or by blowing on it) when you hold it between finger and thumb.39
The icosahedron has twenty equilateral triangles, five at each vertex, which combine
to make it the roundest of the regular polyhedra. As a result, Plato associated the
icosahedron with a drop of water, ‘‘the densest and least penetrating of the three fluid
elements.’’40

 
  The cube, Plato assigned to earth: ‘‘for earth is the most immovable of the four and the most
plastic of all bodies, and that which has the most stable bases must of necessity be of
such a nature.’’41 Thus four of the five convex regular polyhedra symbolized the four
elements: fire, air, water, and earth. ‘‘The discrepancy between four elements and five
solids did not upset Plato’s scheme,’’ Coxeter noted. ‘‘He described the fifth as a shape
that envelops the whole universe.’’42 The dodecahedron, with twelve pentagonal or
five-sided faces, was the model of the universe as a whole. ‘‘There remained a fifth
construction,’’ said Plato, ‘‘which God used for embroidering the constellations on the whole
heaven.’’43 Plato’s scheme demonstrated considerable prescience, because the Platonic
solids, even though they did not turn out to be the exact elements of all existence,
are in many ways elemental, or fundamental, components of the universe, emerging
on both microscopic and macroscopic dimensions in the most unexpected places—a
recent cosmological hypothesis revisited Plato’s notion that the universe might be
dodecahedral; and in astrochemistry, the shape of the Nobel-winning C60 molecule is a
truncated icosahedron. (See chapter 10 for C60 and chapter 12 for the dodecahedral
universe.)44
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  Kepler’s Platonic solids etched with the classical elements, from Harmonice Mundi,
1619.

 
  The Fabergé-egg feature of Platonic solids—what makes them such exquisite treasures—is the
fact that only five regular solids can physically exist.* This cunning act of geometric sorcery
is explained by the solids’ regularity (faces all the same regular polygon, with the
same grouping of polygons around each vertex). It is best appreciated by constructing
the Platonic solids for oneself, piece by piece—simply taping the component polygons
together. ‘‘Any intelligent child who plays with regular polygons (cut out of paper or thick
cardboard, with adhesive flaps to stick them together) can hardly fail to rediscover
the Platonic solids,’’ said Coxeter. ‘‘They were built up that ‘childish’ way by Plato
himself.’’45
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  The elasticized popping dodecahedron, from Introduction to Geometry.

 
  Models of these highly symmetric solids can also be constructed from ‘‘nets,’’ made by tracing
a flat pattern of adjoined component polygons. Coxeter provided instructions in his
book Introduction to Geometry46 for a springy dodecahedron model made by fitting
together two nets, folded into ‘‘bowls’’ of pentagons that are then strung together by an
elastic band. When assembled, the dodecahedron model becomes alive—animated by its
crude spring-release system, it can be pushed flat and stored in a book, but when not
compressed by sufficient weight it spontaneously pounces back into shape. During
class, Coxeter made a stunt of pretending to have lost his dodecahedron model. ‘‘Oh,
bother!’’ he’d mutter mid-lecture. ‘‘Now, where is my dodecahedron?’’ He’d look around,
opening a book or lifting a stack of papers and then—POP!—there it was, springing
into being.47 (Endnote 47 contains illustrated instructions for constructing a popping
dodecahedron.)
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  Euclid (365–25 BC) proved there are only five Platonic solids.48 And given the
above-mentioned restrictions, only three regular polygons (the equilateral triangle, square,
and pentagon) can be used in the construction of the Platonic solids. This is because
the sum of polygon angles that meet at a vertex must be less than 360° in order to
form a convex solid. This can be proved algebraically, or by physically putting the
component polygons together and discovering what works. For example, if you try to fit
three, four, or five triangles around a vertex, there is still a gap, and the triangles
then can be folded down to meet one another, forming a corner of the respective solid
(the tetrahedron, octahedron, or icosahedron). All other options with the equilateral
triangle would not work: two triangles around a vertex cannot possibly meet at all edges
to form a solid, while six triangles add up to 360° exactly, thus leaving no gaps and
forming a flat tiling, and seven, eight, or more triangles overlap or meet in accordion-like
folds.49

 
  Euclid’s seminal contribution to geometry was his book The Elements. But Euclid was not the
author of The Elements so much as its editor. He compiled and organized the fundamentals of
geometry, work done by Thales, Pythagoras, and other predecessors. Euclidean geometry in
general, to loosely define it, encompassed the study of familiar shapes, their areas and angles,
and filled thirteen books. The first book covered triangles; the next, rectangles; followed by

circles, polygons, proportion, similarity; with four books on number theory, and one each on solid
geometry and pyramids, culminating with the properties of the majestic five regular
polyhedra—here Euclid placed the Platonic solids on a pedestal and gave his proof that there are
only five.50

 
  By the middle of the nineteenth century, Euclid’s Elements had been the bible of mathematics
for two millennia. Arabian mathematicians and authors, providing one of few sources of
information on Euclid’s life, translated his name as ‘‘Uclides,’’ ucli meaning ‘‘key’’ and des
meaning ‘‘measurement’’—Euclid was the ‘‘key of geometry.’’51 And the Euclidean framework was
assumed to be the geometry of the real world. Immanuel Kant’s philosophy still dominated
metaphysical beliefs, and in his Critique of Pure Reason he asserted that the Euclidean system
was ‘‘a priori’’—meaning ‘‘prior to experience,’’ based on synthetic, theoretical deduction
rather than empirical observation, or, as Kant translated it, ‘‘an inevitable necessity of
thought.’’52

 
  In 1847, Oliver Byrne, a mathematics schoolteacher and Queen Victoria’s surveyor of the
Falkland Islands, published a beautiful new edition of Euclid’s Elements, with color diagrams
replacing equations (this in addition to the simple line drawings of previous editions).53 Byrne’s
book, The First Six Books of the Elements of Euclid, stated on its title page, ‘‘Colored Diagrams
and Symbols Are Used Instead of Letters for the Greater Ease of Learners.’’ In the preface, Byrne
elaborated: ‘‘The arts and sciences have become so extensive, that to facilitate their acquirement
is of as much importance as to extend their boundaries. Illustration, if it does not shorten
the time of study, will at least make it more agreeable. This work has a greater aim
than mere illustration; we do not introduce colors for the purpose of entertainment
…but to assist the mind in its researches after truth, [and] to increase the facilities of
instruction.’’54

 
  Euclid, then, was enjoying continued popularity, but there were undercurrents of dissent. In
The Elements, Euclid had outlined his exalted five postulates, and the first four were simple
enough:

 
	   
1. 

	A straight line may be drawn between any two points.

     
	
2. 

	A piece of straight line may be extended indefinitely.

     
	
3. 

	A circle may be drawn with any given radius and an arbitrary center.
     


	   
4. 

	All right angles are equal.55


  But the fifth postulate—the parallel postulate—was unlike the others, and allegedly Euclid
himself had been hesitant to include it in his Elements. ‘‘His reluctance to introduce it,’’ Coxeter
observed, ‘‘provides a case for calling [Euclid] the first non-Euclidean geometer!’’56 It
stated:

 
  5. If a straight line crossing two straight lines makes the interior angles on the same side less
than two right angles, the two straight lines, if extended indefinitely, meet on that side on which
are the angles less than the two right angles.57

 
  Coxeter deemed it ‘‘unnecessarily complicated.’’58 Indeed, since Euclid’s time, the parallel
postulate had dogged mathematicians, and annoyed them. It was not intuitively obvious and
required mathematicians to suspend disbelief; it stumped them because it could in no way be
verified by experience.

 
  Another way of expressing the parallel postulate is to say that, given a line and a point not
on the line, every line through the point will meet the line, except in one ‘‘freaky
case’’: when the two lines are parallel to each other. But, as Jeremy Gray, historian of
mathematics at the Open University, pointed out, who is to say what happens to two
parallel lines when extended to infinity, or off 1010 light-years away, where strange
things might alter the laws of space? Maybe parallel lines could meet somewhere in
the ‘‘vaguer cluster,’’ said Gray. Regardless, it is impossible to check. ‘‘So it’s a very
strange statement,’’ he said. ‘‘It’s a blot. Because it’s a leap of faith unlike all the other
postulates.’’59

 
  Over the years, most mathematicians ignored this blot, for if they didn’t the reign of Euclidean
geometry threatened to collapse like scaffolding with one faulty strut. Some mathematicians, the
more daring, courageous, and foolhardy—Greek, Arab, Islamic, and eventually Western
mathematicians—tried and failed to prove the parallel postulate using the other four
postulates. As the failures accumulated, these attempts of geometrical derring-do only
continued, forming a procession of doomed parallel postulators throughout history.60 The
predicament was decried in the mid-eighteenth century as ‘‘the scandal of elementary
geometry.’’61


 
  Hungary’s János Bolyai (1802–60) was one of the adventurers who went in search of geometry’s
Holy Grail. He first tried to prove the fifth postulate, with no success. He then wondered whether
the postulate was perhaps false. Bolyai became infatuated, convinced he was closing in on the
chase for geometry’s mercurial axiom. His efforts dismayed his father, Farkas Bolyai, who
himself had exercised self-destroying due diligence with the parallel postulate.62 ‘‘I have
traveled past all reefs of this infernal Dead Sea,’’ he told his son, ‘‘and have always come
back with broken mast and torn sail.’’ He tried desperately to disabuse János of his
interest.63

 
  You must not attempt this approach to parallels. I know this way to the very end. I have
traversed this bottomless night, which extinguished all light and joy of my life. I entreat you,
leave the science of parallels alone …I thought I would sacrifice myself for the sake of the truth. I
was ready to become a martyr who would remove the flaw from geometry and return
it purified to mankind. I accomplished monstrous, enormous labours…I turned back
when I saw that no man can reach the bottom of this night. I turned back unconsoled,
pitying myself and all mankind. Learn from my example: I wanted to know about
parallels, I remain ignorant, this has taken all the flowers of my life and all my time from
me.64

 
  His son, however, ignored the warnings:

 
  I am determined to publish a work on parallels as soon as I can put it in order,
complete it, and the opportunity arises. I have not yet made the discovery but the
path that I am following is almost certain to lead to my goal, provided this goal is
possible. I do not yet have it but I have found things so magnificent that I was astounded
…65

 
  Eventually Farkas relented and encouraged his son to publish whatever he had as
soon as possible, lest the ideas pass to someone else. ‘‘There is some truth in this,’’
János agreed, ‘‘that certain things ripen at the same time and then appear in different
places in the manner of violets coming to light in early spring.’’66 They published
János’s findings in 1832, as an appendix to a book on geometry his father had long been
preparing.67

 
  János’s findings proved that the fifth postulate was not a theorem—not a consequence of
Euclid’s first four postulates—by showing that there are geometries in which Euclid’s first
four postulates hold true but the fifth does not. He had discovered a consistent and
self-contained system of geometry that differed from Euclid’s in its properties of parallelism;
in Bolyai’s non-Euclidean geometry, there are infinitely many lines through a given

point that do not meet a given line. With this, Bolyai had performed a seemingly
impossible feat.68 He had discovered a new geometry—‘‘one of the most momentous
discoveries ever made,’’ said Gray—but the world simply ignored it. By the time János
Bolyai died, in 1860, he had received no recognition for his discovery of non-Euclidean
geometry.69
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  With Bolyai’s discovery, there were then two types of geometry, Euclidean and non-Euclidean,
each rooted in the classical tradition. As a classical geometer, Coxeter carved a unique,
surprisingly productive, and far-reaching career from Euclidean geometry, elevating it to complex
and hyperdimensional levels, and he made forays in the non-Euclidean realm as well.70 Thus,
Coxeter was what you might call a modern classical geometer, according to Sir Michael Atiyah,
one of the finest mathematicians of our day: ‘‘Coxeter’s geometry was classical flat geometry,
geometry of ordinary space. Then he moved into variations on that, with group theory. And this
brings geometry into touch with modern algebra in lots of interesting ways. He was the
master of that bridge,’’ said Sir Michael. ‘‘But Coxeter stayed in the old world. He
didn’t become a modern geometer. He didn’t embrace modern geometry as a whole.
He stayed very close to the spirit of classical geometry …He was a virtuoso in that
area. Quite unique. He’s almost the last classical geometer more than the first modern
geometer.’’71

 
  Since Bolyai’s time, many more types of non-Euclidean geometry have been discovered.
Geometry, broadly speaking, is anything that shares the general ideas of Euclidean geometry. If a
few rules are changed, however, then a slightly different ‘‘non-Euclidean’’ geometry results.
There is a seemingly infinite diversity of geometries, either classical or contemporary
in origin—each logical systems unto themselves and devised for a specific purpose.72
Some of them, Coxeter waded into headlong (especially projective geometry); some, he
approached in spurts (such as topology, also known as ‘‘rubber-sheet’’ geometry, with
the four-color problem, regarding the theory of maps); and other areas he touched
on scarcely at all (modern curved complex geometry, fractal geometry, and taxicab
geometry†).73 The different geometries evolved slowly, like a genealogy, responding to
ideas of the times, and sometimes pushing the envelope. For example, the study of
knots required the development of topology, which in turn required the development of
metric spaces. Whereas differential geometry, the study of curved surfaces via calculus,

originated in the mid-1800s and was found to be relevant (along with non-Euclidean
geometry) at the turn of the next century in the space-time geometry of Einstein’s
relativity theory.74 Many of these branches were ‘‘beyond my powers,’’ Coxeter once
admitted,

 
  There are so many branches of the subject in which I am almost as ignorant as the proverbial
man in the street. I must ask you to forgive me if I concentrate on my own favorite branches, and
I must take the risk of offending various geometers who will ask why I have not dealt with
algebraic geometry, differential geometry, symplectic geometry, continuous geometry, metric
spaces, Banach spaces, linear programming, and so on …Thus there are many geometries, each
describing another world: wonderlands and Utopias, refreshingly different from the world we live
in.75

 
  A different non-Euclidean geometry from Bolyai’s, for instance, occurs when you assume there
are no parallel lines at all—every pair of lines intersects. One way to illustrate this mind-bending
geometry is with a query that Coxeter entertained (one long a part of geometry folklore): If you
had your pilot’s license and flew ten hours due south, then ten hours directly west, and then ten
hours due north, how could it transpire that you would find yourself right back at your starting
place?76

 
  Flummoxed disbelief is the usual reaction to this question, because the directions are
envisioned in the flat Euclidean plane. Coxeter demonstrated this warped perspective in 1957
with a grainy black-and-white television appearance on a Canadian news magazine. In comparing
the ‘‘nature of space’’ and alternative geometries to Euclidean, he made use of two blackboards—a
standard flat blackboard on the wall, and a swiveling globe of the world painted black. First,
Coxeter said, consider an ordinary triangle in the plane. He gestured to his triangle drawn on the
regular chalkboard—a traditional Euclidean triangle with angles summing to 180°.
Another kind of geometry, he continued, moving toward his globe, is geometry on
the surface of a sphere. And then, beginning at the North Pole, he chalked lines on
the globe running due south, then traveling due west, and finally due north, leading
directly back to his starting point and forming a triangle with his path—a triangle
constructed from three 90° angles.77 So if we choose, Coxeter concluded, ‘‘we can
find a triangle having right angles at each vertex, and the sum of the three is 270° .’’
This is spherical geometry, one example of a non-Euclidean geometry. Non-Euclidean
geometry exists in worlds where, tinkering with qualitative and quantitative factors, the

angles of a triangle sum to more or less than the traditional Euclidean 180° . It is
simply a matter of experiment; mathematicians invent new geometries and then it is
left to the physicists to figure out which of these geometries, if any, apply in the real
world.78
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  Coxeter demonstrating non-Euclidean spherical geometry with a 270° triangle on a
globe.

 
  When Bolyai’s non-Euclidean geometry eventually gained attention, people began asking,
‘‘Which geometry is valid in physical space—Euclidean or non-Euclidean?’’79 Bolyai’s new
geometry had exposed a firmly entrenched misunderstanding about the nature of space. For ages
mathematicians had believed that Euclidean geometry was the one and only logical account of
the way the world could be. But, as Bolyai announced: ‘‘All I can say now is that I have created
a new and different world out of nothing.’’80
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  Wading into his talk at the commemorative Bolyai conference, Coxeter twirled in his fingers
Smith’s model, a nexus of multicolored straws—a skeleton of a cube surrounding the
skeletons of two interlocked tetrahedra. As he proceeded with his lecture, a rumble of
unease stirred in the audience, the skeptics straining to hear. ‘‘Louder! Louder, please!
We cannot hear!’’ cried Coxeter’s daughter. His microphone wasn’t working. Neither
was his hearing aid. Oblivious to the predicament as it was being resolved, Coxeter
carried on, the audience scribbling bouquets of tangent circles into notepads on their
laps.81
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  Coxeter at the microphone in Budapest.

 
  Coxeter was hardly a showman. He was a gentleman geometer who held his audience’s
attention with the beauty and elegance of his work. He was known for being birdlike, both in
appearance and style—very delicate, very precise, very spare. ‘‘You have to know what’s
important,’’ said Gray, who likened Coxeter to a violin rather than an entire orchestra. ‘‘He’s not
going to rhapsodize, he’s not going to tell you that this is a huge big deal…he’s not
going to write you any advertising copy.’’82 Coxeter meets the measure of an elegant
and beautiful practitioner also because his mathematics flourishes in the minds of
other mathematicians. When a piece of mathematics is called beautiful or elegant, it is
presented in a way that conveys understanding, and one litmus test for understanding

is whether other mathematicians can do something with it, fitting it nicely into the
bigger picture. ‘‘It becomes elegant because it opens something up,’’ said Gray. ‘‘The
elegance is in the power it conveys to do something that couldn’t, or hadn’t, been done
before.’’83

 
  In the end, Coxeter’s talk went over well, and it proved relevant—it was related to the hot
applied topic of data mining. ‘‘His proof [of an absolute property of four tangent circles] is not an
earth-shaking discovery,’’ said Karoly Bezdek, the secretary of the Budapest conference
committee. ‘‘But his proof is the simplest one, the ideal proof for Beecroft’s theorem. Nowadays
many mathematicians publish with very complicated proofs. It is important to have simple
proofs that we can digest and really learn from. It’s an art to discover the right proof.’’84 The
conference organizer, Prékopa, was very pleased as well: ‘‘It is amazing that somebody who is
95 years old can invent new scientific results of such depth and present them at a
meeting. I wish I could be such a fresh-minded person, and interested and active.
Coxeter gets distracted and falls asleep during some of the other talks,’’ he noted (many
an audience member was caught nodding off), ‘‘but he always wakes up when he’s
interested.’’85

 
  One widely accepted mathematical truth is that mathematics is a ‘‘young man’s’’ game.
‘‘Young men should prove theorems, old men should write books,’’ said the legendary G. H.
Hardy, a professor of Coxeter’s at Cambridge who penned A Mathematician’s Apology, a lament
for his waning mathematical prowess.86 Hungarian mathematician Paul Erdös (1913–96) is the
usual counterexample. Erdös was a prolific problem solver to the end of his life, publishing more
than one thousand papers, more than any mathematician in history. He was ‘‘the man who loved
only numbers,’’ as the title of Paul Hoffman’s biography proclaimed.87 A close friend and
collaborator, Ron Graham (introduced to Erdös by Coxeter in 1958), recalled that Erdös ‘‘was
completely dedicated to, as he would say, ‘taking a peek into The Book’—‘The Book’‡ was
this hypothetical book of the Almighty that contains all the best possible proofs, all
the gems of mathematics that you can present in a page or two. Erdös really lived
mathematics.’’88

 
  Donald Coxeter is an equally good counterexample disproving the stereotype of a
mathematician’s ‘‘best-before date.’’89 Coxeter’s only professional regret, articulated at the
end of his days, was that he had not collaborated with Erdös90—his Erdös Number
was 2 (as was Einstein’s).91 A person who coauthored a paper with Erdös gained
an Erdös Number 1; a person who coauthored a paper with such a person has an
Erdös Number 2, and so on, forming an international nexus of Erdös’s 485 coauthors.

Erdös had no real home base and traveled the world with his battered Mexican leather
briefcase of worldly possessions, landing on the doorstep of welcoming or unexpecting
mathematicians. Upon arriving at his destination Erdös would announce: ‘‘My brain is
open!’’ (the title of another Erdös biography, by Bruce Schechter).92 His visits were so
intensive that Graham often joked, ‘‘We had Erdös over for a month last weekend.’’93
After Erdös squeezed all the mathematical juice from his host he moved on to his next
stop.94
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  Left to right: Unidentified woman, Coxeter, Branko Grünbaum, Paul Erdös, circa
1965.

 
  Coxeter had plenty of opportunity to become an Erdös 1. He and Erdös often crossed paths.
One day in 1935, when Erdös was at Cambridge, he rang Coxeter and asked him a question
regarding a problem he was working on about parallelotopes.95 Coxeter worked on Erdös’s
problem for a few days, but it didn’t lead to collaboration. They met numerous times
thereafter, in London, Toronto, and elsewhere. In 1965, Coxeter noted in his diary:
‘‘while shaving I solved Erdös’s problem (of the dancing girls and boys).’’ But still no
collaboration.96

 
  For Erdös’s sixty-eighth birthday, Coxeter dedicated a talk in his honor on ‘‘a symmetrical
arrangement of eleven hemi-icosahedra,’’97 and the two bounced ideas back and forth in
correspondence—a letter from Erdös, always written with a fountain pen, typically began
with a brief pleasantry, promptly launching into pages of mathematical proposition,
suppositions, equations, conclusions, and a diagram. Coxeter sent Erdös problems he
might appreciate, and Erdös contributed ideas to a few of the problems Coxeter was
working on,98 but upon Erdös’s death in 1996, Coxeter settled for an Erdös Number
2.99
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  Coxeter’s daughter Susan, not being the least bit mathematically inclined (or even
empathetic), wasn’t so impressed with her father’s intellectual longevity, and in general she ran
hot and cold on his status as a mathematical legend. Having solved the problem of the
microphone malfunction during his lecture, Susan settled in and read her novel. And at the end
of his talk, when Coxeter hightailed it to the loo, Susan gave her evaluation. ‘‘To think,’’ she
said. ‘‘We’ve come all this way to talk about circles touching circles when there are so many more

important things going on in the world. Dad would hate to be equated with Elvis Presley, but
Elvis gave people some moments of joy, happiness, inspiration. And if that’s what
Dad’s work does for these people, that’s wonderful. Personally, I get more from Elvis
Presley.’’100

 
  The day wound down with a reception in the Academy of Sciences ballroom. Conference-goers
stood nibbling on a dinner buffet, and scrounged for a miscalculated supply of desserts. Coxeter
found one of few seats in the house, a majestic dais elevated above the crowd. A steady stream of
admirers stopped by, bowed at his side, and gave him praise. Ernest Vinberg, from Moscow State
University, introduced himself and thanked Coxeter for long ago writing a letter to his Soviet-era
PhD committee, reassuring them that Vinberg’s field of study—Coxeter groups—was not
politically suspect (after perestroika Vinberg’s PhD was finally conferred, and he proceeded
to do a second PhD, also on Coxeter groups).101 Daina Taimina, a senior research
associate at Cornell, approached Coxeter to show him her crocheted model of the
hyperbolic plane, and to tell him that his Introduction to Geometry was a blessing—‘‘it
saved me,’’ she said—when she started teaching high school geometry in Latvia in
1975.102

 
  At the close of the festivities Coxeter plodded back to his hotel, the scorching July sun
retreating over the Danube. Just then John Ratcliffe, from Vanderbilt University, in Nashville,
Tennessee, caught up with him on the sidewalk. Ratcliffe told Coxeter he had two copies of
his Regular Polytopes—one at work and another in his study at home for late-night
consultations. ‘‘This is the modern-day Euclid’s Elements,’’ said Ratcliffe, pulling a
copy of the book from his attaché case. ‘‘It’s like the Bible for me. I refer to it all the
time.’’103

 
  All in all, it was a jubilant day for Coxeter. He had managed the trip, delivered an apropos
presentation, and been showered with adulation. ‘‘It was very satisfactory!’’ he said, never one for
hyperbole in language. Susan deposited her father in his hotel room and withdrew for some time
on her own. Coxeter climbed out of his suit jacket, undid his shirt and tie, sat on the edge of the
bed, and sipped on some champagne from the minibar.§ After the high of the day he was stung
by melancholy (as he was a few times during the Budapest conference, prompted by a
documentary camera following him the entire trip). He thought of how he could have been a
better husband, father, and grandfather, spending less time on his work. He thought
of the recent invitation he passed up to return to his alma mater, Trinity College,
Cambridge, as a newly minted emeritus fellow—a mark of honor that allowed him, if
he chose, to live out the end of his days in a room in Great Court, kept company

by all his old haunts. He thought of his childhood governess May Henderson, whom
he had been known to confess he loved more than his mother. When he was in his
late sixties, Coxeter planned to pay May a surprise visit on a trip home to England.
He was devastated to find she had died of cancer only two weeks before he arrived.
May had taught Coxeter French and Latin, multiplication, division, and quadratic
equations. Little did she know, way back then, what a fine mathematical mind she was
molding.104

 
  * Another awe-inspiring feature of the Platonic solids is their interconnectedness. The
dodecahedron, with twelve faces and. twenty vertices, is the mate, or dual, of the icosahedron,
which has twenty faces and twelve vertices. Similarly, the cube, with six faces and eight
vertices, is the dual of the octahedron, which has eight faces and. six vertices. The fact
that these solids are dual to one another has the result that they also share their
symmetries.

 
  † Taxicab geometry measures distances by vertical and horizontal steps—east-west and
north-south increments—the way taxis traverse city blocks, rather than by the shortest distance
between two points, as the crow flies. Fittingly, the distance units in taxicab geometry are known
as the ‘‘Manhattan metric.’’

 
  ‡ Galileo Galilei (1564–1642) also referred to a ‘‘grand book’’ of the universe, and to the
importance of geometry in gleaning knowledge of its contents. In The Assayer he wrote:
‘‘Philosophy is written in this grand book, the universe, which stands continually open to our
gaze. But the book cannot be understood unless one first learns to comprehend the language and
read the characters in which it is written. It is written in the language of mathematics, and its
characters are triangles, circles, and other geometric figures without which it is humanly
impossible to understand a single word of it; without these one is wandering in a dark
labyrinth.’’

 
  § His usual bedtime elixir, to fortify his constitution, was a stomach-curdling mixture of
Kahlúa coffee liqueur, peach schnapps, sometimes a splash of vodka, and soy milk.
  

 



 



  
1  Young Donald In Wonderland

     
Beside the actual universe I can set in imagination other universes in which the
laws are different.

 
—J . U . SYNGE, Kandelman’s Krim
 


Coxeter’s mother, Lucy Gee, a portrait and landscape painter, had grudgingly relinquished her
freedom in favor of her husband’s wish for progeny, and their only child, Donald, was born in
London, England, on February 9, 1907.1

 
  Lucy was a stern and scrawny woman, unphotogenic, her sallow complexion relieved by demure
and engaging brown eyes. She preferred sports jackets, knee breeches, and harlequin-diamond
stockings to constraining Victorian dresses. She was a decent painter (attending the Royal
Academy of the Arts) who jealously guarded her creative realm. Coxeter’s father, Harold Samuel
Coxeter, was a hobby sculptor and baritone singer. Fittingly, their family home at 34 Holland
Park Road, in the Royal Borough of Kensington and Chelsea,2 sat in a high-society
artists’ colony whose denizens had included Henry James. ‘‘The weather is hideous, the
heaven being perpetually instained with a sort of dirty fog-paste, like Thames-mud
in solution,’’ ranted the American writer. ‘‘At 11 a.m. I have to light my candle to
read!’’3

 
  Harold, a robust, white-haired, flushed-faced man, was an autodidact and read voraciously. If
there were ever questions of general knowledge discussed at a party, Coxeter’s father always
trumped the other guests with trivia.4 Harold earned his living as a manufacturer of surgical
instruments. As a boy he had wanted to become a doctor, but he dutifully joined Coxeter & Son
Limited, a family business started in 1836 by his grandfather. The company became well known
for inventing a mechanism that anaesthetized surgical and dental patients with a continuous flow
of oxygen and laughing gas—a promotional flier boasted that Coxeter & Son won many a ‘‘prize
medal’’ at international exhibitions.5


 
  Initially, Lucy and Harold named their child simply Donald. Donald himself came to wish it
had been left at that, though the dithering that followed formed a tale he often enjoyed telling.
The birth certificate recorded his first name officially as MacDonald, after his father’s father. His
mother added ‘‘Scott’’ in homage to a renowned relative—the British architect Sir Giles Gilbert
Scott, designer of the iconic window-paned red phone booth, as well as the Bankside power
station (now the Tate Modern), and the University Library at Cambridge. Then a meddling
godparent suggested the boy ought to have his father’s name as well. His first name thus became
Harold, making him H. M. S. Coxeter, or, as one quick-witted observer pointed out, a ship in
Her Majesty’s fleet. A simple rotation of the names produced Harold Scott MacDonald
Coxeter.6

 
  One of the earliest surviving portraits of Donald, painted by his mother, shows him at about
three years old, dressed in a frilly collared shirt and knickerbockers, a swag of blond curls
hanging at his shoulders. With his feet dangling from a velvet-upholstered bench, he is seated,
smacking at the keys of a grand piano, a gift to Lucy from Harold upon Donald’s birth. The
house was also furnished with a billiards table for Harold in the living room. A cavernous study
to the rear was Lucy’s, though it provided the setting for Donald’s first exposure to
geometry (even if subconscious) as he crawled across the oak floor, a symmetrical
herringbone pattern of rectangles—in geometric terms, a tiling or tessellation of the Euclidean
plane.7

 
  At about the same age that Donald posed for his mother at the piano, he demonstrated the
first signs of his interest in numbers, staring intently at the financial pages of his father’s Times,
columns upon columns of numerals. Within a few years, his precocious intellect unequivocally
showed itself—first with music, not mathematics. Before he was ten, Donald was an accomplished
pianist. He learned from his father’s friend, musician and composer Ernest Galloway, who played
live music in the silent movie theaters to make ends meet. He often dropped by the Coxeters’ for
impromptu musical ensembles, after which he taught Donald how to play and compose.
Donald penned stacks of arrangements. One piece, written over five months when
Donald was sixteen, titled Magic, contained several movements and was composed as
incidental music for G. K. Chesterton’s play of the same name. He even went to the
trouble of indicating when the curtain should rise and the music fade in and out. Most
arrangements he wrote as Christmas or birthday gifts, with dedications to his mother or
father.8
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  Some eighty years later, Coxeter discussed the link between his early mathematical and musical
inclinations. ‘‘I was interested in the structure of the notes of music,’’ he said. ‘‘That was
somewhat mathematical. I think it’s clear that one has to regard [music] as being mathematical:
the 12 semitones in the octave and the 8 diatonic notes and how they are different.’’9 As for
the aesthetic analogy between mathematics and music, Coxeter admitted he could
hardly do better than quote his Cambridge mentor G. H. Hardy in describing the
intersection of the two arts: ‘‘ ‘There is a very high degree of unexpectedness combined
with inevitability and economy …A mathematical proof should resemble a simple and
clear-cut constellation, not a scattered cluster in the Milky Way.’ Similar words might
well be used as advice to composers, with ‘mathematical proof’ replaced by ‘piece of
music.’ ’’10
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  The first sheet of Donald’s score for Magic.

 
  Coxeter itemized several parallels between these two ‘‘precise arts’’—replacing a D# with a Db
in a piece of music and switching a plus and minus sign in mathematics would be equally
disastrous (whereas, he noted in contrast, ‘‘A painting or a piece of sculpture would not be
essentially changed if a few of its daubs of paint or lumps of clay had been differently placed, and
Keats’s ‘‘Ode to a Grecian Urn,’’ with its awkward line, ‘O Attic shape! Fair attitude!…’ would be
positively improved if the word ‘attitude’ could be replaced by one that did not clash with
‘Attic.’ ’’).11 He also remarked on historical similarities. The development of music was
hampered by lack of notation until the Middle Ages; so was much of mathematics until the
invention of Arabic numerals. ‘‘In this respect Geometry was exceptional,’’ he said,
‘‘because its essential ideas are so simple that they can be adequately expressed in words,
especially when accompanied by sketched diagrams. It is pleasant to see how closely the
illustrations in the oldest manuscripts of Euclid’s Elements resemble those that we draw
today.’’12

 
  In illuminating how mathematical ideas are ‘‘inherent in music itself,’’ Coxeter went on to
discuss rhythm, and the time signature, ‘‘a fraction whose denominator is a power of 2 while its
numerator indicates the number of beats in a bar—usually 2, 3,4, or 6 (like the period of
the rotational symmetry of a crystal).’’13 Harmony provided another example, the
pitch of a note being determined by its frequency, or the number of vibrations per
second. Here, Coxeter co-opted the words of English physicist Sir James Jeans: ‘‘ ‘It is
found to be a quite general law that two tones sound well together when the ratio of
their frequencies can be expressed by the use of small numbers, and the smaller the

numbers the better is the consonance …This was known to Pythagoras 2,500 years ago; he
was the first, so far as we know, to ask the question, ‘Why is consonance associated
with the ratios of small numbers?’ ’’14 Coxeter continued, commenting that, ‘‘One
is tempted to see some significance in the fact that the agreeable harmonics, 3, 4,
5, 6, 8, 10, 12 correspond to the numbers of sides of regular polygons that Euclid
was able to construct with his chosen instruments, the straight edge and the compass
…whereas the dissonant harmonics—7, 9, 11, 13—correspond to polygons that cannot be so
drawn.’’15

 
  And of course, Coxeter’s analysis truly sings when he addressed the point of comparison closest
to his domain:

 
  Most mathematics depends for its appeal on some aspect of symmetry. Symmetry is likewise a
guiding principle in musical composition. In a fugue, for instance, the second occurrence of the
main theme is usually in a different but related key. Such a transposition is analogous to the
geometric operation of translation or parallel displacement. Again, Bach’s trick of inverting a
theme is analogous to reflection in a mirror. One of the most interesting transformations
in elementary geometry is the dilative reflection, which combines a reflection with a
dilation or steady increase of size. This has its musical counterpart in Bach’s Wedge
Fugue.16

 
  The pleasure Coxeter experienced from writing music transferred naturally into mathematics.
‘‘I got the same kind of euphoria from a successful piece of mathematical rediscovery,’’ he said,
‘‘that I formerly did in writing a piece of music.’’17 Lucy sought an evaluation of her son’s
musical talent, taking him to see British composer Gustav Holst. ‘‘I don’t know how she got to
him,’’ Coxeter recalled, ‘‘but she took me along and I showed him some of the music I had
written, and I played a little bit on the piano. On the whole he thought it was rather poor.’’ They
received much the same response from a visit to Irish composer C. V. Stanford, who said:
‘‘Educate him first.’’18
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  Donald’s joy in music and math was his salvation from an anxious environment at
home. His parents’ common passion for the arts was not enough to make them a happy
couple. For starters, his father wanted more children, but Lucy did not. Harold attended
Royal Psychological Society meetings to cope with the marital difficulties. There he
befriended a German divorcée, Rosalie Gabler, who along with her daughter, Katie, six
years older than Donald, became family friends of the Coxeters’. Relations did not
improve, however, and Donald’s parents took steps toward ending their marriage. The

indignity of divorce was great in that day—‘‘It was taboo,’’ Coxeter recalled. Divorce was
rare and required proof of adultery. The shock was enough to send Donald headlong
into alternative worlds of his own creation, taking refuge in music, mathematics, and
make-believe.19

 
  Coxeter’s first teacher was his dearly loved nanny, May Henderson. In confessing he loved May
more than his mother, Coxeter explained it was perhaps due to the long periods of time he spent
separated from his mum during the First World War. He and May lived outside London, at the
Coxeters’ weekend cottage in the south of Kent, near the border of Surrey.20 There they were at
a safe remove from Germany’s zeppelins, the passenger airships doing double duty as
bombers.21
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  Young Donald at work.

 
  May’s curriculum distracted Donald, and inspired him. Her introductory lessons in French and
Latin moved him to do something many children fantasize about but few actually execute: He
created his own language—Amellaibian. He filled a 126-page notebook detailing the construction
of this language and the imaginary world where it was spoken. The inhabitants were
called ‘‘ ‘bainia,’ a spherical kind of fairy,’’ who drew life energy from batteries made of
cork, wood shavings, paraffin, lanolin, white paint, Vaseline, and cloth, all sedimented
together, layer upon layer, within glass casings of various shapes. He wrote this novella
in impeccable uppercase letters. It contained vocabulary lists (‘‘The Terminations
of Amellaibian Words,’’ neatly divided into verbs, nouns and pronouns, adjectives
and adverbs), maps, histories, genealogies, short stories, and a section called ‘‘Fairies’
Birthdays and Other Events.’’ Much of the narrative chronicled the fairies’ romantic
adventures and happy unions. Gradually, the treatise turned mathematical, with pages
and pages dedicated to weights and measures, formulas, equations, and Amellaibian
magic numbers—any number that factored into Donald’s favorite number at the time,
250.22
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  A page from Donald’s primer on his invented language, ‘‘Amellaibian.


 
  While Donald was enrapt with his Tolkien-esque fairy tale (predating Tolkien), Harold and
Lucy were in the midst of their divorce. After May Henderson left to get married, Donald’s
parents sent him to the coeducational St. George’s boarding school, twenty kilometers north of
London, to shield him from any nasty indiscretions during the divorce proceedings.23 His father
dropped by the house to see him off: ‘‘Donald was such a dear and looked so nice in his school
things and was so very glad to see me. He’s so sensible, and brave about school. But he will be
dreadfully homesick.’’24

 
  ‘‘I was incarcerated at boarding school,’’ Coxeter later said. ‘‘The head-master was something
of a freak. He took a sadistic interest in caning the bottoms of boys who behaved badly. My
father explained to me later that he got sexual pleasure from beating boys on their bums.’’25
Coxeter and his one friend at boarding school, John Flinders Petrie, son of Egyptologist and
adventurer Sir William Matthew Flinders Petrie, suffered under the headmaster’s cane quite a
lot. Donald also found his parents’ visits disconcerting, since they came separately, alternating
weekends. Epidemics of measles or chicken pox often quarantined the schools, preventing his
parents from taking him on outings. He looked forward to walking as far as he could down
the school’s driveway, to the edge of the quarantine, to meet his mother or father
when they arrived. They spent most of their visit in a room at the back of the school,
usually reserved for practicing the piano. Once during a visit with his father, Donald
suddenly burst into tears, uncontrollable weeping. His father tried to comfort him, but he
was inconsolable, overcome with the trauma of his parents’ separation. ‘‘It was too
much at that adolescent age,’’ Coxeter recalled. ‘‘I was weeping at the collapse of my
family.’’26

 
  Harold’s announcement of his plans to remarry only made matters worse. Donald and his
mother, and everyone among family and friends, assumed his new wife would be Rosalie Gabler.
In hindsight, family members speculated as to whether Harold had occupied her bed, or
insinuated the pretense of a romantic liaison, in moving along his divorce.27 But Rosalie was too
old to bear Harold the children he wanted, so he proposed to her daughter, Katie, instead.
Rosalie sent Katie off to Munich for a year in an attempt to cool the affair, or at least test its
mettle. The May-September couple married in 1922, when Katie was twenty-one and Harold
forty-three. For Donald it was a double blow. Katie had been the object of his first
crush.28


 
  Donald idolized his father, the pivot point of his life and the dominating influence. But as
Harold began his new family, becoming a father to three daughters in rapid succession (Joan,
Nesta, and Eve), Donald was no longer the sole focus of his attentions, even during their
father-son visits. ‘‘I took Donald to town yesterday—morning at the office and afternoon at a
cinema,’’ wrote Harold to Rosalie in 1924. ‘‘He’s a queer kid and not very easy. He practically
ignores Joan [his eldest half sister]—not that he is the least unfriendly or jealous, I think, but
simply that she doesn’t interest him, not being mathematical or—so far—particularly
musical.’’29

 
  At the uneasy and vulnerable time of adolescence, Donald’s broken family hurt him to the
heart—into his nineties Coxeter’s memories of his parents’ broken marriage stayed with him as
one the greatest tragedies of his life, bringing him to tears even then. As a boy he was deeply
sensitive and idealistic, clever and solitary, and his parents’ failings were horribly disappointing.
They had read him the Bible every night before bed (they explored Quakerism for a time), and
were his closest playmates. Photographs show Donald and his mother and father on picnics with
only adults for company, and sometimes a chicken or a dog. Donald hardly knew how to relate to
other children and didn’t make many friends at St. George’s. He was ridiculed and
bullied for his brainy peccadilloes, girls tittering as they kicked at his shins under
the desks. ‘‘One boy had a grudge against me because I was a weakling,’’ Coxeter
recalled. ‘‘That’s why I dreaded the break between early lessons and late lessons. All the
children went out to play games and I hid under the teacher’s desk, to avoid this teasing
boy.’’30

 
  These desperate circumstances worked as a catalyst. During his incarceration at St. George’s,
Donald experienced his formative encounter with geometry.31 The only problem being that just
as Donald fell in love with the jewels of classical geometry, the tradition was falling decidedly out
of fashion.32
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  The golden age of classical geometry had been the middle of the nineteenth century. The
science of triangles and circles, to be sure, was founded in the era of the great Euclid,
Pythagoras, and Archimedes, but theorems on triangles and the like accumulated until the
central cache of knowledge amassed in the 1800s, and to a dwindling extent the beginning of the
twentieth century.33


 
  ‘‘Geometry sometimes has had to fight for its existence,’’ observed Jeremy Gray. ‘‘You might
think, if you were not a mathematician, that of course geometry is important. Ask people what
mathematics is and they would probably say geometry in the first minute of their answer. But in
some math departments there is a feeling that, ‘Oh we’ve left that behind …Who wants to prove
things about triangles?’ ’’34 The classical visual and intuitive approach with circles and
triangles and polyhedrons had come to be thought of as ‘‘playing,’’ ‘‘tinkering with
toys,’’35 and ‘‘second-rate math’’—amusements for idling away daydreams and Sunday
afternoons.36

 
  The luster of Euclidean geometry first began to fade after the dethronement of the
parallel postulate in the mid 1800s. After that, ‘‘logical worries’’ crept into Euclidean
geometry as a whole. It had been the paradigm of truth, the bedrock of empirical pursuit;
three-dimensional Euclidean geometry had been a concrete perspective that jibed well with the
scientific rationalism of the Victorian era, and it neatly explained the real space in
which we lived. Or so mathematicians thought. Then it came time to face reality:
geometers had been constrained to one space, instead of roaming two, or more, for
millennia.37

 
  Mathematicians began questioning the veracity and reliability of Euclid’s Elements as a whole.
His dependence on diagrams drew the most criticism. And Euclid’s original work included not
only an abundance of diagrams, but also a collection of intentional geometrical fallacies made
believable by convincing but flawed figures—Euclid thought it was a good exercise for the
students to find the errors in reasoning.38 The lesson now appeared not so constructive: diagrams
are deceptive. And as a result, the pendulum swung to the opposite extreme; the trend became
mathematics without the disinformation of pictures, without appealing to the corruptible visual
sense.

 
  To restore the faith, mathematicians took to formalism, a term spoken pejoratively among
disheartened classical geometers. Formalism embraced a systematic method, enforcing the logic
of geometry axiom by axiom—pictorial geometry was rendered abstract and algebraic through the
power of sheer deduction; it was all numbers and equations.39 This rigorous rote method was no
way to teach geometry to children, however, and the consequences at the grade school level were
grim—this mobilized the Association for the Improvement of Geometrical Teaching, founded in
England in 1871.40 But there was no stopping the march of modern mathematics. The eminent
David Hilbert, at Göttingen—known for his Hilbert space—was the beacon of formalism, the
prime mover pushing modern geometry toward a more formalist and abstract style.41
He published his book The Foundations of Geometry in 1899, the first thoroughly

systematic study of Euclidean space, supplanting Euclid’s axiomatization—with this work
Hilbert is said to have made the greatest impact on geometry since Euclid. And, Hilbert
famously underscored the arbitrary nature of visual space, and the importance of
keeping geometrical terms abstract, with this catchy remark: ‘‘One must be able to
say at all times—instead of points, straight lines, and planes—tables, chairs, and beer
mugs.’’42
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  While the non-Euclidean revolution changed the foundation of geometry and ‘‘kicked up a
fuss,’’ as Gray described, ‘‘It was never the fuss that the fourth dimension caused—Woooo
woooo! The fourth dimension!!’’43 Flouting tradition by stretching the boundaries of
three-dimensional Euclidean space into higher realms—into hyperspace, or what’s called
n-dimensional geometry—was also a trend very much in the air at the latter part of the
nineteenth century, as the restrictions on rigid three-dimensional Euclidean geometry
loosened.44*

 
  Edwin A. Abbott concocted a fictional world with inhabitants who contemplated higher
dimensions in his book Flatland, A Romance of Many Dimensions, published in 1884 under the
pen name A. Square. The main character, Square himself, is visited in his two-dimensional land
by an alien creature named Sphere, from three-dimensional Spaceland. Square gets acquainted
with this odd creature, and in so doing becomes convinced Sphere is not a ‘‘burglar or cut-throat,
some monstrous Irregular Isosceles,’’ who by disguising himself as spherical had gained entry to
his house with plans of stabbing him with his acute angle. Square comes to believe
that there is in fact life in Spaceland after he learns to visualize three-dimensional
entities.45

 
  In relaying his experiences, Square aimed to be instructive and encouraging, yet when he
voiced his views about higher dimensions in Flatland he was imprisoned for heresy. And indeed,
an unorthodox mystical bent, popular in spiritualistic and theosophical circles, manifested itself
in the proliferation of writings on the fourth dimension.46 English mathematician Charles
Howard Hinton was notorious for his mystical leanings, but he also devised a very down-to-earth
bridge, a mental aid, to expedite the crossing into hyperspace—a system of multicolored cubes,
which he explained in an essay called ‘‘Casting Out the Self.’’47 Coxeter encountered Hinton’s
work at about the age of thirteen. He absorbed Hinton’s book, The Fourth Dimension, during
the ensuing years, and it opened wide this gosling geometer’s insatiable appetite for
polytopes.48


 
  Another influence on the young Donald was H. G. Wells’s science fiction novel The Time
Machine: ‘‘Space …is spoken of as having three dimensions, which one may call Length, Breadth,
and Thickness,’’ wrote Wells. ‘‘But some philosophical people have been asking why three
dimensions particularly—why not another direction at right angles to the other three? …Well, I do
not mind telling you I have been at work upon this geometry of Four Dimensions for some
time.’’49 Published in 1895, The Time Machine was still a best-seller in 1920, just when Donald
was off to boarding school.

 
  Also in the air at the time was the fallout from the total eclipse of the Sun on May 29, 1919.
During the eclipse, British astronomer Sir Arthur Eddington had measured the bending of
starlight by the Sun, confirming Albert Einstein’s theory of general relativity, a geometrical
theory postulating that the presence of mass and energy generates gravity, and that gravity has
the effect of ‘‘curving’’ space and time—gravity = space-time geometry, a continuum with three
dimensions of space and a fourth dimension of time. The media event made Einstein immediately
famous.50 The London Times headline proclaimed, REVOLUTION IN SCIENCE, NEW
THEORY OF THE UNIVERSE. Two days hence the New York Times answered with,
LIGHTS ALL ASKEW IN THE HEAVENS/MEN OF SCIENCE MORE OR LESS
AGOG OVER RESULTS OF ECLIPSE OBSERVATIONS/EINSTEIN THEORY
TRIUMPHS.51

 
  With the fabric of space changing before his eyes, Coxeter experienced a personal geometric
epiphany. His formative encounter with the study of shapes and space occurred when he wound
up in his school’s sickbeds, lying next to his friend John Petrie. Woozy with the flu and
surrounded by the sick-bay smells of antiseptic, freshly laundered sheets, and the coal fireplace
burning at the end of the room, he and John lay there musing about the mysteries of the
world.

 
  ‘‘How do you imagine time travel works?’’ John asked.

 
  ‘‘You mean as in The Time Machine?’’ replied Donald. After thinking for a moment, he
answered John’s question. ‘‘I suppose one might find it necessary to pass into the fourth
dimension.’’


 
  The fourth dimension that most intrigued Donald, however, was spatial, not temporal.
Having recently studied Euclid in math class, the two boys pondered for a while why
there were only five Platonic solids, and then whiled away the time imagining how to
stretch the Platonic solids into the fourth dimension.52 Even more intriguing than the
reason why the teenaged Donald and John reveled in such a heady exercise, is the
question of how, exactly, they set out with their mental machinery and traveled into
hyperspace.
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  Einstein’s general relativity, espousing a ‘‘spacetime geometry,’’ is often summarized as follows:
Matter tells spacetime how to curve, spacetime tells matter how to move.
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  Put the question of how to think in four dimensions to John Horton Conway and he jokingly
snaps back: ‘‘None of your business! That’s personal!’’53 Conway occupies the John von
Neumann Chair of mathematics at Princeton University. Coxeter called Conway ‘‘a great friend!’’
whenever he mentioned him, even though they engaged only on a professional level.54 Conway
has a boyish dishevelment about him, but all the same he is an imposing presence, statuesque
even, a grinning Archimedes of the twenty-first century. He is best known for inventing the Game
of Life, surreal numbers, and his ‘‘Conway group’’ or ‘‘Conway’s constellation’’—a beastly
group of sporadic symmetries (sporadic, because they do not fit into any classification
scheme). Conway calls these ‘‘white hot’’ discoveries that had him walking around in a
world all his own for weeks. And he characterizes such a piece of mathematics by his
‘‘Hotspur property,’’55 in reference to a character in Shakespeare’s King Henry IV. In
act 3, Glendower says, ‘‘I can call spirits from the vasty deep…’’ To which Hotspur
replies: ‘‘Why, so can I, or so can any man; But will they come when you do call for
them?’’56

 
  Conway calls himself an honorary student of Coxeter’s. He never studied with the great man,
but much of Conway’s work is Coxeterian in nature. And Conway is considered by some to be
Coxeter’s successor—they held in common a wide-ranging mathematical curiosity and a profound
geometric spirit.57 In 1957, when Conway was a teenager in his first year at Caius College,
Cambridge, he sent Coxeter a fan letter.

 
     
Dear Professor Coxeter,
     

 
Over the past year or so my copy of your edition of Ball’s ‘‘Mathematical
Recreations’’  has  accumulated  an  astonishing  number  of  notes  and  some
corrections. Most of these can hardly be said to be suitable for publication in
later reprints, but one or two may seem important.58
 


  The letter went on for five pages; tiny scrawls interrupted by a very sure-handed
rendering of a four-dimensional cube, or a hypercube. Conway had discovered that by
labeling the vertices of a hypercube in a certain way he could derive a number of
magic squares.† Eventually Conway signed off, with a query about a four-dimensional
polytope:

 
     
My  absolutely  last  remark  is  a  question.  Where  can  I  find  the  requisite
information required to draw {5,3,3}, or do I have to work out the details for
myself? I should be very thankful if you could supply me with some accessible
information.

 
Yours hopefully,

 
J. H. Conway59
 


  A while later at Cambridge, Conway made an earnest effort to train himself to think in four
dimensions. He did not expect to see the fourth dimension, as if it were a physical reality. Time is
most often thought of as the fourth dimension, but higher dimensions can measure any
value or feature of existence.60 The fourth dimension could be temperature or wind
direction, the fifth dimension could be the rate of interest on your credit card, and
the sixth dimension could be your age, and on and on and on as you please. Each
characteristic measured adds another ‘‘dimension’’—the dimensions become coordinates, a
navigational tool that quantifies our existence, our position in the world. Being geometers,
Conway and Coxeter naturally preferred contemplating a fourth dimension in terms of
space.61

 
  In attempting to visualize a fourth coordinate or dimension in space, Conway built a device
that allowed him to see with ‘‘double parallax’’—in addition to the displacement that occurs
horizontally when you look at an object by closing one eye and then the other, he tried to train
himself to see vertical parallax. If he could experience both horizontal and vertical parallax, he
would have four coordinates for every point in space, and thus would be seeing four

dimensions. In his attempt to do so, Conway donned a recycled motorcycle helmet,
adapted with a flat visor and cheap, old war-surplus periscopes. The periscopes were
bolted to the visor (not very well; they rattled when he walked) and extended from his
right eye up to his forehead and his left eye down toward his chin. The only name
Conway had for the helmet was ‘‘that damned contraption’’ because it was rather
uncomfortable—his nose was pressed up against the visor, as a child’s to a toy shop window at
Christmas.62

 
  Conway had a strong desire to see four dimensions, which he truly believed was
possible (and still does). He walked around wearing his helmet in the Fellows Garden
of his college at Cambridge. ‘‘I suppose I had a limited amount of success in that
quixotic quest,’’ he recalled. ‘‘I got to the point where I could see four dimensions, but
there was no hope of going beyond, so what’s the point?’’63 His discoveries since his
helmet days are in dimensions much, much higher—the Conway group is in twenty-four
dimensions, and the group he studied and dubbed the Monster group exists in 196,884
dimensions.64
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  Addressing the exercise of thinking in four dimensions in his book Regular Polytopes, Coxeter
offered three methods: the axiomatic, the algebraic, and the intuitive.65 Coxeter preferred the
third, and seeking some historical enlightenment to bolster his position he quoted French
mathematician Henri Poincaré, a staunch advocate for the use of intuition and pictures in
mathematics: ‘‘A man who devoted his whole life to it, might succeed in visualizing the fourth
dimension.’’66

 
  Coxeter would have been slightly more optimistic. Before he began with this pursuit, however,
he issued a cautionary disclaimer. It is an ‘‘insidious error,’’ he said, to assume that ‘‘because the
fourth dimension is perpendicular to every direction known through our senses, there must be
something mystical about it.’’67 He then dashed off a footnote quoting the Platonist
philosopher Henry More—‘‘Spirits have four dimensions’’—by way of a wrongheaded
example.68


 
  After those words of warning, he proceeded by acknowledging that visualizing four
dimensions is no walk in the park for ordinary mortals who are accustomed to a firm
three-dimensional footing. ‘‘But a certain facility in that direction may be acquired,’’ he
encouraged, ‘‘by contemplating the analogy between one and two dimensions, then two
and three’’—as Abbott did with Flatland—‘‘and so (by a kind of extrapolation) three
and four. This intuitive approach is very fruitful in suggesting what results should be
expected.’’69

 
  As a teenager, Coxeter had used the very same method while imagining four dimensions in the
infirmary, and afterward he wrote a school essay on the subject called ‘‘Dimensional Analogy.’’ In
the introduction he began by saying,

 
  The number of dimensions possessed by a figure is the number of straight lines each
perpendicular to all the others which can be drawn on it. Thus a point has no dimensions, a
straight line one, a plane surface two, and a solid three …

 
  In space as we now know it only three lines can be imagined perpendicular to each other. A
fourth line, perpendicular to all the other three would be quite invisible and unimaginable to us.
We ourselves and all the material things around us probably possess a fourth dimension, of which
we are quite unaware. If not, from a four-dimensional point of view we are mere geometrical
abstractions, like geometrical surfaces, lines and points are to us. But this thickness
in the fourth dimension must be exceedingly minute, if it exists at all. That is, we
could only draw an excessively small line perpendicular to our three perpendicular
lines, length, breadth and thickness, so small that no microscope could ever perceive
it.

 
  We can find out something about the conditions of the fourth and higher dimensions if they
exist, without being certain that they do exist, by a process which I have termed ‘‘Dimensional
Analogy.’’70

 
  More specifically, the process of dimensional analogy works by one of two means: section or
projection. ‘‘According to the first method,’’ instructed Coxeter, the inhabitants of Flatland
‘‘would imagine the solid figure gradually penetrating their two-dimensional world, and consider
its successive sections.’’71 This is like dipping a cube in water—as the corner breaks the surface,
and then more and more of the cube slides in, you envision the cross section of the solid as
delineated by the waterline. ‘‘The sections of a cube, beginning with a vertex,’’ Coxeter said,
‘‘would be equilateral triangles of increasing size, then alternate-sided hexagons,‡ ‘truncated

triangles,’ and finally equilateral triangles of decreasing size, ending with a single point—the
opposite vertex.’’72 While Flatlanders imagined three-dimensional solids scanned through their
two-dimensional reality, Coxeter and his ilk fathomed solids of four dimensions, or more, slicing
through our three.

 
  According to the second method—projection—Flatlanders studied the shadow of a solid
figure in various positions (as Aristotle did with the Earth’s shadow on the Moon,
determining that if the shadow is always a circle the Earth itself must be spherical). A
cube’s shadow projected from a light directly above one face would appear as a square,
while a shadow projected from a light directly above one corner would appear as a
hexagon.73 Four-dimensional polytopes, similarly, can be projected down to three
dimensions.

 
  Despite the fact that intuition was Coxeter’s forte he conceded that intuitive results should be
checked by one of the other two procedures, the axiomatic and algebraic methods. ‘‘For
instance,’’ he said, ‘‘seeing that the circumference of a circle is 2πr, while the surface of a sphere
is 4πr2, we might be tempted to expect the hyper-surface of a hyper-sphere to be 6πr3 or 8πr3.
It is unlikely that the use of analogy, unaided by computation, would ever lead us to the correct
expression, 2π2r3.’’74 Using algebraic computation, we can orient ourselves in this new
abstract reality by allowing any point in four dimensions to be represented by one of
Descartes’ inventions—Cartesian coordinates—just like any point on a three-dimensional
graph.
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  Sequences of ‘‘parallel sections,’’ slicing through the icosahedron and the dodecahedron, from
Coxeter’s Regular Polytopes.

 
  [image: PIC]

 
  In his work La Géometrie, French mathematician and philosopher René Descartes (1596–1650)
applied the symbols of algebra—a ‘‘barbarous’’ medium, he called it75—to the shapes
of geometry, thereby inventing his Cartesian coordinates and Cartesian, or analytic,
geometry.

 
  As a student Descartes scorned philosophy and ethics; only mathematics gave him satisfaction,
he said, ‘‘on account of the certitude and evidence of their reasonings.’’76 Obtaining a
law degree did nothing to convince him otherwise, so he decided to devote his life to
learning and applying the methodology of mathematics to master the secrets of the

universe. He expected to discover a complete and all-encompassing truth explaining
every aspect of existence within his lifetime. He told sick friends to hang on just a
little longer, cures for what ailed them, even the secret for eternal life, were on the
way.77

 
  Although Descartes did not accomplish these grand ambitions, he succeeded in instituting an
entire new regime for the study of geometry. He had never liked the Greek approach—he thought
it was obscure and fatiguing to the imagination.78 He may have found, as many have since, that
when facing a problem in elementary Euclidean geometry one often has no clue where to begin,
the only recourse being to wait helplessly for inspiration.79 Descartes did away with these
uncertainties by introducing lines and shapes to a quantified graphical construct. Shapes could
now be investigated with precision, each line represented by an equation, a steam engine that
drove a new kind of geometrical proof and discovery.80

 
  Cartesian geometry demarcated space between two axes at right angles to each other, x being
horizontal and y being vertical, forming a two-dimensional xy plane, with any point on that plane
identified by (x,y) coordinates. This graphical domain evolved to include a third dimension
of measurement, the z-axis, producing (x,y,z) coordinates, and then to include any
number of dimensions. Coordinates of a point in four-space are customarily denoted by
(x,y,z,w).81

 
  Descartes’ ideas about analytical geometry came to him in a dream, revealing, just
as he wished, ‘‘the magic key which would unlock the treasure house of nature and
put him in possession of the true foundation …of all the sciences.’’82 He published his
Method of Rightly Conducting the Reason and Seeking Truth in the Sciences in 1637. He
outlined his analytic treatment of geometry in one of the book’s three appendices, La
Géometrie.83

 
  Within the decade, Descartes’ geometry became part of university curriculum. In historian E.
T. Bell’s estimation, this alliance between geometry and algebra set the stage for classical
geometry’s near demise three centuries later. ‘‘Algebra is easier to see through than a cobweb of
lines in the Greek manner of elementary geometry,’’ he argued. The real power of the new
method lay in its capacity to reduce geometry in its entirety to algebra. ‘‘We start with equations
of any desired or suggested degree of complexity and interpret their algebraic and analytic
properties geometrically. Thus we have not only dropped geometry as our pilot; we have tied a
sackful of bricks to his neck before pitching him overboard. Henceforth algebra and analysis
are to be our pilots to the unchartered seas of ‘space’ and its ‘geometry.’ ’’ Bell also

noted: ‘‘Though the idea behind it all is childishly simple …the method of analytic
geometry is so powerful that very ordinary boys of seventeen can use it to prove results
which would have baffled the greatest of the Greek geometers—Euclid, Archimedes, and
Apollonius.’’84
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  Donald’s writings on dimensional analogy won him a school essay prize and grew to five
notebooks—filled with both visual diagrams and charts of algebraic computations. Family history,
as proudly replayed by Coxeter’s three half sisters, his children, and Coxeter himself, records that
when his prodigious mathematical talents came clearly into view, he was taken by his father to
see an expert in the field: mathematician and logician Bertrand Russell.85 Author of The
Principles of Mathematics (1903), Russell was one of England’s good and great men. He had
been dismissed from his position at Trinity College in 1916, when he was convicted and later
imprisoned for antiwar activities.86 Donald’s father, also a pacifist, had made Russell’s
acquaintance at conscientious objector meetings in London. They became friendly, and when
Russell and his second wife opened an experimental school for young children in 1927,
it would be on land lent to him by Harold Coxeter. When asked for his opinion of
this boy wonder, Russell suggested Donald meet Eric H. Neville, the mathematical
scout who had brought self-taught numerical genius Srinivasa Ramanujan from India
to study at Cambridge in 1914.87 Donald was also recommended to Neville by the
Fabian socialist and suffragette, Professor Edith Morley,88 whose letter of endorsement
read: 

 

Dear E.H.,

 
I have taken a liberty which I hope you will forgive! A certain Donald Coxeter,
aged 15, who is supposed to be a rather unusual mathematician and musician
for his years, has spent his summer holiday writing what I am told is an entirely
original treatise on the fourth dimension. The boy is a friend of my friend Mrs.
McKillop: I don’t know him personally but I have heard a great deal about him
and know that he does not get any real sympathy or understanding at school
in his mathematical pursuits.
     

 
I think you will forgive me for sending him word he may write to you and ask
you to help him. Apparently he has read your little book (I think I am right
in saying this): at any rate he has heard of it and feels you are the one person
who can help him.

 
If there is no promise in his work, you can easily choke him off: if there is, your
advice may be invaluable to him. He is to go to Cambridge later on. He will
write to you direct when he plucks up courage to do so and I hope you will not
think either of us very presumptuous.

 
Yours V. Sincerely, Edith Morley89
 


  On exactly the same day, September 11, 1923, Coxeter also put pen to paper:

 
     
Dear Professor Neville,

 
Professor Edith Morley says I am to write to you and say she suggested it. I
am going to buy your book on the Fourth Dimension, as I am awfully keen on
that sort of thing. I am writing a book myself on ‘‘Dimensional Analogy,’’ of
which I enclose an outline …

 
Yours Hopefully, Donald Coxeter90
 


  A month later, Donald received a reply and zipped off his return: ‘‘I was thrilled to get your
letter,’’ he wrote. ‘‘I confess I had given you up almost.’’91 Neville arranged to meet Donald at
the boarding school and grilled him with loaded questions.

 
  ‘‘Do you know what a limit is?’’ Neville asked. Donald floundered, giving various poor
definitions.

 
  ‘‘What has a limit? What could have a limit?’’ Neville prodded.

 
  ‘‘Well, a function or number,’’ Donald replied.

 
  ‘‘You should have said a sequence!’’ Neville corrected. ‘‘You must leave school at once! They’re
not teaching you right!’’92

 
  Neville advised Donald to drop all subjects, save mathematics and German (many of the best
mathematicians and texts being German), and fast-track with private tutelage for
Cambridge.93


 
  A suitable tutor was found in Alan Robson, a well-known mathematics teacher of
the day, and senior mathematics master at Marlborough College, two hours or so
west of London. Stonehenge became a frequent getaway spot, a hilltop clearing with
vistas in all directions, the perfect setting for Donald to invite visual confections of
space and let them wander through his head. At Marlborough, Donald rented a room
with a family in town and rode his bicycle every day to the school. Robson coached
him during a spare period—the school would not enroll a boy as old as sixteen, for his
mind was no longer a blank slate, having been sullied by years of teaching elsewhere
(most students enrolled at the school in the primary grades). When Donald began, his
marks ranked at the bottom of all Robson’s students (in what would be his class). His
obsession with the fourth dimension caused him to be dismally behind on some of the
basics. To correct the imbalance, Robson insisted Donald focus on his deficiencies.
His tutor forbade him from thinking in the fourth dimension, except on Sundays.
Donald did his best to abstain from relations with the polytopes, and as a result, from
1923 to 1925, his marks skyrocketed and he earned the highest standing among his
peers.94

 
  Donald wrote the Cambridge entrance exams in 1925 and was accepted at King’s College.
Robson felt he could, and should, do better—mathematics at Cambridge’s more illustrious Trinity
College was unmatchable. Donald completed another year of study, took the exams a second
time, and won a scholarship to Trinity.95

 
  He was sent on his way with one final gift from Robson. His tutor suggested he submit some of
his work to the Mathematical Gazette, a time-honored mathematical periodical, founded in 1894
by the Mathematical Association.96 Over the years, Russell, Bell, J. E. Littlewood, and G. H.
Hardy graced the pages of the Gazette.97 With a push from Robson, Donald sent in his work
evaluating the volume of a spherical tetrahedron, which led him to some definite integrals.98 In
volume 13,published in 1926, Coxeter proposed: ‘‘Can any reader give an elementary verification
of the results which have been suggested by a geometrical consideration and verified
graphically?’’99


 
  With his query dangling in the mathematical ether, Donald marched off to Cambridge for the
fall term of 1926, bolstered by a substantial supply of homemade marzipan from his mother (he
was careful not to eat too much; he allowed himself only a little each day to make it
last as long as possible).100 His good friend John Petrie went to University College
London, but they kept in touch.101 Petrie made many productive trips to Trinity, and he
and Coxeter continued contemplating new geometric shapes, which led to a trio of
discoveries.
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  The skew polyhedra, or regular sponges, discovered by Petrie (top, and bottom left) and
Coxeter (bottom right). The black areas are considered holes.

 
  Petrie had previously invented an ingeniously unique way of viewing a polyhedron, tracing its
edges in a zigzag pattern until you find you have returned to the vertex from which you
embarked (the only rule being that you can trace two consecutive edges belonging to a face, but
not three; after tracing two edges you must move your route along, traversing a different face).
With a cube, the resulting shape is a ‘‘skew hexagon,’’ but in tribute the general term is a
‘‘Petrie polygon.’’ In 1926, during one of Petrie’s early visits to Trinity, he and Coxeter
generalized the concept of a regular skew polygon to that of a regular skew polyhedron. As a
result, Petrie discovered two completely new geometric beings, and Coxeter discovered one. Not
bad for two nineteen-year-old geometers. These entities are now known as the Coxeter-Petrie
polyhedra.102

 
  As the crisp autumn weather turned cold in November, Coxeter received in the mail a response
to his Gazette query—a registered letter from G. H. Hardy, then a professor of geometry
at Oxford and recognized as the greatest mathematician in England. ‘‘I tried very
hard not to spend time on your integrals,’’ Hardy scribbled around the perimeter on
one of several pages of calculations, ‘‘but to me the challenge of a definite integral is
irresistible.’’103 With that, Donald Coxeter performed a rite of passage. He had entered the
mathematical dialectic, striding alongside Hardy no less. He was floating on air for
days.

 
  * As early as 1827, German mathematician August Möbius (1790–1868) hypothesized that a
trip through a fourth spatial dimension could transform an object into its mirror image. In 1909,
Scientific American issued a call for explanations of the fourth dimension through an essay
contest, and many essays explored similar mirror reversals.


 
  † A magic square is a square array of numbers arranged in such a way that the sum of the
numbers in any horizontal, vertical, or diagonal direction is always the same. The
most famous magic square has been long known in China as the Lo-shu—it is the 3 × 3
arrangement of numbers from one to nine such that all the straight lines of three add up to
fifteen.

 
  ‡ The process of sectioning lends itself to another Coxeterian geometric trick: try to cut a cube
of cheese so that the cross section (the cut line) is a hexagon.
  

 



 



  
2  Aunt Alice, And The Cambridge Cloister

     
The  art  of  doing  mathematics  consists  in  finding  that  special  case  which
contains all the germs of generality.

 
—DAVID HILBERT
 


Students who chose mathematics as their path of higher learning at Cambridge met with
an immediate academic hazing—‘‘struck by the shattering blow that for three years
they are to do mathematics, all mathematics, and nothing but mathematics!’’1 This
warning, issued in a university publication, advocated reform to Cambridge’s pure
mathematics curriculum to make it less aloof and remote, and more relevant to the real
world. The antiquated course of study was limited to ‘‘the exceptional being who could
live through years and years of nothing but mathematics for its own sake …That not
many stand up to this impact is shown by the large number of students who after
one year change to economics, to physics, to anything but mathematics …The normal
student soon suffers from an attack of mental indigestion and brings up mathematical
wind.’’2

 
  Coxeter’s director of studies was John E. Littlewood,3 an analyst and another of Britain’s
revered mathematicians. Littlewood expressed his view of geometry in his book A
Mathematician’s Miscellany, wherein he stated that a good measure of mathematical talents was
to ask the individual under evaluation: ‘‘What did you get out of geometry in school?’’4 Coxeter,
having spent two years studying his custom-made curriculum with Robson, and factoring in his
private obsession with polytopes, was certainly better versed in geometry than most. On
the whole he was prepared as best he could be for the rigors of pure mathematics at
Cambridge, the undisputed center of mathematics in Britain. Through the 1920s and ‘30s,
Cambridge came to rival leading universities anywhere in the world. Two noteworthy
developments included the creation of the PhD degree in 1924,5 and the increasing
appearance of women—Dame Mary Cartwright, for instance—in the pages of research
journals.6


 
  Of all the disciplines of study at Cambridge, mathematics was the oldest and most
respected, and as such it was one of the last bastions for training in classical geometry.7 As
Coxeter’s academic shepherd, Littlewood advised which lectures to attend: analytic
geometry, projective geometry, differential geometry, topology, theory of groups, theory of
numbers, as well as electricity, celestial mechanics, the theory of relativity, and the
geometry of time and space.8 Littlewood’s job also entailed putting Donald through his
paces in preparation for the daunting Mathematics Tripos examinations. Although the
Tripos amounted to a slick and superficial test of talents, ambitious students strove
for Senior Wrangler, the highest achievement—the title ‘‘wrangler’’ deriving from the
contentious discussions students in earlier centuries underwent in order to qualify for a
degree.9

 
  Coxeter welcomed the grind, dashing to the dining hall for breakfast by 7:30 a.m., wheeling
across town on his bicycle for lectures starting at 9:00 a.m.10 Mathematics lectures took place in
the old Arts School, tucked away in the center of town where new buildings boxed
the old into the middle of the block—finding the Arts School for the first time was as
frustrating as navigating to the center of a labyrinth. Upon entering the main hall,
a blackboard divvied with a wooden frame into columns and rows indicated which
lectures were where. The creaking seminar theater, the main venue, was furnished wall
to wall and nearly floor to ceiling in oak, an intellectual tinderbox of mathematical
cogitation.11

 
  Buried in nothing but mathematics, Coxeter was in his element. He did not suffer the
prognosis of intellectual indigestion, but he did develop a duodenal ulcer, perhaps making
him the subject of a poem published in the 1926 Trinity yearbook titled ‘‘A Simple
Story:’’

 
     
A Trinity mathematician

 
Would not take sufficient nutrition,

 
Till his bedder one day

 
Threw his text-books away,

 
And he’s now in the pink of condition.12
 



  A strict vegetarian diet cured Coxeter, a regime he would maintain for both digestive and
ethical reasons for the rest of his life. He ate nothing but raw vegetables with olive oil, raw fruit,
honey, Blake’s Vitaveg biscuits, whole-meal bread, and lactic cheese. He lost a lot of weight,
making him a thin linear man of a geometer. At one point his condition was so grave that his
mother made a fretful trip to Cambridge to check on him, and she stayed the night, which
purportedly made Lucy Gee the only woman ever to have slept in residence at Trinity, save
Queen Victoria.13
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  Trinity’s well-vaunted history also included alumnus Sir Isaac Newton. A portrait of Newton
(1642–1727) hung in the dining hall, a constant reminder to students of the man who epitomized
Trinity’s contribution to mathematics and science.14

 
  When Cambridge had closed during the Great Plague in the summer of 1665, Newton, then a
student, went home to Woolsthorpe, sixty miles north. He took advantage of the time off for
some independent study in mathematics (his aim at Trinity initially was a law degree).
Years later Newton told friends that his great insight—containing a fertile germ of
generality—came to him during that respite, first hitting him in his garden: the force that
caused the apple to fall from a tree, he realized, might also account for the pull that
orbits the Moon around the Earth, and all the planets around the Sun.15 As James
Gleick described in his Newton biography, ‘‘The apple was nothing in itself. It was
half a couple—the moon’s impish twin. As an apple falls toward the earth, so does the
moon: falling away from a straight line, falling around the earth. Apple and moon
were a coincidence, a generalization, a leap across scales, from close to far and from
ordinary to immense.’’16 Newton did not produce his theory of universal gravity with this
one insightful moment. He continued with his studies at Trinity, and did so well in
mathematics that his teacher, Isaac Barrow, resigned as the Lucasian Professor of
Mathematics to allow Newton, whom he spotted as an ‘‘unparalleled genius,’’ to take his
place.17
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  Portrait of Sir Isaac Newton in the dining hall at Trinity College (by John Vanderbank,
1725).

 
  In 1687 Newton published his masterpiece, Philosophiae Naturalis Principia Mathematica,
hailed by French mathematician and physicist Jean le Rond d’Alembert as ‘‘the most extensive,
the most admirable, and the happiest application of geometry to physics which has ever been
made.’’18 Newton did things with geometry that no geometer had done before; geometry was

no longer merely about space. Newton married it to motion. As the scientist himself
stated in Principia: ‘‘The description of right lines and circles, upon which geometry is
founded, belongs to mechanics. Geometry does not teach us to draw these lines, but
requires them to be drawn …from the same principles, I now demonstrate the frame
of the System of the World.’’19 He put forth a set of mathematical laws describing
all forms of motion in the Universe. The backdrop for all motion, Newton’s notion
of space, was classically rigid and inflexible, based on the foundations of Euclidean
geometry. Time, also, was absolute, ticking away like a metronome, keeping the universe in
sync.20

 
  Euclidean geometry was also crucial to Principia since it was the parlance Newton chose to
popularize his work. Newton claimed he used his new mode of mathematics, his calculus, to get
results on his gravitational theory in the first place. But he translated his findings into
geometrical terms for publication, believing in geometry as the classic language of mathematics,
and the language his elite audience would most readily understand. In contrast to the popularity
of Descartes’ analytic geometry, the central role Newton gave to Euclidean geometry
reestablished its importance.21

 
  Newton left Trinity in 1696, accepting a job at the Royal Mint, but before he left he
established a formal school of mathematics and mathematical physics (today Cambridge
has its high-tech Isaac Newton Institute for Mathematical Sciences). At the end of
his life, Newton remarked, ‘‘If I have been able to see further, it was only because I
stood on the shoulders of giants’’—Copernicus and Galileo, Tycho Brahe, and Johannes
Kepler.22

 
  Kepler (1571–1630) is best known for his three laws of planetary motion, the work Newton
extrapolated upon in Principia. But by Coxeter’s estimation, Kepler’s most notable contributions
to pure mathematics were his work pertaining to polygons and polyhedra.23 And in fact,
Kepler’s at once insightful and quixotic advancements to the extant knowledge of polyhedra were
the precursor to his planetary laws.

 
  In 1596, Kepler had published his book Mystery of the Cosmos, theorizing that the proportions
of the five Platonic Solids governed the paths of the six then-known planets.24 His polyhedral
planetary scheme worked like Russian nesting dolls:


 
  The Earth’s orbit is the measure of all things; circumscribe around it a dodecahedron, and the
circle containing this will be Mars; circumscribe around Mars a tetrahedron, and the circle
containing this will be Jupiter; circumscribe around Jupiter a cube, and the circle
containing this will be Saturn. Now inscribe within the earth an icosahedron, and the
circle contained in it will be Venus; inscribe within Venus an octahedron, and the
circle contained in it will be Mercury. You now have the reason for the number of
planets.25

 
  Recounting the description of this scheme by the Hungarian science writer and novelist Arthur
Koestler, Coxeter said: ‘‘It was a kind of Wonderland croquet through mobile celestial hoops.’’26
Kepler presented this whimsical hypothesis to the Duke of Württemberg, and submitted various
plans for models. One proposition grabbed the duke’s fancy: a planetary punch bowl, the sphere
of each planet containing a different beverage dispensed through a network of pipes at the turn of
a faucet. The duke commissioned it in silver. The silversmith, however, ran into problems and the
project languished.27
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  Kepler’s polyhedral planetary scheme, from Mysterium Cosmographicum, 1596.

 
  Eventually, Kepler recognized that his polyhedral theory of the planets, together with the
punch bowl, would not hold water. He later became assistant to the foremost astronomer of the
day, Tycho Brahe.* After Brahe’s death, Kepler inherited his trove of astronomical observations
and put them to good use in developing his laws of planetary motion.28 In 1619, he published
Harmony of the World, containing a more sophisticated mathematical model than the nesting
scheme.29

 
  Harmony of the World also included the first systematic treatment of polyhedra, extrapolating
on all that was known in the day. Since Euclid’s time, geometers had studied one polyhedron or
another, but these findings were rather haphazard and scattered. Kepler took a comprehensive
approach. He defined classes of polyhedra, identified all their members, and proved his set
complete. Kepler redetermined the class of convex uniform polyhedra known as the Archimedean
solids (Archimedes’ own work on them having been lost), and he discovered that prisms and the
antiprisms belonged in the same class. The Archimedean solids are also called the
semi-regular solids—like the Platonic solids, they have regular polygon faces and the same
arrangement of faces at each vertex, but they have more than one type of face per
solid.30


 
  Kepler also conducted a dig into his own imagination and happened upon two regular star
polyhedra, created by ‘‘stellation’’—the edges or faces of a polyhedron are extended until they
meet in such a way that their new faces form stars. Kepler called the resulting critters the small
and large dodecahedral hedgehogs, due to their prickly appearance. They are also called the
Kepler star polyhedra; earlier renditions of these shapes existed, but Kepler was the first to
recognize that they met the criteria for regular polyhedra.31

 
  The stellation torch passed to Coxeter at Cambridge, the only Platonic solid whose stellations
remained to be investigated being the icosahedron.32 Coxeter came by this project via
Littlewood, who had received a letter about models of stellated icosahedra from a Mr. H. T.
Flather, in St. Albans, midway between London and Cambridge. Littlewood sent Coxeter to have
a look. Coxeter arrived at the proper address, rang the bell, and when the door opened had a
momentary shock. ‘‘I was looking straight in front,’’ recalled Coxeter, ‘‘and I saw nothing. Then I
looked down and saw a tiny dwarf. And that was he.’’ Flather was quite elderly, but invited
Coxeter in and exhibited the models. They were remarkably small models, and very
intricate. ‘‘One could hardly imagine how they could be made,’’ said Coxeter. ‘‘Except
by his very small, child-sized hands.’’ The series included more than fifty stellations
of the icosahedron. Littlewood accepted Flather’s models as a gift to Trinity, and
Coxeter agreed to write an accompanying enumeration and description, which became
The 59 Icosahedra.33 An expert analysis of this work might judge it ‘‘nonsense’’—it
was fun and aesthetically pleasing, quite popular among fledgling geometers, though
not at all important in the grand scheme of polyhedra research. But then again, for
Coxeter the aesthetics were reward enough, beyond which he did not pretend any great
shakes.34
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  Kepler’s star polyhedra, from Harmonice Mundi, 1619.
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  Coxeter managed his undergraduate degree without difficulty. He received first class status on
part 1 of the Tripos, after his first year in 1927, and with the completion of part 2 the following
year he attained the coveted status of Senior Wrangler.35 With those results, he received a
research scholarship and returned the following year. His success was the result of his
discipline. ‘‘I too often feel the need for nine lives, to get done everything that is worth
doing,’’ he wrote in a letter home to Katie, his stepmother. ‘‘There is such a lot of
literature, for instance, and I can’t spare much time for reading.’’36 Though on one
occasion he defended an indulgent day punting up the River Cam, followed by some

skinny-dipping in Byron’s Pool (whereupon he came to the conclusion that bathing suits
‘‘are the ideal garments to wear after bathing’’37). That day on the river was not
typical, Coxeter insisted. ‘‘I work hard most days, but one must rest sometimes,’’
he said, in response to Katie’s questions about how he found time to laze about in
boats—and he added that ‘‘a description of the work-days would make much duller
reading.’’38 Truth be told, he said, unfettered leisure and relaxation were the best
prescription to facilitate inspiration. His only regimented extracurricular activity on
record was his membership in the Magpie & Stump debating club. He joined in his
second year with a fellow mathematician, as chronicled in the 1928 Trinity yearbook:
‘‘…we have two veteran new members, Mr. J. A. Todd, who is too funny for words,
and Mr. H. S. M. Coxeter, who is always very good and unintelligible, but terribly
brief.’’39
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  Coxeter striking a cerebral pose at Cambridge.
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  In 1928, Coxeter purchased a horse with part of his scholarship money. He named her Trixie
and rented a stall at a farm nearby.40 Being desperately shy, and finding human relationships a
bit of a bother, riding Trixie gave Coxeter an excuse to get away from the stresses of social
interaction.41 Coxeter was a hermit within his own head, and, at age twenty-one, he had not had
a girlfriend; he was in love with geometry.

 
  Sheltered by his introversion, the carnal pleasures crept up on Coxeter rather unexpectedly.
Much to his embarrassment and shame, Coxeter discovered he derived improper pleasure from
riding Trixie bareback. He confessed this to his father, who immediately connected his son’s
repressed sexuality and the shock of the divorce, compounded by his failed crush on
Katie.42

 
  Harold suggested with minimal moral coercion43 that his son spend the summer
of 1928 undergoing psychoanalysis in Vienna. For June, July, and August, Coxeter
placed himself in the useful hands of the great psychoanalyst Dr.Wilhelm Stekel.44
Stekel was a protégé-cum-dissident of Freud’s, who, as Coxeter recalled, disagreed
with Freud because the latter would take patients for years and years while Stekel
believed that if you couldn’t cure a person in a few months then treatment was no
use.45 Harold had made Stekel’s acquaintance through Rosalie Gabler at the Royal
Psychological Society meetings; Rosalie was the English translator for several of Stekel’s
books.46


 
  Coxeter does not fit precisely any of the anonymous case studies Stekel later published, though
a compulsive vegetarian with an obsession for counting comes close. One of Stekel’s books points
to how the doctor might have treated Coxeter. Entitled Disguises of Love, it was published, in
Gabler’s English translation, in 1922. The pertinent chapter opens with the following tale.
‘‘Plutarch tells us a wonderful story of the hereditary prince Antiochus of Syria,’’ wrote
Stekel:

 
  To the grief of his father, Seleucus, he fell sick of a severe disorder, which sapped his strength;
the cause of this no physician could discover. Only to the penetrating insight of the celebrated
master of the healing art, Erisistratus, was it given to discover that an incurable love for his
stepmother, the beautiful queen Stratonice, consumed the prince. Plutarch does not tell
us if the prince was aware of his passion. Those who are surprised that we can be
in love without knowing it, do not know the enigmatic subterfuges of love and its
cravings. I have repeatedly been able to show that people have fallen sick, under all
sorts of disguises of illness, while, in reality, they loved and desired without knowing
it.47

 
  During treatment Stekel asked leading questions and instructed his patient to keep a dream
diary. Coxeter recorded sixty-four dreams over the course of the summer. He dreamed he was an
invalid, belittled, and laughed at by a boy. He dreamed about missing trains and boarding buses
that drove too fast and took the wrong route. He dreamed he grudgingly shared his raincoat and
had to walk long distances (which, in his dream at least, he didn’t care to do). In several dreams
he was alone and, encountering horses in a field, he tested himself to see, with the analysis,
whether he could resist temptation—‘‘(i.e. avoid sexual excitement).’’ He was pleased to observe
that he would not have to pass the farm again in order to get home. And in another
dream he found himself walking with John Petrie and his sister, Ann. ‘‘I thought,
what a pity I am not in love with Ann, and wondered what my feelings would be on
meeting the Pritchards next year: I hoped I would love the sister and not the brother
(homosexually).’’48

 
  His nanny, May Henderson, made a cameo appearance, as did a German girl with long dark
hair in braids. ‘‘Surely she is the ideal,’’ Coxeter said to himself in his dream, noting in the
margin of his dairy that this might be Katie. Pleasing his parents was a repeating theme. ‘‘My
father was about to perform a peculiar manipulation on my body,’’ Coxeter noted. ‘‘He

explained that I must be tied up so that I couldn’t move or make any sound. He would
then strike my chest over the heart with his elbow. He said it might kill me, but that
would be better than leaving me as I was. I agreed I would prefer even that to the only
alternative—suicide.’’49

 
  The only other aspect of his treatment Coxeter remembered was that Stekel advised him to
read Oscar Wilde; he thought the poem ‘‘The Ballad of Reading Gaol’’ contained some
good psychology. Wilde subsequently became one of Coxeter’s favorite authors, and he
empathized with the writer over his imprisonment for homosexuality, as Coxeter did (in his
own style of generosity and humanitarianism) with anyone he thought victim of an
injustice.50

 
  Regardless of any progress made with psychoanalysis that summer, Coxeter’s time in Vienna
proved unexpectedly productive professionally. He loitered in the reading rooms of the
University of Vienna Library and there made a meeting that influenced the course of his
career—the work of Ludwig Schläfli (1814–95).51 Once Coxeter was asked which, of any
mathematician in all of history, he wished he could meet and converse with. He chose
Schläfli.52

 
  Coxeter placed Schläfli among the vanguard of nineteenth-century mathematicians who
conceived of geometry in more than three dimensions.53 Schläfli also invented a simple notation
that represents all the Platonic solids and all the regular polytopes. Schläfli wrote his notation
(now called the Schläfli symbol) as (p / q), which Coxeter later amended to {p, q}—with p
representing the shape of each face, and q representing the arrangement (or number) of shapes at
each corner or vertex. Take the tetrahedron, represented by the notation {3,3}—p = 3, for the
three sides of the equilateral triangle, and q = 3 for the number of triangles at each
vertex.54

 
  Schläfli is remembered, too, for his proof that in four-dimensional space there are only six
regular convex polytopes. The limit of six occurs for the same reason that in three dimensions
there are only five regular polyhedra—only a certain number of shapes satisfy the criteria for
regularity. In four dimensions the six regular polytopes include: the simplex or 5-cell, each cell
being a tetrahedron, and three tetrahedra meeting any an edge; the 8-cell, or tesseract, made of
eight cubes, three cubes meeting at every edge; the 16-cell made of sixteen tetrahedra; the
24-cell made of octahedra; the 120-cell made of dodecahedra; and the 600-cell made of
tetrahedra.55


 
  These four-dimensional regular polytopes are represented by the symbol {p, q, r}—the first two
numbers of the notation indicate the type of component polyhedron, and the third number
indicates how many polyhedra converge around one edge. The system of notation carries on for
higher dimensions. In the fifth dimension, the analog to the tetrahedron is {3,3,3,3}, often called
the 5-simplex. It has 6 vertices, 15 edges, 20 triangular faces, 15 tetrahedral cells, and 6
tetrahedral hypercells. The component cell is the 4-simplex—the first {3, 3, 3 in the notation—and
to each edge, three of these are joined (in general, in n-dimensional space, the simplex has n +1
component cells, each being an (n - 1)-simplex, and at each edge three of these are
joined).56

 
  Schläfli proved that in higher dimensions regular polytopes become a rarer breed.
Only three regular polytopes exist in five or more dimensions, continuing to infinite
dimensions: these are the simplex (the generalized tetrahedron), the hypercube or ‘‘measure
polytope’’ (the generalized cube), and the orthoplex or cross polytope (the generalized
octahedron).57 (See appendix 2 for a chart of the Schläfli symbols for the 3-D and 4-D regular
polytopes.)

 
  Unfortunately, Schläfli’s work with polytopes was little appreciated while he was alive. His
book Theorie der vielfachen Kontinuität (Theory of Continuous Manifolds) reached
publication only as a memorial volume six years after his death. ‘‘The French and English
abstracts of this work …attracted no attention,’’ lamented Coxeter. ‘‘This may have been
because their dry-sounding titles tended to hide the geometrical treasures that they
contain, or perhaps it was just because they were ahead of their time, like the art of Van
Gogh.’’58
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  Inspired and back at Cambridge after his summer in Vienna, Coxeter set about his PhD (in
which Schläfli’s work figured prominently),59 with Henry F. Baker as his advisor. Coxeter kept
Baker on a high pedestal, never thinking of him as a contemporary. ‘‘I thought of him as a god,’’
Coxeter said, adding all the same: ‘‘There were things, such as the polytope theory I was doing,
that even he didn’t understand.’’60

 
  Geometry reached its apex at Trinity with Baker (1866–1956). In 1912, the Fourth
International Congress of Mathematics had been held at Cambridge. Baker, then a professor (he
was a Trinity alumnus who never left), made an address foreshadowing his ambitions for the
field. He praised the distinguished geometers from other lands in attendance, and expressed his
hope that their presence would stimulate English geometry to new activity.61 Baker’s sympathies

were known to be markedly Italian—admiring the algebraic geometry of Corrado Segre, Annibale
Comessatti, Federigo Enriques, and Guido Castelnuovo, with whom he shared a liking
for extending what was known about objects in three-dimensional space to higher
dimensions.62

 
  Two years later, Cambridge’s Lowndean chair of Astronomy and Geometry fell vacant. The
astronomers were not happy when it was awarded to the geometer Baker.63 In 1925, Baker
published four volumes of his six-volume tome Principles of Geometry (the remaining two
volumes came out in 1933). And Baker established his geometrical Saturday afternoon ‘‘tea
parties’’—hardcore research seminars softened by the niceties of teacups and biscuits.64 Baker
gathered around him a group of young men infected by his vision and enthusiasm.65
The substance of their work, however, had a frivolous and trivial element to it—as did
classical geometry in that day. Baker’s acolytes often chased after superficial and carefree
questions, saying, ‘‘Oh, here’s a nice thing we can do in two dimensions, let’s see if we can
do it in three, let’s see if we can do it in four.’’ These algebraic investigations were
clever and tricky, and had a certain charm, but in the end they lacked substance. ‘‘It’s
not where the subject of geometry was going,’’ said Jeremy Gray. ‘‘Its take was a bit
naïve.’’66

 
  Coxeter managed to avoid this pitfall and carve his own path. ‘‘What Donald was able to do,’’
said Gray, ‘‘and one or two other people who came to Cambridge at that time, was to tap into
a more substantial part of the mathematical river.’’ The frivolous explorations into
hyperdimensions were a bit of a backwater. ‘‘This was a little cottage industry Baker’s people
had. They did very well and they got Smith’s prizes out of Cambridge, which is the big
thing to do, and sets you up for a research career,’’ said Gray. ‘‘Yet they themselves
would say they never really in the end got the right generalizations for progress in
the subject. Donald somehow did that. He leapt beyond that into really substantial
mathematics.’’67

 
  Every Saturday morning, before the tea party, Coxeter made a ten-minute bicycle ride from his
residence in Great Court over the River Cam to Baker’s house, where he reported progress on his
PhD research. Saturday afternoons, all the regulars gathered for the tea party, held in the old
Arts School. Students took turns presenting their most recent findings, followed by
sparring discussion, debating the cut and thrust of related points. During Coxeter’s turn
in 1928, he described the sequence of ‘‘pure Archimedean’’ polytopes from three to
eight dimensions, having 6, 10, 16, 27, 56, and 240 vertices, respectively.68 He had
begun this line of investigation while studying with Robson, and although he promised

his tutor he would refrain from indulging in his polytopes, except on the day of rest,
Coxeter was unable to resist entirely. He smuggled in his polytopes, spending a good deal
of his spare time adding further volumes to his ‘‘Dimensional Analogy’’ essay. He
never forgot the thrill, the frisson of synaptic excitement he felt, when, sitting under a
tree in the Savernake Forest, he rediscovered the pure Archimedean polytopes69—the
analogs of the Archimedean solids in higher dimensions. Even as a rediscovery it was an
intellectual coup, and the impact of following such a giant’s path stuck with Coxeter for
years.

 
  When Coxeter discussed this work at Baker’s tea party, the usual banter followed, questioning
and connecting his results to other areas of study. ‘‘One of the algebraic geometers immediately
expressed interest,’’ Coxeter noted, ‘‘because 6, 10, 16, 27, are the numbers of lines on the Del
Pezzo70 surfaces in 6,5,4,3 dimensions. Du Val went one step farther by declaring 2 × 28 to be
the number of lines on the ‘Del Pezzo surface’ in 2 dimensions, which is a repeated plane joined
to itself along a quadratic curve of genus 3; the lines are the repeated bitangents.’’71 This
subject led to Coxeter’s first published paper: ‘‘The Pure Archimedean Polytopes in Six
and Seven Dimensions,’’ printed in the Proceedings of the Cambridge Philosophical
Society.72

 
  Coxeter’s research and analysis grew by orders of magnitude, broadening and deepening the
reservoir of data on polytopes. One day he escaped from the monastic confines of Trinity for a
solitary bike ride to the Gog Magog Hills,73 in the south Cambridge countryside, a rural oasis
inhabited by singing skylarks, aromatic wild marjoram, and a grove of oak, beech, dogwood, and
field maple. The fresh air and peaceful landscape did nothing to calm Coxeter’s mathematical
thoughts; indeed, what Coxeter ‘‘saw’’ that day was not the bucolic scenery. Rather, he had a
flash of insight—witnessed with his geometric mind’s eye—into how these Archimedean polytopes
could be exhibited as members of a larger family, indexed by means of a clever notation,
much like Schläfli’s: npq—for a figure in n + p + q + r dimensions.74 This was Coxeter’s
first original contribution to the domain of polytopes, and led to his second major
paper, ‘‘The Polytopes with Regular-Prismatic Vertex Figures,’’ published—all ninety-six
pages—in the Philosophical Transactions of the Royal Society, a journal of even greater
repute.75
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  Patrick Du Val and Coxeter lounging on the lawn at Cambridge.
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  When Coxeter’s turn came up for another session at Baker’s tea party, he invited his
‘‘Aunt Alice’’ to deliver a joint lecture.76 More widely known as Alicia Boole Stott
(1860–1940), she was a housewife geometer and polytope aficionado forty-seven years
Coxeter’s senior (he twenty-one and she sixty-eight). Stott became one of his dearest
friends and professional soul mates. According to Coxeter, Stott had introduced the
word ‘‘polytope’’ to the English language with the first publication of her work in
1900.77
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  Alicia Boole Stott

 
  Over the years, Coxeter became Stott’s loyal promoter, telling her story at every opportunity.
Stott was the middle of five daughters born to George Boole, known for his algebra of logic (the
Boolean logic that drives Google searches and computer circuitry), and Mary Everest (the
highest mountain in the world was named in honor of Stott’s uncle, the surveyor Sir George
Everest). Her father died when she was four years old, and she spent her early years, repressed
and unhappy, with her maternal grandmother and great-uncle in Cork. ‘‘When Alice was about
thirteen,’’ wrote Coxeter, the five girls were reunited with their mother (whose books reveal her
as one of the pioneers of modern pedagogy) in a poor, dark, dirty and uncomfortable
lodging in London. There was no possibility of education in the ordinary sense, but Mrs.
Boole’s friendship with James Hinton attracted to the house a continual stream of social
crusaders and cranks. It was during those years that Hinton’s son, Howard, brought a lot
of small wooden cubes, and set the youngest three girls the task of memorizing the
arbitrary list of Latin words by which he named them, and piling them into shapes. To
Ethel, and possibly Lucy too, this was a meaningless bore; but it inspired Alice (at
the age of about eighteen) to an extraordinarily intimate grasp of four-dimensional
geometry.78

 
  Howard Hinton exposed Alice to his mystical interpretation of higher dimensions. But she did
not care to follow him along these occult lines of thought, said Coxeter, noting that she ‘‘soon
surpassed him in geometrical knowledge. Her methods remained purely synthetic, for the simple
reason that she had never learnt analytical geometry.’’79

 
  In the 1880s, Stott rediscovered the six polytopes in four dimensions and then, using a ruler
and compass, cardboard and paint, she produced complete model sets of their central sections.†
During the intervening years, before she met Coxeter, Stott ‘‘led a life of drudgery, rearing her
two children on a very small income.’’80 She returned to her geometric work when her husband,
Walter Stott, happened upon the work of Pieter H. Schoute, at the University of Groningen, the

Netherlands, who was investigating the central sections of the very same four-dimensional
polytopes. Stott wrote to Schoute with the news that her findings corroborated his (Stott’s
powers of geometrical visualization, Coxeter noted, supplemented Schoute’s more orthodox
methods). Schoute arranged for the publication of Stott’s discoveries, and their partnership
continued until Schoute’s death in 1913, after which Stott abandoned her polytopes again
until she met Coxeter.81 Coxeter’s alliance with Aunt Alice was a great source of
joy.82 ‘‘The strength and simplicity of her character,’’ he said, ‘‘combined with the
diversity of her interests to make her an inspiring friend.’’83 They conducted an ongoing
conversation about polytopes, by letter and with visits back and forth. Aunt Alice once sent
Coxeter on his way after polytopes and tea with a present—two matching lamps with
wooden truncated icosahedra for bases, which he carefully carried on the train back to
Cambridge.84
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  Coxeter submitted his PhD dissertation in 1931, the same year Godfrey H. Hardy returned to
Trinity from his stint at Oxford.85 As one of only four individuals made a Trinity
Fellow that year,86 Coxeter received a copy of the college ordinances, marked ‘‘Private:
for Masters and Fellows only,’’ outlining his privileges87: he could now walk on the
grass in the courtyards, shortcutting the ninety-degree paths by the hypotenuse if he
wished.‡

 
  Hardy, coming to Trinity to occupy the Sadlerian Chair of pure mathematics, was also among
the privileged. But he despised anything bourgeois and refused to live in the best rooms allotted
to him in residence. A man known for his eccentricities, Hardy had a pronounced phobia of
mirrors. When he walked into a room, he covered any reflective surface with a piece of cloth. It
wasn’t so much a superstitious hatred, but a dislike of his own looks—few photographs of Hardy
are therefore known to exist.88

 
  It is amusing, in this respect, to imagine the fallout when Hardy bumped into Coxeter on
campus, since Coxeter was known to carry a set of mirrors on his person almost everywhere he
went. He had the mirrors custom cut by a workshop into triangular wedges which
hinged together to form a large kaleidoscope—a tent of mirrors, 24 inches across and 12
inches tall. This was the tool Coxeter used to investigate the symmetrical properties of
polyhedra.89


 
  When invented by Sir David Brewster in 1814, the kaleidoscope produced quite a stir, selling a
reported 200,000 instruments in London and Paris in three months. Sir David was deeply
dismayed, however, because his invention gained popularity merely as a toy, though appealing to
children and adults alike—he had invented the kaleidoscope as an artistic and scientific
instrument. In defending the importance of the instrument, he published a tirade expressing
outrage that his patents were being infringed in the kaleidoscope’s mass production,
and—worse yet—that the knock-offs were so sloppily constructed (in his book he provided
illustrated instructions for building them properly). He was greatly chagrined that of
the hordes who witnessed his instrument’s beautiful effects, not even one thousand
experienced a ‘‘correct idea of the power of the Kaleidoscope.’’90 How relieved and
rewarded Sir David would have been to see Coxeter toting his kaleidoscopes for geometric
investigation. Using kaleidoscopes, Coxeter generated precise two-dimensional and
three-dimensional geometric patterns—he found kaleidoscopes useful in exploring his polytopes,
since many of their geometric symmetries are generated by reflections, such as mirror
symmetry.

 
  Kaleidoscopes operate by the laws of optics; when a ray of light from an image falls upon a
mirror, the angle of incidence (the angle at which a ray hits the mirror) equals the angle of
reflection (the angle by which it bounces off the mirror). In this manner, a kaleidoscope generates
a repeating sequence of reflections, an effect produced not solely by its real mirrors, but also by
its chambers of virtual mirrors, the mirrors reflected in themselves again and again
and again. When a sequence of reflections travels through a kaleidoscope’s hall of
mirrors, one of two things happens. Depending on the angles at which the mirrors
meet, the reflected images either multiply endlessly, creating an infinite pattern, or the
reflected images coincide, falling back on themselves as they retrace the same path.
When the latter occurs, the optics conspire to create the image of a finite geometric
pattern or shape in the mirrors. This is what Coxeter (and Brewster) were interested
in.91

 
  In his investigations, Coxeter deployed two types of kaleidoscopes. The first were simple
kaleidoscopes: two hinged mirrors replicating whatever object fell between them, with images
of the object ricocheting off the mirrors and forming a perfectly symmetric rosette,
like a two-dimensional snowflake. To produce this finite effect, the mirrors must be
arranged at angles that exactly divide 180° (or pi). Otherwise, the images produced in
the kaleidoscope will not match up—the snowflake would be shattered into disjointed
pieces.92
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  Coxeter assembling one of his Cambridge-era kaleidoscopes some years later.

 
  A square can be generated in a two-mirror kaleidoscope, which can be constructed on a
makeshift basis with any two mirrors at your disposal. On a sheet of paper draw a square, and
fold it perfectly in half in all the ways possible so that each half is the mirror opposite of the
other—this should produce a square divided into eight identical pieces, each a 45°-45°-90°
triangle. Cut out one of these triangles, and place mirrors along two adjacent edges, with the
mirrors meeting at the vertex that would be the center of the square. If you then look into the
mirrors, you’ll see the image of an entire square—the fraction (one-eighth) of the square between
the mirrors is reflected back and forth and this parade of images configures to form the whole
polygon.93

 
  Coxeter used kaleidoscopes to produce patterns not only of 2-D polygons, but also
images of the 3-D Platonic solids. While two mirrors are needed to generate the 2-D
polygons, three mirrors are needed to generate the 3-D solids—images of each of the
Platonic solids can be produced by a certain arrangement of three mirrors,94 and for
this reason the symmetries of the Platonic solids are said to be ‘‘kaleidoscopic.’’95
The German mathematician August Möbius, more famous for his twisted strip, first
studied the practice of using mirror arrangements to generate the Platonic solids in
1852.96

 
  In order to create images of the Platonic solids, the three mirrors are arranged in a triangular
cone, somewhat like the corner of a room, but again the mirrors must be aligned at angles that
are specific fractions of 180° .§ The mirror planes of symmetry of a cube divide it into
forty-eight congruent sectors, and thus when a kaleidoscope generates the cube, it does so
by reflecting and reproducing this one sector—with forty-eight reflections bouncing
around the kaleidoscope—causing the entire cube to take shape (this composite image
of the cube consists of the real object in the chamber of the real mirrors, and the
virtual objects or reflections, generated in a multiple array in the virtual mirrored
chambers).97

 
  And while the image of the square was generated in the kaleidoscope by a piece of paper,
geometers use a particular kind of prop to generate the Platonic solids. One prop
commonly used is a simple stick (even a pencil or pen will do), which generates only the
edges of the solid—for instance, it would be a skeletal-looking cube, or the frame of a
cube. Another type of prop is a round ball or blob of any material, which generates

the vertices or corners of the cube—leaving the edges and the faces to the viewer’s
imagination. This method of generating the Platonic solids with mirrors and props is called
‘‘Wythoff’s construction,’’ invented by the Dutch mathematician Willem Abraham Wythoff
(1865–1935).98
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  A mapping of a dodecahedron onto a sphere, generated by mirrors of an icosahedral
kaleidoscope.

 
  Using kaleidoscopes to explore symmetries can also be extended to investigate the polytopes of
multiple dimensions. Each dimension simply requires another mirror. In the physical world, of
course, the geometer hits a practical impasse beyond three dimensions, since kaleidoscopes
representing four dimensions and more cannot physically be constructed. But this did
not deter Coxeter. The physical limitations motivated him to develop a systematized
theory of kaleidoscopes, a generalization of how they would continue to generate the
polytopes of higher dimensions, continuing on to infinity, if our physical reality would
permit.99

 
  Coxeter’s kaleidoscopes were his prized possessions, and he tended to them with loving care:
‘‘improved the mirrors,’’ he noted in his diary, ‘‘fixed mirrors,’’ ‘‘made gadgets for the
mirrors.’’100 He asked his mother to sew green felt pockets into which each individual sector of
mirror could be slipped, to minimize breakage and chipping during transport.101 He pulled
out his mirrors for show-and-tell at every opportunity—especially with his father and
Aunt Alice. ‘‘I can’t tell you how thrilled I am at the thought of seeing your magic
mirrors!’’ Stott exclaimed in a letter. ‘‘It seems to me too wonderful for words and I am
longing for next week to come. How you will wake up the stuffy mathematicians on
Saturdays!!’’102

 
  Hardy, with his hatred of mirrors, no doubt agreed to meet Coxeter only if he left his mirrors
at home. If he saw Coxeter walking toward him from across Great Court, those wretched mirrors
under his arm, Hardy might have given him only a tentative wave, understood to mean ‘‘Good
day!’’ but also ‘‘Stay the dickens away!’’
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  Rubbing elbows with Hardy as he neared the end of his PhD, Coxeter was exposed to a fine
mentor, the finest example of the caliber of mathematician he hoped to become. Hardy was
nearing the end of his career, but it was a noble career and he had earned Trinity as home for the
rest of his days. In 1940, Hardy published A Mathematician’s Apology, reflecting on his career.
He asked, ‘‘Is it really worth while to make a serious study of mathematics? …What is the proper

justification of a mathematician’s life?’’ Lines drawn in the margin alongside the text
of Coxeter’s copy highlighted Hardy’s response, which culminated with perhaps the
most oft-cited quotation about mathematics: ‘‘A mathematician, like a painter or a
poet, is a maker of patterns …The mathematician’s patterns, like the painter’s or the
poet’s must be beautiful. The ideas, like the colours or the words, must fit together in a
harmonious way. Beauty is the first test: there is no permanent place in the world for ugly
mathematics.’’103

 
  Writing his PhD thesis, which he dedicated to John Petrie and titled ‘‘Some Contributions to
the Study of Regular Polytopes,’’ Coxeter expressed exactly the same sentiment in the
introduction, with a bit of self-deprecating humor:

 
     
Although  it  is  unnecessary,  from  a  practical  point  of  view,  to  consider
regular  skew  polygons  of  more  than  five  dimensions,  the  human  weakness
of a mathematician compels him to examine the general case, although the
trigonometry involved is extraordinarily complicated …The only excuse for this
part of the work must be its intrinsic beauty.104
 


  Coxeter’s writings on polytopes won him the coveted Smith’s prize,105 indicating he had more
than withstood the stultifying labors of haughty pure mathematics at Cambridge. He
had not, as a large number of math students were known to do, changed his course
of study to something more sensible—anything but mathematics. According to the
article advocating reform of the mathematics curriculum, aiming to make it less lofty,
more practical and down-to-earth, Coxeter was an exception: the exception who lives
through years and years of such mathematical rigors and retains his enthusiasm is ‘‘a
veritable mathematical specialist…someone ideally prepared for a world which does not
exist.’’106

 
  * Brahe (1546–1601) was a Danish astronomer and mathematician who lost part of his nose in
a duel with a mathematician (some accounts say they were arguing over a geometry
problem).


 
  † When Aunt Alice made her appearance as Coxeter’s guest at Baker’s tea party, she brought
her models and donated them to the department for permanent exhibit. As recently as 2003 they
could still be found there, in the office of Professor Raymond Lickorish, director of the Newton
Institute of Mathematics, displayed on his desk. Another set is on display at the University of
Groningen.

 
  ‡ As a Fellow he also could dine in Hall at High Table and eat the finer food; he could linger
after meals in Old Combination Room, sipping tea and coffee and aperitifs in well-worn leather
armchairs; and he could order a supply of wine for his private consumption and have it
delivered to his room (quantities of wine so supplied could not exceed two dozen bottles a
year); he had access to the library key, allowing him to enter and borrow books after
hours; and he was given a key that opened the gate to the Fellows’ Garden on the
outskirts of the college—its winding walking paths punctuated by the occasional bench for
thought.

 
  § A three-mirror kaleidoscope arranged slightly differently, with the mirrors joined end to end
forming a fenced-in triangle, generates an infinite tiling of the plane—images interlocking like the
tiling of a floor, and bouncing around endlessly.
  

 



 



  
3  Coming of Age at Princeton with the Gods of Symmetry

     
Symmetry, as wide or as narrow as you define its meaning, is one idea by which
man through the ages has tried to comprehend and create order, beauty and
perfection.

 
—HERMANN WEYL, SYMMETRY
 


Known as the ‘‘papa daddy’’1 of Princeton mathematics professors, Solomon Lefschetz visited
Cambridge in 1931, in search of suitable candidates for the illustrious Rockefeller research
fellowships. He met Coxeter and invited him to apply.2 As a Rockefeller Fellow, Coxeter stood to
benefit from a one-year research professorship at Princeton with a handsome monthly salary
of $150,3 a princely sum during the Great Depression, when the average American
family income fell to $1,300 annually and unemployment was at 25 percent.4 The
prospect no doubt pleased Coxeter immensely, and not for financial or self-gratifying
reasons. Rather, it surely appealed to his humanism. Established in 1913 by John D.
Rockefeller, and funded by the Rockefeller Foundation, the fellowships embodied a
grand philanthropic enterprise to promote ‘‘the well-being of mankind throughout the
world.’’5

 
  Critics argued that Rockefeller’s benefactions were set up as a shield against public censure,
considering the industrial fortune he had made in oil, steel, railroads, and banking. Still, this act
of kindness was undeniably far-reaching in its generosity. With an endowment of nearly
$250 million, the foundation made medical and public health education a priority at
home in the United States, as well as in Africa, India, the Middle East, and Latin
America.6

 
  The foundation’s reach expanded even further after the First World War. It strove for a grand
‘‘advance of knowledge’’ disseminated by international research professorships, intellectual
missionaries sent out to bring greater order and civility to society.7 Wickliffe Rose, the president
of the foundation’s International Education Board, made a high-minded declaration of his
mandate in a memorandum titled ‘‘Scheme for the Promotion of Education on an International
Scale:’’8


 
  This is an age of science. All important fields of activity from the breeding of bees to the
administration of an empire, call for an understanding of the spirit and technique of modern
science.…Science is the method of knowledge. It is the key to such dominion as man may ever
acquire over his physical environment. Appreciation of its spirit and technique, moreover,
determines the mental attitude of a people, affects the entire system of education, and carries
with it the shaping of a civilization …The nations that do not cultivate the sciences cannot hope
to hold their own …9

 
  There was nothing new about this liberal-minded venture: ‘‘It was at least as old as the
Greeks,’’ stated an historical account of the International Education Board. ‘‘Rose was driven to
it as a result of the disillusion of the world tragedy of 1914–1918, and the desperate need …of
some ingredient which would heal the dissensions of nations.’’10 Knowledge was that ingredient:
‘‘Knowledge is the unifying principle of civilized life—the centripetal force which holds it
together. Knowledge is the solvent in which boundaries can be dissolved and barriers
burned away. It is the common republic of mankind in which citizenship is denied
to no nation and no group. It is the avenue that leads to the ultimate unity of the
world.’’11

 
  Rose embarked on a five-month tour of Europe to evaluate the status quo, shadowing
scientists in their laboratories, inquiring about their problems and needs. The foundation
boasted that never before had a search for superior brains been prosecuted over so
wide and diverse an area, and many specimens of inherent brilliance and talent were
discovered. Several recipients of a Rockefeller Fellowship later received Nobel prizes, among
them Enrico Fermi, a physicist from Italy, and Germany’s Werner Heisenberg, the
author of the uncertainty principle. Two primary centers of mathematical scholarship
judged worthy of support were Göttingen University, in Germany—the home base of
Hilbert and his formalism12—and the Henri Poincaré Institute in Paris. The meeting of
Rockefeller trustees at which Rose presented his proposal for these institutions was recorded
in the minute books as a perfect snapshot of his earnest intentions: ‘‘[He] reported,
with the aid of elaborate charts and diagrams, not on mathematics at Göttingen or
Paris alone, but on mathematics in every leading institution around the world. He was
reporting on where man had arrived in his mathematical thinking, and where the
opportunities for progress seemed brightest.’’ Rose favored Göttingen and Paris because they
represented the peaks in mathematical science.13 Rose’s mantra: ‘‘Make the peaks
higher.’’14


 
  As he systematically surveyed ‘‘the mountain ranges of intellectual endeavor,’’15 Rose realized
that a parallel course had to be taken in America. American universities received
funds to bolster their resources in mathematics, physics, astronomy, chemistry, and
biology. And by the mid-1920s, the foundation decided that in addition to funding
American scholars abroad, it should also bring the ‘‘bright lights’’ over to study in
America. In this spirit, Coxeter took Lefschetz’s advice and applied for a fellowship. Upon
acceptance, he met with one complication. This was in the middle of his time as a fellow at
Trinity College. He hated to give that up, so by a special decree of the Trinity College
counsel, his fellowship was extended for an extra year to compensate for the year away.
Several other fellows later took advantage of this precedent and were said to be ‘‘doing a
Coxeter.’’16

 
  In August 1932, Coxeter chose to forgo a family holiday in Vienna, allowing him
to sail early for America and spend some time in New York before he was due at
Princeton. On the eve of his departure, his father pondered what Donald’s future might
hold: 

 

So Donald is off tomorrow after all…If only he could really fall in love—even a
hopeless passion would be better than none—to make him give himself away. I
had such a nice talk with Mrs. Stott—alone—about him. She is a fine woman,
and sees the danger of his becoming nothing but an intellectual, and also sees
in him the possibility of a fine soul as well as a fine intellect.17
 


  Donald’s transformation began as soon as he set foot aboard the RMS Aquitania,
abetted by his traveling companion, Frank O’Connor, a family friend who was a doctor
in New York (Harold thought his son was in good hands; O’Connor was ‘‘a man of
the world’’).18 To Donald’s astonishment, days on the ship were filled with play—a
horse-racing gambling game and dancing every night. The dancing made him feel inferior; he
didn’t know how to dance ‘‘American style.’’ To make matters worse for a stiff fellow
who could barely screw up courage to dance at all, on certain nights partners were
assigned by pure chance in a ‘‘Cinderella dance’’—women threw off a shoe and each man
danced with the girl whose slipper he grabbed. Coxeter was not quick enough to get
the one he wanted, but he did manage to draw the attention of one young lady. She
was curious about geometry and he obligingly taught her to draw a four-dimensional

polytope. She was also the center of attention among a crowd of rowdy young men.
In his first letter home, Coxeter signed off saying, ‘‘But that is as far as I have got,
and the voyage ends tomorrow, when I prepare to enter a whole continent of such
people.’’19

 
  The approach of the New York skyline was ‘‘just as in the flicks, except that now one no longer
had the sneaking suspicion that the skyscrapers were faked.’’ Almost immediately after landing,
owing to a misunderstanding entirely of his own fault, Coxeter became separated from O’Connor,
with whom he was staying. The Rockefeller representative sent to meet Coxeter sought him out
at all the speakeasies in the vicinity of the dock, clearly ignorant of the character he was looking
for.

 
  Coxeter experienced a good sampling of America before making his way to Princeton.
O’Connor introduced him to his secretary, and she and a friend took Coxeter up the Empire
State Building. ‘‘A fine view from the top,’’ he said in his second letter home. ‘‘A thunderstorm
approached, and came right over us, the cloud obscuring everything. After one great clap of
thunder the girls said they could feel the building swaying in the wind (it actually sways only 2
inches, so I expect in reality they were trembling).’’ The next day a rich patient of
O’Connor’s sent a chauffeur forty miles to fetch them for a visit to his Mount Kisco estate.
‘‘Swimming pool on the lawn; special dressing places with hot and cold water and a
telephone. Everything else on the same scale. (When he heard I was a vegetarian,
he got one of his six chauffeurs to take us in one of the six cars to see the vegetable
garden.)’’

 
  On August 31, Coxeter and O’Connor drove to New Hampshire to watch a total solar eclipse
(this, in fact, was the reason he wanted to be in America early, to catch the eclipse that Europe
would miss). ‘‘We selected an open hillside, ten miles in from ‘the belt of totality.’ At 4.25½ there
was no sun left but a tiny crescent…At 4.29½ we got a very good view of ‘Bailey’s beads.’ The
darkness over the earth was very impressive, and we saw the corona well. It was all over at 4.30,
and we hurried southward to get ahead of the crowds.’’ Back in New York, Coxeter recounted all
this and more—‘‘each day holding sufficient events for a month’’—in an eight-page letter
home, writing it ‘‘wearing nothing but a towel, Samoan fashion, on account of the
heat.’’20

 
  After a time, Coxeter set out for Princeton, an hour’s train ride southwest from New York City.
Before getting down to work, he bought a bicycle and explored the town. While descending a
grassy slope at considerable speed he was ‘‘pulled violently off my bicycle …by a man who
apologized profusely, declaring that he was ‘very drunk.’ ’’21 He also traveled back to New York

for a World Series baseball game between Babe Ruth’s New York Yankees and the Chicago Cubs,
and he attended his first football game, between Princeton and Amherst. Reflecting on these
American pastimes, he offered a caustic verdict: ‘‘I do not want to be bored by a repetition of
either.’’22
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  Princeton, by the early 1930s, was poised to overtake Göttingen as the mathematical center of
the world. In 1932, after the Nazis took power, Hitler purged German universities of all Jewish
academics, propelling many to America. Einstein arrived at Princeton in 1933. He called the
town ‘‘a wondrous little spot, a quaint ceremonious village of puny demigods on stilts.’’23 And
Einstein’s disciple, the Polish physicist Leopold Infeld, noted, ‘‘It is difficult to learn
anything about America in Princeton—much more so than to learn about England in
Cambridge.’’ Infeld observed that in the mathematics building, Fine Hall, ‘‘English is
spoken with so many different accents that the resultant mixture is termed ‘Fine Hall
English.’ ’’24 The architecture of the university, similarly, was an ‘‘amazing tutti-frutti of all
possible and impossible styles.’’ Mostly it was neo-Gothic, an amalgam of Cambridge and
Oxford, including an imitation (a grotesque one, Infeld thought) of Trinity’s Great
Gate.25

 
  Fine Hall, built in 1931, was the most decadent mathematics facility ever designed—and
designed deliberately so mathematicians would be loath to leave.26 The individual
working quarters were sanctuaries, more living rooms than offices, each well-appointed
with a big desk, plump upholstered chairs, oriental rugs, and a clothes closet. The
walls were paneled with dark oak, shipped from England at the cost of one-fifth of
the building’s budget, and select wall panels cleaved open like cupboards to reveal
hidden blackboards, inlaid both into the interior wall and the opening flaps. Even the
lead-paned windows were part of the design scheme—etched with mathematical formulae
and figures. The air, Infeld said, was suffused with mathematical ideas and formulae:
‘‘You have only to stretch out your hand, close it quickly and you feel that you have
caught mathematical air and that a few formulae are stuck to your palm …Even the
sun rays must remember, when passing through the windows, the law to which they
are subject according to the will of God, Newton, Einstein and Heisenberg.’’27 The
windows in the professors’ lounge (decorated by the famed New York architectural
firm McKim, Mead, and White, and overseen by a departmental wife) had Einstein’s
gravitational law and general relativity theory indelibly recorded on the glass, and one of the
studies refracted light through a stained glass emblem of the Platonic solids. To top

it all off, there were reading lights in the bathrooms—Fine Hall was in tune to the
unpredictable timing of inspiration—and an on-site shower and locker room allowed
mathematicians to return to their research, refreshed with adrenaline pumping, after
nipping out for a tennis match on the backyard courts. In the insouciant lyrics of
a faculty song, Fine Hall was a ‘‘country club for math, where you can even take a
bath.’’28

 
  Soon after Coxeter’s arrival at Princeton, he met with his recruiter, Professor Lefschetz, to
chart a course of study that outlined sufficient work to occupy about thirty hours each day.29
Loud and obstreperous, Lefschetz both awed and frightened graduate students. Russian-born and
trained as an engineer in France, he came to the United States at age twenty-one to find work. In
1907, he lost both hands in a transformer explosion at Westinghouse Electric Company, in
Pittsburgh, the tragedy pushing him into the more philosophical field of mathematics. He
obtained his doctorate, and ultimately landed at Princeton in 1924. He became known for his
profound geometrical intuition, in the algebraic hyper-dimensional tradition of the
Italian school. But Lefschetz’s area of specialty became topology—or ‘‘rubber sheet’’
geometry*—a modern genre of geometry that contained only select morsels of interest to
Coxeter.30

 
  Lefschetz could smell a theorem where many mathematicians wouldn’t even suspect one, but
seldom could he be bothered to work out the details of a proof; the running joke was that he
never wrote a correct proof nor stated an incorrect theorem.31 If something was clearly true, he
considered producing a proof just for the sake of verification to be a waste of time—when a
student proudly showed him a clever result for one of his theorems, Lefschetz barked back:
‘‘Don’t come to me with your pretty proofs. We don’t bother with that baby stuff around
here.’’32 In reality, however, proofs were necessary for publication, and Lefschetz wrangled his
grad students into finishing his work. And with his two hooks for hands, over which he
usually wore shiny black gloves reaching his elbows, he also depended on students for
practical matters—every morning a graduate student pushed a piece of chalk into his
glove and removed it at the end of the day. A film from his early days at Princeton
shows him giving a lecture, gesticulating wildly with his shiny-gloved appendages. The
faculty song composed about Lefschetz was a toast: ‘‘Here’s to Lefschetz, Solomon
L./Irrepressible as hell/When he’s at last beneath the sod/He’ll then begin to heckle
God.’’33


 
  Officially, as Coxeter’s Rockefeller personal record card stated, he had come to Princeton to
study with Oswald Veblen. But Veblen, another topologist, and Hilbert’s counterpart in America
seeking to modernize geometry, was not much more up Coxeter’s alley than Lefschetz. Coxeter
and Veblen discussed mathematics during long walks in the woods (as Veblen was known to
conduct his work). But on the whole, Veblen left Coxeter free to do his own thing. Informality
was the custom at Princeton. Mathematicians, especially visiting mathematicians on
research fellowships, conducted their business by sidling up to pertinent parties in the
common room, testing the waters for collaboration, and by drifting in and out of alluring
lectures.

 
  Coxeter attended Veblen’s lectures, during which Veblen posed an extended question: ‘‘What is
geometry?’’34 The shifting grounds of geometry in the early twentieth century had
made it a nebulous concept. Veblen focused his lectures for weeks on that question,
trying in vain to hit upon a satisfactory answer. The problem was that everything the
geometers came up with as a definition for the purview of their field could, semantically, be
twisted to include all of mathematics. In the end, Veblen settled on a deliberately and
amusingly vague definition. Geometry, he reckoned, was ‘‘that part of mathematics which a
sufficient number of people of acknowledged competence in the matter thought it
appropriate so to designate, guided both by their inclinations and intuitive feelings, and by
tradition.’’35

 
  Coxeter also attended lectures by the Hungarian mathematician John von Neumann, another
Rockefeller Fellow, who always wore a suit one size too small. Von Neumann was a
magician of a lecturer, able to take what was given and with mathematical sleight of hand
unveil logical conclusions with sweeping and illusive dexterity. He was so fast with his
delivery that students asked him questions for the sole purpose of slowing him down.
Von Neumann playfully engaged in an ongoing game with Swiss mathematician Henri
Frederic Bohnenblust (known as Boni), whereby either man tried to catch the other
working. The rules stated they could burst into one another’s office in Fine Hall at any
time without knocking, in an effort to catch their opponent in the act. If caught, the
loser doled out ten dollars. Von Neumann was never caught, since he did his work
late into the night, and spent the daylight hours apparently doing nothing (he was
thinking).36


 
  Coxeter also attended lectures by two mathematical physicists, Eugene Paul Wigner and
George Pólya,37 both Hungarians, and both at Princeton as Rockefeller Fellows (Wigner split his
fellowship with von Neumann, each taking half a year). Pólya considered himself more a
mathematician with a physicist’s inclinations. ‘‘I am not good enough for physics and I
am too good for philosophy,’’ he once said wryly. ‘‘Mathematics is in between.’’38
Coxeter’s encounters with Pólya and Wigner (he attended Wigner’s lecture on ‘‘how
to make a single crystal of copper as big as a human head’’) were facilitated by the
fact that Fine Hall was connected to the physics building, Palmer Laboratory, by a
second-floor corridor—an architectural detail nicely symbolic of the relations between
mathematics, queen of the sciences, in service by analogy and abstraction to the kingly
physics.39

 
  These encounters engaged Coxeter with the scientific applications of mathematics. He was a
pure mathematician at heart, studying and developing the art of mathematics for its own sake.
Pure mathematicians are propelled by the internal logic of mathematics as an abstract
and symbolic structure, rather than by any insights about the world. In contrast,
insights about the world propel applied mathematicians to orient their work toward
an immediate usefulness, in the physics, biology, sociology, or elsewhere. However,
these seemingly black-and-white realms are not, or at least seldom remain, entirely
isolated. Pure mathematics discovered and investigated in one era—and considered
in that era to have no practical value whatsoever—is often found, at a later date, to
hold startling and unexpected practical applications (this was the case with Coxeter’s
work, especially his Coxeter diagrams and Coxeter groups, which will be discussed
later).

 
  Coxeter was often praised as the purest of the pure, a mathematician who sequestered himself
in his study and reveled only in the pearls of the intellect. But a glance at his bibliography shows
otherwise—with papers, ‘‘On Wigner’s Problem of Reflected Light Signals in de Sitter
Space,’’ ‘‘The Space-Time Continuum,’’ and ‘‘Virus Macromolecules and Geodesic
Domes.’’40 He welcomed the chance to converse with applied mathematicians and scientists,
sometimes seeking them out with a spontaneous phone call in a flash of insight. He
delighted in exploring geometry’s appearances in the sciences, even if he wasn’t actively
engaged in uncovering these connections himself. Coxeter was not a pedantic purist
who strictly observed the barrier, and certainly not the hostility, between pure and
applied.41


 
  To that end, at Princeton Coxeter exposed himself to topics slightly beyond his ken. He went
to lectures on neutrons, on cosmic rays (with a Geiger counter exhibited so that the audience
could observe the rays coming in at about one per minute), on various kinds of expanding
universes, and on the primeval atom (created 1010 years ago), which, as he recounted in a
letter home, ‘‘while breaking up under a kind of super-radioactivity, emitted hard rays
analogous to the x-rays from radium, and these ‘birth cries of the universe,’ have gone
rushing around and round space ever since, to be observed today as ‘cosmic rays.’ ’’42
After a lecture by Governor Holt on emotion and arithmetic, Coxeter talked with him
about physicists and mystics. And he argued with Irving Robertson at supper about
telepathy.43

 
  In his residence at the Graduate College, Coxeter and his new acquaintances—‘‘all delightfully
at ease in the American manner’’—listened to President Franklin Roosevelt’s fireside chats on the
radio, outlining the details of his New Deal.44 They took turns reading poetry aloud—Edgar
Allan Poe’s ‘‘The Raven’’—until they were all almost asleep.45 Coxeter bragged in his continuous
flow of letters that he was entertained at grand dinner parties with distinguished professors and
their wives, much older than himself.46 And he noted in the postscript to one letter that his new
friends observed America had already made quite an impression on him; he appeared to
have matured noticeably since his arrival, and now actually looked his twenty-five
years.47

 
  Keen to fend off his parents’ concern that their only son was doomed to become ‘‘a fusty old
bachelor,’’48 Coxeter resolved to do two things while in America: to shun all Englishmen, and to
find a suitable woman to bring home to England and make his wife. He filed this progress report
to his father:

 
  I have met a really perfect girl—a fortnight ago, her first and my second time at the square
dancing class—very graceful, with straight black hair, good features and pale complexion. I
thought, ‘‘surely, she cannot still be unmarried, as she looks at least 22’’; but her beautiful hands
were ringless.

 
  The mere touch of those hands seemed unlike that of anyone else’s. The next time, a week
ago, I contrived to have her for my partner almost all the time, but it was impossible
to talk. Afterward, I asked who she is, and was merely told that she is one-quarter
squaw. At that I was enormously thrilled, and wove the most marvelous fantasies about
her. I thought I would begin by inviting her to the Faculty Dance. And then today
I learnt that her husband is assistant lecturer in geology. So you see fate has been
kind in every matter save the most important of all …I must relinquish all my lovely

fantasies, which culminated in a triumphant return to England with my bride and
the prospect of one-eighth Red-Indian children. (The shock was pretty bad, and I
consider myself very unfortunate: Burwell says 99.9% of American married women wear a
ring.)

 
  Would you say that if I am as keen as all that, her being already married ought to mean
nothing to me? I can only reply that her husband must be a better man than I, else she would
not have accepted him. And I think they are happy. I am writing this in bed in the middle of the
night. Being too bowled over to sleep, I get some comfort by relating this sorrowful story to you,
my dearest friend. Now I will try to find solace in [Felix] Klein’s ‘‘Lectures on the
Icosahedron.’’49
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  Resigned to leaving romantic matters in arrears, Coxeter had a productive year at Princeton,
his polytopes research proliferating to such an extent that Professor Lefschetz nicknamed
him Mr. Polytope—‘‘because I had long been specially interested in the figures which
[Lefschetz] insisted were simply ‘polyhedra’ in space of any number of dimensions.’’50
Coxeter understandably found this remark a tad dismissive, though Lefschetz’s was a
perfectly proper definition of polytopes. On the whole, Coxeter said in a letter to his
father polytopes are an ‘‘anathema’’51 in America. Coxeter was somewhat consoled
to receive a letter from a Cambridge compatriot, Gilbert de Beauregard Robinson,
who by then was at the University of Toronto. Robinson wrote inviting Coxeter to
deliver one or two lectures on polytopes at Toronto, an offer which Coxeter gamely
accepted.52 But on the whole, Coxeter was working upstream, against the flow of the more
fashionable areas of geometry, such as topology. The less trodden path, for him, was
more seductive, and, perchance, would lead toward unexpected and more rewarding
destinations.

 
  Coxeter pressed ahead with polytopes that year and made a breakthrough, indeed one of his
greatest career achievements, though the extent and range of his discovery would not be fully
realized for some years to come. Coxeter discovered what he at the time called ‘‘graphical
symbols’’53 for kaleidoscopes and the polytopes they generated.

 
  The kaleidoscopes Coxeter carried around at Cambridge—his custom-made contraptions of
mirrors and hinges—were the tools he used to investigate the symmetrical properties of polytopes
generated in up to three dimensions, with one mirror per dimension. Beyond three
dimensions it was impossible to physically construct kaleidoscopes. But mathematicians do
not dwell in three dimensions—not intellectually, anyway. They live in hypothetical n

dimensions, exploring patterns and polytopes that stretch to infinity. The physical
impossibility of building n-dimensional kaleidoscopes did not hold Coxeter back. The
challenge of gaining a glimpse of higher-dimensional shapes—and an understanding of their
symmetrical properties—turned in his mind, rotated and reflected, until he realized he could
simply devise another sort of contraption for climbing the dimensions. He discovered a
way of exploring n-dimensional kaleidoscopes with a different tool, a mental crutch,
formulated from imagination and ingenuity alone. This tool mimicked his physical
kaleidoscopes and took the shape of a simple symbolic diagram constructed with pencil and
paper. His graphical symbol became known as the Coxeter diagram. Once it caught on,
with the contagion of an indispensable high-tech gadget, it became widely used by
mathematician and scientists alike as they investigated symmetries—whether symmetries of
shapes, numbers, equations, or symmetries in the fabric of the universe and all its
contents.

 
  ‘‘A Coxeter diagram is a code,’’54 said Neil Sloane, a mathematician and telephony scientist at
the AT&T Shannon Lab, in New Jersey. (Sloane is best known for creating the On-Line
Encyclopedia of Integer Sequences; one sequence, discovered by Bernardo Recamán
Santos, contains a pattern of numbers so difficult to decipher that those who have tried
dubbed it ‘‘How to Recamán’s Life.’’) ‘‘A code is a way of converting data from one
format to another, encoding it in such a way that you’ve concealed information from
prying eyes or protected it against distortion, or you’ve taken out redundancy, or
just put it in a nice clean format. Certainly, Coxeter diagrams do that. They convey
information’’—about polytopes and their kaleidoscopes and the groups of symmetries they
generate—‘‘in a precise and elegant format. A Coxeter diagram is a good vocabulary for
talking about groups,’’ said Sloane. ‘‘In that sense, it’s a bit like Morse code. It’s a
language.’’55

 
  As it happens, the analogy between Morse code and Coxeter diagrams works on two levels.
Both codes convert essential information into a concise and visual short form. And
superficially, the basic components of Morse code, the dots and the dashes, are also the basic
components of a Coxeter diagram. In a Coxeter diagram, which imitates the physical
contraption of the kaleidoscope, each dot, or node, represents a mirror. This, for example,
is the Coxeter diagram for the kaleidoscope that generates an icosahedron in three
dimensions:
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  The numbers under the segments connecting the nodes indicate the angles at which the mirrors
meet. Here, 180° degrees divided by 3 = 60°, and 180° divided by 5 = 36°. In this
way, the numbers dictate what kind of kaleidoscope it is—tetrahedral, octahedral, or
icosahedral.

 
  Being a proponent of elegance and economy, Coxeter devised abbreviations to simplify his
diagram. For instance, when nodes are not joined, such as the nodes to the far left and far right
in the above diagram, their respective mirrors in reality meet at an angle of 90° (or in a manner
such that if they were joined by a line there would be a 2 beneath). For another abbreviation,
Coxeter decreed that when mirrors are joined at an angle of 60° —since they frequently are, such
as in the icosahedral kaleidoscope above—the number 3 should be left out; so when you come
across two dots joined by a line with no number beneath, you assume the angle between those
mirrors to be 60° . Thus, the proper Coxeter diagram for the icosahedral kaleidoscope
is:
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  Such abbreviations may seem needless, but in practice anything that can go unstated serves as
a simplification and increases a tool’s utility and efficiency, much the same way you might prefer
to use an Internet hookup with a minimum of connections and passwords to quickly access the
desired information. Coxeter, being a master of concision, wanted to make his diagrams as
spare as Shaker furniture, with a minimum of lines, nodes, and numbers cluttering the
design.

 
  Another indispensable feature of his diagrams was that they not only conveyed the kind of
kaleidoscope used for exploration, a Coxeter diagram also indicated what shapes could be
generated within. Following Wythoff’s method of positioning a prop—a blob or a stick—in the
kaleidoscope to generate the polytope, Coxeter added one more symbol to his diagrams. He
circled the appropriate node to indicate where the prop should be placed on the mirrors. So this
is the Coxeter diagram not for the icosahedral kaleidoscope (as above), but for the icosahedron
itself:
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  Likewise, the following Coxeter diagram indicates the dual of the icosahedron—the
dodecahedron—the only difference being that the prop is placed in a different position:
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  The dimensions can be easily increased, and hyper-dimensional polytopes easily investigated,
by simply adding nodes, or mirrors, to the diagram—one node per dimension. Here is the
Coxeter diagram symbolic of the icosahedron in four dimensions, also known as the
600-cell:
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  Icosahedra and dodecahedra do not exist in dimensions higher than four, which suited Coxeter
fine. ‘‘Four is my favorite dimension,’’ he once said. ‘‘The things that happen in four dimensions
are extra special and agreeable.’’56 To his eye, four dimensions produced the most exquisite
collection of regular polytopes. Coxeter probed up to 8 dimensions, but beyond that he left it to
other people.57 But even though Coxeter did not often ascend into these altitudinous domains,
he nonetheless enumerated all possible kaleidoscopes that produce polytopes continuing to
infinite, or n-dimensions. Coxeter diagrams are like a rope ladder by which mathematicians
climb, notch by notch, node by node, dimension by dimension, through the eternal exosphere of
infinity. (See appendix 3 for all the kaleidoscopes Coxeter enumerated, organized by
dimension.)

 
  Coxeter diagrams may appear rather quaint and arcane, even esoteric and useless explorations
into a very narrow corner of symmetry, but deceptively so. To mathematicians exploring the
symmetries and patterns of numbers, and scientists exploring the symmetries of the universe,
they became invaluable tools. Coxeter diagrams provide a quick summary of the symmetrical
properties being studied, exactly like shorthand. It is much easier to hold the whole message in
the mind’s eye—get the whole picture—about symmetries when they are laid out with a diagram,
rather than spreading the message through a disjointed list of algebraic identities and equations.
The group of symmetries produced by one set of mirrors, or generators, can be quite different
from those of another set, and the Coxeter diagrams help in the differentiation, providing an
identification tag that twigs a mathematician’s memory to the complete characterization of the
group.58

 
  Take for example an 8-dimensional polytope, which has 711,244,800 symmetries, 240 vertices,
6,720 edges, finishing with its 7-dimensional cells, namely 17,280 simplexes and 2,160
orthoplexes.59 The Coxeter diagram representing that polytope helpfully compresses such a
stream of data:
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  Gaining a glimmering of a polytope’s appearance in the intangible higher dimensions through
projection—projecting the shape like a shadow down to three or two dimensions—also efficiently
compresses the complexities. Here is a three-dimensional projection, a model, of the
four-dimensional icosahedron, the 600-cell, followed by a projection of the same polytope down to
two dimensions60:
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  Paul Donchian’s model of the four-dimensional icosahedron, or 600-cell, projected down to
three dimensions.
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  The 600-cell projected down to two dimensions, drawn by the German mathematician Salomon
van Oss, circa 1906.

 
  Clearly, Coxeter’s graphic representation of the 600-cell is trim by comparison:
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  ‘‘It is really remarkable,’’ said John Conway, ‘‘because you have a higher-dimensional and
tremendously symmetrical object and Coxeter’s way of conveying it is with this astonishingly
compact notation.’’61 Marjorie Senechal is similarly astonished at Coxeter’s pithy diagrams: ‘‘He
tugs us upward through the thickets and wickets of higher dimensions so deftly and delightfully
that we (almost) feel at home there.’’62

 
  As this invention took shape at Princeton, Coxeter delivered the inaugural lecture introducing
his graphical symbols. Lefschetz sniffed at his accomplishment: ‘‘It’s good to talk about trivial
things occasionally,’’63 he said. Little did Lefschetz know where these trivialities would take Mr.
Polytope. Unfazed and confident in the intrinsic value of his work, Coxeter produced a long
paper outlining his research results. Oddly enough, he left it with Lefschetz,64 a daring, or
foolish, choice for a shepherd. Coxeter hoped the paper could be published in the Princeton
journal Annals of Mathematics.

 
  His year at Princeton coming to a close, Coxeter planned to spend the next two years in
England, to complete his tenure at Trinity, and then reconsider his options. His friends at
Princeton organized a farewell pub crawl around town65 but tried to convince him to stay, on the
assumption that a job offer was sure to materialize. And, they pointed out, it was a pity to leave
just as Einstein arrived. ‘‘Not that I should really appreciate Einstein’s work,’’ Coxeter said in a
letter to Katie. ‘‘Veblen’s relativity reaches practically the same conclusions, in a more

geometrical manner.’’66 As if he’d heard the compliment, Veblen told Coxeter that he
had liked having him to an unusual extent and wished he was staying another year.
Coxeter felt inclined to reply, ‘‘If you had said that earlier, I might have arranged to
stay.’’67

 
  Little did Coxeter know, and never in his wildest dreams would he have guessed, that his
discoveries, his Coxeter diagrams and his enumeration of the symmetry groups of polytopes,
would three-quarters of a century hence make unexpected appearances in applications of the very
same work by Einstein that had left Coxeter so nonplussed—in string theory. Although Einstein’s
relativity may not have been sufficiently geometric for Coxeter’s liking, it was rooted in geometry
nonetheless—the revolution of non-Euclidean geometry. This was one of those times when a piece
of pure mathematics, dismissed in the moment as having no practical connection to the world
in which we live, later fell into the lap of the right person and came alive again in
application.
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  Before heading home, Coxeter cruised across America on a road trip with his father, stopping
at the Chicago’s World Fair. The theme was ‘‘A Century of Progress,’’ with exhibits featuring
‘‘Live Babies in Incubators,’’ ‘‘A House of the Future,’’ and the leggy fan dancer Sally Rand. A
Hall of Science exhibit caught Coxeter’s attention—as touted in a newspaper headline: PAUL S.
DONCHIAN OPENS DOOR TO A FAIRYLAND OF PURE SCIENCE, HIS WIRE AND
CARDBOARD MODELS EXPLAIN HIGHEST MATHEMATICS.68 Donchian, a
rug salesman and amateur geometric model maker69 from Hartford, Connecticut,
manned a display table covered by a gaggle of his wire polytope models, big ones the size
of beach balls, little ones bobbing alongside like ducklings after their mother.† The
subhead to the newspaper report, which appeared in Donchian’s hometown paper, the
Hartford Courant, chronicled how his appearance at the fair had ENTHRALLED
THOUSANDS—the models drew a gaping public that stood in befuddlement at the four- and
five-dimensional entities, and they drew ‘‘wizards of higher mathematics perking up their
ears’’—Coxeter was one of them and he and Donchian became fast friends. The father of
relativity showed up to take a look as well, but as the newspaper headline reported,
EINSTEIN WAS BARRED FROM EXHIBIT LEST CROWDS CRUSH BOTH HIM AND
MODELS. Being Einstein, he was granted a private viewing after the hall closed for the
day.70


 
  After the road trip, Coxeter returned to England, but his Princeton year lingered as the
happiest time of his life.71 Even the idyllic Cambridge did not seem so perfect by comparison.
When Princeton’s Annals of Mathematics published his kaleidoscopes paper—‘‘Discrete Groups
Generated by Reflections’’—Coxeter came down with a bout of nostalgia that even his tightly
calibrated rational disposition could not suppress. On the recommendation of a friend, the Indian
astrophysicist Subrahmanyan Chandrasekhar,72 a fellow at Trinity with whom he often dined at
High Table, Coxeter applied for and received an Eliza Procter fellowship, allowing his return to
Princeton.73
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  And so for the academic year of 1934–35, Coxeter found himself back across the pond, in time
to witness the unparalleled stir caused by Einstein’s presence; the gawking photographers hadn’t
lost interest even after his eminence had been about town for over a year. Reporters from
small-town newspapers and the New York Times camped out in the swath of evergreen forest in
front of Fine Hall, hoping to catch a glimpse of Einstein’s bouffant-haired silhouette in the
window of the professors’ lounge; or they loitered on his walking route, hoping to bump into him
sauntering to work, eating an ice-cream cone in his sloppy clothes and grubby tennis shoes (once
a dapper dresser, by the time he got to Princeton, Einstein was completely uninterested in his
appearance).74

 
  Coxeter’s second stint at Princeton was busier and headier than the first.‡ His Trinity coeval
Patrick Du Val came as a Rockefeller Fellow, the two of them basking in captivating discussions
with members of the newly formed Institute for Advanced Study.75 The institute did not yet
have a building of its own. It shared Fine Hall with the university’s math department, having the
effect that this year there was no plush office space for Coxeter. He worked from a carrel in the
mathematics library, which took up Fine Hall’s entire third floor and was open twenty-four hours
a day, every day of the year including Christmas. Coxeter’s working quarters in the library may
have been slightly second-rate, but the company he kept that year was out of this
world.

 
  By some accounts, Einstein made an effort to fit in with the Fine Hall culture. He played
ping-pong in the common room; he was uncoordinated and the ball often landed in his hair. He
attended at least some of the social events, such as the buffet luncheon held every few months,
catered with home cooking by the faculty wives. The dish prepared by Mrs. Einstein was ‘‘always
very exotic and something to be avoided.’’ Certain mathematicians were known to

huddle with dread as the luncheon began. They drew straws and the person with the
shortest was sent down the buffet table on a surveillance mission, giving the ‘‘high
sign’’ when he found the unsavory Einstein salad, and flagging it for those who came
after.76

 
  By other accounts, Einstein isolated himself at Princeton, perhaps fatigued by his fame. He had
moved on from relativity and was now laboring over his unified field theory, seeking to unite all
the laws of physics. But his initial discoveries still captured public and scholarly attention. In
particular, his relativity work rankled the mathematicians, providing fodder for gossip,
skepticism,§ and resentment—much more vehement opposition than Coxeter’s mild
disinterest. Being a physicist and not a mathematician, Einstein faced criticism because
he hadn’t thoroughly learned the mathematics he needed for his results. His friends
allegedly alerted him to some results they thought he should look at, including the
non-Euclidean geometry espoused by Germany’s Bernhard Riemann (1826–1866),77 which
subsequently produced his theories. This wasn’t uncommon. It would be an imposition for a
physicist to study mathematics intensively just to glean the crucial bits and pieces he
needed.78

 
  Nonetheless, mathematicians and mathematical physicists were disinclined to forget or forgive
that Einstein had achieved his work by thinking in physics rather than mathematics. One Fine
Hall mathematician suggested that Einstein’s general theory ‘‘made natural the surmise that all
physics might be looked at as a kind of extended geometry.’’ Veblen opined in a letter that,
‘‘though the great physicist used mathematics as a tool, [Einstein] probably could not have
discovered the general theory of relativity without the four-dimensional geometry earlier worked
out at Göttingen.’’ David Hilbert at Göttingen noted: ‘‘Every boy in the streets of our
mathematical Göttingen understands more about four-dimensional geometry than Einstein. Yet,
despite that, Einstein did the work, and not the mathematicians.’’ And speaking to an audience
of mathematicians, Hilbert remarked, ‘‘Do you know why Einstein said the most original
and profound things about space and time that have been said in our generation?
Because he had learned nothing about all the philosophy and mathematics of time and
space.’’79


 
  Einstein himself didn’t begrudge credit to mathematics and geometry. In 1921 he gave an
address, ‘‘Geometry and Experience,’’ to the Prussian Academy of Sciences. ‘‘We may in fact
regard geometry as the most ancient branch of physics,’’ he said. ‘‘Without it I would have been
unable to formulate the theory of relativity.’’80 And the next year, during a lecture in Kyoto, he
stated: ‘‘Describing the physical laws without reference to geometry is similar to describing our
thoughts without words.’’81

 
  [image: PIC]

 
  Einstein’s theories set our universe to a new score, orchestrating a booming crescendo between
symmetry and physics. Prior to the twentieth century, the laws of nature were believed to
operate like gears and pulleys. Physicists considered the concept of symmetry inconsequential, a
sideshow of pleasing eye candy; occasionally symmetry simplified a problem, but it certainly had
no fundamental role to play in the core dynamics of the physical world. Though Einstein isn’t
usually thought of in these terms, he cast symmetry as the underlying foundation of space and
time. A unique aspect of his thinking on special relativity was the assumption of a ‘‘symmetry
principle.’’82

 
  ‘‘Symmetry doesn’t so much control as it does describe or account for nature,’’ explained Leon
Lederman, Nobel laureate in physics, and director emeritus at Fermilab, in Illinois. ‘‘As we go
deeper, deeper into our understanding of the physical universe, even the biological universe, it
gets more complicated—seemingly, the equations get more complicated, the things you have to
describe are more varied. And you’d like some unifying principle. Then, out pops symmetry. I
give Einstein credit for introducing symmetry into modern physics. He did that with his special
theory of relativity—E = mc2. Wow! The big increase in knowledge is the statement that the laws
of physics apply to any system that you want; the laws are invariant to a change in the
velocity of the system—that’s relativity. And then it became very clear to even grubby
plumber-like experimental physicists—which is what I am—that symmetry in fact makes things
much more simple, that it is the overriding basis of the mathematics of physics, or
all sciences, that symmetry produces an elegance and a beauty to the description of
nature.’’83

 
  Another mathematician known for revolutionary work in symmetry was Emmy Noether, also
around and about on the Princeton campus during Coxeter’s second year there. An academic
refugee in one of Hitler’s early sweeps (being Jewish, and a woman), Noether accepted an
invitation to the all-women Bryn Mawr College, in Pennsylvania, arriving in 1934. She
made weekly trips to lecture at Princeton’s institute, and to visit her friends Einstein
and Hermann Weyl. She could be spotted walking up from the train station, always

wearing the same outfit: a shiny shapeless jumper that only accentuated her proportions,
being almost as big around as she was high. One day a mathematician standing in
the common room window of Fine Hall saw her approaching. ‘‘How can you tell a
penguin from Emmy Noether?’’ he asked. ‘‘A penguin doesn’t carry a briefcase.’’ (Weyl
gave a more flattering portrait of Noether, saying, ‘‘The graces did not preside at her
cradle.’’)84

 
  During her seminars, Noether stood at the blackboard with a wet sponge in hand, ready to
erase as she worked. Intellectually too impatient to wait for the water to dry, she wrote on the
blackboard when it was wet. This brought two unfortunate results: her chalkings initially were
invisible, emerging only upon drying; and then, once the writing had finally dried, it was nearly
impossible to erase. Her multitasking complicated matters further. She’d write something of
import below while erasing with her wet sponge above, producing a trickle of water
rolling, ominously, downward. She didn’t know quite what to do to stop the drop
of water that was threatening to destroy her work. So she blew on it to direct it off
course.85

 
  In 1915, Noether had made one of the most remarkable contributions to human knowledge in a
theorem pertaining to symmetry and derived from Einstein’s insights. Known as Noether’s
theorem, it states: For every symmetry in the laws of physics, there must exist a conservation law
(if there is symmetry, something is conserved).86

 
  On a metaphysical level there are symmetries with respect to time, as Einstein proved—if
scientists such as Lederman, in Illinois, and his friendly rivals at CERN, in Geneva, do the same
experiment, either years apart or separated only by nanoseconds, both parties will achieve results
governed by the exact same laws of physics, since those laws do not depend on any absolute time.
Similarly, there is symmetry in the law of conservation of energy—energy can neither be
created nor destroyed. ‘‘Why?’’ asked Lederman. ‘‘I don’t know. That’s the way nature
is.’’87

 
  Noether’s theorem was extraordinary due to its capacity to unite the mindset of physicists and
mathematicians, catalyzing their interaction.¶ Symmetry, studied in the confines of an
icosahedron’s corner, or in the widest frontier of the ever-expanding universe, is omnipotent and
omnipresent. And thus, it can be applied by analogy from Coxeter’s geometrical niche to Einstein
and Noether’s macroscopic expanses of physics. ‘‘All of mathematics is the study of

symmetry, or how to change a thing without really changing it,’’ Coxeter said in a 1972
radio documentary. ‘‘It is symmetry, then, in its various forms, which underlies the
orderliness, laws, and rationality of the universe, and thereby also the language of
mathematics.’’88

 
  Coxeter, studying the symmetries of polytopes—how they can be transformed and conserved in
appearance by reflections and rotations—had no purpose in mind for his work other than its
stunning aesthetics. And in the 1930s, his work not only lacked connection to the symmetries of
physics, but even such mathematicians as Lefschetz were unable to see the inherent value in his
pure mathematical pursuit—trivial topics like polytopes are fine for the occasional intellectual
romp, Lefschetz had said, pooh-poohing Coxeter’s lecture, a comment which stabbed the
geometer in the moment (enough to quote it in his diary), and surely echoed in his head.
Coxeter, it seemed, preoccupied himself with a rusty relic of classical geometry, a futile
endeavor as far as most modern mathematicians and scientists were concerned. Then
again, as is said of pure mathematics, if it is beautiful and elegant, if it is good and
profound, there is always the latent promise that it will open something up. Eventually,
almost inevitably—often inadvertently and unbeknownst to its inventor—a beautiful piece
of pure mathematics will fall into the pattern of crystallizing with an application in
science.
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  During his second stint at Princeton, Coxeter sat in on a few lectures where Einstein either
spoke or was present, but they had no concrete interaction.89 Coxeter’s most relevant
intersection with Einstein, therefore, was vicarious, through Hermann Weyl, known for his Weyl
gauge theory (Gauge theories are a class of physical theories rooted in the notion that symmetry
transformations can be executed locally as well as globally).

 
  Before coming to Princeton, Weyl and Einstein had collaborated on the concept of a unified
theory.90 Weyl’s earlier unification attempts had failed, and Einstein had put his finger on one of
the serious flaws. From then on, the unification plot consumed Einstein, who worked on
this problem for the rest of his life. ‘‘The physics community thought that he was
wasting his time,’’ recalled John Moffat, a physicist at the Perimeter Institute, in
Waterloo, Ontario, who corresponded with Einstein in the early 1950s. ‘‘But as usual,
Einstein was ahead of the game. Because he was doing something that subsequently
became one of the main activities of fundamental physics today—unified theory, or string
theory.’’91


 
  At Princeton, Weyl continued working with Einstein on the unification theory, but the
emphasis of Weyl’s work was elsewhere. Serendipitously, it was along the lines of what Coxeter
was doing, and Coxeter’s published paper on kaleidoscopic reflection groups caught Weyl’s
eye.92

 
  Weyl looked more the part of a proprietor of a German delicatessen than the world-renowned
mathematician that he was. By the estimation of some, he was the closest the twentieth century
had to a truly universal mathematician. He boasted a perspective that was both deep and broad,
spanning geometry, algebra, mathematical physics, topology, and analysis. His masterful results,
however, did not come easily. He had a harsh voice and, toiling in his study, he let out
groan after groan, his exasperation reverberating through Fine Hall. One colleague
said Weyl sounded like the perpetual recipient of the worst possible news. Another
colleague compared Weyl’s delivery of theorems to a woman giving birth to a child. Weyl’s
lecturing style also was unnerving, as his faculty verse attested: ‘‘Here we have a punning
Aryan/Who likes to make groups Unitarian/He is that most saintly German/The One, The
Great, The Holy Hermann.’’ Lefschetz invented the nickname Holy Hermann for Weyl
due to his ponderous way of lecturing with protracted sentences, stuffed with long
multi-syllabic words, and the verb as far toward the end of the sentence as was linguistically
possible.93

 
  Weyl delivered a course during the 1934–5 academic year called ‘‘The Structure and
Representation of Continuous Groups.’’ While Coxeter worked with a family of groups known as
discrete or finite groups, symmetry groups that were generated by discrete or finite objects such
as polyhedra, Weyl worked with the mysterious and amorphous family of continuous groups, such
as the infinite symmetries of the sphere. The sky, similarly, is continuously symmetrical as we
gaze into the well of outer space, and the Earth, rotating around its axis, with the Sun rising
in the east and setting in the west, gives us the same sense of continuous spherical
motion. Within the continuous groups there are five particularly ‘‘exceptional groups,’’
as they are called, whose character has been likened to Uranus and Pluto—in a way
these planets are familiar to us, but really they remain intractable to investigation and
unknowable.94

 
  Coxeter was a regular at Weyl’s series of seminars on continuous groups, and the unexpected
connections between their fields soon became apparent. Coxeter’s discrete symmetries, it turned
out, were special cases of the larger family of continuous symmetries, and thus informed,
by analogy, some of the more sporadic and exceptional infinite groups. One way to
think of it is that the infinite symmetries of a sphere’s continuous rotation are hard

to get a handle on; their unwieldy nature makes them overwhelming. But it is an
elementary fact of geometry that a rotation can be broken down into smaller parts, smaller
movements, or reflections—reflections upon reflections add up to a full-turn rotation. The
relevance of Coxeter’s work for Weyl, then, was that Weyl’s continuous groups now had a
skeleton, a basic underpinning framework, a root system, reducing their infinite and
intangible properties to abstract and more manageable finite pieces. Coxeter’s work—his
Coxeter diagrams and his enumeration of the finite reflection groups—were just the
tools Weyl needed. Weyl’s enigmatic infinite symmetries were rendered slightly less
amorphous and mysterious when treated with the Coxeterian tools. This amounted to a
tremendous simplification and is now part of the standard treatment of continuous
groups.95 ‘‘The overall classification of these symmetry groups is probably one of the most
important handful of ideas in human history in the last century,’’ said Ravi Vakil, a
younger-generation algebraic geometer at Stanford. ‘‘Because they underlie so much.’’96
Coxeter had hit upon a primordial and indispensable tool that permeates the field of
mathematics.

 
  Weyl, duly impressed, enlisted Coxeter to take the official notes for the seminars. And when
Weyl’s lessons reached the more general realm of ‘‘various topics in group theory,’’ he invited
Coxeter to present his research with discrete symmetries. Coxeter took over five of Weyl’s
seminars in total.97 After the course concluded, Weyl immortalized Coxeter’s contribution in the
official course notes,98 adding it as an appendix. This was a coup of exponential proportions for
Coxeter, both locally and globally. With Princeton’s reputation, the course notes were
mimeographed and distributed worldwide. International orders occupied two secretaries
who were occupied solely with the task of duplication and mailing. Reaching such
a captive audience raised Coxeter’s profile and catapulted him into an elite tier of
mathematicians.

 
  Over the following years, as Coxeter continued with his polytope opus, amassing, piece by
piece, chapters for his first book, Regular Polytopes, he consulted occasionally with Weyl. He
wanted to devote a number of pages to an idea of Weyl’s that added to the narrative on
polytopes. He wrote asking Weyl’s permission, and sent along the relevant chapters in rough
draft. ‘‘Of course you are welcome to use ‘my’ formula for the order of the special subgroup
of an infinite group generated by reflections,’’ Weyl wrote back. ‘‘Thank you very
much for your kindness in letting me see these two chapters of your book …I have
no criticisms to offer …But I look forward to reading the whole book when it comes
out.’’99
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  At the end of his second turn at Princeton, Coxeter again wasn’t hearing of any job offers,
either with the math department or the Institute for Advanced Study. Between the
Depression and the turmoil in Europe, such venerated figures as Weyl and Einstein
were available for the taking; no one but the brightest minds in the firmament had
prospects.100

 
  Coxeter’s only job opportunity in America came from Carmelita Hinton—the wife of Alicia
Boole Stott’s nephew, Sebastian Hinton. In 1935, Carmelita, a progressive educator and
reputedly a friend of Chairman Mao, was in the midst of establishing the Putney School, at Elm
Lea Farm, in Vermont—America’s first coeducational boarding school, which based its curriculum
on the ideas of farm work, academics, travel, and the arts (to this day the school observes this
tradition). Carmelita was a great believer in John Dewey’s philosophy of ‘‘learning by
doing.’’ She offered Coxeter a position on the teaching staff—she was trying to get ‘‘real
people’’ to teach and Coxeter, with his great gift for mathematics, as well as his talent
in music and love of the outdoors, was a perfect fit. Coxeter considered himself well
suited for the job, especially since while at Princeton he had taken on the task of
editing W. W. Rouse Ball’s Mathematical Recreations and Essays, a book full of good
teaching material. Coxeter, clearly delighted to be chosen as Ball’s successor, wrote to his
father: ‘‘Did I tell you that I have undertaken to edit …Rouse Ball’s Recreations and
Essays? It was Hardy who proposed me as the man to do it. I think it will be fun, and
familiarity with the sort of stuff that it contains cannot fail to be an advantage to a
teacher (if such I am to be).’’101 Charged by the prospect of ‘‘pioneer’’ work at a new
school, his first instinct was to jump at the chance, even going so far as to suggest
to his father that his eldest half sister, Joan, be sent overseas for a year at the new
school.102

 
  Coxeter’s mathematical peers, however, cautioned him against such a move, the strongest
warning coming from Oswald Veblen. His anti-teaching bias ran in the family. Veblen was the
nephew of the sardonic iconoclast and economist Thorstein Veblen, whose five-chapter
memorandum, ‘‘The Higher Learning in America,’’ argued that the whole American apparatus of
degrees and undergraduate teaching was a sham. In contrast to the goal of practicality, Thorstein
believed ‘‘the sole end of the truly inquiring mind should be irresponsible scholarship, idle
curiosity, and useless knowledge.’’103 In the same vein, Oswald Veblen bedeviled the Princeton
administration, urging visitors to the university, graduate students, and department professors
alike not to waste time doing any more teaching than they had to. Veblen stressed to Coxeter the

importance of having time to write down ideas during the brief creative years of one’s
life—‘‘of which one year is a considerable fraction.’’ And he cautioned Coxeter that
he would miss, more than he realized, ‘‘the companionship of mathematical minds.’’
The sanctum for research that Trinity provided was a precious thing. ‘‘I could have
created so much more,’’ Veblen said, ‘‘if time and energy had not been taken up with
teaching.’’104

 
  Coxeter finally lost his battle of indecision when the Trinity council refused to grant him an
additional leave of absence. He had written the bursar to test the lay of the land, financially and
otherwise, should he want to defer his fellowship another year. Coxeter was prepared to give up
one of two remaining years at Trinity, but he knew that to sever the connection entirely would be
damaging to his career. He turned down Carmelita Hinton’s offer—‘‘I don’t feel a bit happy about
it, and I hate having to confess this victory of reason over emotion. But everyone assures me I
will see the advantages of remaining in the academic world, as soon as the pangs of remorse have
softened.’’105

 
  He made the most of his remaining days at Princeton. His diary entry one day was, ‘‘Drawing
circles,’’ and on another, ‘‘Drew some more circles,’’ and on another, ‘‘Got up early to draw (4,6)
triangles.’’ He exclaimed, ‘‘I have overworked this week!’’—and stayed in bed the next day reading
W. Somerset Maugham’s Cakes and Ale.106 He made numerous jaunts into New York—for an
exhibit at the Metropolitan Museum of Art; for a magicians’ meeting; for the annual gathering of
the American Mathematical Society, after which Pat Du Val took him to see some burlesque.107
On June 14, 1935, Veblen told him that he was ‘‘the best-liked Englishman who has
come to Princeton,’’ and six weeks later Coxeter was once again on his way back to
England.108

 
  * Topologists study properties of shapes that are preserved when the shapes are deformed
through stretching, twisting, or compressing, though tearing is not permitted by the rules of
topology. A circle is topologically equivalent, with some stretching, to an ellipse; even a cube and
a sphere can be deformed into one another, and are thus are said to be ‘‘homeomorphic.’’ A
topological characteristic of polyhedra was discovered by Swiss mathematician Leonhard Euler
(1707–83), and is now known as the Euler characteristic of polyhedra, or Euler’s formula: for any
polyhedra, the number of its vertices (V ) minus its edges (E) plus its faces (F) equals two, or
V − E + F = 2.


 
  † As a result of Donchian’s distraction with his models, the family rug business
struggled financially; he had cultivated a serious hobby that evaporated weeks at a
time as he painstakingly constructed his elaborate wire sculptures. When a hurricane
hit New England, causing massive flooding, an apocryphal tale has it that Donchian
saved his models first, his children second, and his livelihood, his sopping wet rugs,
last.

 
  ‡ By one measure, as a Rockefeller Fellow he had been appointed treasurer of the Fine Hall tea
club and was charged with the task of ‘‘collecting one dollar from each of about forty unwilling
professors and students,’’ but this time around he was chairman of the tea club, since that duty
always went to the Procter Fellow.

 
  § Einstein had won the Nobel in 1921, but not for relativity, since it was still somewhat in
dispute; instead he received it for his 1905 essay on photoelectric effect.

 
  ¶ For this, Lederman praised Noether’s contribution to the skies: ‘‘Noether’s theorem
provides a natural centerpiece for any discussion that unifies physics and mathematics …in
a way that enlivens them both …The worlds inhabited by theoretical physicists and
mathematicians are often quite separate and independent. It is during the rare moments
when the two worlds converge that the bugles blow, the drums roll, and science moves
forward!’’
  

 



 



  
4  Love, Loss, And Ludwig Wittgenstein

     
For pairs of lips to kiss maybe Involves no trigonometry.

 
—Frederick Soddy, ‘‘The Kiss Precise’’
 


Back at Trinity, Coxeter unpacked and settled into his suite of rooms in Great Court. He
obediently explained his work to his father, showed Aunt Alice his ‘‘group pictures,’’ and dined in
the college hall with Pat Du Val, who ‘‘got drunk and tried to show how he could sing.’’1 And
then, out of the blue, a job offer arrived: an assistant professorship at the University of Toronto.
Coxeter’s visit there while at Princeton had been a vetting of sorts. ‘‘My lecture seems to have
been well liked,’’ Coxeter said of the job offer it brought.2 But he was not sure whether to
accept, and discussed his uncertainty with his father. When would he have to start? How
long would he have to stay? What minimum period would not seem too shabby to
them? Would he lose forever this last year of his Trinity Fellowship? Could he refuse
Toronto now and change his mind at a later date? What were his chances for a job in
England?3

 
  Coxeter had just been appointed a lecturer at Trinity, and his first few lectures received good
reviews from the college chairman, although Coxeter noted in his diary, ‘‘Palmer, my pupil,
showed that I know no geometry!’’4 A college lectureship was a lesser position than a university
appointment—not nearly the status of a professorship5—but, buoyed by this small success, Coxeter
refused the University of Toronto offer,6 much preferring to remain in England if he could find a
comparable position. His chances were slim since only one professorship was coming open in his
field—the Lowndean Chair of Astronomy and Geometry, at Cambridge, from which his PhD
advisor, Henry F. Baker, was due to retire. On January 8, 1936, he composed his letter of
application.7
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  While awaiting news of the Lowndean chair appointment, Coxeter kept himself preoccupied. He
took in a bad Laurel and Hardy film, and attended a lecture by Godfrey Hardy: ‘‘How to Write
and How Not to Write a Mathematical Paper.’’8 And he resumed his often ‘‘painful’’ discussions
with Austrian philosopher, Ludwig Wittgenstein then at Cambridge, who was among the
twentieth century’s most influential philosophers, alongside Bertrand Russell and Jean-Paul
Sartre.

 
  The reclusive Wittgenstein had taken a liking to Coxeter when he was a student, and
they kept in touch. ‘‘I had tea with Wittgenstein yesterday,’’ Coxeter recorded in
his diary. ‘‘He talked very interestingly about blindness and deafness, and why you
get seasick on a camel but not on a horse. He doesn’t seem any more abnormal than
before.’’9

 
  Coxeter had enrolled in Wittgenstein’s ‘‘Philosophy for Mathematicians’’ lecture for the 1933–4
year. To Wittgenstein’s horror, so did a total of forty students, far too many for the intimate
lecture he was willing to deliver. ‘‘There are too many of you,’’ the philosopher protested.
‘‘Will three or four please leave?’’ After only a few weeks, Wittgenstein informed his
still too numerous students that the class would continue no longer. He deigned to
lecture for only a chosen few. He would dictate his thoughts, and his select students
were instructed to copy the notes and distribute them to the rest of the class in what
became known as his Blue Books. The select group included Wittgenstein’s five favorite
students: Francis Skinner (a promising mathematics student who became Wittgenstein’s
constant companion, confidante, and collaborator); mathematician Louis Goodstein;
philosopher Margaret Masterman (a pioneer in the field of computational linguistics,
her beliefs about language processing by computers were ahead of their time and are
now fundamental to the field of artificial intelligence); philosopher Alice Ambrose (of
the analytic school, who also wrote papers on pi, mathematics, and the mind); and
Coxeter.10

 
  For Coxeter, Wittgenstein was largely unintelligible and intellectually precious. Wittgenstein
refused to lecture for the customary 50 minutes, but required 150 minutes, partly because he
needed an hour to warm up and partly due to his habit of stopping mid-sentence as
he worked through his next point internally. Coxeter timed a pause at more than
twenty minutes, after which Wittgenstein carried on where he left off, as if nothing
was amiss. On another occasion, Wittgenstein complained the lecture hall was too
formal. Coxeter offered the sitting room in his suite in Great Court, and Wittgenstein
agreed to the new location. Of one lecture, Coxeter noted: ‘‘Found Wittgenstein really

interesting for the first time (Locality of Thought),’’ but shortly thereafter he ceased
attending, judging his time better spent on his own mathematical research (nonetheless
Wittgenstein continued using Coxeter’s room).11 Coxeter later remarked of his Wittgenstein
excursion: ‘‘I couldn’t understand that kind of philosophy. I thought it was nonsense. It
didn’t appeal to me at all. The only thing I remember of his work is that his book
Tractatus-Logico-Philosophicus began in chapter one with the proposition, ‘The world is
everything that is the case,’ and ended in the final chapter with the proposition [and
the only sentence in that chapter], ‘Whereof one cannot speak, thereof one must be
silent.’ ’’12
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  Ludwig Wittgenstein
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  The Cambridge professorial elections were held on February 28, and disappointingly Coxeter
lost the Lowndean chair to William Hodge, winner of Cambridge’s Adams Prize. Never before
had the biannual Adams Prize competition, since its inception in 1848, been on a
geometrical topic. Usually it addressed natural philosophy or physics. The Adams question
this time called for an advance in existing geometrical theory.13 Coxeter’s groups
generated by reflections would have qualified (there is no record as to whether he made a
submission), but Hodge, backed by none other than Weyl and Lefschetz,14 won for work
developing the relationship between geometry, analysis, and topology—a contribution
described as ‘‘…one of the great landmarks in the history of science in the present
century.’’15

 
  Initially, Coxeter’s reaction was calm disappointment; he commiserated with his friend Patrick
Du Val, also an unsuccessful candidate (as was Eric H. Neville).16 By June, however, panic set
in, forcing Coxeter to reconsider the offer from Toronto. His father admitted that with the
change in circumstances, the balance seemed to favor that he go. ‘‘I see that it would add to your
prestige later on when a suitable position in England turns up,’’ said Harold. ‘‘I get the
sense that in some ways England is asleep or sitting on the top of a shaky pedestal.
But the whole world seems to be shaky too and without firm foundation …Probably
your mother will be very disappointed …but I do not think you should consider your
mother—still less us—in anything which vitally concerns your career.’’17 Coxeter discussed the
matter with Hardy and Littlewood, and a few days later Hardy concurred with a wire:
‘‘Reluctantly agree you better go this year.’’18 And after talking it through with Baker over
dinner, Coxeter made his final decision to go. ‘‘I could not have dissuaded you from

going to Toronto,’’ wrote Baker. ‘‘Many good men have begun away from England;
Europe seems now to be mad; and anyway, Toronto is an inspiring place.’’19 Coxeter
wired Samuel Beatty, head of Toronto’s mathematics department: ‘‘May I accept after
all?’’ Beatty’s response came in the affirmative and Coxeter was slated to start in the
fall.20
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  Squeezed into Coxeter’s busy schedule of research and teaching duties and preparations for the
move, were the emotionally fraught demands of his mother. All of a sudden Lucy seemed old and
slowing down, almost winding down on life. Her son took her shopping and dropped in for tea,
reading aloud from Oscar Wilde’s De Profundis while Lucy painted colored faces on an
icosahedron model.21 Still, she always wanted more of his time, and resented his legion of friends
and commitments that kept him away. Coxeter’s father had been visiting Lucy more regularly as
well. ‘‘I went to visit Lucy a few days ago and found her really ill,’’ Harold said in a letter to
Rosalie. ‘‘She has greatly altered recently and is much kinder and considerate …I should not be
surprised if she has not very long to live, and I think she feels this herself. Donald also
senses the same, I think, as Lucy says he has been sweeter to her than he has ever
been.’’22

 
  On a Saturday afternoon in March, during tea at a friend of his mother’s, Coxeter made the
chance acquaintance of ‘‘an attractive Dutch girl,’’23 Hendrina (Rien) Brouwer.* Her parents had
both died recently and, minimally educated, she came to England to find work as an au pair. She
had wide-set blue eyes and an entrancingly open and symmetrical face framed by fine
blond hair, always pulled back.24 Coxeter arranged their first date by post two days
beforehand:

 
     
Dear Miss Brouwer,

 
I will call for you at 10 o’clock. It takes about an hour to reach Cambridge.
Then we can look at colleges for a while, have lunch in my rooms, meet my
best friend Pat Du Val for tea, and drive to the station …I hope you will forgive
my not driving you back, but I shall have to stay in Cambridge for a few days
to finish off some work.25
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  Donald with his mother, Lucy, and father, Harold, at Much Hadham circa 1933.


 
  For their second date, they visited the Fitzwilliam Museum, the art museum at the
University of Cambridge, and afterward Donald gave Rien a demonstration of his
kaleidoscopes. And from there, the courtship proceeded at a clip. Coxeter’s father,
knowing his son’s track record, had no compunction about offering advice, sending this
missive:

 
     
May I be so rash as to say it might be worthwhile to be careful that Rien does
not fall for one or other of your friends or acquaintances or any other attractive
or attracted young man among the men at Cambridge while you are ‘‘getting
to know each other.’’ She will be susceptible in a new country, and a different
life, and springtime, and unless I am a bad judge, many of the said young men
would be susceptible also to her; or might feel less inclined to caution than
HSMC! Having said this much, I now say take no notice of what I have said,
but go your own way and make your own decisions for your own life.26
 


  Coxeter took notice. Less than a week later, on May 24, he proposed to Rien in a Cambridge
cemetery, recording in his diary, ‘‘R to supper. Asked her, and she did not say No.’’27 Rien also
documented the day, noting that they ‘‘chatted a long time’’ and that Donald asked ‘‘whether or
not I wanted to be his wife …It was like a dream. Is it really to become a reality?’’ Rien was
smitten. She thought Donald was a ‘‘darling,’’ and he provided the stable future she
sought—‘‘Yes, I have everything.’’28

 
  Donald’s father was ecstatic about the engagement and immediately gave his blessing.29 His
mother was ‘‘tiresomely hurt’’ that Harold and Katie received word of the engagement before she
did. ‘‘How easily misunderstandings arise and bitterness and jealousy and hurt pride is aroused,’’
Harold wrote to his son. ‘‘Don’t be too worried or depressed about Lucy,’’ he consoled. ‘‘She will
be all right. It is difficult for her to feel she is losing you, when in many ways you have taken my
place in her life. We have definitely decided that neither Katie nor the children will appear at
your wedding. Perhaps we could have a second celebration here after the wedding sometime …It
is a great joy to me to feel that you will have so loveable and suitable a wife and I
believe you will bless the day you met her. There will be much to discuss, but there is
time.’’30
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  Prior to the wedding Coxeter and his father planned a vacation in Norway for the entire
month of July, timed to coincide with the International Congress of Mathematicians in
Oslo. The close relationship between Donald and his father was more that of brothers,
though in preparation for the trip the domineering Harold told the full-grown Donald
what to pack and how to behave. ‘‘Take a nice pair of leather shoes with rubber soles
for walking. No sneakers please. And several tie pins and suspenders for your socks
…Don’t invite anyone else to tour with us, without my approval …What fun it will
be.’’31
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  Donald and his father on their trip to Scandinavia, shortly before Harold’s death,
1936.

 
  Landing at Oslo, they enjoyed two weeks of touring before the congress began—climbing
mountains, bathing in the snow and swimming in idyllic lakes, Coxeter driving through the hills
in their rented convertible and Harold, a freer and wilder spirit than his son, standing naked on
the passenger seat in the wind. Expeditions like these were old hat to Harold and
filled many family photo albums—pictures of men scaling iced mountainsides with
walking sticks and safety lines stringing the party together (a cigarette company financed
one trip; Harold was a chain-smoker and won the prize for the customer who sent in
the largest collection of emptied packages).32 Coxeter, on the other hand, wasn’t so
accustomed to the long days of trekking—‘‘very footsore,’’ he moaned in a letter to
Rien.33

 
  The conference started on July 14. Coxeter and a few Cambridge peers attended. One told
Coxeter he found himself sitting between two mathematical behemoths—‘‘I felt like a very small
hyphen.’’ Another confided that he sat through only a single session and then skipped
out to spend the rest of his time hiking and swimming in the mountains. Three days
into the conference, Coxeter ducked out to visit the National Gallery, for the second
time.34

 
  At the congress, Coxeter met Irish mathematician J. L. Synge (nephew of the playwright
J. M. Synge), who had founded the department of applied mathematics at the University of
Toronto. J. L. Synge became a lifelong friend, and he and Coxeter would correspond with each
other into old age. Synge made wide-ranging contributions to mathematics, in classical
mechanics, geometrical mechanics and geometrical optics, gas dynamics, hydrodynamics,
electrical networks, mathematical methods, differential geometry, though his main achievement
was to apply geometrical terms to Einstein’s theory of general relativity. He restated many

problems in simple geometrical language, applying this method to the stability of the
bicycle in a paper titled ‘‘Steering Gear,’’ and launched into elasticity with one on ‘‘The
Tightness of the Teeth, Considered as a Problem Concerning the Equilibrium of a Thin,
Incompressible Elastic Membrane.’’35 Synge also wrote a fantastical mathematical novel,
Kandelman’s Krim. Coxeter loved it and plundered its pages, excerpting twelve passages in
his book Introduction to Geometry, such as this one prefacing a section on rational
numbers:

 
     
‘‘The northern ocean is beautiful,’’ said the Orc, ‘‘and beautiful the delicate
intricacy of the snowflake before it melts and perishes, but such beauties are as
nothing to him who delights in numbers, spurning alike the wild irrationality
of life and the baffling complexity of nature’s laws.’’36
 


  The congress was that year distinguished as being the first time a Fields Medal was awarded,
and Synge had been instrumental in planning the award with another Toronto mathematician,
John Charles Fields. It was formally called the International Medal for Outstanding
Discoveries in Mathematics, though soon dubbed the Nobel Prize for Mathematics, since
Alfred Nobel had neglected the category of mathematics. A Swedish industrialist and
inventor of dynamite, Nobel has stipulated in his will that the interest from his $9
million endowment be used to establish prizes for inventions or discoveries of the utmost
practical benefit to humankind. Why mathematics was excluded is unknown, though a
long-circulating rumor at mathematics conferences suggests that Nobel was angry about the
attentions another mathematician had showered upon Nobel’s mistress, and this was his
revenge.37

 
  The honor of a Fields Medal recognized outstanding mathematical achievement of a
mathematician no older than forty: ‘‘…while it was in recognition of work already done, it was at
the same time intended to be an encouragement for further achievement on the part
of the recipients and a stimulus to renewed effort on the part of others.’’ Embossed
with the head of Archimedes, the gold medal also bore a dictum from the Roman
poet Manilius: ‘‘to rise beyond your understanding and make yourself master of the
universe.’’ In its inaugural year in Oslo, Fields medals were awarded to Lars Valerian
Ahlfors, of Harvard University, and Jesse Douglas, at the Massachusetts Institute of
Technology.38
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  Returning from Norway at the end of July, Coxeter faced the wedding and the move to a new
country and felt overpowered with things to do.39 He and Rien set their wedding date for the
first of September, mere days before they were due to leave for Toronto. Trinity College Chapel
was already booked, so they settled on the Round Church in the heart of Cambridge—the main
rotunda, fittingly, was a perfect circle.

 
  Then, on August 15, a wire from Katie brought tragic news. Having observed his mother’s
surrender to life, Donald was shocked to learn it was his father who had died.40 Harold had been
holidaying in a coast guard cottage at the seashore near Brighton. ‘‘I am managing to get the
whole family to bathe [swim] before breakfast every day so far, and 2 or 3 times during the
day,’’41 he wrote in his last letter to his son. Harold suffered a heart attack while teaching his
youngest two daughters to swim underwater in the shallows of the English Channel. The girls
noticed that he failed to surface and, by the time they fetched help, their father had
drowned.42

 
  The following days went by in a numb and telescoped rush: to the undertaker, to the inquest,
to the burial at Woking, and ‘‘in face of this terrible calamity,’’ as one friend said, ‘‘all your plans
have to be made anew.’’ Donald and Rien decided to marry early, to cut short the painful
waiting. Two days after the burial—‘‘two of the most ghastly days ever spent’’—they wed with only
a few family members present. Many of the intended wedding guests were surprised to open
Cambridge’s evening newspaper and see a photograph of Donald with his bride on
the porch of the Round Church, two weeks ahead of the date on their invitation.43
In the wedding photographs, Donald’s fists were clenched tight, knuckles white with
stress.

 
  Congratulations and condolences arrived in tandem. One friend said, ‘‘Fate is very cruel,
why had he to die—as you ask—when all the family was happy and content?’’ Another
commiserated: ‘‘Why Harold? I can hardly believe it yet but to you who were nearest the loss
must be doubly bitter in its reality …One’s philosophy falters when Death appears so
indiscriminate.’’44

 
  A wedding present in the form of a mathematical poem came from Thorold Gosset—‘‘The Kiss
Precise,’’ by Oxford’s Frederick Soddy, a Nobel laureate in chemistry. The poem revealed Soddy’s
formula for the relationship of the radii of four mutually tangent circles. ‘‘Although Professor
Soddy has put his discovery in such a frivolous form,’’ wrote Gosset, ‘‘it is really rather an
interesting geometrical proposition. He says it took him three years to work it out
…’’45
     

 

For pairs of lips to kiss maybe

 
Involves no trigonometry.

 
‘Tis not so when four circles kiss

 
Each one the other three.

 
To bring this off the four must be

 
As three in one or one in three.

 
If one in three, beyond, a doubt

 
Each gets three kisses from without.

 
If three in one, then is that one

 
Thrice kissed internally.

 
Four circles to the kissing come.

 
The smaller are the benter.

 
The bend is just the inverse of

 
The distance from the centre.

 
Though their intrigue left Euclid dumb

 
There’s now no need for rule of thumb.

 
Since zero bend’s a dead straight line

 
And concave bends have minus sign,

 
The sum of the squares of all four bends

 
Is half the square of their sum.

 
To spy out spherical affairs

 
An oscular surveyor

 
Might find the task laborious,

 
The sphere is much the gayer,

 
And now besides the pair of pairs
     

 
A fifth sphere in the kissing shares.

 
Yet, signs and zero as before,

 
For each to kiss the other four

 
The square of the sum of all five bends

 
Is thrice the sum of their squares.
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  Donald and Rien on the steps of the Round Church on their wedding day, Cambridge
1936.

 
  Also known as the ‘‘Kissing Circles Theorem,’’ it had been published by Soddy the
previous June in Nature magazine.46 Gosset closed his letter of congratulations with a
suggested addition, to describe the even more general case, ‘‘in N dimensions for N +
2 hyperspheres of the Nth dimension,’’ which he published in Nature the following
year. 

 

And let us not confine our cares

 
To simple circles, planes and spheres,

 
But rise to hyper flats and bends

 
Where kissing multiple appears,

 
In n-ic space the kissing pairs

 
Are hyperspheres, and Truth declares

 
That n plus two will osculate

 
Each with an n plus one fold mate

 
The square of the sum of all the bends

 
Is n times the sum of their squares.47
 


  Friends and family sent notes wishing Coxeter bon voyage, ‘‘not only for the Atlantic, but for
the wider sea of life.’’ He underscored a passage saying, ‘‘You must now be looking forward to the
future, a new life and new relations in a new world rather than to the past…’’48 From Aunt Alice,
Coxeter received an antique stained-glass Archimedean solid lampshade. Her condolences were

full of hope: ‘‘My dear! I don’t know how to write to you—words seem so futile beside so great a
separation! But indeed one can rejoice, for his sake, that it happened so …While I have been
writing my mind has gone back to the lovely world we have visited together, and which you have
made so much your own. I wonder where you will get to in it! How I wish I could
follow.’’49

 
  Coxeter said his good-byes ‘‘without sentimentality.’’50 His mother, as well as Katie and his
three half sisters, could not quite believe he was holding to his plan to leave.51 The newlyweds
set out for Canada on September 3, the trauma of the last weeks gradually sinking in. As Coxeter
noted in his diary, Rien ‘‘nearly lost her breath in the night,’’ which he found quite
disturbing in light of recent events. And he noted: ‘‘R told me I must stop mourning for
Harold.’’52

 
  * Their first conversation revealed, disappointingly, that Rien was of no relation to the Dutch
mathematician Luitzen Brouwer, who devoted much of his career to defending intuitionist and
visual mathematics, for which he considered logic only a helpmate, as discussed in his paper, ‘‘On
the Untrustworthiness of Logical Principles.’’
  

 



 



  
5  ‘‘Death To Triangles!’’

     
He who despises Euclidean Geometry is like a man who, returning from foreign
parts, disparages his home.

 
—H. G. Forder
 


     
Logic teaches us that on such and such a road we are sure of not meeting an
obstacle. It does not tell us which is the road that leads to the desired end. For
this, it is necessary to see the end from afar, and the faculty which teaches us
to see is intuition. Without it, the geometrician would be like a writer well up
in grammar but destitute of ideas.

 
—Henri Poincaré, Oeuvres
 


The Coxeters sailed into Quebec City, endured a long wait for the immigration inspector, and
then continued by train to Toronto,1 somewhat of a backwater in that day, second in status to
Montreal. By Toronto standards, this English couple were more cosmopolitan, avant garde, and
their arrival created a bit of a stir—they painted rather than wallpapered the interior of their
house, and wore stylish clothing.2 For the Coxeters, the weather took some getting used to.
The first winter was a shock—Donald constantly had colds (he assaulted them with
ascorbic acid and shoulder stands), and Rien began lobbying for a fur.3 But before long,
Coxeter was ensconced at the University of Toronto. He noted in his diary: ‘‘showed
mirrors at seminar’’ and ‘‘1/4 hour after my graduate lecture students were still taking
notes.’’4

 
  The job came with an annual salary of $1,500. Coxeter was a penny-pincher, need be or not,
writing on the overside of each page so as not to waste an iota of space (for this reason, no
working copies of his books survived). He recycled stamps left clean, complaining that
Canadian postage was absurdly expensive. And the couple saved on hot water bills by

sharing bathwater, Rien bathing first.5 They were the perfect picture of a ‘‘Jack Sprat’’
couple6—Rien, a lover of sweets, was forever trying to reduce, while Coxeter, skinny and
vegetarian, was still plagued by the duodenal troubles that had first beset him at
Trinity. The course of treatment prescribed by a Toronto doctor stipulated that he pump
his stomach at closely timed intervals after eating, leaving food in his stomach long
enough for nutrients to be absorbed but not long enough for it to reach his faulty
digestive tract7 (this continued on and off for ten years until Coxeter underwent a
gastorectomy).8

 
  Coxeter and Rien, the mathematician and the housewife, established a nice economy of
existence. Rien prepared their separate diets (she made a failed attempt at vegetarianism), with
mealtime scheduled like clockwork at eight, twelve, and six, the table set, the radio tuned to
the news. Coxeter always dressed for breakfast, even on weekends and holidays, and
always wore a tie (Rien insisted, finding his neck unattractive).9 All the workings of the
household were similarly calibrated to facilitate Coxeter’s profession. This dynamic
was etched in the mind of one of his early students, John Coleman, now professor
emeritus at Queen’s University, in Kingston, Ontario. He needed to consult with Coxeter
outside office hours, and telephoned his professor at home to make plans to drop by.
Rien greeted Coleman when he knocked: ‘‘WHAT—DO—YOU—WANT?’’ barked this
beautiful, blunt woman, her accent a thick Dutch-English. ‘‘She was like a bulldog at
the door,’’ remembered Coleman.10 Rien treated her husband as a precious object,
protecting his time and his space, optimizing the parameters of his life for a career of
mathematical productivity—early in 1937 he recorded in his diary: ‘‘I made myself
sick working on (3,3,5; 5).’’11 The only obstacle hindering Coxeter’s ambitions as a
classical geometer was bad timing; he set out on his research career exactly when this
antiquated field was firmly entrenched as passé. Coxeter’s kind of geometry was fun as a
hobby, but few mathematicians in their right-angled mind were staking careers on
it.

 
  [image: PIC]


 
  At the International Congress of Mathematicians in Paris in 1900, Hilbert, the father of
formalism, had delivered a rousing address at the Sorbonne in which he posed twenty-three
unsolved questions that he felt would shape mathematics in the coming century. He asked, ‘‘Who
of us would not be glad to lift the veil behind which the future lies hidden; to cast a glance at the
next advances of our science and at the secrets of its development during future centuries? …We
hear within ourselves the constant cry: There is the problem, seek the solution. You can find it
through pure thought.’’12

 
  Only three of Hilbert’s problems would have been even remotely tempting to Coxeter (and
there is no evidence he worked on any of them very much).13 Fewer and fewer questions were
being asked in classical geometry. And even if Coxeter had discovered a surprising new theorem
about Euclidean geometry—for example, Frank Morley’s 1899 ‘‘miracle’’ theorem that Coxeter
liked so much, trisecting the angles of a triangle (see appendix 5)—this would hardly garner him a
plum job at the likes of Princeton or Cambridge.14 With all the interesting questions in classical
geometry seemingly answered and its theorems discovered, mathematicians turned
elsewhere to fuel their ambitions, to churn out papers for publication and scurry up the
ranks of academia. ‘‘As long as a branch of science offers an abundance of problems,
so long is it alive,’’ Hilbert had said in his address—‘‘a lack of problems foreshadows
extinction.’’15

 
  By that measure, classical geometry, like an old-growth forest, was an endangered domain. And
in general, the pendulum of scientific methodology had swung far away from the intuitive visual
approach. ‘‘In the sciences in the last century and a half, the pictorial and the logical have stood
unstably perched, each forever suspended over the abyss of the other,’’16 observed Peter Galison,
professor of the history of science and physics at Harvard. ‘‘It goes back and forth, and not
in an accidental way,’’ Galison said. ‘‘Pushing hard on the visual methods ends up
pushing toward the anti-visual. Beliefs swing between an almost theological dogma
that images are stepping stones to higher knowledge, or that they are deceptive idols
that keep us from higher understanding …Ultimately we need both sides.’’17 For the
time being, however, geometry was subsumed and shrouded by the algebraization of
each and every branch of mathematics—shapes were expressed in terms of algebraic
equations.
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  A dramatic example of this shift was reflected in the widespread acceptance of Nicolas
Bourbaki’s approach to mathematics.18 Mathematical folklore allows it that Bourbaki, an enfant
terrible of French mathematics, first made his mark in the mid-1930s. Bourbaki was known to
frequent the Café Capoulade, in Paris, near the Luxembourg Gardens, where he worked on an
ambitious tome, an encyclopedia of all mathematics. He called his treatise Éleménts de
mathématique—the singular ‘‘mathematic’’ hinting at the unifying intentions (though it was
translated in English to Elements of Mathematics)19—and ultimately it was to include six
books, a few chapters of each book published every couple of years.* Bourbaki’s first
installment, chapter 1 of Book I, on set theory, was published in 1939. He wrote various
books of his treatise simultaneously, the next installment, published in 1940, being
chapters 1 and 2 of Book III, followed in 1942 by chapters 3 and 4 of Book II, and so
on.20

 
  In a retrospective on Bourbaki’s impact, a Scientific American article reported that this
mathematician had quickly attracted international attention. ‘‘His works are read and extensively
quoted all over the world. There are young men in Rio de Janeiro almost all of whose
mathematical education was obtained from his works, and there are famous mathematicians in
Berkeley and in Göttingen who think that his influence is pernicious,’’ wrote the mathematician
Paul R. Halmos. ‘‘He has emotional partisans and vociferous detractors wherever groups of
mathematicians congregate …The legends about him are many, and they are growing every day.
Almost every mathematician knows a few stories about him and is likely to have made up a
couple more.’’21

 
  But there was something odd about Bourbaki, something more than a little suspicious. The
great French professors, whose reputations were pegged to producing great students, were all in a
dither because none of them could claim this outstanding Bourbaki as their own. ‘‘Qui est ça
Bourbaki?’’ they muttered to themselves. The illusive Bourbaki accepted invitations to
conferences, agreed to give lectures, but then he never showed up, sending word that he was sick
or had missed his plane.22 As Halmos climactically concluded in the article: ‘‘The strangest thing
about him …is that he does not exist.’’23

 
  In reality, Bourbaki was a pseudonym for a secret society comprised of the crème de la crème
of French mathematicians.24 The founding members, or ‘‘prima donnas’’ as they’ve been called,
included Henri Cartan25 (son of Elie Cartan), Claude Chevalley, Jean Delsarte, Szolem
Mandelbrojt (uncle to Benoît Mandelbrot), René de Possel, and Jean Dieudonné. The brains of

the movement was André Weil, brother of the philosopher Simone Weil, who, by contrast,
considered algebra, as well as money and mechanism, a ‘‘monster of contemporary civilization’’;
she believed algebra in particular should be deemed ‘‘an error concerning the human
spirit.’’26

 
  Why the members chose Bourbaki as their nom de plume was cloaked in a number of running
jokes, perpetually recycled in the pages of mathematics journals. One story holds that the
surname referred to a French army officer in the Franco-Prussian War—General Charles Denis
Sauter Bourbaki—who fled from France to Switzerland with a small remnant of his army in
1871, was arrested and interned, then botched a suicide attempt, and lived to the
venerable age of eighty-three. A statue of General Bourbaki in Nancy, France, establishes a
connection with the mathematicians who appropriated his name, since several were
young faculty at the University of Nancy.27 A second ancestral line dates to the 1920s,
when André Weil, then a student at the École Normale Supérieure, was exposed to
an initiation of sorts, a guest lecture by a distinguished visitor name Bourbaki. At
the end of class students realized that their visitor was in fact a senior student in
disguise—with a beard and a fake foreign accent—and that his lecture was a scripted piece of
mathematical double-talk, devolving into ‘‘sheer nonsense’’ which included a ‘‘theorem of
Bourbaki.’’28
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  Cartoon from Scientific American, May 1957, representing Bourbaki as a ‘‘milling throng of
French mathematicians.’’

 
  In 1980, The Mathematical Intelligencer published perhaps the most fabulous musing on
Bourbaki’s origins. The article translated a story by Frenchman Octave Mirbeau, an anarchist
and art and literature critic who promoted the careers of August Rodin and Claude Monet. In
Mirbeau’s story, ‘‘Journal d’une Femme du Chambre,’’ the character of one Captain Mauger
takes Celestine, his neighbor’s chambermaid, for a tour of his garden. Celestine narrates,
reflecting on her outing:

 
     
The Captain recounted to me how, last week, he caught a hedgehog under a
woodpile. He is training it…He calls it Bourbaki…What an idea! …An intelligent
animal, a joker, extraordinary, which eats everything!
     

 
‘‘My  word,  yes!’’  the  Captain  exclaimed,  ‘‘In  a  single  day  this  confounded
hedgehog ate a beefsteak, a mutton stew, some salted bacon, gruyere cheese, jam
…he’s marvelous …there’s no restraining him …he’s like me …he eats everything!’’
 


  This tale was an apt metaphor for the mathematician Bourbaki—‘‘Nicolas has pledged to
produce a comprehensive treatise of modern mathematics; the staggering scope of his enterprise
makes plain his kinship to Captain Mauger’s omnivorous pet.’’29

 
  Bourbaki, the group—some members of the collective to this day hold to the conceit and refer to
Bourbaki in the third person singular30—advocated a unified restructuring of mathematics into
an architecture of ‘‘mother-structures.’’31 The Bourbaki style epitomized the dry and formalist
trend, algebraic and axiomatic, and in this respect Bourbaki members considered themselves
Hilbert’s heir.32 The Bourbaki method, as the Scientific American article reported, was based on
a dogmatic belief in the right order for learning, a gratuitously invented terminology, and an
economical organization of ideas that was ‘‘so bent on saying everything that it leaves
nothing to the imagination and has, consequently, a watery, lukewarm effect.’’33 In an
omen of Bourbaki’s insulting impenetrability (for some mathematicians, at least),
the first publication was armed with a users’ manual in the form of ‘‘Instructions to
Readers.’’

 
  Building on the Elements treatise, with new chapters published periodically, the Bourbakists
became notorious among a certain set of mathematicians for being anti-geometry. Mythology
held that ‘‘Down with Euclid! Death to Triangles!’’ was the Bourbaki battle cry.34 Geometry was
slighted predominantly by the conspicuous absence of pictures or diagrams in the Bourbaki
publication. This was perhaps the most distinctive characteristic of the Bourbaki method
(and the most offensive characteristic, to Coxeter and like-minded mathematicians)35:
it banned the use of diagrams in mathematics. The only exception was a symbol, a
backward S-curve printed in the margin to caution readers, like a traffic sign on a
treacherous mountain road, when a slippery or ‘‘dangerous turn’’ in the argument was
ahead.36

 
  ‘‘Bourbaki made a point of no pictures,’’ said Pierre Cartier, a retired second-generation
Bourbaki member (all members must retire at age fifty37), now director emeritus of the Institut
des Hautes Études Scientifique, in France. ‘‘Rather, it was based on pure logical reasoning, as
little visual insight as possible. Visual insight was considered a concession to human
weakness.’’38
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  The impetus behind both the invention of Bourbaki in the first place, and Bourbaki’s distrust
of diagrams, can be traced to the First World War. ‘‘[T]his war, we can very well say, was
extremely tragic for the French mathematicians,’’ recounted Dieudonné, the Bourbaki scribe. ‘‘In
the great conflict of 1914–1918, the German and French governments did not see things in the
same way where science was concerned. The Germans put their scholars to work, to raise the
potential of the army by their discoveries and by the improvement of inventions or processes,
which in turn served to augment the German fighting power. The French …felt that everybody
should go to the front …This showed a spirit of democracy and patriotism that we can
only respect, but the result was a dreadful hecatomb of young French scientists.’’ This
had dire repercussions for French mathematics. After the war there was a dearth of
young talent. While the older mathematicians who had made Paris an international
center were still alive (being too old to serve), they knew only the mathematics of
their youth. The teaching at École Normale stagnated. There were no liaisons with
cutting-edge mathematics in the international community. Bourbaki was born as a means of
reinvigorating the teaching of mathematics in France and reestablishing its world-class
standing.39

 
  As for the anti-visual bent, Bourbakists’ opposition to figures had the noblest of intentions.
They didn’t consider figures evil, nor did they target triangles with an irrational vendetta.
Rather, in seeking mathematical truth, they rationally distrusted the subjective visual sense, and
thus felt it should not be employed; the Platonic intellectual powers were trustworthier for
penetrating the perfect and pure world of mathematical forms. The Bourbakis invoked, in
religious terms, the ‘‘third eye of the soul’’ to compensate for the fallibility of the two physical
eyes.40

 
  The move away from the hegemony of the eye was a far-reaching trend in early-twentieth-century
France. One thesis holds that it was instigated in part by the First World War and the failure of
sight to protect soldiers. The extreme conditions of trench warfare created ‘‘a bewildering
landscape of indistinguishable, shadowy shapes, illuminated by lighting flashes of blinding
intensity, and then obscured by phantasmagoric, often gas-induced haze …When all that the
soldier could see was the sky above and the mud below, the traditional reliance on visual
evidence for survival could no longer be easily maintained.’’41

 
  The anti-visual trend was also a reaction against France’s long-standing ‘‘hypertrophia of the
eye.’’ The eye had grown into an enlarged organ with swollen importance. Louis XIV’s Versailles
demonstrated this fetish for visual appearance, as did the camera, early cinema, and
Paris as a city of spectacle and light—its image of parade, phantasmagoria, dream,

dumbshow, mirage and masquerade, all ‘‘metaphors of visual untruth.’’ Unlike Germany,
where music rose in importance, and England, where words dominated, in France
visual appearance remained paramount for an extended period, reaching its peak in the
late nineteenth century, when decoration, decadence, artifice, and art nouveau42 held
sway.43

 
  Reacting against this state of affairs, French intellectuals from a broad spectrum of disciplines
suffered a loss of confidence in the eye and abandoned the value of visual evidence.44
Bourbaki was part of this phenomenon. Visual reasoning in mathematics and science was
supplanted by the power of equations and abstract methods to conceptualize and
explain reality, delivering a hard blow to the classical, and very visual, tradition of
geometry.

 
  According to Imre Toth, a Hungarian philosopher of mathematics and emeritus professor at the
International College of Philosophy in Paris, ‘‘Bourbaki was an enemy of everything that is
geometry.’’ Coxeter, by contrast, stood strong. He was the rock, the stone, which the Bourbakis
could not destroy. ‘‘He remained a geometer and represented a high fidelity to geometry,’’
said Toth. ‘‘He was the preserver of the classical geometrical spirit; Coxeter was the
citadel of geometry, the unconquerable fortress of geometry, against this huge deluge of
Bourbaki.’’45

 
  Pitting Coxeter against Bourbaki is suspect for some, since Coxeter and the Bourbakis never so
much as shot derisive glances at each other across conference halls—that was not Coxeter’s
style.46 The relevance of making opponents out of Coxeter and Bourbaki is that the two
embodied vastly different approaches to geometry as practiced in the last century, a period
during which classical geometry was in desperate straits.
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  Bucking the anti-visual Bourbaki movement, Coxeter, who had begun spinning his polytope
opus at Cambridge and Princeton, stoically continued with this pursuit at the University of
Toronto.

 
  His polytopes made their way into his updated version of W. W. Rouse Ball’s book
Mathematical Recreations and Essays. In February 1939, the page proofs of the final manuscript
arrived, shortly after the birth of Coxeter’s first child, Edgar (his daughter, Susan, was born two
years later in 1941). He read the proofs while taking breaks from painting the nursery yellow, and
he marked a common baby milestone in his diary with an extra geometric dimension of
enthusiasm: ‘‘E succeeded in rolling over 93 degrees onto his tummy.’’47 Coxeter’s revised edition
came out later that year.


 
  This classic book was as much about magic as it was about math—the mind-bending trickery of
math, the games and mystery, with no application but fun. Among the first items in the table of
contents was ‘‘To find a number selected by someone.’’ There was a section on mazes, their
history and rules for traversing.48 In Ball’s edition there had been an entire chapter on string
figures, which Coxeter deleted. Putting his subtle stamp on the book, he also deleted the pages
on ‘‘Mechanical Recreations’’ to make room for a new chapter on—what else?—‘‘Polyhedra.’’
Therein, in the subsection on ‘‘Ball-piling and Close-packing,’’ he gave a solution to the
problem of the sand on the seashore and why it gets dry around your foot and wet
underneath:

 
     
If you stand on wet sand, near the seashore, it is very noticeable that the sand
gets comparatively dry around your feet, whereas the footprints that you leave
contain free water …The grains of sand, rolled into approximately spherical
shape by the motion of the sea, have been deposited in something like random
piling. The pressure of your feet disturbs this piling, increasing the interstices
between the grains. Water is sucked in from around about, to fill up these
enlarged interstices. When you remove your feet, the random piling is partially
restored, and the water is left above.49
 


  As a testament to the book’s appeal, it went through eight reprints in the following three
decades, and elicited the letter to Coxeter from an aspiring John Conway.

 
  In addition to these recreational polytopal preoccupations, Coxeter ramped up his rate of
publication in scholarly mathematics journals, producing articles with an evocative litany of
titles: ‘‘Regular Skew Polyhedra in Three and Four Dimensions and Their Topological
Analogues’’; ‘‘An Easy Method for Constructing Polyhedral Group-Pictures’’; ‘‘The Regular
Sponges, or Skew Polyhedra’’; ‘‘Regular and Semi-regular Polytopes’’; ‘‘The Polytope 221, whose
27 Vertices Correspond to the Lines on the General Cubic Surface’’; ‘‘The Nine Regular Solids’’;
‘‘The Product of Three Reflections’’; ‘‘A Problem of Collinear Points’’; ‘‘Quaternions and
Reflections.’’50 His papers attracted attention for their beauty, not only in terms of their
mathematical content, but also their stylistic merit. Coxeter had an eye for detail and paid close
attention to how he marshaled his facts, presenting his argument in the most orderly, logical, and
eloquent manner.† He crafted flowing segues from one point to the next and carefully

constructed an overall symmetry throughout his arguments, nicely tying-off all the
references.51 Coxeter routinely wrote papers displaying such mastery. John Conway once tried
to match the feat of a Coxeterian-caliber paper and found it required headaching
effort.52

 
  As Coxeter refined his research, at once expanding and focusing its scope, he parsed the
properties of polytopes in hope of finding something new. Coxeter worked with his polytopes the
way a sculptor approaches yet another block of marble. As Coxeter’s student, the CBC
broadcaster Lister Sinclair likened: ‘‘When he got a new block of marble, Michelangelo stared at
it, listened to it, touched it, and softly walked ‘round and around it. He was asking Pandora’s
block, ‘Who’s there? Who’s in there?’ Only then would Michelangelo begin to let the unseen
prisoner loose. I’ve actually watched that happen many times. I’ve seen a great artist pace ‘round
and around a block of new material asking, ‘Who’s there? Who’s in there?’ That great artist is
Donald Coxeter.’’53

 
  Day to day, pencil and paper always at hand, Coxeter sifted and resifted one polytope and then
another through his mind. He looked for interconnections, extrapolations, hybrids, and analogies,
these subtleties accumulating and leading toward discoveries that sometimes came
to naught—as he noted in his diary one day: ‘‘I considered possible new polytopes
(useless idea).’’54 He kept Aunt Alice apprised of his work by letter, until her death in
1940.

 
  Coxeter developed another fruitful collaboration with Gilbert de Beauregard Robinson, a
colleague at the University of Toronto, who suggested an extremely rich rethinking of the
interactions between polytopes and group theory, the algebraic study of symmetry.55 This link
between Coxeter’s elementary Euclidean polytopes and the more modern algebraic geometry was
tantamount to striking gold. The hybrid attracted the attention of highbrow academics, those
who might otherwise have viewed Coxeter’s classical inclinations with dismissive disdain. His
work in this area was top-rate, eliciting invitations to speak at all the best universities, leading
Coxeter to nurture the beginnings of a loyal fan base that would come to circle the
globe.56
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  Benoit Mandelbrot was one such fan. In 1947, Mandelbrot was at Caltech as a graduate
student when Coxeter visited to give a lecture. ‘‘He was a great reassurance,’’ recalled
Mandelbrot, professor emeritus at Yale and fellow emeritus at IBM.57 Mandelbrot had begun his
university education in Paris when Bourbaki began imposing its influence. ‘‘Bourbaki had a very
destructive aspect which they deny today,’’ he said. ‘‘They say it was benign, but I can testify it
was not.’’58

 
  Mandelbrot’s boyhood education had been put in the hands of his uncle, Szolem Mandelbrojt,
a professor of mathematics at the Collège de France and a founding member of Bourbaki.
Nephew and uncle, however, had opposing tastes in mathematics. The young Mandelbrot called
himself a geometer; he had a special gift for shapes and did geometry in his head. His uncle,
an analyst, also had a visual gift, but he kept geometry for Sundays and vacations;
geometry, his uncle told him, was exhausted, and one must outgrow it in order to make a
genuine scholarly contribution. If he pursued geometry, young Mandelbrot faced ruin and
unemployment.59

 
  In 1945, after a splendid performance in mathematics on the Grande Écoles entrance
exams—Mandelbrot credited some cheating with his photographic memory of an ‘‘army of
shapes’’ that allowed him to find a geometric counterpart for any analytic problem—he
decided to attend the École Normale Supérieure, but with the intention of avoiding
his uncle’s type of mathematics. Mandelbrot soon ascertained he had no alternative
but to follow Bourbaki. ‘‘[T]hey were a militant bunch, with strong biases against
geometry and against every science, and ready to scorn and even to humiliate those who
did not follow their lead,’’ he once recalled. ‘‘It was presented to us students as the
best there was. And if we didn’t like it, we were advised to move out of math.’’60
Mandelbrot was disheartened and after only a few days he moved to a different school.
Eventually he drifted out of mathematics, dabbling in economics, engineering, physics, and
physiology. Intermittently, geometry coaxed him back, as when he encountered Coxeter at
Caltech.61

 
  ‘‘He was viewed as a throwback,’’ said Mandelbrot, remembering Coxeter in that day. ‘‘He was
a bit marginal. He could not have been a professor at Princeton or Harvard, but he was at
Toronto, which was very good but not quite so central. I remember feeling the strength of his
style. The enjoyment Coxeter always had handling shapes, models, and letting models help him
dream, is something I find very attractive and very important—the spirit of loving
shapes and the role of the eye and the hand, that’s what I found so marvelous in
Coxeter.’’


 
  ‘‘Most people are not strong enough to have a well-defined personal style,’’ Mandelbrot said.
‘‘They would bend according to fashion or circumstances and he clearly did not bend. He kept
with his classical tradition of geometry, which had been totally flattened—pulverized would be
even closer—by Bourbaki. To learn mathematics without pictures is criminal, a ridiculous
enterprise.’’62
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  Coxeter’s unlikely success, flouting the mathematical fates, did not occur by happenstance. He
was diligent, doggedly hanging on to his polytopes, and dodging distractions that threatened to
lure him away.63 His wife pushed him to take on departmental duties, hoping he might one day
become head of the math department, but Coxeter had no interest. He was well aware that the
nuisance of administrative commitments would only keep him from his mathematical
objectives.64

 
  Coxeter willingly gave his time as founding editor in chief of the Canadian Journal of
Mathematics the late 1940s, continuing in the position for nine years. That sort of extracurricular
activity he considered worthwhile because it provided an ongoing and cutting-edge education.
And he maintained a voluminous correspondence with all ranks of mathematicians who, more
and more as the years passed and the ingenuity and delights of his work spread, wrote to him
from around the world.65

 
  Time consumed by teaching he also considered well spent—classrooms being full of
fresh incubating minds. Coxeter began each class by asking for questions from the
floor. When they were answered he seamlessly segued into his lecture, so smoothly
that the last question seemed to have been carefully planted. The exception to this
contemporaneous style was when Coxeter planned his lectures around books in progress. He came
to class with a manuscript and spread piles of pages on tables in front of him. He
gave the manuscript a test run over the course of the term, fielding questions and
comments from students. Occasionally he profited when his students produced ideas or
solutions to problems that he hadn’t thought of himself—he would interrupt the class,
run over to the manuscript, and make a note at the edge of the page. And of course,
students’ contributions were credited in the published text. His mathematical ambitions
were almost selfless. In preserving and bolstering the oeuvre of the classical tradition,
Coxeter’s primary interest was the progress of knowledge and encouraging younger
generations.66


 
  Coxeter, for the most part, was the master of his domain—he was unimpeachable. He had a
remarkable geometric eye, and his powers of intuition were hard to match. ‘‘Donald would look
at a picture,’’ said Barry Monson, one of Coxeter’s PhD students, ‘‘of the tiling of a
two-dimensional plane—think simply of square tiles on the floor, going out forever and ever and
ever. Donald would look at that sort of thing and say, ‘Well, it is quite clear that if we magically
jump from one tile to another a considerable distance away, then along the route we must pass
over the intermediary tiles in such and such a fashion.’ This is all fine and easily visualized,’’ said
Monson. ‘‘Nevertheless there are some statements in there that one can, and perhaps even
should, prove quite rigorously, in part because Donald would make such statements not only
about the ordinary Euclidean space we live in, but he would go on to say it is obvious that
exactly the same thing must happen in non-Euclidean space, and then by further
extension, in higher dimensional spaces. Most of us can’t readily visualize these things. We
need to rely on algebraic arguments to bolster what our intuition tells us. But Donald
would not rely on those watertight algebraic arguments, even when writing his papers
and books. He would just see things and that is how they were. And he was usually
right.’’67
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  Coxeter’s famed intuition, lampooned.

 
  If ever Coxeter was questioned by a student on the veracity of a point that he knew was
beyond reproach, he didn’t respond in a wishy-washy conciliatory manner, modestly asserting his
knowledge. Nor did he snap back in a brusque or rude manner common among many socially
clueless mathematicians (a stereotype, but for good reason). In his avuncular way, he
simply made it known that he had been around a while, and that he was right. On a
personal level, there was not an ounce of egomania about him, but intellectually he
had an ego and wielded it, politely when necessary. ‘‘He was almost courtly,’’ said
Monson. ‘‘He was very gentle, even when he managed to show you that you were thinking
like an idiot.’’ It was thus quite gratifying for students to catch Coxeter in a lapse
and point out he was wrong. ‘‘That did not happen very often,’’ said Monson, ‘‘and
you didn’t crow about it when it did, but it was fun to do.’’ Asia Ivie??? Weiss, now
a professor of mathematics at York University, was lucky enough to have such an
experience. She was Coxeter’s seventeenth and final PhD student (and the only woman).
Working on a problem, she couldn’t see Coxeter’s extrapolation from two dimensions
to three, even after reams of calculations. She persevered and, after days and days,
successfully proved that the three-dimensional result was not a spiral on a cone, as

Coxeter had said was so patently clear, but rather a spiral on a sphere. ‘‘I was afraid
to go and tell him,’’ said Weiss. When she did, Coxeter’s response was pure delight:
‘‘Haaaaaaaa! Look at that!’’ he let out with glee. Weiss married the following year and
Coxeter gave her a beautiful glass ball with spirals winding around it as a wedding
gift.68

 
  Coxeter’s selective attention span, and disinterest in the tedious minutiae of departmental
affairs, made promotions at the university somewhat hard to come by. He had been hired as an
assistant professor in 1936. Seven years passed before he rose to associate, another five before he
received tenure as a full-fledged member of faculty: ‘‘I felt like the patriarch Jacob,’’ he joked
about his time served, ‘‘working seven years for Leah and seven years for Rachel.’’69 When the
professorship finally came—and soon after a coveted office in the university college
tower—he was already a fellow of the Royal Society of Canada, and shortly after a fellow
of the Royal Society of London70 (he signed his name in the Royal Society book,
which, a few flips of the page backward in time, also bore the signatures of Newton and
Einstein).

 
  More important, in 1948, the year he became a professor, he at long last published his treatise
dedicated entirely to polytopes, giving it the singular title Regular Polytopes. A postcard of
congratulations arrived in the mail from his Marlborough College tutor, Alan Robson: ‘‘I am
glad to see your Polytopes actually printed; and I like it very much. The pictures and
tables are very pleasing. What a long time it is since you made that resolution (do
you remember it?) when you were working for the Trinity exam, not to work in 4
dimensions except on Sundays.’’71 The book was the consummation of twenty-four years’
work.
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  Regular Polytopes earned a reputation as a modern-day addendum to Euclid’s work, and
Coxeter had intended it to be exactly that (‘‘In fact,’’ he noted in the preface, ‘‘this book might
have been subtitled ‘A Sequel to Euclid’s Elements’ ’’). It picked up where Euclid left off,
extending the study and classification of the Platonic solids and a larger family of polytopes to
the nth dimension. ‘‘As for the analogous figures in four or more dimensions, we can never fully
comprehend them by direct observation,’’ Coxeter said. ‘‘In attempting to do so, however, we
seem to peep through a chink in the wall of our physical limitations, into a new world of dazzling
beauty.’’72


 
  The book’s ‘‘chief novelty,’’73 by Coxeter’s estimation, was his graphical notation representing
kaleidoscopes and the multidimensional shapes they generated—here was one strategy
for overcoming the human inability to experience hyperspace. Another strategy he
presented was to convert Coxeter diagrams and the information they encoded into their
algebraic equivalent, into Coxeter groups. Coxeter groups—a comprehensive and systematic
enumeration of kaleidoscopes and the symmetries they generate—elucidated mathematical
symmetries in a transcendent way, translating geometric entities into algebraic ones like an
English-French dictionary, and giving mathematicians another ladder by which to climb the
dimensions.74

 
  Coxeter, of course, was not so vain as to give these graphical diagrams and their algebraic
equivalents the Coxeter moniker. These tools—and Coxeter himself—became more and more
popular as an increasing number of mathematicians picked up his methods. Only gradually did
his tools gain their proper-noun nomenclature, working their way into the mathematical lexicon
as Coxeter namesakes.

 
  By inventing such versatile tools, Coxeter firmly melded his classical geometry with the more
modern algebraic approach. This was not the first time a geometry-algebra interface had been
achieved. In the seventeenth century, Descartes made the first crossing with analytic geometry.
And in the eighteenth century, Joseph-Louis Lagrange, one of the fathers of group theory,
declared: ‘‘As long as algebra and geometry traveled separate paths their advance was slow and
their applications limited. But when these two sciences joined company, they drew
from each other fresh vitality and thenceforward marched on at a rapid pace towards
perfection.’’75

 
  Coxeter made his crossing by the bridge of group theory, the mathematical language of
symmetry. With his envoys, he injected into classical geometry a dose of modern mathematics.
He breathed new life into the subject and made it sparkle with sophisticated symmetry
groups. ‘‘Coxeter groups are an unexpectedly nice application of group theory,’’ said
Jeremy Gray. ‘‘Donald’s work makes the connection between geometry and groups that
much richer. Which is a two-way street, because you then get interesting families of
groups that you care more about because you can carry them back to geometrical
questions …That is a very big trick in mathematics. That’s what Donald showed us how to
do.’’76


 
  Coxeter’s big trick transported mathematicians into towering and daunting dimensions using
visual images by analogy. And again, the microcosm-macrocosm metaphor applies. While
Coxeter didn’t stray too far from his home base of the fourth dimension, 24 or 256 dimensions
are of interest to other mathematicians. With Coxeter groups, a polytope—say, a square—in the
tangible two or three dimensions is translated into symbolic algebra. The algebraic
generalization then informs the symmetries of the square in 256 dimensions, or an
arbitrary number of dimensions.77 Coxeter groups describe the symmetries of a shape—the
geometric existential essence of what it means to be a square or a dodecahedron—in any
dimension.78

 
  Before wading any further into how Coxeter groups work, some exposition on group theory is
helpful. The commands issued to a soldier—Attention! Right face! Left face! About face!—might
loosely be considered a group. These commands form a group of order four, since there are
four in the set. To be more specific, however, a symmetry group comprises the set
of commands, or transformations, performed on an object that preserve its initial
appearance.

 
  The symmetry group of a square contains eight motions that preserve its appearance (the
squares below have been marked to assist in tracking the motions).‡ These are:

 
	  
(1) 

	Do nothing. This is called the identity element.

     
	
(2) 

	Rotate 90°about the center, counterclockwise.

     
	
(3) 

	Rotate 180°about the center, counterclockwise.

     
	
(4) 

	Rotate 270°about the center, counterclockwise.

     
	
(5) 

	Reflect across the horizontal side bisector.

     
	
(6) 

	Reflect across the diagonal through the lower left-hand and upper right-hand vertices.

     
	
(7) 

	Reflect across the vertical side bisector.
     


	  
(8) 

	Reflect across the diagonal through the lower right-hand and upper left-hand vertices.
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  Since there are eight symmetries of the square, the square is said to have a symmetry group of
order eight. These transformations together gain the status of a group because they satisfy the
four laws of group theory. These are:

 
	   
1. 

	The ‘‘do nothing’’ identity element is in the set.

     
	
2. 

	The  ‘‘associative’’  law  dictates  that  when  three  symmetry  transformations  are
performed one after the other, as long as the order in which they are applied is the
same, they can be grouped in two different ways and achieve the same result. For
example, multiplication of integers is associative:
     

 


[image: (2 × 3)× 5 = 2 × (3× 5) ]
     
And with rotations of the square:

 
[image: (90°+ 270°)+ 180° = 90°+ (270° + 180°) = 540°       (which is equivalent to a 180rotation) ]

     


	   
3. 

	The ‘‘inverse’’ law dictates that each symmetry must be reversible by another symmetry
(its inverse) in the group; that is, performing one symmetry and then its inverse gives the
same result as the identity, doing nothing. For example, the inverse of a 90°
rotation is a 270° rotation, since 90° + 270° = 360°, a rotation equivalent to the
identity.

     
	
4. 

	The magical ‘‘closure’’ law requires that when any two symmetries in the group are
performed one after the other, the result of that combination is also a symmetry in the
group. As shown above, rotation (2) followed by rotation (3) results in rotation (4), which
is also in the symmetry group.79



  Given these persnickety laws, or axioms, group theory is described by mathematicians who
work with it not only as ‘‘magical,’’ but also ‘‘thorny.’’80 To dwell too much on the gnarly
complexities of group theory, however, would hardly be in keeping with the Coxeterian spirit of
simplicity. ‘‘It’s a mistake to assume that what mathematicians do is esoteric, deep and
difficult,’’ said John Conway. ‘‘All the great discoveries are very simple—Einstein’s for example.
Coxeter’s books explain things in elegant and simple terms. And what Coxeter did with his
Coxeter groups was simple.’’81

 
  Coxeter always kept the discussion of his groups concrete by referring to the mirrors he used to
generate the Platonic solids. Coxeter groups are symmetry groups that can be generated
by reflections in mirrors—or as he described them, ‘‘the algebraic expression of how
many images of an object may be seen in a kaleidoscope.’’82 Since the square’s eight
symmetries can be generated in a kaleidoscope, it is defined by a Coxeter group of order
eight.83

 
  For a crash course on Coxeter groups, any mirror will do. Imagine standing at a bathroom
mirror, and there before you is your mirror image—so there are two of you. Coxeter described this
phenomenon by referencing The Adventures of Alice in Wonderland: ‘‘If Alice could take us
through the looking-glass,’’ Coxeter said, ‘‘we would still see the same two things, for the image
of the image is just the original object.’’84 The mathematical description of either scenario is a
‘‘Coxeter group of order 2,’’ because there are two images: the original and the virtual opposite
twin reflected in the mirror.85


 
  In the alphabet of algebra, this Coxeter group of order 2 is expressed as aa = 1 or a2 = 1,
where you can think of a as the mirror, and 1 as you, or the identity image. So when an
object—you—is reflected into mirror a and back out from mirror a producing a second image, the
result is you, or the identity image. This is the simplest Coxeter group, and it is given the
designation: A186

 
  Next, imagine mirrors in an elevator, on two adjacent sides of the compartment—this amounts
to a simple two-mirrored kaleidoscope. When you look at two mirrors that meet at a
perpendicular corner, four images are present: your immediate image in one mirror; your
immediate image in the second mirror; yourself outside the mirrors looking in (the real or
‘‘original’’ image); and then there is a fourth image behind the seam between the two mirrors.
These mirror reflections generate a Coxeter group of order 4.87 The algebraic alphabet for this
Coxeter group has two characters, since there are two mirrors—a and b. The algebraic statement
in this case would be: a2 = b2 = (ab)2 = 1.

 
  If yet another mirror was present on the ceiling or the floor, various combinations of the
three algebraic symbols a,b,c would algebraically represent this Coxeter group, since it
is generated by three mirrors. In this fashion, the algebraic alphabet accumulates.
A dictionary of algebraic words accumulates, forming a vocabulary§ that facilitates
discussions and investigations of geometric entities in an algebraic language—a meeting of
geometric and algebraic minds.88 (See appendix 4 for further exploration into Coxeter
groups.)

 
  Coxeter groups proceed in the same manner. When more precisely aligned mirrors are used,
and a prop is placed inside to generate a Platonic solid, the mirrors do not behave, in terms of
Coxeter groups, exactly like the simple mirrors just described. There isn’t a direct correlation,
such as with a Coxeter group of order two producing two images—suffice it to say the mirrors of
the kaleidoscopes interact to form a more complex pattern. The three-dimensional icosahedron is
defined by a Coxeter group of order 120—the reflection of an appropriately placed prop, a blob,
will bounce off the three mirrors, producing twelve images of the blob, which together form
the vertices of a finite icosahedron. Using the algebraic symbols to mimic more and
more mirrors, the study of polytopes ascends the dimensions, adding new words to the
algebraic alphabet and expanding the study of group theory. The icosahedron in four
dimensions, or the hypericosahedron, is defined by the Coxeter group of order 14,400 and

has 120 vertices. Mathematicians, if they have the time, can calculate this data for
themselves, or they can grab their copy of Regular Polytopes and look up the information,
calculated by Coxeter for all kaleidoscopes and organized nicely in tables at the back of his
book.
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  Charles Addams’s 1957 New Yorker cartoon inadvertently illustrates a Coxeter group of
infinite order.

 
  In deepening the union between geometry and algebra, Coxeter acknowledged the
value and power of both methods for obtaining results. But he was a master at using
his geometrically rooted tools—his Coxeter groups and Coxeter diagrams—to establish
results in group theory. He plugged in his symmetry groups and diagrams, bypassed
laborious calculations, and covered leaps and bounds with a few simple and swift
steps. ‘‘Most people do not have his fantastic geometric insight,’’ said Roe Goodman, a
professor of mathematics at Rutgers University. ‘‘Coxeter was a real pioneer, who,
through dint of great insight and concentration, imagined higher dimensional objects.
But for most people it is very hard to fasten onto them. And for those people, like
myself, the algebraic description comes in handy. But in a certain sense the algebraic
calculations are always a little disappointing. It’s sort of like bookkeeping—you see
that the account balances but you’d like to know where the fun was in spending the
money.’’89

 
  Coxeter groups are forever crawling out of the mathematical ocean, and the fact that they pop
to the surface so much as a useful gadget signals the omnipotence and omnipresence of their
symmetries, underlying everything from geometry to topology to number theory to algebra to
physics, even chemistry, cosmology, biology, sociology, catastrophe theory, economics, and so
on. Coxeter groups forge links to all sorts of fields; they are a way of thinking that
can be applied to all sorts of problems. The basic concept of a Coxeter group is a
template for symmetry, a universal building block for investigation. There are hundreds of
mathematicians doing research pertaining to Coxeter groups, and related concepts of
symmetry.90

 
  Fields of study that investigate patterns often apply group theory, and thus Coxeter
groups, as probative tools, because symmetries are invoked to simplify or completely
solve complicated problems. This association works, in part, because equations behave
according to symmetries, and hence, they behave analogously like shapes. The square, for
example, has four vertices and eight symmetries. The equation x4 = 3 has four roots,

and in this case the same eight symmetries, or permutations. ‘‘The symmetries of the
square and the symmetries of the equation x4 = 3 are the same, from a certain point of
view. That’s an analogy,’’ said Simon Kochen, the Henry Burchard Fine Professor
of Mathematics, at Princeton. ‘‘Mathematicians don’t talk a lot about analogy in
mathematics. Not because it isn’t there, but just the opposite. It permeates all mathematics.’’
Analogy in mathematics and science—and in bridging the two—is pervasive, and a vehicle
to jump-start new advances. Coxeter groups are one way of crafting mathematical
analogies.91

 
  ‘‘It’s always amazing when Coxeter groups turn up,’’ said Vakil. ‘‘Someone gives a lecture, on
something seemingly unrelated, and then the name ‘Coxeter’ comes up and there is sort of a
shiver through the audience. ‘Ah! Here they are again!’ And why are they there? I have no
meta-reason, no quasi-philosophical or religious reason as to why they come up. But there’s got
to be some reason why they underlie so many different structures. This powerful idea of
symmetry, this aesthetically beautiful and extremely simple structure, for some reason underlies
the world and so much of mathematics.’’92

 
  While Vakil doesn’t offer any philosophical or meta-existential reason for the omnipresence of
Coxeter groups, Sir Michael Atiyah is willing to try. ‘‘These surprising connections in
mathematics are always the most interesting things. I’ve seen them enough to have a general
philosophical view,’’ said Sir Michael, knighted for his work as a geometer, winner of the Fields
Medal and currently an honorary professor of mathematics at Edinburgh University. His curiosity
often leads him to these unpredictable interfaces, where dissolving boundaries shed new light on
both realms as techniques are transported from one side to the other. ‘‘And usually what it
means,’’ he said, ‘‘if you examine underneath, is that you find deep important truths that aren’t
obvious. These connections are an indication of something really exciting that you’ve
got to explore—like a sign, a warning sign: ‘GOSH, LOOK, DIG HERE, HIDDEN
TREASURE!’ ’’ Some people think of these connections as nice fortuitous accidents, but Sir
Michael does not take this view. ‘‘These things are not accidents. They are somehow
fundamental. Even if you didn’t know they were there before, once you see them you have to
investigate and by investigating you discover lots and lots of things. They are a very
important part of mathematics in terms of directing the search of mathematicians into new
areas. This is where new mathematics is forged,’’ he said. ‘‘In a lot of mathematics,
you build up big theory in a rather straightforward way. But every now and again

there are these things that connect up to different parts. They are showing you that
you missed something by building this big structure, going up in one direction. You
realize that you should have turned off ‘right’ at one stage and explored something
else.’’93

 
  The ubiquity of Coxeter groups in modern mathematics is fodder for some mathematicians in
refuting the lament that geometry has suffered any decline in the twentieth century. It’s just that
geometry has changed; it is a different sort of geometry. Coxeter’s ideas have not become less
important, they’ve become more important, they have transcended their origins. In the earlier
stages of his career, Coxeter’s followers studied precisely what he studied and asked
precisely the same questions. Then those questions were answered, and the answers have
become the terrain over which the next generation of acolytes pass on their way to
another neck of the woods, where new questions await answers, and then more questions
again.94

 
  ‘‘Coxeter’s perspective and ideas are in the air we breathe,’’ said Vakil. ‘‘It’s not that his ideas
are used to solve problems, it’s that the fundamental problems grow out of his ideas. He’s the
soil, part of the substrate, part of the building in which we work, in which we live. Coxeter’s
name gets stated, but in some senses people don’t even think of him as a person—he is an
adjective that gets applied to so many things. Towards the end of his life, many people I met
were amazed that he was still alive. He had become a name. A famous name—these famous names
become more a concept than a person. It’s like hearing that Beethoven was walking down the
street.’’95

 
  * Book I. Set Theory, Book II. Algebra, Book III. Topology, Book IV. Functions of One Real
Variable, Book V. Topological Vector Spaces, Book VI. Integration.

 
  † He tickled his readers with unexpected turns of phrase such as: ‘‘…dividing the product of the
first three expressions by the product of the last two, and indulging in a veritable orgy of
cancellation, we obtain…’’ And a pet word of Coxeter’s was ‘‘perspicuous’’—from the
Latin perspicuus, as in ‘‘perspective,’’ and meaning plain to the understanding, or
conveyed with clarity and precision of presentation. ‘‘Perspicuous’’ is a very Coxeterian
word both because he used it at least once per book, and because, as an expositor,
in the written word or in the classroom or at the conference lectern, he embodied
perspicuousness.


 
  ‡ Other motions or transformations may have the same effect, but they are equivalent to the
eight listed. If you reflect the square twice in the same mirror line, for example, that would
effectively be the same as doing nothing. Mathematicians are only concerned with the end result
of a transformation—the final effect rather than the actual motion that obtained it. Two
symmetries are equivalent if they produce the same final effect.

 
  § The language metaphor in explaining how groups work continues to be applicable because,
like in any language, the algebraic words can be strung together, or interact, according to the
equivalent grammatical rules. The grammatical rules dictate how reflections combine in the
kaleidoscopes—as the reflections bounce from mirror to mirror like billiard balls ricocheting off the
bounds of the pool table. The rules work like multiplication, since the images reflect off
mirrors successively, or in ‘‘multiple’’ fashion, and combine to generate a complete
image.
  

 



 



  
6  Tangents on Politics and Family Values

     
[B]ut let us not confine our cares
To simple circles, planes and spheres …

 
—Thorold Gosset, Addendum To ‘‘The Kiss Precise’’
 


Regular Polytopes made Coxeter’s reputation. He fielded offers for visiting professorships
internationally, and for full-time jobs in bigger cities, more in tune with his cosmopolitan
sensibilities. He faced a difficult choice when an opportunity arose that would take him back to
England, to Sheffield University. It was the most agonizing decision of his life. As
was his habit, he made a list of pros and cons, which balanced perfectly, sixty-five
on each side. A handsome raise persuaded him to stay in Toronto. But no sooner
had he made the decision than he regretted it and wished he could change his mind.
Around the same time, there were rumblings of interest from Princeton, which never
materialized, and he turned down Notre Dame. In 1951, the American University in
Washington, D.C., wanted him to do operations research in linear programming—the use
of mathematical models to aid decision-making problems involving a multitude of
variables.1 American also tempted him with a high salary. This time the head of the
Toronto math department alerted the university president that Coxeter was considering
leaving. Not wanting to lose the star that was putting Toronto—and Canada—on the
mathematical map, the president persuaded Coxeter to stay, again with a sizeable salary
increase.2

 
  Regular Polytopes attracted two distinct crowds: practitioners in Coxeter’s classical
corner, who appreciated the symmetrical and shapely polytopes for their own sake, and
those who wanted to harness his findings for more modern application. ‘‘Every reader
will find some parts of the book more palatable than others,’’ Coxeter noted in the
preface, ‘‘but different readers will prefer different parts: one man’s meat is another
man’s poison.’’3 Coxeter also made clear his purely quixotic intentions. ‘‘The chief

reason for studying regular polyhedra,’’ he said, ‘‘is still the same as in the time of the
Pythagoreans, namely, that their symmetrical shapes appeal to one’s artistic sense
…Such an escape from the turbulence of ordinary life will perhaps help to keep us
sane.’’4
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  While Coxeter had put his final years of work into Regular Polytopes, the real world was in the
throes of the Second World War. ‘‘Real mathematics has no effects on war,’’ G. H. Hardy stated
in 1940. ‘‘No one has yet discovered any warlike purpose to be served by the theory of
numbers.’’5 Hardy, there, made an uncharacteristic miscalculation. During the Second World
War, the Allies utilized mathematical logic in deciphering Germany’s Enigma code. Coxeter
received his call for service in 1941, when the Canadian government decided it needed to set up a
cryptanalysis bureau the likes of Britain’s Bletchley Park. ‘‘There is grave possibility that every
message transmitted is available to …enemy sympathizers,’’ warned a Department
of National Defense circular. ‘‘It is safe to assume that the signals emanating from
Ottawa, Winnipeg, Halifax, etc. are just as strong in enemy countries as they are in
Canada.’’6 The Canadian government knew its signals were being listened to. Canadian
receivers ‘‘manned by army, navy, and Department of Transport personnel crackled
with a constant stream of messages, day and night, on all practical bands. Dot-dot,
dash-dot—almost all were in Morse code and the listeners knew that they came from
U-boats announcing sinkings, enemy raiders, spies calling home, diplomats reporting
negotiations, or German air and army units organizing attacks. Some of the messages
were from enemies—Germany and Italy—and some from potential enemies—Japan and
Russia.’’7

 
  Samuel Beatty, the head of the math department at the university, recommended Coxeter and
Gilbert de Beauregard Robinson when the National Research Council came looking for
cryptographer candidates. These two mathematicians knew nothing about codes and ciphers, but
they were acquainted with mathematician Abraham Sinkov,8 then with the U.S. Army’s Signal
Intelligence Service (Coxeter had met him at Princeton). They acquired the necessary
accreditation—‘‘fingerprinted for my visa,’’9 Coxeter noted in his diary—and undertook two
reconnaissance missions to Washington to get a briefing on what the work involved. Robinson
decided to engage with the Canadian cryptology team, cover name ‘‘Examination
Unit.’’ Another friend and colleague of Coxeter’s, the graph theorist William Tutte,

worked as a code breaker at Bletchley Park—along with Alan Turing*—and deciphered a
series of German military encryption codes, an accomplishment cited when he was
inducted into the Order of Canada as ‘‘one of greatest intellectual feats of World War
II.’’10

 
  In the end, Coxeter decided against the cryptology work. ‘‘I managed to wriggle out of it,’’ he
admitted. ‘‘I wanted to just go on with my mathematical research.’’11 On August 14, 1945, he
wrote in his diary ‘‘THE WAR IS OVER,’’ and two weeks later he sent in the final draft of
Regular Polytopes to his editor.12 Also, he declined because he was a pacifist. Years
later, a colleague mentioned to him that Bertrand Russell had been a pacifist in the
First World War but not in the Second. ‘‘That’s one of the things that makes him
likeable,’’ Coxeter said, adding that the situation during the First World War was quite
different.13 Nevertheless, Coxeter remained firmly committed to his views against war; he
was ‘‘disgusted’’ when a maid in his employ enlisted in the Women’s Air Auxiliary
Force.14

 
  Pacifism was not a popular position during the Second World War, throwing the Coxeters
conspicuously out of kilter with others in their social circle. Rien went to a luncheon with
departmental wives and reported back that Mrs. Beatty was ‘‘unsympathetic about her pacifism,
and said: ‘How funny the English are!’ ’’15 And Elizabeth Synge seemed to have run away from
Coxeter and Rien at a concert and they wondered: ‘‘Is she mad because we still drive a car in
war-time?’’16 The Coxeters’ wartime contributions included mailing food parcels to England17
and cabling Coxeter’s stepmother, Katie, with an invitation to send one of his half sisters to
Toronto for safekeeping.18

 
  Coxeter’s staunch pacifism was only one facet of his larger sense of social justice.
His presence and support were always felt, even if mostly behind the scenes. He was
outspoken in his quiet fashion, attending meetings and contributing money, if not
always on the barricades.19 On July 17, 1942, he attended a Canadian Civil Liberties
Union rally with the physicist Leopold Infeld,20 who by then was at the University
of Toronto. The Toronto rally, which had been organized jointly with the American
Civil Liberties Union, drew a crowd of five thousand, demanding repeal of the ban
on the Communist Party of Canada. Coxeter was classified in the Canadian Who’s
Who as a liberal, but by all indications his leanings were rather more to the left of
center.21


 
  Coxeter supported Infeld when he was forbidden from leaving Canada to spend his sabbatical
year in his native Poland, then behind the Iron Curtain. In the Canadian Parliament, the
Progressive Conservative leader George Drew denounced Infeld as a traitor who would provide
the communists with atomic secrets. In 1950, after Infeld resigned from his position
at the university and remained in Poland, he and his wife and their Canadian-born
children were stripped of Canadian citizenship. Coxeter kept in touch with Infeld,
visited him in Europe in 1954, and later wrote an introduction to his posthumous
autobiography, Why I Left Canada. However, Infeld’s wife, Helen, decided against including
his contribution. Several friends and colleagues had offered introductions, and she
found Coxeter’s humdrum anecdotes about their children playing together in Toronto’s
ravines rather beside the point. Mrs. Infeld appreciated Coxeter’s private support all
the same and kept in touch with the occasional letter, such as one in 1976 in which
she expressed her gratitude: ‘‘Do you know, my life has been such that I have come
to highly evaluate some human qualities and feel that it is good to tell people who
have them so. I’d like to tell you that I do admire you as a person of principle, not
swayed by general prejudice, emotional blindness or temporary hysteria of others in
important matters. Would that people as a whole had such rational understanding,
everywhere!’’22

 
  Chandler Davis, a mathematician at the University of Michigan in the 1950s, also benefited
from Coxeter’s civil libertarian sympathies. Davis had been called before the House Un-American
Activities Committee (HUAC). He refused to testify and was indicted for contempt of
Congress. It was a particularly disheartening and deflating experience for Davis, as
HUAC investigators had dug up fewer than a dozen indiscretions. He had been an
active leftist since high school, and he felt more of his efforts were worth noting23 (at
least Davis was called to testify; subpoenas were prized as acknowledgment of one’s
stance, and failure to attract the attention of HUAC was said to elicit ‘‘subpoenas
envy’’24).

 
  Some of Davis’s fellow professors deemed him guilty of ‘‘deviousness, artfulness and indirection
hardly to be expected of a University colleague.’’ He was fired and blacklisted from university
jobs in the United States, spending eight years in limbo, ‘‘jobless and under indictment.’’ His
political activities were limited to preparing for his court case, which he lost, committing him to
a six-month jail sentence. A welcome-home party awaited him upon release, but no employment,
until he met the pacifist Coxeter at a mathematics meeting. Coxeter invited him to

consider a job at the University of Toronto, and wrote letters of recommendation to the
math department and (Davis suspects) to the Canadian government. Initially, the
government refused Davis entry but, ultimately, after a letter-writing campaign, they
relented.25

 
  In subsequent years, Coxeter was active in the cause for nuclear disarmament, sitting on the
university’s Nuclear Disarmament Committee, organizing speakers, and engaging in a long talk
with Nobel chemist John Polanyi about the origin of the Hiroshima bomb.26 In 1959, he signed
his name to a nuclear disarmament petition, making the front page of Canada’s national
newspaper, the Globe and Mail, with the headline: U OF T HEADS SEEKING END TO
NUCLEAR TESTING.27

 
  And in 1967, he expressed his outrage at American involvement in Vietnam, discussing the
issue with his friend and former PhD student Seymour Schuster, then a professor of mathematics
at Carleton College, in Minnesota. Coxeter asked Schuster to send him a copy of Macbird, by
Barbara Garson—a play, based on Macbeth, mercilessly attacking President Lyndon Baines
Johnson and his war policies. Schuster obliged, but worried Coxeter might be offended by
Garson’s crass intimation that President Johnson was responsible for the assassination of
President John F. Kennedy. ‘‘I feel this intimation was, at the very least, in bad taste, and
might also be considered unethical,’’ Schuster wrote. ‘‘I should like to think further
about the question and look forward to hearing your opinion on it.’’ Coxeter’s response
surprised Schuster: ‘‘In reply to your question about the book, I fully appreciate your
hesitation, but I find myself able to enjoy it without any qualm. The monstrous insinuation
seems to me justified by the consideration that, even though technically false, it is ‘in
character.’ What he is doing now, she could argue, is so atrocious that, if he had been
guilty also of the assassination, it would make no difference, just as we would think
no worse of Hitler (than we do) if someone proved him responsible for the death of
Gandhi.’’28
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  On the domestic front, Coxeter did not display quite the same propensity for peaceful relations.
Of her husband’s dedication to social justice and his all-consuming and unwavering devotion to
geometry—his polytics—Rien seldom had much to say (one couple who socialized with the
Coxeters observed that Rien seemed not to have any intellectual interests, other than being

overawed by her husband’s intellect).29 On the surface, Rien accepted her husband’s
commitments mostly without quibble, trying not to feel any imposition or jealousy. She
humored herself by saying that at least her husband would not stray—math was his
mistress.30

 
  ‘‘I was not able to love Rien as fully and completely as one should his wife,’’31 Coxeter
conceded. He devoted most of his time and energy to his geometry. One weekend, he
mischievously procured an invitation for his wife and their two children to visit a colleague’s
cottage without him, so he could stay home and be alone to work on his book. He saw nobody all
weekend, working hard to get a chapter done. But his finagling brought regret—‘‘leaving me alone
and miserable.’’32 And it plummeted Rien into misery. ‘‘R thinks I am trying to drive her crazy.
I must take more responsibility for the children.’’33 Coxeter made token efforts to
help with the parenting. He recorded in his diary that he sat writing the final copy
of Regular Polytopes in the bedroom of his daughter, then age three, who had the
measles.34

 
  Neither nature nor nurture were enough to make mathematics a fascinating subject for
either of Coxeter’s children; they hated math. By age nine, as Coxeter noted hopefully
in his diary, Edgar was ‘‘getting quite good with multiplication.’’35 But in his last
year of high school, Edgar brought his father to meet with his mathematics teacher,
and they ‘‘spent an hour explaining his neurotic horror of trigonometry.’’36 Edgar
commandeered his father into pleading his case so he could drop the course without
penalty (but in the end, he did ‘‘pretty well’’ on geometry37). Susan fared somewhat
better. She chose to take geometry and trig instead of Latin. But by grade thirteen
she managed a score of only 50 percent on the standardized mathematics exam (she
maintains the marker saw the name ‘‘Coxeter’’ and didn’t have the heart to fail her, as she
deserved).38

 
  [image: PIC]

 
  Edgar, Donald, Rien, and Susan, circa 1952.

 
  Their unimpressive performances were perhaps less an indication of smarts and more a
symptom or side effect of having such a legendary but emotionally absent father. Indeed, Susan
and Edgar remember his presence not so much as a father, but as another sibling who needed
taking care of. Rien told him what to wear (dressing him in spiffy windowpane-checked suits with
diagonal lattice ties), whether to wear his galoshes on a rainy day, and when to wipe his
chronically dripping nose.


 
  In 1959, Susan and Edgar lodged a formal complaint with their parents about the tension and
lack of affection in their household. And from there followed a traditional pattern of
rebellion. Edgar, who had an interest in theology, announced he wanted to become
a Jew (he later studied to become an Anglican minister). Susan dated older men,
whom her parents tried their darnedest to scare away. They repeatedly accused one of
burglarizing their house. Coxeter dispensed with another boyfriend after he caught him
in a compromising position with Susan on the living room floor in the wee hours of
the morning after a date; Coxeter accused the young man of taking advantage of his
daughter (or was convinced to do so by Rien) and had the dean of the University of
Toronto faculty of medicine expel him from medical school (the fellow transferred to the
University of Ottawa).† Coxeter was a mathematical pioneer, progressive in his politics, but
a stern and chilly conservative as far as child rearing was concerned. He seemed to
subscribe to a view advocated by Harold H. Punke, at Auburn University, in Alabama:
‘‘intellectually competent persons’’ should breed, Punke argued, but not be bothered with
the charges of child rearing in order that they ‘‘use their time and energy for other
purposes.’’39

 
  In 1957, Coxeter reflected on his creative process in a survey sent to him by Punke, a professor
of education. On the topic of creativity, Coxeter observed, ‘‘It seems to emerge from the
sub-conscious …Fresh air, exercise and restful sleep are better than any artificial stimulants.’’ His
best times of the day were very early in the morning. His moments of contemplation left him
‘‘never lonely or afraid, but surely thrilled.’’ He relied on ‘‘mental images’’ in fostering ideas;
‘‘imagination should be allowed unlimited scope.’’ And he said his stream of ideas came to him
‘‘not increasingly; but I have no fear of running dry, because the supply of unfinished projects
would suffice to occupy me for many years to come, even if no completely new ideas appear from
now on.’’40

 
  He appended his survey answers with a story of one ‘‘eureka’’ moment of creativity that
occurred at Trinity College, Cambridge. Some of his bright ideas had hit him while resting
under a tree in a forest, while riding a bicycle, and at that intermittent stage between
dreaming and waking (he usually kept paper and pencil waiting on his bedside table). He
chose to give a detailed description of his discovery of a four-dimensional figure, the
‘‘snub-24-cell,’’ having 96 vertices, 432 edges, 480 triangular faces, and 144 solid cells—a creative

insight that came to him in the middle of a peaceful night’s rest in his suite of rooms
in Great Court. He relayed the discovery with intricate technicality, indifferent to
the limited, if not nonexistent, mathematical expertise of the man he was writing
to:   

 

I had long been trying to extend to four dimensions the familiar construction
for the snub cube (one of the 13 Archimedean solids) by taking, as vertices,
suitable points inside all the white triangles covering a sphere …I knew that
the  four-dimensional  analogue  of  the  network  of  spherical  triangles  is  an
arrangement of black and white tetrahedra covering a hypersphere, the shape
of such a tetrahedron being usually ‘‘quadri-rectangular.’’

 
The problem was to locate a point inside a white tetrahedron, in such a position
that  it  would  be  equidistant  from  the  corresponding  points  in  the  nearest
other white tetrahedra. The snag was that, since the number of ‘‘nearest other
white tetrahedra’’ was nine, the equality of their distances would impose eight
conditions on the point to be selected: five more conditions than such a point
could generally be expected to satisfy.

 
So I went to bed and soon slept soundly. About 3 a.m. I awoke with the idea
of using a symmetrical ‘‘isosceles’’ tetrahedron: a right pyramid based on an
equilateral triangle. Such a tetrahedron still has nine neighbours of the same
color, but they consist of three of one type and six of another; I could thus
choose a point on the axis of symmetry and adjust its height so as to equate the
distances of the two types of neighbouring point. I switched on the light and
went into my living room to write it down, lest I might find the next morning
that it had passed away like any ordinary dream. When morning came, there
it was, ready for all the details to be filled in.
 


  Coxeter emphasized there is no use trying to force creativity. At the crucial moment, effort is
only a hindrance, but this may follow months of painstaking preparation. ‘‘My advice to
others who wish to develop creativity,’’ he said, ‘‘is to choose a problem so absorbingly
fascinating that they are really happy to think about it at every available moment,
especially at such times of relaxation as in a bath or in bed, or while out for a pleasant
walk.’’41
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  From outward and material appearances the Coxeters were doing nicely by the 1950s—far better
off than their days of sharing bathwater in the dirty thirties. In 1949, Coxeter inherited money
after the death of his mother (whom he’d only been back to visit once since he’d left for
Canada). He received the bad news while sailing with his family to England, the children
expecting to meet their grandmother for the first time—it was Edgar who spotted the name
Coxeter in the Times obituaries.42 With the inheritance, the Coxeters purchased a three-story
house for $37,500 on Roxborough Drive, in Toronto’s tony Rosedale neighborhood.43 And they
could now afford a live-in maid. Finding and keeping decent help was another matter. Coxeter
returned home from work nearly every day to be briefed on the never-ending saga of the
revolving door of maids and their shortcomings. As Coxeter noted, they were ‘‘too ladylike to
work properly, and very stupid,’’ ‘‘had a weak heart,’’ ‘‘like a witch (never again),’’ or were
caught stealing white shoe polish from the study and had to be dismissed. More often
than not they left of their own accord. Coxeter chronicled the frequent turnover in his
diary

 
  There was absolutely no way Rien could manage the household without help. The Roxborough
house placed them smack in the neighborhood of ladies who lunched. Soon after the
Coxeters moved in, the University of Toronto purchased a mansion up the street for its
president, adding even more social cachet to their address. They often had university
colleagues and their wives in for high tea or dinner, sometimes a gathering of Coxeter’s
graduate students—‘‘Erdös and Dirac to dinner …20 staff and students for sherry at
9.’’45 The hour of a party approaching, Coxeter invariably got himself into trouble.
As the doorbell rang, he fumbled hopelessly with the tight zipper of his wife’s dress.
He lowered the drinks tray down the dumbwaiter such that the sherry and glasses
crashed and shattered. He lit a fire in the fireplace but forgot to open the flue. Rien’s
customary response was to screech at him, in Dutch:46 ‘‘You ezel! You rotzak! You
lammeling!!’’‡ Coxeter’s evaluation of these evenings: ‘‘All my 6 grad students for the
evening. Frightful,’’47 or ‘‘Fiasco!’’48 or ‘‘Infelds came for the evening. We felt dreadfully
inferior.’’49

 
  Donald and Rien went out frequently to social gatherings as well. Between all the socializing,
sometimes with numerous events each week, one wonders when Coxeter managed to be so
prolific. He said he drank too much only once in his lifetime. On New Year’s Day 1946, after he
and Rien spent the evening quietly at home, he observed with incredulity that they ‘‘…both felt
just as rotten as those who had celebrated with strong drink all night!’’50 Rien loved the ivory

tower social scene. But even their busy social itinerary she judged as lacking—such as having no
plans on New Year’s—and she aired her grievances: ‘‘R says nobody asks us to parties;
they all find us dull. How depressing.’’ ‘‘R very worried because I was too quiet and
when I did say something it was the wrong thing.’’ ‘‘R says I must talk to people
and stop being so dull.’’ ‘‘R depressed since everyone dislikes me.’’ ‘‘I made a faux
pas.’’51

 
  Coxeter enjoyed the social scene well enough, and by all accounts he was the perfect gentleman,
if not effusively convivial. Chitchat and schmoozing were not his cup of tea, but he took great
pleasure in finding other people who had interests similar to his own. Rien was fun and gay at
parties, but she put people off with exuberant and often inappropriate outbursts.52 At home she
wondered when her miseries would end. She was plagued by eternal discontent over the
invitations she failed to receive and she suffered chronic malaise about her rotund waistline.
When she went in for a checkup, Coxeter noted, ‘‘Dr. Owen found R physically healthy.
Prescribed a holiday, a maid, a hobby, and a full life. She would have preferred him
to find a curable disease.’’53 Rien felt listless and longed for something exciting to
happen.54

 
  It probably wasn’t quite what Rien had in mind but, a few years after Regular Polytopes was
published, her husband was on the verge of becoming a household name—in mathematicians’
households, anyway. Mathematicians were reading his book in such numbers as to warrant a
second printing in 1962—some called it their bible, a reference they kept in multiple copies, in
their offices at home and at work. ‘‘The mathematical community Coxeter gathered round
himself with Regular Polytopes is many ringed, like ever widening ripples on a pond,’’ said
Marjorie Senechal (adding that Coxeter was ‘‘no falling stone’’).55 The ripples would
eventually encircle Bourbaki—even Bourbaki would come to acknowledge the usefulness of
Coxeter’s tools, his muse of classical geometry notwithstanding—forgiven, or at least
overlooked.

 
  * Coxeter and Turing overlapped at Trinity, and later corresponded about their mutual interest
in phyllotaxis.

 
  † Forty years later, having forgiven Coxeter, this man had the courage to come courting Susan
again; she had been recently widowed by her husband, Alf (eleven years her senior).
Coxeter by then was a widower himself. This time Coxeter decided he liked the fellow
and issued him a written apology. Susan nonetheless declined the overtures of her
suitor.


 
  ‡ Translation: ezel=ass; rotzak=rat, stinker, scoundrel; lammeling=dead loss, rotter, pain in
the neck.
  

 



 



  
7  Bourbaki Prints a Diagram

     
A soul never thinks without a mental image.

 
—ARISTOTLE
 


As Coxeter’s research bridging polytopes with modern group theory gained esteem,1
he also set out as a missionary to raise the profile of plain, old, classical geometry,
popularizing its gems at the grassroots level with grade school and high school teachers and
students.

 
  From 1955 through 1957, Coxeter dedicated several weeks of his summer holidays to cultivating
the seeds of his beloved geometry.2 He had been summoned by the Mathematical Association of
America (MAA) to be a ‘‘roving lecturer,’’ as he described it, touring American universities and
organizations as part of the National Science Foundation’s ‘‘Summer Institutes’’ for high school
teachers.3

 
  Over the course of these tours, he stopped in Ann Arbor, Michigan; Chicago, Illinois; and
Arkansas City, Kansas. He gave several lectures to the Friends of Scripta Mathematica, in New
York City, upon invitation from Jekuthiel Ginsburg, the journal’s founder, at Yeshiva University.
He went as far west as Stanford, California, and as far north as Fairbanks, Alaska. He took
advantage of his time spent on of the lecture circuit to test material for his next book,
Introduction to Geometry, another of the most popular mathematics books of the
century.

 
  Willy Moser, one of Coxeter’s PhD students at the time, was lucky enough to tag along for the
last leg of one of Coxeter’s tours. ‘‘Donald made many great contributions to mathematics. I
made one great contribution,’’ recounted Moser. Moser’s opportunity came at the end of
Coxeter’s 1955 summer of roving lectures, after his session in Stillwater, at Oklahoma State
University. Moser drove down to meet Coxeter and serve as his assistant, taking detailed notes of
the well-polished lectures. ‘‘At the end of the summer we drove north, to civilization,’’ said
Moser, wryly. ‘‘We were in my car and Donald asked me if he could drive. It was a
new car. Indeed it was the first car I had ever purchased, a green 1955 Plymouth
2-door. I paid $2,000 for it and drove it to Oklahoma. But I agreed. I was surprised to

see that he was an aggressive driver. At one point he was trying to pass a car while
driving up a hill on a 2-lane highway. I immediately perceived that this was not a
prudent thing to do.4 He tried to coax the car to go faster but it wouldn’t respond. At
the last possible moment I shrieked at him, ‘Pull back, pull back.’ I was probably his
only student to shriek at him. He began to pull back and at that moment a truck
came over the hill. He managed to get back into the right lane just in time. I HAD
SAVED HIS LIFE! And mine. But saving Coxeter’s life was my greatest contribution to
mathematics.’’5
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  ‘‘In Oklahoma,’’ Coxeter noted on the back of this photo, ‘‘where my host introduced me to an
American-Indian (‘Native American’) couple.’’

 
  Published in 1961, Introduction to Geometry was Coxeter’s second masterpiece. He opened the
book, and no doubt his lectures, with one of his pointed comments: ‘‘For the last thirty or forty
years, most Americans have somehow lost interest in geometry. The present book constitutes an
attempt to revitalize this sadly neglected subject.’’6 Introduction to Geometry became widely
used as a university textbook.7 As testament to its popularity, for a time it was the most
frequently stolen item in the University of Toronto mathematics library. And it was one
of the first textbooks to be built around the concept of symmetry,8 and of course,
it was full of pictures. ‘‘I agree with Alice in Wonderland,’’ Coxeter once remarked.
‘‘Wasn’t it Alice in Wonderland who said, ‘What’s the good of a book that doesn’t have
pictures?’ ’’9

 
  Coxeter’s book received a rave review from the preeminent critic Martin Gardner in his column
in Scientific American: ‘‘Most professional mathematicians enjoy an occasional romp in
the playground of mathematics in much the same way that they enjoy an occasional
game of chess; it is a form of relaxation that they avoid taking too seriously. On the
other hand, many creative, well-informed puzzlists have only the most elementary
knowledge of mathematics. H. S. M. Coxeter …is one of those rare individuals who
are eminent as mathematicians and as authorities on the not-so-serious side of their
profession …There are many ways in which Coxeter’s book is remarkable. Above all, it
has an extraordinary range.’’10 And while Introduction to Geometry is encyclopedic
in its scope, like the Bourbaki treatise, it is at once as engaging and awe-inspiring

as a curiosity cabinet. In the chapter on hyperbolic geometry, Coxeter prefaced his
section on ‘‘The Finiteness of Triangles’’ with a Shakespearean epigram borrowed
from Hamlet: ‘‘I could be bounded in a nutshell and count myself a king of infinite
space.’’11

 
  Coxeter’s career, considering his two masterpieces—Regular Polytopes and Introduction to
Geometry—can be viewed as two intersecting circles: they overlap, but their circumferences
delineate two distinct realms. One realm encompasses Coxeter’s role as popularizer and
connoisseur of the beauty and fun of classical geometry (symbolized by Introduction to
Geometry), whereas the other comprises his contribution as a pioneer, an innovator melding
classical with modern geometry (as demonstrated in Regular Polytopes). The former achievement
won him a wide and varied fan base, and the latter cemented his reputation among
mathematicians. As observed by Sir Michael Atiyah, ‘‘If his fate was just to be a connoisseur of
beautiful pictures, he wouldn’t have been so widely recognized, he would have been more of
a sideline. But you add this extra dimension of symmetries (finite or continuous),
and that lifted him up and made him well known and in touch with other aspects of
mathematics.’’12

 
  Fields Medal winner David Mumford, who teaches pattern theory and the mathematics of
perception at Brown University, felt Coxeter’s impact in both realms. He stumbled upon
Coxeter’s book Regular Polytopes as a high school student in the early 1950s. ‘‘It was like I had
discovered how math was really done,’’ he recalled. ‘‘High school mathematics didn’t show how
deep the subject was. It was a revelation. It made me realize what mathematics was all about.’’13
As Mumford continued his studies in mathematics at a scholarly level, Coxeter’s work influenced
his interests, specifically with the ‘‘compactification of modulized spaces’’—just as they suggest,
these are atlases, of sorts, for algebraic objects—and Coxeter’s work fit nicely into the story he
and his coauthors told in the book Smooth Compactification of Locally Symmetric Varieties.
Mumford later met Coxeter in the 1970s, in a replay of the typical scenario. ‘‘I had
assumed he was dead, and then, ‘Oh my god, Coxeter—he’s here.’ ’’ At the time Mumford
was at Harvard, teaching the undergraduate geometry course. He often shook up the
syllabus using Introduction to Geometry as a text, and he invited Coxeter down to give a
lecture.14
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  With the twentieth-century stampede toward modern mathematics, toward all things abstract,
algebraic and austere, the Bourbaki enterprise thrived beyond the borders of France—through
publication of volumes of its treatise, and via Bourbaki members in the flesh who were installed
at various universities on secondments, exposing new guinea pigs to the Bourbaki approach
firsthand. Claude Chevalley went to Princeton’s Institute for Advanced Study and later to
Columbia.15 Dieudonné spent time in São Paulo, Brazil, as well as at the University of Michigan
and Northwestern University.16

 
  Over the years the group continued to disguise itself in ‘‘mock mystery,’’ and rumors continued
to spread about Bourbaki, ‘‘the mathematician.’’17 In one ruse, Bourbaki applied for an
individual rather than group membership in the American Mathematical Society (AMS); the
request was refused, twice. The AMS secretary suggested that an application for an
institutional membership might meet with more success, but Bourbaki would have none of
it.18

 
  The Bourbaki group gathered three times per year, once for an extended two-week period, at a
youth camp, a monastery, resort, or hotel, where they made major policy decisions, drew up the
table of contents for the current volume of the treatise, and delegated research. When their
semiregular publication of Elements of Mathematics became a commercial success, the royalties
paid for travel expenses, wine, and extracurricular activities that enlivened the proceedings.19
According to La Tribu, their internal newsletter, the Bourbaki group played chess, table soccer,
volleyball, or Frisbee. They embarked with gusto on mountain hikes, bicycle excursions,
or swimming expeditions. They caroused in bumper cars, went butterfly hunting or
mushroom picking. They sunbathed, dozed off with text in hand, stuffed themselves with
local delicacies and drank until royally drunk—Armagnac, champagne, rum toddies, or
wine (wine being the much-needed fuel of Bourbaki’s cogitation). Once under the
influence, inebriated members sometimes performed a ‘‘virile French cancan or a lascivious
belly dance …The deliberately laid-back attitude …gave the impression of insouciant
genius.’’20

 
  As far as the tone of the meetings was concerned, Bourbaki’s biographer, Liliane
Beaulieu, described them as opting ‘‘for the humorous and the ribald, on occasion
ascending to the heroic contrasted with the loutish’’21—humor was said to be their
second-favorite mind game after mathematics. The mathematical discussions were
not nearly as civilized as Henry F. Baker’s tea parties at Cambridge. Anybody at
any time could interrupt, comment, ask questions, or criticize. Dieudonné observed:

‘‘Certain foreigners, invited as spectators to Bourbaki meetings, always come out with the
impression that it is a gathering of madmen. They could not imagine how these people,
shouting—sometimes three or four at the same time—could ever come up with something
intelligent.’’22

 
  As the group’s scribe, over the years Dieudonné came to be considered the speaker for the
group as well. Between his stentorian voice and propensity for definitive statements and
unchallengeable opinions, Dieudonné was known to crank up the decibel level of any
conversation. It was Dieudonné who would later declare: ‘‘Down with Euclid! Death to
Triangles!’’ He was a giant, a tall, big, and ebullient man, oft times loud and rude. He was
flamboyant, with a brutal manner of expression.23 Pierre Cartier recalled an outing to a concert
hall with Dieudonné. ‘‘It was fascinating,’’ he said. ‘‘He would look at the score in his hand and
exclaim with disapproval—‘OH!’—if a note was missing from the orchestra.’’24 Coxeter,
with comparable zeal as a musician, preferred musical scores to books for bedtime
reading.25

 
  The domineering Dieudonné penned first drafts of Bourbaki chapters, which were referred to as
‘‘Dieudonné’s monster.’’ From there, each chapter of Elements of Mathematics commonly took
six, seven, even ten drafts before consensus was reached (unanimity was required, with each
member having veto power).26 And lest the enterprise be misunderstood, Dieudonné clarified:
‘‘Bourbaki’s treatise was planned as a bag of tools, a tool kit for the working mathematician, and
this is the key word which I think everybody should keep in mind when talking about
Bourbaki or discussing its plan or contents.’’27 Cartier agreed: ‘‘You can think of the
first books of Bourbaki as an encyclopedia. If you consider it as a textbook, it’s a
disaster.’’28

 
  The popularity of Bourbaki initially brought about something of a revolution in university-level
mathematics. Marjorie Senechal was a graduate student in the 1950s at the University of
Chicago, a hotbed of Bourbaki in America, under the auspices of Marshall Stone. Stone, strongly
influenced by the ideas of Bourbaki, had made the mathematics department at the
University of Chicago arguably the best in the country. He recruited the brains of the
Bourbaki group, André Weil, and Samuel Eilenberg, who worked closely with another
Chicago professor, Saunders MacLane. ‘‘I suffered under the Bourbaki regime,’’ said
Senechal, one of MacLane’s students. ‘‘Bourbaki was the method taught. I think it cost
mathematics a lot of talent—a lot of people who think visually and work visually left the
profession, because they felt they didn’t have a home there anymore.’’ Coxeter kept
the spark alive for people who wanted to continue to do concrete geometry, even if it

was unfashionable. ‘‘Coxeter was the antithesis to Bourbaki.* He was a lifeline,’’ said
Senechal, ‘‘a way of salvation from Bourbaki. Because through him I knew there was
more to mathematics, I knew there was a whole branch of mathematics I could relate
to.’’29
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  Jean Dieudonné

 
  But the Bourbaki revolution shook more than just the universities. Bourbaki trickled down into
high schools and public schools, as mathematicians taught by the Bourbaki method became
teachers themselves.30 Bourbaki principles infiltrated the ‘‘New Math’’ grade school curriculum
reform. The New Math spread throughout the Western Hemisphere, from South America
through the American heartland, into Canada, and across the Atlantic to England, Wales, West
Germany, Denmark, the Netherlands, and France. New Math overhauled the traditional
curriculum, ridding it of trivial problem solving and rote number juggling. Instead, schoolchildren
as early as grade one learned the equations of algebra and set theory (the mathematical theory of
sets, or collections of abstract objects, and the rules that govern their relationships and
manipulations). Dusty and dilapidated Euclidean geometry also was forsaken—like removing
Shakespeare from the syllabus and replacing it with grammar, as though one were a minor
subset of the other.31 ‘‘This tendency is not only regrettable,’’ said Coxeter, ‘‘but
unreasonable.’’32

 
  Historically, Euclidean geometry had been under siege ever since its limited scope had been
exposed. ‘‘Euclid’s approach to geometry has been attacked on two grounds—that it is illogical,
and that it is boring,’’ Coxeter said in a 1967 report on the state of geometry in primary
and secondary school education. ‘‘Neither criticism is new,’’ he said, adding: ‘‘The
objection that Euclid is boring is much more serious than the objection that his logic is
imperfect.’’33

 
  If Euclidean geometry was boring, Coxeter argued, this was due to the canned and ossified way
it was taught. Like arithmetic, the subject had been reduced to rote learning, with
teachers opening a textbook and doing the stultifying ‘‘chalk-and-talk’’ at the front
of the classroom. Children mindlessly memorized properties of triangles and their
theorems—Side-Angle-Side, Angle-Side-Angle—and regurgitated them on demand to please
their teachers. They were robbed of experiencing the beauty and tricks intrinsic to
heuristic learning—that is, learning through trial-and-error and making discoveries for
oneself.
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  The French Bourbakis were one influence behind the New Math reforms; the Russians were
another. When the Soviets successfully launched the Sputnik satellite into orbit, the Western
world got a shock—rudely awakened to the fact that it was falling behind in science, technology,
and mathematics. A colorful interpretation of events was articulated in a British report
chronicling the New Math:

 
  It all started on that memorable day in 1957 when the Russians sent their first Sputnik
orbiting the earth. Up till then the countries of the West had rather patronizingly regarded the
USSR as a backward giant of a nation, hopelessly engaged in trying to educate its
largely peasant people to achieve the technological advantages of its more favoured
European neighbours. The noisy ‘‘Bleep-Bleep’’ of the Sputnik’s radio, however, quickly
dispelled any notions Westerners might have that the Russians still counted on their
hands or that the abacus was the sole piece of educational equipment in Soviet schools.
Clearly this formerly retarded people had outstripped Britain and America in finding
scientists and mathematicians of a very high caliber indeed. How had this astonishing
advance in Russian scientific education come about? No one could supply the answer
but it had to be admitted that Soviet schools were obviously producing more and
better mathematicians and scientists than were coming from the British system of
education.34

 
  Following the bleeping Sputnik, the United States Congress released millions of dollars in
funding for science education under the ‘‘National Defense Education Act.’’ A flurry of
international activity led to the formation of the United Nations Educational Scientific and
Cultural Organization (UNESCO) and the Organization for European Economic Cooperation
(OEEC). Reform of the mathematics curriculum was undertaken with urgency and
idealism.35

 
  The first forum of debate on the New Math was the 1958 International Congress of
Mathematicians, held in Edinburgh. Then came the infamous conference at which Dieudonné
whooped his war cry. Held at the Cercle Culturel de Royaumont, Asnières-sur-Oise, France, from
November 23 to December 4, 1959, the conference addressed the need for reform in French
mathematical education. Here the bombastic Dieudonné rose to his feet and hurled his
provocatively planned statement:

 
     
‘‘À bas Euclide! Mort aux triangles!’’36
     

 
‘‘Down with Euclid! Death to triangles!’’
 


  Dieudonné’s statement was taken by many as a slap to geometry. Coxeter discussed it with
like-minded individuals and was known to now and then unleash a scathingly critical or
derogatory comment, though he did not dwell on it, nor did he let the Bourbaki venture
as a whole ruffle his feathers. Dieudonné’s comment seemed a succinct summary of
the Bourbaki agenda—no diagrams—but the interpretation of this event by Bourbaki
sympathizers diverges from a geometer’s vantage point. Michel Broué, director of
the Institut Henri Poincaré, who studied under Bourbaki founder Claude Chevalley
in the 1960s, asserted the importance of distinguishing Dieudonné from Bourbaki.
Dieudonné, by 1959, was older than fifty and therefore no longer an official member of the
Bourbaki group. His ‘‘Death to Triangles!’’ statement is thus disqualified from representing
the larger Bourbaki mandate (Broué acknowledged all the same that linking the two
has become part of the Bourbaki mythology). ‘‘Others in Bourbaki were horrified,’’
Broué said.37 Especially since Dieudonné stuck with this opinion to his dying day.
This was a source of embarrassment for some Bourbakists, such as Cartier. ‘‘I was
tormented,’’ he said. ‘‘The ideology of Bourbaki didn’t match with me, it was going too far.
Bourbaki was a mathematical priest—pure, pious, rigid. It was a caricature of purity.
Purity creates hypocrisy, because if the rule is too strict then life forces you to break
it.’’38

 
  Chevalley, for one, espoused the no-pictures dictum, but this belied his closeted use of
diagrams. He tried his best to operate by reasoning alone; he earnestly wanted to avoid intuition
in mathematics. But he didn’t always succeed. Cartier remembered when Chevalley was his
professor, and teaching at the front of the classroom he filled the blackboard with symbols and
equations. When a student raised their hand with a question, Chevalley dramatically stepped
back from the board, crossed his arms, and squinted, contemplating his work through furrowed
brow. He was stumped. Then he walked toward the blackboard, standing rather closer than
necessary. He huddled in, with hunched shoulders, his arms creating blinders, hiding what
he was up to from the class behind. ‘‘He drew a picture,’’ said Cartier, ‘‘figured out
the answer—AHA! he said—and then quickly wiped out the diagram, stood back and
continued.’’39


 
  After the ‘‘Death to Triangles!’’ incident at Royaumont, annual conferences on New Math were
held in Denmark, Zagreb, Athens, Bologna, elsewhere in Europe, and there was a series of
‘‘inter-America’’ conferences in South America. The first convened in Bogotá, Colombia, in 1961.
The ringleader of the New Math reform movement was Marshall Stone, who had been president
of the Royaumont conference and led the way internationally.40 As the mastermind of these
international conferences, Stone delivered stirring opening addresses, calling for the
modernization of mathematics:

 
  There are two major factors which require us to examine with fresh eyes the mathematics we
propose to teach to young people in the secondary schools and in the first years at the university.
One is the extraordinary growth of pure mathematics in modern times. The other is the
increasing dependence of scientific thought upon mathematical methods, coinciding in
time with a more and more urgent social demand for the services of scientists of every
description.

 
  The forces exerted by these two factors on our educational system are quite clearly on the
point of shattering the traditional framework of mathematical instruction and thus preparing the
way for an overdue modernization and improvement of our teaching of mathematics. Like the
crustacean which has to split and discard its old shell in order to grow, we must at last burst the
confines of a curriculum which is plainly no longer suited to our current needs or our current
conditions of life.41

 
  At Bogotá, Howard Fehr, head of the Department of the Teaching of Mathematics at Columbia
University, delivered a lecture titled ‘‘Reform of the Teaching of Geometry.’’ ‘‘Euclidean
geometry,’’ said Fehr, ‘‘nowadays …is sterile, outside the main course of mathematical
advancement, and it can be filed in the archives, without any fear, for the benefit of future
historians.’’42 Response was mixed. Professor Guillermo Torres, from Mexico, challenged this
position and argued that the presentation of mathematics in an exclusively formal
aspect ‘‘makes it appear to be an inhuman activity and with no sense at all.’’ John
Coleman, Coxeter’s early student, by then the head of the math department at Queen’s
University, also expressed doubts during the debate following Fehr’s presentation. Based
on his experience, he said, students interested in mathematics were first enticed by
geometry’s intrinsically tactile and visual nature—geometry was the user-friendly interface of
mathematics.43


 
  New Math sprouted in varied forms internationally. In the United States, the main initiative
was the School Mathematics Study Group (SMSG), which produced a new series of
textbooks—students renamed it ‘‘Some Math Some Garbage.’’44 The American Mathematical
Monthly ran a ‘‘Letter of 75 Mathematicians’’ objecting to the emphasis on abstraction. The
leading antagonist was NYU professor Morris Kline, who later sounded the death knell of the
New Math in America with his book Why Johnny Can’t Add: The Failure of the New Maths.45
And the horrors of it all entered the popular culture via the genius of mathematician cum
musical raconteur Tom Lehrer—he documented the debacle on his album 1965: That Was The
Year That Was with the song ‘‘New Math.’’ The lyrics poked fun at the fact that the math was
so newfangled that parents couldn’t make sense of it in helping their children with
homework.46

 
  In France, of all places—the cradle of Bourbaki—the newspaper L’Express ran the headline LE
CAUCHEMAR DES MATHS MODERNES (The nightmare of modern maths); ‘‘Pornography,
drugs, the disintegration of the French language, upheavals in mathematical education all relate
to the same process; attacking the central parts of a liberal society,’’ the subtitle continued.
And a report to the French Academy of Sciences decried: ‘‘The set-theoretic option
in the definition of geometry is a dangerous utopia …this reform misappreciates the
intellectual aptitude and needs of the adolescents who attend our …high schools. The reform
in progress seriously endangers the economic, technical, and scientific future of the
Nation.’’47

 
  In England, a telling cross section of the changes is found in the career of Sir Michael Atiyah.
He was a student at Cambridge in the 1950s, when aspects of classical geometry were still
hanging on as part of the university curriculum. But by the 1960s, this last bastion had
languished, linear algebra having been decreed fundamental and geometry old fashioned and
inessential.48 Sir Michael’s 1981 presidential address to the Mathematical Association, titled
‘‘What Is Geometry?’’ bemoaned this unfortunate turn in geometry’s history. ‘‘Of all the changes
that have taken place in the mathematical curriculum, both in schools and universities,
nothing is more striking than the decline in the central role of geometry,’’ he said.
‘‘Euclidean geometry has been dethroned and in some places almost banished from the
scene.’’49

 
  ‘‘The battle between geometry and algebra is like the battle between the sexes,’’ said Sir
Michael, contemplating the issue recently. ‘‘It’s perpetual. It’s an ongoing battle. And it really is
a battle in the sense that these are two sides of the same story, and you’ve got to have
both sides present.’’ Both algebra and geometry are essential, both must be taught

properly at all levels, and the resulting interaction in the highest tiers of research
move the frontier forward. ‘‘It’s the kind of problem that never disappears,’’ he said.
‘‘It will never be dead and it will never get solved. The dichotomy between algebra,
the way you do things with formal manipulations, and geometry, the way you think
conceptually, are two main strands in mathematics. The question is what is the right
balance.’’50
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  One outpost that kept the balance weighted toward geometry over algebra was Eastern
Europe—Latvia, Hungary, and Russia. The reason is the object of speculation. Perhaps their
prophylactic was the Iron Curtain—cut off from the rest of the world, and poor, they continued
on with the old-world ways. Russia had a long and fine mathematical tradition all its own.
Certainly, the fact that the Russians printed Coxeter’s works demonstrated that they liked their
classical geometry.51

 
  At the 1966 International Congress of Mathematicians in Moscow, Coxeter learned of his
considerable popularity in Russia. Prior to the congress he had no idea whether his books had
been published there—ostensibly, Russia had agreed to international copyright laws but Russian
editions, seldom the products of contractual agreement, were pirated more often than not. If
mathematicians wanted royalties, they had to produce proof of publication, which was difficult if
one was not in Russia. The International Congress occasioned an olive branch in the form of a
book exhibit that allowed mathematicians to peruse a warehouse of all Russian mathematical
publications. If they found their books, they were entitled to collect royalties on the
spot. Coxeter walked around the warehouse with John Conway, who recalled that
Coxeter made a lengthy list of his books and then walked away with his pockets full of
rubles.52

 
  Coxeter’s classical geometry also thrived in Italy. Geometer Emma Castelnuovo
was a Coxeter fan from afar, and vice versa. ‘‘I have all of Coxeter’s books,’’53 said
Castelnuovo, now in her nineties. She devoted her life not to higher math like her
father, Guido Castelnuovo, but to teaching geometry in grade schools. She worked
with children aged eleven to fourteen, in Italy and Africa, doing geometry ‘‘by hand,’’
and organizing exhibits of the children’s work. She attended all the congresses and
commissions on mathematics education, including the ‘‘Death to Triangles!’’ conference in
Royaumont, and worked with Piaget on the Commission for the International Study and
Improvement of Education in Mathematics. In 1949, she published her first book, La
Geometria Intuitiva, and wrote many textbooks for students. Coxeter had high praise

for Castelnuovo’s work and cited her as an example worth following in his report on
geometry education. ‘‘In Italy today, Emma Castelnuovo has popularized and developed a
[new approach to Euclidean geometry],’’ he said. ‘‘Her book, La Geometria Intuitiva,
describes the teaching of geometry with apparatus resembling Meccano.† The book,
beautifully illustrated, shows how geometrical shapes are used in the architecture of
Italy.’’54

 
  Another beacon was the Netherlands, where German expatriate Hans Freudenthal was credited
with saving Holland from the New Math. In his 1971 article ‘‘Geometry Between the Devil and
the Deep Sea,’’ Freudenthal cast it all in lyric terms:

 
  Geometry is endangered by dogmatic ideas on mathematical rigor. They express themselves in
two different ways: absorbing geometry in a system of mathematics as linear algebra, or
strangulating it by rigid axiomatics. So it is not one devil menacing geometry as I suggested in
the title of my paper. There are two. The escape that is left is the deep sea. It is a safe escape if
you have learned swimming. In fact, that is the way geometry should be taught, just like
swimming.55

 
  Coxeter had the same sensibility: ‘‘The ability to study, grasp, and master topics in
mathematics resembles in some ways the ability to swim or to ride a bicycle,’’ he said in the
geometry report, ‘‘each of which is, in a static sense, impossible of achievement. There is a trick
to it, and strong motivation is needed to learn the trick. Perhaps one difference is that children
seldom encounter oppressive authoritarian discipline in connection with the technique of riding a
bicycle.’’56 Geometry, Freudenthal said, would die of suffocation as a ‘‘prefabricated subject.’’ It
could be saved if presented as a field of wonderment and activity—folding, cutting, gluing,
drawing, painting, measuring, and fitting. ‘‘Coxeter’s Introduction to Geometry,’’ he said, ‘‘is a
marvelous demonstration of this attitude. The author knows, in any case, exactly where the
horizon is lying.’’57
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  Canadian Mathematical Congress, Fredericton, 1959. Top (left to right): Irving Kaplansky,
Alex Rosenberg, Coxeter. Bottom: Werner Fenchel, Philip Wallace, Max Wyman, C. Ambrose
Rogers, Hans Freudenthal.
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  Introduction to Geometry circulated internationally, with translations into six languages—German,
Japanese, Russian, Polish, Spanish, and Hungarian. The first was the German translation, in
1963, which had a title Coxeter was very fond of: Unvergangliche Geometrie—Everlasting
Geometry, or Geometry which Survives Everything.58 With the publication of Introduction to

Geometry in Japan, in 1965, architect, engineer, and geometer Koji Miyazaki became one of
Coxeter’s biggest fans. Also a professor emeritus at Kyoto University and Teikyo-Heisei
University, Miyazaki recalled: ‘‘At that time, the name ‘Coxeter’ suddenly spread out in Japan
as the biggest mathematician’s name in the world. I am clearly remembering that
time. And from that time I was thinking that Prof. Coxeter is the god of the world of
geometry.’’59

 
  A counterinsurgency against the geometry-barren New Math curriculum—as against
Bourbaki—continued to take shape in all things Coxeter. From the beginning of his career through
the heyday of Bourbaki, Coxeter simply averted his eyes from the anti-visual antigeometry trend,
and went on a crusade to bring his passion for the intuitive methods to any and all willing
spectators. He lectured on ‘‘the beauteous properties of triangles,’’ on ‘‘The Arrangement of
Trees in an Orchard,’’ on the Fibonacci numbers (with nine slides and a pineapple as a prop). On
a snowy January evening, he took the night train from Toronto to Philadelphia, putting
the final touches on his presentation as he traveled. The following day, he noted in
his diary: ‘‘About 40 broke into spontaneous applause after my 10 min. lecture on
‘Close Packing and Froth.’ ’’‡ The next month he gave a version of the same lecture to
seventy schoolteachers in Toronto. Two months later he spoke to a group of forty
prize-winning schoolchildren on ‘‘Close Packing of Spheres,’’ this time drawing upon an
eighteenth-century book with a title he thought his young pupils might find amusing—it was
called Vegetable Statics, by Dr. Stephen Hales, wherein Hales investigated how many peas, if as
many peas as possible were compressed into a large cubic pod, would abut a central
pea.60

 
  In 1967, Coxeter published two more books that would become classics: Projective Geometry
and Geometry Revisited (the latter with S. L. Greitzer). He churned out papers asking, ‘‘Whence
Does a Circle Look Like an Ellipse?’’ and lectures wondering, ‘‘Why Do Most People Call a Helix
a Spiral?’’ In another talk he issued ‘‘A Plea for Affine Geometry in the School Curriculum,’’ and
in yet another he offered simply ‘‘Reflections on Reflections,’’ which he delivered in Pittsburgh in
1967.61

 
  After his Pittsburgh talk, he traveled to Minneapolis where he was coming to the end of a
long-running pet project, working for four years with a group of mathematicians on educational
geometry films, Dihedral Kaleidoscopes and Symmetries of the Cube (two in a series of five
films). The project, aiming to improve geometry teaching in high schools and colleges
with the introduction of exciting experimental films and an accompanying series of
textbooks, was part of the College Geometry Project at the University of Minnesota,

well financed with a million-dollar-budget (funded entirely by the National Science
Foundation; classical geometry still had its champions). Coxeter laboriously wrote
and rewrote the scripts. And in Dihedral Kaleidoscopes, he took the role as starring
geometer.62

 
  The film began with Coxeter scampering across a busy street, dodging traffic, wanting to get
to the other side to look at his reflection in a mirrored store window (the narrator explained: ‘‘H.
S. M. Coxeter, of the University of Toronto, is a geometer. To Professor Coxeter, reflections are
of particular interest because of their implications for geometry and algebra…’’). With a lively
flute soundtrack, the film followed Coxeter as he manipulated mirrors in a darkened studio. He
peered into large kaleidoscopes—constructed like tents or pens and illuminated from
within,§ dropping in colored paper triangles, watching as they fluttered into place,
and grinning when they landed and generated pleasing psychedelic patterns on the
plane. The films won many awards—in Canada and the United States, at the American
Film Festival and the Golden Eagle at the CINE Film Festival, and internationally, in
Belgium, Czechoslovakia, France, Italy, Argentina—broadening Coxeter’s fan base even
further.63
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  Coxeter starring in the documentary Dihedral Kaleidoscopes.
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  Close-up of Coxeter positioning props in a kaleidoscope.

 
  For the most part, Coxeter’s crusade was all rear-guard action. He simply continued to make
his contribution in the most hands-on way he could, propagating his passion. He did, however,
keep an eye on the land mines of curriculum committees with their mandates for reform.64 He
voiced his opinion and opposition, at times with uncharacteristic volume. Tim Rooney, a
colleague of Coxeter’s in the math department at the University of Toronto, remembered the only
time he ever saw Coxeter angry: when he perceived his geometry was under attack on home turf.
Coxeter was graceful and sweet, said Rooney; there existed no easier man to get along with. But
when Rooney bumped into him in the hall one day in the 1960s, Coxeter was fuming. He
cornered Rooney, pulled him aside, and gave him an earful about a report from a
committee studying the department’s roster of mathematics courses. Coxeter interpreted
the report as disrespectful and denigrating to geometry; it concluded there was an
awful lot of geometry on the department’s course list and some of it had to go. He
interrogated Rooney about it: ‘‘What’s your committee doing recommending less geometry be
taught?’’65
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  Coxeter peeking into a kaleidoscope taller than himself.

 
  1

 
  ‘‘He really was angry,’’ Rooney recalled. ‘‘I told him, first of all, I wasn’t on that committee, at
which point he cooled down a little. And then I told him I didn’t agree with what the committee
said about geometry, which cooled him down further.’’ Coxeter recruited another member of the
department and they tackled the chair of the committee and had a furious argument about the
report.66

 
  This prompted Coxeter to more directly assume the mantle of the curriculum controversy,
pulling himself and the dignity of his geometry together by the frayed laces of his
well-worn spectator shoes. He sat on the K-13 Geometry Committee, producing the report
Geometry, Kindergarten to Grade Thirteen in 1967. It baldly stated: ‘‘Some recent
innovations under the name of ‘modern mathematics’ are unsatisfactory and ought to be
discontinued …We have in mind an excessive tendency to abstractness and rigour, a
copying of procedures more appropriate to graduate school.’’ The net effect, the report
said, was that the ‘‘geometric literacy’’ of society was even lower than its ‘‘numeric
literacy’’:

 
  The ability to visualize geometrically is a basic part of the scientist’s mental equipment…Thus
scientific literacy is founded in part upon geometric abstraction …Geometry is perhaps the most
elementary of the sciences that enable man, by purely intellectual processes, to make predictions
(based on observation) about the physical world. The power of geometry, in the sense of accuracy
and utility of these deductions, is impressive, and has been a powerful motivation for the study of
logic in geometry. Unfortunately, however, in the teaching of geometry the role of logic is very
likely to overshadow the creative and intuitive aspect of the subject. In the past this
tendency has been reinforced by the conventional attitude that visual or intuitive
‘‘qualitative’’ pattern work in geometry was a fit subject only for the kindergarten or lower
grades.

 
  We wish to emphasize as strongly as possible that we do not accept this view. Visual and
intuitive work are indispensable at every level of mathematics and science, both as
an aid to clarification of particular problems, and as a source of inspiration, of new
‘‘ideas.’’67


 
  Classical geometry, for Coxeter, was one of the arts—the Seven Liberal Arts, as set out by
medieval universities, were the Trivium, ‘‘the three roads’’ of grammar, rhetoric, and logic; and
the Quadrivium, ‘‘the four roads’’ of arithmetic, geometry, music, and astronomy or cosmology.
And so it followed that the justification for studying the liberal arts applied equally to the study
of classical geometry—they may seem obsolete, indulgent, and impractical courses of
study, but the arts are fertile soil, fostering a freedom and breadth of thinking from
which more ‘‘modern’’ achievements grow. A good number of the report’s 120 pages
contained specific suggestions for reinstating geometry and tips for teaching it in an
inspiring way to primary, intermediate, and senior grade levels—complete with practical
instructions for nail and plywood constructions, skeletal models made from straws and pipe
cleaners, the use of shadows and mirrors, and how to draw a cube from a circular array of
dots.68
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  In 1968, in a nice topological twist of history, the proper nouns ‘‘Coxeter diagrams’’ and
‘‘Coxeter groups’’ finally made their debut in—of all places—the Bourbaki volume on Lie algebras,
considered by some as the most successful volume in the whole series.69 Marjorie Senechal
delights in recalling how she once looked through all the Bourbaki volumes to see for herself the
depressing dearth of diagrams. Apart from the slippery-argument-caution-ahead S-curve, she
found only one. It was in Coxeter’s volume and it was the Coxeter diagram.70

 
  Coxeter came to be included in Bourbaki after his work intrigued a Belgian mathematician by
the name of Jacques Tits, now at the Collège de France.71 Closely affiliated with Bourbaki,
Tits drew the group’s attention to Coxeter’s work, writing the first paper ever on
Coxeter groups—‘‘Groupes et Géometries de Coxeter.’’ The paper went unpublished until
the Bourbaki volume, which Tits ghostwrote. Two-thirds of the volume is taken up
with expositions on Coxeter, baptizing not only the term ‘‘Coxeter group,’’ but also
‘‘Coxeter graph’’ (also known as the Coxeter diagram), ‘‘Coxeter matrix,’’ and ‘‘Coxeter
number.’’72

 
  Coxeter was pleased with the Bourbaki nomenclature. It meant his name was writ large into
the history of mathematics. With the publication of the Bourbaki volume on groups,
nearly ten years had passed since Dieudonné proclaimed ‘‘Death to Triangles!’’ When
Dieudonné visited the University of Toronto in 1969, Coxeter and others took him
out for a sumptuous dinner at the Park Plaza hotel, its rooftop restaurant offering a
glittering view of the city. Dieudonné was there to give two lectures, one on Lie algebras,
the other on Bourbaki.73 ‘‘It…seems to me,’’ he commented, ‘‘that when examining

which tools should be included in Bourbaki, a decisive element was whether or not
they had been used by great mathematicians, and what degree of importance these
mathematicians had attached to these tools.’’74 Coxeter had certainly found success
by these criteria.75 And in another address, in 1968 at the Roumanian Institute of
Mathematics, in Bucharest, Dieudonné stated, ‘‘[O]ne must never speak of anything dead in
mathematics because the day after one says it, someone takes this theory, introduces
a new idea into it, and it lives again.’’¶76 Coxeter could hardly have said it better
himself.
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  One decade later again, in 1980, the bright yellow cover of a publication by the Mathematical
Association of America showed a hooded skeleton, the ghost of geometry, his bony finger
dangling over a ratty scroll with a diagram of the nine-point circle—one of the first circle
theorems studied in any course of elementary geometry. The title on the cover asked: ‘‘Is
Geometry Dead?’’77
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  Cover of the January 1980 Two-Year College Mathematics Journal.

 
  Inside the MAA volume, the first page depicted the cartoon of Coxeter as the king of geometry,
wearing a crown studded with gems in the shape of the Platonic solids, followed by an article
covering the 1979 Coxeter Symposium in Toronto. Eighty-five geometers traveled from all
corners of the world to celebrate (a bit belatedly) Coxeter’s seventieth birthday and
retirement. László Fejes-Tóth, from Hungary, a giant of a geometer in his own right,
opened the conference ‘‘with a fitting and loving tribute to Professor Coxeter.’’ And he
made a presentation on ‘‘Some researches inspired by H. S. M. Coxeter,’’ highlighting
the phenomenal impact ‘‘a remark [or] a suggestion’’from such an oracle had on the
development of geometry over the last half-century, inciting many a practitioner to a
life’s work worth of inquiry (another cartoon quipped: ‘‘My geometric broker is H.
S. M. Coxeter, and Coxeter says…’’—parodying a popular commercial for the stock
brokerage firm E. F. Hutton, with the tag line: ‘‘When E. F. Hutton talks, people
listen.’’)78
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  The account of the festivities also provided a Q&A session with the legend himself,
accompanied by a caricature of Coxeter as a gravedigger, mounds of earth beside him, with
a shovel and crowbar strewn about, as he cracks open the lid of a coffin with the
gravestone: ‘‘GEOMETRY: 600BC-1900AD R.I.P.’’ His interviewer asked: ‘‘If I and
my colleague …start rhapsodizing about geometry, the reaction we frequently get is,
‘Oh, well, that’s a dead subject;# everything is known.’ What is your reaction to that
reaction?’’

 
  ‘‘Oh, I think geometry is developing as fast as any other kind of mathematics,’’ Coxeter said.
‘‘It’s just that people are not looking at it.’’79

 
  Indeed, the cover of the same journal the following year read: ‘‘Geometry Lives!’’ And inside
was an article by none other than Jean Dieudonné, now singing geometry’s praises. There was
also an article announcing a new generation of ingenious ‘‘un-Bourbakian’’ geometers, including
future Fields Medalists William Thurston and Shing-Tung Yau, both of whom had a hand in the
recent solution, by Russia’s Grigori Perelman, of the Poincaré conjecture, which had eluded
mathematicians for over a century.

 
  * Senechal elaborated to say: ‘‘If you are thinking about a mathematical idea in the Bourbaki
style, you will be working upwards from definitions and. axioms and. trying to continue through
that logical line. If you are working in Coxeter’s style, you are also working upward, but you start
with some concrete object, asking questions about it, asking how to put that in a more general
way and. what that leads to. Coxeter’s is a visual and. hands on approach, as opposed to a
strictly logical approach.’’

 
  † Meccano is the trade name for colorful metal construction toys assembled with nuts and
bolts, invented in 1901 by Frank Hornby, of Liverpool, England.
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  § One of the documentary kaleidoscopes was taller than Coxeter himself and. equally wide,
gaping jaws of mirrors (the mirrors for the kaleidoscopes were produced, after a long search, by
Litton Industries at a cost of $5,500). In an outtake, Coxeter inserted his miniature daschund,
Nico, into this monster Kaleidoscope to see what would transpire—Nico was puzzled, if not
petrified, and. stood frozen in place until Coxeter rescued him (Nico died later the same year
and. Coxeter honored him with a dedication in his book Twelve Geometric Essays: ‘‘In
memoriam NICO 1951–1967’’).


 
  ¶ As for Bourbaki’s future, after the group’s great success its productivity stalled in the 1970s
during a clash with the publisher over royalties and translation rights, resulting in a protracted
legal dispute, which was settled in 1980. Bourbaki then had a short resurrection, issuing revised
editions of old books, and adding a few volumes to the series. ‘‘But then silence,’’ said Pierre
Cartier. ‘‘In a sense Bourbaki is like a dinosaur, the head too far away from the tail,’’ he
observed, of the subsequent generations that inevitably strayed further and further from
the group’s founding ideals and mandate. Just as Bourbaki members were forced to
retire at fifty, Cartier joked that Bourbaki—himself or itself—should have retired at the
half-century mark. Regardless, for all intents and purposes, his judgment was that
‘‘Bourbaki is dead.’’ There is, however, an annual ‘‘Bourbaki Seminar’’ in Paris. And
there are rumblings that further publications and revised editions might be in the
works.

 
  # In 1981, Coxeter’s friend and polymath Freeman Dyson, a professor of physics at Princeton’s
Institute for Advanced Study, sent him a copy of a talk he had given recently, titled
‘‘Unfashionable Pursuits.’’ (See appendix 6 for an excerpt of Dyson’s talk.) Coxeter’s
unfashionable path was acknowledged again some years later by University of Alberta
mathematician Robert Moody, in a letter recommending Coxeter for an honorary doctorate:
‘‘Modern science is often driven by fads and fashions, and mathematics is no exception. Coxeter’s
style, I would say, is singularly unfashionable. He is guided, I think, almost completely by a
profound sense of what is beautiful.’’
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8  Bucky Fuller, and Bridging the ‘‘Geometry Gap’’

     
Through  natural  selection,  our  mind  has  adapted  to  the  conditions  of  the
external world …it has adopted the geometry most advantageous to our species;
or, in other words, the most convenient.

 
—Henri Poincaré, La Science Et L’Hypothèse
 


Although Coxeter retired officially in 1977, at age seventy, he did not surrender to conventional
wisdom regarding the rusting mental cogs of mathematicians beyond the half-century mark. He
continued on his prolific way, adding more than eighty items to his career bibliography, some
being new editions and reprints of earlier works, but these nonetheless required his meticulous
attention, correcting the errata that his hawk eye diligently hunted down.1 He had fought off
pressure to retire for years—‘‘depressing letter from George Duff [head of the mathematics
department] about my impending retirement,’’2 he noted in his diary. He yielded incrementally,
submitting to fractional reductions in pay. In 1975, he received notice that he was soon to be
reduced to one-third his salary,3 the same year Buckminster Fuller dedicated his book on
the ‘‘geometry of thought’’ to Coxeter—praising him as the geometer of the twentieth
century.4

 
  Coxeter and Fuller’s geometric progeny met before the men did. For its international debut,
Fuller’s iconic geodesic dome served as the American Pavilion at Expo ‘67, in Montreal. The
dome’s name derived from its geometric construction: the spherical structure takes shape from a
scaffolding of struts arranged on great circles, or ‘‘geodesics’’—any circle on a sphere
that divides the sphere into two hemispheres. All the Platonic solids can be made
into geodesic domes by the process of ‘‘triangulation,’’ dividing each face of the solid
into triangles and puffing it outward until it approximates a sphere. Fuller’s geodesic
dome was constructed from an icosahedron, by dissecting each of its faces into smaller
triangles.5
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  Buckminster Fuller’s American Pavilion Dome, Expo ‘67, Montreal.


 
  At Expo, Coxeter stood gazing at the geodesic American Pavilion for quite a while, trying to
calculate the frequency of its vertices. Hexagons surrounded most of the vertices where the struts
met, but every so often there was a pentagon instead (six triangles were arranged around the new
subdividing vertices, forming a hexagon, while five triangles were positioned around the original
icosahedral vertices, forming a pentagon). Coxeter was trying to determine the number of steps
from one pentagon to the closest neighboring pentagon. The variation in hexagons and
pentagons lended Fuller’s dome its structural integrity, and accounted for its slightly
puckered or dimpled effect. Unfortunately, Coxeter did not meet Fuller at Expo, so he left
baffled.6

 
  When he returned to Toronto, he spent an hour looking at the Expo files in the public library
without finding an adequate photograph of the dome from which to discern the frequency.
Eventually he located one at the university with a professor of microbiology—it was a very big
photograph with an overlaid transparency framing one pentagon with the inscription ‘‘Here I
am!’’ But Coxeter could still not locate a second pentagon. ‘‘We were still baffled,’’ he said in a
letter to Fuller. The dome, Fuller later informed him, had a frequency of sixteen—starting at any
pentagon vertex, one had to jump sixteen vertices in any direction before coming to
another.7
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  Coxeter’s sketch of a geodesic dome, with highlighted vertices.

 
  Fuller had long been designing structurally efficient and economically affordable dwellings,
hoping such abodes would alleviate the housing crisis in America. According to Fuller, ‘‘These
new homes are structured after the natural system of humans and trees with a central stem or
backbone, from which all else is independently hung, utilizing gravity instead of opposing it. This
results in a construction similar to an airplane, light, taut, and profoundly strong.’’8 Fuller
wanted to build maximum shelter with minimum output—the spherical structure of the
dome allowed for the largest volume of interior space with the least surface area, thus
saving on building materials and expense. He wanted to ‘‘do more with less,’’ like the
honeybees.9

 
  With his broad vision to ‘‘wake up humanity,’’ Fuller was on a mission to understand the basic
operating principles of the universe. For Glenn Smith, who had been a Fuller devotee10 even
before becoming Coxeter’s fan, one of the elements that most attracted him to Fuller’s work was
his interpretation of geometry. ‘‘I think for Fuller geometry was a means to an end,’’ said Smith.
‘‘He was in search of the basic patterns used by nature in what he felt was a perfect
comprehensive design.’’11


 
  Coxeter and Fuller met less than a year after Expo, on March 1, 1968. Coxeter had accepted
an invitation to speak at the philosophy and mathematics departments at Southern
Illinois University, in Fuller’s hometown of Carbondale. Coxeter’s first talk, for the
philosophers and other non-mathematicians, was ‘‘Geometry of Time and Space.’’ The
second was a lecture for the mathematicians, titled ‘‘Equiaffinities.’’ Fuller attended the
latter.12 Afterward, as Coxeter recorded in his diary, Fuller ‘‘treated R and me to
dinner, showed us his office and ‘dome’ house, gave me 4 of his books.’’13 At this first
meeting Fuller also asked if he could dedicate his upcoming book to Coxeter—Synergetics,
Explorations in the Geometry of Thinking, due to be published the following year. The next
month, Fuller sent a note of thanks for Coxeter’s agreement, along with a copy of yet
another book, The Dymaxion World of Buckminster Fuller by Robert W. Marks.
‘‘To Dr. Coxeter. Whose own world of mathematics has been ramified with a mastery
shared by but one or two other humans of all history,’’ Fuller wrote inside the front
cover (practicing for his effusive dedication). ‘‘There are others who have made special
contributions of extraordinary importance, but none with the comprehensivity [sic]
of Dr. Coxeter. In highest admiration and joy over the priviledge [sic] of knowing
him.’’14

 
  From there, Coxeter and Fuller developed a simpatico rapport, on the surface anyway, sending
letters and papers back and forth. On August 29, 1968, Coxeter delivered an invited lecture at
the 11th Nobel Symposium, held on the island of Lidingö, near Stockholm. The focus of the
symposium was ‘‘Symmetry and Functions of Biological Systems at the Macromolecular Level.’’
Coxeter began his talk, ‘‘Helices and Concho-spirals,’’ by asking: ‘‘What can a geometer
contribute to a biochemical conference? Is there any contact between the imaginary world of
geometry and the real world of living creatures? Perhaps a clue has been given by Dr. Monod in
his philosophical remarks about fixity and evolution. Sharing his fondness for the five Platonic
solids, I am tempted to give an account of Felix Klein’s enumeration of point groups. But that is
readily available in the literature (Coxeter, 1961, chap. 15). Instead, I propose to give a
simple pure-geometric treatment of the following six basic theorems concerning motion
and growth.’’15 Coxeter sent a copy of his talk to Fuller, although under a different
title—‘‘Thank you so much …for your ‘Man and His Environment’ lecture at the 11th Nobel
Symposium,’’ Fuller replied, ‘‘as well as your truly enchanting piece on ‘Mathematics and
Music.’ ’’16


 
  Coxeter’s alternative title, ‘‘Man and His Environment,’’ turned out to be a tad ironic, in a
calamitous sort of way. When he and Rien returned home in September, having spent the entire
summer abroad, they found among the backlog of mail a letter informing them that their
cottage had burned to the ground in a lightning storm. Their friends who sent the bad
news had watched the fiery spectacle from across the lake.17 While Rien was heartsick
with the loss of their second home, she often recalled how Donald more regretted the
destruction of one of its contents: a glass and brass lamp in the form of a stellated
dodecahedron.18
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  Buckminster Fuller

 
  Later that September, Coxeter met with Fuller again when he came to Toronto to give a
lecture at the university’s stately Convocation Hall. The seventy-three-year-old Fuller, sporting
his white crew cut and glasses strapped around his head with an elastic band, lectured to an
audience of 1,500, mostly students, warning them: ‘‘We don’t have much time.’’ Fuller was
primarily in town to open the first annual International Building Show. At that gathering he
pontificated:

 
  Integration of the future will not be east-west as we have known it, but over the
polar ice cap. The shortest great-circle routes between this part of North America
and 90 percent of the rest of humanity don’t go over either the Atlantic or Pacific
…

 
  Misunderstandings grow out of remoteness and different ways of approaching problems, but
enmity and fear won’t last forever. Either there will be no men on the earth or we will learn to
communicate …

 
  At Convocation Hall, however, the Toronto Telegram reported that ‘‘Bucky’’ was more
‘‘rapping,’’ rattling off his ideas: ‘‘the aggregate of all humanity’s consciously apprehended and
communicated nonsimultaneous and only partially overlapping experiences’’—riffing on the
‘‘synergy’’ or ‘‘energetic geometry’’ that ‘‘governs the physical Universe’’—his bravado about
humans all living on ‘‘Spaceship Earth’’—and there being no such thing as ‘‘up’’ or ‘‘down.’’* The
newspaper reporter, poking fun, tried to replicate Bucky’s dizzying string of sound bites and then
added as a kicker: ‘‘You know, he’s been this way since ‘27 when he first started out. And for
a lot of those years—people thought he was nuts. But they know he’s a genius now,
so it’s all right.’’ The students at Convocation Hall gave Fuller a standing ovation.
Coxeter couldn’t bear it till the end. He noted in his journal: ‘‘Out, disgusted, after 3/4
hour.’’19


 
  Smith, knowing both men, suspects that Coxeter respected the substance of Fuller’s work, but
didn’t have patience for his unorthodox modus operandi. Coxeter may have found
Fuller’s public persona hard to take,20 but he greatly admired his geodesic domes.
Nonetheless, when asked, Coxeter did not mince words in delivering his verdict on
Fuller: ‘‘Buckminster Fuller was a brilliant architect and engineer who knew very little
mathematics but was very proud of himself,’’ adding that Fuller ‘‘had overblown his stars as a
mathematician.’’21

 
  Coxeter was not the first to be frustrated by Fuller. Fuller was neither an architect nor
engineer nor mathematician by training, and he became a controversial figure among
experts in all those fields. He made awkward geometric mistakes, such as how many
spokes are needed on a wheel to hold it rigid (Fuller said twelve instead of seven).22
Coxeter had all the time in the world for amateurs and praised them highly. But in
Coxeter’s eyes, one of Fuller’s downfalls was his use of preexisting material without
acknowledgment.23

 
  Where Coxeter sought to share credit almost to a fault, Fuller took out patents—on his
triangulated icosahedron, for example—and he defended his patents vigilantly. In an unexpected
triangle of interconnections, the artist M. C. Escher (whose Circle Limit III prints Coxeter had
inspired; see chapter 11) had a run-in with Fuller via his son George. An engineer, George moved
to Canada to become partner in a company that manufactured portable domes much like
Fuller’s. The small company won a breakthrough contract to build these fiberglass
‘‘radomes’’ for the U.S. Air Force, but their victory party did not last long. They received
legal notice from Fuller that he was due royalties on those and all domes the company
sold. ‘‘We were livid at Buckminster Fuller for having to pay HIM royalties on the
design,’’ recalled George Escher. George was appalled that Fuller patented shapes
that Plato and Archimedes had invented. ‘‘I still get hot under the collar thinking of
how one would have the gall to patent a geometry so entirely settled in the public
domain.’’24

 
  M. C. Escher discussed this predicament, and Coxeter’s view of Fuller in a 1964 letter to their
mutual friend, chemist and crystallographer Arthur Loeb, who had a penchant for polyhedra and
symmetry, and taught at the Carpenter Center for the Visual Arts, at Harvard. Escher
wrote:


 
  About B.F. [sic], a few days ago I received some interesting information from my Canadian son
George (who is now naturalized) …I found it troubling to hear that my friend Coxeter expressed
himself in an extraordinarily negative manner with regard to B.F. in a letter to Long Sault
Woodcraft Ltd. (They were in contact with Coxeter, who gave them theoretical advice.) He
called B.F. a quack and wrote in such a derogatory manner about him that George cut off a part
of that letter and destroyed it before permitting the letter to be filed. ‘‘In all probability, there
was a considerable dose of professional jealousy; not so unusual,’’ my son wrote to me …my own
lay conclusion is that there are indeed charlatan-like facets to this man. A clever boy, this
Bucky, for sure. While Coxeter is without any doubt an extremely skilled mathematical
theoretician.25

 
  Coxeter, however, formed this scathing opinion of Fuller before he met the man, and before he
became intimately acquainted with his work. Over time, the geometer brought himself to
overlook the polymath’s indiscretions. When a reporter from LIFE magazine called in 1970,
Coxeter gave Fuller a somewhat backhanded—but then accidentally glowing—compliment. In
the article, a lengthy profile of Fuller, the reporter recounted: ‘‘I made an effort at
consulting various authorities and scholars, nearly all of whom said Fuller was irrelevant
to his field. To mathematicians, he was an architect; to architects, an engineer. It
was like calling around Seville to check out Galileo …But then I called a Canadian
mathematician H. S. M. Coxeter, ‘the world’s leading geometer,’ in Fuller’s estimation, and at
Coxeter’s urging I sent him a copy of a speech in which some of [Fuller’s] lesser-known
concepts were explained. Coxeter sent back a letter saying that one equation would
be ‘a remarkable discovery, justifying Bucky’s evident pride,’ if only it weren’t too
good to be true. The next day, Coxeter called: ‘On further reflection, I see that it is
true.’ ’’26 Coxeter told Fuller how impressed he was with his formula—on the cubic
close-packing of balls. And he later took pleasure in proving it, noting in his diary one day in
September 1970: ‘‘I saw how to prove Bucky Fuller’s formula,’’ and publishing it in a
paper, ‘‘Polyhedral Numbers.’’27 Of course, more than anything, Coxeter fell in love
with Fuller’s geodesic domes. Faced with the loss of his cottage, Coxeter had realized
in a flash that a geodesic cottage would be the perfect replacement.† ‘‘It is a great
pleasure to see how many people all over the world have used your structures for various
purposes,’’ Coxeter commented in a letter he addressed to ‘‘Bucky’’(politely asking
permission for the familiarity by asking: ‘‘…if I may join the distinguished company
of those who call you so’’). ‘‘I should think a dome (with no upstairs floor), much
smaller than your house in Carbondale, would be ideal for a summer cottage. Has

this ever been done?’’ After Fuller sent an article, ‘‘Making the Domes Available,’’
Coxeter asked: ‘‘This article made me wonder whether it would be feasible to erect such
a 4-frequency dome on a rock in the wilderness of Georgian Bay …Rien and I have
the feeling that such a dome might be both convenient and attractive in that rural
setting.’’28

 
  As things turned out, the Coxeters decided against a geodesic-dome cottage. But Fuller’s
concepts continued to occupy Coxeter’s mind. He noticed a connection between what he learned
at the Nobel Symposium and his subsequent study of Fuller’s domes. So, of course, he explored
the interface of the two subjects with a paper—‘‘Virus Macromolecules and Geodesic Domes’’—and
sent a draft along to Fuller.29 In Stockholm Coxeter heard from the biochemists that they had
recently refined a technique for staining viruses in such a way as to be able to observe their
external shape with the electron microscope. ‘‘It must have been a thrilling experience,’’ wrote
Coxeter in his paper, ‘‘to find that, whereas some, such as measles, are long chains with a
helical structure, others, being ‘finite,’ have well recognizable icosahedral symmetry and
look like tiny geodesic domes.’’ Coxeter went on to draw direct correlations: Fuller’s
1955 dome built as bachelor officers’ quarters for the U.S. Air Force in Korea seemed
to be the shape of the REO (respiratory enteric orphan) virus; his thirty-one-foot
geodesic sphere at the top of Mount Washington, in New Hampshire, was matched by the
herpes virus and varicella (chicken pox); his U.S. Pavilion in Kabul, Afghanistan, found
its twin in the adenovirus type 12; and the ‘‘radome’’ standing guard at the Arctic
Distant Early Warning Line (a system of radar stations set up to detect Soviet bombers
and missiles during the Cold War), corresponded to the infectious canine hepatitis
virus.30

 
  Fuller, in this intellectual gift exchange, gave Coxeter an icosahedral world map. ‘‘I had fun
assembling the icosahedral world,’’ Coxeter replied, ‘‘which now adorns my study
mantelpiece.’’31 And later Fuller sent him a hanging sculpture called Tensegrity. The
word tensegrity, as Fuller explained in Synergetics, was an invention, a contraction of
‘‘tensional integrity’’—it described the structural relationship between the sculpture’s two
components, sticks and string.32 Coxeter was very fond of his Tensegrity and gave it
prominent display; nestled in its own alcove by the front door, the sculpture cast a
pleasingly symmetrical shadow of suspended sticks (the strings disappeared), lit from above
by Coxeter’s antique stained-glass Archimedean-solid light fixture from Alicia Boole
Stott.


 
  In 1975, Fuller’s much-anticipated tome, Synergetics, Explorations in the Geometry of
Thinking, was finally published with its flattering dedication to Coxeter. Off the record, Coxeter
thought the book ‘‘a lot of nonsense.’’ He suggested Fuller would have done better to
consult a mathematician in the writing, rather than name-dropping in the dedication.33
‘‘Coxeter saw himself as a mathematician, and since Fuller attacked the traditional
mathematician,’’ noted Smith, ‘‘along with many other specializations, it would be natural for
Donald to react to that attack.’’ Smith wagered that Fuller did not think of Coxeter as
a typical mathematician, out to prove theorems, but rather a mathematician who
respected the intrinsic beauty in the patterns of the universe. And Fuller, in turn, sincerely
respected and appreciated Coxeter’s work.34 The dedication certainly read as high
praise:

 
     
To me no experience of childhood so reinforced self-

 
confidence in one’s own exploratory faculties

 
as did geometry. Its inspiring effectiveness in

 
winnowing out and evaluating a plurality

 
of previously unknowns from a few given

 
knowns, and its elegance of proof

 
lead to the further discovery and comprehension of a

 
grand strategy for all

 
problem solving.

 
By virtue of his extraordinary life’s work in mathematics,

 
Dr. Coxeter is the geometer of our bestirring

 
twentieth century, the spontaneously acclaimed

 
terrestrial curator of the historical

 
inventory of the science of

 
pattern analysis.

 
I dedicate this work with particular esteem for him
     

 
and in thanks to all the geometers of all time

 
whose importance to humanity

 
he epitomizes.35
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  The notion of the existential role of the geometer is something that Walter Whiteley, director
of applied mathematics at York University in Toronto, has also given a good deal of thought. As
an applied geometer, Whiteley searches for patterns to solve problems—how the geometry of
proteins affects their behavior in the body, how the shapely hood of a Mercedes is modeled in
such computer programs as CAD, how a robot is instructed to reach out and grab
three-dimensional objects when fed camera pictures, and what shapes and structures of buildings
and bridges stand or collapse.36

 
  From his work in these areas, Whiteley has come to believe in the power of the
visual not only in doing mathematics, but also in applying it. Without a well-versed
knowledge of the visual and the geometric approach to mathematics, society suffers
what Whiteley calls a ‘‘geometry gap.’’ To remedy the situation, he has become an
ardent advocate for the visual method, and presents his ideas in a cogent presentation
called ‘‘Learning to See Like a Mathematician’’—it explains how mathematicians and
scientists who use mathematics need to learn, or relearn, the visual and geometric
languages.37

 
  ‘‘The visual is central to all levels of mathematics,’’ said Whiteley, delivering his opinion one
day to small amphitheater of schoolteachers at a mathematics education conference at York
University. ‘‘It changes the questions you ask, it changes the methods you use, it changes the
answers, and it changes the way mathematicians communicate and teach. What you see is central
to how you reason and problem solve.’’38

 
  One of his vignettes recounted a problem during the Second World War, when the British were
losing too many aircraft. Mathematician and statistical theorist Abraham Wald worked on the
problem of how to save more planes; he was trying to determine where extra armor plates would
be most beneficial. His first instinct was to add armor to the most damaged areas of returning
planes, but after analyzing the visual data—the pattern of bullet holes on returning aircraft—Wald
reached the opposite conclusion. He conducted his analysis by drawing an outline of
a plane and cumulatively marking all the places where returning planes had been

shot, which left almost the entire image covered, except two crucial locations. Wald
then correctly surmised that the planes lost in battle had been hit in the unmarked
areas—the cockpit and the tail engine—indicating it was those areas that needed more
armor.39

 
  Whiteley also described a scenario wherein data was poorly represented visually and this
disinformation caused faulty analysis: the disastrous decision to launch the space shuttle
Challenger in 1986. The O-rings designed to seal the joints between the rocket boosters were
damaged by the cold temperatures of the launch day, but the all-important piece of
information—that the O-rings’ damage increased as temperature decreased—was hidden in
cluttered and convoluted charts. As Edward Tufte, arbiter of the visual representation of
information and professor emeritus at Yale, stated in his book Visual Explanations: ‘‘Had the
correct scatterplot or data table been constructed, no one would have dared to risk the
Challenger in such cold weather.’’40

 
  In doing math, Whiteley continued, our brain is not primarily number crunching. It is seeking
patterns. And as we explore, our visual cortex actually duplicates these images and patterns in
the brain. This is not just a metaphor—like ‘‘the mind’s eye’’ or ‘‘a picture in the mind.’’
This process literally involves ‘‘thinking in pictures.’’‡ Visual images and patterns are
actually built up in the brain, rather than being converted into neurological code.41
Whiteley told the story of a bizarre old psychological experiment involving the retinotopic
mapping of a monkey’s brain. While the monkey stared at a visual image, a constellation
of lights on a black screen arranged like a wheel with spokes, radioactive fluid was
pumped into the monkey’s bloodstream to follow the blood’s path in the brain. The
monkey was then sacrificed and its brain dissected. The location of the radioactive
fluid in the monkey’s brain physically reproduced, like a photocopier, the image of the
constellation.42

 
  For Whiteley, it all comes down to underlining how visual perception builds into reasoning in
the brain. Even algebra is carried out using visual patterns within the equations and
symbols—the appearance can be transformed without changing the content. ‘‘Algebra is
cosmetics, not surgery,’’ Whiteley said, displaying an algebraic equation translated
into visual components of squares and circles. ‘‘Failure to do and teach mathematics
visually is excluding numerous people and making mathematics harder,’’ Whiteley
concluded. And he conjectured that the dearth of the visual, the decline in classical
geometry over the last hundred years, has had a regressive effect, resulting in ‘‘the
geometry gap.’’ This is much like ‘‘the ingenuity gap,’’ a concept raised in the book of the

same name—by Thomas Homer-Dixon, director of the University of Toronto’s Trudeau
Centre for Peace and Conflict Studies—chronicling examples of people and societies
facing a crisis of ingenuity or know-how, which leaves them unable to solve problems of
their own creation. Whiteley’s thesis holds that in the realm of science, the sedentary,
mathematical areas of our brains, and the consequent lack of ingenuity—the inability to solve
problems and make discoveries—results from an ignorance of visual and geometrical
tools.43

 
  ‘‘We will probably end up having to rediscover some things because we won’t have people like
Coxeter to make the connections,’’ he said. Mathematicians and scientists, ignorant of historic
geometric insights, will have to redo investigations from scratch, repeating the same pitfalls as
their predecessors, until they reinvent the required results. In mathematics this can be part of the
joy of discovery (or rediscovery). But in science, en route to urgent research, it could translate
into unwelcome roadblocks and delays.44

 
  Whiteley cast a concrete example of the geometry gap during a gala dinner concluding the
2002 Budapest conference, held aboard the tour boat Europa. After dinner, mathematicians
gathered in the darkness of the upper deck as the boat passed beneath the Danube’s intermittent
tunnel of bridges. Seizing on perfect timing, Whiteley constructed a metaphor. He recalled a
book he had read recently—Design Paradigms by Henry Petroski, professor of civil engineering
and history at Duke University—on the theory of why and when bridges collapse, chronicling the
problem of engineers failing to learn their own history. ‘‘Petroski says that within the span of
forty or fifty years, the engineers who learned something from the last bridge disaster have left
the field,’’ said Whiteley, ‘‘and the next generation comes along and hasn’t learned the same
lessons.’’45

 
  The geometry gap has exacerbated this situation. In the past, geometers and engineers were in
constant communication—engineers knew geometry, and geometers knew engineering.
When projective geometry gained popularity in the nineteenth century, for example,
engineers were quick to see that the structural question of statics was ‘‘projectively
invariant.’’ Statics is the study of how forces converge, and resolve or fail to resolve—on the
support structures of bridge, for example. Will a bridge retain its structural integrity
when all the forces of gravity and weight are projected and converge on stress points?
Projective geometry (to loosely draw the pure-to-applied analogy), is the study not
of the shape and size of figures, as with Euclidean geometry, but the properties of
these figures that are retained, or are invariant, under a projection—that is, when the
image of the figure is projected by straight lines that converge on a plane or canvas,

what qualities of the object are preserved? Engineering textbooks were filled with
projective geometry until the mid-twentieth century, when geometry was in the depths of
its decline. So from that point in time onward, engineering students were no longer
exposed to geometry. Even the vocabulary of their predecessors was foreign, let alone any
clue of which questions to ask to close the gap in knowledge.46 And by Petroski’s
calculations, the world is overdue—knock on wood it shall continue to be—for a bridge to
collapse.47

 
  In his book Projective Geometry, Coxeter described this branch of geometry as a worthwhile
way of ‘‘stretching our imagination.’’48 And while for Coxeter stretching one’s imagination was
application enough, the most fundamental application of projective geometry stems from
its earliest origins—the fine arts. In 1425, Italian architect Filippo Brunelleschi put
forth his ideas about the geometrical theory of perspective (later consolidated into
a treatise by Leon Battista Alberti, and developed further by Albrecht Dürer, and
Leonardo da Vinci). From projective geometry’s origin in the art world, one can easily
appreciate how its properties held the attention of mathematicians like Coxeter.49
Much as how hyper-dimensional objects are studied through projections down to lower
dimensions, projective geometry explores how three-dimensional objects appear when
projected onto a two-dimensional canvas, or plane. Investigations in projective geometry
also consider the before-and-after relationship, the properties of the original object
versus its projected image. When an artist draws a picture of a tiled floor on a vertical
canvas, for instance, the square tiles cease to be square in the projection and become
trapezoids, as their sides and angles are distorted by foreshortening (but the essential
image is unchanged in the sense that the lines remain straight). Similarly, when a
lamp with a circular lampshade casts a shadow, the circular rim of the shade becomes
an elliptical shadow on the floor and a hyperbolic shadow on a nearby wall. ‘‘Thus
projective geometry waives the customary distinction between a circle, an ellipse, a
parabola, and a hyperbola,’’ said Coxeter; ‘‘these curves are simply conics, all alike.’’ The
property of parallel lines is also altered under projection; parallelism is not preserved as
parallel lines seem to meet, like railway tracks, at the horizon. The horizon, in projective
geometry terminology, is called the ‘‘line at infinity’’ and parallel lines meet at a ‘‘point at
infinity.’’§
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  An illustration of the optical instrument used by Filippo Brunelleschi to render an accurate
perspective view.


 
  Coxeter’s book Projective Geometry, published in 1964, was heralded as a worthy
contribution to the field’s illustrious ancestry.50 Reviewing the book, Gian-Carlo Rota, a
philosopher of mathematics and a leader in combinatorial geometry at MIT, gave a glowing
evaluation: ‘‘There is much to be said about a book that is perfect. If we were asked to
pick a worthy successor to Euclid’s Elements, we might choose this one. Of course,
the synthetic method in geometry is now ‘out of fashion.’ This simply means that it
will be back in fashion in another five years …so we might as well gear up to a few
hours of high mathematical entertainment by reading his book on some cold winter
evening.’’51
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  Everyday examples of projective geometry: parallel train tracks appear to meet at the horizon;
a circular lampshade casts a hyperbolic shadow.

 
  Over the years, Coxeter’s classical geometry, as if on cue, was unearthed, a fragment here and
there, like an archaeological artifact, rediscovered by mathematicians and scientists when needed.
Coxeter acted as a repository of forgotten solutions, a memory bridge closing the gaps. As
pockets of the old classical geometry recurred in mathematics and became relevant in the applied
sciences, Coxeter was an encyclopedic sage. ‘‘In his mind he carried a lot of the connections for
us,’’ said Whiteley, ‘‘from an earlier period when this geometry was very active to a period now
where it becomes active again—but in between many pieces of it were lost. He kept a culture
alive.’’ Over the course of his career, people sent Coxeter letters containing a diagram, a
paper, a proof, or theorem they had recently discovered—or rediscovered—and asked,
‘Have you seen this before?’ Coxeter was able to look at this image, cross-reference it
through his brain, and say, ‘Yes, this is something that appears here and here and
here.’

 
  ‘‘It struck me how essential it was that he had in his own mind, in his own experience, the
capacity to make these connections,’’ Whiteley observed. ‘‘This is not something we can do now
with Google. You can’t put a diagram into Google and say find me other diagrams that are ‘like
this.’ But this is what people of his caliber could do, in their minds. You could take Coxeter a
picture and ask, ‘Have you ever seen anything like this before?’ And he would provide you with a
geometrical metaphor or an exact reference. No computer is capable of answering those
kinds of queries. How on earth are we going to replicate that,’’ wondered Whiteley,
‘‘when we don’t have Coxeter? There will be a lot of geometry that disappears into
storage.’’


 
  Of course, Coxeter was only human and one geometrical image he found in his filing cabinet he
did not recognize. It was a particularly stunning and clever representation of symmetries by a
graph. He called his friend and graph theorist William Tutte, at the University of Waterloo, and
asked him if he had every seen it before. Tutte said, ‘‘Yes Donald, I have. You discovered it.’’
Coxeter then wrote a paper about his rediscovery of his own discovery, which he titled ‘‘My
Graph.’’52
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  In the early 1990s, Douglas Hofstadter wrote a few ‘‘Dear Professor Coxeter’’ letters.
Hofstadter wanted to tap into Coxeter’s mental archives and ask him if he had ever seen what
Hofstadter hoped was an original discovery in projective geometry—his Garland theorem. Within
the space of several months, Hofstadter sent Coxeter a trilogy of letters, each more
than ten pages long, typed single-spaced and double-sided, albeit with many diagrams
interspersed.53
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  Coxeter’s graph, which he forgot he had invented.

 
  In the introductory letter, Hofstadter began: ‘‘First of all, let me apologize for intruding on you
with this long letter. You must have plenty to take care of besides thinking about ideas foisted
upon you by a stranger. But perhaps I am not entirely a stranger. Although the letterhead gives
my ‘official identity’ ’’—it’s a long one: professor of computer science and cognitive science;
adjunct professor of psychology, philosophy, and the history of philosophy of science; and
director of the Center for Research on Concepts and Cognition, at Indiana University, in
Bloomington—‘‘you may perhaps know me—or know of me—as the author of the book
Gödel, Escher, Bach: An Eternal Golden Braid.’’ Coxeter replied: ‘‘…clearly, you are no
stranger.’’54

 
  Hofstadter divulged he had been on a ‘‘geometry binge,’’¶ and he wanted to tell Coxeter ‘‘of
the deep debt I owe you.’’ Hofstadter grew up profoundly in love with mathematics. He loved its
‘‘abracadabraic’’ and ‘‘mirabile dictu’’ qualities. He made a number of modest but genuinely
original discoveries in number theory as an undergraduate, and then started his graduate
studies in mathematics at Berkeley, in 1966. But after a year or so, the relentless push
toward abstraction and nearly total lack of imagery ‘‘brought me to my knees. I got out
of math in Berkeley,’’ as he recalled. ‘‘I was fed up. It was a horrible experience for
me to be suddenly repelled by what I had always assumed would be the love of my
life.’’55


 
  Eventually he carved his niche in an area of physics, solid-state theory. Doing his PhD research,
he discovered the energy spectrum he called Gplot, now known as the ‘‘Hofstadter butterfly’’—the
first fractal, or multifractal, ever found in physics (this preceded Mandelbrot’s fractal fame).
When Hofstadter graduated, however, he was ready for another switch, and he picked his
longtime obsession with how the mind works. In 1979, he published his Pulitzer Prize-winning
Gödel, Escher, Bach, and before long he had earned his status as a free agent at Indiana
University; he had license to explore the workings of the mind in any way he liked. He focused
most of all on the mechanisms of analogy. But one day he found himself caught up by
a small problem in plane geometry and the cognitive process it generated intrigued
him.56

 
  In a thought experiment, of sorts, Hofstadter chose the equilateral triangle as his guinea pig.
As his fascination grew, he was caught off guard by the fact that the triangle had more than one
center. ‘‘I had heard words such as ‘orthocenter,’ or ‘centroid,’ or ‘circumcenter,’ and I
sort of knew these things existed, but to tell the truth, when I found out that any
triangle has many centers, I was really thrown,’’ he said. ‘‘It seemed like a miracle.
In fact, the triangle has an infinite number of centers, but they are not all equally
interesting.’’57

 
  At one point he made a droll analogy between this startling profusion of triangle centers and
the numerous parts of the human body that might qualify as an analogy. He recounted: ‘‘Suppose
I asked a bunch of people to say what they think is the ‘most important’—that is, the ‘most
central’—part of their body. One person might shout out, ‘My brain!’ Somebody else might say,
‘No, my stomach!’ and other people might say, ‘My heart’ or ‘My sexual organ’ or even ‘My belly
button.’ It could go on and on like that, and …each person could surely defend their point of view.
Someone might even say, ‘My kneecap!’ although since there are two of them, that
would break the body’s natural symmetry, so maybe one would have to amend it to
include both kneecaps.’’ Looking back, Hofstadter finds this analogy flippant, but it
helped him wrap his head around the fact that a triangle has not just one center but
many.58

 
  Hooked by his triangle investigations, Hofstadter continued on and discovered new centers of
his own. Among the discoveries, there were a few rediscoveries, and at times he was crestfallen to
learn that he had come along a century or more too late. He relayed his learning curve to
Coxeter:


 
  In a bookstore, I came across the book by you and Samuel Greitzer, Geometry Revisited. It was
electrifying. There is no better word for it. I just gobbled it up, at the same time inventing new
geometric ideas on my own …For example, smitten with duality, I invented the idea of
reciprocation in a circle before I came to the chapter in your book where it was discussed,
and I naïvely thought that maybe I was the first person on earth to have come up
with that idea! …Oh, well. In any case, all of this was astonishingly beautiful, even
intoxicating, and of course your books were the vehicles that conveyed all this beauty to
me.

 
  Hofstadter had another epiphany, one he was sure was his own—‘‘absolutely new,
something stunning, deep, and beautiful.’’ He called it the Garland theorem, for the
beauty of the interconnected results; and at the core of it was a new center for the
triangle, found within a cluster of triangles and circles. ‘‘All this gave me quite a bit of
hope that I was the first to see this gem,’’ wrote Hofstadter, this time in an article,
‘‘Discovery and Dissection of a Geometric Gem,’’ a copy of which he sent along to
Coxeter.59

 
  In contemplating whether or not his Garland theorem was in fact a new discovery,
Hofstadter noted: ‘‘Compared to a titan like H. S. M. Coxeter, I have but a minuscule
storehouse of knowledge.’’ So he asked Coxeter whether he had ever seen anything like the
Garland theorem before. In response, Coxeter recommended his two books on projective
geometry, which Hofstadter duly ingested. And Coxeter made a suggestion: ‘‘Before
seeking publication, you should compose a conventional proof’’ (and offered a few
hints). In the end, Hofstadter found that his Garland theorem was not the original gem
he had hoped. It was at once a deflating and educational moment. ‘‘It has been a
fabulous experience,’’ he told Coxeter, ‘‘and it is you whom I credit, in large part,
for launching me on this voyage and being my guide. I will never be quite the same,
after having drunk so deeply from the infinite well of geometry. My life is in some
central way forever changed, thanks to the mysteries and beauties of triangles and
circles.’’60

 
  Hofstadter was grateful that triangle geometry had placed him in a revealing laboratory of
self-observation, a chance to watch himself in the discovery process. In his article, he discussed
his belief that the visual approach and the use of analogy it generates is the primordial tool of
mathematical discovery. Coxeter concurred, mentioning that he too had made profitable use of
analogy in discovery, referring to his childhood paper ‘‘Dimensional Analogy’’ and all the fruit it
bore.
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  Douglas Hofstadter wrote in one of his letters to Coxeter: ‘‘I am enclosing, for your amusement,
this design I did, called an ‘ambigram,’ which is intended to be readable both right-side-up and
rotated 180 degrees, as ‘Coxeter.’ I hope you can make it out.’’

 
  In his article, Hofstadter also issued a critique, full of frustration, railing against the
‘‘enormously abstract directions that math has gone in, over the last, say, 50 or 60
years.’’ He recounted a trip to the mathematics library at Indiana University, trying
to find books or journals that might provide some hint as to whether his discovery
was new. The Journal of Geometry was particularly dismaying. Hofstadter compiled
stats on the ‘‘picture density’’ of the journal. From three successive journals in 1991
and 1992 he recorded fifty-two articles, thirteen of which contained pictures. ‘‘The
page-level statistics are even more revealing,’’ he observed. ‘‘In these issues there were 602
total pages, but only 39 of them had any pictures! In other words, on the average, 75
percent of the articles (39/52) and 93 percent of the pages (563/602) in the Journal of
Geometry are pictureless. By contrast, Coxeter and Greitzer’s book Geometry Revisited,
which has 153 pages of text, has roughly 160 separate diagrams—an average of over
one per page! …I cannot really judge the articles in the Journal of Geometry,’’ he
concluded. ‘‘My intuition tells me that many of them must be shallow despite their air of
depth, but surely some of them are genuinely deep and important. Sometimes I feel
positively daunted by the remoteness and incomprehensibility of the whole journal, and I
feel a kind of childish admiration for anyone who can think at such abstract levels.
But I oscillate between respect and disgust. It is a very strange and uncomfortable
feeling.’’61

 
  For Hofstadter, the visual is the absolute crux of mathematics. ‘‘I always have to have a
picture,’’ he said recently. ‘‘And I don’t like to make it sound as if, when I say visual, that a
blind person couldn’t have it. I think a blind person could have it just as much. I feel the visual
means thinking about space—however one represents space in one’s head.62 A bat may be blind
but certainly has a wonderful understanding of space; I think a bat would be capable of geometry
if it had the intelligence. So it’s not the eyes so much. The word ‘visual’ for me means
something that goes on in the brain that has direct contact with space and distance in
space.’’63


 
  The lack of the visual in modern mathematics Hofstadter can’t quite explain, though not for
lack of trying. It’s not quite a conspiracy, or deliberate dishonesty, he said. He offers this
analogy: ‘‘I feel that mathematicians have developed a paranoid fear of non-rigor or of
intuition. They almost don’t want to admit that they are human. It’s a little bit like
what’s happened since September 11th in the United States where airport security has
gone up and up and up, out of perhaps some genuinely correct fear but also out of
paranoia of terrorists …to the extent that you can’t even carry a nail clipper onto a
plane It’s as if mathematicians have this mania for turning everything into prickly
formal symbols and using as many symbols as possible. Even words like ‘if,’ ‘then,’
and ‘is’ are routinely replaced by symbols, so that what could be understood if you
wrote it in words looks very technical and forbidding, and as if it had much deeper
meaning than it really does. It pushes people away, even people who love math; not only
the English majors who maybe would never have been attracted to math, but also
people who are good at math. My feeling is that there is a great deal of obfuscation, of
obscurantism in mathematics. I don’t mean to say that rigor doesn’t have its place. But I
feel as if hidden behind what mathematicians say, there are often pictures. And that
mathematicians are frightened of showing these pictures. Why they are frightened I don’t
know.’’64

 
  Hofstadter feels on the whole that the pendulum is swinging back in favor of the visual. As he
said in one of his letters to Coxeter, ‘‘I have a sense that we are on the verge of something of a
turnaround. By distributing my article and getting back various responses, I have learned that a
number of important mathematicians are ‘closet Euclideans.’ ’’65 Walter Whiteley, then,
is in decent company singing the praises of geometry’s visual tool. He is joined by
a chorus of mathematicians who quietly or vociferously support a more prominent
place for the visual perspective in math and science. ‘‘The point of view of people like
Coxeter, and many mathematicians like myself,’’ said Sir Michael Atiyah, ‘‘is that
geometry trains the imagination—it is sport for imagination and inspiration—and that
thinking about geometrical things is very important not only for mathematicians but
scientists and engineers in their attitudes toward the three-dimensional world and how
we see it.’’ After geometry disappeared from the curriculum, university engineering
departments complained that students couldn’t understand three-dimensional geometry—they
didn’t know where to start in building machines because they didn’t know how to draw
things in three dimensions. As a backlash to these deficiencies, combined with the
campaigning of Coxeter and others, a movement is afoot to reintegrate geometry into

the syllabus in a modernized way, focusing on the intuitive as well as the formal side
of mathematics. However, to say the pendulum has swung back is an exaggeration.
‘‘Pendulums tend to wobble around a bit, and this is not an easy task to get right,’’ said
Sir Michael. ‘‘It keeps changing with every generation and it is still very much a live
issue.’’66

 
  In 2001, the Royal Society of London, the apogee of all mathematical and scientific wisdom,
published a report on the state of geometry education. It, too, argued for reinstating the study of
geometry to its deserving stature. One recommendation urged the development not only of an
awareness for the historical and cultural heritage of geometry in society, but also the
development of skills for applying geometry in real-world contemporary contexts. That as many
students as possible fully develop their mathematical potential through geometry, the report
stated, ‘‘is a matter of national importance.’’67

 
  * ‘‘People in China are not upside down.’’ ‘‘Your head is out, your feet are in.’’ ‘‘I’m
going outstairs and instairs.’’ ‘‘We’re all on a space vehicle.’’ ‘‘Like it or not, you’re an
astronaut.’’

 
  † Coxeter recalled reading somewhere, ‘‘the Salvador Dali built himself an icosahedral house
(having fifteen faces above ground and the remaining five in the basement).’’

 
  ‡ Another weapon in Whiteley’s arsenal is his deconstruction of the word theorem. By standard
definition, a theorem is a proposition proved by a chain of reasoning. Whiteley takes it further.
This word comes from the same root as theater, he says—from the Greek word theorema meaning
‘‘spectacle’’ or ‘‘speculation.’’ A theorem, then, is something that has played before ones eyes,
been considered with adequate speculation, to the point of epiphany when one can exclaim ‘‘I
SEE!’’

 
  § Artists use the terms the ‘‘ideal line’’ or the ‘‘vanishing line’’; and the ‘‘ideal point’’ or the
‘‘vanishing point.’’

 
  ¶ In letter number three Hofstadter began by apologizing for once again ‘‘inflicting’’ on
Coxeter another enormous letter: ‘‘What is wrong with me? Geometromania, I am
afraid.’’
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You  see,   which  parts  of  mathematics  are  applicable—not  applied  but
applicable—it is very hard to tell in advance.…And why mathematics can be
applied to other things, to physics—that’s a mystery.

 
—HENRI CARTAN
 


One day in the early 1960s, Gord Lang, a communications man, visited Coxeter in his
ivory-tower office with an applied query about sphere packing—without classical geometry and
the age-old question of how best to pack spheres, like a grocer’s display of oranges or a
cannoneer’s stack of cannonballs, the information transmitted through cyperspace would be
garbled beyond recognition. In one of Coxeter’s papers there is a very simple explanation of
sphere packing, starting with the related ‘‘kissing number’’ problem: ‘‘Every intelligent child
knows that a penny on a table can be surrounded by exactly 6 others, all ‘kissing it’ and that
when the pattern is continued the pennies arrange themselves in straight rows. Tangents at all
the points of contact form a tessellation of regular hexagons, one surrounding each disc. In other
words, the 2-dimensional ball-packing problem is completely solved. Packing billiard balls in
3-space is less obvious.’’1

 
  Packing spheres in higher dimensions kept geometric minds reeling for centuries. The problem
dates to 1611, when the German astronomer Kepler conjectured that the densest way
to pack spheres was by following the method of the grocer stacking oranges. Kepler
was unable to prove his hypothesis, as were many mathematicians through history.
Eventually, Thomas Hales at the University of Pittsburgh proved Kepler correct in
1998. After six years of work Hales produced a proof generated by three gigabytes’
worth of computer programs, also known as ‘‘proof by exhaustion’’ or the ‘‘brute force
method.’’2

 
  The grocer’s arrangement allows twelve balls to congregate around a central ball, which leads
us back to the kissing number problem, in dimensions higher than two. In 1694, Sir Isaac Newton
bounced this problem around with Oxford mathematician David Gregory. They debated whether
a rigid material sphere could be brought in contact with thirteen other such spheres of the same

size. Gregory thought yes, Newton no.3 In 1727, Stephen Hales (no relation to Thomas) tried to
figure it out by compressing several fresh parcels of peas in the same pot, keeping the
pot closed and adding water (approximating a force of as much as 1,600 pounds). He
observed that the peas dilated and formed ‘‘into pretty regular Dodecahedrons’’ but
his results were ultimately inconclusive.4 Various mathematicians eventually solved
the threedimensional kissing number problem in the nineteenth century—Newton was
correct.5

 
  When Gord Lang first visited Coxeter at the University of Toronto, he was in the early stages
of developing a modem. Lang had previously overseen the design of a centralized purchasing
system for Trans Canada Airlines, which was installed at the airline’s Toronto office.
And he had been in charge of a communication system for Datar, a Canadian Navy
project. Lang noted proudly that Claude Shannon, the progenitor of communications
technology and author of ‘‘Mathematical Theory of Communication,’’ reviewed the design
concepts for Datar, which was considered the world’s first digital data network. Shannon
was completely satisfied and noted that it was the first practical application of his
information theory.6 Shannon’s theory, published in 1948, addressed the problem of
information capacity—the capacity of a channel to transmit information in a manner that
ensured messages were received as error free as possible. He posited that the design of
such a communication system was analogous to the sphere-packing problem of the
geometer—sphere packing was a strategy for efficiently storing and encoding data to eliminate
errors.7

 
  During Coxeter and Lang’s many meetings, it was Coxeter’s job to point Lang in the direction
of any sphere-packing research that might be useful in developing a modem. But first, it was
Lang’s part to explain to Coxeter this application of geometry, to give the pure mathematician a
sense of what he was looking for.8

 
  The challenge of sending information digitally is to do so with the least possible amount of
ethereal noise contaminating and confusing the data traveling down a modem line, or the voice
through a telephone line. All the information that travels down the wires and through the skies is
encoded as digits, as zeros and ones (or more complicated symbols). The coding must be done in
a way that minimizes waste—waste of money and power—and in a way that minimizes distortion.
‘‘So ‘cheese’ is not distorted to sound like ‘choose’ or ‘geez,’ ’’ said Neil Sloane, at
the AT&T Shannon Lab. ‘‘Once you start trying to minimize distortion, you very
quickly come up against the questions of packing balls into a box in high dimensional
space.’’9


 
  Think of the information signals as points, Sloane suggested; for information points to be
transmitted accurately and clearly, they need to be far apart, not interfering with one
another. So imagine that the points are positioned at the exact center of a billiard ball. If
the information points are then packed together and sent down the wires, the outer
circumference of the billiard ball’s sphere would serve as a protective shield, insulating the
central information from disruption or distortion; such an arrangement would absolutely
guarantee that points cannot be too close together and that information would not be
garbled.10

 
  ‘‘Let’s solve the problem of how to pack lots and lots of balls, all the same size, in
1000 dimensions, a 1000-dimensional box,’’ said Sloane. ‘‘Why 1000 dimensions? The
number of dimensions simply corresponds to the number of numbers—ones and zeros—in
each coding, like a bar code. Say your mother is talking into the microphone and you
want to convert her voice to zeros and ones. What you do is take a little snippet, take
one second, and you cut up her voice signal into little pieces. You chop it up so you
have little sausages coming out of her mouth. And each sausage is one second long.
Now, in order to send that voice code, you need to sample it. You look at its values
1000 times a second—think of that as the coordinates of a point [of information] in
1000 dimensions.’’* And so, by figuring out the best arrangement of billiard balls in a
thousand-dimensional box—the number of dimensions corresponding to the number of
coordinates, such as (x, y, z …) up to one thousand—an answer presents itself as to how
information should be best encoded and sent down the wires. In our present-day digital reality,
however, the sample is done continuously, producing the problem of packing spheres in
infinite dimensions—one sample after another after another after another, ad infinitum,
chugging along endlessly, thus producing the coordinates of a point in infinite-dimensional
space.11

 
  In the early days of communications research, telephony scientists like Lang focused on much
lower dimensions, such as eight. When Lang came calling on Coxeter, he was interested in a
packing called the E8 lattice—lattice because the center points of packed spheres align in such a
way that when connected they produce a crisscrossing lattice of points. It was then Coxeter’s job
to bring to Lang’s attention any relevant sphere-packing research, useful fodder for his modem
design. Coxeter provided Lang with both historic research and scoops on ongoing research, the

cutting-edge developments on the ancient sphere-packing problem. And Lang convinced
Coxeter to do some pure research that might help Lang’s applied pursuit. Coxeter was
reluctant, but after some coaxing he finally decided he might be able, and willing, to
contribute.12

 
  To this end, in 1963, Coxeter made a contribution to the ball-packing problem that had been
undertaken by Kepler, Gregory, and Newton. Coxeter showed that the ‘‘12 around 1’’
arrangement’†—known to produce a hexagonal arrangement of balls—could be shifted a bit, or
translated, by rolling the balls ever so slightly, and in doing so the balls reconfigured into an
icosahedral arrangement. Buckminster Fuller later named this process the ‘‘jitterbug
transformation.’’ Although Coxeter’s amount of wiggle room wasn’t enough to accommodate a
thirteenth ball, it did permit the twelve balls to be arbitrarily rearranged (as Conway and Sloane
later proved). Coxeter wrote the paper ‘‘An Upper Bound for the Number of Equal
Nonoverlapping Spheres That Can Touch Another Sphere of the Same Size,’’ and gave Lang an
early copy before publication.13
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  Coxeter showed that Kepler’s hexagonal close-packing of spheres, left, could be transformed
into the icosahedral arrangement by simply rolling the balls around.

 
  When Lang refined Coxeter’s results for his purposes, he used the ‘‘brute force method,’’
cobbling together time on many computers, in Toronto and overseas. After months and months, a
box was shipped with the results in punch card format—the Paleolithic precursor of computer
disks—and in the early 1970s Lang submitted a proposal for an E8 lattice modem.14 He then
went to see Coxeter with his proposal to show him results of their collaboration.15 ‘‘Lang was
very pleased with himself, and he was determined to show Coxeter how he had put the abstract
theories to good use,’’ said Bob Tennent, who went along for the ride that day (he was
then an undergrad studying engineering science at the University of Toronto, working
a summer job as a computer programmer for Lang). ‘‘Lang made an appointment
with the great man and dragged me along to show him the results on the computer
print outs,’’ said Tennent, now a professor in the School of Computing at Queen’s
University. ‘‘I think the only reason I went with Lang to see Coxeter is that the former
wanted a witness for his (expected) triumphal demonstration and appreciation by the
latter. Coxeter was polite but noticeably cool to Lang’s exposition. Eventually Lang
stopped and asked Coxeter whether he felt gratified that a practical application had

been found for his hitherto purely abstract geometrical theorizing. Coxeter calmly
replied that, on the contrary, he was appalled that his beautiful theories had been
sullied in this way. Lang, the engineer and entrepreneur, departed disappointed and
uncomprehending.’’16

 
  The incident was a nice sampling of the different mind-sets, the pure mathematician and the
applied scientist. The bare bones of sphere packing, the study of packing points into a given
space as far apart as possible, lends itself naturally to application. ‘‘But that’s not the reason I’m
interested, and that’s not the reason Coxeter was interested,’’ said John Conway, who also on
occasion has found himself at similar to-apply-or-not-to-apply crossroads. Coxeter and
Conway are interested in the sphere-packing problem because the nuances are exquisite,
such as the symmetries. In the E8 lattice, for example, Conway said the E stands for
the ‘‘exceptional’’ symmetries generated. And—surprise, surprise—it turns out that
in certain dimensions the patterns of sphere packings and the symmetries generated
correspond to Coxeter groups and can be conveyed with the shorthand of Coxeter
diagrams.17

 
  The fact that Coxeter responded as he did to Lang’s work was in part a demonstration of his
selective disinterest in applications. But he didn’t turn up his nose at every application.18
Coxeter may have found Lang’s modem so off-putting in the moment, when its potential to link
and feed supercomputers was laid out before his eyes, because Coxeter despised, almost
more than anything, the onslaught of the computer age. ‘‘I deplored the attention
that people gave to computing,’’ he said once. ‘‘I was afraid they might neglect other
subjects.’’ He was relieved when computer science at the University of Toronto was
separated from the math department. ‘‘I didn’t want to have it in mathematics,’’
he asserted. ‘‘Lots of young people are tempted away from pure mathematics when
they find that computing is such an up-and-coming field.’’19 Coxeter never used a
computer, let alone a modem. Although, not wanting to be out of touch with the world of
fans that wanted to be in touch with him, he had his son-in-law, Susan’s husband
Alfred, send e-mails on his behalf.20 And, ironically enough, the computer server in the
University of Toronto math department has been named in Coxeter’s honor—coxeter@
coxeter.math.toronto.edu.21
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  The alliance of the computer and geometry ultimately only served to bolster classical
geometry’s cause. Over the years, mathematics departments have increasingly aligned themselves
with the computer science—the University of Innsbruck, in Austria, has a Department of
Engineering Mathematics, Geometry, and Computer Science as part of its faculty of civil
engineering. And NASA’s Langley Research Center would not be complete without its Geometry
Laboratory, providing ‘‘expert assistance in the construction and analysis of computer based
geometry,’’ focusing on the engineering program Computer Aided Design (CAD). Its main
services, according to the ‘‘GEOLAB’’ mission statement, is its ‘‘availability of high capacity
workstations on which to develop and visualize the geometry’’ and ‘‘a team of geometry
specialists with the expertise to apply the tools and techniques to specific applications.’’ One of
those applications involves studying the arc of flight paths, and another simulating the velocity of
the airflow between the wheels of a plane’s landing gear, which contributes to the
noise during takeoff and landing. In the latter study, numerical data is mapped by
the ‘‘data viz group’’ into three dimensions, simulating a landing gear in operation.
Experimental results can then be displayed in stereo on a large screen, giving the researchers
the benefit of ‘‘immersive visualization’’—they can rotate the model to see directly
between the wheels, for example, generating a better understanding of the airflow
field and modifications to the gear geometry that will reduce the amount of noise
produced.22

 
  Even the average home computer contains a graphics card that creates images by projective
geometry—images projected from one domain or dimension to another, allowing higher
dimensions to look like three-dimensional images on the two-dimensional canvas, or computer
screen. This technology is used in creating the convincing animation that flies you around in a
three-dimensional video game, and movies by Pixar, such as its Academy Award winners The
Incredibles and Geri’s Game, a short film about an old codger who plays a game of chess against
himself.23

 
  Tony DeRose,24 a senior scientist and member of the ‘‘Tools Group’’ at Pixar, often gives a
lecture he calls ‘‘How Geometry Is Changing Hollywood’’ (sometimes he calls it ‘‘Math and the
Movies’’). One example DeRose gives is the use of projective geometry in transforming the
three-dimensional image of Bob Parr onto the two-dimensional screen.25 Pixar animation
scientists also use Euclidean geometry to assemble independent scenes—each little set piece and
character is modeled in its own separate Euclidean space, and then, by a geometric
transformation, the separate components are assembled into a common environment, or a scene
in one of the films.26


 
  The message in DeRose’s talk, however, is not only that geometry is an alive and
vibrant field, by illustrating that a lot of old geometry, from hundreds or thousands of
years ago, is nowadays used in animation. Rather, he wants to entrance kids with the
fact that animation is a field pushing the boundaries of new mathematics, and new
geometry. ‘‘Subdivision surfaces’’ is a new geometric tool that allows animators to
efficiently represent on a computer complex surfaces that ‘‘deform’’—when a character is
speaking—say, the elderly Geri—the surface of his face must be represented in a lifelike way
as it deforms during speech. ‘‘Classical differential geometry tells you how to look
at curvatures with all sorts of theorems that allow you to analyze the surface,’’ said
DeRose, ‘‘but it doesn’t really give you any constructive tools—I want a surface that looks
like this, how do I represent it with a computer in a constructive fashion that I can
animate quickly, that I can render quickly? That’s the problem that subdivision surfaces
address.’’27

 
  Originally proposed in 1978 by Ed Catmull, the president and cofounder of Pixar, subdivision
surfaces operate by starting with a coarse set of polygons stitched together into a
seamless surface. Realistic human skin or clothing is then created by repeatedly splitting
and smoothing the coarse polygons. This splitting and smoothing process, together
with other tools such as wavelets, provides Pixar animation scientists with compact
ways of vividly representing highly detailed surfaces—to create characters that have a
comicbook aura, all the while looking as convincing as people; characters who, as the Pixar
literature boasts, have ‘‘organic translucent skin that makes them subtly glow from
within.’’28

 
  Perhaps the most stunning by-product of the computer age, as far as the Coxeterian
perspective is concerned, is that his visual approach to geometry has received a tremendous
boost from the exactitude and certainties of computers; the mouse and the computer screen
have considerably improved upon the raw materials of pencil and paper. As a result,
computers and computer programs have instigated a classical geometry renaissance in the
classroom.29
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  A computer graphics tool successively subdivides a ‘‘control mesh,’’ left, to create the face of
the Pixar character Geri. © Pixar.


 
  One program in particular, The Geometer’s Sketchpad, has happily overthrown the geometry
kit, taking it into the realm of virtual reality. It hit the market in 1991, after five years of
development with a grant from the National Science Foundation—a small group of
mathematicians and educators had again been rattling the cages at NSF, saying, ‘‘What about
geometry?’’ and insisting that more needed to be done to rejuvenate the subject in classrooms.30
The computer program was designed quite literally to provide a visual sketchpad to draw and
construct geometric shapes that could be stretched and moved, keeping their special properties
intact (such as lines being perpendicular), allowing students to discover and verify geometric
facts in an interactive way. ‘‘It was a great leap forward,’’ said Doris Schattschneider, the
senior geometer on the project, and an emeritus professor at Moravian College in
Bethlehem, Pennsylvania.31 The program was mouse driven (no typing, typing, typing
in BASIC code, entering coordinates to produce a crude shape), and had high-tech
graphic demands—it was designed for the Macintosh, which was just then replacing
Apple II computers in classrooms (these were the days ruled by Commodore 64 and
Atari).32

 
  Geometer’s Sketchpad, now in its fourth edition, has met with enthusiastic response. According
to educational surveys and studies of secondary classrooms, Sketchpad is the software that
mathematics teachers find most valuable for students; it is used more than any other computer
tool; and in 1993 a version was designed for the Windows platform, at IBM’s request and
expense.33

 
  Coxeter, of course, never worked with Geometer’s Sketchpad. But many of his fans, fans of
classical geometry, are avid users. As a research tool it has penetrated the academic
scene, with William Thurston and Douglas Hofstadter lauding its utility.34 And Walter
Whiteley finds that the moving images of Sketchpad take his visual perspective to an
entirely different level. Indeed, having geometric diagrams produced by the computer
eliminates any possibility of flaws, to which visual perception might otherwise succumb.
‘‘This is suddenly a new level of precision,’’ said Whiteley. ‘‘The mathematician no
longer spends any time going down the wrong track because the computer makes it
obvious when reasoning in the diagram is wrong. We might be fooled by an imprecise
diagram, but the computer will show the error.’’ Almost as important, in Whiteley’s
opinion, is the process of ‘‘learning what to expect’’ and ‘‘learning what to look for’’—by

observing a sufficient range of examples, dragging a sketch around, or creating a series
of sketches to expand one’s experiences. ‘‘At some point, you are able to ‘image’ a
new example, or rerun an old example, in your brain,’’ said Whiteley, ‘‘—without the
computer.’’35

 
  ‘‘When you work with Sketchpad,’’ Whiteley effused, ‘‘the image in your brain is actually
altered to have a different focus, a different precision. And then when you reason without the
computer you make different choices. It really does alter the kind of reasoning you do with
images. You have a different sense of what holds and what doesn’t. And you may have a different
conviction about your results. You do a sketch, you drag the sketch around …and you may be
utterly convinced that the thing is true without ever having seen a proof. And the absence of a
proof doesn’t shake your conviction. Because you know visually, and viscerally, you are on the
right track.’’36
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  In his liaisons between math and science, Whiteley has often consulted with biochemists and
biophysicists, participating in geometrical mathematical modeling of how protein molecules
function in the human body. Given the shape of a protein, Whiteley investigates how it will
interact with the body or with a specific drug. He tries to determine whether a protein’s regions
will be rigid or flexible, because this is the property that dictates how a protein interacts.
Working in the York Math Lab,37 Whiteley and his students devise computer algorithms that
shorten the biochemist’s search, tinkering with the geometric models, adjusting their struts and
nodes, trying to discover how many rigid and flexible vertices each sample protein structure
might have.38

 
  There are several reasons why the shape of proteins matters in the body. ‘‘The body expects a
protein to fold, to take shape,’’ Whiteley said, opening and closing the flexible model cage of an
icosahedron that can be flattened and expanded as desired. If the body sees a protein that is not
taking shape, the protein is assumed to be defective and the body then rips it apart and reuses
it. That’s what causes cystic fibrosis, an inherited disease of the mucus glands. A protein made
by the CFTR gene—cystic fibrosis transmembrane conductance regulator—fails to take shape and
fails to function, eventually resulting in a buildup of mucus in the lungs, pancreas, and other
organs.39

 
  The opposite occurs when a protein is too rigid and lasts too long in the body—proteins, on
average, last a matter of seconds, or as long as one day. ‘‘There’s a normal cycle where things are
formed and then taken apart again and reused,’’ said Whiteley. ‘‘If something is too stable, that
also poses a problem. Something that is too stable becomes a problem in the same way

as gallstones become a problem.’’ Proteins that are too stable cause mad cow and
Alzheimer’s disease. In mad cow, misfolded proteins known as prions refuse to break
down, become sticky, and pile up in the form of plaques that wreak havoc on normal
brain function. In Alzheimer’s, the amyloid precursor protein jams mitochondria—the
so-called cellular power plants—causing the suffocation and death of neurons. Our bodies
are biochemically fine-tuned: proteins cannot be sloppy and flexible or they will fail
to function, but neither can they be too rigid, or they won’t be broken down and
recycled.40

 
  Our immune system works according to this geometric jigsaw puzzle. The dynamics of
molecular interaction are either a ‘‘lock and key,’’ where two rigid molecular shapes have to be
exactly right to click and work together, or an ‘‘adaptive fit,’’ where at least one protein is
flexible, functioning like a catcher’s mitt and changing shape, enclosing on the incoming
protein.41

 
  Immunoglobulin, the primary molecule in our immune system, is highly complicated and
flexible. Its structure is described by biochemists in terms of a ‘‘body’’ with ‘‘arms,’’ ‘‘elbows,’’
‘‘hands,’’ and ‘‘fingers’’ that grab or recognize antigens. These molecular extremities are
extremely dextrous and limber, their double-jointedness allowing them to latch on to what they
need, wherever it is. When attacked with the icosahedral common cold virus, for example, the
fingers change shape rapidly, producing both lock-and-key and adaptive-fit receptors,
trying to make a match with the viral antibodies. ‘‘When you’ve built an immune
response,’’ said Whiteley, ‘‘it means you’ve found the production machine for the things
[antibodies] that will respond and detect and bind to the viruses. It has to be so specific
because you don’t want the immune system to attack the rest of your body—that’s what
arthritis is, an autoimmune disease, it starts eating your own body up. It’s a delicate
balance: too active and you’re in trouble, too passive and you’re in trouble. It’s a
dance.’’42

 
  Knowledge about the shape of molecules and proteins influences the design of drugs used to
treat disease—successful ‘‘drug docking’’ depends on getting the fit precisely right. In Whiteley’s
opinion, some of the most interesting geometry in the last quarter century has been in this field
of analyzing and designing molecules to fit prescribed purposes. Many drugs have mirror
opposites, or molecular ‘‘chirality,’’ which often have a very different effect, sometimes
used to treat an entirely different disease. One form of ritalin inhibits attention deficit
disorder, the other form is an antidepressant; one form of ketamine is an anesthetic,
the other a hallucinogen. Everyday examples of this ‘‘stereochemistry’’ (the study of

the three-dimensional arrangement of atoms in molecules) occur in flavors common
to the taste buds: limonene’s left-handed molecule is found in lemons, whereas the
righthanded molecule is found in oranges; and the mirror opposite of aspartame is a bitter
substance.43

 
  Over years of collaborating with scientists and engineers to find geometric solutions to applied
problems, Whiteley accumulated observations that led him to formulate his theories
about the crucial importance of ‘‘seeing like a geometer,’’ and the phenomenon he calls
the ‘‘geometry gap.’’ All too often, students coming into these fields do not have the
visual geometrical background they need. ‘‘The nature of geometry as Coxeter did it is
really important in the way geometry rises up in these areas and is unavoidable,’’ said
Whiteley. ‘‘People have to be able to recognize, ‘Yes, we are dealing with such and such
a shape from geometry here. Yes, these are the historical roots that are relevant to
us.’ ’’44

 
  Whiteley recalled that at a conference on zeolites, the Coxeter entities were bandied about with
great regularity. Zeolites are naturally occurring crystals, porous like the nooks and
crannies of a kitchen sponge, and, to cite one application, are used to refine gasoline.
When the petroleum comes out of the ground, some of its molecules are too big, too
thick. Refinement filters out the small molecules that will burn faster in your car, and
cracks the bigger molecules into small pieces. Zeolites, referred to as molecular sieves,
do both simultaneously. The current problem involves refining heavy oil, which is
made up of even bigger molecules and requires a zeolite with bigger holes. But such a
zeolite does not exist naturally, and material scientists are trying to devise an artificial
zeolite that will do the job. ‘‘It’s a multimillion-dollar industry and chemists are busy
with major funding,’’ said Whiteley. Yet without a background in geometry, they find
themselves scrambling to find solutions, mining Coxeter’s classical geometrical oeuvre for
patterns of infinite honeycombs, hyperbolic tilings, crystallographic clues for new zeolite
prototypes.45
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  A mineral zeolite, Tschörtnerite, showing its polyhedral building units.
The shape-selective properties of zeolites make them useful in filtering pollutants from the
atmosphere and water.


 
  ‘‘There are so many layers and hierarchies of geometry,’’ said Whiteley. ‘‘And knowing which
kind of geometry you should be looking at may be the central choice you make on the way to a
solution. In the absence of that knowledge—knowing which geometry to choose—you are lost in a
morass of detail and may never see the solution. Several times in my own work I have had to
trick applied mathematicians into sitting down and looking at a problem in terms of a simpler
geometry, where all of a sudden they would be able to see what the solution to their problem
is.’’46

 
  ‘‘Coxeter,’’ he said, ‘‘was a bridge that has lived through the period of the low points of
geometry and brought us through to the current day where there is a rising interest in it again,
with these essential problems we are grappling with. The geometry gap that we’re still living
with, and in some ways will struggle with to a greater extent [now that] Coxeter is no longer
around to be the bridge, is the gap between all the pieces of geometry which practitioners have
done all throughout history.’’47

 
  Geometry will continue to be more and more relevant to scientific problems, and the question
is, as scientists are working on these problems, will they be able to recognize the geometric
content? If scientists do not have the ability to experience these epiphanies themselves, will there
be any geometers walking the earth in fifty years to consult, to point them in the right direction?
Or will scientists waste precious time reinventing, spinning their wheels in past pitfalls, before
they arrive at solutions to urgent problems?

 
  Whiteley’s perspective does seem to be penetrating, by osmosis perhaps, the collective
consciousness of the mathematics and scientific communities. This is evident at the
funding level, where the approval of proposals is increasingly hitched to one criterion:
collaborative ventures between mathematicians and scientists. Both Canadian and U.S. grant
agencies have allotted considerable chunks of money for collaborations. ‘‘They are
saying, ‘Come to us with a team that includes a mathematician and a biologist—only by
having new mathematics come in do we think the problems are going to be solved.
Therefore we are going to pay you to collaborate.’ ’’ The sad side of this equation,
from Whiteley’s standpoint, is that scientists in the natural course of things are not
learning enough mathematics and geometry to be able to provide the relevant insights
themselves.48
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  The geometric knowledge gap also came to bear in astrophysics and chemistry with the long
hunt for the shape of a carbon molecule composed of sixty carbon atoms—known as C60—which
ultimately earned its discoverers the 1996 Nobel Prize. Previously, chemists had been aware of
two forms of carbon—graphite (used in pencil lead), in which the atoms are stacked in
hexagonally ordered sheets; and diamond, with atoms lying in a threedimensional array linked
by tetrahedrally oriented bonds. Chemists had speculated there was another form of
carbon, having measured its vibrations indicating there should be sixty atoms, but the
subsequent laboratory search for the geometric structure was a tricky and protracted
endeavor.

 
  Sir Harry Kroto, then a professor of chemistry at Sussex University (now at Florida
State University), and his codiscoverers, Robert Curl and Richard Smalley, from Rice
University in Texas, worked long and hard to ascertain C60’s shape—the arrangement that
would allow sixty carbon atoms to wind themselves together and agglomerate in a
hollow cage. The search would have been easier had they known Coxeter’s classical
geometry, and, in particular, his book Regular Polytopes. ‘‘We were trying to figure
out the rules of engagement,’’ said Kroto, who admitted: ‘‘I knew nothing about the
geometry.’’49

 
  The earliest murmurings about large carbon molecules in the black clouds of the Milky
Way galaxy came in the 1960s. Advances in molecular radioastronomy had indicated
these clouds were like archives, storing secrets of the universe—molecules that played
a crucial role in the birth of stars and planets were floating around in outer space,
making their presence known by emitting radio waves at very specific and identifiable
frequencies.50 Of particular interest to Kroto were long-chain molecules with alternating
single and triple carbon bonds. Kroto was one of the early adventurers, continuously
upping the ante, gambling that larger and larger extragalactic compounds of carbon
might exist, and training his scientific ear to the frequencies these molecules emitted
from the depths of constellations, such as Taurus.51 These ventures initially were
considered long shots—in the 1970s, molecules with more than three or four ‘‘heavy
atoms’’ (such as carbon, nitrogen, or oxygen) were believed to be rare and undetectable.
But Kroto and others played the long odds, and sure enough he found compounds
with chains of five and then seven carbon molecules in the interstellar realm. The
next quest he set for himself: ‘‘Solving the puzzle of how they got there in the first
place.’’52


 
  By the early 1980s Sir Harry wondered whether these carbon chains had been blown out of
giant red carbon stars, stars known to pump vast quantities of carbon chains into space. He
seized on an opportunity in 1985 to simulate the atmospheric chemistry of these stars, working
with Curl and Smalley in Texas, fitting the project between higher-priority applied research on
semiconductors.53

 
  Setting out, Sir Harry was sure the simulation experiment would detect carbon atoms of
twenty-four or thirty-two molecules. As trial runs progressed, the team confirmed that conjecture
but, in addition, they found something altogether and amazingly different. The measurements
indicated that one carbon cluster was particularly strong, peaking consistently at 720
atomic mass units, which corresponded in weight to a species of carbon compounds with
sixty atoms. As Sir Harry recounted: ‘‘What might this special ‘wadge’ of carbon
be?’’54

 
  Soon they reached a consensus that C60’s structure might be that of a spheroid—a figure not
quite perfectly spherical, like a soccer ball. For Sir Harry, this brought back memories of
Buckminster Fuller’s geodesic dome, which he, like Coxeter, had so closely examined and
admired at Expo ‘67. Since then he had collected a file full of photographs of the
dome and cobbled together a homemade model with his children. He now wished he
could get his hands on the model, but it was across the ocean at home. Over the next
day or two, Smalley and Curl fashioned makeshift models, matching the properties
of Fuller’s dome—sixty vertices, with twenty hexagonal and twelve pentagonal faces.
That is how they found the structure of C60, or as it is more commonly known, the
Buckminsterfullerene.55
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  Schematic diagrams of Fullerenes, from left: C60, C240, C540, and C960.

 
  Sir Harry and the others agreed on the name Buckminsterfullerene because Fuller’s work had
been the inspiring point of reference.56 ‘‘I knew Buckminster Fuller’s work, but I didn’t know the
Coxeter connection,’’ said Sir Harry. ‘‘Certainly, Coxeter’s book Regular Polytopes would have
been helpful.’’ It would have helped find the shape in the first place, reducing the grappling in
the dark, and later it would have been useful in producing and confirming the structure of C60.
Sir Harry didn’t find Coxeter’s book until subsequent research, when he became bewitched by
even larger carbon compounds. He purchased a molecular model set, and using Regular Polytopes
as his instruction manual, constructed C240, C540, and C6000—the family of giant
Fullerenes.57


 
  With the catchy name Buckminsterfullerene, and the Nobel Prize, C60 grabbed the limelight
outside scientific circles. In December 1991, confusion over the composition of the
Buckminsterfullerene and its future played out in Britain’s House of Lords.

 
  LORD ERROL OF HALE ASKED HER MAJESTY’S GOVERNMENT: ‘‘What
steps [are they] taking to encourage the use of Buckminsterfullerene in science and
industry?’’

 
  THE PARLIAMENTARY UNDER-SECRETARY OF STATE, DEPARTMENT
OF TRADE AND INDUSTRY, LORD REAY: ‘‘My Lords, the Government have been
following with interest the emergence of Buckminsterfullerene and support research
currently being undertaken at Sussex University through the Science and Engineering
Research Centre. However, it must be left to the judgment of firms whether they wish
to pursue research into commercial applications of Buckminsterfullerene and other
Fullerenes.’’

 
  BARONESS SEEAR INTERRUPTED: ‘‘My Lords, forgive my ignorance, but can the
noble Lord say whether this thing is animal, vegetable or mineral?’’

 
  LORD REAY: ‘‘My Lords, I am glad the noble Baroness asked that question. I can say that
a Buckminsterfullerene is a molecule composed of 60 carbon atoms known to chemists as C60.
Those atoms form a closed cage made up of 12 pentagons and 20 hexagons that fit together like
the surface of a football.’’

 
  LORD RENTON: ‘‘My Lords, is it the shape of a rugger football or a soccer
football?’’

 
  LORD REAY: ‘‘My Lords, I believe it is the shape of a soccer football. Professor Kroto,
whose group played a significant part in the development of Buckminsterfullerenes, described it
as bearing the same relationship to a football as a football does to the earth. In other words, it is
an extremely small molecule.’’

 
  LORD CAMPBELL OF ALLOWAY: ‘‘My Lords, what does it do?’’

 
  LORD REAY: ‘‘My Lords, it is thought that it may have several possible uses; for batteries,
as a lubricant or as a semi-conductor. All that is speculation. It may turn out to have no uses at
all.’’

 
  EARL RUSSELL: ‘‘My Lords, can one say that it does nothing in particular and does it
very well?’’

 
  LORD REAY: ‘‘My Lords, that may well be the case.’’58


 
  Now that technology has caught up to C60, some of its more promising applications are
emerging. One employs C60 as a superconductor—superconductors are used to make powerful
electromagnets, such as MRI machines, as well as digital circuits and microwave filters for cell
phone base stations. A nanomedicine company, named C Sixty Inc., was formed to investigate
biopharmaceutical applications of Fullerenes. Their current research explores C60 as a vehicle for
drug delivery. In aqueous solutions, Fullerenes are fairly stable, which suggests they might be
useful for carrying precise amounts of medication through the C60’s cagelike structure
and depositing their contents at exactly the right site. C Sixty Inc. is focusing its
research on the delivery of anesthesia and contrast imaging dyes. And the company is
working with the drug company Merck to test Fullerenes as antioxidants, for C60
seems to be adept at soaking up cell-damaging free radicals, the by-product of oxygen
reacting with other chemicals in the body. The small scale of Fullerenes facilitates
their passage through the bloodbrain barrier—a defense structure that blocks possibly
poisonous molecules in the blood from brain tissue—and thus creates potential for
using their antioxidant properties to treat degenerative neurological conditions, such as
Alzheimer’s and Lou Gehrig’s disease. Other medicinal applications include binding C60 to
antibiotics to target resistant bacteria, or cancer cells such as melanoma, and even
AIDS.59

 
  Sir Harry keeps himself apprised of C60’s applications, to an extent. He is a fundamental
scientist—as Coxeter was a pure mathematician. ‘‘People like me,’’ he said, ‘‘in a sense spend a
lifetime avoiding applications.’’60

 
  Coxeter, however, was a bit more old-school, not hunting applications but appreciating and
exploring them when they came along. According to Whiteley, prior to the twentieth century,
there was no such chasm dividing pure and applied, with geometers working on a range of
scientific problems. Archimedes was an engineer, devising his Archimedean screw (still used for
irrigation in developing countries), and Euclid worked on applied problems pertaining to optics.
James Clerk Maxwell was a geometer and a physicist, highly regarded as the nineteenth-century
scientist who had the greatest impact on twentieth-century science. With the modern
emphasis on specialization and fragmentation of the disciplines, the tradition of the hybrid
mathematician-scientist, or scientist-mathematician, is slipping away—parallel to the loss of
geometry is the loss of connections, bridges from geometry and mathematics to fundamental and
applied science.61


 
  * Taking a thousand samples a second would not be enough to get a good rendering of your
mother’s voice, Sloane said. The question, then, is how fast do you have to sample the voice, at
what frequency? One of Shannon’s theorems stated that the sample must be taken at twice the
bandwidth. ‘‘If the frequencies in your mother’s voice are typical—she is a bit shrill at
times—but typically you don’t have to do over 3000 Hertz to get pretty good fidelity of
a voice,’’ said Sloane. ‘‘So double [3000] and that’s the sampling rate: 6000 times a
second.’’

 
  † As Coxeter liked to point out, ‘‘The 12 centres of these balls form the vertices of a
quasi-regular polyhedron, the cuboctahedron, which was described by Plato.’’ Buckminster Fuller
invented a new term for the cuboctahedron, calling it the ‘‘vector equilibrium’’ (Coxeter did not
approve).
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10  ‘‘COXETERING’’ WITH M. C. ESCHER (AND PRAISING OTHER ARTISTS)

     
For some minutes Alice stood without speaking, looking out in all directions
over the country …‘‘I declare it’s marked out just like a large chessboard …all
over the world—if this is the world at all.’’

 
—LEWIS CARROLL, THROUGH THE LOOKING-GLASS
 


     
Whereupon the Plumber said in tones of disgust, ‘‘I suggest that we proceed
at once to infinity.’’

 
—J. L. SYNGE, KANDELMAN’S KRIM
 


The penultimate conference Coxeter attended was ‘‘Aspects of Symmetry,’’ at the Banff Centre
for the Arts in 2001. As he prepared to speak, he flicked on the overhead projector and slid on his
first transparency. Due to a minor malfunction, at that moment his entire being was bathed in a
gigantic projection of colored fish on a Poincaré disc, shrinking smaller and smaller, seemingly
never ceasing as they rounded the vanishing line of the sphere’s horizon. ‘‘The topic of
my paper,’’ Coxeter began, ‘‘is one that has intrigued me and preoccupied me for
nearly five decades. It’s about what I call the ‘intuitive geometry’ of my friend M. C.
Escher.’’1

 
  Coxeter found in Escher a soulmate based on their mutual affinity for infinity, and they
collaborated after a fashion (their methods being slightly at odds). The geometer’s intersection
with Escher demonstrated Coxeter’s humanism in the very broadest sense, for he disregarded the
endemic artsscience divide, which was much more prevalent a half century ago than today.
‘‘Coxeter wasn’t just doing mathematics,’’ observed one of his students, Ed Barbeau, now an
emeritus professor of mathematics at the University of Toronto. ‘‘He saw himself as playing a role
in the advancement and preservation of human knowledge. And so all during his career he had

contact with people outside the narrow field of mathematics—architects, musicians,
artists. He really felt that mathematics was part of the humanities as well as science.2
And this came through in his courses. He was doing geometry in a way that made it
live.’’3
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  Coxeter first set eyes upon Escher’s work in September 1954, at the International Congress of
Mathematicians (ICM), in Amsterdam. While Coxeter attended lectures, and delivered his own
on ‘‘Regular Honeycombs in Hyperbolic Space,’’ Rien joined other spouses on a tour of the city.
One stop was Amsterdam’s recently renovated Stedelijk Museum, where the ICM had
sponsored an exhibit featuring Dutch artist M. C. Escher.4 Alongside the Van Goghs
hung Escher’s hallmark drawings of reptiles, birds, fish—periodic tilings of the plane
in the manner of an interlocking jigsaw puzzle, with each puzzle piece a congruent
creature (there were also a few of Escher’s carved wooden balls, and his warped, if not
impossible, perspectives such as ‘‘House of Stairs’’ or ‘‘Relativity’’).5 Rien chatted
in Dutch with Escher at the exhibit, and she mentioned the similarities between his
art and her husband’s math; she may not have been the least bit mathematically
minded, but she was well tuned to the intellectual desires of her husband. Coxeter
noted in his diary a few days after his lecture: ‘‘R showed me the Escher drawings and
sculptures.’’6

 
  In a glossy exhibit catalogue, Dutch mathematician N. G. de Bruijn prefaced the show by
saying: ‘‘Mathematicians will not only be fascinated by the geometric motifs. Even more
important, perhaps, is the same playfulness which one finds everywhere in mathematics and
which accounts for the charm that a great many mathematicians find in their profession.’’7
Escher also delivered a lecture at the ICM conference, though Coxeter was unable to attend: ‘‘I
wanted to come to your lecture,’’ he later apologized by letter, ‘‘but unfortunately it clashed with
other engagements.’’8

 
  By this stage in his career, Escher was able to pack lecture halls throughout Europe,
even though he considered himself a poor public speaker and frequently recycled his
speeches. Considering the close timing to a talk he delivered to a physics society one
year prior, Escher may well have reused much of the same material yet again at the
ICM, beginning with a smattering of information on his materials and how he came to
think of them as extra appendages—his wood blocks, copper plates, and lithographic
stones, as well as his press, ink, and many types of paper for printing. ‘‘Meanwhile, all

this technique is merely a means, not an end in itself,’’ Escher said. ‘‘The end he [the
artist] strives for is something else than a perfectly executed print. His aim is to depict
dreams, ideas or problems in such a way that other people can observe and consider
them.’’9

 
  Patrons at Escher exhibits characteristically displayed nothing like ‘‘the usual solemnity and
silent incomprehension’’ of visitors at the average modern art exhibit. They laughed out
loud in appreciation, or in awe, of Escher’s whimsy.10 Forever uncertain of where
his art fit, Escher was not so sure of his public. ‘‘The artist’s ideal is to produce a
crystal-clear reflection of his own self,’’ he once said. ‘‘[T]here is little chance that we
will succeed in getting through to a large audience, and on the whole we are quite
satisfied if we are understood and appreciated by a small number of sensitive, receptive
people.’’ Escher espoused a theory about two types of people: ‘‘feeling people,’’ that is
artists, interested in interpersonal relations, and ‘‘thinking people,’’ the scientists,
focused on the language of matter, space, the universe and its objective existence.
‘‘Fortunately, there is no one who actually has only feeling or thinking properties,’’ he said.
‘‘They intermingle like the colors of the rainbow and cannot be sharply divided.’’11
Escher nonetheless was troubled that there was a divide at all, the two camps holding
in common a suspicion, irritation, and devaluation of the other’s work. He wished
a better understanding and rapport could exist between the arts and sciences,12 a
theme C. P. Snow would articulate in his famous lament on ‘‘The Two Cultures’’ in
1959.13

 
  Before the close of the congress in Amsterdam, Coxeter purchased two Escher prints.14 Not
long after, Coxeter’s and Escher’s meeting of minds flowered—their own small rebuttal to the
isolation of their respective fields. Coxeter developed an intense appreciation of Escher’s intuitive
sense for geometry, and Escher found Coxeter’s mathematical illustrations to be just the catalyst
he needed to spark his creativity. ‘‘By keenly confronting the enigmas that surround us, and by
analyzing the observations that I have made,’’ Escher once remarked, ‘‘I ended up in the domain
of mathematics. Although I am absolutely innocent of training or knowledge in the exact
sciences, I seem to have more in common with mathematicians than with my fellow
artists.’’15
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  Following the Amsterdam meeting, Coxeter wrote to Escher, asking permission to use two of
his drawings—his winsome tessellations of beetles and horsemen—to illustrate a paper he was
preparing, his 1957 presidential address to the Royal Society of Canada. His paper
was titled, ‘‘Crystal Symmetry and its Generalizations,’’ as a part of the gathering’s
larger theme, ‘‘A Symposium on Symmetry.’’ Escher granted permission, though he
could never have expected how this decision would affect his work in the years to
come.
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  M. C. Escher’s regular division drawing of horsemen, 1946.

 
  With his ‘‘regular division of the plane’’ drawings, as Escher called his jigsaw symmetry
creations that had caught Coxeter’s attention in Amsterdam, the artist had worked out his own
mathematical ground rules, his own ad hoc methods for springboarding seamlessly from two
dimensions into three, or metamorphosing from the rigid lockstep order of terra firma into a
bird’s freedom of flight, and then swooping down again into the shimmering fluidity of fish in a
lake below.16 At first, Escher admitted, he had no idea how to systematically build his
interlocking congruent figures. The process gradually came to him. He studied the
literature on the subject, thought through all the possibilities, and formed his own
layman’s theory. ‘‘It remains an extremely absorbing activity,’’ he said, ‘‘a real mania to
which I have become addicted, and from which I sometimes find it hard to tear myself
away.’’17

 
  In geometry, the process of tiling the plane, or tessellation, involves covering a flat
surface—such as a floor, or more technically speaking, the Euclidean plane—with a collection of
shapes that fit together without any spaces or overlaps. Among the infinite array
of regular polygons, it turns out that only three fit the task of tiling the plane by
congruent copies of themselves: the equilateral triangle, the square, and the hexagon*
(analogously, in three dimensions, there are the five regular solids but only one of these,
the cube, can tile three-dimensional space in a similar manner, with no overlaps or
spaces).18

 
  Escher had begun tiling as a child, carefully choosing the shape, size, and quantity of cheese
pieces to perfectly fill his slice of bread,19 but his formative influence came later when
he visited, and revisited many times, the Alhambra in Spain.20† The time-honored
art of filling a two-dimensional plane with a repeating pattern of polygonal shapes
reached its peak in thirteenth-century Spain with this sprawling citadel-palace built
by the Moorish monarchs of Granada—a complex begun by Mahomet Ibn al-Ahmar,

founder of the Nasrid dynasty, and continued by his successors in the fourteenth century.
The Alhambra is a temple of geometric tilings, etched into every surface, blanketed
like a full-enclosure vinyl-wrap advertising campaign. The Moors utilized repetitive
patterns of geometric complexity, in tribute to the infinite power of their God. Their
unwavering preference for abstract patterns, Coxeter noted, was due to their strict
observance of the Second Commandment—‘‘You shall not make for yourself a graven image,
or any likeness of anything that is in heaven above, or that is in the earth beneath,
or that is in the water under the earth; thou shall not bow down to them or serve
them …’’ But Escher, Coxeter said, ‘‘being free from the Moors’ scruples, makes an
ingenious application of these groups by using animal shapes for their fundamental
regions.’’21

 
  The practice of tiling the plane, undertaken by Escher and Coxeter for its aesthetic patterning
appeal, provides another example of pure geometry finding inadvertent application.22 Tilings are
often found on floors, wallpaper, and brick walls. But, as Coxeter instructed in Introduction to
Geometry, within his chapter devoted to two-dimensional crystallography, the tessellation of the
plane finds relevance in the natural world in the science of crystallography. Coxeter went so far as
to say, ‘‘Mathematical crystallography provides one of the most important applications of
elementary geometry to physics.’’23

 
  The field of crystallography—a multidisciplinary science, occupied by physicists, biologists,
chemists, as well as mathematicians—investigates the internal structure of crystals, the geometric
patterns of their molecular makeup. The atoms of crystals form a lattice arrangement with
uncompromising regularity.24 For example, the double-helical structure of DNA was deduced
from crystallographic data, and the tetrahedrally oriented bonds of a diamond produce the gem’s
prized hardness.25

 
  Crystals, in fact, are classified by their seventeen planar symmetry groups (planar
meaning 2-D; in 3-D there are 230 crystallographic space groups), the collection of all
motions—translations, rotations, reflections, glide-reflections, screw motions, and rotary
reflections—that, when they act on the crystal structure, leave the structure invariant.
For that reason, Coxeter groups and Coxeter diagrams make themselves useful in
crystallography.26

 
  In discussing crystallography in Introduction to Geometry, Coxeter used as illustrations the
same two Escher drawings—the beetles and the horsemen. When Martin Gardner reviewed
Coxeter’s book in Scientific American—a book Escher referred to as Coxeter’s ‘‘abracadabra high
abstractions…Of course, I don’t understand one syllable, except for some funny and profound

observations at the beginning of each chapter’’—Gardner allocated a quarter of the review to
Coxeter’s two pages featuring Escher. And a colorized version of Escher’s regular division
bird print was featured on the cover of the magazine.27 (See appendix 7 for more on
crystallography, and Sir Roger Penrose’s tiling, once allegedly pirated for toilet paper
quilting.)
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  By the time Escher met Coxeter, the artist’s regular division tessellations—most often variations
on birds or fish, but sometimes lizards and butterflies—had become very popular and profitable.
He was dazed by the success. It meant the labors of his signature pieces would consume him for
the foreseeable future, leaving scant time for new work. After years and years of his mania for
devising regular divisions, however, Escher’s curiosity had begun to wander.28 He wanted to
break free from the Euclidean plane and portray a more convincing infinity—infinity was obscured
by illusion, yet he felt its pull as irresistibly fathomable and approachable.29 ‘‘The flat
shape irritates me,’’ Escher said of his regular division drawings. ‘‘I feel as if I were
shouting to my figures, ‘You are too fictitious for me; you just lie there static and
frozen together; do something, come out of there and show me what you are capable
of!’ ’’30

 
  When Escher’s inventiveness stalled, he tackled the obstacle much as a mathematician does an
intractable problem—with obstinacy.31 Mathematicians pose questions that nag and pester, they
keep chipping away at a problem, until the truth, a solution, presents itself (or the enterprise
crumbles and proves impossible). Escher plugged away with tireless inquisitiveness, and in that
sense he had a mathematician’s soul.32 He logged weeks and months of brainwork before he ever
reached the reward of manually cutting the woodblocks, and the rhythmic relief of printing.
Escher’s son, George, recalled how his father’s work ethic dominated the atmosphere of their
home:

 
  A new concept could take months, sometimes years of incubation before it led to a print …[h]is
moods changed between irritated abstraction and relaxed discussion of some small problem,
between restless pacing behind his closed door and sudden announcement that he had found
some satisfying solution. During this period of gestation father demanded complete quiet and
privacy. The studio door was closed to all visitors, including his family, and locked at night …One
day the expectant atmosphere in the home would ease. The studio door opened, and we were
invited to look at the new design, still on paper …In the weeks that followed …from the
studio emanated light-hearted whistling and the ritual sounds of woodcutting and
printing.33
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  Escher at work in his studio.
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  Escher’s pencil tracings (enhanced) overtop Coxeter’s diagram showing a tiling of the
hyperbolic plane.

 
  After Escher’s long hunt to capture a more convincing infinity,34 one day in 1958 he swung
open his studio door and claimed victory in his battle to escape the flat Euclidean plane. A letter
from Coxeter had dropped on his drawing table like a creative bomb—it ‘‘gave me quite a
shock,’’35 he later told the geometer. After using Escher’s prints in his ‘‘Symposium on
Symmetry’’ presidential address, Coxeter had sent Escher a copy of his paper as thanks. When
Escher opened the package, he was proud enough to see the reproduction of his regular
divisions, the beetles and the horsemen. However, when he set eyes upon the other
illustrations—some mathematical figures Coxeter used to evoke non-Euclidean symmetry, in the
hyperbolic plane and on the sphere—Escher’s long-awaited epiphany came to him with a
jolt.36

 
  Escher immediately set to work trying to glean from Coxeter’s paper, ‘‘a method for reducing
the size of a pattern from the centre of a circle to the periphery, where the figures get
progressively closer and smaller.’’37 The only way Escher could figure out the method was
through the intuitive hands-on approach that he used for all his work. Using trial
and error, he tinkered until he hit upon something that worked. He used a compass
and traced over the figure in Coxeter’s paper—a symmetrical pattern of black and
white triangles filling Poincaré’s disk—attempting to decipher the pattern of circle
centers whose arcs outlined the triangles. He constructed a geometric scaffolding on
Coxeter’s original figure, and then graduated to his own reproduction, producing a large
drawing of intersecting circles.38 In a letter to his son, George, Escher raved about the
discovery:

 
  [Coxeter’s] hocus-pocus text is no use to me at all, but the picture can probably help me to
produce a division of the plane which promises to become an entirely new variation of my series
of tessellations. A circular regular tiling, confined on all sides by infinitely small shapes, is
really wonderful …At the same time, it seems as though I am distancing myself from
whatever might be successful with the public. But what can I do when a problem pulls at
me so much that I can’t leave it alone? It is not as easy as it looks. Try it. Put one
(or four) squares of whatever size in the middle of a circle (for instance, separated
by two straight lines through the centre) and make them smaller leading outward,

something like chess boards. It won’t work with only fourfold axes; you have to alternate
them with sixfold ones in a most peculiar way, which is normally not possible on a flat
surface. The borders are only partly straight lines (only three crossing centre lines)
and the rest are all circles. Without Coxeter’s model I never would have thought of
it.39

 
  Soon thereafter, the artist’s first woodcut ‘‘inspired by the Coxeter system’’ was finished.
Escher called it Circle Limit I—‘‘to me it is the most beautiful one that I have made of the
‘smaller and smaller’ type.’’40‡ He could not stop gazing at the circular ‘‘all-encompassing limit
of infinitely small shapes, all so logical and ordered …I am anxious to hear the reaction of Mr.
‘Cokeseater’ himself, to whom I sent a copy.’’41

 
  Escher’s creation impressed Coxeter, who wrote back and offered advice on how the pattern
could be continued in the same manner (he indicated this with a red dot on Escher’s enclosed
grid of circles, which he sent back). Coxeter also answered, with great mathematical panache, a
question Escher asked as to whether other systems, besides this one, could reach a circle limit. ‘‘I
say yes, infinitely many!’’42 Coxeter replied. And he elaborated with more of the ‘‘hocus-pocus
text’’43 that Escher found so useless. ‘‘He is so frightfully clever in his answers,’’ Escher
scoffed, ‘‘and throws symbols around whose meaning I can hardly understand; but
fortunately he has added a few drawings …’’44 Escher, through sheer artistic grit and
tenacity, willed himself toward the result he envisioned. ‘‘Maybe Coxeter could help me
with a single word,’’ he wrote, ‘‘but I would prefer to find it myself …also because
I’m so often at cross-purposes with those theoretical mathematicians, on a variety of
points. In addition, it seems to be very difficult for Coxeter to write intelligibly to a
layman.’’45

 
  Still, Coxeter was the consummate teacher. He delighted in drawing even amateurs’ attention
to the most sophisticated subtleties of what they were doing. No matter whom he engaged, and
regardless of whether they were struck dumb or disinterested, Coxeter was always determined to
share what he was seeing—the mathematically significant insight.46 ‘‘He was always explaining to
other people the mathematics of what they did, even when they had no clue that stuff was
there,’’ said Doris Schattschneider, an Escher scholar. ‘‘He just saw that as his mission in life. He
couldn’t help himself.’’47

 
  Coxeter no doubt thought he had been helpful in answering Escher’s question. In a pattern
that was to be repeated by his encounters with other artists, his mathematical ‘‘help’’
often generated flummoxed reaction.48 But his technical assistance at once forged the
artists’ self-reliance, giving them a glimmering of what they might be onto, and leaving

them to figure things out for themselves. This jibed with the heuristic approach to
geometry that Coxeter advocated in the classroom: his belief that the best path to
learning was hands-on experience, leading to the thrilling intellectual buzz of a self-made
discovery.49
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  If ever asked why he did what he did—indeed, why he kept doing it into old age when many of
his colleagues had retired—Coxeter delivered a curt retort: ‘‘No one asks artists why they do what
they do. I’m like any artist. It’s just that the obsession that fills my mind is shapes and
patterns.’’50 Coxeter was artistically inclined in discrete ways. His mother being a painter and his
father a sculptor meant that he was more than familiar with the calling. As much as Escher and
other artists worked mathematically, Coxeter as a mathematician worked artistically, in his
intuitive, visual, tactile methods.

 
  This said, Coxeter was not an aficionado of fine art. He enjoyed a visit to an art gallery, but
the artwork on his walls included portraits and landscapes by his mother, a few Escher prints,
and varied renderings of polyhedra and polytopes. The latter collection came to include
geometrical works by artists and other geometrical amateurs who orbited Coxeter
from hither and yon, including the startlingly profound and frequent offerings from
George Odom, a resident of the Hudson River Psychiatric Center, in Poughkeepsie, New
York.

 
  ‘‘I’ve been solipsistically sealed in my own world here for thirty years, which is what I
wanted,’’ said Odom. ‘‘The only reason I’ve stayed here as long as I have is because
there is a minimum of small talk here—I hate small talk. Here I could pursue my own
interests, do my painting, my mathematical models, my sculpture, with a minimum of
socialization. This is the loneliest place on Earth I could find.’’51 Odom suffers from
flattening bouts of depression, though he tells the story of how he ended up where he
is with the rat-a-tat-tat pacing and nonchalant tone of someone very content with
his fate. Framing his story in terms of the trajectory that led him to Coxeter, Odom
begins at age eleven, when in the early 1950s he visited the Museum of Modern Art
and was taken by the polyhedral sculptures of Buckminster Fuller. At seventeen, he
dabbled in the gay scene in New York, became disenchanted, and went in search of
‘‘something more substantial, something with lasting value.’’ The search led him to
Coxeter, who, Odom said, for three decades dating from the 1970s, was one of only
four contacts he had with reality and the human race.52 The other three men Odom
handpicked as correspondents, with whom he chronicled the development of his thoughts,

were his brother; his psychiatrist Charles W. Socarides, a clinical professor at the
Albert Einstein College of Medicine/Montefiore Medical Center in New York (with
Socarides, Odom discussed the connection between the seemingly unrelated notions of
Freud’s Oedipal complex and mathematical idealism); and Father Magnus Wenninger, a
mathematician and Benedictine monk at St. Augustine’s Monastery and School in Nassau,
the Bahamas (as it so happened, Wenninger was another of Coxeter’s friends from
afar).53

 
  Odom withdrew from the world and rented a furnished room in Yorktown Heights where he
started reading Western philosophy, Bertrand Russell, and Edna Kramer’s book The Main
Stream of Mathematics. He called Kramer in New York, and she sent him a reading list on
polyhedra, indicating the person he wanted to get in touch with was a professor at the University
of Toronto. After a suicide attempt, and a stay at New York Hospital, Westchester Division,
where the nurses and physicians marveled over Odom—‘‘He talks like a college professor’’—Odom
finally put down roots at the Hudson River Center, and from there he began his correspondence
with Coxeter.54

 
  ‘‘Coxeter was an incredibly cultivated man,’’ said Odom. ‘‘A totally civilized human being.’’
They corresponded on several subjects—on biblical interpretations, philosophy, psychology, and
metaphysics, even Odom’s flirtations with death, regarding which Coxeter cited an apropos
quotation from Lewis Carroll’s Through the Looking Glass.55 But mostly their discussions
focused on mathematics. With nearly every letter Odom sent a model, and both men
segued from their mathematical thoughts—with masterful gravitas—to the dismal state of
the world. Said Odom in one letter, ‘‘The enclosed two drawings pretty much reduce
polyhedral symmetry to bare structure (I’m afraid most people would not think it
beautiful—they would prefer the mathematics of the atom bomb).’’ And on another
occasion, Odom said: ‘‘I thought you might enjoy having this primary structure I
discovered some time ago—I’m convinced that geometry is ‘not of this world’—i.e. it is
transcendent and aristocratic—even though ‘the world’ has used it shamefully without
any sense of the sublime or gratitude. If mathematics is ‘the queen of the sciences’
what is the king?’’ To which Coxeter responded: ‘‘Maybe the King of the Sciences
is Ecology. I hope you agree that it is shameful for USA to be the only one, among
hundreds of countries, not to pledge to save endangered species.’’ They also bonded

artistically. A postcard arrived from Odom featuring The Clown by Henri Matisse,
with a short note: ‘‘Many thanks for the magazine and article. You are a wonderful
person and I love you madly.§ I didn’t know your parents were artists. That explains a
lot.’’56

 
  Odom often signed his letters ‘‘your admiring student.’’ But Coxeter, he said, treated him as an
equal. ‘‘Thank you for the copy of your historic study—you flatter me as I’m not a
mathematician as you well know. I’m an artist but you and I are both interested in
order and that leads us both to Beauty …Art and Science are quite different in that
art involves a lot of phenomena that Science would ignore as ‘trivial’—but both are
interested in the same end—of Beauty, Truth, Love—that is if the art is really art—and the
science is really science …’’ Odom considered Coxeter his mathematical ‘‘Other.’’ He was
the sounding board against which Odom developed his ideas, and Coxeter was his
biggest promoter.57 Odom discovered a construction for the golden ratio and Coxeter,
after recognizing its unexpected and beautifully simple method, formulated it as a
problem and sent it in for publication, in Odom’s name, in the American Mathematical
Monthly.58

 
  Odom also discovered a compound of ten cubes, which he sent along to Coxeter.
Coxeter, once again, was delighted—another remarkably simple and beautiful discovery.
It demonstrated that the rotations of the cube into itself exactly correspond to the
permutations of four colors. He wrote Odom and promised to use the model in his
keynote address to the Mathematics and Art section of the International Congress of
Mathematical Education, in Quebec City in August 1992—‘‘giving credit to you, of
course.’’59
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  Odom’s third major discovery was a construction of four hollow interlocking triangles. Again,
he sent Coxeter a model.60 A remarkable likeness of this structure crossed Coxeter’s desk a
short while later, a gift from another geometrically inclined and artistic soul, English
sculptor John Robinson. Upon the recommendation of a friend, Robinson had sent
Coxeter a book of his most recent sculptures—Symbolic Sculpture, The Universe Series.61
Coxeter appreciated what he saw: exquisite executions in bronze, wood, and wool
tapestry, of many geometrical concepts; the golden rule, the Archimedean spirals,
golden spirals, cones, knots, pyramids, triangles, ovoids, Möbius bands, circles, and
tangents.62
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  Coxeter with Odom’s discovery of four hollow interlocked triangles.

 
  Robinson had begun his career with ‘‘representational’’ pieces—children playing, as well as
busts of President Ronald Reagan and Queen Elizabeth II.63 He described his shift to
mathematically inspired works by citing the words of Auguste Rodin: ‘‘I have come to know that
Geometry is at the very heart of feeling, and that each expression of feeling is made
by a movement governed by Geometry. Geometry is everywhere in Nature. This is
the Concert of Nature.’’64 And he looked to Carl Jung’s writings in Man and His
Symbols: ‘‘The Artist is, as it were, not so free in his creative work as he may think
he is. If his work is performed in a more or less unconscious way, it is controlled by
laws of nature that, on the deepest level, correspond to laws of his psyche, and vice
versa.’’65
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  Robinson insisted the inherent rigidity of his Intuition sculpture would make a self-supporting
roof for a building he hopes someday will be built; Coxeter believed such a building would
collapse of its own weight.

 
  In particular, Robinson’s piece called Intuition caught Coxeter’s eye. Like Odom’s model, it
was an orderly tangle of interlocking hollow triangles, but Robinson’s sculpture had only three.
And while Odom’s was a brightly painted cardboard model that fit nicely into the hands,
Robinson’s was at least quadruple the size rendered in shiny stainless steel, or a gargantuan
6-foot by 9-foot sculpture in wood.66 ‘‘Your title ‘Intuition’ was well-chosen,’’ Coxeter informed
Robinson, ‘‘because, although I am quite sure that George never saw any work of yours,
there is something uncanny in their several points of resemblance: he and you had a
similar ‘intuition.’ ’’67 For Robinson, the sculpture represented ‘‘a knotted core of
stability within the centre of knowledge, from which comes sparks of originality and
invention, often for no apparent reason. We call these sparks INTUITION. The sparks
shoot in all directions, but come from the core of experience.’’68 For Coxeter, these
two constructions represented a piece of mathematical serendipity that deserved a
paper.


 
  Coxeter conducted a comparison of the two structures,69 wrote up his results, and sent them
along to Robinson (his article was published in the Mathematical Intelligencer, with Odom’s
homemade model on the cover).70 Robinson’s response to the mathematical hieroglyphs was
much like Escher’s. ‘‘I must confess,’’ he wrote in response, ‘‘that I don’t understand the
mathematics of your essay, but I do get immense satisfaction in looking at the equations and
knowing that they relate directly to something that has ‘popped’ into my brain …The act of
‘popppin’ is why I called the sculpture INTUITION.’’71
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  Escher, similarly undaunted by Coxeter’s ‘‘hocus pocus’’ suggestions, continued with his quest
to capture infinity, fiddling with his Circle Limit I to correct the shortcomings in his first
hyperbolic approach. He called the process of working on his Circle Limits ‘‘Coxetering’’—as in,
‘‘Today I finished my first printing of 14 impressions of my new ‘Coxetering,’ ’’72 or ‘‘I think
that ‘Coxeterings’ are the best solution to the plane-filling patterns. I should use this
exclusively for the time that is left to me, only it is so much more difficult than my earlier
puzzles.’’73

 
  Escher was elated with his Coxeterings, though he feared others would not see them as he did.
‘‘I have tried to explain the ‘smaller and smaller’ print to several visitors,’’ he said, ‘‘but it is
clear that most of them are uninterested in the beauty of this infinite world in an enclosed plane.
Most people have no idea what it means. It saddens me because I am busy with the next print,
which will be much, much better.’’74 Escher’s ‘‘meaning’’ was ‘‘capturing the infinite.’’ He
could wax philosophical about infinity, governed as it was by an indiscernible set of
laws:

 
  There is something in such laws that takes the breath away. They are not discoveries or
inventions of the human mind, but exist independently of us. In a moment of clarity, one can at
most discover that they are there and take them into account. Long before there were people on
the earth, crystals were already growing in the earth’s crust. One day or another, a human being
first came across such a sparkling morsel of regularity lying on the ground or hit one with
his stone tool and it broke off and fell at his feet, and he picked it up and regarded
it in his open hand, and he was amazed …We never succeed in achieving completely
that perfection which haunts the spirit: a perfection we can only see with the inner
eye.75


 
  Coxeter might have nodded and said ‘‘Ah, yes. That’s quite nice!’’ to this articulation
of infinity. But by contrast, Coxeter’s articulation of infinity was much more literal,
a large numerical entity—as demonstrated by his ‘‘Up late, we washed ∞ dishes’’76
notation in his diary after a dinner party, or his observation that ‘‘Rien made ∞ phone
calls.’’77 He dismissed out of hand the notion that infinity somehow translated into
the hereafter; the only afterlife he believed in was on the molecular level of corporeal
decomposition.78 And thus, Coxeter may not have identified so easily with Escher’s more poetic
musings:

 
  Human beings can’t imagine that the stream of time could ever come to a halt …That is why
we clutch at a chimera, an afterlife, a purgatory, a heaven, a hell, a rebirth, or a nirvana, all of
which would then be eternal in time and endless in space.…Deep, deep infinity! Rest, dreaming
removed from the nervous tensions of daily life; sailing over a calm sea, on the bow of
a ship, toward a horizon that always recedes; staring at the waves that go by and
listening to their monotonous, soft murmuring; dreaming away toward unconsciousness
…79

 
  The correspondence between Escher and Coxeter contains no discussion about Escher’s
philosophical visions. Instead, the geometer’s letters with the artist, and his series of
Escher-inspired papers, are regimented by Coxeter’s interest in the mathematical substructure of
the drawings, quantifying their geometric foundations and marveling at the unorthodox method
that brought his friend to such precise results.80

 
  Escher finally achieved his ideal and sent Coxeter a print of Circle Limit III in May
1960—inscribed ‘‘With gratitude, M. C. Escher.’’81 ‘‘It is intended to be an elaboration of the first
black-and-white print which you received before …it certainly succeeded better this
time,’’ Escher said to Coxeter, continuing in his somewhat awkward English: ‘‘The
whole area is filled up with series of theoretically an endless number of fish, swimming
head-to-tail in the same color. The white curved lines through their bodies accentuate
the continuity of every series.’’82 Coxeter responded: ‘‘The picture is very successful,
both interesting and beautiful.’’83 But still not picking up on Escher’s illiteracy with
the mathematical translations, Coxeter sent back three pages of analysis—about the
picture’s symmetry group, generated by which rotations, the angles of the vertices,
and providing references to two of his books, Regular Polytopes and Generators and
Relations.84 ‘‘It’s a pity,’’ Escher said to his son, George, ‘‘that I can’t understand a word of
it.’’85


 
  Later that year, Escher had plans to visit his son in Montreal, and Coxeter arranged invitations
for him to give two talks in Toronto—one at the Ontario College of Art, and another at the Art
Gallery of Ontario. Coxeter made sure that mathematicians attended the latter, and he arranged
a reception afterward at his house, where Escher was staying. The day after the talk, Escher sat
in on Coxeter’s lecture on non-Euclidean geometry at the university, for all the good it did
him.86

 
  In between visits (the Coxeters stopped in at the Eschers’ in Baarn on a number of occasions,
once receiving a tour of Escher’s studio87), Coxeter began his series of Escher papers and
lectures, which easily amounted to more than a dozen: his interpretation of the artist’s work
matured, insight by insight.88 In Coxeter’s first analysis of Circle Limit III, for example, he
stated his opinion that the woodcut would have been still more beautiful without the white arcs
artificially dividing each fish into two unequal parts. These arcs, Coxeter said, ‘‘have no
mathematical significance.’’89 Three years later, when he allowed this paper to be reprinted in
the book The World of M. C. Escher, he had changed his mind and deleted his assertion
about the mathematical irrelevance of those white arcs.90 Subsequently, he wrote two
papers celebrating the arc’s mathematical virtues. ‘‘Of all Escher’s pictures with a
mathematical background,’’ Coxeter began in a 1979 paper in the arts and sciences journal
Leonardo,

 
  the most sophisticated is his 1959 woodcut, Circle Limit III, which used four colours in
addition to black and white. Queues of fishes of each colour are swimming along white arcs that
cut the peripheral circle at a certain angle …[We] shall see why all the white arcs ‘‘ought’’ to cut
the circumference at the same angle, namely 80°(which they do, with remarkable accuracy).
Thus Escher’s work, based on his intuition, without any computation, is perfect, even
though his poetic description of it ( …‘‘perpendicularly from the boundary’’) was only
approximate.91
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  Escher’s Circle Limit III, 1959.

 
  In coming to this conclusion about Escher’s exactitude, Coxeter had recruited a student to
meticulously measure each of the arcs in Circle Limit III. He liked to recall how one of Escher’s
angles initially seemed to be off by a few degrees, suggesting a sloppy, amateur error. Just to be
sure, Coxeter had the arcs double-checked, and it turned out not to be Escher’s error, but the
student’s error. More specifically, what Coxeter discovered from his microscopic analysis of the

print was that the arcs were not hyperbolic lines, as he and others assumed, but rather branches
of equidistant curves that cut through corresponding vertices of the octagons of the underlying
tessellation. ‘‘Escher did it by intuition, I did it by trigonometry,’’ Coxeter proclaimed
wondrously.92

 
  In that revelation, Escher’s work brought the geometer to a new mathematical understanding,
seeing the hyperbolic plane in a way he hadn’t before considered. This new perspective continued
to ferment, and nearly two decades later, in 1996, at the age of eighty-nine, Coxeter wrote
another paper on those same white arcs, this time providing a more elementary and pleasing
proof. In his first paper, Coxeter used a non-Euclidean method (hyperbolic trigonometry) to
prove the angle measure of the arcs to the boundary circle, even though the parameters of the
model Escher illustrated were, in fact, Euclidean. ‘‘I think it bugged Coxeter that his first
proof used hyperbolic geometry even though the Poincaré disc model of hyperbolic
geometry is really a Euclidean model,’’ said Schattschneider. ‘‘It’s a Euclidean model for
hyperbolic geometry. I think Coxeter wanted to show you could do it with only Euclidean
geometry and Euclidean trigonometry—that was his second paper, showing that all you
needed was ordinary Euclidean trigonometry. And I think he was really quite proud of
that.’’93

 
  Coxeter took infinite pleasure in his string of Escher papers, but he regretted that the
artist died (in 1972) before his papers devoted to Circle Limit III were published.94
One might assume that Coxeter’s approval hardly would have mattered to Escher. He
had suffered no small amount of anxiety over the years, worrying that the artistic
merit of his work, the perception of his creativity, was diminished by its scientific
content. Escher always considered himself an outcast in the art world, never quite
belonging. He noticed a review of his work, with three prints, in the Saturday Evening
Post in 1961 by the eminent E. H. Gombrich, an art historian at the University of
London. Gombrich was critical of his work on aesthetic grounds, but Escher noted
hopefully, ‘‘He is still moved by it because he goes on and on—more than three columns.
Furthermore, the publishers are even paying $140 for the reproduction rights for those three
pictures! This could snowball.’’95 Coxeter kept in his Escher file a review by Globe and
Mail art critic John Bentley Mays. The headline read, HIGHER DOODLING AND
OTHER GIMMICKS. The derisive review of an Escher exhibit in 1996 at Canada’s

National Gallery began by saying, ‘‘Ottawa hippies have less than a week to bathe in
nostalgia about the really trippy kicks they got by staring at Escher’s puzzle-images while
stoned on acid, and before they grew up …It’s enough to make a grown-up art critic
weep.’’96

 
  Escher was distressed with the enthusiasm shown for his work by those young hippies who
made him so popular at university poster sales. They saw in Escher’s work not his sense of
wonder at the cosmos: they saw a disorder and chaos that he never intended.97 But neither was
Escher a mathematician. He pondered abstract mathematical concepts and liberated
mathematicians’ intellectual fantasies—his prints illustrated obvious concepts such as groups,
symmetry, and infinity, as well as more the subtle concepts of reflection, duality, recursion,
topology, and relativity.98 ‘‘But the sad and frustrating fact remains that these days
I’m starting to speak a language which is understood by very few people,’’ Escher
wrote, betwixt and between about where he stood. ‘‘It makes me feel increasingly
lonely. After all, I no longer belong anywhere. The mathematicians may be friendly and
interested and give me a fatherly pat on the back, but in the end I am only a bungler to
them.’’99
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  Sculptor John Robinson didn’t worry so much about where he fit in. For Coxeter’s ninetieth
birthday, a sculpture of Intuition was installed in the front garden of the Fields Institute, in
Toronto (an identical Robinson sculpture graces the garden of the Isaac Newton Institute for
Mathematical Sciences at Cambridge). As a more personal birthday gift, Robinson created
another sculpture, inspired by the geometer’s fondness for mutually tangent circles. With a bit of
guidance in a letter from Coxeter—an ‘‘easily solved’’ equation (of course, not so easily for
Robinson; he was relieved the letter also provided a solution)—Robinson produced a five-sphere
sculpture he called Firmament.100

 
  ‘‘I called the sculpture Firmament,’’ said Robinson, ‘‘because it reminds me of the marvelous
19th century working models of the Solar System that fascinated me as a child in
the London Science Museum. I didn’t understand what I was looking at then, just
as I don’t understand Donald Coxeter’s mathematics now. What I do understand
is that the Universe is a Miracle …and that this kind of Mathematics is part of the
Miracle.’’101

 
  * An infinite number of nonregular polygons can tile the plane, and similarly, any number of
abstract shapes.


 
  † One would expect Coxeter to have visited the Alhambra as well. But he did not; he
boycotted Spain, bullfighting being the bridge too far for his beliefs in animal rights and
pacifism.

 
  ‡ It is interesting to note that the symmetries of Escher’s Circle Limit patterns display the
same symmetries of the Platonic solids, simply inflating them from spherical to hyperbolic
geometry.

 
  § On another occasion, Odom closed by telling Coxeter: ‘‘There are very few people I
admire—You are lucky enough to be one of them.’’
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11  THE COXETERIAN SHAPES OF THE COSMOS

1    

 

Spirit of the Universe! Whither are we drifting, and when, where, and how is
all this to end?

 
—J. J. SYLVESTER, 1867
 


  Coxeter passed the milestone of his ninety-fifth birthday demonstrating the same alacrity with
which he had caught trains in Cambridge and scraped through traffic in Toronto: as he described
(the former) in his diary, ‘‘by the skin of my teeth.’’2 Another fête was planned in his honor at
the Fields Institute, and a few days before the big event—on his actual birthday, February 9,
2002—Asia Ivić Weiss, Coxeter’s last PhD student, threw a small luncheon at her downtown
Toronto home. She baked Coxeter a birthday cake in the shape of a hedgehog, with almonds
stuck in the icing for its coat. It was a lovely, intimate occasion, until the horrible
moment during dessert when Coxeter suffered a heart attack and slumped from the table,
unconscious. CPR administered by Susan did nothing to resuscitate him; he appeared to have
left the land of the living. But then, as Weiss’s husband called 911, Coxeter revived
himself, choking on an almond from the cake. Despite surviving his heart spell, he was
admitted to the hospital for a visit his family truly expected would usher him into the
hereafter.3

 
  Coxeter lay in hospital as guests arrived in town for the Fields party. Three guests—John
Conway; Marc Pelletier, a geometric model-maker from Boulder, Colorado; and geometry lover
Glenn Smith from Texas—were staying at his house, empty of the legend himself. No one knew
quite how to deal with the apocalyptic scenario.4 Having traveled all this way to celebrate
Coxeter, they were greeted by his daughter, Susan, and relics upon relics of his career:
seventy-five years’ worth of five-year-at-a-glance pocket diaries, rows of filing cabinets full of A-Z
correspondence, Alicia Boole Stott’s polytope scrapbook, and his entourage of models worthy of
a Smithsonian collection. Smith recalled that it played like a scene from Zorba the Greek, when

the old woman dies, has no heirs, and her belongings are up for grabs. Coxeter’s heirs
had no attachment to his dusty memorabilia, so the devoted disciples in attendance
were left discussing, questioning, where Coxeter’s prized geometric possessions would
go.5

 
  Coxeter handled the predicament with good-humored equanimity: ‘‘I’m not ready to disappear
from this life yet.’’6 He rallied, with quiet and stoic determination. On the day of the bash, he
discharged himself from the hospital with a day pass and arranged to be chauffeured by
ambulance to the Fields Institute, Toronto’s internationally renowned mathematical think tank.
He rolled in by wheelchair. As gallant as ever, he received greetings from colleagues and fans.
Festivities began in the atrium, the fireplace lit for the occasion. Atop a wooden double-helix
staircase, Coxeter’s birthday present, a five-foot geometric wire sculpture, donated by a generous
and anonymous benefactor, was unveiled hanging from the ceiling—a welded stainless-steel
projection of the four-dimensional hyperdodecahedron into three dimensions, made by
Pelletier.* Coxeter gazed upward with pure joy, hardly the dozy appreciation of an old
man at death’s door; his polytopal muse still filled him with wonder. Staring at the
hyperdodecahedral mobile, Coxeter told Conway, standing beside him, about his latest
polytope ideas, and his plans for the paper he was due to deliver that summer in
Budapest.7
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  Coxeter fielded many compliments after his Budapest talk on four mutually tangent circles.
‘‘That really was a proof from ‘The Book’ you gave this morning,’’ said Karoly Bezdek, the
secretary of the conference’s program committee, chatting with Coxeter later in the day when
Coxeter turned up at Bezdek’s afternoon lecture. ‘‘The other day I opened your book on
Regular Polytopes with my son,’’ continued Bezdek, ‘‘because he had just seen Star Wars
and he wanted to draw multi-dimensional shapes.’’ His motivation for this remark
may have been science fiction, but Bezdek called Coxeter’s work a ‘‘prototype for
discovery.’’8

 
  Having successfully delivered the opening lecture, Coxeter had the remainder of the conference
to relax and enjoy other presentations. The morning after his talk, he awoke energized. He
reinstated his exercise regime, abandoned only months before—push-ups (six) with his hands in
his slippers to protect them from the hard floor, sit-ups (maybe a dozen), arm circles backward
and forward, and upside-down ‘‘air bicycle,’’ hips in his hand and legs pedaling through space.
His circulation revved and ready to go, Coxeter sat on the edge of his bed in his pajamas
and planned his day, reading over the conference program and selecting the lectures

he wanted to attend.9 Over the course of the week there were several: Weiss’s, John
Ratcliffe’s, Ernest Vinberg’s ‘‘Hyperbolic Reflections Groups,’’ Igor Rivin’s ‘‘Geometry
of Polyhedra,’’ and ‘‘Hyperbolic Coxeter Groups of Large Dimension’’ by Poland’s
Tadeusz Januszkiewicz and Jacek Swiatkowski.10 At all of them, as he sat in the front
row, his namesake Coxeter entities were also front and center—cropping up repeatedly
in the banter and scribbled on overhead projectors, summoning their omnipresent
symmetries.

 
  On the second day of the conference one lecture in particular caught Coxeter’s attention:
‘‘Visualizing Hyperbolic Geometry.’’ He arrived just in the nick of time and flumped down into
his seat. Soon enough, the audience was cocooned in a darkened lecture hall, peering at a
multimedia screen, their heads tilted congruently upward. It was the common conference scene,
except this time the mathematicians were wearing stereoscopic 3-D glasses, with one red lens and
one blue lens fitted to a boxy white cardboard frame. They might well have been watching a
1950s 3-D-craze flick such as House of Wax, with Vincent Price and Charles Bronson. But before
them stood Jeff Weeks, a freelance geometer from Canton, New York, and the recipient
of a 1999 MacArthur fellowship. Weeks is also the author of The Shape of Space, a
book exploring the possible shapes of the universe. At his Budapest talk, he presented
his custom-made computer-generated model of his latest hypothesis: the universe, he
conjectured, may be shaped like a dodecahedron. Plato might have been right after
all.11
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  Coxeter watching Jeff Weeks’s presentation in Budapest.

 
  Weeks has been wondering about the shape of the universe since he was a teenager. ‘‘It’s the
sandbox we’re born into,’’ he said. But his search was always theoretical—using mental images
and sketches, and later numbers and equations as his tools. The attraction was pure
aesthetics. ‘‘The different possible shapes for the universe are so beautiful,’’ he said.
‘‘The appeal of geometry is describing real space, and the universe is the ultimate
space.’’

 
  Coxeter’s work appealed to Weeks for the same reasons. ‘‘Donald Coxeter is obviously a
brilliant mathematician. But what really makes him special even among other brilliant
mathematicians, is his excellent taste, his sense of beauty and simplicity,’’ said Weeks. ‘‘He works
in these four-dimensional and curved spaces where it takes a leap of the imagination to get there
to begin with, but then when he gets there he doesn’t get lost; he doesn’t fall into the trap of

proving lots of obscure theorems. He proves good theorems. He looks at things in very concrete
and very simple ways, sort of the equivalent to the beauty of a honeycomb pattern that bees
might make with lots of symmetry, except he’s doing something similar in four dimensions or in
curved spaces.’’12

 
  The intersection of Weeks and Coxeter’s geometric sensibilities was obvious from the subject
matter of Weeks’s three-dimensional movie: a computer-generated dodecahedral universe, a
magnified mass of honeycomb, each side of each cell flashing in multicolor, the Earth spinning
inside and the viewer rotating and gliding through the nexus, as if traveling within a spaceship
through a background of endless black.

 
  Weeks came upon his ‘‘What is the shape of the universe?’’13 project quite out of the blue. He
received an e-mail from a cosmologist asking a technical question about the vibrational modes of
a spatial manifold. Weeks did not have the answer, but he offered to find it. When he discovered
cosmologists were expecting hard data from outer space that would allow them to test the actual
shape of the real universe, his usual wide-eyed demeanor widened some more. ‘‘This was a dream
come true for a theoretical mathematician,’’ he said, ‘‘to finally have some data on
the way.’’ Before he knew it, he was collaborating with an international coterie of
cosmologists.14

 
  Weeks’s task, through continuous exchange with the cosmologists, was to provide the raw
materials. First, he determined which geometrical structures were plausible shapes for the
universe by playing around within the existing classes. Currently, there are three classes of shapes
considered to be contenders. The standard and favored model is an infinite and flat universe,
forever expanding under the pressure of an as yet inexplicable ‘‘dark energy.’’ The other two
are the hyperbolic model (saddle shaped, with negative curvature, causing parallel
lines to eventually diverge), and the spherical model (with positive curvature; such a
closed universe eventually stops expanding, then contracts in a ‘‘big crunch’’). The
dodecahedron—a sphere shaved slightly flat to form its twelve faces—fits within the spherical
class.15
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  Within the dodecahedral model of the universe, computer-generated by Jeff Weeks.

 
  Weeks also calculated how each shape would behave in space, and these first two
tasks involved a lot of sitting around, thinking with pen and paper (pens make darker,
firmer lines than pencils, he finds), fiddling with the mathematics of the models.16
Then he worked up formulas to prove his hypotheses. Finally, he devised computer
programs to run his formulas. Cosmologists plugged Weeks’s geometric formulas into

simulations of the physics of the universe. The results would be compared to data expected
from NASA’s Wilkinson Microwave Anisotropy Probe (WMAP). The WMAP probe
was sent up to map cosmic microwave background radiation, the echo of the origin
of the universe—the assumed big bang—and provide data about its early history and
scale.17

 
  One particularly useful indicator of universe topology is the temperature fluctuations of
radiation emanating from the big bang. In an article in Nature magazine, Weeks and his
colleagues explained these fluctuations by comparing them with the sound waves of musical
harmonics:

 
  A musical note is the sum of a fundamental, a second harmonic, a third harmonic, and so on.
The relative strengths of the harmonics—the note’s spectrum—determines the tone quality,
distinguishing, say, a sustained middle C played on a flute from the same note played on a
clarinet. Analogously, the temperature map on the microwave sky is the sum of spherical
harmonics. The relative strength of the harmonics—the power spectrum—is a signature of the
physics and geometry of the universe.18

 
  When the WMAP data arrived in February 2003, it only partially confirmed the prevailing
infinite-flat model of the universe. All the small and medium-size temperature waves were present
as predicted, but the model failed to find any of the broad wavelengths that should exist in such
a large and infinite universe. One explanation, said Weeks, is that outer space simply
isn’t that big and thus could never produce such large waves in the first place. ‘‘A
violin is never going to play the low notes of a cello because a violin’s strings aren’t
long enough to support such a long sound wave,’’ he said. ‘‘It’s the same with the
universe. Its waves cannot be larger than space itself.’’ Enter the finite-dodecahedron
model. The behavior Weeks predicted for a dodecahedral universe matched all the
WMAP data. ‘‘It was a very pleasant surprise. Our model fit even better than we
expected.’’19

 
  The future of dodecahedral space still faces major challenges. The model’s calculations of
spatial curvature must be compared to more precise data from the Planck Probe, scheduled to
launch in 2007. The results of the probe could either fine-tune Weeks’s model or refute it
entirely. His model must also pass what’s called the ‘‘circles-in-the-sky’’ test. If the
dodecahedron model is correct, a computer-coded search should be able to detect six
pairs of matching circles across the cosmic horizon—echoes from the big bang vibrating
against the twelve faces of the dodecahedral universe. So far, no circles have been
found.20


 
  While they await the final verdict, Weeks and the cosmologists are at once holding out hope
and exploring other options, such as the possibility of a universe that is finite in some directions
and infinite in others. ‘‘You don’t want to ignore the other possibilities,’’ said Weeks. ‘‘But
personally, I’m not ready to declare the circles missing.’’21

 
  The dodecahedron model, if it holds up, has implications for quantum mechanics and theories
about the big bang. It could affect an exquisitely more insightful understanding of the blinking
night sky, and crack open a sliver of potential for traveling into its furthest depths.
‘‘Hypothetically,’’ said Weeks, ‘‘if you head off into a dodecahedral universe you would travel in a
straight line and come back to the starting point. But it would take a long, long time.’’ The
dodecahedron model will also open a new conundrum of a question: If the universe is finite, what
is beyond? ‘‘Nothing,’’ said Weeks. ‘‘But it is a very profound nothing. The best way to answer
that question is to make the question go away.’’22 And with some elaborate epistemological
reasoning, he can.

 
  At the end of the Budapest presentation, enamored by Weeks’s dodecahedral universe, Coxeter
stood from his seat, made his way toward him, and shook his hand.

 
  ‘‘Very nice!’’ Coxeter said.

 
  ‘‘Here’s the man responsible for a lot of the images you saw,’’ said Weeks (he was wanting to
give Coxeter at least as much credit as he deserved, and, out of reverence to the legend before
him, perhaps even a little more). The audience lingered while Weeks replayed his movie. Coxeter
left behind his cane and held his glasses to his face with both hands, moving closer to the
video screen to get an amplified 3-D view. ‘‘It’s quite nice,’’ he said. ‘‘It looks like
you’re inside some sort of network of lines and polygons. Quite impressive!’’ He’d
seen that sort of thing before, the honeycomb tiling of space. But he thought it was
quite something to see these familiar shapes alive in such dynamic form—a polytopal
universe that he could not only delve into with research but almost literally dive into
himself.23
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  A few months after Weeks’s presentation, the New York Times ran an article in its
science pages exploring the possibility of an infinite flat model for the ‘‘macroscopic
dimension’’ of the universe. ‘‘Very curious. Very surprising,’’ Coxeter said. ‘‘I would have
thought otherwise. I’d expect it to be like the surface of a hypersphere, elliptic in the
geometric sense.’’24 The shape of the universe as a whole is still pretty much anybody’s
(or any cosmologist’s) guess. But a related realm of study is the interior structural
topology within the universe, or the ‘‘microscopic dimension.’’ Coxeter’s work plays out

here as well. Coxeter and John Petrie’s discoveries of the regular skew polyhedra in
1926 resurfaced more than a half-century later to find application in astronomy. ‘‘The
astronomy application [of the regular skew polyhedra] is a nice punch line!’’ said J.
Richard Gott III, the astrophysicist at Princeton responsible. ‘‘I think the regular
skew polyhedra have been somewhat overlooked …not as well publicized as the regular
polytopes.’’25

 
  Gott became acquainted with the regular skew polyhedra almost forty years after
Coxeter and Petrie made their discoveries. As an eighteen-year-old student at Mayme S.
Waggener High School, in Louisville, Kentucky, Gott rediscovered the same figures.
‘‘The first one I found was hexagons-four-around-a-point,’’ he said. ‘‘I noticed four
hexagons could join in a saddle-shaped surface and this could be continued to make
a repeating sponge-like structure.’’ He did a project on his discovery, winning him
first place in mathematics at the National Science Fair-International in 1965. As an
undergraduate at Harvard he wrote up his findings and sent them to the American
Mathematical Monthly. ‘‘I don’t know who the referee was—but I’ve always fancied
that it might have been Coxeter himself!’’ The referee informed Gott—quite to his
surprise—that this class of figures had been discovered earlier, and that Coxeter later
proved these were the only three regular such figures by his criteria. Gott, however, had
discovered seven, employing less restrictive criteria.26 The referee accepted the additional
findings and Gott’s first scientific paper was published on the topic in 1967, titled
‘‘Pseudopolyhedrons.’’27

 
  Pseudopolyhedrons were reprised in Gott’s later investigations on the cosmos when he became
an astrophysics professor at Princeton. In 1986, he was investigating the topology of the
structure within the universe. ‘‘At that time there was a debate over the topology,’’ he said. ‘‘In
one model there were isolated clusters of galaxies in a low density background (a meatball
topology), while in the other model there were isolated voids with a honeycomb structure (a
Swiss-cheese topology), galaxies being located on walls surrounding isolated voids.’’ From his
high-school work, he knew there was a third possibility—a sponge-like topology, since
that was the topology of the regular skew polyhedra. ‘‘I realized that this had to be
the correct answer for the universe, because the theory of inflation predicts that the
clustering pattern of galaxies we see in the universe today should have originated from
random quantum fluctuations in the early universe. Such random fluctuations have

the property that positive and negative fluctuations are equivalent …Therefore, the
topology, the shape of the high-density regions must initially be the same as that of the
low-density regions. This was not the case for the meatball topology or the Swiss-cheese
topology.28
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  J.R. Gott’s spongy universe.

 
  Gott, however, knew that a sponge’s structure was the same on the interior and exterior, since
this was true of the regular skew polyhedra. A marine sponge is permeated by a series of tunnels,
allowing water to trickle through. If you pour concrete into those passageways, let
it set and harden, and then dissolve the marine sponge with acid, you are left with
a concrete sponge. ‘‘This is the pattern of clustering galaxies we can observe,’’ he
said, ‘‘In other words, what a number of studies have now confirmed is that we see a
sponge-like pattern of galaxy clustering, with great clusters of galaxies being connected
by filaments, and voids being connected by tunnels to make a giant sponge.’’ Gott
published this theory in the Astrophysical Journal—titled ‘‘The Spongelike Topology of
Large Scale Structure in the Universe’’—complete with pictures of the Coxeter-Petrie
regular skew polyhedra to illustrate the argument. The New York Times picked up the
story and ran it on the front page: RETHINKING CLUMPS AND VOIDS IN THE
UNIVERSE.29
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  In coming to grips with the omnipotence of geometry, a statement by Brian Greene, a
superstring physicist at Columbia University in New York,† stands out: ‘‘There is perhaps no
better way to prepare for the scientific breakthroughs of tomorrow than to learn the language of
geometry.’’30

 
  Implicitly Greene was referring to the long-standing conundrum of modern physics with which
Einstein wrestled in the latter half of his life: the search for a grand unified theory, a single
theory that can explain the fundamental physical laws of the universe, on the big scale of our
galaxy and all the other galaxies, and the small scale of a nano-size speck of nothing. Such a
theory seeks to unite Einstein’s general theory of relativity, explaining the large-scale properties
of the universe, with quantum theory, explaining matter and energy on an atomic and subatomic
level. The trouble with these two theories of existence, currently held true, is that they
are incompatible—they cannot both be correct (quantum theory, which describes the

behavior of elementary particles assumes gravity is negligible, whereas the theory of
general relativity, stating that gravity equals space-time geometry, holds that quantum
mechanics is not needed in the description of the laws of nature—the mathematics do not
mesh).31

 
  String theory replaces particles with strings, open-ended or closed as loops, and in doing so
resolves the incompatibility issues between quantum mechanics and general relativity (it isn’t
obvious how this resolution occurs, but it is interesting to note that the purpose of uniting these
theories is all aesthetics—it would be simpler, more neat and tidy, if the laws of the
universe could be reduced to one formulation, if the component parts were synthesized).
The strings are so tightly curled into minuscule multiple dimensions—ten or eleven
dimensions, or even twenty-six, which are constrained by precise symmetries—that
they are invisible to the naked eye and even the eye armed with the best scientific
technology.32

 
  String theory has become more complicated since it was introduced a few decades ago, with a
number of variations on the original theory. These theories have been brought together in a
grand multi-universe plot, known as M-theory. Edward Witten, based at Princeton’s Institute for
Advanced Study, is the mathematical physicist behind M-theory (some call him the ‘‘pope of
strings’’). ‘‘M stands for magic, mystery, or matrix,’’ Witten said. ‘‘I think they speak for
themselves, except possibly for matrix; matrices are used in an approach to understanding
M-theory. In addition, our present understanding of M-theory is murky.’’33 That is to
say superstrings and M-theory are still just theoretical children, joyous yet chaotic
puzzles.

 
  Coxeter was peripherally aware of string theory. It came to mind one day when
discussing Through the Looking-Glass by Lewis Carroll.‡ This was one of Coxeter’s favorite
books due to its logically nonsensical nature. He especially liked the ‘‘Jabberwocky’’
passage and would say that word—‘‘Jabberr-wOckAy!’’—with such enjoyment. He could
recite entire stanzas with the same dramatic intonation. Coxeter often dipped into his
ratty copy of Alice, and after many readings he hadn’t tired of it at all. ‘‘It’s like
reading about a part of mathematics that you know is beautiful,’’ he explained, ‘‘but
that you don’t quite understand. Like string theory. That’s as much a mystery to
me as it is to anyone else who can’t make head nor tails of the eleventh or sixteenth
dimension.’’34


 
  Therein, unwittingly, he was onto something. The enduring problem with string theory is that
string theorists themselves can’t even explain it. ‘‘Don’t ask me to explain what I
just said,’’ demurred Stanford string theorist Lenny Susskind, speaking off the top of
his head at the Strings05 conference in Toronto. Among some string theorists, the
murkiness seems to be causing more consternation than joy. String theory may hold
promise to unify all the forces of nature, but just as easily the enterprise may prove
to be so grandiose and esoteric that it is beyond human intelligence. Participants at
Strings05 gathered one evening for a session pondering when ‘‘The Next Superstring
Revolution’’ would occur. Eight panelists, speaking in alphabetical order, professed to
their embarrassment that they had no idea when or how the next breakthrough would
come.35

 
  Witten rose from the audience during the Q&A session and offered a ‘‘cautionary tale about
predicting the future.’’36 Even if string theory does not turn out to be the be-all-and-end-all
model of the physical universe, he expects the theory and all its infinitesimally small dimensions
will ultimately evolve into a new branch of geometry. ‘‘[S]tring theory does appear to
contain a lot of rich geometrical ideas, so far not so well understood, which I believe will
have a lot of influence in mathematics over time,’’ he said. ‘‘One reason I think so
is that the little pieces that are so far discovered have already had a considerable
influence.’’37

 
  One little piece of the puzzle that has helped decipher the mysteries of string theory is mirror
symmetry. Brian Greene and Ronen Plesser, associate professor of mathematics and physics at
Duke University, discovered the mirror symmetry of string theory and in so doing revealed how
elements previously thought to be totally unrelated were in fact intimately interconnected.38 As
a result, a horrifically complicated calculation, previously considered impossible even for the best
mathematicians, became breathtakingly easy in a mirror-opposite space. They called their
discovery ‘‘mirror manifolds.’’ And, with the impasse broken, subsequent calculations
proceeded with ‘‘relative ease.’’ Greene elaborated in The Elegant Universe with a tangible
analogy:

 
  It’s somewhat as if someone requires you to count exactly the number of oranges that are
haphazardly jumbled together in an enormous bin, some 50 feet on each side and 10 feet deep.
You start to count them one by one, but soon realize that the task is just too laborious. Luckily,
though, a friend comes along who was present when the oranges were delivered. He tells you that
they arrived neatly packed in smaller boxes (one of which he just happens to be holding) that
when stacked were 20 boxes long, by 20 boxes deep, by 20 boxes high. You quickly calculate

that they arrived in 8,000 boxes, and that all you need to do is figure out how many
oranges are packed in each. This you easily do by borrowing your friend’s box and
filling it with oranges, allowing you to finish your huge counting task with almost no
effort.39

 
  Or consider Greene’s analogy with Coxeterian tools. Imagine you are peering into the same pile
of oranges, but then realize the pile isn’t as big as you thought. You blink, tilt your head for a
new perspective, readjust your focus, and you see that it is actually a smaller pile of oranges
replicated again and again in an almost invisible mirrored box, like one of Coxeter’s finite
kaleidoscopes. In order to make the calculation, then, all you have to do is count the oranges in
the immediate box, and then multiply that number by the mirrored reflections to get your
total.

 
  ‘‘Mirror symmetry is a nonclassical relation between spacetimes,’’ said Witten, ‘‘that
are quite different in Einstein’s General Relativity but turn out to be equivalent in
string theory. This enables string theorists to do calculations that would otherwise
be out of reach, and has turned out to have surprisingly interesting applications in
geometry.’’40

 
  The mirror symmetry breakthrough was a boost for string theory and mathematics alike. But
rumblings are that if a bigger breakthrough doesn’t occur soon, and in the form of streams of
empirical evidence, string theory will at best be deemed a branch of mathematics or philosophy,
but not part of physics.§ Data is desperately needed to confirm or refute the fundamental string
theory hypothesis: Within these microscopic eleven dimensions resides a new species of
subatomic particles, known as supersymmetric (SUSY) particles, or ‘‘sparticles.’’ Physicists are
trying to detect traces of these sparticles at such places as Fermilab, in Batavia, Illinois, and the
CERN, in Geneva—the latter, home of the world’s largest particle accelerator and the center
of the universe for determining the content of the universe in its first trillionth of a
second. And an even more powerful particle accelerator is being built at CERN—the
Large Hadron Collider (LHC), which, when it is switched on in 2007, will probe even
deeper into matter and smash nuclei together with even more collision energy. String
theorists are crossing their fingers; they hope the LHC will prove the existence of string
theory’s supersymmetric particles. The hunt for sparticles, like the hunt for C60, is
on.41


 
  This raises a question: it sounds far-fetched, but could Coxeter’s templates of symmetries for
shapes in multiple dimensions possibly unlock part of the puzzle of the supersymmetric unified
theory of everything? After conducting a survey of the existing literature—with Google,
searching ‘‘Coxeter and M-theory’’—the answer is yes. The search revealed a paper
by Marc Henneaux, a specialist in black holes, at the Free University, Brussels, and
director of the Service de Physique Théorique et Mathématique. It is titled, in big bold
letters,

 
  PLATONIC SOLIDS AND EINSTEIN THEORY OF GRAVITY: UNEXPECTED
CONNECTIONS42

 
  It turned out it wasn’t so much scholarly paper as it was a PowerPoint presentation intended
for a general academic audience (though Henneaux has written scholarly papers on this subject
as well). His presentation read, in part:

 
  GRAVITATION = GEOMETRY

 
  Einstein revolution: gravity is spacetime geometry

 
  General relativity has proved to be remarkably successful …but there are …

 
  PROBLEMS

 
  General relativity + Quantum Mechanics = Inconsistencies
(e.g., infinite probabilities!)

 
  Synthesis of both should shed light on the first moments of universe
(« big bang »), on black holes, and on the problem of why the vacuum energy is so
small.

 
  Towards a solution: string (M-)theory?

 
  SYMMETRIES: THE KEY?

 
  Symmetry = invariance of the laws of physics under certain changes in the point of
view

 
  What are the underlying symmetries of M-theory?
Platonic solids: the golden gate to symmetry

 
  Platonic solids, of course, are those ‘‘toys’’ Coxeter played around with so often in
his work. And sure enough, a little further into the presentation, Coxeter’s work was
cited:

 
  Coxeter groups may thus signal a much bigger symmetry43


 
  ‘‘Coxeter’s work does make an unexpected appearance in Einstein’s theory of gravity,’’
confirmed Henneaux. He and his collaborators44 found that Coxeter groups ‘‘popped out’’ when
studying particular solutions of Einstein’s equations.¶ ‘‘One can show that the generic solution of
Einstein’s equations contains singularities, places where some fields become infinite. We studied
the Einstein equation in the vicinity of such singularities—in the cosmological context you have
the big bang singularity and you want to understand how the fields behave as you approach the
big bang.’’45

 
  By analogy, Henneaux and his colleagues showed that the dynamics of the gravitational
equation are the same as the dynamics of a billiard ball moving on a hyperbolic billiard
table. ‘‘You would have a billiard ball moving in some portion of hyperbolic space in
higher dimensions,’’ he said, ‘‘and when the ball hits the border of the billiard table
you would have a reflection. We can show that all the possible reflections when the
ball hits the walls would generate a Coxeter group—the whole thing conspired to give
you a Coxeter group.’’ The team came upon this finding somewhat by accident. They
computed the trajectory of the billiard balls, and found that it worked out to a very nice
geometry. And they computed the angles between the walls of the hyperbolic billiard
table, and found that the angles were pi divided by an integer—pi over three, or pi over
two—just as in Coxeter’s kaleidoscopes, with angles separating mirrors being fractions of
pi.46

 
  This research helps the hunt for the fundamental formulation of string theory because the
existence of the symmetries of a Coxeter group might be an indication that the theory itself has a
huge symmetry group. This in turn indicates there are beautiful and elegant structures
underlying string theory, and lends credence to the theory’s potential. ‘‘We believe that
exhibiting, explicitly, this huge symmetry will help in understanding string theory and the
generalization of string theory known as M-theory,’’ said Henneaux. ‘‘[Presumably
if we understand better the symmetries, we would be able to make a step toward a
deeper formulation of the theory. And we believe that maybe this is a way to attack the
problem.’’47

 
  The pope of strings also gives his blessing to Coxeter groups and their potential role in
unraveling the puzzle. ‘‘Maybe some unfamiliar infinite-dimensional groups like E{10} will be
important in string theory—at times people have made this conjecture—and if so maybe it will be
helpful to understand the Coxeter groups,’’ said Witten.48


 
  ‘‘String theory is one place where there are a vast amount of links to different parts
of mathematics,’’ said Sir Michael Atiyah. ‘‘That’s what makes it one of the more
exciting things going at the present time …And if it hadn’t been for that, one might have
worried, because there are no experimental results for string theory, and if there were no
connections to mathematics, the critics might just say, ‘Well, these guys are doing crossword
puzzles.’ ’’49

 
  Sir Michael, whose realm of modern geometry also overlaps with the physics of string theory,
has been instrumental in bringing the two factions together. ‘‘Over the last 25 years, I’ve been
learning some physics, talking to physicists and helping to bridge the gap. It’s a difficult gap to
bridge,’’ he said, ‘‘because traditional mathematicians tend to view with a lot of suspicion the
work of physicists. The physicists’ work is full of hypothetical ideas for which there are no proofs
…Physicists’ intuition is based on the world of experiments,’’ Sir Michael explained. ‘‘They think
conceptually when they think about physics because it’s about electrons and particles and forces
and fields—the electric field and the gravitational force and the magnetic field. By
definition these are meant to be forces that you can imagine. They have ideas in their
mind when they talk about the things they are discussing, and that is very similar to
the way a geometer thinks—in terms of space and pictures and so on …When they get
to the stage of converting intuition into formal arguments, to writing papers, then
physicists tend to resort to algebraic formulae …Then a lot of their conceptualizations are
converted to formulae and they write down the equations to say how the particles
and forces behave. So there are two sides to the story in physics, just as there are in
mathematics.’’50

 
  But when the physicists started thinking about string theory, the kind of geometry they needed
wasn’t at the intellectual ready. ‘‘The geometrical thinking did not come very easily to physicists
when they started getting involved with string theory,’’ said Sir Michael. ‘‘They can think
conceptually in terms of physical terms, particles and fields and forces, but when it came time
to translating these into mathematical geometrical concepts, they weren’t too sure
of their ground. Because the old fashioned simple straight line geometry of Euclid
wasn’t appropriate, and they hadn’t learned the new modern curved and complex
geometry.’’51
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  The ‘‘hosepipe’’ model of string theory, drawn by Sir Roger Penrose, shows how strings might
be curled into small extra dimensions. A ‘‘being’’ who inhabits this world straddles the extra
dimensions and is therefore unaware they exist.


 
  Subsequently, after physicists pulled at modern mathematics for what they needed, the physics
of string theory, in turn, spurred on modern geometry, producing a complicated set of links that
physicists predicted, but which mathematicians would not have otherwise considered. ‘‘When you
have unexpected links, they turn out to involve lots and lots of things crisscrossing each other,’’
said Sir Michael. ‘‘Mathematics is a very intricate pattern of beautiful designs. You discover
unexpected links and you increase the pattern, you explore and you draw more analogies
and you draw more pictures. It becomes one big mosaic. And it goes on and on and
on.’’52
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  By the end of the Budapest conference, continuing on and on with geometry was, for Coxeter,
top of mind. As he roamed the halls of Hungary’s Academy of Sciences, visiting one lecture room
after another, Coxeter noticed the many mirrors in the building—lining the elevator, on the
landings of grand sweeping marble staircases, in hallway alcoves, and in the library. As he
wandered by yet another mirror, he recited a passage from G. K. Chesterton’s Manalive, which
had become his mantra of late: ‘‘There is something pleasing to a mystic in such a land of
mirrors,’’ he said. ‘‘For a mystic holds that two worlds are better than one. In the highest sense,
indeed, all thought is reflection.’’53

 
  Coxeter wasn’t at all mystical about his land of mirrors; he was driven, obsessed, with a steely
passion to experience everything he could about symmetry and polytopes. And he wanted to
keep at it. One evening in Budapest, he received a call in his hotel room from Gyorgy Darvas, a
local geometer and director of Symmetrion. Darvas was off to another mathematics
gathering a couple of hours away, but he’d heard Coxeter would be in town and he did
not want to miss the chance to meet him. Coxeter slowly made his way downstairs
to the lobby for an impromptu meeting with Darvas. ‘‘I’ve wanted to meet you for
50 years,’’ Darvas said. He presented Coxeter with two copies of a journal he edits,
Symmetry: Culture and Science, published by the Symmetry Society. Darvas added that
he would be happy to publish anything Coxeter sent his way. And he gave Coxeter
an invitation to a conference, Symmetry Festival 2003#, in Budapest the following
summer.54

 
  ‘‘Oh, how lovely!’’ Coxeter said, adding with a guffaw: ‘‘But I won’t be alive in 2003!’’ Darvas
gently pointed out that 2003 was only one year away.

 
  ‘‘2-0-0-3,’’ said Coxeter slowly. ‘‘Those numbers look so odd.’’55


 
  By the last day of the conference, the rejuvenated Coxeter wasn’t feeling his mortality so much
and had reconsidered Darvas’s invitation for a return visit. Departing for the airport, bidding his
good-byes, he told colleagues, fans, and friends gathered for his send-off that he would see them
back in Budapest the next year.56

 
  * In total, Pelletier has made seven such sculptures, also called the 120-cell—a Waldorf school in
Texas is home to one, and Princeton’s math department another.

 
  † Greene is the author of the Pulitzer Prize-nominated book The Elegant Universe, and its
sequel, The Fabric of the Cosmos.

 
  ‡ Lewis Carroll was the pen name for mathematician C. L. Dodgson. He wrote mathematics
books under his own name, but invented his pseudonym by translating his first two names,
Charles Lutwidge, into Latin, producing Carolus Lodovicus, which he then Anglicised and
reversed in order.

 
  § In the meantime, while the string theorists await the next breakthrough, Amanda Peet, from
the University of Toronto, proposed string theory become a ‘‘faith-based initiative.’’ Whereas
ever-the-jester Susskind said, ‘‘There’s nothing to do except hope the Bush administration will
keep paying us.’’

 
  ¶ These are Einstein’s equations pertaining to gravity, not the famous E = mc2. The Coxeter
groups that pop up in these equations—that is, the Coxeter groups that here prove to be useful
mathematical tools—are those informing the mysterious infinite continuous symmetries that seem
to underpin all existence (specifically, the hyperbolic Coxeter groups: A{1}++, pure gravity; and
E{10}, 11-dimensional supergravity).

 
  # At Symmetry Festival 2003, Hungary’s Sándor Kabai and Szaniszló Bérczi were due to
give a talk exploring the usefulness of polyhedra in ‘‘Space Stations Construction and
Modelling.’’
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12  Full Circle Symmetry

     
And summer’s lease hath all too short a date.

 
—SHAKESPEARE, SONNET 18
 


‘‘We have now reached the end of our journey,’’1 wrote Coxeter, as if coming to the end of a fable
in the epilogue to Regular Polytopes—a book that had become, some mathematicians reckoned,
the most quoted geometry text of the century.

 
  After his return from Budapest, Coxeter acquiesced to the reality that he was nearing his end.
He was more gaunt and ascetic looking than usual, his mind increasingly betrayed by his body.
After one particularly calamitous day, Coxeter invoked a limerick from nonsense poet Edward
Lear, lamenting: ‘‘I feel like the Old Man from Thermopylae, who never did anything properly.’’
Mathematicians around the world had long since put Coxeter on their ‘‘longevity watch.’’2 And
nearly all his contemporaries had predeceased him, which gave him the minor advantage of
knowing, somewhat, what to expect.3

 
  Coxeter and Pólya, his friend from Princeton, had kept in touch into old age. In 1978,
ninety-year-old Pólya wrote, ‘‘Dear Coxeter, You know everything about geometry, elementary or
otherwise, n or more dimensional …I have not seen you for a long time, but perhaps we can meet
sometime, somewhere, somehow …’’ They did not, but they continued to write. Coxeter
sent some of his latest papers and received Pólya’s final return letter in 1985: ‘‘I am
close to 100 years, and for my age not too badly off.’’ Pólya died later that year, at
ninety-seven.4

 
  Coxeter had closely marked the birthdays of many of his friends and colleagues.
In 1992, on John L. Synge’s ninety-sixth, he wrote a mathematically laden letter of
congratulations:

 
     
Dear Jack,
     

 
We send you our warm congratulations on your 96th birthday. It is splendid to
have lived so long. And 96 is a very fine number, being the number of vertices of
the regular complex polygon 4 {4} 3. It has been known only for a few months
that these 96 points have the symmetrical coordinates …this is one of the results
in the new paper I am writing …
 


  On Synge’s ninety-seventh, Coxeter commented on his success at having reached ‘‘a
nice prime number!’’ And for his ninety-eighth, Coxeter penned his best wishes on
Synge’s actual birth date, only seven days before his death in March 1995. Synge, in
his letters back to Coxeter, described his decline with fine detail: ‘‘The pulse-rate at
rest is normally 48 per min, but mine lies between 30 and that. I have a great lack of
energy.’’ Just before he died, Synge remarked with characteristic wit: ‘‘I’d be delighted
to wake up in the morning and find I’d died in the night.’’ His last days were in a
nursing home, and he told his daughter, the much-decorated mathematician Cathleen
Synge Morawetz, ‘‘Be sure to tell Coxeter to move into a nursing home. It’s the best
thing.’’5

 
  Despite the recommendation, Coxeter intended to avoid a nursing home at all cost. When he
was in his nineties, he nursed Rien through the horrors of Alzheimer’s, bathing, dressing, and
feeding her with superhuman compassion and devotion. Coxeter moved Rien into a home only in
her final months, after a fall had broken her hip and her will to live. Over the protracted period
of his wife’s illness, Coxeter allowed himself little respite. A nurse came to the house
only one day a week, a day Coxeter used for trips into his office at the university
campus to catch up on mail.* He received a much-treasured piece of mail from an
eleven-year-old polytope prodigy, Clifford Zvengrowski, living in Calgary, Alberta. Enclosing a
photograph of a skeletal polytope model he had constructed (nearly as tall as the
boy himself), Clifford wrote to say: ‘‘Dear Professor Coxeter, My three most favorite
people that live or lived are Archimedes, Brahms, and yourself. Most kids I know would
like to get an autograph of some rock singer or baseball player, yet I am hoping for
yours.’’6

 
  Coxeter also managed to keep on top of the world’s political injustices. In 1997, he gladly
hand-delivered a petition to the president of the University of Toronto, signed by one
hundred professors, protesting plans to bestow an honorary degree on former president
George H. W. Bush.7 The event went ahead as planned, but scores of faculty ‘‘robed
up’’ for the convocation ceremony anyway, and then walked out en masse during the

proceedings. ‘‘We chose a point when the encomium to Bush was waxing odious,’’
recalled mathematics professor Chandler Davis. ‘‘The ceremony was in the Great Hall of
Hart House, and by pre-arrangement the exiting profs marched straight out of the
building by the south door where over a thousand supporters had gathered to cheer us.’’
More than half the total of sixty attending faculty exited. Coxeter, then age ninety,
preferred to simply stay home and boycott.8 He once said he never thought there
could be anything worse than President Bush until a second President Bush came
along.

 
  When Rien died in 1999, Coxeter enjoyed a second wind of sorts. He threw around his weight a
bit when drafting his will. Initially, he had decided to donate his Rosedale house (by then
valued at $1.5 million) to the University of Toronto. He reconsidered his offer, however,
when he perceived a change in the university’s pedagogical approach—shifting from
‘‘learning for its own sake’’ to ‘‘learning for opportunity.’’ Coxeter thought it particularly
egregious that research chairs were endowed by corporations. He rescinded the offer to
the university and stipulated instead that the proceeds from the sale of the house
be divided equally between the Fields Institute and his alma mater Trinity College,
Cambridge.9

 
  With his daughter Susan as his helpmate, he once again filled his itinerary with international
engagements, such as a trip to Stockholm for the Symmetry 2000 conference. There he spoke on
another of his signature subjects, the ‘‘Rhombic Triacontahedron,’’ and he planned to use a new
type of model invented by his friend, geometer and geophysicist Michael Longuet-Higgins, at the
Scripps Institution of Oceanography, UCSD. Called RHOMBO, the model’s component
parts are six-faced solid blocks that click together by a patented system of magnets.
Longuet-Higgins had sent Coxeter samples as he developed the model, and Coxeter became an
enthusiastic promoter, saying: ‘‘Your RHOMBO blocks are very much more than a
toy!’’ And on another occasion he informed Longuet-Higgins: ‘‘I took both balls to the
NATO meeting on Polytopes, where many participants enjoyed pulling them apart
and re-assembling them.’’ At Symmetry 2000, in Stockholm, Coxeter delivered his
lecture, using the blocks, with Longuet-Higgins sitting in the audience. In the middle of
his presentation, Coxeter fumbled the model and dropped it on the floor, causing
it to fly into pieces. Longuet-Higgins rushed to the rescue and reassembled it. ‘‘Did
Donald drop the blocks on purpose? I believe he did,’’ said Longuet-Higgins, ‘‘so as
to give me a chance to demonstrate my RHOMBO. That would have been just like
Donald.’’10


 
  Coxeter also made one last trip to his native Cambridge, where he was anointed an honorary
fellow of Trinity College (the Master of Trinity, Amartya Sen, wondered aloud why
it had taken the College so long to do so11). He managed back-to-back conferences
in Vancouver and in Madison, Wisconsin, even though he was immobilized and on
painkillers with a cracked pelvis. He made two summer appearances at the Canada/USA
Mathcamp for math whiz kids; went to Banff for his talk on Escher; and finally visited
Budapest.12

 
  And then there was a journey of another sort, the crowning celebration of his career, his
ninety-fifth-birthday party at the Fields. After the dedication ceremony with the unveiling of the
120-cell, John Conway delivered a touching yet humorous ode to his mentor. ‘‘My aim is to try to
tell Donald Coxeter something about polytopes that he doesn’t already know. I’m not at all
confident that I can pull it off. But I am going to try,’’ he said, trying to reassure Coxeter that
the impact of his oeuvre was enduring.

 
  ‘‘But before I do,’’ said Conway, ‘‘I want to step back 25 or so years, if I may, to Donald
Coxeter’s 70th birthday celebration. Nearly all the people there were students of Coxeter’s, or
grand-students or great grand-students, and they were all getting up and saying how this man
had been such a great inspiration in their lives. Well, I rather brashly thought I’d do something
different. I stood up and said I was there to forgive Professor Coxeter for having tried to
murder me. I then told a story which actually has a few elements of the truth about
it.’’13

 
  ‘‘A long time ago Professor Coxeter came to Cambridge to give a lecture when I was a student
there in the late fifties. I didn’t realize it during the lecture, but that was his attempt to murder
me. He chose as his weapon something Agatha Christie never thought of: a mathematical
problem—he ended his lecture asking for a solution to a problem he’d been pondering.’’ It was a
problem about geometrical groups, the rotational polyhedral groups, and Coxeter groups.
Conway walked out of the lecture room, and crossed Trumpington Street, the main road in town.
‘‘Just as I was in the middle of the road,’’ said Conway, ‘‘the solution to Professor
Coxeter’s problem hit me. Right when he calculated it would, I figure—he judged its level
of difficulty precisely. Because as it turned out, it was not the only thing that hit
me. At the same time as the solution hit me, or a few microseconds later, a garbage
truck also hit me. Fortunately, it didn’t do too much damage; it was an unsuccessful

attempt at murder. And after being shouted at for being a damned fool by the men
hanging off the back of the truck, I limped back to the room and told Professor Coxeter
all this and gave him my solution, which to this day I refer to as the ‘The Murder
Weapon.’ ’’14
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  Coxeter autographing a portrait of himself, with Glenn Smith (left) and John Conway, at
Coxeter’s ninety-fifth-birthday celebration, hosted by the Fields Institute, Toronto, February
2002.

 
  ‘‘I’m one of the greatest Coxeter lovers,’’ said Conway in closing. ‘‘He has a certain way with
presentation that is elegant and carries the reader along. With mathematics what you’re doing
is trying to prove something and that can get very complicated and ugly. Coxeter
always manages to do it clearly and concisely, with beauty. Coxeter kept a little flame
of geometry alive by doing such beautiful works. There is a quotation from Walter
Pater’s book The Renaissance. Pater was describing art and poetry. He refers to a hard,
gem-like flame: ‘To burn always with this hard, gem-like flame, to maintain this ecstasy,
is success in life.’ Somehow,’’ Conway said, ‘‘that always makes me think of Donald
Coxeter.’’15
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  Coxeter enjoyed his Indian summer while it lasted. He identified with John Galsworthy’s
interlude with that title in his book The Forsyte Saga. ‘‘People treated the old as
if they wanted nothing,’’ wrote Forsyte. But Coxeter, like Forsyte’s character ‘‘Old
Jolyon,’’

 
  ached a little from sheer love of it all, feeling perhaps, deep down, that he had not very much
longer to enjoy it. The thought that some day—perhaps not ten years hence, perhaps not five—all
this world would be taken away from him, before he had exhausted his powers of loving it,
seemed to him in the nature of an injustice, brooding over his horizon. If anything came after
this life, it wouldn’t be what he wanted.16

 
  Spells of resignation, grumpiness, and sadness came over Coxeter as he set out for the trip
home from Budapest. He grudgingly allowed Susan to whisk him around the airport in a
wheelchair and through the ‘‘diplomats only’’ passport check. All the while, he grumbled about
the injury Susan had inflicted upon the pages of his lecture: ‘‘This is what’s left of my precious
Budapest paper,’’ he said, the sheets of his talk, minus a jagged torn-off bottom half of
the opening page, sitting atop his briefcase on his lap, his fingers rapping away in
annoyance.


 
  ‘‘I’m sorry, Dad. I didn’t realize what it was. I just needed something fast to calculate the tip
so I ripped off a piece …’’17

 
  He could hardly be denied his rancor. But the cabin-fever antics between father and daughter
only escalated after Budapest. He precipitated music wars with his daughter—Coxeter listened to
Bruckner, which was like fingernails on a blackboard to Susan, who blasted her country tunes in
retaliation. Not long before he died, the tension broke when Susan and her father shared a big
laugh. Susan had made her father his usual breakfast, toasting the rice bread twice (as
recommended for his digestive problems), buttering it with nondairy spread (he had become
lactose intolerant), cutting it twice into triangles (he was finicky, and triangles being far superior
to rectangles), only to have him take one bite and say he didn’t much feel like toast. This pushed
Susan past her limit.18

 
  ‘‘Dad if you don’t want f*#!ing toast, tell me you don’t want f*#!ing toast!’’ The same
happened later that day with lunch when she made falafels. ‘‘Dad! Tell me if you
don’t want f*#!ing falafels!’’† Midafternoon, Susan left her father on his bed and said
she was going to her room, in the maid’s quarters of Coxeter’s historic house, for a
nap. Twenty minutes, that’s all she asked. She pulled her blind, reclined, and closed
her eyes. At that very moment, her father began blowing his orange ‘‘emergency’’
whistle, slung at the ready around his wrist. Muttering her frustration under her breath,
Susan was back at his side. ‘‘Susan,’’ he said, not even opening his eyes, ‘‘could you
please remove my f*#!ing shoes?’’ It was first time he’d used the word in his life. ‘‘I
had taught him to swear at 96,’’ recalled Susan. ‘‘And he taught me how horrible it
sounded.’’19

 
  While his mind remained active, Coxeter had clearly entered the homestretch. He occupied
himself daily with putting the final touches on his Budapest paper, readying it for publication.
And he began to pull books from his library on ‘‘convexity,’’ preparing his paper for Symmetry
2003. But soon his ailments and mishaps began to multiply. He thought it terribly unfair, given
his pure lifestyle and his long track record of near-perfect health. What did him in was too many
falls, out of bed or down the flight of stairs from his bedroom. One tumble in particular
warranted numerous stitches and a Band-Aid the size of a rectangular half piece of toast. With
that, his bedroom moved from upstairs to the main floor—a makeshift bedroom in the dining
room. Coxeter insisted the arrangement was temporary, that he would move back upstairs when
he regained his strength. He still climbed the stairs to his bedroom and down to the basement

each day for exercise, his arms clutching the railing, pulling his bowed body along
behind him like a mountain climber scaling a peak. A visitor commented that his task
did not look easy. He said, ‘‘It’s been my experience that nothing worth doing in life
is.’’20

 
  On a Saturday at the end of March, Coxeter put the final touches on his Budapest paper. He
so relished making corrections that he could not quite believe no more ‘‘errata’’ were to be
found.21 Having polished his thoughts on four mutually tangent circles to perfection, Coxeter
died two days later, on March 31, 2003, with his cat Amy curled on his stomach. He
had no illusions about infinity or hyperspace materializing in the hereafter. He had
reached mortality’s event horizon. And he stipulated there be no funeral. Susan and
Edgar poured his ashes under a tree to the west of the front door at the Rosedale
house, his final nod to symmetry, balancing the spot where he left Rien’s ashes to the
east.22
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  One final Coxeterian act of symmetry had been set in motion prior to his death. Coxeter
traveled to McMaster University, in Hamilton, Ontario, where neuroscientist Sandra Witelson
has accumulated a ‘‘brain bank’’—she acquired a specimen of Einstein’s brain,23 and
arranged to acquire Coxeter’s (she also invited John Conway’s brain, and he accepted24).
Witelson investigates anatomical manifestations of genius. ‘‘Behind every beautiful
mind is a beautiful brain,’’ she told Coxeter when he visited to hear about results
so far. ‘‘Sir Donald,’’ as Witelson called him, had undergone some pre-postmortem
tests—a neuropsychological analysis and a full-brain MRI. Dr. Witelson explained that
she was interested in his parietal lobe in particular—the region of the brain crucial
to conjuring intuitive concepts, visual images, multidimensional images of time and
space. ‘‘Einstein’s parietal lobe was twice as large as that of a normal brain,’’25 said
Witelson.
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  The last portrait of Donald Coxeter, photographed at home in Toronto, November
2002.

 
  Since Coxeter’s death, further testing on his brain has so far confirmed the preliminary
research. The results seem to reveal that Coxeter had a bilateral expansion of his parietal
lobe—not quite the same type of enlargement Einstein displayed, but similar, and a large parietal
lobe nonetheless. Indeed, as Witelson had pointed out to Coxeter, one could see the bump on the

top of his bald head. She also explained that the right and left hemispheres of average brains do
not display mirror symmetry. Coxeter’s and Einstein’s brains, however, were ‘‘more
mirror-image’’ than usual.26 Coxeter was clearly pleased. ‘‘So,’’ he said, ‘‘my interest in
symmetry has not been misplaced.’’27

 
  * One piece of mail he tended to on August 10, 1997, pertained to a recent royalties statement.
‘‘Dear Ms. Falaster, Thanks for the royalty statement. I regret that only 13 copies of TGE
[Twelve Geometric Essays] were sold. The trouble seems to be that few people have
heard of the book, although it contains some of my most original articles, frequently
cited by other authors. Could you do something about promotion? Tell the public
that I have just been awarded, by the Royal Society of London, this year’s ‘Sylvester
Medal,’ which is the mathematical equivalent of a Nobel Prize. Yours sincerely, Donald
Coxeter.’’

 
  † Usually he was easy to please: another day, for lunch, he ate pea soup from the can and
declared: ‘‘Ahhh! Pianissimo!’’
  

 



 



  
13  APPENDIX 1

FIBONACCI AND PHYLLOTAXIS

 
  The pineapple displays a botanical phenomenon Coxeter was very fond of: phyllotaxis, literally
meaning ‘‘leaf arrangement,’’ but pertaining generally to buds, and also present in
sunflowers, daisies, and pine cones,* which grow in patterns described by the golden
ratio.

 
  The golden ratio is derived from a celebrated sequence of numbers discovered in 1202 by
Leonardo of Pisa, also known as Fibonacci (his father was nicknamed Bo Nacci, or ‘‘the good
natured guy,’’ so he was ‘‘the son of good nature’’). Fibonacci noticed this special sequence of
numbers by watching rabbits reproduce. ‘‘He assumed that rabbits live forever, and that every
month each pair begets a new pair which becomes productive at the age of two months,’’ Coxeter
recounted in his book Introduction to Geometry. ‘‘In the first month the experiment begins with
a newborn pair of rabbits. In the second month there is still just one pair. In the third month
there are 2; in the fourth, 3; in the fifth, 5; and so on.’’ The Fibonacci numbers 1, 1,
2, 3, 5, 8, 13 are special, because each successive number is the sum of the previous
two; and the golden ratio is obtained by dividing any number in the set of Fibonacci
numbers by the previous number, which always gives a result in the neighborhood of
1.618.1

 
  In the botanical application of the Fibonacci numbers, plant outgrowths seek an optimum
amount of living space and in so doing sprout in a pattern of intercrossing ‘‘whorls.’’ In a
sunflower, where the buds become seeds, one family of 55 clockwise whorls intersects another
family of 89 counterclockwise whorls—55 and 89 being successive Fibonacci numbers. With a pine
cone, there are 8 ‘‘dextral’’ and 13 ‘‘sinistral’’ whorls (these terms refer to spirals like a
corkscrew, and like the mirror image of a corkscrew, respectively). With a pineapple, the dextral
and sinistral whorls are always Fibonacci numbers, but not always the same Fibonacci numbers.
The ratios of alternate Fibonacci numbers measure the fraction of a turn between successive
leaves, buds, or organs, emanating from a plant’s stalk—Coxeter gave the examples of 1 ⁄ 2  for elm
and linden, 1 ⁄ 3  for beech and hazel, 2 ⁄ 5  for oak and apple, 3 ⁄ 8  for poplar and rose, 5 ⁄ 13  for willow
and almond.2 A similar scenario occurs with pineapples, pine cones, daisies, and so
on.

 
  [image: PIC]

 
  Coxeter’s diagram investigating a pineapple’s pyllotaxis.


 
  In a lecture titled ‘‘Chirality and Phyllotaxis,’’ Coxeter stated that the botanical application of
the Fibonacci numbers was introduced by Kepler in 1611 with two paragraphs of his book A New
Year’s Gift, which Coxeter quoted: ‘‘We may ask why all trees and bushes—or at least most of
them unfold a flower in a five-sided pattern, with five petals. In apple-and pear-trees this flower
is followed by a fruit likewise divided into five …Inside there are always five compartments to hold
the seeds …,’’3

 
  Coxeter concluded his exposition in Introduction to Geometry by saying: ‘‘[I]t should be frankly
admitted that in some plants the numbers do not belong to the sequence …Thus we must face the
fact that phyllotaxis is really not a universal law but only a fascinatingly prevalent
tendency.’’4

 
  * Soaking a pine cone in water for thirty minutes causes the buds to close and accentuates the
phyllotaxis pattern.

 
  
  

 



 



  
14  APPENDIX 2

SCHLÄFLI SYMBOLS OF THE 3-D AND 4-D REGULAR POLYTOPES1

 
  
  

 



 



  
15  APPENDIX 3

COXETER DIAGRAMS
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16  APPENDIX 4

COXETER GROUPS

 
  Coxeter groups are the algebraic equivalent of Coxeter diagrams. The Coxeter diagram for
the icosahedron, having three mirrors or nodes, would be translated into symbolic
algebraic terms, the mirrors, or the mirror reflections, being represented by x, y, and
z.

 
  The algebraic language created by Coxeter groups is governed by the equivalent of grammatical
rules. But in fact, the rules are better described by a mathematical analogy—the way in which
reflections combine with one another in Coxeter groups is much like a multiplication
table.

 
  For example, let’s take a Coxeter group of order 4, which is generated by just two
mirrors.

 
  Here, the symmetries generated by the reflections in the two mirrors (which are
hinged at a 90° angle) can be denoted by the lower case letters e, a, b, c, where e
commonly describes the identity symmetry, corresponding to the real image. The two
mirror images would be a and b, and the peculiar fourth image behind the seam of the
mirrors would correspond to c. Here the magic appears: the seam image c is equal to
the image in mirror a being reflected by mirror b—image c is the result of the real
image bouncing first in mirror a and then mirror b. In order to get the fourth image
c, you ‘‘multiply’’ a times b. The ‘‘multiplication table’’ of symmetries fills in like
this:

 
  [image: PIC]

 
  The chart lays out how the images reflect in multiple fashion in the mirrors. The identity
element, or the original image, results from reflecting only in mirror a, and again in that same
mirror. As we saw previously: a2 = 1 (or a2 = c). But when the original image is reflected
through mirrors a and b, another image results, namely, image c. The entire chart can be
completed in this manner. So again, if you have one reflection in mirror a, you see just your
mirror image; if have one reflection in mirror b, you just see your mirror image. But when you
look at that image behind the crack between the mirrors, the light is actually bouncing

first off mirror a, then off mirror b, and back into your eyes, and it is that double
bounce that gives you the very unexpected extra image. And somehow c is different in a
geometrical way, as you can check by waving your right hand at images a, b, and then
c.1

 
  Thus, the Coxeter group of order 4 is a collection of the symmetry transformations e, a, b, and
c, which comes equipped with a multiplication table governing how the transformations
interact.

 
  Coxeter groups of higher order progress in the same manner, with larger multiplication tables,
adding to the algebraic language. Each Coxeter group has its own algebraic characterization,
which, when memorized, evokes the symmetry properties of that particular group.2 Or
mathematicians can look it up in Regular Polytopes, where Coxeter has already done all the
work.3

 
  
  

 



 



  
17  APPENDIX 5

MORLEY’S MIRACLE

 
  A quintessential sampling of Coxeter’s mathematical spirit is found in his book
Introduction to Geometry. His opening chapter was titled ‘‘Triangles,’’ which focused first
on Euclid (perhaps a logical place to start but also a nice volley in response to the
‘‘Down-with-Euclid-Death-to-Triangles!’’ mantra). Therein he laid out Morley’s theorem, aka
Morley’s Miracle, a theorem Coxeter much appreciated.1

 
  He also included Morley’s Miracle in his book Geometry Revisited, coauthored with Samuel
Greitzer, which featured a purple and yellow construction of the theorem on the cover (but oddly,
the construction is faulty, not possessing exact trisectors).

 
  ‘‘One of the most surprising theorems in elementary geometry’’—surprising because it was so
simple and went undiscovered for two thousand years—‘‘was discovered about 1899 by Frank
Morley,’’2 wrote Coxeter. A shy but deliberate man, Morley did not go public with his theorem
and it was first published by another party, F. G. Taylor and W. L. Marr, in 1914.3
Morley was born in England, graduated from Cambridge in 1884, and later moved to
the United States and became a professor of mathematics at Haverford College, in
Pennsylvania; after his triangle discovery, he was appointed a professor at Johns Hopkins, in
1900.4

 
  The theorem Morley discovered states: ‘‘The three points of intersection of the adjacent
trisectors of the angles of any triangle form an equilateral triangle.’’5 According to Conway, ‘‘The
property of equilaterality surprises everybody.’’6

 
  Morley’s son, Frank V. Morley,7 remembered his father’s discovery: ‘‘I was a schoolboy when
my father, who was almost forty years older than I was, sketched for me, free-hand, a penciled
diagram of the simplest form of the above-discussed theorem in plane geometry. I tested it once
with my own drawing instruments. No matter what shape of the original triangle I started with,
there in its midriff was an equilateral triangle, picked out by the trisectors. It was wizard, it was
weird—and it was True!’’8


 
  As Coxeter told the tale, Morley mentioned the theorem to his friends, who in turn spread it
around the world as mathematical gossip. It was heralded as one of the most astonishing and
unexpected theorems in mathematics, and a gem whose sheer beauty allows few rivals. After
twenty years, Morley published his theorem in Japan. The first two proofs of the theorem
included a trigonometrical proof by M. Satyanarayana and an elementary proof by M. T.
Naraniengar. The theorem continued to evoke proof after proof—150 within 50 years—and still
does.9

 
  John Conway invented the latest proof in 1995, which he first announced by e-mail to a
geometry newsgroup. His proof is widely appreciated because it avoids trigonometry, making it
unnecessary to handle all six triangles separately. Here is Conway’s proof (* in the proof
corresponds to + in the diagrams):

 
  Path: world!forum.swarthmore.edu!gateway

 
  From: conway@math.princeton.edu (John Conway)

 
  Newsgroups: geometry.puzzles

 
  I have the undisputedly simplest proof of Morley’s Trisector Theorem.

 
  Here it is:

 
  Let your triangle have angles 3a,3b,3c and let x* mean x+pi/3, so that a + b + c = 0*. Then
triangles with angles

 
  0*, 0*, 0*

 
  a, b*, c* a*, b, c* a*, b*, c

 
  a**, b, c a, b**, c a, b, c**

 
  exist abstractly, since in every case the angle-sum is pi.

 
  Build them on a scale defined as follows:

 
  0*, 0*, 0*-this is equilateral-make it have edge 1

 
  a, b*, c*-make the edge joining the angles b* and c* have length 1

 
  -similarly for a*, b, c* and a*, b*, c

 
  a, b**, c (and the other two like it)-let me draw this one:

 
  [image: PIC]

 
  (Note: in these pictures alpha = a, beta = b, gamma = c)

 
  Let the angles at A, X, C be a, b**, c, and draw lines from X cutting AC at angle b* in the
two senses, so forming an equilateral triangle XYZ.

 
  [Z and Y are where the red lines meet the CA line in the bottom triangle, X is its other
vertex]

 
  Choose the scale


 
  so that XY and XZ are both 1.

 
  Now just fit all these 7 triangles together! They’ll form a figure like:

 
  [image: PIC]

 
  To make it a bit more clear, let me say that the angles of APX are a (at A), b* (at P), c* (at
X).

 
  Why do they all fit together? Well, at each internal vertex, the angles add up to 2pi,
as you’ll easily check. And two coincident edges have either both been declared to
have length 1, or are like the common edge AXZ of sorry-AX of triangles APX and
AXC.

 
  But APX is congruent to the subtriangle AZX of AXC, since PX = ZX = 1, PAX = ZAX = a,
and APX = AZX = b*.

 
  So the figure formed by these 7 triangles is similar to the one you get by trisecting the angles of
your given triangle, and therefore in that triangle the middle subtriangle must also be
equilateral.

 
  John Conway10

 
  ‘‘Triangle geometry refuses to die,’’ said Conway, who is currently completing The Triangle
Book. Containing hundreds and hundreds of theorems on triangles, The Triangle Book has been
in the works for a decade or more. It is a collaborative effort with award-winning high school
mathematics teacher Steve Sigur, of the Paideia School, in Atlanta, Georgia. Conway
intends that the book will be produced in the shape of a triangle. ‘‘It is going to be
the standard book on triangles forever,’’ said Conway. ‘‘Or at least for a very long
time.’’11

 
  
  

 



 



  
18  APPENDIX 6

FREEMAN DYSON ON ‘‘UNFASHIONABLE PURSUITS’’

 
  In 1981, Freeman Dyson sent his friend Coxeter—‘‘one of my favourite people’’—a recent lecture
he had delivered, ‘‘Unfashionable Pursuits.’’ One of the most famous physicists (famed for both
his physics and his elegant essays), based at Princeton’s Institute for Advanced Study, Dyson
met Coxeter through Leopold Infeld (who had been at the institute and subsequently
the University of Toronto), and they maintained a leisurely correspondence over the
years1—leisurely in that they conversed, of course, about polyhedra, but for Dyson this was
just a sideline. Dyson is a polymath if ever there was one. He is known widely for
his books on science for the general public, such as Weapons of Hope, on the ethical
problems of war and peace (Coxeter also enjoyed his book Disturbing the Universe, about
the people Dyson encountered over his scientific career); for his work on the Orion
Project, proposing space flight using nuclear propulsion; and for his ‘‘Dyson Tree,’’ a
genetically engineered plant capable of growing on a comet. He was also the winner of
the Templeton Prize for Progress in Religion in the year 2000, netting him 795,000
sterling.

 
  Dyson delivered his ‘‘Unfashionable Pursuits’’2 lecture at the institute, and sent it along to
Coxeter, ‘‘With all good wishes from one unfashionable character to another.’’ A short way into
his talk, Dyson recalled the early days of his career:

 
  It has always been true, and it is now more than ever, that the path of wisdom for a young
scientist of mediocre talent is to follow the prevailing fashion. Any young scientist who is not
exceptionally gifted or exceptionally lucky is concerned first of all with finding and keeping a job.
To find and keep a job you have to do competent work in an area of science which the mandarins
who control the job-market find interesting. The scientific problems which the mandarins
find interesting are almost by definition, the fashionable problems …It is no wonder
that young scientists who care for their own survival keep close to the beaten paths
…


 
  Our Institute here is no exception. When I first came here as a visiting member thirty-four
years ago, the ruling mandarin was Robert Oppenheimer. Oppenheimer decided which areas of
physics were worth pursuing. His tastes always coincided with the most recent fashions.
Being then young and ambitious, I came to him with a quick piece of work dealing
with a fashionable problem, and was duly rewarded with a permanent appointment
…

 
  The running of young scientists after quick success and quick rewards is not in itself bad. The
concentration of their efforts into narrow areas of fashionable specialization is not necessarily
harmful. After all, the fashionable problems become fashionable not by the whim of
some dress-designer but because a substantial majority of scientists judges them to be
important.

 
  Nonetheless, Dyson argued that scientists and mathematicians would do well to employ more
creative free rein and less pragmatic ambition in directing their studies, and that the sciences
on the whole would benefit from conscientiously making room for the unfashionable
characters, such as Kurt Gödel, ‘‘an independent and recalcitrant spirit …one of the few
indubitable geniuses of our century, the only one of our colleagues who walked and talked on
equal terms with Einstein.’’ And he pointed to a few invaluable examples in ‘‘ancient
history.’’

 
  As an example of a great mathematical physicist whose work is of crucial importance to the
development of physics at the present time, I mention the name of Sophus Lie. Lie has been dead
for 80 years. His great work was done in the 1870’s and 1880s, but it has come to dominate the
thinking of particle physicists only in the last twenty years. Lie was the first to understand and
state explicitly that the principles of mechanics, which in his day were synonymous
with the principles of physics, have a group-theoretic origin. He constructed almost
single-handed a vast and beautiful theory of continuous groups, which he foresaw would
one day serve as a foundation of physics. Now, a hundred years later, every physicist
who classifies particles in terms of broken and unbroken symmetries is, whether he is
aware of it or not, talking the language of Sophus Lie. But in his lifetime Lie’s ideas
remained unfashionable …A more recent example of a great discovery in mathematical
physics was the idea of a gauge field, invented by Hermann Weyl in 1918. This idea has
taken only 50 years to find its place as one of the basic concepts of modern particle
physics.


 
  Dyson continued, casting a glance around the world of mathematics to find some
unfashionable ideas in the moment which, by his foresight, might later emerge as essential
building blocks for the physics of the twenty-first century. ‘‘Roughly speaking,’’ Dyson
said, ‘‘unfashionable mathematics consists of those parts of mathematics which were
declared by the mandarins of Bourbaki not to be mathematics.’’ One example of such
accidental beauty, an isolated curiosity seemingly not leading anywhere, offered Dyson, was
the discovery of the ‘‘Monster group,’’ resuming the hunt for sporadic finite groups,
first discovered by Frenchman Emile Mathieu in the nineteenth century, but then
abandoned.

 
  Rather suddenly, in the last twenty years, a magnificent zoo of new sporadic groups has been
discovered by a variety of mathematicians working with a variety of methods …The only thing
these various discoveries had in common was a concrete, empirical, experimental, accidental
quality, directly antithetical to the spirit of Bourbaki.…

 
  What has all this to do with physics? Probably nothing. Probably the sporadic groups are
merely a pleasant backwater in the history of mathematics, an odd little episode,
far from the mainstream of progress. We have never seen the slightest hint that the
symmetries of the physical universe are in any way connected with the symmetries
of the sporadic groups.…But we should not be too sure that there is no connection.
Absence of evidence is not the same thing as evidence of absence. Stranger things have
happened in the history of physics than the unexpected appearance of sporadic groups.
We should always be prepared for surprises. I have to confess to you that I have a
sneaking hope, a hope unsupported by any facts or any evidence, that sometime in the
twenty-first century the physicists will stumble upon the Monster group, built in some
unsuspected way into the structure of the universe. This is of course only a wild speculation,
almost certainly wrong. The only argument I can provide in its favor is a theological
one. We have strong evidence that the creator of the universe loves symmetry, and if
he loves symmetry, what lovelier symmetry could he find than the symmetry of the
Monster?3 The sporadic groups are only one example out of the treasure-house of
weird and wonderful concepts which unfashionable mathematicians have created. I
could mention others. Can you imagine a regular polyhedron, a body composed of
perfectly symmetrical cells arranged in a perfectly symmetrical structure, having a
total of eleven faces? Last year, my friend Donald Coxeter in Toronto discovered it
…


 
  Coxeter, to be sure, appreciated Dyson’s paper and the moral of his story. He was still being
made to feel very out of style. ‘‘Dear Freeman,’’ Coxeter wrote in response. ‘‘Many thanks for
your splendid lecture on ‘Unfashionable Pursuits,’ which seemed particularly relevant as it
arrived at the same time as a letter from the Editor of the LMS [London Mathematical
Society] enclosing the referee’s report on ‘My Graph.’ That report began as follows: ‘I
recommend the paper be accepted, subject to the modification suggested below. It is
difficult to evaluate, since its subject-matter and style are so unfashionable …I think it is
up to the standard of things like his ‘‘Regular Polytopes,’’ though of course much
more limited in scope. However, because of the very special nature of the subject, my
recommendation cannot be a very strong one—papers on topics of greater generality must take
precedence’ …I still take pleasure in your remark that Plato would have been delighted if he
had known about 5{3,5,3}5’’4—this was Coxeter’s symbol for the eleven-faced object
described by Dyson: Can you imagine a regular polyhedron, a body composed of perfectly
symmetrical cells arranged in a perfectly symmetrical structure, having a total of eleven
faces?5
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CRYSTALLOGRAPHY AND PENROSE TOILET PAPER

 
  Around the same time Coxeter and like-minded mathematicians happened upon M. C. Escher,
the crystallographers did as well. Escher’s symmetry drawings, his tessellations of the plane, are
often used in teaching crystallography—and in fact, Escher’s works anticipated crystallographic
research by decades.1

 
  In 1891, Russian crystallographer E. S. Fedorov proved that all periodic tilings of the plane
belong to one of seventeen symmetry groups (later rediscovered by Coxeter’s Princeton friend,
George Pólya, together with P. Niggli).2 Finding tiles that would produce only non-periodic
tilings (featuring shapes in patterns that do not repeat by translation) was an unsolved geometric
puzzle, until Robert Berger developed the first set of tiles in 1966. His set consisted
of 20,426 tiles, which he soon reduced to 104. In the early 1970s, Raphael Robinson
created a set of six tiles, with various notches and extensions to prevent a periodic
pattern.3

 
  Sir Roger Penrose discovered the lowest limit as yet, a two-tile set of rhombs, essentially skinny
and fat diamonds that interconnect in a field of five-pointed stars (a tiling of darts and kites can
also be derived from the same tiles). ‘‘I tend to doodle and tilings were one of the things I used
to play around with,’’ said Sir Roger, who attended the ICM in 1954 and was taken with Escher’s
work, as was Coxeter, but less by his periodic tilings than by his impossible pictures. ‘‘I came
away from the meeting feeling I’d like to do something similar,’’ he said, ‘‘something
impossible.’’ With his father, the psychiatrist Lionel S. Penrose, he created the impossible
‘‘tribar’’ and ‘‘stairs.’’ They published their creations in the British Journal of Psychology
and sent them to Escher, who later made use of the ideas in his prints Waterfall and
Ascending and Descending. ‘‘My interest in the non-periodic tiles I suppose was partly
stimulated by my interest in physics—I was looking for something which was simple, on the
small scale, something that had rules but produced complicated structures, because
one sees that sort of thing in the universe. One hopes that the laws are ultimately
simple.’’4


 
  Sir Roger had been playing around with six tiles for a while, and wondered whether he could
do better. Within a few hours, drawing in a notebook, he got them down to two. ‘‘I thought,
‘This is too easy, somebody must have thought of it before.’ But it was the first time anybody
had got it down to two. Unless you can find it somewhere in some Moorish design. But they
haven’t found them yet.’’5

 
  [image: PIC]

 
  Penrose aperiodic tiles: the kites and darts, and the skinny and fat rhombs. When
adjoining tiles to produce a Penrose tiling, all tile markings must match. Shown are
legitimate vertex configurations (there is a ‘‘split and glue’’ process that turns either
configuration into the other, nicely explained in Quasicrystals and Geometry, by Marjorie
Senechal).

 
  It may seem like a trivial discovery. But whenever he lectured about his Penrose tilings, as they
are known, somebody would always ask: ‘‘Does this raise an issue of a new type of
crystallography where you could have these forbidden symmetries, five-fold symmetries in
crystals?’’ ‘‘And my response to such a question tended to be ‘Yes, indeed, in principle what you
say is true. But I can’t see how nature would produce such things.’ ’’ Nature didn’t. Science did.
In 1982 Dan Shechtman, then at Johns Hopkins University, observed quasicrystals
(short for quasi-periodic crystals)—a form of solid in which the atoms are configured
in an apparently regular but yet nonrepeating structure. And as with the study of
crystallography, Coxeter groups and Coxeter diagrams find application in the investigation of
quasicrystals.6

 
  Any material, such as aluminum, is characterized by the pattern of its crystals. Quasicrystals
alter the properties of the substance, often making it harder. Quasicrystals have found
application, for example, as a nonstick coating for cookware named Cybernox. Upon
the discovery of quasicrystals, the International Union of Crystallographers redefined
the term crystal to allow for their acceptance. ‘‘It was a surprise to me,’’ said Sir
Roger. ‘‘But they were manufactured objects. Nobody has found such things in a
cave.’’7

 
  A less pleasant surprise came when Sir Roger discovered his Penrose tilings on a ‘‘Kleenex
quilted’’ brand of toilet paper his wife brought home from the supermarket. Sir Roger and
Pentaplex Ltd., the company that has licensing rights to the image of the Penrose tiling, took
legal action against the manufacturer, Kimberly-Clark Corporation, the British division of the

Dallas-based Kleenex. ‘‘When it comes to the population of Great Britain being invited by a
multinational to wipe their bottoms on what appears to be the work of a Knight of the Realm
without his permission, then a last stand must be taken,’’ said a director of Pentaplex Ltd., as
reported in the Wall Street Journal.8

 
  The newspaper also reported that just as Penrose tilings applied to quasicrystals provided for a
better frying pan …

 
  The same logic also makes for better toilet paper. A premium brand launched in the United
Kingdom in 1993, Kimberly-Clark’s Kleenex quilted toilet tissue is embossed with a
pattern to fluff up the tissue, making it ‘‘thicker and softer,’’ according to company
literature. Sir Roger’s writ argues that making the tissue fluffier allows manufacturers to
reduce the amount of paper used on each roll. But if the pattern repeats itself, the
tissue would likely bunch up, looking unattractive. That can be corrected using a
Penrose-type pattern which lets the paper sit evenly on the roll, the suit contends. If the
plaintiffs win, they can claim damages under British law equal to the Kleenex brand’s
U.K. profits. They can also demand that all remaining examples of the toilet paper be
destroyed.

 
  The parties ultimately reached an out-of-court settlement. One of the settlement conditions
prevents Sir Roger from discussing the matter further (clearly, Kimberly-Clark’s butt was at least
somewhat kicked). He does make clear, however, that as a mathematical concept, Penrose tilings
are free for the taking. As a graphic image, however, those skinny and fat diamonds are patented.
The implication being that the chances were slim that a toilet paper company was borrowing a
mathematical idea.9

 
  The Penrose toilet paper is now a collector’s item. At a recent Bridges conference
(‘‘Mathematical Connections in Art, Music, Science’’), an annual gathering held in 2005 at the
Banff Centre, in Alberta, Marion Walter, professor emeritus of mathematics education at the
University of Oregon, brought a roll of the notorious Penrose toilet paper, and dolled out single
squares to worthy participants.10
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THE MATHEMATICAL PUBLICATIONS OF H. S. M. COXETER
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20.8  CHAPTER 7—TANGENTS ON POLITICS AND FAMILY VALUES
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20.9  CHAPTER 8—BOURBAKI PRINTS A DIAGRAM

1. Coxeter published one of the most interesting papers on polyhedra in 1952, in the
Philosophical Transactions of the Royal Society of London. It numbered more than fifty pages,
and its title read: ‘‘H. S. M. Coxeter and Others on Uniform Polyhedra.’’ The ‘‘others’’ were
Coxeter’s former research student at Cambridge, J. C. P. Miller, and distinguished
geophysicist and geometer Michael Longuet-Higgins. Longuet-Higgins connected with
Coxeter in the early 1950s via a mutual friend—Freeman Dyson, a celebrated theoretical
physicist at Princeton’s Institute for Advanced Study. Dyson was in Toronto for a
physics conference and paid a visit to his friend Coxeter, with whom he’d had leisurely
interactions over the years (leisurely, as polyhedra, for the polymath Dyson, were
one of those Sunday-afternoon activities that he enjoyed very much). Dyson drew
Coxeter’s attention to some work by Longuet-Higgins and his brother, Christopher
Longuet-Higgins, the distinguished chemist and cognitive scientist. As high school students, the
brothers and Dyson had been inspired by Coxeter’s book The 59 Icosahedra. This has
led the brothers to try to enumerate the class of uniform polyhedra. And Michael
began constructing edge models using a novel material of galvanized iron wire, or
garden wire (the construction was innovative, requiring no solder at the vertices; a kink
in the wire allowed them to click into place). He produced models for each of their
discoveries; though for the most complicated, with ten edges passing through some vertices,
he devised an alternative method: he soldered a wire frame, painted it black, and
then used the frame to string white cotton threads representing the edges. Little did
the Longuet-Higgins brothers know that, not long before, Coxeter and Miller had
embarked on a similar enumeration at Cambridge. Coxeter and Miller believed their list
to be complete, but because they lacked a rigorous proof, they sat on their results.
When Coxeter learned of the Longuet-Higginses’ enterprise, he and Miller had given up
hope for finding a proof and were at long last writing up their results for publication.
Coxeter wrote to the brothers, enclosing his list of the uniform polyhedra, and asked
how many they had found. They had all but one on the list, the one Coxeter had
dubbed ‘‘Miller’s monster.’’ Coxeter and Miller went to see the models, and it proved
fortuitous timing. Miller was just drawing all the polyhedra, and the model with the white
threads allowed Miller ‘‘to detect an error before its consequences became serious,’’
as Coxeter said. Coxeter invited Michael to become a coauthor of the paper, with
photographs of his models providing additional illustrations. Coauthorship was also on the
merit of Michael’s discovery of some relevant theoretical relations between certain

chains, or sequences, of the uniform polyhedra; and he discovered a uniform tessellation
that Coxeter and Miller had missed. The paper was of particular interest because it
surveyed the many approaches to these polyhedra through history, and then presented a
unified method for their construction. The authors still could not claim to have proven
completeness for their enumeration, but they expressed hope that it was indeed complete.
This was proven to be true in 1975, by John Skilling—with the aid of a computer—and
published in his paper, ‘‘The Complete Set of Uniform Polyhedra.’’ Longuet-Higgins,
interviews; Coxeter–Longuet–Higgins correspondence, Coxeter Fonds, University of
Toronto Archives; Longuet-Higgins, personal papers; and Coxeter et al., ‘‘Uniform
Polyhedra,’’ Philosophical Transactions of the Royal Society, 401–50, see appendix
8.
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20.12  CHAPTER 11—‘‘COXETERING’’ WITH M. C. ESCHER (AND PRAISING OTHER
ARTISTS)
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20.13  CHAPTER 12—THE COXETERIAN SHAPES OF THE COSMOS
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