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The four-dimensional polytope {3, 3, 5}, drawn by van Oss (cf. Fig. 13.6B on page
250).
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0.2 PREFACE TO THE THIRD EDITION

THIS EDITION follows the second quite closely but embodies more than twenty small
improvements. It has not seemed worthwhile to replace the term “congruent transfor-
mation” by its modern equivalent “isometry”. Although the first edition appeared as
long ago as 1948, the subject remains alive, as can be seen in the success of L. Fejes
Tóth’s Regular Figures (Pergamon, 1964), B. Grünbaum’s Convex Polytopes (Interscience,
1967), and M. J. Wenninger’s Polyhedron Models (Cambridge University Press, 1970).
The works of L. Schläfli have been published in three volumes (Gesammelte Mathe-

matische Abhandhungen, Birkhäuser, Basel, 1950, 1953, 1956). Our references “Schläfli
1,2,3,4” (see page 312) can be found there in vol. II, pp.164–1900198–21818, 219–270,
and vol. I, pp. 167–392.
It is, perhaps, worthwhile to mention that the electron microscope has revealed

icosahedral symmetry in the shape of many virus macromolecules. For instance,
the virus that causes measles looks much like the icosahedron itself. The Preface to
the First Edition refers to a passage on page 13 concerning the impossibility of any
inorganic occurrence of this polyhedron. That statement must now he taken with a
grain of borax, for the element boron forms amolecule B12 whose twelve atoms are
arranged like the vertices of an icosahedron.1

The first preface also refers to a missing “fifteenth chapter” on hyperbolic honey-
combs. This now occurs as Chapter 10 in my Twelve Geometric Essays (Coxeter 19).

(j,k) = ƒ(j) g(k) − ƒ(k) g(j) ,
where ƒ and g are arbitrary functions. For some interesting consequences, see

Chapter 5 of my Regular Complex Polytopes (Coxeter 21).
UNIVERSITY OF TORONTO
H. S. M. COXETER
May 1973

http://www.doverpublications.com


0.3 PREFACE TO THE FIRST EDITION

A POLYTOPE is a geometrical figure bounded by portions of lines, planes, or hyper-
planes ; e.g., in two dimensions it is a polygon, in three a polyhedron. The word polytope
seems to have been coined by Hoppe in 1882, and introduced into English by Mrs.
Stott about twenty years later. But the concept, under the name polyscheme, goes back
to Schläfli, who completed his great monograph in 1852.

The foundations for our subject were laid by the Greeks over two thousand years ago.
In fact, this bookmight have been subtitled “A sequel to Euclid’s Elements”. But all
the more elaborate developments (roughly, from Chapter V on) are less than a century
old. This revival of interest was partly due to the discovery that many polyhedra
(including three of the regular ones) occur in nature as crystals. However, there is a
law of symmetry (4•32) which prohibits the inanimate occurrence of any pentagonal
figure, such as the regular dodecahedron. Thus the chief reason for studying regular
polyhedra is still the same as in the time of the Pythagoreans, namely, that their
symmetrical shapes appeal to one’s artistic sense. (To be sure, there is a little more to
it than that : Klein’s Lectures on the Icosahedron2 cast fresh light on the general quintic
equation. But if Klein had not been an artist he might have expressed his results in
purely algebraic terms.)

As for the analogous figures in four or more dimensions, we can never fully compre-
hend them by direct observation. In attempting to do so, however, we seem to peep
through a chink in the wall of our physical limitations, into a new world of dazzling
beauty. Such an escape from the turbulence of ordinary life will perhaps help to keep
us sane. On the other hand, a reader whose standpoint is more severely practical may
take comfort in Lobat-schewsky’s assertion that “there is no branch of mathemat-
ics, however abstract, which may not some day be applied to phenomena of the real
world.”

I have tried to make this book as nearly self-contained as is reasonably possible.
Anyone familiar with elementary algebra, geometry, and trigonometry will be able
to appreciate it, and may find in it some fresh applications of those subjects ; e.g.,
Chapter III provides an introduction to the theory of Groups. All the geometry of
the first six chapters is ordinary solid geometry ; but the topics treated have been



carefully selected as forming a useful background for the subsequent developments.
If the reader is at all distressed by the multi-dimensional character of the rest of the
book, he will do well to consult Manning’s Geometry of four dimensions or Sommerville’s
Geometry of n dimensions (i.e., Manning 1 or Sommerville 3).

It will be seen that most of our chapters end with historical summaries, showing
which parts of the subject are already known. The history of polytope-theory provides
an instance of the essential unity of our western civilization, and the consequent
absurdity of international strife. The Bibliography lists the names of thirty German
mathematicians, twenty-seven British, twelve American, eleven French, seven Dutch,
eight Swiss, four Italian, two Austrian, two Hungarian, two Polish, two Russian, one
Norwegian, one Danish, and one Belgian. (In proportion to population the Swiss have
contributed more than any other nation.)

This book grew out of an essay on “ Dimensional Analogy ”, begun in February
1923. It is thus the fulfilment of 24 years’ work, which included the rediscovery of
Schläfli’s regular polytopes (Chapters VII and VIII), Hess’s star-polytopes (Chapter
XIV) and Gosset’s semi-regular polytopes (§§ 8·4 and 11·8). Probably my own best
contribution is the invention of the “ graphical ” notation (§ 5·6), which facilitates
the enumeration of groups generated by reflections (§ 11·5), of the polytopes derived
from these groups by Wythoff’s construction (§ 11·6), of the elements of any such
polytope (§11·8), and of “ Goursat’s tetrahedra ” (§14·8). This last instance, which
looks like some bizarre notation for the Music of the Spheres, is essentially a device
for computing the volumes of certain spherical tetrahedra without having recourse
to the calculus. The same notation can be applied very effectively to the theory of
regular honeycombs in hyperbolic space (see Schlegel 1, pp. 360, 444, or Sommerville
3, Chapter X), but I have resisted the temptation to add a fifteenth chapter on that
subject.

In some places, such as §§ 8·2-8·5, I have chosen to employ synthetic methods
where the use of coordinates might have made the work a little easier. On the other
hand, I have not hesitated to use coordinates in Chapter XI, where they greatly simplify
the discussion, and in Chapter XII, where they seem to be quite indispensable.



Many of the technical terms may be new to the reader, who will be apt to forget
what they mean. For this reason the Index (pages 315–321) refers to definitions by
means of page-numbers in boldface type. Every reader will find some parts of the
bookmore palatable than others, but different readers will prefer different parts : one
man’s meat is another man’s poison. Chapter XI is likely to be found harder than the
subsequent chapters.
I offer most cordial thanks to Thorold Gosset, Leopold Infeld and G. de B. Robin-

son for reading the whole manuscript andmaking many valuable suggestions. I am
grateful also to Richard Brauer, J. J. Burckhardt, J. D. H. Donnay, J. C. P. Miller, E. H.
Neville and HermannWeyl for criticizing various portions, to Mrs. E. L. Voynich for
biographical material about her sister, Mrs. Stott (§ 13•9), to Dorman Luke for the gift
of his models of polyhedra (which aided me in drawing some of the figures, e.g. in §
6•4), to P. S. Donchian for the eight Plates, to H. G. Forder and Alan Robson for help
in reading the proofs, and to Messrs. T. & A. Constable of Edinburgh for their expert
printing of difficult material.
H. S. M. COXETER
UNIVERSITY OF TORONTO
April 1947
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The length and the breadth and the height of it are equal.
Revelation 21. 16
That ye, being rooted and grounded in love, May be able to comprehend with all

saints what is the breadth, and length, and depth, and height.
Ephesians 3. 17, 18



1 CHAPTER I POLYGONS AND POLY-
HEDRA

TWO-DIMENSIONAL polytopes aremerely polygons ; these are treated in § 1·1. Three-
dimensional polytopes are polyhedra ; these are defined in § 1·2 and developed
throughout the first six chapters. § 1·3 contains a version of Euclid’s proof that there
cannot be more than five regular solids, and a simple construction to show that each
of the five actually exists. The rest of Chapter I is mainly topological : a regular
polyhedron is regarded as a map, and later as a configuration. In § 1·5 we take an
excursion into “ recreational ” mathematics, as a preparation for the notion of a tree
of edges in von Staudt’s elegant proof of Euler’s Formula.

1·1. Regular polygons. Everyone is acquainted with some of the regular polygons :
the equilateral triangle which Euclid constructs in his first proposition, the square
which confronts us all over the civilized world, the pentagon which can be obtained
bymaking a simple knot in a strip of paper and pressing it carefully flat,3 the hexagon
of the snowflake, and so on. The pentagon and the enneagon have been used as bases
for the plans of two American buildings : the Pentagon Building nearWashington, and
the Bahá’í Temple near Chicago. Dodecagonal coins have been made in England and
Canada.

To be precise, we define a p-gon as a circuit of p line-segments A1 A2, A2 A3, . . . ,
Ap A1, joining consecutive pairs of p points A1, A2, . . . , Ap. The segments and points
are called sides and vertices. Until we come to Chapter VI we shall insist that the sides
do not cross one another. If the vertices are all coplanar we speak of a plane polygon,
otherwise a skew polygon.

11



A plane polygon decomposes its plane into two regions, one of which, called the
interior, is finite. We shall often find it convenient to regard the p-gon as consisting
of its interior as well as its sides and vertices. We can then re-define it as a simply-
connected region bounded by p distinct segments. (“ Simply-connected ” means that
every simple closed curve drawn in the region can be shrunk to a point without leaving
the region, i.e., that there are no holes.)

The most important case is when none of the bounding lines (or “ sides produced ”)
penetrate the region. We then have a convex p-gon, which may be described (in terms
of Cartesian coordinates) by a system of p linear inequalities

These inequalities must be consistent but not redundant, and must provide the
range for a finite integral

(which measures the area).

A polygon is said to be equilateral if its sides are all equal, equiangular if its angles
are all equal. If p > 3, a p-gon can be equilateral without being equiangular, or vice
versa ; e.g., a rhomb is equilateral, and a rectangle is equiangular. A plane p-gon is
said to be regular if it is both equilateral and equiangular. It is then denoted by {p} ;
thus {3} is an equilateral triangle, {4} is a square, {5} is a regular pentagon, and so on.

A regular polygon is easily seen to have a centre, from which all the vertices are at
the same distance 0R, while all the sides are at the same distance 1R. This means that
there are two concentric circles, the circum-circle and in-circle, which pass through
the vertices and touch the sides, respectively.

It is sometimes helpful to think of the sides of a p-gon as representing p vectors
whose sum is zero. They may then be compared with p segments issuing from one
point, the angle between two consecutive segments being equal to an exterior angle
of the p-gon. It follows that the sum of the exterior angles of a plane polygon is a
complete turn, or 2π. Hence each exterior angle of {p} is 2π/p, and the interior angle is
the supplement,

1·11



This may alternatively be seen from the right-angled triangle O2 O1 O0 of Fig. 1.1A,
where O2 is the centre, O1 is the mid-point of a side, and O0 is one end of that side.
The right angle occurs at O1, and the angle at O2 is evidently π/p. If 2l is the length of
the side, we have

O0 O1 = l, O0 O2 = 0R, O1 O2 = 1R ;

therefore

1·12

The area of {p}, being made up of 2p such triangles, is

1·13

(in terms of the half-side l). The perimeter is, of course,

1·14

FIG. 1.1A

As p increases without limit, the ratios S/0R and S/1R both tend to 2π, as we would
expect. (This is how Archimedes estimated π, taking p=96.)

Wemay take the Cartesian coordinates of the vertices to be

Then, in the Argand diagram, the vertices of a {p} of circum-radius 0R=1 represent
the complex numbers e2kπi/p, which are the roots of the cyclotomic equation

1·15

It is sometimes desirable to extend our definition of a p-gon by allowing the sides to
be curved ; e.g., we shall have occasion to consider spherical polygons, whose sides are
arcs of great circles on a sphere. This extensionmakes it possible to have p=2 : a digon
has two vertices, joined by two distinct (curved) sides.



1·2. Polyhedra. A polyhedron may be defined as a finite, connected set of plane
polygons, such that every side of each polygon belongs also to just one other polygon,
with the proviso that the polygons surrounding each vertex form a single circuit (to
exclude anomalies such as two pyramids with a common apex). The polygons are
called faces, and their sides edges. Until Chapter VI we insist that the faces do not cross
one another. Thus the polyhedron forms a single closed surface, and decomposes
space into two regions, one of which, called the interior, is finite. We shall often find
it convenient to regard the polyhedron as consisting of its interior as well as its N2

faces, N1 edges, and N0 vertices.

Themost important case is when none of the bounding planes penetrate the interior.
We then have a convex polyhedron, which may be described (in terms of Cartesian
coordinates) by a system of inequalities

These inequalities must be consistent but not redundant, and must provide the
range for a finite integral

(which measures the volume).

Certain polyhedra are almost as familiar as the polygons that bound them. We all
know how a point and a p-gon can be joined by p triangles to form a pyramid, and how
two equal p-gons can be joined by p rectangles to form a right prism. After turning one
of the two p-gons in its own plane so as to make its vertices (and sides) correspond to
the sides (and vertices) of the other, we can just as easily join them by 2p triangles to
form an antiprism,whose 2p lateral edges make a kind of zigzag.

A tetrahedron is a pyramid based on a triangle. Its faces consist of four triangles,
any one of which may be regarded as the base. If all four are equilateral, we have a
regular tetrahedron. This is the simplest of the five Platonic solids. The others are the
octahedron, cube, icosahedron, and (pentagonal) dodecahedron. (See Plate I, Figs.
1-5.)

PLATE I



REGULAR, QUASI-REGULAR AND RHOMBIC SOLIDS

1·3. The five Platonic solids. A convex polyhedron is said to be regular if its faces
are regular and equal, while its vertices are all surrounded alike. (We shall see in §
1•7 that the regularity of faces may be waived without causing anything worse than a
simple distortion. A more “economical” definition will be given in § 2·1.) If its faces
are {p}’s, q surrounding each vertex, the polyhedron is denoted by {p, q}.

The possible values for p and qmay be enumerated as follows. The solid angle at a
vertex has q face-angles, each (1–2/p)π, by 1•11. A familiar theorem states that these
q angles must total less than 2π. Hence 1–2/p<2/q ; i.e.,

1·31

or (p–2)(q–2)<4. Thus {p, q} cannot have any other values than

{3,3}, {3, 4}, {4,3}, {3,5}, {5,3}.

The tetrahedron {3, 3} has already been mentioned. To show that the remaining
four possibilities actually occur, we construct the rest of the Platonic solids, as follows.

By placing two equal pyramids base to base, we obtain a dipyramid bounded by 2p
triangles. If the common base is a {p} with p<6, the altitude of the pyramids can be
adjusted so as to make all the triangles equilateral. If p=4, every vertex is surrounded
by four triangles, and any two opposite vertices can be regarded as apices of the
dipyramid. This is the octahedron, {3, 4}.



By adjusting the altitude of a right prism on a regular base, we may take its lateral
faces to be squares. If the base also is a square, we have a cube {4, 3}, and any face may
be regarded as the base.

Similarly, by adjusting the altitude of an antiprism, we may take its 2p lateral trian-
gles to be equilateral. If p=3, we have the octahedron (again). If p=4 or 5, we can place
pyramids on the two bases, making 4p equilateral triangles altogether. If p=5, every
vertex is then surrounded by five triangles, and we have the icosahedron, {3, 5}.

There is no such simple way to construct the fifth Platonic solid. But if we fit six
pentagons together so that one is entirely surrounded by the other five, making a kind
of bowl, we observe that the free edges are the sides of a skew decagon. Two such
bowls can then be fitted together, decagon to decagon, to form the dodecahedron,4 {5,
3}.

1·4. Graphs andmaps. The edges and vertices of a polyhedron constitute a special
case of a graph, which is a set of N0 points or nodes, joined in pairs by N1 segments
or branches (which need not be straight). If a node belongs to q branches, we have
evidently

1·41

where the summation is taken over the N0 nodes. For a connected graph (all in one
piece) we must have

1·42

One graph is said to contain another if it can be derived from the other by adding
extra branches, or both branches and nodes. A graph may contain a circuit of p
branches and p nodes, i.e., a p-gon (p≥2). A graph which contains no circuit is called a
forest, or, if connected, a tree. In the case of a tree, the inequality 1•42 is replaced by
the equation

1·43

for a tree may be built up from any one node by adding successive branches, each
leading to a new node.



The theory of graphs belongs to topology (“ rubber sheet geometry ”), which deals
with the way figures are connected, without regard to straightness or measurement.
In this spirit, the essential property of a polyhedron is that its faces together form a
single unbounded surface. The edges are merely curves drawn on the surface, which
come together in sets of three or more at the vertices.

In other words, a polyhedron with N2 faces, N1 edges, and N0 vertices may be
regarded as amap, i.e., as the partition of an unbounded surface into N2 polygonal
regions by means of N1 simple curves joining pairs of N0 points. One such mapmay
be seen by projecting the edges of a cube radially onto its circum-sphere ; in this case
N0=8, N1=12, N2= 6, and the regions are spherical quadrangles.

From a givenmapwemay derive a second, called the dualmap, on the same surface.
This secondmap has N2 vertices, one in the interior of each face of the givenmap ; N1

edges, one crossing each edge of the given map ; and N0 faces, one surrounding each
vertex of the givenmap. Corresponding to a p-gonal face of the givenmap, the dual
mapwill have a vertexwhere p edges (and p faces) come together. (See, for instance, the
maps formed by the broken and unbroken lines in Fig. 1.4A·.) Duality is a symmetric
relation : a map is the dual of its dual.

FIG. 1.4A·

By counting the sides of all the faces (of a polyhedron ormap), we obtain the formula

1·44

where the summation is taken over the N2 faces. Dually, by counting the edges that
emanate from all the vertices, we obtain 1·41. It follows from 1·44 that the number of
odd faces (i.e., p-gonal faces with p odd) must be even. In particular, if all but one of
the faces are even, the last face must be even too.



1·5. “A voyage round the world.” Hamilton proposed the following diversion.5

Suppose that the vertices of a polyhedron (or of a map) represent places that we wish
to visit, while the edges represent the only possible routes. Then we have the problem
of visiting all the places, without repetition, on a single journey.

FIG. 1.5A

FIG. 1.5B

Fig. 1.5A shows a solution of this problem in a special caste 6 which is of interest as
being the simplest instance where the journey cannot possibly be a “round trip”. Fig.
1.5B shows a map for which the problem is insoluble even if we are allowed to start
from any one vertex and finish at any other.7

Although it is not always possible to include all the vertices of a polyhedron in a
single chain of edges, it certainly is possible to include them all as nodes of a tree
(whose N0–1 branches occur among the N1 edges). This merely requires repeated
application of the principle that any two vertices may be connected by a chain of
edges. In fact, every connected graph has a tree for its “scaffolding ” (Gerüst 8), and
the connectivity of the graph is defined as the number of its branches that have to be
removed to produce the tree, namely 1–N0+N1.

1·6. Euler’s Formula. In defining a polyhedron, we did not exclude the possibility
of its beingmultiply-connected (i.e., ring-shaped, pretzel-shaped, or still more compli-
cated). The special feature which distinguishes a simply-connected polyhedron is that
every simple closed curve drawn on the surface can be shrunk, or that every circuit of
edges bounds a region (consisting of one face or more). For such a polyhedron, the
numbers of elements satisfy Euler’s Formula

1·61



which can be proved in a great variety of ways.9 The following proof is due to von
Staudt.
Consider a tree whose nodes are the N0 vertices, and whose branches are N0–1

of the N1 edges (i.e., a scaffolding of the graph of vertices and edges). Instead of the
remaining edges, take the corresponding edges of the dual map (as in Fig. 1.4A, where
the selected edges are drawn in heavy lines). These edges of the dual map form a
graph with N2 nodes, one inside each face of the polyhedron. Its branches are entirely
separate from those of the tree. It is connected, since the only way in which one of
its nodes could be inaccessible from another would be if a circuit of the tree came
between, but a tree has no circuits. On the other hand, a circuit of the graph would
decompose the surface into two separate parts, each containing some nodes of the
tree, which is impossible. So in fact the graph is a second tree, and has N2–1 branches.
But every edge of the polyhedron corresponds to a branch of one tree or the other.
Hence
(N0–1) + (N2–1) = N1.
This argument breaks down for a multiply-connected surface, because there the

graph of edges of the dualmap does contain circuits (although these do not decompose
the surface). For instance, the unbroken lines in Fig. 1.6A form the unfolded “ net
” of a map of sixteen quadrangles on a ring-shaped surface; the heavy lines form a
scaffolding, and the broken lines cross the remaining edges. Two circuits of broken
lines canbe seen: one through themid-point ofAD, and another through themid-point
of AE.
Any orientable unbounded surface (e.g., any closed surface in ordinary space that

does not cross itself) can be regarded as “a sphere with p handles ”. (Thus p=0 for
a sphere or any simply-connected surface, p= 1 for a ring, and p=2 for the surface
of a solid figure-of-eight.) The number p is called the genus of the surface. It can be
shown10 that the appropriate generalization of 1•61 is
1·62

FIG. 1.6A



The unbroken lines in Fig. 1.4A· form a Schlegel diagram for the dodecahedron : one
face is specialized, and the rest of the surface is represented in the interior of that
face (as if we projected the polyhedron onto the plane of that face from a point just
outside). Such a diagram can be made for any simply-connected polyhedron. 11We
may regard the whole plane as representing the whole surface, by letting the exterior
region of the plane represent the interior of the special face.
If a simply-connected map has only even faces (like Fig. 1.5A or B), we can show

that every circuit of edges consists of an even number of edges. For, such a circuit, of
(say) N edges, decomposes the map into two regions which have the circuit as their
common boundary. If we modify the map, replacing one of the two regions by a single
N-sided face, then the rest of the faces (belonging to the other region) are all even.
Hence, by the remark at the end of § 1·4 N is even.
It follows that alternate vertices of any even-faced simply-connected map can be

picked out in a consistent manner (so that every edge joins two vertices of opposite
types). For instance, alternate vertices of a cube belong to two inscribed tetrahedra
(Plate I, Fig. 6).
1·7. Regular maps. Amap is said to be regular, of type {p, q}, if there are p vertices

and p edges for each face, q edges and q faces at each vertex, arranged symmetrically
in a sense that can be made precise.12 Thus a regular polyhedron (§ 1·3) is a special
case of a regular map. By 1·41 and 1·44, we have
1·71

For each map of type {p, q} there is a dual map of type {q, p} ; e.g., a self-dual map
of type {4, 4} is produced if we divide a torus or ring-surface into n2 “ squares ” by
drawing n circles round the ring and n other circles threading the ring. (Fig. 1.6A
shows the case when n=4. The surface has been cut along the circles ABCD and AEFG,
one of each type.)
This example is ruled out ifwe restrict consideration to simply-connectedpolyhedra.

Then the possible values of p and q are limited by the inequality 1•31, and for each
admissible pair of values there is essentially only one polyhedron {p, q}. In fact, the
relations 1•61 and 1•71 yield
1·72



which expresses N1 in terms of p and q. The inequality 1·31 is an obvious conse-
quence of 1·72. The solutions
{3, 3}, {3, 4}, {4, 3}, {3, 5}, {5, 3}
give the tetrahedron, octahedron, cube, icosahedron, dodecahedron. As maps we

have also the dihedron {p, 2} and the hosohedron 13{2, p}. The latter is formed by p digons
or “ lunes.”
1·8. Configurations. A configuration in the plane is a set of N0 points and N1 lines,

with N01 of the lines passing through each of the points, and N10 of the points lying on
each of the lines. Clearly
N0 N01 = N1 N10.
For instance, N1 N01= 2 and N10 = N1−1. Again, a p-gon is a configuration in

which N0 =N1=p, N01=N10=2. (Further points of intersection, of sides produced, are
not counted.)
Analogously, a configuration in space is a set of N0 points, N1 lines, and N2 planes,

or let us say briefly Nj j-spaces (j=0, 1, 2), where each j-space is incident with Njk of
the k-spaces (j ≠ k).14 Clearly
1·81

These configurational numbers are conveniently tabulated as amatrix

where Njj is the number previously called Nj.
The subject of configurations belongs essentially to projective geometry, in which

the principle of duality enables us to preserve the relations of incidence after inter-
changing points and planes. Thus, for any configuration there is a dual configuration,
whose matrix is derived from that of the given configuration by a “central inversion ”
(replacing Njk by Nj′k′ where j + j′=k + k′= 2).
In particular, for each Platonic solid {p, q} we have a configuration

Here the relations 1.71 or 1.81 determine the ratiosN0 : N1 : N2, and then 1.61 fixes
the precise values
1·82

(See Table I, on page 292.)



1·9. Historical remarks. Sir D’Arcy W. Thompson once remarked to me that Euclid
never dreamed of writing an Elementary Geometry : what Euclid really did was to
write a very excellent (but somewhat long-winded) account of the Five Regular Solids,
for the use of Initiates. However, this idea, first propounded by Proclus, is denied by
Heath.
The early history of these polyhedra is lost in the shadows of antiquity. To ask who

first constructed them is almost as futile as to ask who first used fire. The tetrahedron,
cube and octahedron occur in nature as crystals15 (of various substances, such as
sodium sulphantimoniate, common salt, and chrome alum, respectively). The two
more complicated regular solids cannot form crystals, but need the spark of life for
their natural occurrence. Haeckel observed them as skeletons of microscopic sea
animals called radiolaria, the most perfect examples being Circogonia icosahedra and
Circorrhegma dodecahedra.16 Turning now to mankind, excavations on Monte Loffa,
near Padua, have revealed anEtruscan dodecahedronwhich shows that this figurewas
enjoyed as a toy at least 2500 years ago. So also to-day, an intelligent child who plays
with regular polygons (cut out of paper or thin cardboard, with adhesive flaps to stick
them together) can hardly fail to rediscover the Platonic solids. They were built up that
“ childish ”waybyPlatohimself (about 400B.C.) andprobably beforehimby the earliest
Pythagoreans, 17 one of whom, Timaeus of Locri, invented a mystical correspondence
between the four easily constructed. solids (tetrahedron, octahedron, icosahedron,
cube) and the four natural “ elements ” (fire, air, water, earth). Undeterred by the
occurrence of a fifth solid, he regarded the dodecahedron as a shape that envelops
the whole universe.
All five were treated mathematically by Theaetetus of Athens, and in Books XIII-XV

of Euclid’s Elements ; e.g., 1.71 is Euclid XV, 6. (Books XIV and XV were not written
by Euclid himself, but by several later authors.) The pyramids and prisms are much
older, of course ; but antiprisms do not seem to have been recognized before Kepler
(A.D. 1571-1630).18

The Greeks understood that some regular polygons can be constructed with ruler
and compasses, while others cannot. This question was not cleared up until 1796,
when Gauss, investigating the cyclotomic equation 1.15, concluded that the only {p}’s
capable of such Euclidean construction are those for which the odd prime factors of p

19 means that pmust be a divisor of



multiplied by any power of 2. The simplest rules for constructing {5} and {17} have
been given by Dudeney and Richmond. Richelot and Schwendenwein constructed
{257} about 1832, and J.Hermeswasted ten years of his life on {65537}. Hismanuscript
is preserved in the University of Göttingen.
The theory of graphs (so named by Sylvester) began with Euler’s problem of the

Bridges in Königsberg, and was developed by Cayley, Hamilton, Petersen, and others.
Euler discovered his formula 1.61 in 1752. Sixty years later, Lhuilier noticed its failure
when applied to multiply-connected polyhedra. The subject of Topology (or Analysis
situs) was then pursued by Listing, Möbius, Riemann, Poincaré, and has accumulated
a vast literature.
The theory of maps received a powerful stimulus from Guthrie’s problem of finding

the smallest number of colours that will suffice for the colouring of every possible
map. The question whether this number (for a simply-connected surface) is 4 or 5,
has been investigated by Cayley, Kempe, Tait, Heawood, and others, but still remains
unanswered. Evidently two colours suffice for the octahedron, three for the cube or
the icosahedron, four for the tetrahedron or the dodecahedron.
The well-known figure of two perspective triangles with their centre and axis of

perspective is a configurations (as defined in §1.8) withN0=N1=10 andN01=N10=3, first
considered by Desargues in 1636. The use of a symbol such as {p, q} (for a regular
polyhedron with p-gonal faces, q at each vertex) is due to Schläfli (4, p. 44), so we shall
call it a “Schläfli symbol ”. The formulae 1.82 are his also.





2 CHAPTER II REGULAR AND QUASI-
REGULAR SOLIDS

THIS chapter opens with a new “ economical ” definition for regularity : a polyhedron
is regular if its faces and vertex angles are all regular. In § 2·2 we see how {q, p} can
be derived from {p, q} by reciprocation. Much use is made later of the self-reciprocal
property

which is the number of sides of the skew polygon formed by certain edges (see §
2.6). The computation of metrical properties (in § 2.4) is facilitated by considering
some auxiliary polyhedra which are not quite regular, but more than “ semi-regular,”
so it is natural to call them “ quasi-regular.” §§ 2.7 and 2·8 deal with solids bounded
by rhombs or other parallelograms ; these are described in such detail, not only for
their intrinsic interest, but for use in Chapter XIII.

2·1. Regular polyhedra. The definition of regularity in § 1·3 involves three state-
ments : regular faces, equal faces, equal solid angles. (Regular solid angles can then
be deduced as a consequence.) All three statements are necessary. For : the triangular
dipyramid formed by fusing two regular tetrahedra has equal, regular faces ; prisms
and antiprisms of suitable altitude have regular faces and equal solid angles; and
certain irregular tetrahedra, called disphenoids, have equal faces and equal solid angles.
(Tomake amodel of a disphenoid, cut out an acute-angled triangle and fold it along the
joins of the mid-points of its sides. The disphenoid is said to be tetragonal or rhombic
according as the triangle is isosceles or scalene.)

It is interesting to find that another definition, involving only two statements, is
powerful enough to have the same effect : we shall see that regular faces and regular
solid angles suffice. For simplicity, we replace the consideration of solid angles (which
are rather troublesome) by that of vertex figures.20

25



The vertex figure at the vertex O of a polygon is the segment joining the mid-points
of the two sides through O ; for a {p} of side 2l, this is a segment of length

(See the broken line in Fig. 1.1A on page 3.) The vertex figure at the vertex O of
a polyhedron is the polygon whose sides are the vertex figures of all the faces that
surroundO ; thus its vertices are themid-points of all the edges throughO. For instance,
the vertex figure of the cube (at any vertex) is a triangle.

Now, according to our revised definition, a polyhedron is regular if its faces and
vertex figures are all regular.

Since the faces are regular, the edges must be all equal, of length 2l, say. Similarly,
since the vertex figures are regular, the faces must be all equal ; for otherwise some
pair of different faces would occur with a common vertex O, at which the vertex figure
would have unequal sides, namely 2l cos π/p for two different values of p. Moreover, the
dihedral angles (between pairs of adjacent faces) are all equal ; for, those occurring at
any one vertex belong to a right pyramid whose base is the vertex figure. Each lateral
face of this pyramid is an isosceles triangle with sides l, l, 2l cos π/p. The number of
sides of the base cannot vary without altering the dihedral angle. Hence this number,
say q, is the same for all vertices, and the vertex figures must be all equal.

We thus have the regular polyhedron {p, q}. Its face is a {p} of side 2l, and its vertex
figure is a {q} of side 2l cos π/p.

We easily see that the perpendicular to the plane of a face at its centre will meet
the perpendicular to the plane of a vertex figure at its centre in a point O3 which is
the centre of three important spheres : the circum-sphere which passes through all
the vertices (and the circum-circles of the faces), themid-sphere which touches all the
edges (and contains the in-circles of the faces), and the in-sphere which touches all the
faces.21 Their respective radii 22 will be denoted by 0R, 1R, and 2R.

Let O2, be the centre of a face, O1 the mid-point of a side of this face, and O0 one
end of that side. Since the triangle Oi Oj Ok (i < j< k) is right-angled at Oj, Pythagoras’
Theorem gives

2·11



2·2. Reciprocation. Consider the regular polyhedron {p, q}, with its N0 vertices, N1

edges, N2 faces. (See 1·82.) If we replace each edge by a perpendicular line touching
the mid-sphere at the same point, we obtain the N1 edges of the reciprocal polyhedron
{q, p}, which has N2 vertices and N0 faces. This process is, in fact, reciprocation with
respect to the mid-sphere : the vertices and face-planes of {q, p} are the poles and
polars of the face-planes and vertices of {p, q}.
Reciprocation with respect to another (concentric) sphere would yield a larger or

smaller {q, p}. The mid-sphere is convenient to use, as having the same relationship
to both polyhedra ; e.g., it reciprocates the tetrahedron {3, 3} into an equal {3, 3}. (See
Plate I, Figs. 6–8.) Moreover, when we use the mid-sphere, the circum-circle of the
vertex figure of {p, q} coincides with the in-circle of a face of {q, p}, and these two {q}’s
are reciprocal with respect to that circle.
If properties of the reciprocal of a given polyhedron are distinguished by dashes,

we have
2·21

for, each of these expressions is equal to the square of the radius of reciprocation.
Hence this radius can be chosen so that 0R=0R′ and 2R=2R′; but then we shall not, in
general, have also 1R=1R′.
This process of reciprocation can evidently be applied to any figure which has a

recognizable “centre”. It agrees both with the topological duality that we defined for
maps (§1–44) and with the projective duality that applies to configurations (§ 1·8).
2.3. Quasi-regular polyhedra. In the case when two regular polyhedra, {p, q} and {q,

p N1 vertices, namely the mid-edge points of either {p, q} or {q, p}. Its faces consist of
N0 {q}’s and N2 {p}’s, which are the vertex figures of {p, q} and {q, p}, respectively. There
are 4 edges at each vertex, and so 2N1 edges altogether. Euler’s Formula is satisfied,
as
N1 − 2N1 + (N0 + N2) = 2.

When p=q=3, this derived polyhedron is evidently the octahedron ; for all its faces
are {3}’s, and four meet at each vertex :
2·31



In other cases the {p}’s and {q}’s are different; but still the edges are all alike, each
separating a {p} from a {q cuboctahedron, icosidodecahedron (Plate I, Figs. 9 and 10).
These are instances (in fact, the only convex instances) of quasi-regular polyhedra.
A quasi-regular polyhedron is defined as having regular faces, while its vertex

figures, though not regular, are cyclic and equiangular (i.e., inscriptible in circles and
alternate-sided). It follows from this definition that the edges are all equal, say of
length 2L, that the dihedral angles are all equal, and that the faces are of two kinds,
each face of one kind being entirely surrounded by faces of the other kind. Moreover,
by a natural extension of the argument used for a regular polyhedron in § 2·1, the
vertex figures are all equal. If there are r {p}’s and r {q}’s at one vertex, then it is the
same at every vertex, and the vertex figure is an equiangular 2r-gon with alternate
sides 2L cos π/p and 2L cos π/q. The face-angles at a vertex make a total of
r(1 − 2/p)π + r(1 − 2/q)π,
which must be less than 2π ; therefore
2·32

But p and q cannot be less than 3; so r
On examining a model of the octahedron, cuboctahedron, or icosidodecahedron,

we observe a number of equatorial r=2), and that either pair of opposite vertices of
this rectangle are the mid-points of two adjacent sides of the equatorial polygon. If
this polygon is an {h}, its vertex figure is of length 2L cos π/h. But this vertex figure,
as we have just seen, is the diagonal of a rectangle of sides 2L cos π/p and 2L cos π/q.
Hence
2·33

We can thus verify that h Fig. 2.3A.)
h}; so there are 2N1/h such {h}’s altogether (namely 3 squares, 4 hexagons, and 6

decagons, in the respective cases).

FIG. 2.3A
The quasi-regular solids and their equatorial polygons



The equation 2-33 for h is useful in connection with trigonometrical formulae (such
as thosewe shall find in § 2·4). But for other purposes it is desirable to have an algebraic
expression for h. This can be found as follows. Since each of the 2N1/h equatorial
h-gons meets each of the others at a pair of opposite vertices, we have

whence 4N1 = h(h + 2), and
2·34

In virtue of 1·72, this is an algebraic expression for h in terms of p and q, as desired.
Of course, it is not equivalent to 2-33 for general values of pand q, but only for the values
corresponding to points (p, q) on the curve sketched in Fig. 2.3B, whose equation is
obtained by eliminating h and N1 from 1·72, 2·33, 2·34. Part of this is the rectangular
hyperbola
(p − 2)(q − 2) = 4,
corresponding to N1 = ∞ . But we are more interested in the other part, which

contains the points (3, 5), (3, 4), (3, 3), (4, 3), (5, 3) corresponding to the Platonic solids
{p, q}. The values of h are marked at these points. The two branches touch each other
at two points where

viz., (2·81, 6·96) and (6·96, 2·81). There is also an acnode at (2, 2), where h=2.

FIG. 2.3B
Values of p and q for which 2·33 and 2·34 agree
2.4. Radii and angles. The metrical properties of {p, q} can be expressed elegantly

in terms of p, q, and h h} of side 2L, is L csc π/h p, q} of edge 2l, this circum-radius
occurs as the mid-radius of {p, q}. But the edge 2L p, q}, namely 2l cos π/p. Hence
2·41

and the mid-radius of {p, q} is
2·42



It follows from 2·11 and 2·33 that the circum-radius and in-radius are
2·43

As a check, we observe that the ratio 0R/2R involves p and q symmetrically, in agree-
ment with 2·21.
Let �, �, � denote the angles at O3 in the respective triangles O0 O1 O3, O0 O2 O3, O1

O2 O3, i.e., the angles subtended at the centre by a half-edge and by the circum- and
in-radii of a face.23 Then the properties �, �, � of {p, q} are the properties �, �, � of {q, p} ;
in fact,
2·44

FIG. 2.4A
These and other trigonometrical functions of �, �, �may conveniently be read off

from the right-angled triangles in Fig. 2.4A (which are similar to the trianglesOi Oj

Ok). We observe also that
sin � = l/0R,
and that π-2� is the dihedral angle between the planes of two adjacent faces. (This is

easily seen by considering the section by the plane O1 O2 O3 which is perpendicular
to the common edge of two such faces.)
The first of the formulae 2·44 expresses the fact that l cos � is equal to the circum-

radius of the vertex figure. This may alternatively be seen by considering the section
of {p, q} by the plane O0 O1 O3 (joining one edge to the centre), as in Fig. 2.4B.

FIG. 2.4B
By 1·13 and 1·71, the surface-area of {p, q} is
2·45

where N1 is given by 1·72 or 1·82. The volume, being made up of N2 right pyramids
of altitude 2R, is



2·46

For the application of these formulae in the individual cases, see Table I on page
293, where frequent use has been made of the special number

which is the positive root of the quadratic equation
2·47

Writing this equation as x=1+1/x, we see that

It is well known that, of all regular continued fractions, this converges slowest. Its
nth convergent is fn+1/fn, where f 1, f 2, …are the Fibonacci numbers
1, 1, 2, 3, 5, 8, 13, 21, 34, 55, ….
These can be written down immediately, as
1 + 1 = 2, 1 + 2 = 3, 2 + 3 = 5, 3 + 5 = 8,
and so on. Since �n−1 + �n = �n+1, the integral powers of � are given by the formulae

e.g.,

2·5. Descartes’ Formula. In the deduction of 1·31 and 2·32, we used the principle
that the face-angles at a vertex of a convex polyhedron must total less than 2π. It
is evident to anyone making models, that the angular deficiency is small when the
polyhedron is complicated. The precise connection was observed by Descartes, who
showed that, if the face-angles at a vertex amount to 2π−�, then
�� = 4π,
where the summation is taken over all the vertices.
If the vertices are all surrounded alike, this means that
2·51

i.e., the angular deficiency is inversely proportional to the number of vertices. In the
case of {p, q}, we have
� = 2π − q(1 − 2/p)π,
whence
N0 = 4p/(2p + 2q − pq),



in agreement with 1·82. If we measure � in degrees, the formula is
N0 = 720/� ;
e.g., thedodecahedronhas three face-angles of 108°, totalling324°, so thedeficiency

is 36°, and N0 = 720/36 = 20.
Descartes’ Formula is most easily established by spherical trigonometry, using the

well-known fact that the area of a spherical triangle (whose sides are arcs of great
circles on a sphere of unit radius) is equal to its spherical excess, which means the
excess of its angle-sum over that of a plane triangle (namely π). Since any polygon
can be dissected into triangles, it follows that the area of a spherical polygon is equal
to its spherical excess, which means the excess of its angle-sum over that of a plane
polygon having the same number of sides.
By projecting the edges of a given convex polyhedron from any interior point onto

the unit sphere around that point, we obtain a partition of the sphere intoN2 spherical
polygons, one for each face of thepolyhedron. The total angle-sumof all thesepolygons
is clearly 2πN0 (i.e., 2π for each vertex). On the other hand, the total angle-sum of the
flat faces themselves is
� (2π − �) = 2πN0 − ��
(summed over the vertices). The difference, ��, is the total spherical excess of the

N2 spherical polygons, which is the total area of the spherical surface, namely 4π.
Spherical trigonometry also facilitates the derivation of 2·44. For, by projecting

the triangle O0 O1 O2 from the centre O3 onto the unit sphere around O3, we obtain a
spherical triangle P0 P1 P2 with angles

and (opposite) sides
2·52

The ordinary formulae for a right-angled spherical triangle give 2·44 at once.
2·6. Petrie polygons p, q}. In particular, the vertices of an equatorial {h} are the

mid-points of a special circuit of h edges of {p, q}, forming a skew polygon which is
sufficiently important to deserve a name of its own : so let us call it a Petrie polygon. It
may alternatively be defined as a skew polygon such that every two consecutive sides,
but no three, belong to a face of the regular polyhedron. The above considerations
show that it is a skew h-gon, where h h h-gonal antiprism. (See § 1·3, where the
icosahedron {3, 5} was derived from a pentagonal antiprism by adding two pyramids.)



Fig. 2.3A h}’s. Fig. 2.6A shows the corresponding projections of {p, q}. The
peripheries are still plane h-gons, but now they are the projections of skew h-gons,
namely Petrie polygons.

N1/h equatorial polygons. Hence the regular polyhedron {p, q} has 2N1/h Petrie
polygons (all alike). The reciprocal polyhedron {q, p} has the same number of Petrie
polygons ; but these have a different shape, unless p=q.

FIG. 2.6A

The Platonic solids and their Petrie polygons

2·7. The rhombic dodecahedron and triacontahedron. Consider once more the
figure formed by solids {p, q} and {q, p N1 rhombs. The diagonals of these rhombs
are the edges of {p, q} and {q, p}. The polyhedron is easily seen to have 2N1 edges and
N0+N2

24 When p=q rhombic dodecahedron and the triacontahedron (Plate I, Figs. 11
and 12). The former is shown by a Schlegel diagram in Fig. 1.5B.

The shape of the rhomb is determined by the fact that its diagonals are 2l and 2l’,
where, by 2·41,

2·71

In particular, the face of the rhombic dodecahedron has diagonals in the ratio 1 :
√2. This suggests an amusing method for building up a model.25 Take two equal solid
cubes. Cut one of them into six square pyramids based on the six faces, with their
common apex at the centre of the cube. Place these pyramids on the respective faces
of the second cube. The resulting solid is the rhombic dodecahedron.

Alternatively,26 amodel of the rhombic dodecahedron can be built up by juxtaposing
four obtuse rhombohedra whose faces have diagonals in the ratio 1 : √2. (A rhombohe-
dron is a parallelepiped bounded by six equal rhombs. It has two opposite vertices at
which the three face-angles are equal. It is said to be acute or obtuse according to the
nature of these angles.)



By 2·71 again, the triacontahedron’s face has diagonals in the “ golden section ” ratio
1 : �. A model can be built up from twenty rhombohedra, ten acute and ten obtuse,
bounded by such rhombs.27 (The thirty faces of the triacontahedron are accounted
for as follows. Seven of the obtuse rhombohedra possess three each, and nine of the
acute rhombohedra possess one each. The remaining four rhombohedra are entirely
hidden in the interior.)
Corresponding to the equatorial h zone of h rhombs, encircling it like Humpty

Dumpty’s cravat. The edges along which consecutive rhombs of the zone meet are, of
course, all parallel. It follows that the dihedral angle of the “ rhombic N1-hedron ” is

i.e., 90° for the cube, 120° for the rhombic dodecahedron, and 144° for the triacon-
tahedron.
2·8. Zonohedra. These rhombic figures suggest the general concept of a convex

polyhedron bounded by parallelograms. We proceed to prove that such a polyhedron has
n(n-1) faces, where n is the number of different directions in which edges occur.
Since all the faces areparallelograms, every edgedetermines a zone of faces, inwhich

each face has two sides equal and parallel to the given edge. Every face belongs to two
zones which cross each other at that face and again elsewhere (at the “ counterface ”).
Hence the faces occur in opposite pairs which are congruent and similarly situated
in parallel planes. So also, the edges occur in opposite pairs which are equal and
parallel, and the vertices occur in opposite pairs whose joins all have the samemid-
point. In other words, the polyhedron has central symmetry. Hence each zone crosses
every other zone twice. If edges occur in n different directions, there are n zones,
each containing n n directions there is a pair of faces whose sides occur in those
directions. Thus there are n(n−1) faces. 28

Moreover, there are 2(n−1) edges in each direction : 2n(n−1) edges altogether. By
1·61, there are n(n−1)+2 vertices.
Let us define a star as a set of n line-segments with a commonmid-point, and call it

non-singular if no three of the lines are coplanar. Then wemay say that every convex
polyhedron bounded by parallelograms determines a non-singular star, having one
line-segment for each set of 2(n−1) parallel edges of the polyhedron.
Conversely, the star determines the polyhedron. To see this, consider n vectors e1,

e2, …, en, represented by the segments of the star (with a definite sense of direction
chosen along each). The various sums of these vectors without repetition, say



2·81

will lead from a given point to a certain set of 2n points, not necessarily all distinct.
The smallest convex body containing all these points (on its surface or inside) is a
polyhedron whose edges represent the vectors ei in various positions. If the star is
non-singular, the faces are parallelograms.
To see which sums of vectors lead to vertices, consider a plane of general position

through a fixed point from which the vectors e1, . . . , en proceed in their chosen
directions. The sum of those vectors which lie on one side of the plane is the vector
leading to a vertex of the polyhedron ; the sum of the vectors on the other side leads
to the opposite vertex. Hence the number of pairs of opposite vertices is equal to
the number of ways in which the n vectors can be separated into two sets by a plane.
By considering what happens in the plane at infinity, we can identify this with the
number of ways in which n points in the real projective plane can be separated by a
line. By the principle of duality, this is equal to the number of regions into which the
plane is dissected by n lines. If the given star is non-singular, these n
Here are some simple instances : the general star with n=3 determines a paral-

lelepiped ; and the star whose segments join opposite vertices of an octahedron,
cube or icosahedron, determines a cube, rhombic dodecahedron or triacontahedron,
respectively.
The analogous process in two dimensions leads from a star of n coplanar segments

to a convex polygon which has central symmetry, its n pairs of opposite sides being
equal and parallel to the n segments. Since such a flat star is a limiting case of a star
of n non-coplanar segments, the “ parallel-sided 2n
The general star (wherein various sets ofm lines are coplanar) leads to a convex poly-

hedron whose faces are parallel-sided 2m-gons (e.g., whenm=2, parallelograms). This
is the general zonohedron. By a natural extension of the above argument, we see that
every convex polyhedron bounded by parallel-sided 2m-gons is a zonohedron. Hence,
if every face of a convex polyhedron has central symmetry, so has the whole polyhedron.29

The expression n(n−1), for the number of parallelograms in a “ non-singular ” zono-
hedron, applies also to the general zonohedron, provided we regard each parallel-
sided 2m
2·82



Plate II shows a collection of equilateral zonohedra, whose stars consist of equal
segments. (The faces withm> 2 have been marked according to their dissection into
rhombs, in various ways simultaneously. The reason for doing this will appear in §
13-8.)

By removing one zone from the triacontahedron, and bringing together the two re-
maining pieces of the surface, we obtain the rhombic icosahedron, which has a decidedly
“ oblate ” appearance. The corresponding star consists of five of the six diameters of
the icosahedron, i.e., five segments joining pairs of opposite vertices of a pentagonal
antiprism. More generally, the star which joins opposite vertices of any right regular
n-gonal prism (n even) or antiprism (n odd) determines a polar zonohedron (Fig. 2.8A)
whose faces consist of n equal rhombs surrounding one vertex, n other rhombs beyond
these, and so on: n−1 sets of n rhombs altogether, ending with those that surround the
opposite vertex.30

FIG. 2.8A : Polar zonohedra

Another special class of zonohedra consists of the five “ primary parallelohedra ”,
each of which, with an infinity of equal and similarly situated replicas, would fill the
whole of space without interstices.31 These are the cube, hexagonal prism, rhombic
dodecahedron, “ elongated dodecahedron ” (Fig. 13.8B on page 257), and “truncated
octahedron”. The last is bounded by six squares and eight hexagons ; its star consists
of the six diameters of the cuboctahedron, and the corresponding lines in the real
projective plane are the sides of a complete quadrangle (giving twelve regions).

2·9. Historical remarks. As long ago as 300 A.D., the unknown author of Euclid XV,
3-5, inscribed an octahedron in a cube, a cube in an octahedron, and a dodecahedron
in an icosahedron ; this, in each case, amounts to reciprocating the latter solid with
respect to its in-sphere (which is the circum-sphere of the former). He also inscribed
an octahedron in a tetrahedron (Euclid XV, 2), thus anticipating 2·31. But Maurolycus
(1494–1575) was probably the first to have a clear understanding of the relation
between two reciprocal polyhedra.

The cuboctahedron and icosidodecahedron, described in § 2·3, are two of the thir-
teen Archimedean solids. Unfortunately, Archimedes’ own account of them is lost.
According to Heron, Archimedes ascribed the cuboctahedron to Plato.32



Thenumber of sides of the Petrie polygon of {p, q} is given by the alternative formulae
2·33 and 2·34, the latter of which is published here for the first time.33 When the
general formulae of § 2·4 are applied to the individual polyhedra, as in Table I on
page 293, the results are seen to agree with van Swinden 1, pp. 378-390. But some of
these results are far older. Euclid himself found all the circum-radii (or, rather, their
reciprocals, the edges of the solids inscribed in a given sphere ; see Euclid XIII, 18).
Hypsicles (Euclid XIV) observed that, if a dodecahedron and an icosahedron have the
same circum-sphere, they also have the same in-sphere,34 S/0R

2 (or of C/0R
3) for

{p, q} and {q, p} are in the ratio

A line-segment is said to be divided according to the Golden Section if its two parts
are in the ratio 1 : �. (See 2·47.) A construction for this section was given by Eudoxus
in the fourth century B.C. Since �2=�+1, the larger part and the whole segment are
again in the ratio 1 : �. In other words, a rectangle whose sides are in this ratio (viz.,
the vertex figure of the icosidodecahedron) has the property that, when a square is cut
off, the remaining rectangle is similar to the original. The related sequence of integers
was investigated in the thirteenth century A.D. by Leonardo of Pisa, alias Fibonacci.35

More recently, the remarkable formula

was discovered by Lucas (2, pp. 458, 463). It was Schläfli (4, p. 53) who first noticed
the occurrence of various powers of � in the metrical properties of the icosahedron
and dodecahedron (and of other figures which we shall construct in Chapters VI, VIII,
and XIV).

“ Descartes’ Formula ” (§ 2·5), which is practically an anticipation of Euler’s Formula
(1·61), was discussed in a manuscript De Solidorum Elementis. This was lost for two
centuries, and then turned up among the papers of Leibniz. 36

Meier Hirsch (1, p. 65) used spherical trigonometry in 1807 for his proof of the
existence of the Platonic solids. The characteristic triangleP0 P1 P2 wasused extensively
by Hess (3, pp. 26-29).



The rhombic dodecahedron and triacontahedron (§ 2·7) were discovered by Kepler
(1, p. 123) about 1611. The former occurs in nature as a garnet crystal, often as big as
one’s fist. Strictly, it should be called the first rhombic dodecahedron, because in 1960
Bilinski (1) noticed that a second rhombic dodecahedron (whose faces have the same
shape as those of the triacontahedron) can be derived from the rhombic icosahedron
by removing one zone and bringing together the two remaining pieces of the surface.

§ 2·8 has the peculiarity of being concerned with affine geometry. The theory of
zonohedra is due to the great Russian crystallographer Fedorov (1), who was par-
ticularly delighted with formula 2·82. He does not seem to have realized, however,
that a convex zonohedron is capable of such a simple definition as this : a convex
polyhedron whose faces are centrally symmetrical polygons.

John Flinders Petrie, who first realized the importance of the skew polygon that
now bears his name, was the only son of Sir W. M. Flinders Petrie, the great Egyp-
tologist. He was born in 1907, and as a schoolboy showed remarkable promise of
mathematical ability. In periods of intense concentration he could answer questions
about complicated four-dimensional figures by “ visualizing ” them. His skill as a
draughtsman can be seen in his unique set of drawings of stellated icosahedra.37

In 1926, he generalized the concept of a regular skew polygon to that of a regular
skew polyhedron.38 He worked for many years as a schoolmaster. In 1972, after a few
months of retirement, he was killed by a car while attempting to cross a motorway
near his home in Surrey.

PLATE II



SOME EQUILATERAL ZONOHEDRA





3 CHAPTER III ROTATION GROUPS

THIS chapter provides an introduction to the theory of groups, illustrated by the
symmetry groups of the Platonic solids. We shall find coordinates for the vertices of
these solids, and examine the cases where one can be inscribed in another. Finally, we
shall see that every finite group of displacements is the group of rotational symmetry
operations of a regular polygon or polyhedron.
3·1. Congruent transformations. Two figures are said to be congruent if the dis-

tances between corresponding pairs of points are equal, in which case the angles
between corresponding pairs of lines are likewise equal. In particular, two trihedra
(or trihedral solid angles) are congruent if the three face-angles of one are equal to
respective face-angles of the other. Two such trihedra are said to be directly congruent
(or “ superposable ”) if they have the same sense (right- or left-handed), but enantiomor-
phous if they have opposite senses. The same distinction can be applied to figures of
any kind, by the following device.
Any point P is located with reference to a given trihedron by its (oblique) Cartesian

coordinates x, y, z. Let P’ be the point whose coordinates, referred to a congruent
trihedron, are the same x, y, z. If we suppose the two trihedra to be fixed, every P
determines a unique P′, and vice versa. This correspondence is called a congruent
transformation, P′ being the transform of P. If another point Q is transformed into Q′,
we have a definite formula for the distance PQ in terms of the coordinates, which
shows that P′Q′=PQ. In other words, a congruent transformation is a point-to-point
correspondence preserving distance. It is said to be direct or opposite according as the
two trihedra are directly congruent or enantiomorphous, i.e., according as the trans-
formation preserves or reverses sense. Hence the product (resultant) of two direct or
two opposite transformations is direct, whereas the product of a direct transformation
and an opposite transformation (in either order) is opposite. (In fact, the composition
of direct and opposite transformations resembles the multiplication of positive and

41



negative numbers, or the addition of even and odd numbers.) A direct transforma-
tion is often called a displacement, as it can be achieved by a rigid motion. Any two
congruent figures are related by a congruent transformation, direct or opposite. Two
identical left shoes are directly congruent ; a pair of shoes are enantiomorphous.
(Some authors use the words “ congruent ” and “ symmetric ” where we use “ directly
congruent ” and “ enantiomorphous ”.)

We shall find that all congruent transformations can be derived from three “ primi-
tive ” transformations : translation (in a certain direction, through a certain distance),
rotation (about a certain line or axis, through a certain angle), and reflection (in a certain
plane). Evidently the first two are direct, while the third is opposite.

There is an analogous theory in space of any number of dimensions. In two di-
mensions we rotate about a point, reflect in a line, and a congruent transformation is
defined in terms of two congruent angles. In one dimension we reflect in a point, and
a congruent transformation is defined in terms of two rays (or “ half lines ”). In this
simplest case, if any point O is left invariant, the transformation is the reflection in O,
unless it is merely the identity (which leaves every point invariant) ; but if there is no
invariant point, it is a translation, i.e., the product of reflections in two points (O and
Q, in Fig. 3.1A).

FIG. 3.1A

In two dimensions, a congruent transformation that leaves a point O invariant
is either a reflection or a rotation (according as it is opposite or direct). For, the
transformation from an angle XOY to a congruent angle X′OY′ (Fig. 3.1B) can be
achieved as follows. By reflection in the bisector of �XOX′, �XOY is transformed into
�X′OY1. Since this is congruent to �X′OY′, the ray OY’ either coincides with OY1 or is
its image by reflection in OX′. In the former case the one reflection suffices ; in the
latter, it has to be combined with the reflection in OX′, and the product is the rotation
through �XOX′ (which is twice the angle between the two reflecting lines).
In particular, the product of reflections in two perpendicular lines is a rotation

through π or half-turn. In this single case, it is immaterialwhich reflection is performed
first ; in other words, two reflections commute if their lines are perpendicular. It is
important to notice that the half-turn about O is the product of reflections in any two
perpendicular lines through O.



A plane congruent transformation without any invariant point is the product of two
or three reflections (according as it is direct or opposite). For, in transforming an angle
XOY into a congruent angle X′O′Y′,we can begin by reflecting in the perpendicular
bisector of OO′, and then use one or two further reflections, as above.

The product of two reflections is a translation or a rotation, according as the reflect-
ing lines are parallel or intersect. Hence every plane displacement is either a translation
or a rotation.39

FIG. 3.1B

In the product of three reflections, we can always arrange that one of the reflecting
lines shall be perpendicular to both the others. The following is perhaps not the
simplest proof, but it is one that generalizes easily to any number of dimensions. If we
regard a congruent transformation as operating on pencils of parallel rays (instead of
operating on points), we can say that a translation has no effect : it leaves every pencil
invariant. Since each pencil can be represented by that one of its rays which passes
through a fixed point O, any congruent transformation gives rise to an “ induced ”
congruent transformation operating on the rays that emanate from O : congruent
because of the preservation of angles.

If the given transformation is opposite, so is the induced transformation. But the
latter, leavingO invariant, can only be a reflection, say the reflection inOQ. This leaves
O andQ invariant; therefore the given transformation leaves the directionOQ invariant.
Consider the product of the given transformation with the reflection in any line, p,
perpendicular to OQ. This is a direct transformation which reverses the direction OQ;
i.e., it is a half-turn. Hence the given transformation is the product of a half-turn with
the reflection in p. But the half-turn is the product of reflections in two perpendicular
lines, which may be chosen perpendicular and parallel to p. Thus we have altogether
three reflections, of which the last two can be combined to form a translation. The
general opposite transformation is now reduced to the product of a reflection and a
translation which commute, the reflecting line being in the direction of the translation.
This kind of transformation is called a glide-reflection.



In three dimensions, a congruent transformation that leaves a point O invariant is
the product of at most three reflections : one to bring together the two x-axes, another
for the y-axes, and a third (if necessary) for the z-axes. Since one further reflection will
suffice to bring together two different origins (i.e., the vertices of the two congruent
trihedra),
3·11. Every congruent transformation is the product of at most four reflections.
Since the product of two opposite transformations is direct, a product of reflections

is direct or opposite according as the number of reflections is even or odd. Hence every
direct transformation is the product of two or four reflections, and every opposite
transformation is either a single reflection or a product of three.
The product of reflections in two parallel planes is a translation in the perpendicular

direction through twice the distance between the planes, and the product of reflections
in two intersecting planes is a rotation about the line of intersection through twice the
angle between them. Two reflections commute if their planes are perpendicular, in
which case their product is a half-turn (or “ reflection in a line ”).
Since the product of three reflections is opposite, a direct transformation with an

invariant point O can only be the product of reflections in two planes through O, i.e., a
rotation. Thus
3·12. Every displacement leaving one point invariant is a rotation.40

Consequently the product of two rotations with intersecting axes is another rotation.
The three “ primitive ” transformations (viz., translation, rotation, and reflection),

taken in commutative pairs, form the following three products. A screw-displacement
is a rotation combined with a translation in the axial direction. A glide-reflection is a
reflection combined with a translation whose direction is that of a line lying in the
reflecting plane. A rotatory-reflection is a rotation combined with the reflection in
a plane perpendicular to the axis. In the last case, if the rotation is a half-turn, the
rotatory-reflection is an inversion (or “ reflection in a point ”), and the direction of
the axis is indeterminate. In fact, an inversion is the product of reflections in any
three perpendicular planes through its centre ; e.g., reflections in the axial planes of a
Cartesian frame reverse the signs of x, y, z, respectively, and their product transforms
(x, y, z) into (–x,–y,–z).
We proceed to prove that every congruent transformation is of one of the above

kinds.



An opposite transformation, being the product of (at most) three reflections, leaves
invariant either a point or two parallel planes (and all planes parallel to them). The
latter possibility is the limiting case of the former when the invariant point recedes to
infinity ; it arises when the three reflecting planes are all perpendicular to one plane,
instead of forming a trihedron.
If there is an invariant pointO, consider the product of the given (opposite) transfor-

mation with the inversion in O. This direct transformation, leaving O invariant, must
be a rotation. Hence the given transformation is a “rotatory-inversion”, the product of
a rotation with the inversion in a point on its axis. By regarding the inversion as a spe-
cial rotatory-reflection,41 we see that a rotatory-inversion involving rotation through
angle � is the same as a rotatory-reflection involving rotation through �–π. Hence
every opposite transformation leaving one point invariant is a rotatory-reflection.
If, on the other hand, it is two parallel planes that are invariant, the transformation

is essentially two-dimensional : what happens in one of the two planes happens also
in the other and in all parallel planes. By the two-dimensional theory, we then have a
glide-reflection. Hence
3·13. Every opposite congruent transformation is either a rotatory-reflection or a

glide-reflection (including a pure reflection as a special case).
In order to analyse the general displacement or direct transformation, we first

regard the transformation as operating on bundles of parallel rays, represented
by single rays through a fixed point O. The induced transformation, leaving O

invariant, is still direct, and so can only be a rotation. The direction of the axis,OQ
OQ. OQ, OQ
with a translation in the direction OQ (or QO), i.e., a screw-displacement. Hence
3.14. Every displacement is a screw-displacement (including, in particular, a rotation or

a translation).42

3.2. Transformations in general. The concept of a congruent transformation,
applied to figures in space, can be generalized to that of a one-to-one transformation
applied to any set of elements. 43 When we speak of the resultant of two transfor-
mations as their “ product ”, we are making use of the analogy that exists between
transformations and numbers. We shall often use letters R, S, …to denote transforma-
tions, and write RS for the resultant of R and S (in that order). This notation is justified
by the validity of the associative law



3·21

Since a number is unchanged whenmultiplied by 1, it is natural to use the same
symbol 1 for the “ identical transformation ” or identity (which enters our discussion
as the translation through no distance, and again as the rotation through angle 0 or
through a complete turn). Pushing the analogy farther, we let Rp denote the p-fold
application of R; e.g., if R is a rotation through �, Rp is the rotation through p� about
the same axis. A transformation R is said to be periodic if there is a positive integer p
such that Rp=1; then its period is the smallest p for which this happens. We also let R−1

denote the inverse of R, which neutralizes the effect of R, so that RR−1= 1 = R−1R. If R is
of period p, we have R−1=Rp−1. In particular, a transformation of period 2 (such as a
reflection, half-turn, or inversion) is its own inverse.
The general formula for the inverse of a product is easily seen to be
(RS . . . T)−1= T−1 . . . S−1 R−1.
If R, etc. are of period 2, this is the same as T …SR ; e.g., if R and S are reflections

in parallel planes, the products RS and SR are two inverse translations, proceeding
in opposite directions. The analogy with numbers might be regarded as breaking
down in the general failure of the commutative law SR=RS ; but there are generalized
numbers, such as quaternions, which likewise need not commute.
Let x denote any figure to which a transformation is applied. If T transforms x into

x′ (so that T−1 transforms x into x′), we write x′ = xT.
x′ = xT.
This notation is justified by the fact that (xT)S=xTS. If S transforms the pair of figures

(x,xT) into (x1; T
into T1, and write
T1 = T

s.
(We may speak of this as “ T transformed by S ” ; e.g., if T is a rotation about an axis

1, then Ts is the rotation through the same angle about the transformed axis Is.) Since
x1=x

s x. Hence ST1=TS, and
TS = S−1TS.
Transforming a product, we find that
(TU)S = S−1TUS = S−1TSS−1US = TSUs.
Hence, for any integer p, (Tp)s = (Ts)p.



If S and T commute, so that TS=ST and TS=T, we say that T is invariant under trans-
formation by S.

The “ figure ” x need not be geometrical ; e.g., it could be a number or variable, in
which case xT is a function of this variable, and a more customary notation is T(x).
(The particular transformations

x′ = xt,

where t takes various numerical values, are seen to combine among themselves just
like the numbers t.) Again, x could be a discrete set of objects in assigned positions,
and xT the same set rearranged; then T is a permutation.

The two alternative notations currently used for permutations are illustrated by the
symbols

for the permutation of seven letters that replaces a, b, c, e, g, by c, g, e, a, b,while
leaving d and f unchanged. In the latter notation, which we shall use exclusively, the
two parts (a c e) and (b g) are called cycles. Clearly, every permutation is a product of
cycles involving distinct sets of objects. It is sometimes desirable to include all the
objects, e.g., to write

(a c e) (b g) (d) (f),

calling (d) and (f) “ cycles of period 1 ”. A transposition is a single cycle of period 2,
such as (b g), which merely interchanges two of the objects.

A permutation is said to be even or odd according to the parity of the number of
cycles of even period ; e.g., (a c e) (b g) is an odd permutation. When a permutation is
multiplied by a transposition, its parity is reversed. For, if (a1 b1) is the transposition,
a1 and b1 must either occur in the same cycle of the given permutation or in two
different cycles. Since and

it merely remains to observe that one or all of the three periods r, s, r+smust be
even.44 It follows (by induction) that every product of an even [odd] number of transpositions
is an even [odd] permutation.

The subject of group-theory has been adequately expoundedmany times, so we
shall be content to recall just themost relevant of its topics, in an attempt to make this
book reasonably self-contained.



A set of elements or “ operations ” is said to form an abstract group if it is closed with
respect to some kind of associative “multiplication”, if it contains an “identity”, and if
each operation has an “inverse”. More precisely, a group contains, for every two of its
operations R and S, their product RS ; holds for all R, S, T ; there is an identity, 1, such
that
1R=R
for all R ; and each R has an inverse, R−1, such that
R−1R = 1.
It is then easily deduced that R1 = R and RR−1= 1.
The number of distinct operations (including the identity) is called the order of the

group. This is not necessarily finite.
A subset whose products (with repetitions) comprise the whole group is called a

set of generators (as these operations “generate” the group). In particular, a single
operation R generates a group which consists of all the powers of R, including R0=1.
This is called a cyclic group ; it is finite if R is periodic, and then its order is equal to
the period of R. Wemay say that the cyclic group of order p is defined by the relation
Rp = 1,
with the tacit understanding that Rn≠1 for 0<n<p. More generally, any group is

defined by a suitable set of generating relations; e.g., the relations

define a group of order 6 whose operations are 1, R1, R2, R1 R2, R2 R1, and R1 R2
R1=R2 R1 R2.
A subsetwhich itself formsagroup is called a subgroup. (For the sake of completeness

it is customary to include among the subgroups the whole group itself and the group of
order one consisting of 1 alone.) In particular, each operation of any group generates
a cyclic subgroup.
If a given subgroup consists of T1, T2, . . . , while S is any operation in the group,

the set of operations STi is called a left coset of the subgroup, and the set TiS is called a
right coset.45 It can be proved that any two left (or right) cosets have either the same
members or entirely different members. Hence the subgroup effects a distribution of
all the operations in the group into a certain number of entirely distinct left (or right)
cosets. This number is called the index of the subgroup. When the group is finite, the
index is the quotient of the orders of the group and subgroup.



Two operations T and T′ are said to be conjugate if one can be transformed into the
other, i.e., if the group contains an operation S such that T′=Ts, or ST′=TS. The relation
of conjugacy is easily seen to be reflexive, symmetric, and transitive. A subgroup
T1, T2, …is said to be self-conjugate if, for every S in the group, the operations Ti are
a permutation of their transforms Ti

s, i.e., if the left and right cosets STi and TjS are
identical (apart from order of arrangement of members). In particular, any subgroup
of index 2 is self-conjugate.
If two groups, G1 and G2, have no common operations except the identity, and if

each operation of G1 commutes with each operation of G2, then the group generated
byG1 andG2 is called their direct product,G1 × G2. (This clearly containsG1 andG2 as
self-conjugate subgroups.) For instance, the cyclic group of order pq,where p and q
are co-prime, is the direct product of cyclic groups of orders p and q (generated by Rq

and Rp, if R generates the whole group).
When the operations are interpreted as transformations, we have a representation

of the abstract group as a transformation group. n objects ; it is then called apermutation
group of degree n. A permutation group is said to be transitive (on the n objects) if
its operations suffice to replace one object by all the others in turn. The three most
important transitive groups are :
(i) the symmetric group of order n!, which consists of all the permutations of the n

objects,
(ii) the alternating group of order n!/2, which consists of the even permutations,
(iii) the cyclic group of order n,which consists of the cyclic permutations, viz., the

powers of the cycle (a1, …an).
We easily verify that the alternating group is a subgroup of index 2 in the symmetric

group (of the same degree). When n=2, (i) and (iii) are the same. When n=3, (ii) and
(iii) are the same.
The six operations of the symmetric group on a, b, c are

In terms of the two generators R1=(a b) and R2=(a c), these are
1, R1, R2, R1 R2 R1, R1 R2, R2 R1.
It is instructive to compare this with the group consisting of the following six trans-

formations of a variable x:



Two such groups are said to be isomorphic, because they have the same “ multiplica-
tion table ” and consequently both represent the same abstract group.46

Let a groupG contain a self-conjugate subgroupT. Then any operation S ofG occurs
in a definite coset �S� = ST = TS. The distinct cosets can be regarded as the operations
of another group, in which products, identity, and inverse are defined by
�R� �S� = �RS� �1� = T, �S�−1 = �S−1�.
This new group is called a factor group ofG, or more explicitly the quotient group

G/T. If it is finite, its order is equal to the index of T inG.
It may happen thatG contains a subgroup Swhose operations Sj “ represent ” the

cosets ofT, in the sense that the distinct cosets are precisely �Sj�. Then S is isomorphic
with G/T. For instance, if G T is the cyclic subgroup generated by R1 R2, then S could
consist of 1 and R1. Again, if G is the continuous group of all displacements, while
G/T is the same group regarded as “ operating on bundles of parallel rays ” (see page
38), then T is the group of all translations, and S is the group of rotations leaving one
point invariant.
It may happen, further, that the subgroup S is self-conjugate, like T. Then Ti Sj=Sj Ti,

and G = S × T. For instance, if G is the cyclic group of order 6 defined by R6=1, S and T
might be the cyclic subgroups generated by R2 and R3, respectively.

symmetry operation. Clearly, all the symmetry operations of a figure together form
a group (provided we include the identity). This is called the symmetry group of the
figure.
Conversely, given a group of congruent transformations, we can construct a sym-

metrical figure by taking all the transforms of any one point. The group is a subgroup
of the symmetry group of the figure ; in fact, it is usually the whole symmetry group.
If the given group is finite, the figure consists of a finite number of points which the
transformations permute. These points have a centroid (or “ centre of gravity ”) which
is transformed into itself. Thus

Every finite group of congruent transformations leaves at least one point
invariant.47

It follows that the transforms of any point by such a group lie on a sphere.
A group of transformations may be discrete without being finite. This means that

every point has a discrete set of transforms, i.e., that any given point has a neighbour-
hood containing none of its transforms (save the given point itself).



In the case of the cyclic group generated by a single congruent transformation S,
the transforms of a point A0 of general position are

. . . , A−2, A−1, A1, A2, …,

regular polygon

The various kinds of congruent transformation lead to various kinds of polygon. If
S is a reflection, half-turn, or inversion, the polygon reduces to a digon, {2}. If S is a
rotation, the sides are equal chords of a circle ; if the angle of rotation is 2π/p, we have
the ordinary regular polygon, {p}. (The case where p p becomes infinite : a sequence
of equal segments of one line, the apeirogon, {∞}. If S is a glide-reflection, the “ polygon
” is a plane zigzag. If S is a rotatory-reflection, it is a skew zigzag, whose vertices lie
alternately on two equal circles in parallel planes ; if the angle of the component
rotation is π/p, the sides are the lateral edges of a p-gonal antiprism. (Cases where p=
helical polygon, whose sides are equal chords of a helix.

In every case except that of the digon, the cyclic group generated by S is not the
whole symmetry group of the generalized polygon ; e.g., there is a symmetry operation
interchangingAn andA−n for all values ofn (simultaneously). In the case of the ordinary
polygon {p}, the line joining the centre to any vertex, or to the mid-point of any side,
contains one other vertex or mid-side point ; thus there are p such lines. The p-gon is
symmetrical by a half-turn about any of them, besides being symmetrical by rotation
through any multiple of 2π/p about the “ axis ” of the polygon. Thus the complete
symmetry group of {p} is of order 2p, consisting of p half-turns about concurrent lines
in the plane of the polygon, and p rotations through various angles about one line
perpendicular to that plane.

The symmetry operations of a figure are either all direct, or half direct and half
opposite. For, if an opposite operation occurs, its products with all the direct oper-
ations are all the opposite operations. Thus the rotation group formed by the direct
operations is either the whole symmetry group or a subgroup of index 2. In the latter
case the opposite operations form the single distinct coset of this subgroup.



The complete symmetry group of {p}, as described above, is the rotation group of
the dihedron {p dihedral group of order 2p. On the other hand, the complete symmetry
group of {p, 2} is of order 4p, as it contains also the same rotations multiplied by the
reflection that interchanges the two faces of the dihedron. As a symmetry operation
of {p} itself, the reflection in its own plane does not differ from the identity. Thus the p
half-turns can be replaced by their products with this reflection, which are reflections
in p coaxial planes.

The situation becomes clearer when we take a purely two-dimensional standpoint,
considering rotations about points and reflections in lines. Then the symmetry group
of {p} consists of p reflections (in lines joining the centre to the vertices and mid-side
points) and p rotations (about the centre) ; but the rotation group of {p} is cyclic.

It is interesting to observe that the dihedral group of order 6 (or “ trigonal dihedral
group ”) is isomorphic with the symmetric group of degree 3. In fact, the six symmetry
operations of the equilateral triangle {3} permute the vertices a, b, c Fig. 3.4A). The
transpositions appear as reflections, and the cyclic permutations as rotations.

FIG. 3.4A

. The most interesting finite groups of rotations are the rotation groups of the
regular polyhedra, which we proceed to investigate.

Every rotation that occurs in a finite group is of finite period ; so its angle must be
commensurable with π. In fact, the smallest angle of rotation about a given axis is a
submultiple of 2π, and all other angles of rotation about the same axis are multiples
of this smallest one. For,48 if j and p are co-prime, we can find a multiple of j/pwhich
differs from 1/p by an integer ; so if 2πj/p is the smallest angle of rotation that occurs,
we must have j=1. The rotations about this axis then form a cyclic group of order p, so
we speak of an axis of p-fold rotation. When p=2, 3, 4, or 5, the axis is said to be digonal,
trigonal, tetragonal, or pentagonal.

Two reciprocal polyhedra obviously have the same symmetry group, and likewise
the same rotation group. The centre of {p, q} is joined to the vertices, mid-edge points,
and centres of faces, by axes of q-fold, 2-fold, and p-fold rotation. Clearly, no further
axes of rotation can occur. In other words, the direct symmetry operations of the poly-
hedron consist of rotations through angles 2kπ/q, π, and 2jπ/p, about these respective



lines. If we exclude the identity, these rotations involve q−1 values for k, and p−1 for j.
But the vertices, mid-edge points, and face-centres occur in antipodal pairs. (In the
case of the tetrahedron, each vertex is opposite to a face.) Hence the total number of
rotations, excluding the identity, is

the order of the rotation group is 2N1.
The same result may also be seen as follows. Let a sense of direction be assigned to

a particular edge. Then a rotational symmetry operation is determined by its effect
on this directed edge. Thus there is one such rotation for each edge, directed in either
sense : 2N1

In particular, we have the tetrahedral group of order 12, the octahedral group of order
24 (which is also the rotation group of the cube) and the icosahedral
. We define a compound polyhedron (or, briefly, a compound) as a set of equal regular

polyhedra with a common centre. The compound is said to be vertex-regular if the
vertices of its components are together the vertices of a single regular polyhedron,
and face-regular if the face-planes of its components are the face-planes of a single
regular polyhedron. For instance, the diagonals of the faces of a cube are the edges
of two reciprocal tetrahedra. (See Plate I, Fig. 6, or Plate III, Fig. 5.) These form a
compound, Kepler’s stella octangula, which is both vertex-regular and face-regular : its
vertices belong to a cube, and its face-planes to an octahedron.
We shall find it convenient to have a definite notation for compounds.49 If d distinct

{p, q}’s together have the vertices of {m, n}, each counted c times, or the faces of {s, t},
each counted e times, or both, we denote the compound by
c{m, n}[d{p, q}] or [d{p, q}]e{s,t} or c{m, n}[d{p, q}]e{s,t}.
The reciprocal compound is clearly
[d{q, p}]c{n,m} or e{t, s}[d{q,p}] or e{t,s}[d{q, p}]c{n,m}.
The numbers of vertices of {m, n} and {p, q} are in the ratio d : c, and the numbers of

faces of {s, t} and {p, q} are in the ratio d : e. For instance, the stella octangula is
{4, 3}[2{3, 3}]{3, 4}
(with c=e=1). Other examples will be obtained in the course of the following investi-

gation of the polyhedral groups.
In order to identify the tetrahedral group with the alternating group of degree 4, we

observe that the vertices of a regular tetrahedron are four points whose six mutual
distances are all equal.



FIG. 3.6A

FIG. 3.6B

This statement involves the four points symmetrically, so we should expect all the
24 permutations in the symmetric group to be represented by symmetry operations
of the tetrahedron. In fact, the transposition (1 2) is represented by the reflection
in the plane 034, where 0 is the mid-point of the edge 12 (Fig. 3.6A). But any even
permutation, being the product of two transpositions, is represented by a rotation.
Thus the “ tetrahedral group ” (which we have defined as consisting of rotations alone)
is the alternating group of degree 4.

PLATE III

REGULAR STAR-YOLYHEDRA AND COMPOUNDS

In the stella octangula, every symmetry operation of either tetrahedron is also a
symmetry operation of the cube ; but the cube has additional operations which in-
terchange the two tetrahedra. The rotation group of the tetrahedron 1234 evenly
permutes the four diameters 11′, 22′, 33′, 44′ of the cube (Fig. 3.6B). But the odd



permutations of these diameters likewise occur as rotations ; e.g., 11′ and 22′ are
transposed by a half-turn about the join of themid-points of the two edges 12′ and 21′.
Hence the octahedral group (which is the rotation group of the cube) is the symmetric
group of degree 4.

IfABCDE andAEFGH are two adjacent faces of a regular dodecahedron, the vertices
BDFH clearly form a square, whose sides join alternate vertices of pentagons. More-
over, these four vertices, with their antipodes, form a cube ; and alternate vertices of
this cube form a tetrahedron (such as 1111 in Fig. 3.6C or D). It is easily seen that the
rotations of this tetrahedron into itself are symmetry operations of the whole dodeca-
hedron, i.e., that the tetrahedral group occurs as a subgroup in the icosahedral group
(as well as in the octahedral group). The remaining operations of the icosahedral
group transform this tetrahedron into others of the same sort, making altogether a
compound of five tetrahedra inscribed in the dodecahedron. (Plate III, Fig. 6.) In other
words, the twenty vertices of the dodecahedron are distributed in sets of four among
five tetrahedra. The central inversion transforms this into a second compound of five
tetrahedra, enantiomorphous (and reciprocal) to the first. The two together form a
compound of ten tetrahedra (Fig. 7), reciprocal pairs of which can be replaced by five
cubes (Fig. 8). Here each vertex of the dodecahedron belongs to two of the tetrahedra,
and to two of the cubes.

We have thus obtained three vertex-regular compounds whose vertices belong to a
dodecahedron. By reciprocation, we find that the compounds of tetrahedra are also
face-regular, their face-planes belonging to an icosahedron. But the face-planes of the
five cubes belong to a triacontahedron, so the reciprocal is a face-regular compound
of five octahedra whose vertices belong to an icosidodecahedron. (Plate III, Fig. 9.) The
appropriate symbols are :

{5, 3)[5{3, 3}]{3, 5},

2{5, 3} [10{3, 3}]2{3, 5},

2{5, 3}[5{4, 3}] and [5{3, 4}]2{3, 5}.

A very pretty effect is obtained bymakingmodels of these compounds, with a differ-
ent colour for each component. The colouring of the five cubes determines a colouring
of the triacontahedron in five colours, so that each face and its four neighbours have
different colours. This scheme is used by Kowalewski as an aid to his Bauspiel



The two enantiomorphous compounds of five tetrahedra may be distinguished as
laevo and dextro. They provide a convenient symbolism for the twenty vertices of the
dodecahedron (or for the twenty faces of the icosahedron) as follows. We number the
five tetrahedra of the laevo compound as in Fig. 3.6C; those of the dextro compound
(Fig. 3.6D) acquire the same numbers by means of the central inversion. Then the
vertices of the dodecahedron are denoted by the twenty ordered pairs 12, 21, 13, 31,
…, 45, 54, in such a way that ij is a vertex of the ith laevo tetrahedron and of the jth
dextro tetrahedron. (For simplicity, the dodecahedron in Fig. 3.6E has been drawn
as an opaque solid. The symbols for the hidden vertices are easily supplied, as ji is
antipodal to ij.)

Each direct symmetry operation of the dodecahedron is representable as a permu-
tation of the five digits ; e.g., the permutation (1 2 3) is a trigonal rotation about the
diameter joining the opposite vertices 45 and 54, (1 4)(3 5) is a digonal rotation about
the join of the mid-points of edges 13 45 and 31 54, and (1 2 3 4 5) is a pentagonal
rotation about the join of centres of two opposite faces. Since all these are even per-
mutations, we have proved that the icosahedral group is the alternating group of degree
5.

To sum up, the symmetric groups of degrees 3 and 4 are the rotation groups of {3, 2}
and {3, 4}, and the alternating groups of degrees 4 and 5 are the rotation groups of {3,
3} and {3, 5}.

. The only regular polyhedron whose faces can be coloured alternately white and
black, like a chess board, is the octahedron {3, 4}. For, this is the only polyhedron {p, q}
with q even. In Fig. 3.6B we denoted the vertices of the cube by 1, 2, 3, 4, 1′, 2′, 3′, 4′.
By reciprocation, the same symbols can be used for the faces of the octahedron, and
wemay distinguish the two sets of four faces as white and black. (In other words, we
colour the faces of the octahedron like those of a stella octangula whose two tetrahedra
are white and black, respectively.) By assigning a clockwise sense of rotation to each
white face, and a counterclockwise sense to each black face, we obtain a coherent
indexing of the edges, such as can be indicated by marking an arrow along each edge.
Then, if we proceed along an edge in the indicated direction, there will be a white face
on our right side and a black face on our left.



FIG. 3.6C

FIG. 3.6D

FIG. 3.6E
This enables us to define, for any given ratio a : b, twelve points dividing the respec-

tive edges in this ratio, so that the three points in each face form an equilateral triangle.
In general, these twelve points will be the vertices of an irregular icosahedron, whose
faces consist of eight such equilateral triangles and twelve isosceles triangles. Without
loss of generality, we may suppose that a≥b. When a/b is large, the isosceles triangles
have short bases ; in the limit they disappear, as their equal sides coincide and lie
along the twelve edges of the octahedron. But when a approaches equality with b,
the isosceles triangles tend to become right-angled ; in the limit, pairs of them form
halves of the six square faces of a cuboctahedron, as in Fig. 8.4A on page 152.50 By
considerations of continuity, we see that at some intermediate stage the isosceles
triangles must become equilateral, and the icosahedron regular. In fact, the squares
of the respective sides are a2−ab+b2 and 2b2,which are equal if
a2 − ab − b2 = 0,
so that a/b=�. the twelve vertices of the icosahedron can be obtained by dividing the

twelve edges of an octahedron according to the golden section. 51 For a given icosahedron,
the octahedron may be any one of the [5{3, 4}]2{3, 5}.
In terms of rectangular Cartesian coordinates, the vertices of a cube (of edge 2) are

those of a tetrahedron (of edge 2√2) are



and those of an octahedron (of edge √2) are

If a+b=1, the segment joining (0, 0, 1) and (0, 1, 0) is divided in the ratio a : b by the
point (0, a, b
(0, ± a, ± b), (±b, 0, ±a), (±a, ±b, 0).
Hence the vertices of a cuboctahedron (of edge √2) are

and the vertices of an icosahedron (of edge 2) are

The planes of the faces
(0, �, 1) (±1, 0, �) and (0, �, 1) (1, 0, �) (�, 1, 0)
are respectively
�−1y + �z = �2 and x + y + z = �2.
(Remember that �2= � + 1.) Hence the vertices of the reciprocal dodecahedron (of

edge 2�–1) are
3·76

One of the five inscribed cubes is thus made very evident.
The mid-point of the edge (�, ±1, 0) of the icosahedron 3·75 is (�, 0, 0), while that of

the edge (1, 0, �) (� �−1) the vertices of an icosidodecahedron (of edge 2�−1) are
3·77

The vertices in the upper row belong to one of the octahedra of [5 {3, 4}]2{3, 5}.
3·8. The complete enumeration of finite rotation groups. In §§ 3·4 and 3·5 we

considered various groups of rotations : cyclic, dihedral, tetrahedral, octahedral,
icosahedral. The question now arises, Are these the only finite groups of rotations ? If
so, they are also the only finite groups of displacements (by 3·41 and 3·12). We shall
find that the answer is Yes.



Consider the general finite group of rotations. Since there is an invariant pointO
(lying on the axes of all the rotations), it is convenient to regard the group as operating
on a spherewith centreO, instead of the whole space. Each rotation, having for axis
a diameter of the sphere, is then regarded as a rotation about a point on the sphere.
(We must remember, however, that the rotation through angle � about any point is the
same as the rotation through − � about the antipodal point.) We saw (as a consequence
of 3·12) that the product of two such rotations is another. To determine the product of
two given rotations, we make use of the following theorem :
If the vertices of a spherical triangle PQR (like the triangle PQ1R in Fig. 3.8A) are

named in the negative (or clockwise) sense, the product of rotations through angles 2P,
2Q, 2R about P, Q, R is the identity.
Toprove this, wemerely have to express the givenproduct of rotations as theproduct

of reflections in the great circles RP, PQ; PQ, QR; QR, RP.
It follows that the product of rotations through 2P and 2Q about P and Q is the

rotation through −2R about R. In particular, the product of half-turns about any two
points P and Q is the rotation through − 2�POQ about one of the poles of the great
circle PQ (or through +2�POQ about the other pole). This product of half-turns cannot
itself be a half-turn unless the axes OP and OQ are perpendicular. Hence, if a rotation
group has no operation of period greater than 2, it must be either the group of order
2 generated by a single half-turn, or the “ four-group ” generated by two half-turns
about perpendicular axes ; i.e., it must either be the cyclic group of order 2 or the
dihedral group of order 4.

FIG. 3.8A
Secondly, if there is just one axis of p-fold rotation where p>2, this must be perpen-

dicular to any digonal axes that may occur. Hence the group is either cyclic of order p
or dihedral of order 2p.
Finally, if there are several axes of more than 2-fold rotation, let one of them be OP,

so that there is a rotation through 2π/p about P. The group being finite, there is a least
distance from P (on the sphere) at which we can find a point Q1 lying on another axis
of more than 2-fold rotation, say q-fold rotation. Successive rotations through 2π/p
about P transform Q1 into other centres of q-fold rotation, say Q2, . . . , Qp, lying on a



small circle within which P is the only centre of more than 2-fold rotation. (See Fig.
3.8A.) The product of rotations through 2π/p and 2π/q about P and Q1 is the rotation
through −2π/r about a point R such that the spherical triangle PQ1R has angles π/p,
π/q, π/r.
We proceed to determine the position of R and the value of r. (We cannot yet say

whether r is an integer.) Since the angle-sum of any spherical triangle is greater than
π, we have
3·81

But p ≥ 3 and q ≥ 3. Hence r < 3, and consequently q > r. Thus the triangle PQ1R has
a smaller angle atQ1 than atR, and the same inequality must hold for the respectively
opposite sides. HenceR lies inside the small circle around P, andORmust be a digonal
axis ; so the rotation through −2π/r about R, which transforms Qp into Q1, can only
be a half-turn. Hence r = 2, and OR bisects the angle QpOQ1, i.e., R is the mid-point
of the side Qp Q1 of the spherical p-gon Q1 Q2 . . . Qp. Successive rotations through
2π/q about Q1 transform this p-gon (of angle 2π/q) into a set of q p-gons completely
surrounding their common vertex Q1. Further rotations of the same kind lead to a
number of p-gons fitting together to cover the whole sphere.
Thus the transforms of Q1 are the vertices of the regular polyhedron {p, q}, the

transforms of P are the vertices of the reciprocal polyhedron {q, p}, and the transforms
of R PQ1Rwas called P2 P0 P1 in § 2·5.)
From our construction we can be sure that the p-gonal and q-gonal axes through

the vertices of {q, p} and {p, q P and Q1, if p = q ? No : that half-turn would combine
with the rotation through 2π/p about P to give a rotation of period 4 about R, which is
absurd.
3·9. Historical remarks. The kinematics of a rigid body (§ 3·1) was founded by

Euler (1707-1783) and developed by Chasles, Rodrigues, Hamilton, and Donkin. In
particular, 3·12 is commonly called “ Euler’s Theorem ”.
The theory of permutation groups (or “ substitution groups ”) was developed by

Lagrange (1736-1813), Ruffini, Abel (1802-1829), Galois (1811-1832), Cauchy (1789-
1857), and Jordan (whose famous Traité des Substitutions appeared in 1870). Lagrange
proved that the order of a group is divisible by the order of any subgroup. Galois made
such important contributions to the subject that he eventually became recognized as
the real founder of group-theory ; yet his contemporaries scorned him, and he was



murdered52 at the age of twenty. The notion of a self-conjugate subgroup is due to him,
and it was he who first distributed the operations of a group into cosets (though the
actual word “ co-set ” was coined in 1910 by G. A. Miller). The first precise definition
of an abstract group was given in 1854 by Cayley (1).
In § 3·4 we considered the set of transforms of a single point by a group of congruent

transformations. This idea occurs in a posthumous paper of Möbius (2). The rotation
group of the regular polyhedron {p, q} was investigated in 1856 by Hamilton (1), who
gave an abstract definition equivalent to
Rp = Sq = (RS)2 = 1.
The polyhedral groups also arose in the work of Schwarz and Klein, as groups of

transformations of a complex variable. The first chapter of the latter’s Lectures on the
Icosahedron (Klein 2) may well be read concurrently with §§ 3·5 and 3·6.
The compound polyhedra were thoroughly investigated by Hess in 1876.53 But the

stella octangula {4, 3}[2{3, 3}] {3, 4} had already been discovered by Kepler (1, p. 271)
and may almost be said to have been anticipated in Euclid XV, 1 and 2. It occurs in
nature as a crystal-twin of tetrahedrite: The existence of the remaining compounds
is a simple consequence of Kepler’s observation that a cube can be inscribed in a
dodecahedron. It was Hess who first gave Cartesian coordinates for the vertices of all
the regular and quasi-regular polyhedra,54 as in § 3·7.

A
viendra en C.” Bravais’s proof occurs as part of the more complicated problem of
enumerating the finite groups of congruent transformations, which includes the
enumeration of the 32 geometrical crystal classes.55 This enumeration was first
achieved in 1830, by Hessel (1), whose book remained unnoticed till 1891. The next
step in the same direction was Sohncke’s enumeration of 65 infinite discrete groups
of displacements. Finally, after Pierre Curie had drawn attention to the importance of
the rotatory-reflection, the famous enumeration of 230 infinite discrete groups of
congruent transformations was made independently by Fedorov in Russia (1885),
Schoenflies in Germany (1891), and Barlow in England (1894).





4 CHAPTER IV TESSELLATIONS AND
HONEYCOMBS

THE limiting form of a p-gon, as p tends to infinity, is an infinite line broken into
segments. We call this a degenerate polygon or apeirogon. Analogously, a plane filled
with polygons (like a mosaic) may be regarded as a degenerate polyhedron, and so
takes a natural place in this investigation. Conversely, we often find it useful to replace
an ordinary polyhedron by the corresponding tessellation of a sphere. In § 4·5, for
instance, we consider both plane and spherical tessellations at the same time. The
analogous honeycombs (i.e., space filled with polyhedra) form a natural link between
polyhedra in ordinary space and polytopes in four dimensions.
4·1. The three regular tessellations. A plane tessellation (or two-dimensional

honeycomb) is an infinite set of polygons fitting together to cover the whole plane just
once, so that every side of each polygon belongs also to one other polygon. It is thus a
map with infinitely many faces (cf. § 1·4).
Let a finite portion of this map, bounded by edges, consist of N2 − 1 faces, N1 edges,

and N0 vertices (including the peripheral edges and vertices). By regarding the whole
exterior region as one further face, we obtain a “ finite ” map to which we can apply
Euler’s Formula
N0 − N1 + N2 = 2.
This equation remains valid however much we extend the chosen finite portion

by adding further faces. If the process of enlargement can be continued in such a
way that the increasing numbers N0, N1 N2 tend to become proportional to definite
numbers �0, �1, �2, we conclude that
4·11

In particular, if all the faces are p-gons, and there are q
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q�0 = 2�1 = p�2,

and

4·12

or

(p − 2)(q − 2) = 4.

This result is not surprising, as it can be derived formally from 1·72 by making N1

tend to infinity. But that derivation could not be accepted as a proof ; for there is no
sequence of finite regular maps tending to an infinite regular map (like the polygons,
{p}, which tend to the apeirogon, {∞}).

The solutions of 4·12, viz., {3, 6}, {4, 4}, {6, 3}, are exhibited (fragmentarily) in Fig.
4.1A. The second is merely “ squared paper “ ; the first is likewise available on printed
sheets ; and the third is often seen as wire netting, or on the tiled floors of bathrooms.
(The corresponding points in Fig. 2.3B are marked with black dots.)

FIG. 4.1A

The criterion 4·12 can alternatively be obtained from easy metrical considerations,
as follows. The definitions for vertex figure and regular are the same as in the case of
polyhedra (§ 2·1). More simply, a tessellation is regular if its faces are regular and
equal. A vertex of {p, q} is surrounded by q angles, each (1−2/p)π, which together
amount to 2π. Hence 1−2/p=2/q.

Descartes’ Formula (in the form 2·51) is immediately verified for any tessellation,
as �=0 while No is infinite.

Since 6 is even, the edges of {3, 6} can be coherently indexed like those of the
octahedron (page 51). The appropriate ratio in which to divide them is 2 : 1, but the
result is merely a smaller {3, 6}.



4·2. The quasi-regular and. rhombic tessellations. If {3, 6} and {6, 3} are drawn on
such a scale that their edges are in the ratio √3 : 1 (see 2·71), they can be superposed
to form dual maps. In fact, their respective edges can bisect each other, as in Fig. 4.2A.
By analogy with § 2·2, we then call them reciprocal tessellations, although there is no
reciprocating sphere. The commonmid-points of their edges are the vertices of the
quasi-regular Fig. 4.2B. The crossing edges themselves are the diagonals of rhombs
which form the reciprocal rhombic tessellation shown in Fig. 4.2C.

its reciprocal are smaller {4, 4}’s (rotated through 45°). Thus the equation
4·21

(cf. 2·31) holds when p=4 as well as when p p}’s and 2 {q}’s at each vertex.)

FIG. 4.2A

FIG. 4.2B

FIG. 4.2C
Two reciprocal {4, 4}’s together have the vertices of a smaller {4, 4}, and so can be

regarded as forming a self-reciprocal “ compound tessellation ” {4, 4)[2{4, 4}]{4, 4},
analogous to the stella octangula (§ 3·6). Since alternate vertices of a {6, 3} of edge 1
belong to a {3, 6} of edge √3, there is another such compound, {6, 3)[2{3, 6}], consisting
of two {3, 6}’s inscribed in a {6, 3} (Fig. 4.2D). The reciprocal of the {6, 3} is a third {3,
6} of edge √3, so we have altogether three {3, 6}’s of edge √3 inscribed in a {3, 6} of
edge 1. Here (Fig. 4.2F) pairs of faces are concentric with the faces of a {6, 3}, so the
appropriate symbol is
{3, 6}[3{3, 6}]2{6, 3}.
The reciprocals of these compounds are, of course, [2{6, 3}]{3, 6} and
2{3, 6}[3{6, 3}]{6, 3}
(Figs. 4.2E· and G). For the complete list of such compounds see Coxeter, Proceedings

of the Royal Society, (A), 278 (1964), p. 148.
In virtue of 4·12, 2·33 yields h



FIG. 4.2D : {6, 3}[2{3, 6}]

FIG. 4.2E : [2{6, 3}]{3, 6}

FIG. 4.2F: {3, 6}[3{3, 6}]2{6, 3}

FIG. 4.2G: 2{3, 6}[3{6, 3}]{6, 3}

Fig. 4.2B, and the Petrie polygons of the regular tessellations are plane zigzags
(emphasized in Fig. 4.1A).

According to 2·42 and 2·43, all the radii jR are infinite. This is natural, as any
tessellation can be regarded as a “ degenerate ” polyhedron whose centre, O3, has
receded to infinity. The same explanation applies to the manner in which 2·44 yields

� = � = � = 0.

Moreover, it is evidently correct to say that the dihedral angle is just π.

4·3. Rotation groups in two dimensions. The following statements can be verified
without difficulty. The symmetry group of a regular tessellation is an infinite group
of congruent transformations in the plane. It contains transformations of all four
kinds : reflections, rotations, translations, and glide-reflections. (See page 36.) There
is a subgroup of index 2 consisting of translations and rotations alone, these being
the only displacements. We call this subgroup a rotation group even though it contains
translations. (For these, after all, can be regarded as a limiting case of rotations.)
The translations by themselves form a self-conjugate subgroup in either of the other
groups. This translation group is a special case of the lattice group generated by two
translations in distinct directions. The transforms of any point by such a group make



a two-dimensional lattice, consisting of the vertices of a tessellation whose faces are
equal parallelograms, all orientated the same way (unlike the rhombs of Fig. 4.2C,
which are orientated three different ways). This notion is important in the theory of
elliptic functions.
The enumeration of discrete groups of displacements in the plane is closely analo-

gous to that of finite groups of rotations in space, as carried out in § 3·8. The conclusion
is that there are eight such groups :
(i) the finite cyclic group generated by a rotation through 2π/p ;
(ii) the infinite cyclic group generated by a translation ;
(iii) the infinite dihedral group 56 generated by two half-turns (whose product is a

translation) ;
(iv) the lattice group, generated by two translations ;
(v) the group generated by half-turns about three non-collinear points, i.e., the

rotation group of a lattice ;
(vi) the rotation group of {3, 6}, or of {6, 3}, generated by a half-turn and a trigonal

rotation ;
(vii) the rotation group of {4, 4}, generated by a half-turn and a tetragonal rotation,

or by two tetragonal rotations;
(viii) the group generated by two trigonal rotations—a subgroup of (vi).
The last of these arises from the fact that the equation
4·31

which replaces 3·81, does not imply r=2, but has the “extra ” solution p = q = r = 3.
One important fact which emerges from the above list is the “ crystallographic

restriction ” :
4·32. If a discrete group of displacements in the plane has more than one centre of

rotation, then the only rotations that can occur are 2-fold, 3-fold, 4-fold, and 6-fold.
This theorem (which is closely related to Haüy’s crystallographic “Law of Rationality

”) can be proved directly, as follows.
Let P be a centre of p-fold rotation, and Q one of the nearest other centres of p-fold

rotation. Let the rotation through 2π/p about Q transform P into P′, and let the same
kind of rotation about P′ transformQ intoQ′, as in Fig. 4.3A. It may happen that P and
Q′ coincide ; then p=6. In all other cases we must have PQ′ ≥ PQ; therefore p ≤ 4. (This
simple proof is due to Barlow.)



FIG. 4.3A
We have now reached a suitable place to introduce the important notion of a funda-

mental region. For any group of transformations of a plane (or of space), this means
a region whose transforms just cover the plane (or space), without overlapping and
without interstices. In otherwords, every point is equivalent (under the group) to some
point of the region, but no two points of the region are equivalent unless both are on
the boundary. Thus the eight groups described above have the following fundamental
regions:
(i) an angular region (bounded by two rays) of angle 2π/p ;
(ii) an infinite strip (bounded by two parallel lines) ;
(iii) a half-strip (bounded by two parallel rays and a perpendicular segment) ;
(iv) a parallelogram (with translations along its sides) ;
(v) a parallelogram (with half-turns about the mid-points of its sides) ;
(vi) an equilateral triangle (with a hexagonal rotation about one vertex, and trigonal

rotations about the other two) ;
(vii) a square (with tetragonal rotations about two opposite vertices, and half-turns

about the other two) ;
(viii) a rhomb of angle π/3 (as in Fig. 4.2C).
4·4. Coordinates for the vertices. The vertices of a {4, 4} of unit edge may be

described as the points whose rectangular Cartesian coordinates are integers.
x,

y) forwhichx±y
x, y) for which x and y are not both even. For, these are the mid-edge points of the

{3, 6} of edge 2 for which x and y are both even. The vertices of the reciprocal rhombic
tessellation are, of course, the same as those of {3, 6} ; it is the edges and faces that are
different.
Returning to rectangular coordinates, let the point (x, y) represent the complex

number z=x+yi. Then the vertices of {4, 4} represent the Gaussian integers (for which x
and y are ordinary integers). The rotation group of {4, 4} is generated by the translation
z′ = z + 1
and the tetragonal rotation



z′ = iz.
Similarly, the rotation group of {3, 6} is generated by the same translation along

with the hexagonal rotation

Hence the vertices of {3, 6} represent the algebraic integers u+v� (where u and v are
ordinary integers).
4·5. Lines of symmetry. By projecting the edges of a polyhedron from its centre

onto a concentric sphere, as in § 1·4, we obtain a set of arcs of great circles, forming a
map. The theory of such maps is so closely analogous to that of plane tessellations
that one is tempted to call them spherical tessellations. In the following treatment of
lines of symmetry, we shall consider both kinds of tessellation simultaneously ; e.g.,
{4, 3} will not mean the cube, but the map of six equal regular spherical quadrangles
covering a sphere.
Taking the sphere to be of unit radius we have, instead of a regular polyhedron {p, q}

of edge 2l, a spherical tessellation {p, q} of edge 2�, whose faces are spherical p-gons
of angle 2π/q, as in § 3·8. The properties � and � L π/h, whose faces are spherical
p-gons and q-gons of circum-radii � and �, respectively. The reciprocal is a spherical
tessellation of edge �, whose faces are spherical “ rhombs ” of angles 2π/p, 2π/q
If a plane (or solid) figure is symmetrical by reflection in a certain line

(or plane) w, we call w a line of symmetry (or plane of symmetry). We saw
in § 3·4 that the regular polygon {p} has p lines of symmetry. When p is
odd, each joins a vertex to the mid-point of the opposite side. But when
p
In Figs. 4.5A and B57 we have marks 0, 1, 2 at all the vertices, mid-points of edges,

and centres of faces, of the regular tessellations {3, 3}, {3, 4}, {3, 5}, {3, 6}, and {4, 4}.
(The corresponding figures for {4, 3}, {5, 3}, {6, 3} can be derived by interchanging the
marks 0 and 2.) In other words, the points marked 0, 1, 2 are the vertices of the three
related tessellations {p, q 2, and (01010101) to (01)4:
{3, 3} has 6 lines (010212) ;
{3, 4} has 6 lines (0212)2 and 3 lines (01)4;
{3, 5} has 15 lines (010212)2;
{3, 6} has ∞ lines (0212)∞ and ∞ lines (01)∞;
{4, 4} has ∞ lines (01)∞, ∞ lines (02)∞, and ∞ lines (12)∞.



FIG. 4.5A
We have not mentioned the “improper” tessellations, where p or q = 2, because

much of the following discussionwould break down if applied to them. The discussion
will lead us to a simple expression for the number of lines of symmetry. For a plane
tessellation this number is, of course, infinite ; so let us restrict consideration to a
proper spherical tessellation {p, q}.
The lines of symmetry divide the spherical surface into a tessellation of congruent

triangles 012, like the triangle P0 P1 P2 described at the end of § 2·5. Since each point
1 is surrounded by four of the triangles, the total number of triangles is 4N1, where
N1 is given by 1·72. Since each segment 01 or 02 or 12 belongs to two of the triangles,
there are 2N1 segments of each type altogether. (The 2N1 segments 01 are just the
halves of the N1 edges of {p, q 02. Thus the equator in which any equatorial polygon
is inscribed (see page 18) contains h points 1 and crosses h segments 02.

FIG. 4.5B
A line of symmetry is met by the 2N1/h equators in the following manner. Any two

antipodal points 1 belong to two of the equators, and any two antipodal segments
02 are crossed by one of the equators.58 Since each point 1 belongs to two adjacent
segments 01 or 12, it follows that the number of segments (or of marked points) on a
line of symmetry of any type is equal to twice the number of equators, viz., 4N1/h.



An equator is met by the lines of symmetry in the following manner. Each point 1
lies on two lines of symmetry, and each segment 11 (i.e., each side of the equatorial
polygon) is crossed by one line of symmetry. Since the equatorial polygon has h/2
pairs of opposite vertices and h/2 pairs of opposite sides, the total number of lines of
symmetry is 3h/2.
Combining this result with 2·34, we may say that a regular solid with N1 p, 2}

and the hosohedron {2, p}. A slightly more complicated expression that applies also to
these insubstantial “ solids ” is
h − 1 + 2N1/h,
where h is given by 2·33.
4·6. Space filled with cubes. A three-dimensional honeycomb (or solid tessellation)

is an infinite set of polyhedra fitting together to fill all space just once, so that every
face of each polyhedron belongs to one other polyhedron. There are thus vertices �0,
edges �1, faces �2, and cells (or solid faces) �3: in brief, j-dimensional elements �j (j=0,
1, 2, 3). As in § 1·8, we let Njk (j≠k) denote the number of �k’s that are incident with a
single �j ; e.g.,
4·61

For each �2 or �1, respectively, we have
4·62

A honeycomb is said to be regular if its cells are regular and equal. If these are
{p, q}’s, and r of them surround an edge (so that N12=N13=r), then the honeycomb is
denoted by {p, q, r}. The number rmust be the same for every edge, as it necessitates
a dihedral angle 2π/r for the cell. Moreover, Table I shows that the cube is the only
regular polyhedronwhose dihedral angle is a submultiple of 2π. Hence the only regular
honeycomb is {4, 3, 4}, the ordinary space-filling of cubes, eight at each vertex.
This can alternatively be seen as follows. The mid-points of all the edges that

emanate from a given vertex are the vertices of a polyhedron called the vertex figure of
the honeycomb ; its faces are the vertex figures of the cells that surround the given
vertex. (For instance, the vertex figure of {4, 3, 4} is an octahedron.) If the edges of the
honeycomb are of length 2l, the vertex figure has a circum-sphere of radius l. If all
the faces are {p}’s, the edges of the vertex figure (being vertex figures of {p}’s) are of



length 2l cos π/p. Thus the vertex figure of a honeycomb {p, q, r} of edge 2lmust be a {q,
r} of edge 2l cos π/p, whose circum-radius is l. But (by Table I again) the only regular
polyhedron whose edge and circum-radius have a ratio of the form 2 cos π/p is the
octahedron, for which this ratio is √2=2 cos π/4. Hence {p, q, r} can only be {4, 3, 4}.

p, q, r} as the result of telescoping the respective symbols {p, q} and {q, r} for the cell
and vertex figure.

π for their sum ; these can only be a tetrahedron and an octahedron, where the sum
is π. Or we look at the possible vertex figures, admitting the cuboctahedron whose
edge is equal to its circum-radius, and discarding the icosidodecahedron (for which
the ratio of edge to circum-radius is 2 sin π/h=2 sin π/10=2 cos 2π/5). From either
point of view, we conclude that there is only one quasi-regular honeycomb.59 Each
vertex is surrounded by eight tetrahedra and six octahedra (corresponding to the
triangles and squares of the cuboctahedron). All the faces are triangles ; each belongs
to one {3, 3} and one {3, 4}. Thus an appropriate extension of the Schläfli symbol is

For the development of a general theory, it is an unhappy accident that only one
honeycomb is regular, and only one quasi-regular. Of course, there are many with a
slightly lower degree of regularity : “semi-regular”, let us say. For instance, 60 l and
lateral edges l√2.

The relationship of these figures is very simply seen with the aid of rectangular
Cartesian coordinates. All the points whose three coordinates are integers are the
vertices of a {4, 3, 4} of edge 1. Those whose coordinates are all even belong to a {4, 3,
4} of edge 2. Those whose coordinates are all odd form another equal {4, 3, 4}. These
two {4, 3, 4}’s of edge 2 are said to be reciprocal,

Let the points with integral coordinates (x, y, z) be marked 0, 1, 2, or 3 according
to the number of odd coordinates, as in Fig. 4.7A. These points correspond to the
elements �0, �1, �2, �3 of one of our two reciprocal {4, 3, 4}’s, and to the elements �3, �2,
�1, �0 of the other. The points 1 (or 2 0 and 2 together (or 1 and 3 sum.

stella octangula). 61 The in-spheres of its cells form the “ cubic close-packing ”
or “ normal piling ” of spheres —a fact which is sometimes adduced as a reason for
the resemblance between this particular space-filling and the honeycomb actually
constructed by bees.



The planes of symmetry of {4, 3, 4} are its face-planes and the planes of symmetry
of its cells. They are thus of three distinct types (containing points 0, 1, 2 ; 0, 1, 2, 3
; and 1, 2, 3) and intersect in axes of symmetry of six types : tetragonal axes (01)∞

and (23)∞, trigonal axes (03)∞, and digonal axes (02)∞, (12)∞, (13)∞. These planes and
lines form a honeycomb of congruent quadrirectangular tetrahedra 0123,whose edges
01, 12, 23 are mutually perpendicular.62 (See Fig. 4.7A.)
Such a tetrahedron is in some respects amore natural analogue for the right-angled

triangle than is the trirectangular tetrahedron (where all the right angles occur at one
vertex). Just as any plane polygon can be dissected into right-angled triangles, so
any solid polyhedron can be dissected into quadrirectangular tetrahedra. A special
feature of the characteristic tetrahedron 0123 is that the perpendicular edges 01, 12,
23 are all equal (so that the remaining edges are of lengths √2, √3, √2 ; in fact the edge
ij i<j).

FIG. 4.7A
All the points 0, 2, 3 (without 1) form a honeycomb of trirectangular tetrahedra

0023, 0 and 2, but a larger specimen whose vertices are alternate points 0). This
trirectangular tetrahedron 0023, whose edge 00 is of length 2, can be obtained by
fusing two quadrirectangular tetrahedra 0123 which have a common face 123.
Finally, the points 0 and 3 together form a honeycomb of tetragonal disphenoids (or

“ isosceles tetrahedra ”) 0033, each of which is obtained by fusing two trirectangular
tetrahedra 0023which have a common face 002. The opposite edges 00 and 33 are
both of length 2, and the four edges 03 are all of length √3.

N3−1cells,N2 faces,N1 edges, andN0 Njk

is understood to be summed over all the �j’s, we have



N30 − N31 + N32 = 2,
N01 − N02 + N03 = 2.
Summing these expressions over all cells and all vertices, respectively, and sub-

tracting, we obtain
N30 N03 N31 N02 N32 N01)

= 2N3 − 2N0.

N30 N03 N31 N13 N12 21 N20 N02

N32 N01 N23 N10

= 2N2 − 2N1 N2 − 2N1 = 2N3 − N0, or N0 − N1 + N2 − N3 = 0.
63

If the chosen portion can be enlarged in such a way that the increasing numbers Nj

tend to become proportional to definite numbers �j, we conclude that

For a portion of a regular
�j Njk = �k Nkj

for the whole honeycomb. In particular, taking �0 = 1, we have

Here N01, N02, and N03 are simply the numbers of vertices, edges, and faces of the
vertex figure. Hence, for {4, 3, 4}, whose vertex figure is an octahedron, we have

In brief, �j (1−1)3. (See Table II on page 296.)
�j

1 − 6 + 8 − (2 + 1) = 0.
Plane tessellations were discussed by Kepler, who seems to have been the first to

recognize them as analogues of polyhedra.64 But spherical tessellations, both regular
and quasi-regular, were described by Abû’l Wafa (940-998).65 The notion of reciprocal

66 enumerated by Pólya and Niggli in 1924.



3h/2 great circles, each decomposed by the rest into 4N1/h=h+2 arcs (altogether
6N1 arcs, the sides of 4N1 triangles), and that the “ equators ” consist of 2N1/h great
circles, each decomposed by the rest into h arcs (altogether 2N1 arcs, the sides of N2 =
2N1/p {p}’s and N0=2N1/q {q}’s). The 3h/2 “ lines ” of symmetry intersect one another
in 3h(3h − 2)/4 points, of which p(p − 1)/2 coincide at each of the N2 points 2, q(q − 1)/2
at each of the N0 points 0,while each of the N1 points 1 appears once. Hence

Since 4N1 = h(h

(Steinberg 1). Since the sides of the 4N1 triangles 012 are arcs of the 3h/2 lines of
symmetry, each described twice, we have
4N1(� + � + �) = 3h
whence

in agreement with the observation of Hess67 and Brückner 68 that � + � + � is always
commensurable with π.

69

The notion of reciprocal honeycombs seems to be due to Andreini (1), whose mono-
graph is handsomely illustrated with stereoscopic photographs. The present treat-
ment is intended as a preparation for the study of four-dimensional polytopes in
Chapters VII and VIII.





5 CHAPTER V THE KALEIDOSCOPE

THIS is an account of the discrete groups generated by reflections, including as special
cases the symmetry groups of the regular polyhedra and of the regular and quasi-
regular honeycombs. The analogous groups in higher space will be found in Chapter
XI.

When an object is held in front of an ordinary mirror, two things are seen : the
object and its image. If Alice could take us through the looking-glass, we would still
see the same two things, for the image of the image is just the original object. In other
words, a single reflection R generates a group of order two, whose operations are 1
and R. There are no further operations, since

and consequently R−1=R. Instead of a plane mirror in space, we can just as well use
a line-mirror in a plane, or a point-mirror in a line. A point divides a line into two
half-lines or rays, and serves as a mirror to reflect the one ray into the other.

But when an object is held between two parallel mirrors, there is theoretically no
limit to the number of images ; for there are images of images, ad infinitum. The
mirrors themselves have infinitely many images : virtual mirrors which appear to
act like real mirrors. In other words, two parallel reflections, R1 and R2, generate an
infinite group whose operations are

1, R1, R2, R1 R2, R2 R1, R1 R2 R1, R2 R1 R2, . . . .

As an abstract group, this is called the “ free product ” of two groups of order two; it
has the generating relations R1

2=1, R2
2=1, or, briefly,

77



We can just as well regard the R’s as reflections in two parallel lines of a plane, or
in any two points on a line. The two points and their images (the virtual mirrors)
divide the line into infinitely many equal segments, which can be associated with the
operations of the group, as follows. The segment terminated by the two given points
(i.e., the region of possible objects) is associated with the identity, 1 ; and any other of
the segments is associated with that operation which transforms the segment 1 into
the other segment. (See Fig. 5.1A.)

Let any point and all its images (or transforms) be called a set of equivalent points.
Then every point on the line is equivalent to some point of the segment 1 (including
its end points), but no two distinct points of the segment are equivalent to each other.
Thus the segment is a fundamental region for the group generated by R1 and R2. (See
page 63.) Similarly, the group generated by R alone has a ray for its fundamental
region, and the two complementary rays are associated with the two operations 1 and
R.

Two intersecting mirrors form an ordinary kaleidoscope. This can be made very
easily by joining two square, unframedmirrors with a strip of adhesive tape, so that
the angle between them can be varied at will, and standing them on a table (with
the taped edge vertical). Taking a section by a plane perpendicular to both mirrors
(or considering the surface of the table-top alone), we reduce the kaleidoscope to its
two-dimensional form, where we reflect in two intersecting lines. Since the images
of any point (save the point where the lines meet) are distributed round a circle, the
group is discrete 70 only if the angle between the mirrors is commensurable with π.

FIG. 5.1A

It will be sufficient to consider submultiples of π ; for if the angle is jπ/p, where j and p
are co-prime, we can find amultiple of j/pwhich differs from 1/p by an integer, and
hence a virtual mirror inclined at π/p

Accordingly, we place an object between twomirrors inclined at π/p, and observe
2p images (including the object), one in each of the angular regions formed by the
real and virtual mirrors. (The case when p=3 is shown in Fig. 5.1B.) Here the group
is of order 2p, and its fundamental region is the angular region of magnitude π/p



formed by the two rays that represent the mirrors. Each operation has two alternative
expressions (e.g., R1 R2 R1 and R2 R1 R2 for the operation not named in Fig. 5.1B)
according to which generator we use first. But these expressions are equal in virtue of
the generating relations

We shall find it convenient to use the symbol [p] to denote this group of order 2p p =
1 imply R1=R2, and so reduce to R1

2=1 ; but the relation (R1 R2)
∞ = 1must be regarded

as stating merely that the element R1 R2 is not periodic.)

FIG. 5.1B

FIG. 5.1C

Themanner inwhich [ ∞ ] arises as a limiting case of [p] ismost clearly seenwhenwe
take the section of the mirrors by a circle with its centre at their point of intersection,
and regard the R’s as reflections in points on this circle. Then the fundamental region
is an arc, as in Fig. 5.1C. The transforms of one of the reflecting points (or of one end
of the arc) are the vertices of a regular polygon {p}. (In Fig. 5.1C, this is a triangle.)
Conversely, [p] is the complete symmetry group of {p}, i.e., [p] is the dihedral group
of order 2p, as defined on page 46. Its cyclic subgroup of order p is generated by the
rotation R1 R2.

When p

R1
2 = 1, R2

2 = 1, R2 R1 = R1 R2.

Thus [2] is the direct product of two groups of order two (generated by the respective
reflections, which now commute). The appropriate symbolism is



The group generated by reflections in any number of lines is equally well generated
by reflections in these lines and all their transforms (the virtual mirrors). If the group
is discrete, the whole set of lines effects a partition of the plane into a finite or infinite
number of congruent convex regions, and the group is generated by reflections in the
bounding lines of any one of the regions.

The reader will probably be willing to accept the statement that this is a fundamental
region, especially if he has looked at three or four material mirrors standing vertically
on a table, with a candle for object. It is obvious that every point of the plane is
equivalent to some point in the initial region, but not obvious that two distinct points
of this region cannot be equivalent. (In the elliptic plane, two such points can be
equivalent.) However, we shall postpone the complete proof till § 5–3, where we
discuss the general theory in three dimensions, from which this two-dimensional
theory can be derived as a special case.

The internal angles of the region must be submultiples of π, as otherwise it would
be subdivided by virtual mirrors. Thus the possible angles are π/2, π/3, . . ., none of
them obtuse. This remark facilitates the actual enumeration of cases. In particular, it
rules out the possibility that a region might have more than four sides.

A triangular region with angles π/p, π/q, π/r p q r)must be

(3 3 3) or (2 4 4) or (2 3 6)

(or a permutation of these numbers). We thus have an equilateral triangle, an
isosceles right-angled triangle, and one half of an equilateral triangle (see Fig. 5.2A).
The corresponding groups are denoted respectively by

The two last are the complete symmetry groups of the regular tessellations (cf. Fig.
4.5A).

The other possible regions are : a half-plane, an angle, a strip, a half-strip, and a
rectangle. The corresponding groups are

[1], [p], [ ∞ ], [ ∞ ] × [1], [ ∞ ] × [ ∞ ].

The last three are the groups that occur when we havemirrors in two opposite walls
of an ordinary room, or in three walls, or in all four.



FIG. 5.2A
The group generated by reflections in any number of planes is equally well gener-

ated by reflections in these planes and all their transforms. If the group is discrete,
the whole set of planes effects a partition of space into a finite or infinite number of
congruent convex regions, and the group is generated by reflections in the bounding
planes of any one of the regions. Let these bounding planes or walls be denoted by
w1,w2, . . . , and let Ri denote the reflection inwi. The dihedral angle between two
adjacent walls, wi andWj, is π/pij, where pij(=pji) is an integer greater than 1. The case
whenwi andwj are parallel may be included by allowing pij to be infinite.
The generating reflections evidently satisfy the relations

where the period of Ri Rj is specified for every edge of the region.
We proceed to prove that the region bounded by thew’s is a fundamental region for the

group, and the relations suffice for an abstract definition. (This means that every true
relation satisfied by the R’s is an algebraic consequence of these simple relations.)

s can be called, briefly, “region S”. Our only doubt is whether region Smight coincide
with region S’ for two distinct operations S and S′.
The rule for successively naming the various regions is as follows : we pass through

the ith wall of region S into region Ri S. This rule is justified by the fact that S transforms
regions1andRi, with their commonwallwi, into regionsSandRi S,with their common
wallwi

s wi,
intoos wi

S.
The reflection in the latter wall is Ri

s, which transforms oS 1 R2 R3 from region
1 in three stages : passing through the third wall of region 1 into region R3, then
through the second wall of the latter into region R2 R3, and finally through the first



wall of this into region R1 R2 R3. Thus the different names for a given region are
given by different paths to it from region 1. (By a path we understand a continuous
curve which avoids intersecting any edge.) Two such paths to the same region can be
combined to make a closed path, which gives a new name, say
Ra Rb . . . Rk,
for region 1 itself. If we can prove that the relations imply Ra Rb . . . Rk=1, it will

follow that the naming of regions is essentially unique, that region 1 is fundamental,
and that the relations are sufficient.
For this purpose, we consider what happens to the expression Ra Rb . . . Rk when

the closed path is gradually shrunk (like an elastic band) until it lies wholly within
region 1. Whenever the path goes from one region into another and then immediately
returns, this detour may be eliminated by cancelling a repeated Ri in the expression,
in accordance with the relation Ri

2=1. The only other kind of change that can occur
during the shrinking process is when the pathmomentarily crosses an edge (common
to 2pij regions). This change will replace Ri Rj Ri …by Rj Ri Rj .
The shrinkage of the path thus corresponds to an algebraic reduction of the ex-

pression Ra Rb …Rk by means of the relations The possibility of shrinking the path
right down to a point (or to a small circuit within region 1) is a consequence of the
topological fact that Euclidean space is simply-connected. It follows that Ra Rb . . .
Rk=1, as desired.
Incidentally, every reflection that occurs in the group is conjugate to one of the gen-

erating reflections. For, if it is the reflection in the ith wall of region S, it is expressible
as Ri

s.
p]). In all other cases the fundamental region is a spherical triangle. For, since the

angle-sum of a spherical n-gon is greater than that of a plane n-gon, namely (n−2)π,
at least one of the angles must be greater than (n−2)π/n ; so for n≥4 at least one angle
must be obtuse.
The enumeration of groups generated by reflections in concurrent planes thus

reduces to the enumeration of spherical triangles with angles π/p, π/q, π/r p q r) to be
(2 2 p), (2 3 3), (2 3 4), (2 3 5).
(The last three are illustrated in Fig. 4.5A.) The respective groups are denoted by



for, as we shall soon see, they are the complete symmetry groups of the dihedron,
tetrahedron, octahedron (or cube), and icosahedron (or dodecahedron). Todistinguish
them from the rotation groups, these are known as the extended polyhedral groups.71

The fundamental region for [p, 2] is boundedby twomeridians and the equator. Thus
its kaleidoscope is formed by two (hinged) vertical mirrors standing on a horizontal
mirror. Since the first two reflections both commute with the third, this group is a
direct product :

The connection with the dihedron is explained on page 46.

[2, 2] = [1] × [1] × [1].

This is the group generated by threemutually commutative reflections (i.e., by three
perpendicular mirrors).

The fundamental region for [p, q] (which is the same as [q, p]) is a triangle with angles
π/p, π/q, π/2, whose area (if drawn on a sphere of unit radius) is

The order of [p, q] is the number of such triangles that will just cover the sphere (of
area 4π), viz.,

p, q p, q] are symmetry operations of {p, q p, q] is the complete symmetry group of {p, q}.

Each of the three “ trihedral kaleidoscopes ” is formedby threemirrors (preferably of
polishedmetal) cut in the shape of sectors of a circle (of as large radius as is convenient,
say 2 feet). The angles of these sectors are, of course, �, �, �. (See Table I on page 293.)
The curved edges of themirrors form the triangle P0 P1 P2 Fig. 4.5A. An object placed
at the vertex P0 (where 2q triangles meet) has images at all the points 0, viz., the
vertices of {p, q}. Similarly an object at P1 or P2 (where 4 or 2p q, p}, respectively.

When {p, q} is a cube, so that the angle at P2 is π/4, the triangle P0 P1 P2 can be fused
with its image in P1 P2 to form a right-angled triangle P0 P0′ P2 (Fig. 5.4A) which is
the fundamental region for [3, 3]. The reflections in the sides of this larger triangle
transform P0 and P0′ into the vertices of two reciprocal tetrahedra. Thus the stella



octangula arises from the fact that the fundamental region for [3, 4] is one half of the
fundamental region for [3, 3], which shows that the group [3, 4] contains [3, 3] as a
subgroup of index two. Similarly, the infinite group [3, 6] contains � as a subgroup of
index two. (See Figs. 4.2A
We have completed the enumeration of groups generated by one, two, or three

reflections. The groups generated by four or more reflections will be treated by more
powerfulmethods in Chapter XI. It will then be seen that the following list is exhaustive.

FIG. 5.4A

FIG. 5.4B
Wemay take one horizontal mirror with three or four vertical mirrors standing on it.

Then the fundamental region is an infinitely tall prism, and the groups are the direct
products
� × [1], [4, 4] × [1], [3, 6] × [1], [ ∞ ] × [ ∞ ] × [1].
(The last is the group that occurs when we have mirrors in all four walls of a room,

and in the ceiling as well.)
Orwemay take twohorizontalmirrors (theupper facingdownward)with twoor three

or four vertical mirrors between them. Then the fundamental region is an infinite
wedge, or a triangular prism of three possible kinds, or a rectangular parallelepiped,
and the groups are the direct products
[p] × [ ∞ ], � × [ ∞ ], [4, 4] × [ ∞ ], [3, 6] × [ ∞ ], [ ∞ ] × [ ∞ ] × [ ∞ ].
When p=2, the first of these splits further into [1] × [1] × [ ∞].
Finally, we may reflect in all four faces of a tetrahedron (provided the six dihedral

angles are submultiples of π). The fundamental region may be the quadrirectangular
tetrahedron 0123 0023, or the tetragonal disphenoid 0033 ; and the groups are
denoted by



The various possible fundamental regions are very conveniently classified by as-
sociating them with certain graphs nodes of the graph represent the walls of the fun-
damental region (or the mirrors of the kaleidoscope, or the generating reflections),
and two nodes are joined by a branch whenever the corresponding walls (or mirrors)
are not perpendicular. Moreover, we mark the branches with numbers pij to indicate
the angles π/pij (pij ≥ 3). Owing to its frequent occurrence, the mark 3 will usually be
omitted (and left to be understood). Thus the fundamental region for [p] is denoted by

according as p=1 or 2 or 3 or more (including p = ∞ ).
The case when p

representing the half-strip, rectangle, infinite wedge, infinitely tall prism on a rect-
angle, and rectangular parallelepiped, which are the fundamental regions for
[∞]×[1], [∞]×[∞], [p]×[∞], [∞]×[∞]×[1], [∞]×[∞]×[∞].
The reader can easily draw the graphs for the other prismatic regions in terms of

the graphs

The convenience of this representation is seen in the following theorem :
. In the case of a connected graph without any even marks (e.g., if no branches are

marked), all the reflections in the group are conjugate to one another.
To prove this, let Ri andRj be two reflections represented by the nodes that terminate

a branch with pij=2m+1 (e.g., an unmarked branch ifm=1). Since (Ri Rj)
2m+1 =1, we

have

Thus Ri and Rj are conjugate. But the relation “ conjugate ” is. transitive, so the
same conclusion holds if the ith and j all the reflections are conjugate.
For instance, the fifteen reflections in [3, 5] are all conjugate. More generally,



If we delete every branch that has an even mark (leaving its two terminal nodes
intact), the resulting graph consists of a number of pieces equal to the number of
classes of conjugate reflections in the group.

To prove this, consider what happens geometrically when two generators Ri and Rj
are conjugate. It means that the ith wall of one region coincides with the jth wall of
another, i.e., that the ith face of the former occurs in the same plane as the jth face of
the latter. These two faces can be connected by a sequence of consecutively adjacent
faces in the same plane. If two such adjacent faces are the ath of one region and the
bth of another, the period of the product Ra Rb must be odd. (For, if a≠b, the two faces
belong to a “ pencil ” of faces, pab of each kind, radiating from their common side. If
a=b, the product is the identity, and the two faces may, for the present purpose, be
considered as one.) Such a sequence of faces corresponds to a chain of odd-marked
(or unmarked) branches connecting the ith and j

p, q} has lines of symmetry of 1 or 2 or 3 types according as the symbol {p, q

Wythoff’s construction π/p, and the second and third at π/q, while the first
and third (not being directly joined by a branch) are perpendicular. These nodes can
equallywell be regarded as representing the respectively opposite vertices : onewhere
the angle is π/q, one where it is π/2, and one where it is π/p. By drawing a ring around
one of the nodes, we obtain a convenient symbol for the tessellation or polyhedron
whose vertices are all the transforms of the corresponding vertex of the fundamental
region, i.e., all the points 0 or 1 or 2 in Fig. 4.5A. Thus the modified graphs

which can just as well be drawn as

represent the respective tessellations (or polyhedra)

In fact, the Schläfli symbols may be regarded as abbreviations for the modified
graphs.

p

Fig. 4.7A) :



By drawing a ring around one of the nodes, we obtain a symbol for the honeycomb
whose vertices are all the transforms of the corresponding vertex of the fundamental
region. Thus the modified graph

represents the regular honeycomb {4, 3, 4} ; similarly

It is important to notice that the graphs for the polyhedra and honeycombs auto-
matically contain the graphs for the various faces and cells.

In the fourth century A.D., Pappus observed that an icosahedron and a dodeca-
hedron can both be inscribed in the same sphere in such a manner that the twelve
vertices of the former lie by threes on four parallel circles, while the twenty vertices of
the latter lie by fives on the same four circles. What is the general theory underlying
this observation ?

In the trihedral kaleidoscope which illustrates the group [p, q] of order g g images,
including the object itself. When the object, which we take to be a point, is moved
towards a vertex P0 or P1 or P2 of the fundamental region (or towards the line of
intersection of two of the three mirrors), the images approach one another in sets
of 2q or 4 or 2p, at all the points 0 or 1 or 2. This shows clearly that the numbers of
elements of {p, q} are

For any discrete group of congruent transformations, and any twopointsP andQ, we
can prove that the distances from P to all the transforms of Q are equal (in some order) to the
distances fromQ to all the transforms of P. In fact, if S is any congruent transformation, the
point-pairP,QS Q,
fromwhich it canbederivedbyapplyingS. LettingSdenote eachoperationof the group
in turn,wesee that thevariouspositionsofQS P.



In particular, if the group is [p, q], and P, Q are P2, P0, then the transforms of Q
coincide in sets of 2q at the vertices of {p, q}, while those of P coincide in sets of 2p at
the vertices of {q, p} ; and we deduce that the distribution of vertices of {p, q} according
to their distances from a vertex of the reciprocal {q, p} agrees with the distribution of
vertices of {q, p} according to their distances from a vertex of its reciprocal {p, q}. In
other words, if we distribute the vertices of {p, q} in circles, according to their various
distances from the centre of one face, and then do the same for {q, p}, we will find that
the two systems of circles are similar, and that the numbers of vertices occurring on
corresponding circles are proportional (in the ratio p : q).
For instance, the twelve vertices of {3, 5} lie by threes on four circles in parallel

planes, and the twenty vertices of {5, 3} lie by fives on four circles in parallel planes ;
these can be taken to be the same four planes, provided the position and size of the
two polyhedra are so adjusted that the planes of two opposite faces are the same for
both. (This is a case where two polyhedra of reciprocal kinds are considered together
without being in their actually reciprocal positions.)
The corresponding result for {3, 4} and {4, 3}, where two opposite faces account for

all concentric circles, is again very simple, as the two tessellations can be so placed
that the vertices of the former are alternate vertices of the latter (see Fig. 4.2D).
More complicated results of the same nature can be obtained by taking P to be P1,

while Q is still P0. We then compare the distribution of vertices of {p, q}, q} ; e.g., the
vertices of the dodecahedron, distributed in sets
2 + 4 + 2 + 4 + 2 + 4 + 2,
can lie in the samesevenplanes as the vertices of the icosidodecahedron, distributed

in sets
3 + 6 + 3 + 6 + 3 + 6 + 3.
Again, we may apply the same theory to the group [4, 3, 4], taking Q to be a vertex of

{4, 3, 4}, while P is (say) the centre of a square face. We then find that the vertices of {4,
3, 4}, distributed into sets
4 + 8 + 8 + 16 + 12 + 8 + 24 + …

12 + 24 + 24 + 48 + 36 + 24 + 72 + ….



FIG. 5.9A

. Let R1, R2, R3 denote the reflections in the sides P1 P2, P2 P0, P0 P1 of the funda-
mental region for the group [p, q], where p and q are greater than 2. (It would perhaps
have been more natural to call them R0, R1, R2.) To avoid confusing suffixes, let P0
and P1 be re-named O and N. The group transforms these into further points K, L,
M, P, Q, as in Fig. 5.9A. In fact, R1 reflects O into M, R2 R1 rotates MN to KL, and
R2 R3 rotates MN to QP. Now, KMOQ is part of a Petrie polygon for {p, q LNP R1

R2 R3 transforms KLMNO into MNOPQ ; i.e., it takes us one step along the Petrie
polygon, and one step along the equatorial polygon. It thus consists of the translation
or rotation that transforms LN intoNP, combined with the reflection in LNP h the
operation R1 R2 R3 is of period h.

Since g is always even, so also is h.

When [p, q] is finite, R1 R2 R3 is a rotatory-reflection involving rotation through
2π/h LNP ; and this possibility is excluded by our assumption that p and q are
greater than 2. Hence the central inversion belongs to the group [p, q] (p>2, q>2) if and only
if is
odd, and then it is expressible as

The first part of this theorem provides an arithmetical explanation for the fact that
{3, 3} is the only one of the Platonic solids whose vertices do not occur in antipodal
pairs.

Having observed the connection between the Petrie polygon for {p, q} and the opera-
tion R1 R2 R3 of [p, q], we naturally askwhat kind of skewpolygon is analogously related
to the operation R1 R2 R3 R4 of [4, 3, 4]. Since R1 R2 R3 R4 is a screw-displacement,
this will certainly be a helical polygon (see page 45). If its sides are edges of {4, 3, 4}, we
shall feel justified in calling it a generalized Petrie polygon for that regular honeycomb.



Consider the helical polygonKLMNOP…(Fig. 5.9B) which is defined by the property
that any three consecutive sides, but no four, belong to a Petrie polygon of a cell (i.e.,
of a cube). This will serve our purpose, provided we define the generating reflections
as follows : R1 is the reflection in the perpendicular bisector ofNO, and R2, R3, R4 are
the reflections in the respective planes LMO, LNO,MNO. For these four planes form a
suitable quadrirectangular tetrahedron ; and we have

whence R1 R2 R3 R4 transforms L intoM,M intoN, andN into O.

72 As a means for constructing regular and semiregular figures, its importance is
more clearly seen in its extension to four dimensions, which Wythoff considered.73

FIG. 5.9B
74



6 CHAPTER VI STAR-POLYHEDRA

THIS chapter is mainly concerned with the four Kepler-Poinsot polyhedra (which are
the first four figures in Plate III, facing page 49). Having agreed that these are polyhedra
(according to a slightly modified definition), we cannot deny that they are regular.

Star-polygons. Let S be a rotation through angle 2π/p, and let A0 be any point not
on the axis of S. Then the points

are the vertices of a regular polygon {p}, whose sides are the segments A0 A1, A1
A2, A2 A3, . . . (cf. page 45). When p p being integral; it is merely necessary that the
period of S be finite, i.e., that p be rational. We shall still stipulate that p≥2, since a
positive rotation through an angle greater than π is the same as a negative rotation
through an angle less than π. Some instances are exhibited in Fig. 6.1A.

FIG. 6.1A

When the rationalnumberp p

and dp. Thus p=np/dp, where np and dp are co-prime integers. (When p is itself an
integer, so that the polygon is convex, we naturally write np=p, dp=1.) The regular
polygon {p} is traced out by amoving point which continuously describes equal chords
of a fixed circle and returns to its original position after describing np chords and
making dp revolutions about the centre. Thus there are np vertices and np sides :

N0 = N1 = np.

91



When dp>1, the sides of the “ star-polygon ” intersect in certain extraneous points,
which are not included among the vertices. The digon, {2}, is to be considered as
having two coincident sides. The number of different regular N-gons (N �(N) is
Euler’s function, the number of numbers less than N and co-prime to it.75 (N=np, to
which both dp and np−dp are co-prime.)

The number dp is called the density of {p}, as it is the number of sides that will be
pierced by a ray drawn from the centre in a general direction. (It is a happy accident
that both words “ density ” and “ denominator ” begin with “ d.”)

The interior angle of {p p exterior angles is 2dpπ 2l cosπ/p �-1l.
(Cf. the vertex figure of {5}, which is of length �l

S = 2npl.

The area is still

t times over the portions that are enclosed t times by the sides, for all values of t
from 1 to dp.

The reciprocal of a {p} is evidently another {p}. Ifwe choose for radius of reciprocation
the geometricmean of 0R and 1R, the two reciprocal {p}’s will be equal ; when dp is even,
this makes them actually coincide. The simplest of such completely self-reciprocal
polygons is thepentagram,

The general regular polygon {p} can be derived from the convex polygon {np} by
either of two reciprocal processes : stellating and faceting. In the former process, we
retain the positions of the sides of {np}, and produce them at both ends, all to the same
extent, until they meet to form new vertices. In the latter, we retain the vertices of {np}
and insert a fresh set of sides, so that each new side subtends the same central angle
as dp old sides.



FIG. 6.2A

The same two processes also yield the regular compound polygons

{knp}[k{p}]{knp},

such as the Jewish symbol {6}[2{3}]{6} which consists of two equal triangles in recip-
rocal positions.

small stellateddodecahedron great
stellateddodecahedron great
dodecahedron great
icosahedron Fig.
6.2A and Plate III, Figs. 1, 3, 2, 4.) We can construct these “Kepler-Poinsot polyhedra ”
by stellating or faceting the ordinary dodecahedron and icosahedron.

In order to stellate a polyhedron, we have to extend its faces symmetrically until they
again form a polyhedron. To investigate all possibilities, we consider the set of lines
in which the plane of a particular face would be cut by all the other faces (sufficiently
extended), and try to select regular polygons bounded by sets of these lines. For the
tetrahedron or the cube, the only lines are the sides of the face itself. (The opposite
face of the cube yields no line of intersection.) In the case of the octahedron, the faces
opposite to those which immediately surround the particular face 111meet the plane
in a larger triangle 222 (Fig. 6.2B) whose sides 22 are bisected by the points 1. The
eight large triangles so derived from all the faces form the stella octangula {4, 3}[2{3,
3}]{3, 4}. (Plate III, Fig. 5.)
Let us now stellate the dodecahedron {5, 3}, of which one face 11111 is

shown in Fig. 6.2C.76 By stellating this pentagon we obtain the pentagram
22222 22222 Fig.
6.2C account for all the other faces of {5, 3}, the twelfth face being parallel to 11111.



Tomake sure that these stellations are single polyhedra, not compounds like the
stella octangula,

FIG. 6.2B

FIG. 6.2C

FIG. 6.2D
77

The eighteen lines of Fig. 6.2D are the intersections of the plane of the face 111 of
{3, 5} with the planes of all the other faces save the opposite one. Their tangential
barycentric coordinates, referred to the triangle 111, are the permutations of
(1, 0, 0), (�, 1, 0), (�, 1, �−1), (1, 1, �−1).
They form six concentric equilateral triangles, 111, 333, 3′3′3′, 666, 6′6′6′, 777,

each of which leads to a set of twenty when we apply the rotations of the icosahedral
group. The twenty triangles 333 have no common sides, but when taken along with
the twenty triangles 3′3′3′ they form the compound of five octahedra, [5{3, 4}]2{3, 5}.
(See page 49.) The twenty triangles 666, and the twenty triangles 6′6′6′, are the faces
of the two compounds of five tetrahedra
{5, 3}[5{3, 3}]{3, 5},
which are enantiomorphous and reciprocal, andwhich together form the compound

of ten tetrahedra, 2{5, 3}[10
Having now constructed all the four Kepler-Poinsot polyhedra, we can record their

propertiesNj, as inTable I (page292). Weobserve thatN1 pentagonal
polyhedra



. Faceting the Platonic solids. The above method is quite perspicuous when one
has models to compare with the diagrams; but it would not be of much use to an
inhabitant of Flatland.78 The reciprocal method of “ faceting,” however, lends itself
more naturally to systematic treatment.
It is sometimes helpful to employ the following terminology. The core of a star-

polyhedron or compound is the largest convex solid that can be drawn inside it, and
the case is the smallest convex solid that can contain it ; e.g., the stella octangula has
an octahedron for its core and a cube for its case, while the great icosahedron has
an icosahedron for its core and another icosahedron for its case. The compound
or star-polyhedron may be constructed either by stellating its core (which has the
same face-planes) or by faceting its case (which has the same vertices). Thus stellating
involves the addition of solid pieces, while faceting involves the removal of solid pieces.
For the systematic treatment of faceting, we first distribute the vertices of a Platonic

solid � (the “ case ”) in sets, according to their distances from a single vertex, O. �
vertices at distance a fromO include the vertices of a {q} of side a, then each side of
this {q} forms with O an equilateral triangle, and we have a {3, q} inscribed in �. More
generally, if the � vertices at distance a include the vertices of a {q} of side b, where
b/a = 2 cos π/p
(for some rational value of p), and if a {p} of side a is known to occur among the

vertices of �, then we have a {p,q} inscribed in �.
If �=nq, so that the vertices of {q} are the only vertices of � distant a fromO, then either

we find a single polyhedron {p, q} with the same vertices as �, or (if {p, q} has fewer
vertices than �) we find several such polyhedra forming a vertex-regular compound
�[d{p, q}],
where � has d times as many vertices as {p, q}. On the other hand, if �>nq, the

possibility of a single polyhedron is ruled out. If the vertices of � distant a from 0
include the vertices of c {q}’s (c≥1), we find a compound
c�[d{p, q}],
such that � has d/c times as many vertices as {p, q}. Then, if d/c is an integer, say d′, it

may be possible to pick out d′ of the d {p, q}′s so as to form �[d′{p, q
To carry out the required distribution of vertices of �, we observe that the first set

(after the point O itself) is at distance 2l, and belongs to a section similar to the vertex
figure. If � is the tetrahedron or the octahedron, the distribution is then complete
(apart from the single opposite vertex of the octahedron). Otherwise, there is another



set, antipodal to the first, at distance 2 1R. If � is the cube or the icosahedron, the
distribution is again complete. There remain for consideration two sets of six vertices
of the dodecahedron. Using the coordinates 3·76 for a dodecahedron of edge 2�−1,
we find that the plane x + y + z = 1 contains the six vertices (0, −�−1, �), (1, − 1, 1),
(�, 0, −�−1), (1, 1, −1), (−�−1, �, 0), (−1, 1, 1), which we are inclined to dismiss as an
irregular hexagon, until we notice that they form two crossed triangles of side 2√2.
These vertices are distant 2 from (1, 1, 1), and by reversing signs we find another such
set distant 2√2.

The only case where the location of {p} is not obvious is in the last line of the table.
Alternate vertices of the dodecahedron’s Petrie polygon form a pentagon of side �,
which has the same vertices as the desired pentagram of side �2. In Fig. 3.6E (where
the peripheral decagon is the projection of a Petrie polygon), the pentagon is 12 23 34
45 51, and the pentagram is 12 34 51 23 45.
6·4. The general regular polyhedron. Most of the properties of {p, q}, as described

in Chapter II, hold with but slight modifications when p or q Fig. 6.4A, the point seen
in themiddle is really at the bottom of a pit (bounded by three rhombs, which are parts
of three large pentagons). Similarly, the small pentagon in themiddle of Fig. 6.4B p, q}
and {q, p}. In Fig. 6.4C, parts of three rhombshave beenmade transparent to reveal one
of the twelve internal vertices (whence the broken lines radiate). At the middle of Fig.
6.4D

FIG. 6.4A

(12 pentagrams, 12 pentagons)



FIG. 6.4B

(12 pentagrams, 20 triangles)

The Petrie polygon of {p, q h}, where h is given by 2·33. The rational number h is not
necessarily an integer, so the number of sides of the Petrie polygon is the numerator,
nh, and the total number of Petrie polygons (or of equatorial polygons) is 2N1/nh. But
two equatorial polygonsmay intersect at other points than vertices, so 2·34 is no longer
valid. Actuallyh N1

= 30 in each case, so the number of such polygons is 10 for the first two polyhedra,
and 6 for the last two. (Figs. 6.2A and 6·4A, B are analogous to Figs. 2.6A and 2·3A.)

Formulae 2·41—2·45 continue to hold, provided we interpret Cp as in 6·11. Analo-
gously, the volume is still given by 2·46, provided we define it as the sum of the volumes
of the pyramids which join the centre to the faces. This means that, in stating the
volume of a star-polyhedron, we count t times over the portions that are enclosed t
times by the faces, enclosure by the pentagonal core of a pentagram counting twice.
The maximum value of t, which occurs at the centre (and throughout the core of the
polyhedron), is called the density of {p, q}, and is denoted by dp, q. In other words, the
density is the number of intersections the faces make with a ray drawn from the
centre in a general direction (counting two intersections for penetrating the core of a
pentagram).

In order to obtain a formula for dp, q, we compute the number of times the surface of
the concentric unit sphere is covered whenwemake a radial projection of the faces, as
in § 2·5. Each face projects into a spherical {p} of angle 2π/q, which can be divided into
np isosceles triangles by joining its centre to its vertices. There are two such triangles
for every edge of {p, q}, and each has spherical excess



FIG. 6.4C
Small stellated triacontahedron
(30 rhombs)
FIG. 6.4D
Great stellated triacontahedron
(30 rhombs)

The multiply-covered sphere has area 4πdp, q, which we equate to 2N1E, obtaining
6·41

Thus the 1/N1 of 1·72 has to be replaced by dp, q/N1. (Of course the density of a
convex polyhedron is 1.) We note incidentally that dp, q = dq, p : reciprocal polyhedra
have the same density.
Another way of reckoning the total area of the 2N1 isosceles triangles is to observe

that their angles together amount to 2dqπ at each vertex of {p, q}, and 2dpπ at the centre
of each spherical {p}. Subtracting π for each triangle, we obtain the total area 2π(dq
N0+dp N2−N1), whence
6·42

These two expressions for dq, p, the latter of which is a generalization of Euler’s
Formula, are deducible from each other with the aid of the obvious relations
6·43



(cf. 1.71).
For the six pentagonal polyhedra 6·21, we can write N1 = 30 in 6·43 and 6·41,

obtaining N2 = 60/np, N0 = 60/nq, and

6·5. A digression on Riemann surfaces. The multiply-covered sphere considered
above is an instance of a Riemann surface ; in fact it is a case where three or seven
sheets are connected at twelve simple branch-points.
The general Riemann surface consists of anm-sheeted sphere (orm almost coinci-

dent, almost spherical surfaces) with the sheets connected at certain branch-points
(or “ winding-points ”). At a branch-point of order r−1, r sheets are connected in such
a way that, when wemake a small circuit around the point, we pass from one sheet
to another, and continue thus until all the r sheets have been taken in cyclic order.
Our path is like a helix of very small pitch, save that the rth turn takes us back to
the starting point. (This makes it impossible to construct an actual model without
extraneous intersections of sheets.) In other words, the total angle at an ordinary
point is still 2π, but the total angle at a branch-point of order r−1 is 2rπ.
The method used above, to establish 6·42, can be adapted to prove the well-known

formula
6·51

for the genus of a Riemann surface.79 For this purpose, let us “ triangulate ” the
Riemann surface by taking on it a sufficiently large number of points, sayN0, including
all the branch-points, and joining suitable pairs of them by N1 geodesic arcs so as to
formN2 spherical triangles. Since the sumof all the angles of all the triangles amounts
to 2π for each ordinary vertex and 2rπ for each branch-point of order r−1, the total
spherical excess is
2π[N0 + �(r − 1)] − N2π.
Equating this to the total area 4πm, we obtain

Since the faces of the map are triangles, we have 2N1 = 3N2; so

By 1·62, this is equal to 2−2p. Thus 6·51 is proved.



In particular, for any one of the Kepler-Poinsot polyhedra we have m = dp, q and
�(r−1) = 12; so the genus is 7−dp, q. Hence (or directly from the value of N0 − N1 +
N2

6·6. Isomorphism. A polyhedron may be described “abstractly ” by assigning
symbols to the vertices and writing down the cycles of vertices that belong to the
various faces. For instance, the cube (Fig. 3.6B) is given by the abstract description

12′34′, 2’31′4, 31′24′, 1′23′4, 23′14′, 3′12′4.

Two polyhedra that have the same abstract description (e.g. a cube and a paral-
lelepiped) are said to be isomorphic. This means that they are topologically equivalent,
or that they form the samemap ; e.g., every zonohedron is isomorphic to an equilateral
zonohedron (§ 2·8). Two isomorphic polyhedra evidently have the same genus, and
their reciprocals are likewise isomorphic.

the
dodecahedron and the great stellated dodecahedron are isomorphic. This is most easily seen
by comparing the two dodecahedra of Fig. 6.6A. The first of these is repeated from Fig.
3.6E, and the second is derived by transposing any two of the symbols 1, 2, 3, 4, 5, say 4
and5. 12
34 51 23 45 in the first appears as a face of the second.

FIG. 6.6A

We saw, in § 3·6, that the rotation group of the dodecahedron is the alternating group
on the symbols 1, 2, 3, 4, 5. (Thewhole group [3, 5], of order 120, is derived from this by
adjoining the central inversion, which replaces each pair ij by ji.) A transposition such
as (45) isnot

con-
secutive sidesof the facesof thesepolyhedraare thealternate Fig.
6.2C

Ta-
ble I) arederived fromeachotherby the interchangeof � π
and �−1 π.



FIG. 6.6B
Fig. 6.6B is a scheme of the six pentagonal polyhedra, arranged round a circle. Re-

ciprocal polyhedra are joined by horizontal lines, marked with their common density
; and isomorphic polyhedra are diametrically opposite to each other. (Cf. Fig. 14.2A.)
6·7. Are thereonlynineregularpolyhedra?
The first and most obvious method begins with a proof that every regular polyhedron

has the same vertices as a Platonic solid (and the same face-planes as a Platonic solid). For
this purpose, we observe that the rotation group of {p, q} must admit an axis of nq-fold
rotation through each vertex (and an axis of np-fold rotation through the centre of
each face). But we saw in § 3·8 that the only finite rotation groups admittingmore than
one axis of more than 2-fold rotation are the tetrahedral, octahedral, and icosahedral
groups. Thus the rotation group of {p, q} must be one of these.
Having established this lemma, we can appeal to § 6·3, where we found

all begin
to construct such a polyhedron ; but it will never close up. In other words, the density
is infinite, and the rotation group is not discrete.
Similar considerations enable us to assert that there are no regular star-

tessellations.
This first method has involved a preliminary consideration of the Platonic solids

and their rotation groups, followed by a deduction of the Kepler-Poinsot figures by
faceting. It places the two sets of polyhedra in different categories. The following
second method cuts across this distinction, allowing no privilege for convexity ; in
fact the 9 polyhedra arise as 3+6, instead of 5+4.
If {p, q} has a finite number of edges, its Petrie polygon must have a finite number of

sides ; therefore h, like p and q,must be rational. Instead of h, we use another rational
number r, such that

This notation enables us to write 2·33 in the symmetrical form
6·71



Every regular polyhedron {p, q} corresponds to a solution of this equation in rational
numbers greater than 2.
There are, of course, dihedra {p, 2} (h=p) for all rational values of p; but they are not

proper polyhedra, so we do not count them among the nine. There are also plane
tessellations, for which r=2 and h=∞; but the present method fails to reveal those that
are infinitely dense. In fact, 6·71 is a necessary but not obviously sufficient condition
for {p, q} to have a finite density, and it is only by “ good fortune ” that there are no
extraneous solutions with r > 2.
Gordan showed long ago80 that the only solutions of the equation
6·72

in angles commensurable with π �1 = 2π/q, �3 = 2π/r, we obtain, as solutions of
6·71 in rationalnumbersp, q, r

for which

i.e.,

In spite of its elegance, this secondmethod suffers from two disadvantages : first,
it depends on the difficult theorem that Gordan’s equation 6·72 has no further solu-
tions ; second, it is useless for the analogous problem of regular tessellations in the
plane. The following third method, like the first, is valid for plane as well as spherical
tessellations.81 Moreover, it depends only on the enumeration of groups generated by
reflections (§ 5·4), which is considerably easier than the more familiar enumeration
of rotation groups (§ 3·8).
Consider any polyhedron {p, q}, where p and q are rational numbers greater than

2. In § 6·4 we projected its faces onto a sphere (covered dp, q times) and divided each
of the spherical {p}’s into np isosceles triangles. We now subdivide each isosceles
triangle into two equal right-angled triangles 012, where 0 is a vertex, 1 the mid-
point of a projected edge, and 2 the centre of a projected face. Clearly, the angles of
such a triangle are π/q, π/2, π/p, and its sides are lines of symmetry of the spherical
tessellation, as in § 4·5. The symmetry group of {p, q} is generated by reflections
in these sides, and its operations transform one triangle into the whole set of 4N1

triangles, which cover the sphere dp, q times. In other words, we regard the group



as operating on a Riemann surface ; if p or q is fractional, there is a branch-point of
order dp−1 or dq−1 wherever an angle π/p or π/q occurs. In this sense the triangle is
a fundamental region for the group (cf. § 5·3) even when dp, q>1. The same group,
considered as operating on the single-sheeted sphere, is generated by reflections in
the sides of a smaller triangle whose angles are submultiples of π, i.e., it must be one of
the groups
[2, n], [3, 3], [3, 4], [3, 5],
say [m, n]. But the 4N1 small triangles (with angles π/m, π/2, π/n) cover the sphere

just once, whereas the same number of large triangles (with angles π/p, π/2, π/q) cover
it dp, q times. Hence each large triangle is dissected (by “ virtual mirrors ”) into exactly
dp, q small triangles. (Cf. § 5·2.)
Let (x y z) denote a triangle with angles π/x, π/y, π/z. In this notation, a triangle (p 2

q) is dissected into dp, q triangles (m 2 n), so we write
(p 2 q)=dp, q (m 2 n).
The two cases

are illustrated inFig. 6.7A
Instead of deriving the triangle (p 2 q) from a given polyhedron {p, q}, we can just as

well derive the polyhedron (by Wythoff’s construction) from a suitable triangle. In the
notation of § 5·7, {p, q} is

even when p or q is fractional. It remains to be seen what fractional values p and q
may have.
Since repetitions of one angle of the small triangle (m 2 n) must fit into each angle of

the large triangle (p 2 q), the angles π/p and π/qmust each be amultiple of either π/m or
π/n; i.e., the numerators of the rational numbers p and qmust each be a divisor of either
m or n. Now, ifm and n are greater than 2, one of themmust be 3, and the other 3 or 4
or 5. Hence, setting aside the dihedron {p, 2}, which evidently occurs for every polygon
{p

FIG. 6.7A



XYZ,
as in Fig. 6.7B. If any set of triangles (3 2 5) form a triangle (p 2 q), where p, q are
rational and greater than 2, we can take the two perpendicular sides of (p 2 q) to lie
along ZX and ZY. The triangles ABZ and BCZ of Fig. 6.7A are the only possibilities.
For, the three arcs AB, BC, CD, their images by reflection in YZ, ZX, XY, and the latter
arcs themselves, account for all the fifteen great circles.

FIG. 6.7B
The samemethod can be applied to plane tessellations {p, q}, using plane triangles

instead of spherical triangles. Here the group can only be [3, 6] or [4, 4] (as � provides
no right angles, and [ ∞ ] × [ ∞ ] no acute angles), so the numerators of p and qmust
occur among the numbers 3, 4, 6. Thus neither p nor q can be fractional, and we see
again that there are no regular star-tessellations.
We could use an analogous argument to prove that there are no regular star-

honeycombs. But it is simpler to observe that, if a honeycomb {p, q, r} has cell {p, q}
and vertex figure {q, r}, as in § 4·6, then the dihedral angle of the cell is 2π/r, where
r Table
I we see that, of the nine regular polyhedra, only the cube has such a dihedral angle.
Therefore {p, q, r} can only be {4, 3, 4}.
6·8. Schwarz’s triangles. The above considerations (especially Fig. 6.7A) suggest

a more general problem which was proposed and solved by Schwarz in 1873 : to
find all spherical triangles which lead, by repeated reflection in their sides, to a set
of congruent triangles covering the sphere a finite number of times.82 Clearly the
reflections generate a group [2, n] or [3, 3] or [3, 4] or [3, 5]. Hence the sides and their
transforms dissect such a triangle (p q r) into a set of congruent triangles (2 2 n) or (3 2
3) or (3 2 4) or (3 2 5). We can thus distinguish four families of “ Schwarz’s triangles ”.
Replacing each vertex in turn by its antipodes, we derive from (p q r) three colunar

triangles
(p q′ r′), (p′ q r′), (p′q′ r),
where



In other words, two angles are replaced by their supplements. In Table III (on page
296), colunar triangles are placed together on one line, in increasing order of size.

The largest triangles of each family, having the largest angles, are

All the others can be obtained by systematic dissection of these four in accordance
with the formula

6·81

This expression for cos π/x (which is obtained by equating two expressions for cos
RX in Fig. 6.8A) need never be used in practice, since the particular triangles are all
visible in Fig. 4.5A on p. 66.

FIG. 6.8A

The following special cases of 6·81 will be used in § 14·8 :

For the sake of completeness, here is another problem, analogous to Schwarz’s : to
find all plane triangles which lead, by repeated reflection in their sides, to a tessellation
covering the plane a finite number of times. Since any such triangle can be built up
from repetitions of (3 3 3), (4 2 4), or (3 2 6), there is, besides these three, only

and this leads to a two-fold covering of the plane. (Each triangle is counted twice,
with opposite orientations, and there is a simple branch-point wherever the angle
2π/3 occurs.)



6·9. Historical remarks. 83

The Pythagoreans used it as a symbol of good health. 84 The systematic study of
star-polygons was begun by a fourteenth-century Englishman, Bredwardin (alias
l/0R)

2 for a regular heptagon satisfies the equation

z3 − 7z2 + 14z − 7 = 0,
85 86

are as follows :

87 Excellent photographs of them have been published by Pitsch (1, Plate I,
facing p. 64) and Brückner (1, IX 1388 and XI 9). Hess and Pitsch described also
their reciprocals (Brückner 1, X 28 and XI 17), whose faces are related to those
of the triacontahedron in the manner of Fig. 6.9A (which is part of the drawing
of the “ complete face ” in Hess 1, Fig. 3, or Bruckner 1, II 18). The rhomb 1 2
1 2 is a face of the triacontahedron itself (our Plate I, Fig. 12), 2 8 2 8 is a face
of the small stellated triacontahedron (Fig. 6.4C), and 8 14 8 14 is a face of the
great stellated triacontahedron. The double occurrence of the diagonals 2 2 and 8
8

FIG. 6.9A

w − 2n = 2(p − 1),

w = �(r−1) and n=m.

p, q

The third method appears to be new. Of course, the essential ideas are due to
Schwarz ; but he, like Gordan, was not concerned with star-polyhedra.



Hessel (2, p. 20) observed in 1871 that the Platonic solids are not the only convex
polyhedra which have equal faces and equal vertex figures. There are also the tetragonal
and rhombic disphenoids : tetrahedra with isosceles or scalene faces, all alike. If we
denote an isosceles triangle by {1+2} and a scalene triangle by {1+1+1}, appropriate
Schläfli symbols for these disphenoids are {1+2, 1+2} and {1+1+1, 1+1+1}.
Hess (1) considered the possibility of further isohedral-isogonal polyhedra, and

found, besides the Kepler-Poinsot figures, the following eight :

These occur in isomorphic pairs : two stellated icosahedra, two stellated triaconta-
hedra, two faceted dodecahedra, and two faceted icosidodecahedra. The faces of the
first two89 are irregular enneagrams formed by the nine points 4 and the nine points
8 in Fig. 6.2D (which is Hess’s Fig. 2 or 4). Hess remarks (p. 42) that the first has the
same vertices as one of the thirteen Archimedean solids, the rhombicosidodecahe-
dron. Of course all eight have the same symmetry group, [3, 5]. They are described in
Brückner 1, pp. 207-212 ; and seven of them are shown in photographs :
IX 17,
——
XI 14,
XII 10 and 16,
XI 4 and XII 7,
XII 11 and 17,
XII 8 and 20,
XII 12 and 21.
In a later work Brückner went further and foundmany other such polyhedra. These,

however, could be excluded by making some quite natural restrictions ; e.g., in one
case (Brückner 2, p. 161) the face is a hexagram two of whose vertices coincide !





7 CHAPTER VII ORDINARY POLY-
TOPES IN HIGHER SPACE

POLYTOPE is the general term of the sequence

point, segment, polygon, polyhedron, . . . .

�3, �3, �3, and �3 for the tetrahedron, octahedron, cube, and “ squared paper ”
tessellation, and define the general �n, �n, �n, �n not n-dimensional Schläfli symbol,
which enables us to read off many properties of a regular polytope at a glance ; e.g.,
the elements of {p, q, r,…}, besides vertices and edges, are plane faces {p}, solid faces
{p, q}, and so on. (The number of digits p, q, r p, q, r, n p, q, r,…, and see why {p, q, r,…}
reciprocates into {. . . , r, q, p

There are three ways of approaching the Euclidean geometry of four or more
dimensions : the axiomatic, the algebraic (or analytical), and the intuitive. Thefirst two
have been admirably expounded by Sommerville andNeville, andwe shall presuppose
some familiarity with such treatises.90 Concerning the third, Poincaré wrote,

Un homme qui y consacrerait son existence arriverait peut-être à se peindre la
quatrième dimension.

Only one or two people have ever attained the ability to visualize hyper-solids as
simply and naturally as we ordinary mortals visualize solids ; but a certain facility
in that direction may be acquired by contemplating the analogy between one and
two dimensions, then two and three, and so (by a kind of extrapolation) three and
four. This intuitive approach91 is very fruitful in suggesting what results should be
expected. However, there is some danger of our being led astray unless we check our
results with the aid of one of the other two procedures.

109



For instance, seeing that the circumference of a circle is 2πr, while the surface of a
sphere is 4πr2, we might be tempted to expect the hyper-surface of a hyper-sphere to
be 6πr3 or 8πr3. It is unlikely that the use of analogy, unaided by computation, would
ever lead us to the correct expression, 2π2r3.
Many advocates of the intuitive method fall into a far more insidious error. They

assume that, because the fourth dimension is perpendicular to every direction known
through our senses, there must be something mystical about it.92 Unless we accept
Houdini’s exploits at their face value, there is no evidence that a fourth dimension
of space exists in any physical or metaphysical sense. Wemerely choose to enlarge
the scope of Euclidean geometry by denying one of the usual axioms (“ Two planes
which have one common point have another ”), and we establish the consistency of
the resulting abstract system by means of the analytical model wherein a point is
represented by an ordered set of four (or more) real numbers : Cartesian coordinates.
Little, if anything, is gained by representing the fourth Euclidean dimension as time.

In fact, this idea, so attractively developed by H. G. Wells in The Time Machine, has led
such authors as J. W. Dunne (An Experiment with Time) into a serious misconception
of the theory of Relativity. Minkowski’s geometry of space-time is not Euclidean, and
consequently has no connection with the present investigation.
After thesewords ofwarning, we proceed to describe some of the simplest polytopes,

following the intuitive approach so far as is safe, and utilizing coordinates whenever
they help to clarify the subject.
. In space of no dimensions the only figure is a point, II0. In space of one dimension

wecanhave anynumber of points ; twopoints bounda line-segment, �1, which is the one-
dimensional analogueof thepolygon�2 3 0 1 1

to a thirdpoint (outside its line)weconstruct a triangle, 2.
By joining the triangle to a fourth point (outside its plane) we construct a tetrahe-
dron, 3.
By joining the tetrahedron to a fifth point (outside its 3-space !) we construct a pen-
tatope, 4.
(See Fig. 7.2A.) The general case is now evident : any n+1 points which do not lie
in an (n−1)-space are the vertices of an n-dimensional simplex, whose elements are
simplexes formed by subsets of the n n+1 cells : in a single formula,



FIG. 7.2A: Simplexes
k-dimensional elements belong to the base, while others are pyramids

erected on (k−1)-dimensional elements of the base.
A line-segment is enclosed by two points, a triangle by three lines, a tetrahedron by

four planes, and so on. Thus the general simplex may alternatively be defined as a
finite region of n-space enclosed by n+1 hyperplanes or (n−1)-spaces.

regular simplex, which we shall denote by �n. Thus
�0 = �0, �1 = �1, �2 = {3}, �3 = {3, 3}.
Fig. 7.2A shows a sort of perspective view of these simplexes. The equilateral

triangle �2 has been deliberately foreshortened to emphasize its occurrence as a face
of �3.
One of the fundamental properties of n-dimensional space is the possibility of

drawing nmutually perpendicular lines through any point O; n points equidistant
from O along these lines are evidently the vertices of a simplex �n−1. Producing the
lines beyond O, we obtain a Cartesian frame or cross. Points equidistant from O in
both directions are the 2n vertices of another important figure, the cross polytope �n,
whose cells consist of 2n �n−1’s. Thus
�1 = �1, �2 = {4}, �3 = {3, 4}.

FIG. 7.2B: Cross polytopes
The octahedron �3 is an ordinary dipyramid based on �2 ; similarly �4 is a four-

dimensional dipyramid based on �3 (with its two apices in opposite directions along
the fourth dimension). The �3 of Fig. 7.2B is not an orthogonal projection of the
octahedron but an oblique (parallel) projection, to emphasize its occurrence as base
of the dipyramid �4.
Since �n is a dipyramid based on �n−1, all its elements are either elements of �n−1 or

pyramids based on such elements. Thus all are simplexes, and the number of �k’s in
�n is



k’s
in �n−1 (which vanishes when k=n−1). Also N0=2n. It is now easily proved by induction
that

n
into n−1.) Thus �4 has 8 vertices, 24 edges, 32 plane faces, and 16 cells.

The derivation of �n−1 and �n from a cross shows that the permutations of

are coordinates for the vertices of an �n−1 of edge √2, lying in the hyperplane �x = 1,
and that the permutations of

are coordinates for the vertices of a �n of edge √2.

0 1 1

is translated (not along its own line) from an initial to a final position, it traces
out a parallelogram. Similarly a parallelogram traces out a parallelepiped.
The n-dimensional generalization is known as a parallelotope. It has 2n ver-
tices. The remaining elements are k-dimensional parallelotopes. Their number,
Nk

93

Since

we easily prove by induction that

Thus the four-dimensional parallelotope (the �4 of Fig. 7.2C) has 16 vertices, 32
edges, 24 faces, and 8 cells. (It is instructive to look for the eight parallelepipeds in
the figure, and to observe how each parallelogram belongs to two of them.)



The n translations used in constructing the parallelotope define n vectors, repre-
sented by the n edges that meet at one vertex. In other words, all the vertices are
derived from a certain one of them by applying all possible sums of these n vectors,
without repetition. Similarly, by applying all possible sums of all integral multiples of
the n vectors, we obtain the points of an n-dimensional lattice,which are the vertices
of a special n-dimensional honeycombwhose cells are equal parallelotopes.
If the n vectors are mutually perpendicular (as of course they can be, in n dimen-

sions), the parallelotope is an orthotope, the generalization of the rectangle and the “
box ”. If the n perpendicular vectors all have the samemagnitude, the orthotope is a
hyper-cube ormeasure polytope, �n, and the corresponding lattice determines the cubic
honeycomb, �n+1, of which the three-dimensional case (�4 n+1 rather than �n, because of
the resemblance between n-dimensional honeycombs and (n+1)-dimensional poly-
topes (e.g., betweenplane tessellations andpolyhedra) ; in fact, we regard honeycombs
as “ degenerate ” polytopes. Thus

FIG. 7.2C: Measure polytopes
The name “ measure polytope ” is suggested by the use of the hyper-cube of edge 1

as the unit of content (e.g., the square as the unit of area, and the cube as the unit of
volume). The usual processes of the integral calculus extend in a natural manner ; e.g.,
the content of an n-dimensional pyramid is one nth of the product of base-content
and altitude.
We have constructed the n-dimensional orthotope by translating the (n−1) -

dimensional orthotope along a segment in aperpendicular direction. Clearly, the same
processmaybeapplied to any (n− n−1 n−1 1 1 n−1

(including the interior). Accordingly, we call the generalized prism the rectangular prod-
uct n−1 1,
and use the symbol



n−1 1.

Moregenerally,94 j k,

in completely orthogonal spaces, determinea (j +k j k k j).
In particular, the product of a p-gon and a q-gon is a four-dimensional figure whose
cells consist of q p-gonal prisms and p q-gonal prisms. An intuitive idea of this may be
acquired as follows.

Let q solid p-gonal prisms be piled up, base to base, so as to form a column. In
ordinary space the base of the lowest prism and the top of the highest are far apart.
But in four-dimensional space, where rotation takes place about a plane (instead of
about a point or a line, as in two or three dimensions), we can bring these two p-gons
into contact by bending the column about the planes of the intermediate bases. The
column is thus converted into a ring, whose surface consists of pq rectangles. Another
such ring can be made from p q-gonal prisms. If the lengths of the edges are properly
chosen (e.g., if they are all equal), the two rings can be interlocked in such a way that
the two sets of pq rectangles (or squares) are brought into coincidence. There are then
no external faces, andwe have constructed the rectangular product of two polygons. In
particular, the rectangular product of two rectangles is the four-dimensional orthotope,
and the rectangular product of two equal squares is the hyper-cube :

�2 × �2 = �4.
More generally,

�j × �k = �j+k .

k

is itself a rectangular product of two figures, then �j × �k is a rectangular product of
three figures, which may be taken in any order; for this kind of “multiplication” is
associative as well as commutative. Similarly we may define the rectangular product
of any number of figures. In particular, the rectangular product of n segments is an
n-dimensional orthotope, and that of n equal segments is the n-dimensional measure
polytope :

�1
n = �n.

More generally,

�j × �k × . . . = �j+k+ . . . .



. The word sphere (rather than “ hypersphere ”) is generally used for the locus of a
point at constant distance r from a fixed point; thus a one-dimensional sphere is a
point-pair, and a two-dimensional sphere is a circle. (Topologists, being more con-
cerned with the dimension-number of the locus itself than with that of the underlying
space, prefer to call the point-pair a 0-sphere, the circle a 1-sphere, and so on.) Let
Sn denote the (n−1)-dimensional content or “surface” of an n-dimensional sphere of
unit radius ; e.g., S1 = 2, S2 = 2π. Then the “surface” of a sphere of radius r is, of course,
Snr

n-1, and the n-dimensional content or “volume” of a sphere of radius R is

n-dimensional space, we may take the element of content to be
either dx1 dx2 . . . dxn or Sn rn−1 dr. An expression for Sn (as a function of
n

But the integrals involved are gamma functions : in fact,

and

Hence

Since S2=2π, the case when n
7.32

e.g., S4=2π
2. Since �(m+1)=m�(m), it follows from 7·31 that the n-dimensional con-

tent (for radius R) is
7·33

The particular values of Sn are very easily computed with the aid of the recurrence
formula
Sn+2 = 2πSn/n,
which states that the (n+1)-dimensional content of the (n+2)-dimensional unit

sphere is 2π times the n-dimensional content of the n-dimensional unit sphere ;
e.g., S2/2=π S4=2π

2



With respect to the sphere x1
2 + . . . + xn

2 = r2, any point (y1, . . . , yn) (other than
the centre, which is the origin) has a polar hyperplane y1x1 + . . . + ynxn = r

2, which
is a tangent hyperplane if the point (pole) lies on the sphere. If j points determine a
(j−1)-space, their j polar hyperplanes intersect in a polar (n−j)-space. It is easily seen
(as in two or three dimensions) that the relation between two such polar spaces is
symmetric.
On comparing 7·22 with 7·25, we find that the value of Nn−j for yn is the same as

the value of Nj−1 for �n �n and yn are reciprocal polytopes : the vertices of either are
the poles of the bounding hyperplanes of the other, with respect to a concentric sphere ;
consequently the (j j−1’s

of theone, beingdeterminedbysets of j vertices, correspond to the (n−j n−j ’s
of the other, which are determined by sets of j intersecting hyperplanes. In fact,
the sphere x1

2+ . . . + xn
2 = 1 reciprocates the 2n vertices 7·24 of �n into the 2n

hyperplanes
x1 = ± 1, . . . , xn = ± 1,
which bound the yn (of edge 2) whose 2

n vertices are
7·34

Similarly, an is self-reciprocal (or, rather, reciprocates into another an), in agreement
with the fact that Nn−j=Nj−1. (See 7·21.)
7·4. Polytopes and honeycombs. After the introductory account of special cases

in § 7·2, we are now ready for the formal definition of a polytope. For simplicity, we
assume convexity until we come to Chapter XIV. (A region is said to be convex if it
contains the whole of the segment joining every pair of its points.) Accordingly, we
define a polytope as a finite convex region of n-dimensional space enclosed by a finite
number of hyperplanes. If the space is Euclidean (as we shall suppose until § 7·9), the
finiteness of the region implies the inequality
Nn−1>n
for the number of bounding hyperplanes.

n

is the set of all points whose Cartesian coordinates satisfy Nn−1 linear inequalities
bk1 x1 + bk2 x2 + . . . + bkn xn ≤ bk0 (k = 1, 2, . . ., Nn−1);
which are consistent but not redundant, and provide the range for a finite integral



(the content of the polytope). The part of the polytope that lies in one of the hyper-
planes is called a cell. Sinceoneof the inequalities is here replacedbyanequation, each
cell is an (n n−1 n−1 n−2’s,

andsoon ; we thusobtainadescending sequenceof elements n−1 n−2, . . ., 1 0 n−2 n−1’s.

4 3 2 1 0.
It differs from a three-dimensional honeycomb (§ 4·6) in having a finite number of
elements.
Ann n+1 n’s

fitting together tofilln n n.

n−j j−1’s,
as in § 7·3. Whenever the given polytope has a special interior point which can be
called its centre,we naturally choose this same centre for the reciprocating sphere. We
can then speak of the reciprocal polytope, as its shape is definite (though of course its
size changes with the radius of reciprocation). In particular, if there is a sphere which
touches all the cells, then the points of contact (which are the “ centres ” of the cells)
are the vertices of the reciprocal polytope. By analogy, if the cells of a honeycomb
have centres, we define the reciprocal honeycomb as having those centres for its
vertices. For instance, the �n+1 whose vertices have n even coordinates (in every
possible arrangement) is reciprocal to the �n+1 whose vertices have n odd coordinates.
It is natural to regard an n-dimensional polytope as having one n-dimensional

element, namely itself; so we write
Nn = 1.
Reciprocation converts this into the less obvious convention95

N−1 = 1.
Both formulae are in agreement with 7·21; but 7·22 holds only for k<n, and 7·25

only for k≥0. We observe incidentally that, with these reservations, Nk for �n is the
coefficient of Xk+1 in (1+X )n+1, Nk for �n is the coefficient of X

k+1 in (1+2X )n, and Nk for
yn is the coefficient of X

k in (2+X )n. Hence 96

7·41

in the three respective cases. We shall make use of these expressions in § 9·1.



7·5. Regularity. If the mid-points of all the edges that emanate from a given vertex
O n

lie in one hyperplane (e.g., if there are only n such edges, or if all the vertices lie on
a sphere and all the edges are equal), then thesemid-points are the vertices of an (n−1)-
dimensional polytopecalled the vertexfigure n.

atO. Its cells evidently are thevertexfigures (atO n

which surround O. (Cf. §§ 2·1, 4·6.)

n

(n>2) is said to be regular if its cells are regular and there is a regular vertex figure at
every vertex. By a natural extension of the argument used in § 2·1, the cells are all
equal, and the vertex figures are all equal. (The equality of vertex figures is actually
easier to establish in four dimensions than in three !) For instance, the polytopes

�n, �n, yn
are regular, with cells �n−1, �n−1, yn−1, and vertex figures �n−1, �n−1, �n—1.

There are, of course, several other possible definitions for a regular polytope. The
one chosen has the advantage of simplicity. (We do not need to assume equality of cells,
or of vertex figures.) But admittedly it has the disadvantage of applying only in more
than two dimensions : a0, a1, and {p} have to be declared regular by a special edict.

The same definition of regularity can be used for a honeycomb, though it is simpler
to say (as in § 4·6) that a honeycomb is regular if its cells are regular and equal. For
instance, �n+1 is regular, with cells yn and vertex figures �n.

4

whose cells are {p, q} must have vertex figures {q, r}. (Here r is simply the number of
cells that surround an edge.) Accordingly, we write

4

= {p, q, r};

e.g.,

�4 = {3, 3, 3}, �4 = {3, 3, 4}, y4 = {4, 3, 3}

5

whose cells are {p, q, r} must have vertex figures {q, r, s}, and we write

5

= {p, q, r, s}.



The same kind of symbol will describe a four-dimensional honeycomb. Finally, the
general regular polytope or honeycomb {p, q, . . . , v, w} has cells {p, q, . . . , v} and
vertex figures {q, …, v, w}. (Of course, both {p, q, …, v} and {q, …, v, w} must be polytopes,
even if {p, q, . . . , v, w} itself is a honeycomb.) In particular, for any n> 1,

Carrying this notation back to one dimension, we write
a1 = { }.
The only “ misfit ” is �2 = { ∞ }.
7·6. The symmetry group of the general regular polytope. If we are given the

position in space of one cell and one vertex figure, we can build up the whole polytope,
cell by cell, in a perfectly definite manner. The various cells are not merely equal but
equivalent, i.e., there is a symmetry group which is transitive on the cells, and likewise
transitive on the vertices. In particular, the symmetry group of the regular simplex an
is the symmetric group of degree n+1, viz., the group of all permutations of the n+1
vertices (or of the n+1 cells).
Since Theorem 3·41 is valid in any number of dimensions, it follows that every

regular polytope has a centre On, around which we can draw a sphere of radius jR
through the centres of all the �j’s, for each value of j from 0 to n−1. The first and last of
these concentric spheres are, of course, the circum-sphere and the in-sphere.
Weproceed to describe the “simplicial subdivision ” of a regular polytope, beginning

with the one-dimensional case. The segment �1 is divided into two equal parts by
its centre O1. The polygon �2={p} is divided by its lines of symmetry into 2p right-
angled triangles, which join the centreO2 to the simplicially subdivided sides. The
polyhedron �3={p, q} is divided by its planes of symmetry into g quadrirectangular
tetrahedra (see 5·43), which join the centre O3 to the simplicially subdivided faces.
Analogously, the general regular polytope �n is divided into a number of congruent
simplexes (of a special kind) which join the centre On to the simplicially subdivided
cells. A typical simplex is O0 O1 …On, where Oj is the centre of a cell of the �j+1 whose
centre is Oj+1 (j=0, 1, …, n−1). In other words, On−1 is the centre of a cell of �n, On−2 is
the centre of a cell of that cell, …, O1 is the mid-point of an edge, and O0 is one end
of that edge. The edge { } is thus divided into N10=2 segments, the plane face {p} into
N21 N10 triangles, the solid face {p, q} into N32 N21 N10 tetrahedra, …, and the whole
polytope {p, q, …, v, w} into



gp, q, . . . , v, w = Nn−1 Nn−1, n−2 . . . N21N10
simplexes. (The “ configurational numbers ” Njk or Nj,k were defined in § 1·8. An

element �j belongs to Njk �k’s for each k>j, and contains Njk �k’s for each k<j.)
This number gp , q, …, v, w is an important property of the polytope {p, q, . . . , v, w}. In

fact, it is the order of the symmetry group [p, q, . . . , v, w]. We prove this by induction,
beginning with the obvious fact that the symmetry group of the one-dimensional
polytope { } has order N0=2. We assume the corresponding result in n−1 dimensions,
so that the symmetry group of a cell {p, q, …, v} has order
7·61

In the symmetry group of the whole polytope, this occurs as a subgroup of index
Nn−1, viz., the subgroup leaving On−1 invariant. (The Nn−1 cosets correspond to the
Nn−1 cells.) Hence gp, q, . . . , v, w is the order of the whole group.
An alternative expression for this number is obtained from the subgroup of index

N0 which leaves a vertex O0 invariant. This, being the symmetry group of the vertex
figure {q, …, v, w}, has order
7·62

By repeated application of this equation, we find
gp, q, …, v, w = N0 N01N12 …Nn−2, n−1.
(Of course Nn−2, n−1 = 2.)
Just as the vertex figure {q, r, …, w} indicates the way a vertex is surrounded, so

the “ second vertex figure ” {r, …, w} (which is the vertex figure of the vertex figure)
indicates the way an edge is surrounded. Thus the subgroup of [p, q, r, …, w ] that leaves
an edge absolutely invariant is [r, …, w ], of order gr, . . . , w . But there is also a subgroup
of order 2 that interchanges the ends of the edge (viz., a subgroup isomorphic with
the symmetry group of the edge itself). The complete subgroup leaving O1 invariant
is the direct product of these two. Hence
2gr, . . . , w = gp, q, r, . . . , w/N1.
The general situation is now clear : the number of elements {p, …, r} in the regular

polytope {p, …, r, s, t, u, …, w} is
7·63

For, the subgroup leaving such an element invariant as a whole is the direct product



[p, . . . , r] × [u, . . . , w],

where the first factor is isomorphic with the symmetry group of that element, while
the second leaves the element absolutely invariant. In the case of an, the g’s are
factorials, and we have

in agreement with 7·21.

When n=2, 3, and 4, we have, respectively,

N1 = N0 = gp/2,where gp = 2p,

, where

, and

7·64

But there is no simple expression for gp, q, r as a function of p, q, r.

The three-dimensional case may be written

in agreement with Euler’s Formula N2 + N0 − N1 = 2. Applying

to the cell and vertex figure of the four-dimensional polytope {p, q, r}, we obtain

Since N13=r=N12 and N21=p=N20, we can use 1·81 to show that

N3 N31 = N1 r = N2 p = N0 N02,

whence97

7·65

in agreement with 7·64. It follows that

N3 + N1 = N2 + N0;

but this relation, unlike 1·61, is homogeneous, and so does not provide an expres-
sion for gp, q, r.



In fact, themost practical way to determineN0 orN3 (and thence gp, q, r) is by actually
counting the vertices or cells of each four-dimensional polytope. This is not too
laborious, provided we count them in reasonably large batches, as in Chapter VIII. On
the other hand, it seems more mathematically satisfying to compute than to count, so
we shall give a general formula in § 12·8.
The symmetry groups of the regular simplex and cross polytope may be considered

separately, as follows. Since the symmetry group of an or {3
n−1} is the symmetric group

of degree n+1, we have
7·66

Since �n or {3
n−2, 4} has 2n cells an−1, 7·61 shows that

7·67

In fact, the symmetry group of �n (or of �n) is just the symmetry group of the frame
of orthogonal Cartesian axes, and so consists of the 2n possible changes of sign of the
n coordinates, combined with the n ! permutations of the axes.
7·7. Schläfli’s criterion. The angles
� = O0 On O1, � = O0 On On−1, � = On−2 On On−1

are the natural generalization for the angles �, �, � defined in § 2·4. We still have
7·71

2� is the angle subtended at the centre by an edge (of length 2l), � is the angle
subtended by the circum-radius of a cell, and π−2� is the dihedral angle (between the
hyperplanes containing two adjacent cells).
We proceed to find a general formula for the property � of {p, q, …, v, w}, and a

necessary condition for the existence of such a polytope.
Letting 0R′, l′, �′ denote the values of 0R, l, � for the vertex figure {q, …, v, w}, we have

0R′ sin �′ = l′ = l cos π/p
and, from Fig. 2.4B (with On instead of O3), 0R′=l cos �. Hence
7·72

i.e.,



If �″ refers to the “ second vertex figure,” and �(k) to the “ kth vertex figure,” we have
similarly98

But �(n−2) = π/w. Hence

7·73

where the �-function is determined by the recurrence formula
7·74

with the initial cases

It is easily proved by induction that
7·75

�w, v, . . ., q, p = �p, q, . . . , v, w.
Another explicit formula is
7·76

where

and so on. (We shall have occasion to generalize both the determinant and the
series, in § 12·3.) In particular,99

whence, by 7·74,

and

By repeated application of 7·73, we have



sin2 � sin2 �′ …sin2 �(n−2) = �p, q, . . ., v, w .
Hence
7·77

with the strict inequality for a finite polytope, and the equality for a honeycomb
(where 0R = ∞ and �=0). This is “Schläfli’s criterion ” for the existence of a regular
figure corresponding to a given symbol {p, q, . . . , v, w}.
When n=3, we have �p, q ≥ 0, which is equivalent to

This inequality, multiplied through by π, simply states that the triangle P0 P1 P2 of
2·52 has the proper angle-sum to be spherical or Euclidean.
When n=4, we have �p, q, r ≥ 0, or
7·78

which states that 2π/r is greater than or equal to the dihedral angle π−2� of {p, q}.
(See 2·44.) In other words, it states the possibility of fitting r {p, q}’s round a common
edge.100

When n=5, we have �p, q, r, s ≥ 0, or
7·79

which states that the values of � for {p, q} and {s, r} are together greater than or equal
to π/2. (A geometrical reason for this will be seen later.)
7·8. The enumeration of possible regular figures. When n=4, we have a Schläfli

symbol {p, q, r}, where both {p, q} and {q, r} must occur among the Platonic solids
{3, 3}, {3, 4}, {4, 3}, {3, 5}, {5, 3}.
The criterion 7·78 admits the six polytopes
7.81

and the one honeycomb {4, 3, 4}, but rules out
7·82

Then the criterion 7·79 admits the three polytopes
7·83



and the three honeycombs
7·84

(of which the last is �5), but rules out
7·85

Since the only regular polytopes in five dimensions are �5, �5, �5, it follows by induc-
tion that in more than five dimensions the only regular polytopes are �n, �n, �n, and the
only regular honeycomb is �n+1.
Since 7·77 is merely a necessary condition, it remains to be proved that the four-

dimensional polytopes {3, 4, 3}, {3, 3, 5}, {5, 3, 3} and honeycombs {3, 3, 4, 3}, {3, 4,
3, 3} actually exist. This is usually done by building up the polytopes, cell by cell, an
exceedingly laborious process in the case of {3, 3,. 5} or {5, 3, 3}.101

Two superior methods of construction will be described : one in §§ 8·2-8·5, and the
other in § 11·7.
7·9. The characteristic simplex. What kind of figure is the simplex O0 O1 . . . On of

§ 7·6 ? We definedOj as the centre of a cell �j of the �j+1 whose centre isOj+1. Hence
Oj+1 Oj is perpendicular to the j-space of the �j, and all the lines
On On−1, On−1 On−2, . . . , O2 O1, O1 O0

are mutually perpendicular. In fact, each triangle Oi Oj Ok (i<j<k) is right-angled at
Oj. Thus the j-space O0 O1 . . . Oj is completely orthogonal to the (n−j)-space Oj Oj+1

…On. It follows that the hyperplanes O0 . . . Ok−1 Ok+1 . . . On and O0 . . . Oi−1 Oi+1 . . .
On, which contain these respective subspaces, are perpendicular (provided i<j<k). In
other words, the dihedral angle opposite to the edge Oi Ok is a right angle whenever
i<k−1. Such a simplex is called an orthoscheme ; e.g.,O0 O1 O2 O3 is a quadrirectangular
tetrahedron.
The lines On Oj (j=0, 1, . . . , n−1 which are “radii” of �n, meet the unit sphere round

On in points Pj which form a spherical simplex102 P0 P1 . . . Pn−1. (See 2·52 for the
case when n=3.) Such simplexes cover the sphere, and there is one for each operation
of the symmetry group [p, q, . . . , v, w ]. Thus the characteristic simplex P0 P1 . . . Pn−1 is
a fundamental region for the group. The reciprocal polytope naturally has the same
symmetry group ; it also has the same characteristic simplex, with the P’s named in
the reverse order.



The dihedral angle of O0 O1 . . . On opposite to the edge Oi Ok (i<k<n) is the same as
the dihedral angle of P0 P1 . . . Pn−1 opposite to Pi Pk. Hence (or by a direct argument
similar to that used for O1 O1 . . . On above) the characteristic simplex is a spherical
orthoscheme. We shall soon find that its acute dihedral angles, opposite to the edges

P0 P1, P1 P2, . . . , Pn−2 Pn−1,

are

π/p, π/q, . . . , π/w.

For this purpose it is desirable to project the polytope radially onto a concentric
sphere, so as to obtain a partition of the sphere into Nn−1 spherical polytopes,which we
regard as the cells of a spherical honeycomb. The spherical honeycomb shares all the
numerical properties of the polytope, and also, when properly interpreted, its angular
properties. Pairs of adjacent vertices are joined, not by Euclidean straight segments,
but by arcs of great circles (which are the straight lines of “ spherical space ”). These
“edges” are of length 2P0 P1 = 2�. The cells are (n−1)-dimensional spherical polytopes
of circum-radius P0 Pn−1=� and in-radius Pn−2 Pn−1=�.

We allow the Schläfli symbol {p, …, v} to have three different meanings : a Euclidean
polytope, a spherical polytope, and a spherical honeycomb. This need not cause any
confusion, so long as the situation is frankly recognized. The differences are clearly
seen in the concept of dihedral angle. The dihedral angle of a spherical polytope is
greater than that of the corresponding Euclidean polytope, but a spherical honeycomb
has no such thing (save in a limiting sense, where we might call it π). An infinitesimal
spherical polytope is Euclidean ; and as the circum-radius of a spherical polytope
increases from 0 to π/2, the dihedral angle increases from its Euclidean value to π,
the final product being a spherical honeycomb.

For instance, {4, 3}, qua Euclidean polytope, is an ordinary cube (of dihedral angle
π/2), whichmay be a cell of the Euclidean honeycomb {4, 3, 4}. Qua spherical polytope
(on a sphere in four dimensions) its faces are spherical quadrangles, and its dihedral
angle may take any value between π/2 and π ; in particular, when the dihedral angle
is 2π/3, the spherical hexahedron is of the right size to be a cell of the spherical
honeycomb {4, 3, 3}. Finally, qua spherical honeycomb it covers a sphere in ordinary
space, and its faces are spherical quadrangles of angle 2π/3.



The arrangement of characteristic simplexes covering the sphere can be obtained
directly as a simplicial subdivision of the spherical honeycomb. In fact, Pn−1 is the
centre of a cell, Pn−2 is the centre of a cell of that cell, and so on. From the corner Pn−1
of the characteristic simplex P0 P1 . . . Pn−1 of {p, q, . . . , v, w}, a small sphere with
centre Pn−1 Pn−1 Pi) which is similar to the characteristic simplex of the cell {p, q,
…, v}. Again, from the corner P0 a small sphere with centre P0 P0 Pi+1) similar to
the characteristic simplex of the vertex figure {q, …, v, w}.
The characteristic simplex of {p} is an arc P0 P1 of length
�p = �p = �p = π/p.
That of {p, q} is a spherical triangleP0 P1 P2, with angles π/q, π/2, π/p at the respective

vertices, and sides
P0 P1 = �p, q, P0 P2 = �p, q, P1 P2 = �p, q,
whose trigonometrical functions can be read off from Fig. 2.4A.
The characteristic simplex of {p, q, r} is a quadrirectangular spherical tetrahedron

P0 P1 P2 P3 (cut out from a sphere in four dimensions by four hyperplanes through
the centre O4), whose solid angles at the vertices P3 0and P0 correspond to the char-
acteristic triangles of {p, q} and {q, r}. (See Fig. 7.9A.) Thus the dihedral angles at the
edges P2 P3, P0 P3, P0 P1 are
πlp, πlq, π/r,
while the remaining three are right angles.103 Also the face-angles at the vertices

P3, P0 are
�P0 P3 P1 = �p,q′

�P1 P0 P2 = �q,r′
�P0 P3 P2 = �p,q′

�P1 P0 P3=�q,r ′
�P1 P3 P2 = �p,q′

�P2 P0 P3 = �q,r′
and the remaining acute angles, being equal to dihedral angles, are
�P0 P2 P1= π/p, �P2 P1 P3 = πlr .

FIG. 7.9A



Hence, from the right-angled spherical triangles P0 P1 P2, P0 P1 P3, P1 P2 P3,

We have seen that the characteristic simplex of {p, q, . . . v, w}, being a spherical
orthoscheme, has dihedral angles π/2 opposite to all its edges except
P0 P1,P1 P2,…, Pn–2 Pn–1.
We are now ready to prove that the remaining dihedral angles are
π/p, π/q, …, π/w.
This statement has already been verified in 2, 3, and 4 dimensions ; so let us assume

it for n—1 dimensions and use induction.

π/p, π/q, . . . , π/v
;

π/q, π/r, . . . , π/w
P0 P1. . . Pn−1 opposite to Pi Pj (i<j<n−1 0 P1. . .Pn−1 opposite to

Pi+1PJ+1 P0 P1. . . Pn−1 has the dihedral angles π/p, π/q, . . . , π/v, π/w, as required.
Since the reciprocal honeycomb has the same P’s in the reverse order, it follows

that
The reciprocal of {p, q, …, v, w} is {w, v, …, q, p}.
Most of the above theory applies to Euclideanhoneycombs just aswell as to spherical

honeycombs. The characteristic simplex P0 P1. . .Pn−1 (or O0 O1. . . On−1) is then a
Euclidean orthoscheme, the fundamental region for the infinite symmetry group.

Since �p,q = � P1 P3 P2 and π/r = �P3 P1 P2, this simply means that the angle-sum
of the right-angled triangle P1 P2 P3 is greater than or equal to π. Exactly the same
interpretation can be given to the inequality

which comes from 7.79. For, in the orthoscheme P0 P1 P2 P3 P4 �P3 P1 P2=�
The angles � and � are reciprocal properties, in the sense that



�w, . . . p = �p, . . . ,w.

This provides an expression for the dihedral angle π—2� of the Euclidean polytope {p,
q, …, v, w}. Wemight expect to find a new criterion by remarking that a known polytope
{p, q, . . . , v} can serve as the cell of a possible polytope or (Euclidean) honeycomb {p, q, .
. . , v, w} provided w repetitions of its dihedral angle can be fitted into a total angle of
2π, i.e., provided

Practically all the ideas in this chapter (with the exception of Schoute’s generalized
prism or rectangular product, described on page 124) are due to Schläfli, who discov-
ered them before 1853—a time when Cayley, Grassmann, and Möbius were the only
other people who had ever conceived the possibility of geometry in more than three
dimensions.104

Observing that gp, . . . , w is equal to the number of repetitions of the spherical
orthoscheme P0 P1 . . . Pn−1 that will suffice to cover the whole sphere, Schläfli
investigated the content of such a simplex as a function of its dihedral angles. He
showedhow this function can be defined by a differential equation, and obtainedmany
elegant theorems concerning it. In the four-dimensional case (where the differential
equation was rediscovered fifty years later by Richmond), he denoted the volume of
the quadrirectangular tetrahedron P0 P1 P2 P3 by

It seems105 that the simplest explicit formula for this “ Schälfli function ” is

where

gp,q,r (although this will not throw any further light on the volume of a spherical
tetrahedron).



Ludwig Schläfli was born in Grasswyl, Switzerland, in 1814. In his youth he studied
science and theology at Berne, but received no adequate instruction in mathematics.
From 1837 till 1847 he taught in a school at Thun, and learnt mathematics in his
spare time, working quite alone until his famous compatriot Steiner introduced him
to Jacobi and Dirichlet. Then he was appointed a lecturer in mathematics at the
University (Hochschule) of Berne, where he remained for the rest of his long life.

His pioneering work, mentioned above, was so little appreciated in his time that
only two fragments of it were accepted for publication : one in France and one in
England.106 However, his interest was by no means restricted to the geometry of
higher spaces. He also did important research on quadratic forms, and in various
branches of analysis, especially Bessel functions and hypergeometric functions ; but
he is chiefly famous for his discovery of the 27 lines and 36 “ double sixes ” on the
general cubic surface.107

His portrait shows the high forehead and keen features of a great thinker. He was
also an inspiring teacher. He used the Bernese dialect, and never managed to speak
German properly.

He died in 1895. Six years later, the Schweizerische Natur-forschender Gesellschaft
published his Theorie der vielfachen Kontinuität as a memorial volume.108 That work
is so closely relevant to our subject that a summary of its contents will not be out of
place. §§ 1-9 provide an introduction to n Table I (ii) on page 292) are all computed
very elegantly. The five-dimensional polytopes and four-dimensional honeycombs
are obtained in § 18, where it is also shown that the only higher regular figures are an,
�n, �n, �n . The “ surface ” and “ volume ” of an n

The French and English abstracts of this work, which were published in 1855 and
1858, attracted no attention. This may have been because their dry-sounding titles
tended to hide the geometrical treasures that they contain, or perhaps it was just
because they were ahead of their time, like the art of van Gogh. Anyhow, it was nearly
thirty years later that some of the same ideas were rediscovered by an American.
The latter treatment (Stringham 1) was far more elementary and perspicuous, being
enlivened by photographs of models and by drawings similar to our Figs. 7.2A, B,
c. The result was that many people imagined Stringham to be the discoverer of the
regular polytopes. As evidence that at last the time was ripe, we maymention their



independent rediscovery, between 1881 and 1900, by Forchhammer (1), Rudel (1),
Hoppe (1, 3), Schlegel (1), Puchta (1), E. Cesàro (1), Curjel (1), and Gosset (1). Among
these, only Hoppe and Gosset rediscovered the Schläfli symbol {p, q, . . . , w}. Actually,
Schläfli and Hoppe used ordinary parentheses, but Gosset wrote
| p | q | . . . | w | .
The latter form has two advantages : the number of dimensions is given by the

number of upright strokes, and the symbol exactly includes the symbols for the cell
and vertex figure. In fact, Gosset regards | p as an operator which is applied to | q | . . .
| w | in order to produce a polytope with p-gonal faces whose vertex figure is | q | . . . |
w | .
Hoppe (2, pp. 280-281) practically rediscovered the Schläfli function when he

showed that

the upper limit for � being given by cos �
But he used his geometrical knowledge of gp,q,r in the various particular cases, and

did not attempt to evaluate the integral directly.





8 CHAPTER VIII TRUNCATION

WE have described three families of regular polytopes : the simplexes an (viz., the
triangle, tetrahedron, etc.), the cross polytopes �n (the square, octahedron, etc.), the
measure polytopes �n (the square, cube, etc.) ; and the one family of cubic honeycombs
�n.
{3, 4, 3}, {3, 3, 5}, {5, 3, 3}
and the four-dimensional honeycombs
{3, 3, 4, 3}, {3, 4, 3, 3}.
p, q, . . . , w}, in terms of a new symbol (j, k
The simple truncations of the general regular polytope. The actual vertex figures of

a regular polygon {p} are the sides of another {p} which wemay call a truncation of the
first (as it is derived from the first by cutting off all the corners). Its vertices are themid-
points of the sides of the first ; in fact, the two {p}‘s are reciprocal with respect to the
in-circle of the first, which is the circum-circle of the second. Somewhat analogously,
the vertex figures and truncated faces of a regular polyhedron or tessellation {p, q p,
q q}’s and two {p}’s, arranged alternately.
Again, the N0 vertex figures and N3 truncated cells of a regular polytope or honey-

comb {p, q, r} are the cells, {q, r

which has N1 vertices, the mid-points of the edges of {p, q, r p} of {p, q, r} ; it is thus
an edge of one vertex figure {q, r}, and also a vertex figure of one face {p}. But such a {p}
is the common face of two cells {p, q} of [p, q, r q, r p} as interfaces. (Sections of
these are indicated in Fig. 8.1A.)
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FIG. 8.1A
p, q, r}, are the centres of the {r}’s of a reciprocal {r, q, p}, it is natural to let

denote the polytope (or honeycomb) whose vertices are the centres of the {p, …, r}’s
of {p, …, r, s, t, u, . . . , w}, or the centres of the {w, . . . , u}’s of {w, . . . , u, t, s, r, . . . , p}. Such
“truncations” of a given regular figure arise at special stages of a continuous process
which, in the finite case, may be described as follows.
When a regular polytope {p, q, . . . , w} is reciprocated with respect to a concentric

sphere of radius 0R, its vertices are the centres of the cells of the reciprocal polytope
{w, . . . , q, p}. For any greater radius of reciprocation, the former polytope is entirely
interior to the latter. Let the radius gradually diminish. Then the sphere shrinks, and
the reciprocal polytope shrinks too. As soon as the radius is less than 0R, the bounding
hyperplanes of {w, . . . , p} cut off the corners of {p, . . . , w}. What is left, namely the
common part of the content of the two reciprocal polytopes, is (in a more general
sense) a truncation of either.
In gradually diminishing, the radius of reciprocation takes (at certain stages) the

values 0R, 1R, . . . , n−1R. In the last case, the vertices of {w, . . . , p} are at the centres of
the cells of {p, . . . , w} ; so here, and for any smaller values, the truncation is just {w, . . .
, p} itself. When the radius of reciprocation is kR (0<k<n−1), the sphere touches the �k’s
of {p, . . . , w} and the �n−k−1’s of {w, . . . , p}, or, let us say,
the {p, . . . , r}’s of {p, . . . , w) and the {w, . . . , u}’s of {w, . . . , p}.
At a point of contact, the {p, . . . , r} and {w, . . . , u 0R, 1R, 2R, . . . , n−3R, n−2R n−1R

determine the polytopes

whose vertices are the centres of elements �0, �1 �2, . . . , �n−3′ �n−2′ �n−1 of the original
polytope.
While the radius of reciprocation is diminishing from the value 0R, the polytope

{p, q, . . . , w} has all its corners cut off and replaced by new cells {q, . . . , w}. These
increase in size until the radius reaches the value 1R, when the cells {q, . . . , w p,
q, . . . , w p, q, . . . , v



and

In terms of properties of {p, . . . , w}, there are N0 cells of the former kind, and Nn−1

of the latter.
s, r, …, p} and {t, u, …, w}, which have a common edge, { }. The plane faces are {s} and

{t}; the solid faces are {s, r}, t, u}; and so on.
Besides these simple truncations there are some interesting intermediate truncations

; e.g., in the two-dimensional case, a certain radius between 0R and 1R determines {2p}
as a truncation of {p}. But the investigation of such figures would take us too far afield.

�4 �4 Fig. 8.1A with p=q=3, r=4.) Hence this truncation of �4 is regular :

If any confirmation were needed, wemight observe that its vertex figure, being a
convex polyhedron with square faces, can only be a cube.
Thus the regular polytope {3, 4, 3} (Fig. 8.2A) has 24 octahedral cells. Being self-

reciprocal (as its Schläfli symbol is palindromic), it has also 24 vertices, namely the
centres of the edges of �4
N0 = 24, N1,= 96, N2 = 96, N3 = 24.

FIG. 8.2A
{3, 4, 3}

FIG. 8.2B �4 and �4



The construction exhibits [3, 3, 4] as a subgroup in [3, 4, 3]. Since g3,3,4 = 2
4 �4’s

and consequently lie in the bounding hyperplanes of three �4’S. Whichever set of 8
octahedra we pick out, the remaining 16 lie in the bounding hyperplanes of that �4.
Hence the cells of �4 lie in the bounding hyperplanes of two �4’s, and the cells of {3, 4,
3} lie in the bounding hyperplanes of three �4’s. Reciprocally, the vertices of �4 belong
to two �4’s, and the vertices of {3, 4, 3} belong to three �4’s.

Again, the bounding hyperplanes of {3, 4, 3} belong (in three ways) to one �4 and
one �4; reciprocally, the vertices of {3, 4, 3} belong (in three ways) to one �4 and one �4.
In the latter case (Fig. 8.2B) the 32 edges of the �4 occur among the 96 edges of {3, 4,
3} ; the remaining 64 fall into 8 sets of 8, joining each vertex of the �4 to the vertices of
the corresponding cell of the �4. Thus the 24 cells of {3, 4, 3} are dipyramids based on
the 24 squares of the �4. (Their centres are the mid-points of the 24 edges of the �4.)

We mentioned, in § 2·7, a construction for the rhombic dodecahedron from two
equal cubes. We now have an analogous construction for {3, 4, 3} from two equal
hyper-cubes. Cut one of the �4’s into 8 cubic pyramids based on the 8 cells, with their
common apex at the centre. Place these pyramids on the respective cells of the other
�4. The resulting polytope is {3, 4, 3}. We shall refer to this as Gosset’s construction
for {3, 4, 3}. It is related to Cesàro’s by reciprocation : Cesàro cuts pyramids from the
corners of �4, while Gosset erects pyramids on the cells of �4.

Incidentally, we have found four regular compounds. By a natural extension of the
notation defined in § 3·6, these are

�4[2 �4], [2 �4]�4,

{3, 4, 3}[3 �4]2{3, 4, 3}, 2{3, 4, 3} [3 �4] {3, 4, 3}.

Other compounds will be found in § 14·3.

8·3. Coherent indexing. We saw in § 3·7 how the edges of an octahedron can be
“ coherently indexed ” in such a way that the four edges at any vertex are directed
alternately towards and away from the vertex. The sides of each face are directed so as
to proceed cyclically round the face, and alternate faces acquire opposite orientations.
In other words, the octahedron has four clockwise and four counterclockwise faces
(as viewed from outside).



If the polytope {3, 4, 3} can be built up from 24 such octahedra, so that each triangle
is a clockwise face of one octahedron and a counterclockwise face of another, then
we shall have a coherent indexing for all the 96 edges of {3, 4, 3}. But it is not obvious
that such “ building up ” can be done consistently. We therefore make a deeper
investigation, as follows.
Let us reciprocate a coherently indexed octahedron, and make the convention that

each edge of the cube shall be indexed so as to cross the corresponding edge of the
octahedron from left to right (say). The consequent indexing of the edges of the cube
is naturally not “ coherent,” but each edge is directed away from a vertex of one of
the two inscribed tetrahedra and towards a vertex of the other. The same kind of “
alternate ” indexing can be applied to the edges of �4, by means of its two inscribed
�4’s.
Now consider Gosset’s construction, where {3, 4, 3} is derived from �4 by adding

eight cubic pyramids. The “ alternate ” indexing of the �4, and consequently of each of
the eight cubes, enables us to make a coherent indexing of the cubic pyramids, and
consequently of the whole {3, 4, 3}.
The general statement, of which this is a particular case, is that the edges of a

polytope or honeycomb {p, q, . . . , w} can be coherently indexed if, and only if, q is
even.
8·4. The snub {3, 4, 3}. In § 8·2 we derived {3, 4, 3} from {3, 3, 4}. In § 8·5 we

shall derive {3, 3, 5} from {3, 4, 3}, not directly but with the aid of a kind of modified
truncation which we proceed to describe.

Fig. 8.1A with p=3, q=4, r
Instead of bisecting the edges of {3, 4, 3}, let us now divide them in any ratio a : b

�≥b. In the limiting case when a/b approaches 1, the irregular icosahedron becomes
a cuboctahedron (Fig. 8.4A) with one diagonal drawn in each square face. But each
square face belongs also to a cube. Hence in this case all the cubes likewise have one
diagonal drawn in each face. The question arises, Which diagonal ? The only way
to preserve tetrahedral symmetry is to take those diagonals which form the edges
of a regular tetrahedron inscribed in the cube (Fig. 8.4B). The cube is then divided
into five tetrahedra : the regular one, and four low pyramids. When �/b increases, the
regular tetrahedron remains regular ; but the pyramids grow taller, and there is no
reason to expect them to remain in the same 3-space.



FIG. 8.4A

FIG. 8.4B

When �/b

s{3, 4, 3},

having 96 vertices, 288+144 edges, 96+96+288 triangular faces, 24+96 tetrahedra,
and 24 icosahedra. One type of edge is surrounded by one tetrahedron and two
icosahedra, the other by three tetrahedra and one icosahedron.

8·5. Gosset’s construction for {3, 3, 5}. Since the circum-radius of an icosahedron
is less than its edge-length, we can construct, in four dimensions, a pyramid with
an icosahedron for base and twenty regular tetrahedra for its remaining cells. Let
us place such a pyramid on each icosahedron of s{3, 4, 3}. The effect is to replace
each icosahedron by a cluster of twenty tetrahedra, involving one new vertex, twelve
new edges, and thirty new triangles. Thus we obtain a polytope with 96+24 vertices,
288+144+288 edges, 96+96+288+720 triangular faces, and 24+96+480 tetrahedral
cells. For the purpose of counting the number of cells that surround an edge, each
icosahedron of s{3, 4, 3} counts for two tetrahedra. Thus an edge of any of the three
types is surrounded by just five tetrahedra. This, therefore, is the regular polytope

{3 3, 5},

and we have found that N0=120, N1=720, N2=1200, N3=600. (See Plates IV and VII.)

It follows by reciprocation that the remaining four-dimensional polytope {5, 3, 3} has
600 vertices, 1200 edges, 720 pentagonal faces, and 120 dodecahedral cells. (Plates V
and VIII.)

By 7·62, the symmetry group [3, 3, 5] (of either of these two reciprocal polytopes) is
of order

8·51



The construction indicates that a certain subgroup of index2 in [3, 4, 3] is a subgroup
of index 25 in [3, 3, 5]. In fact, the vertices of {3, 3, 5}, each taken 5 times, are the
vertices of 25 {3, 4, 3}’s. (See Table VI(iii) on page 303.)

We have now established the existence of all the polytopes 7·81. As for the honey-
combs 7·84, we begin with �5

and the centres of its cells are the vertices of the reciprocal honeycomb

{3, 3, 4, 3}.

Thus four-dimensional space can be filled with �4’s, or with {3, 4, 3}’s, just as well
as with �4’s. It follows, incidentally, that the dihedral angle of either �4 or {3, 4, 3} is
exactly 2π/3.

Another case of a regular “ truncation ” is

8·6. Partial truncation, or alternation. We saw, in §§ 3·6, 4·2, 4·7, and 8·2, that it
is possible to select alternate vertices of {4, 3} or {4, 4} or {6, 3} or {4, 3, 4} or {4, 3, 3} in
such a way that every edge has one end selected and one end rejected. Since this can
also be done to any even polygon, it is natural to expect that it can be done to every
polytope or honeycomb {p, q, r, …, w} with p even. (It obviously cannot be done when p
whenever every face �2 has an even number of sides. The details are as follows.

A polytope or honeycomb is said to be simply-connected if it is topologically equiva-
lent to a “ map ” drawn (without any overlapping of cells) on a sphere or a flat space,
respectively. (This is certainly the case for all the figures so far considered, except
those inChapter VI. Thehoneycombs cover a flat space by definition, and the polytopes
can be projected onto concentric spheres without altering their topology.) Hence a
circuit of edges can be shrunk to a point without leaving the manifold (i.e., without
leaving the “ surface ” of the polytope). In other words, such a circuit is (generally in
many different ways) the boundary of a two-dimensional region or “ 2-chain,” consist-
ing of a number of �2’s fitting together in such a way as to be topologically equivalent
to a circle with its interior, or to the curved surface of an ordinary hemisphere. If the
circuit consists of N edges, we can transform the 2-chain into a complete topological
polyhedron (or two-dimensionalmap) by adding oneN 2 has an even number of sides,



the number N must be even too. Finally, we select those vertices of the polytope or
honeycomb which can be reached from a given vertex by proceeding along an even
number of edges. Since every circuit is even, this can never give an ambiguous result
; we shall have selected just half the vertices.
If �n={p, q, r, . . . ,w}, where p is even, let us use the symbol h�n to denote the polytope

or honeycomb whose vertices are alternate vertices of �n ; e.g.,

(The “h” may be regarded as the initial for either “half” or “ hemi.”)
These instances make it clear that h�n is a partial truncation in the sense that, when

�n is a polytope, the rejected corners are cut off by hyperplanes parallel to those of the
corresponding vertex figures. In fact, h{p, q, . . . , v, w}, with p even, has

N0 0

cells {q, . . . , v, w},
and
Nn−1 elements h{p, q,…, v}.
The last are cells, except in the case of h{p} or h{4, q}. Since h{ } is a single point,

while h{4} is a digon, the partially truncated sides of {p} are not sides but vertices of
h{p}, and the partially truncated faces of {4, q} are not faces but edges of h{4, q}.
Since

while in higher space the cells of h{4, q, . . . , v, w} are {q, . . . , v, w) and h{4, q, …, v},
an appropriate extension of the Schläfli symbol is

For, we can now assert that the cells of this polytope or honeycomb are
{q, r, . . . , v, w
This notation covers every case except h{p}={p/2} and h{6, 3}={3, 6}. But it is not so

far-reaching as it looks, since actually q=r= . . . =v=3, and we have only

The polytope h�n is regular when n=1, 2, 3, 4 :
h�1 = �0, h�2 = �1, h�3 = �3, h�4 = �4.



The honeycomb h�n is regular when n=2, 3, 5 :
h�2 = �2, h�3 = �3, h�5 = {3, 3, 4, 3}.
(The regularity of h�5 follows from the fact that its cells, �4 and h�4, are alike.)
The possibility of selecting alternate vertices of �n+1 gives, by reciprocation, the

possibility of selecting alternate cells of �n+1, say white and black cells. In other words,
the chess-board has an n-dimensional analogue. When n=4, take a white �4, and
place on each of its eight cells a cubic pyramid consisting of one-eighth part of the
neighbouring black �4. We thus obtain a {3, 4, 3} (by Gosset’s construction, page 150).
Such {3, 4, 3}’s, derived from all the white �4’s, will exactly fill the four-dimensional
space, coming together in sets of eight at the centres of the black �4’s, as well as at
the vertices of the �5. We thus obtain {3, 4, 3, 3}. (The analogous procedure in three
dimensions leads to the honeycomb of rhombic dodecahedra, which is the reciprocal
of h�4
Much of the above discussion can be simplified by the use of coordinates. If we take

the vertices of �4 to be the permutations of

we immediately deduce the mid-points of its edges, which are the vertices of {3, 4,
3}, as being the permutations of

x1=±1, x2=±1, x3=±1, x4=±1, and ±x1±x2±x3±x4=2.
Hence the vertices of the reciprocal {3, 4, 3} (with respect to the sphere

x1
2+x2

2+x3
2+x4

2

which we recognize as the vertices of �4 and �4 (Fig. 8.2B).
a : b (where �+b=1) by points whose coordinates are the even permutations of
(±1, ± �, ± b, 0).
Putting �=�−1, b=�−2, and multiplying through by �, we obtain the vertices of s{3, 4, 3}

as even permutations of
8.74



�, 1, ±�−1, 0), namely 2�−1.

Locating the centres of the tetrahedra of various types, and multiplying through
by 4�−2, we obtain the 600 vertices of the reciprocal {5, 3, 3} (of edge 2�−2) as the
permutations of

along with the even permutations of

Thesimplest coordinates for then+1verticesof the regular simplexan

8.75

i.e., 1 and n 0’s, in the hyperplane �x=1 of (n+1)-dimensional space. An element �j
is given by restricting the permutations so as to allow the 1 to occupy any one of j+1
definite positions. Hence the centre of a typical �j (after multiplying through by j+1) is

(1j+1, 0n-j).
j+k} has for vertices the permutations of

Similarly, the vertices of the cross polytope �n are the permutations of

j+1 odd and k+1 even coordinates. In particular, the vertices of {3, 4, 3, 3} have
two odd and two even coordinates.

The 2n points (±1n) are, of course, the vertices of the measure polytope �n (of edge
2). From these we pick out the 2n−1 vertices of the “ half measure polytope ” h�n (of
edge 2√2) by allowing only even (or only odd) numbers of negative signs. This rule is
justified by the fact that every edge of yn joins two points which differ by unity in their
number of negative signs.



The cubic honeycomb �n+1 (of edge 1) is formed by all the points with n integral
coordinates. From these, we pick out the vertices of h�n+1 (of edge √2) by restricting
the coordinates to have an even (or odd) sum. For, an edge of �n+1 joins two points
whose coordinates differ by unity in just one place. In particular, the vertices of {3, 3,
4, 3}=h�5 can be taken to have four coordinates with an even sum, in every possible
arrangement.
The circum-radius 0R

n of edge 2l,

Alternatively, we may use the general formula

The other radii jR can be deduced from the fact that the triangle O0 Oj On is right-
angled at Oj. (See § 7.9.) Wemerely have to subtract the squared circum-radius of a
j-dimensional element from the squared circum-radius of the whole polytope ; e.g.,
for an,

The angular properties �=O0 On O1, � = O0 On On−1, �=On−2 On On−1 are then given by

From the last of these we deduce the dihedral angle π–2�.
If we know the content Cp, . . . , v of a cell, and the number of cells, we obtain the

surface-analogue as
S = Nn−1 Cp, . . . , v.
By dissecting the polytope intoNn−1 pyramids with their common apex at the centre,

we obtain the whole content (or volume-analogue) as
8·82

These formulae enable us to prove by induction that the contents of �n, �n, �n are
respectively



(Of course the last of these results is obvious from first principles. In the case of �n,
the cell is �n−1, so induction is not needed there. Other special cases can be seen in
Table I, on page 293.)

If general formulae are desired (in terms of p, q,…, w), the best procedure is to define
n numbers

(− 1, 1), (0, 2), (1, 3), . . . , (n − 2, n)

so as to satisfy the relations

8·83

Further numbers (j, k) are then defined by (j, j)=0, (j, j+1)=1,

and (k, j)=−(j, k) whence109

It follows that (0, k)/(-1, k) is the kth convergent of the continued fraction

One of the n numbers (-1, 1), …, (n-2, n j, k)’s in a triangular table

by means of the recurrence formula

For instance, when n=3 wemight take (0, 2)=1 and deduce

PLATE IV



TWO PROJECTIONS OF {3, 3, 5}
Dividing the kth row and column of the determinant

Similarly,

Since

There are analogous expressions for Cp, . . . , u, v/Cp, . . . , u, etc., ending with

Multiplying these n equations together, we deduce



We have seen that one of the numbers (-1, 1), (0, 2), …, (n-2, n) can be chosen as we
please. It happens that the best choice is (0, 2)=2, whenever n>3. Then the values for
all the numbers (j, k) are as follows :

In the last case, a concise summary is (−1, k)=1−k�−3 (k≥0).
8·9. Historical remarks. In § 8·2 we obtained {3, 4, 3} by taking, as vertices, the

mid-points of the edges of the cross polytope �4. We have ascribed this construction
to Ernesto Cesàro (1, p. 65) because, although Schläfli must have understood it, he did
not actually say so. The general “ curtail ”
8·91

golden section ; this was pointed out by Mrs. Stott in 1931.110

r} ; and the vertex figure of s{3, 4, 3} is a solid bounded by five triangles and
three pentagons (Fig. 8.9A), which may be derived from an icosahedron (the vertex
figure of (3, 3, 5}) by truncating three non-adjacent corners, i.e., by cutting off three
pentagonal pyramids, just as s{3, 4, 3} itself can be derived from {3, 3, 5} by cutting
off 24 icosahedral pyramids. The still more remarkable last part of Gosset’s essay
is concerned with the polytopes k21 which we shall construct (in a quite different
manner) in § 11-8.
The general theory in § 8·6 is new, but the idea of partial truncation was suggested

by Mrs. Stott (2, p. 15) and the sig-nificant



FIG. 8.9A
The vertex figure of s{3, 4, 3}
cases h�n, h�n were discussed analytically by Schoute (10, pp. 73, 90). The identity
h�5 = {3, 3, 4, 3}
may be said to have been anticipated by Gosset in his (reciprocal) remark that the

cells of {3, 4, 3, 3} are concentricwith alternate cells of �5 ; this enabledhim to construct
all the regular polytopes and honeycombs without using any “ deeper ” truncation
than 8·91.
The general process of truncation (§ 8·1) is a special combination of Mrs. Stott’s

two processes of expansion and contraction,111 k’s of �n is cek �n. But she also defined
other polytopes
ei . . . ek �n and cei . . . ek �n (0<i< . . . <k<n)
which, unfortunately, are beyond the scope of this book.
The coordinates that we found for {3, 4, 3} in § 8·7 are due to Schläfli (4, p. 51). He

also obtained coordinates for {3, 3, 5}, but with a different frame of reference (p. 121).
The coordinates chosen here are due to Schoute (6, pp. 210-213), 112though he failed
to observe that the points 8·74 by themselves form a semi-regular polytope.
We saw, in § 4·4, that the vertices of {4, 4} may be regarded as representing the

Gaussian integers. Analogously, the vertices of {3, 3, 4, 3} (whose coordinates are either
four integers or four halves of odd integers) represent Hurwitz’s integral quaternions
(see Dickson 1, p. 148). The vertices of {3, 4, 3} (viz., 8·71 and 8·73, divided by 2)
represent the 24 “ units ”
±1, ±i, ±j, ±k, (±1±i±j±k)/2
of that arithmetic.
It was Schläfli (4, pp. 52-56) who found the radii, angles, and content of each regular

polytope, as in § 8·8 ; but he did not attempt to give a general formula for content, such
as 8·87.
Thorold Gosset was born in 1869. After a largely classical schooling, he went up to

Pembroke College, Cambridge, in 1888. He was called to the Bar in 1895, and took a
law degree the following year. Then, having no clients, he amused himself by trying
to find out what regular figures might exist in n dimensions. After rediscovering all
of them, he proceeded to enumerate the “ semi-regular ” figures. He recorded the
results in the above-mentioned essay, which he sent to Glaisher in 1897. Glaisher
showed it to Whitehead and Burnside. It is tempting to speculate on the possibility



that some of its ideas, unconsciously assimilated, bore fruit in Burnside’s later work.
This, however, is unlikely ; for Burnside declared (in a letter to Glaisher, dated 1899)
that he never found time to read more than the first half. “ The author’s method, a
sort of geometrical intuition ” did not appeal to him, and the idea of regarding an
(n−1)-dimensional honeycomb as a degenerate n-dimensional polytope seemed “
fanciful.” He thus failed to appreciate the new discoveries, and Glaisher was content
to publish the barest outline. That published statement remained unnoticed until
after its results had been rediscovered by Elte andmyself. As he was a modest man,
Gosset let the subject drop, and pursued his career as a lawyer. He died in 1962 at the
age of 93.



9 CHAPTER IX POINCARÉ’S PROOF
OF EULER’S FORMULA

THEdiscoverer andearliest rediscoverers of the regular polytopes (viz., Schläfli, String-
ham, Forchhammer, Rudel, and Hoppe) all observed that the total number of even-
dimensional elements and the total number of odd-dimensional elements are either
equal (as in the case of a polygon) or differ by 2 (as in the case of a convex polyhe-
dron). Schläfli (4, p. 20), like most of the others, attempted a general proof; but the
dependence on simple-connectivity was not properly appreciated until 1893, when
Poincaré wrote a short note on the subject, which he expanded six years later.113

This, like the last half of Chapter I, belongs to the realm of topology (or analysis situs).
Incidentally, it seems odd that topologists have never adopted the word “ polytope.”
They continually use “simplex.” The antithesis, “complex,” means a collection of poly-
topes meeting one another at any kind of element ; e.g., a one-dimensional complex
is a graph.
9·1. Euler’s Formula as generalized by Schläfli. Consider the following sequence

of propositions.

(We proved this in § 4·8.)
Schläfli exhibited these as special cases of the formula
N0−N1+N2− . . . +(−1)

n−1Nn−1=1−(−1)
n

or

149



9·11N0−N1+N2− . . . Nn−1±Nn=1
or
N−1−N0+N1− . . . ±Nn Nn=0,
which holds for any simply-connected polytope �n.
This is verified for the regular polytopes �n, �n, �n by setting X = −1 in 7·41. As an

instance where the polytope is not regular, wemay take the s{3, 4, 3} of § 8·4, for which
N0 = 96, N1 = 432, N2 = 480, N3 = 144,
or the h�5 of § 8·6, for which
N0 = 16, N1 = 80, N2 = 160, N3 = 120, N4 = 26.
But the general case is not so easy. The usual proof by induction (e.g., Somerville 3, p.

147) is the natural extension of Euler’s own proof of 1·61, and involves the same kind
of unjustified assumption about the manner in which a polytope may be gradually
taken apart or built up. The following procedure is an attenuated version of Poincaré’s
deduction of the analogous formula for a circuit (i.e., a generalized polytope which
may be multiply-connected).
9·2. Incidence matrices. It must be emphasized that 9·11 is a theorem of topology,

which is more general than ordinary geometry in that it is not concerned with
measurement, nor even with straightness. The polytope �n may be distorted (by
bending and stretching, as if it were made of rubber) without changing the essential
relationship of its vertices �0, edges �1, plane faces �2, solid faces �3, . . . , and cells �n−1.
In fact, its topological nature is determinedwhenweknowwhich �k−1’s are cells of each
�k (for k=1, 2, …, n). This information is expressed concisely in terms of incidence num-
bers
Let the various �k’s (for each k

k these numbers form an incidence matrix (or rectangular table) of Nk−1

rows and Nk columns. The ith row shows which �k jth column shows which
�k−1 n−1’s
are cells of the whole polytope �n
9·21

Dually, as in § 7·4, we regard all the elements as having a common “null” element
�−1 ; in other words, we make the convention
9·22



Consider, for example, a tetrahedron ABCD (n=3) with edges AD, BD, CD, BC, AC,
AB, and faces BCD, ACD, ABD, ABC.Here the �’s are the entries in the following four
tables :

For an obvious reason, we have chosen a very simple example. The incidence
matrices for {3, 3, 5} would fill a big book; and in § 11·8 we shall have occasion to
describe an eight-dimensional polytope (called 421) whose incidence matrices would
fill about a million books.
9·3. The algebra of k-chains. A k-chain is defined to be any selection of �k’s (for

a definite k), considered as the sum k+1 is a special k-chain which we call the
boundary of the �k+1. The sum of two k-chains is defined as consisting of the distinct
elements of both, with any common elements omitted. Thus a k-chain is a formal sum

where each xj=0 or 1 ; and the sum of two k-chains is
9·31

with the coefficients reduced modulo 2. In other words, the coefficients are not
ordinary numbers but residue-classes,114 “ 0 ” and “ 1” meaning “even” and “odd.”
These combine according to the finite arithmetic
9·32

This convention enables us to define the boundary of a k-chain as the sum of the
boundaries of its �k’s. For, if the k-chain contains two �k’s which are juxtaposed to
the extent of having a common �k−1, this is naturally no part of the boundary of the
k-chain. In particular, the boundary of a �k+1 is a k-chain whose bounding (k−1)-chain
vanishes ; i.e., it is an unbounded k-chain, or k-circuit. So also the boundary of any
(k+1)-chain is a k-circuit.



In the tetrahedron used as an example above, the boundary of the 2-chainABC+BCD
is

AB+AC+BC+BC+BD+CD=AB+AC+BD+CD;

and this 1-chain is a 1-circuit, as its boundary is

A+B+A+C+B+D+C+D=0.

k−1’s
which are incident with it, namely

and theboundaryof thek-chain �xj i
and j). Inparticular, �xj k-
circuit if

9·33

for each i. On theotherhand, �xj bound-
ing k-circuit if it is the boundary of some (k+1)-chain � yl yl (l=1, 2, . . . , Nk+1) such
that

9·34

We are regarding 9·33 and 9·34 as equations whose coefficients and unknowns be-
long to the finite arithmetic 9·32. But we could just as well regard them as congruences,
by writing “ = (mod 2) ” instead of “ =.”

Theconvention9·22 implies that the0-chain �xj xj=0,
i.e., if the number of its points is even. In saying that the boundary of a (k+1)-chain is a
k-circuit, we implied that k>0 ; but our convention makes this hold also when k=0.
Conversely, any 0-circuit, consisting of (say) 2m vertices, is the boundary of a 1-chain
consisting ofm connected sequences of edges.

When k=n−1, 9·34 shows that the condition for � xj n−1)-circuit is that all the x’s
be equal (to y1). The case when they all vanish is of course excluded ; hence every
xj=1, and the only bounding (n n.



9·4. Linear dependence and rank. The rule 9·31 suggests the abstract representa-
tionof thek-chain �xj x1,
x2, . . . , xNk)whose componentsxj j=1,
2, . . . , Nk) form a basis, in the sense that every vector is expressible as a linear
combination of these Nk. In other words, the class of k-chains can be represented as
an Nk-dimensional vector space

115 (over the field of residue-classes modulo 2).
The class of k-circuits constitutes a subspace of this vector space. The number of

dimensions of the subspace is the number of independent k-circuits, or the number
of independent solutions of the Nk−1 homogeneous linear equations 9·33 for the Nk

unknown x’s.
The bounding k-circuits likewise form a subspace. Its number of dimensions, being

the number of independent bounding k-circuits, is the number of independent vectors
(x1, x2
As a step towards the computation of these numbers, we proceed to define “ rank.”

By selecting certain rows of a matrix, and the same number of columns, we obtain a
square submatrix whose determinant may or may not vanish. The number of rows
(or columns) is called the order of the determinant. The rank of the matrix is defined
as the largest order, say p, for which a non-vanishing determinant occurs. This pmay
take any value from 0 (when the matrix consists entirely of zeros) to the number of
rows or columns (whichever is smaller). Since each determinant of order �+1 van-
ishes, every row (or column) can be expressed as a linear combination of p particular
rows (or columns), namely of those which were selected in forming a non-vanishing
determinant.
For instance, the matrices �1 and �2 on page 167 are both of rank 3.
9·5. The k-circuits. Let �k x’s, only �k of the Nk−1 equations are really needed ; the

rest are algebraic consequences of those �k. We thus have to solve �k homogeneous
equations for Nk unknowns. If Nk=�k+1, there is a unique solution (not counting the
trivial solution where all the x’s vanish). If Nk=�k+1+�, where �>0, the equations can
still be solved after arbitrary values have been assigned to � of the x’s. In either case,
the equations have Nk−�k independent solutions. Accordingly, this is the number of
independent k-circuits.
In particular, the rank of a single row of 1’s (see 9·22) is
9·51



A simple set of N0−�0 independent 0-circuits is

In the case of the tetrahedron, the matrix �1 provides the four equations
x1 + x5 + x6 = 0, x2 + x4 + x6 = 0, x3 + x4 + x5 = 0, x1 + x2 + x3 = 0,
of which the last can be obtained by adding the first three. These have the N1−�1=3

independent solutions
(0, 1, 1, 1, 0, 0), (1, 0, 1, 0, 1, 0), (1, 1, 0, 0, 0, 1),
corresponding to the 1-circuits
BD+CD+BC, AD+CD+AC, AD+BD+AB.
9·6. The bounding k-circuits. The equations 9·34 define vectors (x1,

x2 �k+1.
Accordingly, this is the number of independent bounding k-circuits.
In particular, the rank of a single column of 1’s (see 9·21) is
9·61

and the only bounding (n−1)-circuit is the boundary of �n itself.
The matrix �2 on page 167 has �2=3 independent columns. Any three of the four

columns will serve. The first three provide the 1-circuits
BD + CD + BC, AD + CD + AC, AD + BD + AB,
which bound the faces BCD, ACD, ABD of the tetrahedron.
9·7. The condition for simple-connectivity. We saw, in § 9·3, that every bounding

k-chain is a k-circuit. The special property which distinguishes a simply-connected
polytope �n is that, conversely, every k-circuit is the boundary of some (k+1)-chain.
(When n=3 and k=1, this resembles the statement that a closed surface is simply-
connected if every closed curve drawn on it can be shrunk to evanescence.) It follows
that in this case the number of indepedent k-circuits is no greater than the number of
independent bounding k-circuits : Nk − �k = �k+1. Hence
9·71

From this we immediately deduce

which is 9·11.



This completes the proof. The cancellation of p’s is essentially due to the fact that
the rank of a matrix is both the number of independent rows and also the number of
independent columns.
9·8. Theanalogous formula for ahoneycomb. For application in§11·8weneed the

extension of 9·11 to honeycombs. This extension cannot be proved by pure topology,
because it depends on the Euclideanmetric. (It does not hold in hyperbolic space of an
even number of dimensions, although such a space is topologically indistinguishable
fromEuclidean.) As in §§ 4·1 and 4·8, we consider a finite portion of an n-dimensional
honeycomb, consisting of Nn−1 cells �n, and Nj of each lower element �j. By regarding
the whole exterior region as one further cell, we obtain a topological �n+1. Hence, by
9·11,
N0 − N1 + N2 −…+ (−1)

nNn = 1−(−1)
n+1.

If the chosen portion can be enlarged in such a way that the increasing numbers Nj

tend to become proportional to definite numbers �j,we conclude that
9·81
�0 − �1 + �2 − . . . +(−1)

n�n = 0.
In particular, if the honeycomb has a symmetry group, transitive on its vertices

(so that N0j is the same at all vertices), then we can apply 1·81 to the topological �n+1,
obtaining

j’s
at a peripheral vertex of the chosen portion. Since the honeycomb is Eu-
clidean, the number of peripheral vertices is of a lower order of magnitude
than the number of internal vertices. Thus �Nj0/N0 tends to the fixed value
N0j j,
Nj/N0 j/�0. Hence 9·81 is valid in this case (which is just where we shall need it).
9·9. Polytopeswhichdonot satisfyEuler’sFormula.
N0 − N1 + N2 = 12 − 30 + 12 = − 6.

However, Schläfli (4, p. 86) has himself provided a suggestion for properlymodifying
9·11 (as Cayley modified 1·61 in 6·42). In fact, the term Nk has to be replaced by �dd′,
where d is the density of a �k, and d’ is that of the angular figure formed by the higher
elements incident with the same �k (i.e., d′ is the density of the “ (k+1)th vertex figure
”).





10 CHAPTER X FORMS, VECTORS,
AND COORDINATES

THIS chapter is a collection of various results in algebra (§§ 10·1-10·3) and analytical
geometry (§§ 10·4-10·8). Most of them are familiar, and the rest are closely related
to known theorems. They are included here partly for their intrinsic interest, but
chiefly for the sake of their applications to the theory of reflection groups, which will
be developed in Chapters XI and XII. The algebraical part is mainly concerned with
quadratic forms none of whose “ product ” terms have positive coefficients, especially
with the condition for such a form to be incapable of taking a negative value. In the
geometrical part we see how the position of a point, in n-dimensional Euclidean space,
is determined by its distances from n hyperplanes (inclined to one another at given
angles).
10·1. Real quadratic forms. A homogeneous polynomial of the second degree in n

variables x1, . . . , xn is called a quadratic form. We shall deal only with the case where
the coefficients and variables are real numbers. There are “ square ” terms such as
a11 x1

2 ; and “ product ” terms such as 2a12 x1 x2, which we shall write as (a12+a21)x1
x2. The whole form is expressible as a double sum
10·11

whereaik =aki a .

A quadratic form is said to be positive definite if it is positive for all values of the
variables except (0, …, 0), and to be positive semidefinite if it is never negative but
vanishes for some values not all zero. It is said to be indefinite if it is positive for
some values and negative for others. Thus for n=2, x1

2+x2
2 is definite, (x1−x2)

2 is
semidefinite, and x1

2−x2
2 is indefinite.

Let Aik denote the cofactor of aik in the determinant

157



a = det(aik).
Then we know that116

10·12

where the “ Kronecker delta ” �jk means 1 or 0 according as j=k or j≠k. (When j=k,
10·12 is the ordinary expansion of a by means of its kth column. When j≠k, it is the
analogous expansion of a determinant with two identical columns.)
The first of the following theorems is very well known :
10·13. The determinant of a positive definite form is positive.
PROOF. This is trivial when n=1. So we use induction, and assume the result for

every positive definite form in n−1 variables, such as that derived from the given
positive definite form 10·11 by setting xk=0 ; i.e., we assume that Akk>0. Being positive
definite, 10·11 must take a positive value when xi=Aik, in which case, by 10·12,
0<��aij xi xj = �a�jk xj=axk = aAkk.
Hence a>0.
10·14. If a positive semidefinite form ��aik xi xk vanishes for xi = zi ( i = 1,. . . , n), then
� zi aik = 0 (k = 1, . . . , n).
PROOF. The form, being positive semidefinite, is positive or zero for all values of

the x’s ; in particular, when xi = yi + �zi. Thus the inequality
0 ≤ �� aik (yi + �zi)(yk + �zk) = �� aik yi yk + 2� �� aik zi yk
must hold for arbitrary values of � and the y ’s. But this is only possible if the coeffi-

cient of � vanishes, which means that, for arbitrary values of the y ’s,
� (� aik zi)yk = 0.

It follows that the values of (x1, . . . , xn

These sets of values constitute a vector space of n−� dimensions, where
� a .
This number n−� is sometimes called the nullity of the form.
In particular, if n−�=1, there is a solution (z1, . . . , zn) such that every solution is a

multiple of this, viz., (�z1, . . . , �zn).



We need one more definition, in preparation for the important theorem 10·22. A
form is said to be disconnected (German zerleg-bar ) if it is a sum of two forms involving
separate sets of variables ; if not, it is said to be connected : e.g., x1

2+x2
2 is disconnected,

but x1
2−x1 x2+x2

2 is connected.
10·2. Forms with non-positive product terms. We shall be specially concerned

with those quadratic forms in which aik≤0 whenever i≠k. For brevity, let us call them
a-forms.
10·21. If a positive semidefinite a-form vanishes for xi=zi, it also vanishes for xi =

|zi|.
PROOF. The expressions �� aik zi zk and �� aik |zi| |zk| differ only in those terms for

which zi zk <0. But for such terms aik ≤0. Hence
0 ≤ �� aik |zi| |zk| ≤ �� aik zi zk = 0,
and we can put “ = ” in place of “ ≤.”
10·22. Every positive semidefinite connected a-form is of nullity 1.
PROOF. Let us first suppose that a given positive semidefinite a-form vanishes for xi

= zi, where z1 z2 . . . zm≠0 (m<n) and the remaining z’s vanish. By 10·21 and 10·14, we
have
� |zi| aik = 0,
and here the only non-vanishing terms are those for which i≤m. Thus

and this sum contains no positive terms. Hence aik = 0 whenever i ≤m and k >m ;
so the form is disconnected.
It follows that, if the form is connected,wemust have
z1 z2 . . . zn≠0.
Every solution of 10·15 must be proportional to (z1, . . . , zn) ; for, any two non-

proportional solutions could be combined to give a solution with one (but not all) of
the x’s equal to zero. In other words, the solutions constitute a one-dimensional vector
space, and the form is of nullity 1.
Since every solution of ��aikxixk=0 is proportional to the positive solution (|zi|, . . . ,

|zn|), the x’s for which a positive semidefinite connected a-form vanishes are either
all positive or all negative or all zero. The next two theorems follow at once from this
remark.
10·23. For any positive semidefinite connected a-form there exist positive numbers

zi such that



�zi aik = 0 (k = 1, . . . , n),
and these are unique, apart from the obvious possibility of multiplying all by the

same constant.
10·24. If we modify a positive semidefinite connected a-form by making one of the

variables vanish, we obtain a positive definite form in the remaining variables.
For instance, x1

2 + x2
2 + x3

2 − x2x3 − x3x1 − x1x2 is semidefinite, but x1
2 + x2

2 −
x1x2 is definite.
Another propertywhichpositive semidefinite connected a-forms sharewithpositive

definite forms is the following :
10·25. The square terms of a positive semidefinite connected a-form are all positive.
PROOF. For each k there is at least one non-vanishing coefficient aik (i≠k), or else

the form would be disconnected with respect to the term akk xk
2. Hence wemust have

akk>0, to balance the negative terms in �zi aik. (See 10·23.)
On the other hand, the following property distinguishes these from definite forms :
10·26. A positive semidefinite connected a-form becomes indefinite when any one

of its coefficients is decreased.
PROOF. By 10.25, the form takes the positive value a11 for (1, 0, . . . , 0), both before

and after the modification. By 10·23, there are positive numbers z1, . . . , zn such that
��aik zi zi=0. But if we decrease one of the aik’s we decrease this expression. Hence the
modified form is capable of both positive and negative values.
PLATE V

{5, 3, 3}
It is interesting to observe that the z’s can be expressed directly in terms of the

coefficients aik :
10·27. If a positive semidefinite connected a-form vanishes for xi=zi, then



zi = �√ Aii,
where Aii is the cofactor of aii in the determinant a, and � is an arbitrary constant.
PROOF. Solving the equations 10·15 by means of determinants, we see that z1, . . . ,

zn A .
Hence
Aik = µzi zk,
where, by applying 10·13 and 10·24 to the case k = i, µ > 0. The desired result follows

when we set µ = 1/�2.
Incidentally, since Aik = µzi, zk,where µ, and the z’s are positive,
10·28. The adjoint of a positive semidefinite connected a-matrix has entirely posi-

tive elements.
The corresponding “adjoint form” is ��Aik xi xk = µ(�zi xi)

2.
10·3. A criterion for semidefiniteness. With a view to the applications we shall

make in the next chapter, we wish to be able to see at a glance whether a given a-form
is semidefinite. A suitable criterion is easily established by means of the following
lemma :
10·31.

PROOF. We have

Writing the same result with i and k interchanged (in the final sum) and adding, we
obtain

as desired.
Writing xi/zi instead of xi, zk sk instead of sk, and zi zk aik instead of aik, we deduce
10·32.

We are now ready for the criterion
10·33. If there exist positive numbers z1, . . . , zn, such that
�zi aik = 0 (k = 1, …, n),
then the a-form ��aik xi xk is positive semidefinite.



PROOF. By 10·32 with sk = 0 and zk>0 and aik ≤ 0 (i≠k), the given form is equal to a
sum of squares, and so cannot be negative. But it vanishes when xk = zk. Hence it is
positive semidefinite.
Combining this result with 10·23, we have
10·34. A necessary and sufficient condition for a connected a-form to be positive

semidefinite is that there exist positive numbers z1, . . . , zn such that �zi aik = 0.
10·4. Covariant and contravariant bases for a vector space. The inner product (or

scalar product) of two vectors x and y, in n-dimensional Euclidean space, is defined
by the formula
x·y = |x| |y | cos �,
where |x| and |y | are theirmagnitudes, and � is the angle between them. In particular,
x·x = |x|2.
Since the space is n-dimensional, we can take n linearly independent vectors e1, e2,

…, en. These span the space, in the sense that every vector x is uniquely expressible as
a linear combination 117

x1e1 + x
2 e2 + . . . + x

nen.
The n chosen vectors ei are called a covariant basis, and the coefficients x

i are called
the contravariant components of the vector x. The magnitude of x is given by
10·41

where
10·42

In particular, the magnitude of ei is |ei| = √aii.
The angle, �, between x and y, is given by
10·43

In particular, non-vanishing vectors x and y are perpendicular if
�� aik x

i yk = 0.
Themagnitude |x| cannot vanish unless all the components xi vanish ; therefore the

quadratic form 10·41 is positive definite, and by 10·13 its determinant a is positive.
Now, defining Aik as in 10·12, let us write a

ik = Aik/a, so that

(which means 1 or 0 according as j=k or j≠k). Consider a new set of n vectors



10·44

These again span the space, since
10·45

so we may appropriately call them the contravariant basis. A given vector x has
covariant components xi, such that
x = �xi e

i.
These are related to the contravariant components by the formulae
xj = �aij xi, xi = �aij x

j,
which are obtained by substituting 10·44 or 10·45 in the vector identity �xi e

i = �xj

ej . In this notation the inner product 10·43 is simply
10·46

So the magnitude of x is
10·47

To find a geometrical meaning for the contravariant basis, we observe that, since

each ei is perpendicular to every ej except ei. In other words, e
i is perpendicular

to the (n−1)-dimensional vector space spanned by n − 1 of the ej’s ; and ei is related
similarly to the ej’s. More-over, the magnitude of ei is such as to make ei· ei = 1. (See
Fig. 10.4A for an example with n=2. When n=3, √a e1 is the familiar outer product, or
vector product, e2×e3.)

FIG. 10.4A
The components of x could have been defined as its inner products with the e’s; for

and similarly
x · ek = xk.
Taking x=ei in this last relation, we deduce from 10·44 that
ei · ek = aik.



(Cf. 10·42.) Thus the reciprocity between “ covariant ” and “ contravariant ” is
complete.

10·5. Affine coordinates and reciprocal lattices. As soon as we have fixed an
origin, 0, each vector x determines a point (x) and a hyperplane [x], namely the point
whose position-vector from 0 is x, and the hyperplane through 0 perpendicular to x.
If we regard the co- (or contra-) variant components of x as coordinates for (x), then
the contra- (or co-) variant components are tangential coordinates for [x]. In fact, the
condition for (x) and [y ] to be incident, i.e., for (x) to lie in [y ], is x · y=0. (Cf. 10·46.)

The distance between points (x) and (y) is

The distance between the point (x) and the hyperplane [y ], measured along the
perpendicular, is the projection of x in the direction of y, namely

10·51

When [y ] is the coordinate hyperplane xk = 0, we have

and the distance is

10·52

The points (x) whose covariant coordinates are integers form a lattice, i.e., the set
of transforms of a point by a group of translations. (See § 4·3.) The generating trans-
lations are given by the contravariant basic vectors ei. Similarly, the points whose
contravariant coordinates are integers form another lattice. Crystallographers (such
as Ewald 1) call these two lattices “ reciprocal.” If y1, …, yn are integers with greatest
common divisor 1, the hyperplane [y ] or �yixi = 0 and the parallel hyperplane �y

ixi = 1
each contain infinitely many points of the first lattice, but no such point can be found
between them. By 10·51, the distance between these two parallel hyperplanes (or the
distance from the origin to the latter) is 1/|y |, i.e., the reciprocal of the distance from
the origin to the point (y) which belongs to the second lattice. In other words, any “ first
rational hyperplane ” of the first lattice corresponds to a point of the second lattice
situated at the reciprocal distance in the normal direction. This point of the second



lattice is “ visible from the origin” (i.e., it is the first lattice point in that direction)
because we have supposed the coordinates yi to have no common divisor greater than
1. By interchanging “ covariant ” and “ contravariant ” we see at once that the relation
between the two lattices is symmetric : each is reciprocal to the other.

The n-dimensional cubic lattice (consisting of the vertices of a �n+1 of edge 1) is
obviously its own reciprocal. On the other hand, the lattice of vertices of {3, 6} (§
4·4) is reciprocal to another lattice of the same shape, rotated through a right angle
about the origin (so that their vertex figures are reciprocal hexagons). Similarly in
four dimensions, there are two reciprocal lattices formed by two {3, 3, 4, 3}’s with a
common vertex at the origin, so placed that their vertex figures are reciprocal {3, 4,
3}’s.

The concept of reciprocal lattices must not be confused with that of reciprocal
honeycombs, as defined in § 7·4; e.g., the honeycomb reciprocal to {3, 3, 4, 3} is not
another {3, 3, 4, 3} out {3, 4, 3, 3} (whose vertices do not form a lattice). On the other
hand, the present use of the word reciprocal is not inappropriate, as the “ visible point
” (y) is the pole of the “ first rational hyperplane” �yi xi = 1 with respect to the unit
sphere �xi xi = 1.

10·6. The general reflection. Let (x′) be the image of (x) by reflection in the hyper-
plane [y ]. Then x−x′ is a vector parallel to y, of magnitude twice 10·51. Thus

10·61

In particular, the reflection in the coordinate hyperplane xk=0 (where y=ek) is the
transformation

10·62

If we are willing to sacrifice the reciprocity between “ covariant ” and “ contravari-
ant,” we can take the ek’s to be unit vectors. Then akk=1, and aik is the cosine of the
angle between ei and ek. By 10·52, the covariant coordinates of a point (x) are just
its distances from the coordinate hyperplanes xk = 0, measured in the directions of the
respectively perpendicular vectors ek. The lines along which these hyperplanes



intersect (in sets of n − 1) are in the directions of the vectors ei (which, in general, are
not xkek
for its position vector, are the familiar “ oblique Cartesian ” coordinates, referred to
axes in the directions of the unit vectors ek. The transformation 10·62 is now simply
10·63

This same result could have been obtained directly as follows. Since xk is now the
distance of (x) from the hyperplane xk = 0, the reflection in that hyperplane is given by
x − x′ = 2xkek.
Taking the inner product of both sides with ei, we deduce

which is 10·63.
10·7. Normal coordinates. With reference to an n-dimensional simplex O1 O2 . . .

On+1, we define the normal coordinates (x1, x2, …, xn+1) of a point to be its distances
from the n+1 bounding hyperplanes, with the usual convention of sign (so that the
coordinates of an interior point are all positive). These are “ trilinear ” coordinates
when n=2, “ quadriplanar ” when n=3.
Let Ci denote the content of the cell opposite to Oi, and zi the reciprocal of the

corresponding altitude. Then Ci/zi is n times the content of the whole simplex. So also
is
C1 x1 + C

2x2 + . . . + C
n+1 xn+1

for any point (x). Hence the identical relation satisfied by the n+1 x’s is
10·71

Let e1 e2, . . . , en+1 be unit vectors perpendicular to the n+1 hyperplanes, and
directed inwards (towards each opposite vertex). Then
aii = ei · ei = 1,
and aik is the cosine of the angle between ei and ek ; so −aik is the cosine of the

corresponding dihedral angle of the simplex. Only n of the n+1 vectors ei are linearly
independent. We shall find that the relation connecting them all is
10·72

This is an important result, so we shall give two alternative proofs.



The first depends on the fact that, when a polytope is orthogonally projected onto
any hyperplane, the sum of the contents of the projections of the cells is zero, provided
wemake a consistent convention of sign. Projecting the simplex onto a hyperplane
perpendicular to a vector x, we see that the content of the projection of the ith cell is
Ciei·x. Hence
(C1e1 + C

2e2 + . . . + C
n+1en+1)·x = 0.

Since x is arbitrary, and the C’s are proportional to the z’s, this implies 10·72.
The second proof is more elementary but less elegant (in that it specializes one of

the e’s). Let x denote the vector from On+1 to any point (x1, . . . , xn, 0) on the opposite
hyperplane xn+1 = 0. Then
ei · x = xi (i≤n) and en+1 · x = − 1/z

n+1.
Hence, using 10·71 with xn+1 = 0,
(z1e1 + . . . + z

nen + z
n+1en+1)· x = z

1x1 + . . . + z
n xn − 1 = 0.

As before, the arbitrariness of x enables us to deduce 10·72.
It follows, by taking the inner product with ek, that
10·73

(summed for the n+1 values of i).
It also follows that the quadratic form
��aik x

i xk = � xi ei · � x
k ek = |� x

i ei|
2

vanishes when xi = zi, but is never negative ; so it is positive semidefinite. Moreover,
it is of nullity 1, since any n of the n+1 e’s determine a system of affine coordinates ;
in fact, we obtain a positive definite form in n variables by making any one of the x’s
vanish.
The reflection in xk=0 is still given by 10·63, with the range of i and k extended to

n+1. For, the only possible doubt lies in the behaviour of xn+1, and 10·63 is consistent
with 10·71 since, by 10·73,

10·8. The simplex determined by n+1 dependent vectors. We have seen that
vectors drawn inwards (or outwards), perpendicular to the bounding hyperplanes of a
simplex, satisfy the relation 10·72, where all the z’s are positive. Conversely, given n+
1 unit vectors ei, which satisfy such a relation (with positive z’s) while e1, . . . , en are
linearly independent, we can construct a corresponding simplex as follows.



Represent the n+1 vectors ei by concurrent segments Mi I, directed towards their
common point I, as in Fig. 10.8A (where n=2). Through the points Mi so determined
draw respectively perpendicular hyperplanes. These bound a simplex (with in-centre
I) ; for the first n of them determine a system of affine coordinates in which the re-
maining hyperplane has the equation

z1x1 + . . . + z
nxn = 1.

10·9. Historical remarks. The only novelty about the treatment of quadratic forms
in§10·1 is the avoidanceof the reduction to canonical (or diagonal) form. Theproofs of
10·14, 10·21, and 10·22 are taken fromWitt 1, p. 292. The first of these theorems is the
natural extension of the geometrical statement that, if a cone has no real generators,
its only real point is its vertex. Although § 10·2 is largely due to Witt, some properties
of these “ a-forms ” (which have aik = aki ≤ 0 whenever i≠k), and of the corresponding
“ a-matrices,” had already been established by other authors. Mahler (about 1939)
proved that if

�zi aik ≥ 0 (k = 1, . . . , n),

where the a’s are the coefficients of a positive definite a-form, then zk≥0. Du. Val
(3, p. 309) deduced that the inverse of a positive definite a-matrix has no negative elements,
and that a spherical simplex which has no obtuse dihedral angles has no obtuse edges
either. Theorem 10·23 can be regarded as the analogue of Mahler’s result, when the
a-form is semidefinite (and connected) instead of definite. Similarly 10·28 is the
analogue of Du Val’s result.

FIG. 10.8A

Lemma 10·32, which facilitates the proof of 10·33 in a quite spectacular manner,
was discovered by W. J. R. Crosby, a research student at the University of Toronto. It
shows, further, that if there exist positive numbers zi such that �zi aik > 0, then the

a a
which is not necessarily symmetric. An elegant proof of that more general theorem
has been given by Rohrbach (1).



e1, e2, e3
118 a, b, c, then the Millerian face-indices h, k, l are the covariant compo-

nents of a vector perpendicular to the crystal face (hkl 119 u, v, w are the contravariant
components of a vector along the zone axis, or the contravariant tangential coordi-
nates of a plane perpendicular to all the planes of the zone [uvw]. Thus the zone axis is
a diagonal of the parallelepiped formed by the vectors ue1, ve2, we3, and the condition
for the face (hkl) to belong to the zone [uvw] is hu + kv + lw = 0.





11 CHAPTER XI THE GENERALIZED
KALEIDOSCOPE

regular
In n-dimensional Euclidean space the reflection in a hyperplane w is the special

congruent transformation that preserves every point ofw and interchanges the two
half-spaces into whichw decomposes the whole space. In terms of rectangular Carte-
sian coordinates, the reflection in x1=0 interchanges the two points
(± x1, x2, x3, . . . , xn).
k=1). (The general theory of congruent transformationswill be discussed in Chapter

XII.)
Any subspace perpendicular to w is transformed into itself according to the re-

flection in the section ofw by that subspace. Thus the product of reflections in two
intersecting hyperplanes,w1 andw2, can be investigated by considering what hap-
pens in any plane perpendicular to both hyperplanes. Now, the product of reflections
in two intersecting lines is a rotation about their common point through twice the
angle between them ; so the product of reflections inw1 andw2 is naturally called a
rotation about the (n–2)-space (w1 w2) through twice the angle between w1 and w2. If
this angle is π/p (p=2, 3, 4, …), the two reflections generate the dihedral group [p

ndimensions. The group is still generatedby reflections in thewalls of its fundamen-
tal region. The “walls ” are no longer planes but hyperplanes, and the “ edge ” common
to 2pij regions is now an (n–2)-space, but the “ path ” remains one-dimensional. We
shall find that the possible fundamental regions are such that two walls are always
adjacent unless they are parallel. The convention
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where it is understood that such a relation with pij = ∞ (indicating parallelism of wi

and wj) can be ignored.
If the reflecting hyperplanes fall into two or more sets, such that every two hy-

perplanes in different sets are perpendicular, then the reflections themselves fall
into mutually commutative sets, and the group, being a direct product, is said to be
reducible. irreducible. 120 Thus the irreducible groups in two dimensions are
[1], [p] (p > 2), [ ∞ ], �, [4, 4], [3, 6],
and the reducible groups in two dimensions are the direct products
[1] × [1], [∞] × [1], [ ∞ ] × [ ∞ ].
The first step in the general enumeration is to prove that each of the irreducible

groups has some kind of simplex for its fundamental region. For this purpose we shall
derive a corresponding quadratic form, and use the results of Chapter X.
The fundamental region is a finite or infinite region boundedby (say)mhyperplanes.

Through any point within it, draw lines per-pendicular to all the walls. Let e1, . . . ,
em be unit vectors along these perpendiculars (directed inwards, from wall to point).
Since the angle between ei and ej is the supplement of the dihedral angle π/pij of the
fundamental region, we have
ei ej =–cos π/pij.
i=j, as well as when i≠j.
If the vectors do not span the whole space, but only a certain subspace, then the

reflecting hyperplanes are all perpendicular to this subspace ; so we can take their
section by the subspace and consider the same group as operating therein. (For
instance, the group generated by reflections in two parallel hyperplanes is essentially
the same as that generated by reflections in two points, arising as the section of the
hyperplanes by a line perpendicular to both ; thus [ oo ] is to be considered a one-
dimensional group.) Having made this remark, we shall assume that the e’s do span
the space under consideration, say n-dimensional space. Thus
m ≥ n.
Any m numbers x1, . . . , xm determine with the e’s a vector
x1e1 + . . . +x

mem xiei,
whose squared magnitude is



xiei

xkek aik
xi xk,
where

aik
xixk can never be negative : it is a positive definite or semidefinite quadratic form in
m variables. Since, for i≠k,
–cos π/pik ≤ 0,
this is an a pik = 2, and therefore aik = 0 ; hence the a-form is connected or discon-

nected according as the group is irreducible or reducible. We now consider the two
possible cases : m=n andm>n.
Ifm=n, there areonly just enough e xiei

can only vanish when all the x’s vanish; therefore the a-form is positive definite. In
this case the n reflecting hyperplanes have a common point, say O. (They cannot
contain a common direction instead, as then all the e’s would be perpendicular to
that direction, and could not span the space.) We therefore consider the group as
acting on a sphere with centre O, and replace its angular fundamental region by
an (n–1)-dimensional spherical simplex (e.g., an arc when n=2, as in Fig. 5.1C, and a
spherical triangle when n
On the other hand, ifm>n, there are too many e’s to be linearly independent, so they

must satisfy at least one non-trivial relation

aik
zi zk = 0 ; therefore the a-form is positive semidefinite. By a familiar theorem in
algebra the n-dimensional vector space is spanned by n of them e’s ; therefore the
a-form has rank n, and nullitym–n. If, further, the group is irreducible, so that the a
m= n + 1.
z n-dimensional Euclidean simplex). As we saw in § the z’s are inversely propor-

tional to the altitudes of the simplex.



We see now that every irreducible group generated by reflections has a simplex for
its fundamental region. Since spherical space is finite, whereas Euclidean space is
infinite, the group is finite or infinite according as the simplex is spherical or Euclidean.
Hence

Every group generated by reflections is a direct product of groups whose funda-
mental regions are simplexes. The fundamental region of a finite group generated by
reflections is a spherical simplex, and that of an irreducible infinite group generated
by reflections is a Euclidean simplex.

Before enumerating the particular groups, it is worth while to record the following
connection between finite and infinite groups. Let G be any infinite discrete group gen-
erated by reflections in n-dimensional Euclidean space. The reflecting hyperplanes
occur in a finite number of different directions ; for otherwise we could find two of
them inclined at an arbitrarily small angle, and the group would not be discrete. In
other words, the reflecting hyperplanes belong to a finite number of families, each
consisting of parallel hyperplanes. If we represent each family by a single hyperplane
(parallel to those of the family) through any fixed point O, we obtain a finite group S,
which is generated by reflections in some n of the hyperplanes throughO (because
its fundamental region is a spherical simplex or n-hedral angle). These represent n
particular families of reflecting hyperplanes of G. Instead of hyperplanes through an
arbitrary point O, we could have taken one hyperplane from each of these n families.
Since there are just n of them, the hyperplanes so chosen meet in a point, and now
the fundamental region for S occurs at one corner of the fundamental region for G
(which is bounded by these n hyperplanes and one or more others). Thus, however
many families of parallel hyperplanes may occur, the fundamental region for G has at
least one vertex which lies in one hyperplane of every family. Let us call this a special vertex
of the fundamental region, and S a special subgroup ofG. Abstractly, S is the largest
finite subgroup ofG.

To take a simple instance with n = 2, let G be [ ∞ ] × [ ∞ ], generated by reflections in
the sides of a rectangle ; then all four vertices of the rectangle are “ special,” and S is
[1] × [1], of order 4, generated by reflections in any two adjacent sides. On the other
hand, when G is [3, 6] there is only one “ special ” vertex (where the angle π/6 occurs),
and S is [6], of order 12.



We have now reduced the enumeration of discrete groups generated by reflections
to that of spherical and Euclidean simplexes whose dihedral angles are submultiples
of π p if p > 3) indicate pairs of walls inclined at angles π/p (p>2). Their perpendicular
walls are represented by nodes not joined by a branch. Thus the graph is connected
or disconnected according as the group is irreducible or reducible. In the latter case
the group is the direct product of several “ irreducible components,” corresponding
to the separate pieces of the graph.
The same graphmay be regarded as representing the quadratic form. The nodes

represent the variables, or the “ square ” terms, and the branches represent the “
product ” terms. (This explains our definition of connected and disconnected

(For simplicity we have written x, y, z instead of x1, x2, x3.)
The graph for a spherical or Euclidean simplex has the property that the removal of

any node (along with any branches which emanate from that node) leaves the graph
for a spherical simplex. This is geometrically evident, asm–1 of them m–1 of them e’s
are linearly independent, even when all them
For the application of the above principles we need a standard list of Euclidean

simplexes. This list is provided by the right-hand half (W2, etc.) of Table IV on page
297, together with

where q is definedbycosπ/q Pm,
Qm, …, Z4 are adapted fromWitt 1.) We recognize
P3, P4, R3, R4, S4, V3,W2

as fundamental regions for the respective groups

of Chapter V. Most of the rest are natural analogues of these.
All these graphs represent quadratic forms which we shall prove to be semidefinite.

It will then follow that they represent Euclidean simplexes. Of course, the three
simplexes X4, Y5, Z4 (where fractional marks occur) are not fundamental regions of
discrete groups ; nevertheless we shall find them useful.

aik x
i xk is semidefinite if there exist positive numbers z1, …, zm such that



To apply this criterion, we represent the form by its graph, and associate them z’s
with them nodes.

kth node is joined by branches to the ith, jth, etc. Then, if these branches are un-
marked, so thataik

If the “ ik q,
wemustmultiply the zi in theexpressionby√2, �, √3, �–1 121

z’s are in arithmetical progression.

After these instructions, it takes only a fewminutes to insert the appropriate z’s at
the nodes of the graphs in the table on page 194, which shows that Pm, Qm, . . . , Z4 are
in fact Euclidean simplexes (in space ofm–1 dimensions).

z’s, we are at liberty to “ normalize ” these m zi = 1 and all the z’s are uniquely
determined.

From these Euclidean simplexes we can derive spherical simplexes by drawing
spheres round the vertices, i.e., by removing a node from each graph. Since it will
suffice to enumerate irreducible groups, we only remove such nodes as will leave the
graph connected. By removing one of the nodes marked 1 from each graph in the
table on page 194, we find that the Euclidean simplexes

W2, Pn+1, Qn+1,T7, T8,T9,Rn+1 or Sn+1, U5, V3, X4, Y5,

yield the spherical simplexes

of Table IV.



WerecogniseA1,A2,A3,C2,C3 G3

π/p) which are fundamental regions for the “ non-crystallographic ” dihedral groups
[p] (p=5, 7, 8, …).

To make sure that the enumeration of irreducible groups is now complete, we con-
sider the possibility of a further graph, and employ the principle that such a graph can-
not be derivable from the graph for a Euclidean simplex by adding new branches, nor
by increasing themarksonoldbranches. SincePm is Euclidean, thenewgraphmust be
a tree A1,W2 A2 C2)
have already beenmentioned, the tree must have at least two branches. Since Qm is
Euclidean, there cannot be as many as four branches at any node, nor as many as
three at each of two nodes. If there is one node where three branches meet, the tree
consists of three chains radiating from that node, say i branches in one chain, j in
another, k in the third, with i ≤ j ≤ k. Since Sm is Euclidean, none of these branches
can be marked. Since Bn has already been mentioned, j > 1 ; since T7 is Euclidean, i =
1 ; since T8 is Euclidean, j = 2 ; and since T9 is Euclidean, k < 5. But E6, E7, E8 have
already been mentioned, so the possibility of three branches at a node is ruled out.

We now have to consider a single chain. Since An has already been mentioned, and
Rm is Euclidean, there must be just one marked branch. Since V3 and U5, are Eu-
clidean, themark can only be 4 or 5, andmust occur on an “ end ” branch or on themid-
dle one of three. SinceCn and F4 have already beenmentioned, themark can only be 5.



SinceY5 G3

and G4 have already been mentioned, so we are forced to return to the case of a chain
of three branches with the middle one marked. Since Z4 is Euclidean (and q<5), this
last possibility is ruled out. To sum up our important result :

The only irreducible discrete groups generated by reflections are those whose
fundamental regions are the spherical simplexes

(see Table IV on page 297) and the Euclidean simplexes

W2, Pm (m ≥3), Qm (m ≥ 5), Rm (m ≥ 3), Sm (m ≥ 4),
V3,T7, T8, T9, U5.

In the following paragraphs we shall relate each of the finite groups to a polytope,
and thence compute its order.

In the case of an (m–1)-dimensional spherical simplex, the polytope need not be
properlym-dimensional. If it is n-dimensional, where n<m, the group leaves invariant
an n-dimensional subspace of them-dimensional Euclidean space ; then every reflect-
ing hyperplane either contains this subspace or is perpendicular to it, so the group
is reducible. Conversely, if the group is reducible, so that the graph is disconnected,
suppose that the piece containing the ringed node has altogether n nodes. Then the
group has an irreducible component generated by the corresponding n reflections,
and this yields the n-dimensional polytope represented by the ringed piece. The
rest of the graphmay be disregarded ; for, the correspondingm–n hyperplanes each
contain the whole polytope, so the reflections in them have no effect on it.

In the case of an (m–1)-dimensionalEuclidean simplex, the honeycomb is necessarily
(m–1)-dimensional. For if the group were reducible its fundamental region would not
be a simplex.

In order to treat polytopes and honeycombs simultaneously, we restrict consid-
eration to irreducible groups, and regard the polytopes as having been projected
radially onto their circum-spheres ; i.e., we consider (m–1)-dimensional spherical
and Euclidean honeycombs. In either case, the symbol consists of a connected graph
havingm nodes, of which one is ringed.



A typical edge (of the honeycomb) joins the chosen vertex to its image by reflection
in the opposite wall of the fundamental region. Thus every edge is perpendicularly
bisected by one of the reflecting hyperplanes, i.e., by an actual or virtual mirror of
the generalized kaleidoscope. This holds, in particular, for all the edges of any cell,
�m–1; but in their case all the hyperplanes pass through the centre, P, of that cell. We
thus have at least m–1 linearly independent reflecting hyperplanes through P (e.g.,
those bisecting the edges of �m–1 that meet at one vertex). Hence Pmay be taken to be
a vertex of the fundamental region, and the symbol for the cell is derived from the symbol
for the whole honeycomb (or polytope) by removing the node that represents this vertex (and of
course removing also every branch which occurs at that node).

Conversely, the removal of an unringed node from the symbol for a polytope or
honeycomb leaves the symbol for an element �k, which is a cell (k =m–1) if the graph
remains connected. The only case (withm > 2) in which every unringed node yields a
cell, is when the original graph is anm-gon (so that the fundamental region is the Pm
of Table IV) ; in every other case the graph is a tree, and there is a cell for each free end,
i.e., for each unringed node that belongs to only one branch. Similarly, the removal of
a free end from the symbol for a �m–1 leaves the symbol for a �m–2, and so on. Finally,
the ringed node by itself represents an edge, �1, and its removal leaves the null graph
(i.e., nothing at all), which represents a vertex, �0.

Thus every type of element �k is derivable by removing a certain number of nodes
from the symbol for the whole polytope or honeycomb. So far as the element itself
is concerned, any unringed piece of the graph may be disregarded. But when we
come to compute the number of elements of that type, the unringed pieces become
important, and must be fully restored (for a reason that will appear soon). According
to this rule, the maximum number of nodes that may be removed simultaneously is
equal to the number of free ends, except in the case of Pm k, while the nodes of any
unringed pieces represent hyperplanes which contain the �k. Thus the graph for the
�k, regardless of the ring, represents the fundamental region for the subgroup leaving
the �k invariant. The various equivalent �k’s correspond to the cosets of this subgroup.
Hence the number of such �k



In particular, the symbol for a vertex is derived by removing the ringed node. The
resulting unringed graph could just as well be the null graph so far as the kind of
element is concerned ; but the corresponding group is the subgroup that leaves the
vertex invariant (for it is generated by reflections in hyperplanes through the vertex).
The number of vertices is equal to the index of this subgroup.
When the ringed node belongs to only one branch, we can go a step further, and

obtain a symbol for the vertex figure first node, and suppose the only branch from it
goes to the second. These two nodes represent vertices P0 and P1 of the fundamental
region, namely a vertex of the honeycomb (or polytope) and the mid-point of an edge.
The vertices of the vertex figure are the mid-points of all the edges that meet at P0,
i.e., the transforms of P1 by the subgroup that leaves P0 invariant. Hence we obtain the
vertex figure by removing the first node (along with its branch) and transferring the ring to the
second node.
We can now prove that the polytope or honeycomb

is regular, being in fact the same as {p, q, . . . , v, w p-gon {p p, q

Each kind of element can be obtained by removing a single node, in fact the k-
dimensional element is given by removing the (k + 1)th node. We thus see again, more
clearly than on page 140, that the orthoscheme

is the characteristic simplex of the regular polytope
{p, q, . . . , v, w},
whose symmetry group
[p, q, …, v, w]
is generated by reflections in the bounding hyperplanes of that orthoscheme.122

�p , q, . . . , w is the determinant of the a-form

The polytope



whose vertices are the centres of the {p, …, r}’s of {p, …, w

which is the regular polytope {w, . . . , p}, reciprocal to {p, . . . , w}.
We have seen that the finite groups

have fundamental regionsAn,Cn F4,
G3,G4 (defined in Table IV, page 297). By a convenient extension of this notation we
shall use the symbols
[3k, 1, 1] [32 , 2, 1], [33, 2, 1], [34, 2, 1]
for the groups whose fundamental regions are Bk+3, E6, E7, E8.
In Fig. 5.4Awe split an isosceles spherical triangle into two equal parts, symbolically

and deduced that [3, 3] is a subgroup of index 2 in [3, 4]. Analogously, the spherical
tetrahedron B4 is symmetrical by reflection in the bisector of one of its dihedral angles,
and is thereby split into two C4’s. More generally

and therefore [3n–3, 1, 1] is a subgroup of index 2 in [3n–2, 4]. Thus the order of [3n–3,
1, 1] is

(Since B3 is the same as A3
There is a similar relation between pairs of infinite groups, since
P3 =2V3, Qn = 2Sn, and Sn = 2Rn.
(We saw in Fig. 4.7A that P4 = 2S4. The symbol Q4 has not been defined, so we are

free to identify it with P4. The shape of the graphmakes this quite reasonable.)
It follows that the polytope and honeycombs

are the same as



while the vertices of the third of them are alternate vertices of the second. In fact,
these are �n, �n, h�n

is h�n �n.

which implies

By removing two nodes from the graph, we find that the number of 0ab’s in 0ij is
equal to the coefficient of Xi−a Yj−b in (1+X+Y )i+j+2 ; e.g., the number of edges 000 is the
coefficient of Xi Yj. But the number of vertices is the coefficient of Xi+1 Yj+1. kij is (k−1)ij.
To include the case where k=0, we may write (−1)ij=ai×aj.
The simplest polytopes arising from the finite groups [32, 2, 1], [33, 2, 1], [34, 2, 1] are

221, 321, 421 ; and the simplest honeycombs arising from the infinite groups [32, 2, 2],
[33, 3, 1], [35, 2, 1] are 222, 331, 521. These polytopes and honeycombs (in six, seven, and
eight dimensions)123 are not related to any regular figures (of the same number of
dimensions) ; but we shall consider them briefly as a means to compute the orders,
say x, y, z, of the groups [32, 2, 1], [33, 2, 1], [34, 2, 1].
The six-dimensional polytope 221 has cells of two kinds, both regular :
220=�5, 211=�5.
The number of elements of any kind may be expressed in terms of the unknown

order x by removing one or two nodes from the graph

as in the following table :

Thus



“ Euler’s Formula ” N0 − N1 + N2 − N3 + N4 − N5 n = 6) is satisfied identically, and
so does not help us to compute x.
Not discouraged by this initial setback, we make a similar table for the honeycomb

222, and obtain the proportional numbers of elements

124
or, after multiplication by 24 . 6 ! ,

whence
�0 − �1 + �2 − �3 + �4 − �5 + �6 = 0,

Thus 221 has 27 vertices, 216 edges, 720 triangles, 1080 tetrahedra, 216+432 �4’s,
72 �5’s and 27 (�5’S. (See Coxeter 14.)
Similarly, the seven-dimensional polytope 321 has

(The cells are 320=�6 and 311=�6.) The equation
N0 − N1 + N2 − N3 + N4 − N5 + N6 = 2
yields

Thus 321 has 56 vertices, 756 edges, …, 2016+4032 �5’s, 576 �6’s and 126 �6’s. (See
Coxeter 1, p. 7.)
Again, the eight-dimensional polytope 421 has

(with cells 420=�7 and 411=�7). Euler’s Formula is satisfied, regardless of the value
of z. But the honeycomb 521 has the proportional numbers

or, after multiplication by 192 . 10 ! ,



From the equation �0 − �1 + �2 − �3 + �4 − �5 + �6 − �7 + �8 = 0 we deduce

Thus 421 has 240 vertices, 6720 edges, …, 69120+138240 �6’s, 17280 �7’s and 2160
�7’s. (See Gosset 1, p. 48.)

This completes our computation of the orders of the finite groups generated by
reflections, as given in Table IV (page 297).

1 The above method for computing the order of [3k, 2, 1 π/2 or π/3, and the graph has
no marked branches. We shall find that the order of the special subgroup of a trigonal
group in n dimensions is

where f f special nodes, and we shall see that these are just the nodes for which zi

Let S be the special subgroup of an irreducible infinite group G, G is a simplex,
and the corresponding graph is connected). Then S consists of those operations ofG
which preserve a special vertex 0 of the fundamental region, and this subgroup S is
isomorphic to the quotient groupG/T,where T consists of all the translations inG.
(Cf. Burckhardt 2, p. 103.)

The fundamental region for G, being a simplex, is bounded by n+1 hyperplanes,
n of which pass through 0. Reflections in these n generate S, while the remaining
one serves to reflect 0 into another “ special ” point O′. Thus 00′ is an edge of the
honeycomb125 whose symbol is derived from the graph by ringing the O-node, and
this edge is perpendicularly bisected by one of the reflecting hyperplanes ofG. The
reflection in the parallel hyperplane through 0must likewise belong toG (in fact, to S).
The product of these two reflections is the translation from 0’ to O. Since any vertex of
the honeycomb can be reached by a path along a sequence of edges, the subgroup T is
generated by translations along edges. Thus the vertices, which are the transforms of
0 byG, are also the transforms of 0 by T ; this shows that they form a lattice.

A typical cell of the reciprocal honeycomb is a polytope having 0 for in-centre. Its
bounding hyperplanes perpendicularly bisect the lines joining O to the nearest other
lattice points (which are the transforms of O′ by S). Its simplicial subdivision consists
of repetitions of the fundamental region for G, in number equal to the order of S. The



polytope, being a fundamental region for T, has the same n-dimensional content as
a “ period parallelotope ”. The order of S is the ratio of this content to that of the
fundamental region forG (in agreement with the fact that this order is equal to the
index of T inG).

Wehave seen that the reflectinghyperplanes ofGoccur in various families of parallel
hyperplanes. Suppose the fundamental region has f special vertices. If f =1 the points
of the above lattice are the only points which lie in representative hyperplanes of
every family. But in general the totality of such special points consists of f superposed
lattices, which together form a single lattice of finer mesh.

FIG. 11.9A

This is still a lattice. For, the reflecting hyperplanes through any two special points
are respectively parallel ; so theremust be a translation carrying the one special point
to the other, even if this translation does not occur in T. (In fact, the translation trans-
forms G according to an automorphism, which need not be an inner automorphism.)

The situation is illustrated in Fig. 11.9A, whereG is [4, 4], so that S is [4], of order
8. Here the fundamental region is a right-angled isosceles triangle, and f=2. The two
special vertices are transformed into the “ white ” and “ black ” points, respectively.
These form two lattices, which are the vertices of two reciprocal {4, 4}’s. The “ polytope
having 0 for in-centre ” is a face of the black {4, 4}, and at the same time serves as a
period parallelogram for T. Its area is plainly 8 times that of the right-angled isosceles
triangle. The “ lattice of finer mesh ” consists of the white and black points together,
forming a smaller {4, 4}.

Since f lattices (of transforms of O by T or G) are superposed to make the lattice of
all special points, the period parallelotope of the former is f times as large as that of
the latter. The smaller period parallelotope is bounded by the hyperplanes of the n
generating reflections of S and by n further hyperplanes parallel. to these (the next in
the respective families). We now choose a system of affine coordinates in such a way
that these 2n hyperplanes are

xi =0 and xi = 1 (i = 1, 2, . . . , n).



Then the special points are just the points whose covariant coordinates are integers
(as in Fig. 11.9A). The contravariant vectors ei, which determine these coordinates,
proceed along the edges through 0 of the fundamental region, and are of such magni-
tudes as to reach the nearest special points along those edges.126

The fundamental region forG is bounded by the n hyperplanes, xi = 0 and by one
further hyperplane, say

The edges through O represent vectors
e1/y1, . . . , en/yn,
which lead to the vertices (1/y1, 0, . . . , 0, 0), …, (0, 0, …, 1/yn). The content of the

simplex is 1/n! times that of the parallelotope based on these vectors. This, in turn, is
1/ (y1 …yn) times the content of the parallelotope based on e1, …, en, which is 1/f times
that of the fundamental region for T. Hence the order of S is

where yi is the number of times the ith edge through O (of the fundamental region
for G) has to be produced before we come to another special point. In particular, yi=1
if the edge joins O to a second special vertex, but otherwise yi > 1.
The hyperplane throughO yi xi = 0. Hence the family of hyperplanes to which these

belong is given by
yi

xi = j,

where j yi

xi must be an integer for all integral values of the x’s. Hence the y ’s are integers.
Can these n positive integers be determined without a detailed examination of the

reflecting hyperplanes ? Is there some algebraic rule for deriving them straight from
the graph ? Such a rule has not been found in the general case, but only whenG is a
trigonal group (so that the graph has nomarked branches). In this case we use unit
vectors e1, . . . , en+1, perpendicular to the bounding hyperplanes of the fundamental
region O1 . . . On+1 On+1 is a special vertex. Wemay also take the altitude from this
vertex as our unit of length, so that



Then the bounding hyperplane xn+1 = 0 or

is one of the reflecting hyperplanes ofG, and the parallel hyperplane through On+1

is xn+1 = 1 or z
1 x1 + …+ Z

n xn x1, . . . , xn are integers.
O1 . . . On+1

wherem=n 127 yi = zi

We now understand why it always happens that the z’s (for the trigonal groups) are
integers. (See the table on page 194.) Moreover, the special nodes are those for which
zi = 1. Re-moving one of these in each particular case, we verify that the finite groups
[3n−1], [3n−3, 1, 1], [32, 2, 1], [33, 2, 1], [34, 2, 1],
whose fundamental regions are
An, Bn, E6, E7, E8,
are the special subgroups of the infinite groups whose fundamental regions are
Pn+1, Qn+1, T7, T8, T9.
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Thus the computation of the orders of the trigonal groups no longer presents any
difficulty. On the other hand, a glance at Table IV shows that all the finite non-trigonal
groups are symmetry groups of regular polytopes. These have already been studied
separately in Chapter VIII. The four-dimensional groups [p, q, r],



The finite groups generated by reflections in four-dimensional Euclidean space (or
in three-dimensional spherical space) were first enumerated in 1889, by Goursat,129

whose knowledge of the regular polytopes was derived from Stringham 1. The analo-
gous groups in n dimensions were considered in 1928 by Cartan (2), who showed that
the fundamental regionmust be a simplex. The completeness of his enumeration was
verified in a direct geometrical manner three years later (Coxeter 2), aik).

k corresponds to the insertion of a ring, and her “ contraction ” c to the removal of a
ring. The reason for this was lucidly explained by G. de B. Robinson (1, p. 72). Wythoff
himself was largely concerned with the group [3, 3, 5], but he added the remark that “
a similar investigation …may be undertaken in the samemanner with regard to the
other polytope-families in four-dimensional and in other spaces ”. (Wythoff 2, p. 970.)
Gosset’s polytopes k21

130 in 1911, along with the remaining polytopes kij (except
142, which fails to satisfy Elte’s rather artificial definition of “ semi-regular ”). Their
symmetry groups [3k, 2, 1] were investigated at about the same time by Burnside, qua
groups of rational linear transformations of n variables (n=k+4). His tables (Burnside
2, pp. 301, 304, 307) may be interpreted as an enumeration of the 72 �5’s of 221, the
576 �6’s of 321, and the 17280 �7’s of 421 ; but he did not give them this interpretation
himself. If he had finished reading Gosset’s essay (see page 164), he would surely have
seen the connection. Moreover, he and Baker described two dual configurations131

and

in projective four-space, which show a remarkable resemblance to 122 and 221. In
1932, Room (1, p. 152) considered two five-dimensional configurations which are still
more closely related to these polytopes (though he was not aware of this). J. A. Todd
(2) made use of Room’s configurations in his proof that [32, 2, 1] is isomorphic with
the group of incidence-preserving permutations of the 27 lines on the general cubic
surface. (For the earliest description of these lines, see Schläfli 2.) Todd thus explained
the fact, noticed by Schoute (9) in 1910, that the tactical relations between the 27
lines can be exhibited as relations between the 27 vertices of Gosset’s six-dimensional
polytope 221. Du Val (1, p. 69) generalized this result, relating the vertices of (5−m)21
to the lines on the del Pezzo surface of orderm in projectivem-space. He showed also



that the 28 pairs of opposite vertices of 321 correspond to the 28 bitangents of the
general plane quartic curve (cf. Coxeter 1), while the 120 pairs of opposite vertices of
421 (or the 120 reflections of [3

4, 2, 1]) correspond to the 120 tritangent planes of the
twisted sextic curve in which a cubic surface meets a quadric cone.
The vertices of Gosset’s eight-dimensional honeycomb 521 (of edge √2) have as

coordinates all sets of eight integers or eight halves of odd integers, with an even sum.
(See Coxeter 1, p. 2, where 521 is called (PA)9.) This lattice not only has the same shape
coincides with its reciprocal (like the cubic lattice of edge 1). The same points, in a
different coordinate system, represent the integral Cayley numbers (Coxeter 16) in
the same way that the vertices of {4, 4} and {3, 3, 4, 3} represent the Gaussian integers
and integral quaternions.
Weyl (1) represented the operations of a semi-simple continuous group (or Lie

group) by the points of a certain manifold. Cartan (1, pp. 215-230) deduced that
for each semi-simple Lie group there is a corresponding infinite group generated by
reflections, with a finite fundamental region. Our direct enumeration of such groups
shows that he used them all. In fact, there is a one-to-one correspondence between
(i) families of locally isomorphic simple [or semi-simple] Lie groups with complex
parameters and (ii) reflection groups whose fundamental regions are simplexes [or
rectangular products of simplexes] in Euclidean space. (See Stiefel 1.) In particular,
the “ classical ” groups (Weyl 2) corresponds to simplexes as follows :

G,S,T.His (P) is the fundamental region forG. O.
It should be emphasized that his coordinates for 222 (“ type E6 ”, p. 230) are oblique,
although those for 331 and 521 are rectangular. His h (the “ connectivity ” of the group
manifold) is our f = det(2aik). Hism1, . . . ,ml (Cartan 2, p. 256) are the y

1, . . . , yn

These y‘ product. Here is another, involving their sum : the total number of families
of parallel hyperplanes in an infinite groupG (or the total number of reflections in the
special subgroup S) is



e.g., the number of families in [35, 2, 1], or of reflections in [34, 2, 1

2). It is equivalent to the statement that the number of parameters (Gliederzahl) of a
simple continuous group is
(2 + y1+ y2+ . . . +yn)n.
We have already seen that, in the important case of the trigonal groups, these y

Table IV) also represent the neighbourhoods of an important kind of singular point
on an algebraic surface. The numbers zi occur as the coefficients of the partial neigh-
bourhoods in the expression for the whole neighbourhood.



12 CHAPTER XII THE GENERALIZED
PETRIE POLYGON

p, q, r p, q, r}.
In n dimensions, as in three, a congruent transformation is a point-to-point corre-

spondence preserving distance. It consequently preserves collinearity, i.e., it is a
special kind of collineation. It is determined by its effect on an n-dimensional n n+ 1
reflections. Again it is direct or opposite (i.e., a displacement or an enantiomorphous
transformation) according as the number of reflections is even or odd.
The special case when there is at least one invariant point is called an orthogonal

transformation. This is the product of at most n reflections (in hyperplanes through
the invariant point). In terms cf affine coordinates with their origin at the invariant
point, it is a linear transformation

where the coefficients Cjk
n equations

The first step in solving these is to eliminate the x’s, obtaining a single equation of
the nth degree in � :

Each root of this equation yields a value of � which we can substitute in the n equa-
tions (at least one of which will be redundant) ; then we can solve for the x’s and so
obtain an invariant direction.
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A real root gives a real vector, and an imaginary root an imaginary vector. In order
to take the latter into consideration, we suppose our real Euclidean n-space to be
embedded in a complex Euclidean n-space.

characteristic roots, the corresponding vectors are called characteristic vectors, char-
acteristic equation. The transformation preserves (or reverses) the direction of each
characteristic vector, but multiplies its magnitude by a definite number, which is the
characteristic root. Being geometrical properties of the transformation, the character-
istic roots are invariants, independent of the chosen coordinate system ; in particular,
they are the same whether the coordinates be rectangular or oblique.
Any linear transformation has characteristic roots. One special feature of an or-

thogonal transformation is that its characteristic roots have unit modulus : � = 1. This
can be seen as follows.
If is an orthogonal transformation, it preserves the inner product of any two vectors.

(Since the characteristic roots are invariants, we are at liberty to use rectangular
Cartesian coordinates.) If two vectors x and y are transformed into x′ and y ’, the inner
products are
x · y xk

yk kl

xk yl
and
x′ · y′ j′

yj′ cjk

xk jl

yl cjk
cjl xk yl.
The conditions for these to be equal are

xj by its complex conjugate

and summing, we have



as we wished to prove.
orthogonal transformation. An important instance is the rotation (through angle �)

Here the characteristic equation is (�−cos �)2+sin2 �=0, and its roots are
cos � ± i sin � = e±�i.
We proceed to show how any orthogonal transformation can be expressed as a prod-

uct of commutative rotations and reflections. This is closely related to the algebraic
theorem that every polynomial with real coefficients can be expressed as a product of
real quadratic and linear factors.
For an imaginary characteristic root we can find at least one characteristic vector.

(If there are many, choose one at random.) Its complex conjugate vector has likewise
an invariant direction, and the two together span a real invariant plane (through the
origin). Let us choose two real perpendicular vectors in this plane as axes of x1 and
x2, and insist that the remaining n−2 axes shall lie in the completely orthogonal (n−

After removing the factor (�−cos �)2 + sin2 � = (�− ei�)(�− e−i�), we are left with the
characteristic equation of the transformation induced in the completely orthogonal
(n–2)-space. If this (n–2)-ic equation still has an imaginary root, we repeat the process,
choosing axes of x3 and x4 in a second invariant plane. Proceeding thus we see that,
if there are q pairs of conjugate imaginary roots e±i�k (k = 1, . . . , q), and n—2q real
roots ± 1, then we can analyse the orthogonal transformation into rotations through
angles �k in the planes of the axes of x2k−1 and x2k , along with a specially simple kind
of orthogonal transformation in the residual (n − 2q)-space
x1 = . . . = x2q = 0,
where the characteristic roots are only ± 1.
Any real characteristic root provides a real characteristic vector which is preserved

or reversed by the orthogonal transformation. We use this to define one of the remain-
ing axes, and then turn our attention similarly to the perpendicular (n−2q−1)-space.
We thus obtain orthogonal axes of x2q+1, . . . , xn, each of which is either preserved or
reversed :



The signs of the various xj’s agree with the signs of the corresponding characteristic
roots. Hence, if the n−2q real roots consist of r (−1)’s and n−2q−r 1’s, so that the
characteristic equation is
(�2− 2� cos �1 + 1) . . . (�

2 − 2A cos �q + 1)(A + 1)
r (� − 1)n−2q−r = 0 ,

then the transformation consists of q rotations and r reflections, all commutative
with one another.
Since a rotation preserves sense, while a reflection reverses sense, the above orthog-

onal transformation is direct or opposite according as r is even or odd. In particular, the
general displacement preserving the origin in four dimensions is a double rotation,132

expressible in the form
x1′= x1 cos �1 − x2 sin �1, x3′ = x3 cos �2 − x4 sin �2,

x2′ = x1 sin �1 + x2 cos �1, x4′ = x3 sin �2 + x4 cos �2.
The two completely orthogonal planes of rotation are uniquely determined except

when �2= ±�1, in which case only two (instead of three) of the four equations 12·12 are
independent, andwe have a Clifford displacement (analogous to the “ Clifford translation
” of elliptic geometry) The cases when two or four characteristic roots are real are
covered by allowing �1 or �2 to take the extreme values 0 and π.
12·2. Congruent transformations. As a temporary notation, let Q denote a rota-

tion, R a reflection, T a translation, and let Qq Rr T denote a product of several such
transformations, all commutative with one another. Then RT is a glide-reflection (in
two or three dimensions), QR is a rotatory-reflection, QT is a screw-displacement,
andQ2 is a double rotation (in four dimensions). Having proved that every orthogonal
transformation is expressible as
Qq Rr (2q + r ≤ n),
we shall not find much difficulty in deducing that every congruent transformation

is either
Qq Rr (2q + r ≤ n) or Qq Rr T (2q + r + 1 ≤ n).
The complete statement is as follows :
12·21. In an even number of dimensions every displacement is either Qq Rr (2q + r ≤

n, r even) orQq Rr T (2q + r ≤ n −2, r even) and every enantiomorphous transformation is
Qq Rr T (2q + r ≤ n − 1, r odd). In an odd number of dimensions every enantiomorphous
transformation is either Qq Rr (2q + r ≤ n, r odd) or Qq Rr T (2q + r ≤ n − 2, r odd) and
every displacement is Qq Rr T (2q + r ≤ n − 1, r even).



(We admit Qq Rr as a special case of Qq Rr T by allowing the extent of the translation
to vanish.)
In §3·1weproved this for the casesn=2andn=3. Sonowweuse induction, assuming

the result in the next lower number of dimensions. For brevity, we consider two cases
simultaneously, writing alternative words in square brackets.
If n is even [odd], the general direct [opposite] transformation, being the product

of at most n reflections, leaves invariant either a point or two parallel hyperplanes
(i.e., either an ordinary point or a point at infinity). In the former case we have the
orthogonal transformation Qq Rr, where 2q+r ≤ n. In the latter the transformation is
essentially (n−1)-dimensional ; by the inductive assumption it is Qq Rr T, where 2q+r ≤
n−2.
Again, n being even [odd], the general opposite [direct] transformationmay at first be

regarded as operating on bundles of parallel rays, represented by single rays through
a fixed point O. The induced orthogonal transformation is Qq Rr, where 2q+r ≤ n ; but
r is odd [even], so 2q+r ≤n−1. Hence the induced transformationhas an invariant axis (“
then q

Rr orQq Rr q

Rr−1 TorQq Rr−1 T2, whereT2means the product of two translations, both commutative
with all the Q’s and R’s, so that T2 can be written simply as T.
This completes the proof of 12·21. Since the product of two commutative reflections

is a rotation through angle π, while the identity is a rotation through angle 0, an
alternative enunciation (like 3·13 and 3·14) can be made as follows.
In 2q dimensions every displacement is Qq or Qq−1 T, and every enantiomorphous

transformation is Qq−1 RT. In 2q+1 dimensions every displacement is Qq T, and every
enantiomorphous transformation is Qq R or Qq−1 RT.
12·3. Theproduct of n reflections. Aparticular orthogonal transformationwhich is

relevant to the study of regular polytopes (for a reason that will appear in § 12·4) is the
product R1 R2 . . . Rn of the generators of a finite group generated by reflections. This,
being theproduct ofn n
is even or odd. (Here the Q’s stand for commutative rotations, through angles �k which
remain to be computed.) In terms of coordinates x1, x2, . . . , xn, which are distances
from the reflecting hyperplanes, the reflection Rk is given by 10·63 or
xj = xj′ − 2ajk xk′ ,



where − ajk is the cosine of the dihedral angle between the jth and kth hyperplanes
(and akk = 1). Thus R1 R2 . . . Rn transforms
(x1, x2, . . . , xn) into (x1

(n), x2
(n), . . . xn

(n)),
where xj

(n) is given indirectly by the n sets of equations

The general case is treated elsewhere.133 For simplicity, let us here restrict consid-
eration to the case when the group is [p, q, …, w], so that the only non-vanishing ajk’s
with j < k are

Then the above n2 equations become
12·31

whence, for any value of �,
12·32

Now, the characteristic equation12·13 is the result of eliminatinghexj xj
= xj′ and 12·11. Hence the characteristic equation for R1 R2 …Rn can be obtained by
eliminating all the xj

(k)’s from
�xj = xj

(n)

and 12·31. By means of 12·32, all the xj
(k)’s for which j≠k are eliminated automati-

cally, and we are left with the n equations

or

In the extreme cases where j=1 or n, the first or last termwill be lacking. Eliminating
the y’s from

we obtain the characteristic equation
12·33



or, in the notation of 7·76,
12·34

Here X �k of the component rotations, the values of � are

Hence 12·33 or 12·34 has the roots

When n X, so there is an extra root X

which is natural enough when we think of an n-dimensional reflection as an (n+1)-
dimensional half-turn.
The product of the generators of an infinite group [p, q, …, w] (in n−1 dimensions)

arises as a limiting case of the transformation considered above. The relations 12·31
continue to apply, provided we regard the x’s as normal coordinates (§ 10·7). Since
�p , q, . . . , w = 0 (see 7·75, 7·76), the equation 12·33 or 12·34 now has roots X = ± 1, which
may be interpreted as giving a component translation,
X3 − X = 0,
whose roots 0 and ± 1 correspond to the R and T of the glide-reflection RT, which is

the product of reflections in the three sides of a plane triangle.
When n = 3, 12·34 becomes X (X2 − �1) = 0, where

in the notation of 2·33. Thus the angle of the rotatory-reflection R1 R2 R3 in [p, q] is
�1=2π/h.
When n=4, we have
12·35

x=2 cos �1, 2 cos �2 . By analogy with the three-dimensional case,
we let h denote the period of the double rotation R1 R2 R3 R4. The details are as follows
:



134
When n>4, we make use of the Chebyshev polynomials135

or 136

In the case of the symmetric group [3n–1], the equation 12·33 (with every row of the
determinant doubled) becomes
Un(X )=0.

�k are the values of 2� for which sin (n+1)�

Thus the period of R1 R2 . . . Rn is n+1, in agreement with the representation of the
reflections as transpositions :
R1 = (12), R2 = (2 3), . . . , Rn = (n n+1).
In the case of [3n–2, 4] or [4, 3n–2

Tn(X ) = 0.
Since Tn(cos �)=cos n�, the angles �k are the values of 2� for which cos n�=0 (0< �

Thus the period of R1 R2 . . . Rn is 2n.
It happens that, when the �’s are arranged in ascending order, all of them are multi-

ples of �1. Hence the period of R1 R2 . . . Rn is always 2π/�1 greatest
{p, q, . . . , � p, q] takes us one step along a Petrie polygon of the regular polyhedron

or tessellation {p, q}, and that the product of the four generating reflections of [4, 3,
4] has a similar effect on the regular honeycomb {4, 3, 4}. We proceed to generalize
these results to n dimensions.
We recall that a Petrie polygon of {p, q p, q, r} as a skew polygon such that any three

consecutive sides, but no four, belong to a Petrie polygon of a cell. Finally, a Petrie
polygon of an n-dimensional polytope, or of an (n–1)-dimensional honeycomb, is a skew polygon
such that any n–1 consecutive sides, but no n, belong to a Petrie polygon of a cell. This, of
course, is an inductive definition. Wemight have begun by declaring that the Petrie
polygon of a plane polygon is that polygon itself. Moreover, instead of “ n−1 consecutive
sides” we could have said “ n consecutive vertices ”, and instead of a polytope we may
consider the corresponding spherical honeycomb.



Let A–1 A0 A1 . . . An–2 An–1 . . . be a Petrie polygon of the spherical or Euclidean
honeycomb {p, q, . . . , �}, so that A–1 A0 A1 . . . An–2 and (say) B A0 A1 . . . An–2 An–1

belong to Petrie polygons of two adjacent cells. Choose the orthoscheme P0 P1 . . .
Pn–1 in such a position that P0 is A0, P1 is the mid-point of A0 A1, and Pk is the centre
of the k-dimensional element A0 . . . Ak. Let Rk+1 denote the reflection opposite to
Pk (i.e., the reflection in the hyperplane containing all the P’s except Pk). We shall
find that the operation R1 R2 . . . Rn permutes the vertices of the Petrie polygon. Actually
they are shifted backwards; it is the inverse operation Rn . . . R2 R1 that shifts them
forwards, transforming Aj into Aj+1 for every j. In fact, we shall prove that

This transformation of spherical or Euclidean (n–1)-space is completely determined
by its effect on the n pointsA–1,A0, . . . ,An–2 ; so the restriction “j ≤n–2 ” can afterwards
be removed.
When n=2 we have a plane polygon A0A1 . . . ; P0 is another name for A0, and P1 is

the mid-point of the arc A0 A1 of the circum-circle. R1 and R2 are the reflections in P1
and P0 (or in the radii to these points), so R2 R1 is the rotation from A0 to A1, as in Fig.
12.4A.
When n=3 we have a plane or spherical tessellation such as Fig. 5.9A (on page 90),

but with K, M, O, Q re-named A2, A1, A0, A–1 (as in Fig. 12.4B), so that A–1 A0 A1 and B
A0 A1 A2 are two adjacent faces. The rotation R2 R1 about P2 transforms B into A0, A0
into A1, and A1 into A2. Hence

When n=4 we have the situation illustrated in Fig. 5.9B, but with L, M, N, O, P
re-named A3, A2, A1, A0, A–1.

FIG. 12.4A

FIG. 12.4B



We prove the general case by induction, assuming the result for an (n–1)-
dimensional polytope, such as the cell B A0 . . . An–1 of the given honeycomb. Thus we
assume that Rn–1 . . . R2 R1 transforms B into A0, A0 into A1, . . . , and An–2 into An–1.
Now Rn, being the reflection in the hyperplane A0 A1 . . . An–2, transforms the cell B
A0 A1 . . . An–2 into the adjacent cell A–1 A0 A1 . . . An–2. Hence

Thus the Petrie polygon of { p, q, r, …,w} is a skew h-gon, where is the greatest root
of the equation

In particular, the Petrie polygon of {3, 4, 3} is a skew dodecagon, and the Petrie poly-
gons of {3, 3, 5} and {5, 3, 3} are skew triacontagons. (See the table on page 221.) Since

1
for �n, and h=2n for �n, the Petrie polygons of these simplest polytopes include all the
vertices of each.

p, q] to contain thecentral inversion, i.e., for thepolyhedron {p, q p,
q, . . . , w], or the number of sides of the Petrie polygon of {p, q, . . . , w}.
The odd polygons {p} (p odd) and simplexes an (n> 1) are certainly not centrally

symmetrical ; for they have vertices opposite to cells. Hence their symmetry groups,
[p] (p odd) and [3n-1] (n> 1), do not contain the central inversion. We proceed to prove
that all the other finite groups [p, q, . . . , w] do contain the central inversion, in the
form

We have seen that the orthogonal transformation R1 R2 . . .Rn n is odd. More-
over, �1 1

say

, all integers).
It follows that, when h mj π;combined, when n
(i) hmust be even ;
(ii) everymj must be odd ;



(iii)whenn

The following table shows that these conditions are satisfied in each case :

Thus all regular polytopes are centrally symmetrical, except the odd polygons and
the simplexes (n≥2)

Knowing which regular polytopes are centrally symmetrical, we can easily find how
many hyperplanes of symmetry each one has.

An odd polygon {p} obviously hasN1=p lines of symmetry, namely the perpendicular
bisectors of its sides. Similarly, the simplex an A0 A1 . . .An is generated by the
transpositions

R1 = (A0 A1), R2 = (A1 A2), . . . , Rn = (An−1 An),

each of which is the reflection in the hyperplane joining the mid-point of an edge
to the opposite �n−2; and all n dimensions). In other words, [3

n−1] is the symmetric
group of degree n

n. n−1 n−1

n−2 n−2

is centrally symmetrical. Reciprocally, there is a reflection for each pair of opposite
vertices provided the vertex figure is centrally symmetrical, and a reflection for each
pair of opposite edges provided the “ second vertex figure ” is centrally symmetrical.
These remarks enable us to tabulate the number of hyperplanes of symmetry in each
case, as follows :



For instance, the above entry for �n means that there are n reflections interchanging
pairs of opposite vertices, and n(n−1) interchanging pairs of opposite edges. (There
is no reflection interchanging a pair of opposite �k’s for k>1, as such ak’s p] (p even),
[3n−2, 4], and [3, 4, 3] have each two types of reflection, while [3, 5] and [3, 3, 5] have
each only one. Hence the above list is complete.

It is remarkable that all these cases are covered by one simple formula :

. Thesymmetry groupof ann-dimensional regularpolytopecontains re-
flections.

The case when n n. As an interesting consequence of the case when n = 4, we shall
obtain an algebraic expression for gp, q, r in terms of p, q, r, and h.

p, q equators of the simplicially subdivided spherical tessellation {p, q}. This “
simplicial subdivision” is the arrangement of g = gp ,q right-angled spherical triangles
into which the sphere is decomposed by the planes of symmetry of the solid. The
great circles that lie in these planes were formerly called “ lines of symmetry,” but
perhaps a more vivid name is reflecting circles. Typical equators appear in Figs. 4.5A
and B as broken lines, each penetrating a cycle of 2h triangles. (See also Fig. 12.7A,
where the case p = q = 3 is shown in stereographic projection.) Since the arc of an
equator that lies inside one of the triangles is the “ altitude line ” perpendicular to the
hypotenuse from the opposite vertex, each triangle in the cycle is derived from one
of its neighbours by the reflection R2 in their common hypotenuse 02, and from the
other one by the half-turn R3R1 about their common vertex 1 (where two reflecting
circles cross each other at right angles). The product of these two transformations is
the rotatory reflection R2R3R1, which transforms each triangle into the next but one.
Since R1R2R3 is conjugate to R2R3R1, we thus verify again that its period is h. Since
each equator penetrates 2h of the g triangles, the number of equators is g/2h.

FIG. 12.7A



As we saw at the end of page 67, the reflecting circles can be counted by considering
the h pairs of antipodal points in which they intersect a single equator (the broken
line in Fig. 12.7A). Some such points are of type 1 ; others lie on arcs 02. Since they
occur alternately, there are h of either kind. Each point 1 belongs to two orthogonal
reflecting circles, and each point of the other kind belongs to just one. Hence the total
number of reflecting circles is 3h/2.

The analogous simplicial subdivision of the spherical honeycomb {p, q, r} consists
of the g = gp, q, r tetrahedra 0123 into which a hypersphere (in Euclidean 4-space) is
decomposedby thehyperplanes of symmetry of thepolytope {p, q, r}. The great spheres
that lie in these hyperplanes are naturally called reflecting spheres. As before, we let Rk+1
denote the reflection in the face of 0123 opposite to the vertex k. Instead of a triangle
012with its hypotenuse 02 and opposite vertex 1 (where the right angle occurs), we
now use a quadrirectangular tetrahedron 0123 and concentrate our attention on two
opposite edges 02 and 13, at each of which the dihedral angle is a right angle. The
product of half-turns about these two opposite edges, namely

R2R4 1R3 = R2R1R4R3,

being conjugate to R4R3R2R1, is of period h = hp, q. r. Applying either half-turn to the
initial tetrahedron, we obtain another tetrahedron sharing with it an edge at which
the faces are orthogonal. Each new tetrahedron has an opposite edge around which
we can make another half-turn. Continuing in this manner we obtain a cycle of 2h
tetrahedra, adjacent pairs of which share such an edge.

Returning to the initial tetrahedron 0123, we observe that the edges 02 and 13
are arcs of two great circles which, being skew, have two common perpendiculars
(themselves great circles). These common perpendiculars are preserved by both
half-turns and so also by their product R2R1R4R3. Hence they are the two axes
of this double rotation ; and the two distances between the great circles 02 and
13 equator
along which the 2h tetrahedra are strung like beads on a necklace, or like a “ rotating
ring of tetrahedra ” (Ball 1, p. 153, where, however, the tetrahedra were tacitly
assumed to be regular, except in the footnote).

The analogous arrangement in the Euclidean honeycomb {4, 3, 4} is an infinite
sequence of tetrahedra 0123 whose opposite edges 02 and 13 are generators of a
helicoid. (See Fig. 12.7B



FIG.12.7B

To count the reflecting spheres, we consider the pairs of antipodal points in which
they intersect a single equator. Each point of this kind belongs either to one of the h
edges 02 or to one of the h edges 13. In either case, the edge belongs to two orthogonal
spheres. Hence the total number of spheres is

2h.

When n, > 4, the analogous conclusion is that opposite elements 024 . . . and 135 . .
. of any one of the g characteristic simplexes 0123 . . . have a common perpendicular
(great circle) which measures the absolutely shortest distance between them. This
equator is transformed into itself by each of two congruent transformations of period 2 :
theproductR2R4R6 024.
. . , and the product R1R3R5 135 . . . . Applying these two transformations to
the simplex 0123 . . . , we obtain its two neighbours, one before and one after, in a
necklace of hypersolid beads strung along the equator. The number of beads in the
whole necklace, being twice the period of the product

is 2h. For, this product is conjugate to R1R2 . . . Rn (Coxeter 5, p. 602). The kind of
manipulation that is needed in the proof will become clear from the following details
of the case when n = 6. Writing “~” for “ which is conjugate to,” and remembering that
Rk is commutative with all the other R’s except Rk±1, we have

Each reflecting hypersphere intersects this equator in a pair of antipodal points.
Such a point belongs either to one of the h elements 024 . . . or to one of the h elements
135

proved, whereas on page 227 it was merely verified.



Since each equator penetrates 2h of the g characteristic simplexes, there are al-
together g/2h equators. To count the (n − 2)-dimensional simplexes into which one
reflecting hypersphere is dissected by all the others, we observe that each equator
meets the reflecting hypersphere in a pair of antipodal points lying on elements 024
…or 135. . . . Hence the desired number of (n − 2)-dimensional simplexes (each
possessing either an element 024 . . . or an element 135…, but not both) is equal to
twice the number of equators, namely
g/h.
Since each of the ng bounding cells of the g characteristic simplexes occurs twice in

the list of all the (n

g in four dimensions. In the four-dimensional case, the total area of the 2h re-
flecting spheres is 8πh. Since these great spheres decompose the hypersphere into
the g characteristic tetrahedra, their total area is also equal to the sum of the angular
excesses of 2g spherical triangles, each occurring twice among the 4g faces of the g
characteristic tetrahedra. Since the sum of all the angles of all the triangles is g/

whence

This is the formula which was promised on pages 133, 209, and 227. Since cos π
h/g is actually a trigonometrical formula for g. It is thus “ elementary,” in contrast to
Schläfli’s expression

(see page 142). Moreover, it is very easy to use ; e.g., since h3,3,5 = 30,

It may be regarded as the four-dimensional analogue of

The five-dimensional analogue,137

N0 − N1 + N2 − N3 + N4 = 2.



gp,q,r,s as a trigonometrical function of p, q, r, s.
1 P0P2 andP1P3
11 ; Steinberg 2). Thus the products of generators of the trigonal groups (see page

204) work out as follows :

Here, as before, h n−3, 1, 1] (n even), [33, 2, 1] and [34, 2, 1] all contain the central inver-
sion, while [3n−3, 1, 1] (n odd) and [32, 2, 1

1 + y1 + y2 + . . .+ yn

is equal to h.
In the First Edition, this page ended with an appeal for some reader to supply a

direct proof “ that the number of reflections (when n = 4) cannot be less than 2h. 1R2 .
. . Rn n = 3 but for all values of n.
It seems fitting to close this chapter with a fewwords about the life of Pieter Hendrik

Schoute. He was born in 1846 at Wormerveer, Holland. He started his career as a civil
engineer, but in 1870 took his Ph.D. at Leiden with a dissertation on “ Homography
applied to the theory of quadric surfaces ”. After eleven years of teaching he became a
professor of mathematics at Groningen, where he worked until his death in 1913. His
uninterrupted series of mathematical papers (including some thirty on polytopes)
began in 1878. The work on congruent transformations appeared in 1891, and from
that time he became increasingly interested in n-dimensional Euclidean geometry.
About 1900 H. Schubert asked him to write a couple of volumes for his Sammlung
mathematischer Lehrbiicher (Schoute 4 and 6). Die linearen Räume appeared in 1902,
and Die Polytope in 1905 ; they are still “ classics ”, though by no means easy to read.



13 CHAPTER XIII SECTIONS AND
PROJECTIONS

THIS chapter provides some indication of the manner in which the more complicated
illustrations in this book were constructed. The illustrations make no important con-
tribution to the theoretical development of our subject, but they have a psychological
value inmaking us feel more familiar with the individual polytopes. It may be claimed,
also, that they have some artistic merit.

Inhabitants of Flatland,138 desiring to get an idea of solidfigures, wouldhave twogen-
eral methods available to them : section and projection. According to the first method,
they would imagine the solid figure gradually penetrating their two-dimensional
world, and consider its successive sections; 139e.g., the sections of a cube, beginning
with a vertex, would be equilateral triangles of increasing size, then alternate-sided
hexagons (“ truncated ” triangles), and finally equilateral triangles of decreasing size,
ending with a single point—the opposite vertex. According to the secondmethod, they
would study the shadow of the solid figure in various positions ; e.g., a cube in one
position appears as a square, in another as a hexagon.

n �n onto a three-space are found to be zonohedra.

It is perhaps worth while to mention a third method for representing an n-
dimensional polytope in n−1 dimensions: the unfolded “ net ”. Two instances will
suffice. The cube �3 is unfolded into a kind of cross, consisting of a square with four
other squares attached to its respective sides and a sixth beyond one of those four.
The hyper-cube �4 is unfolded into a kind of double cross, consisting of a cube with
six other cubes attached to its respective faces and an eighth beyond one of those six.
But we shall not have occasion to use this method.

207



The Flatlander’s sequence of parallel sections of a regular solid might be taken in
any direction, but it would be simplest to use planes perpendicular to one of the axes
of symmetry Oj O3, which join a vertex (j=0) or mid-edge point (j=1) or face-centre
(j=2) to the centre of the solid. Analogously, we three-dimensional creatures can get
some idea of the appearance of the four-dimensional regular polytopes by observing
a sequence of parallel “ solid sections ”, perpendicular to one of the four principal
directions Oj O4(j=0, 1, 2, 3). For the sake of completeness, we shall describe the

n n

bya sequenceofparallel hyperplanesperpendicular to the lineOj On j n j

itself.

FIG. 13.1A

n.

Eachsection is, of course, a convex (n n n)
determine an inscribed polytope which we shall call a simplified section. Fig. 13.1A140

shows the sections of the icosahedron and dodecahedron (n=3), with the simplified
section drawn in full lines, and the rest of the section (when there is any more)
in broken lines. To obtain the simplified sections ab initio n in sets of parallel
hyperplanes perpendicular to Oj On.

When n>3 we shall be content to describe those sequences of sections which begin
with a vertex or a cell, so that j=0 or n−1. The simplified sections beginning with a
vertex are conveniently denoted by

O0, 10, 20, . . , k0

(so that 00 is the vertex itself, and 10 is similar to the vertex figure), and those
beginning with a cell by

1n−1, 2n−1, . . .



(so that 1n−1is the cell itself). In the caseof �n n

has central symmetry. Then the last section in each sequence will be the same figure
as the first, the last but one the same as the second, and so on ; thus (k−i)0 and i0 are
alike, and k0 is the vertex opposite to 00.

corresponding sections 1n−1, 2n−1, . . . : the numbers of vertices are proportional,
and so are the circum-radii. As a trivial instance, all the vertices of either �n or �n are
included in the two sections 1n−1 and 2n−1, which are two opposite cells.

In tabulating the simplified sections i0, it is convenient to let a denote the distance
fromthepoint00 to anyvertexof i0 n

as unit ; e.g., �=1 for 10, 0R/l for the “ antipodes ” k0, and 1R/l for (k−1)0. In other
words, the edge length being 2l, the vertices of i0 are distant 2la from O0.

The simplified section i0 may be a regular polytope of edge 2lb (say), or it may be
irregular. In the latter casewe shall be interested in the possible occurrence of inscribed
regular polytopes (having some of the same vertices) ; e.g., the section 20 or 30
In the case of the cross polytope �n, 20 is the vertex opposite to 00, while 10 is the

equatorial �n−1 (with a=b=1).

We saw, in that the vertices of the measure polytope �n are

( ± 1, ± 1, . . . , ± 1, ± 1).

Shifting the origin to (−1, −1, . . . , −1, −1), and doubling the unit of measurement,
we obtain

13·11

with the coordinates permuted arbitrarily. Here the 2n vertices have been dis-
tributed into sets of

which belong to the respective sections

00, 10, . . . , i0, . . . , (n − 1)0, no.

Hence, by 8·76,

(with �=√i, b=√2) ; e.g., the section 20 of �4



For the remaining regular polytopes in four dimensions, we express the coordinates
of the vertices of II4 in such a form that the lineO4 O0 orO4 O3 may be taken along the
x4-axis. Then the simplified sections are picked out by arranging the vertices of II4
according to decreasing values of x4 ; and in each case the values of (x1, x2, x3) enable
us to ascertain the shape of the simplified section (which is an ordinary polyhedron).
The {3, 4, 3} with vertices 8·71 and 8·73 can be derived from its reciprocal, 8·72, by

the transformation
x1′ = x1 − x2 , x2′ = x1 + x2, x3′ = x3 − x4, x4′ = x3 + x4,
which is a Clifford displacement (page 217) combined with a magnification. Apply-

ing the same transformation to the {3, 3, 5} with vertices 8·71, 8·73, 8·74, we obtain
the vertices of another {3, 3, 5} (of edge 2�-1√2)141 as the permutations of (�2, �−1, �−1,
�−1) and (�, �, �, �-2) with an even number of minus signs, (√5, 1, 1, 1) with an odd
number of minus signs, and (±2, ±2, 0, 0).
Similarly, the reciprocal {5, 3, 3} (of edge 2�−2√2) is given by the permutations of

and ( ± 4, 0, 0, 0), ( ± 2, ± 2, ± 2, ± 2), ( ± 2�, ± 2, ± 2�−1

Using these results, and referring to § 3·7, we obtain the sections exhibited in Table
V (pages 298-301). The latter half of Table V (v) has been omitted, to save space; but
nothing is lost, as (30−i)0 is just like i0, and the value of � is given in the final column.
Most of the sections of {5, 3, 3} are irregular, but some (viz., 30, 80, 110, 120, 150) are
partially regular, in the sense that their vertices include the vertices of one or more
regular solids. The pairs of interpenetrating icosahedra in the two similar sections
30 and 110 are evident from 3·75 (since all permutations of the three coordinates
occur, whereas the cyclic permutations give an icosahedron). The reciprocal pair of
interpenetrating dodecahedra 142 occurs in 80. Here the two dodecahedra (one given
by cyclic permutations of the given coordinates) have eight common vertices (±2, ±2,
±2), belonging to one of the five cubes that can be inscribed in either dodecahedron.
The remaining eight cubes of the two {5, 3} [5{4, 3}]’s form a symmetrical set ; each of
the 8 + 24 vertices belongs to two of them. In other words, 80 contains a set of 1 + 8
cubes (one special). Reciprocating again, we obtain a set of 1+8 octahedra, as in 150.
By 3·77, the same vertices belong to two interpenetrating icosidodecahedra, whose



common vertices are those of the special octahedron. The remaining 48 vertices of the
two icosidodecahedra are distributed among the remaining 8 octahedra. Finally, the
connection between 150 and 30 (or 110) is as follows : the two overlapping compounds
[5{3, 4}]{3, 5} in 150 have the same face-planes as a pair of icosahedra like 30 or 110.

13·2. Orthogonal projection onto a hyperplane. The general procedure for pro-
jecting an n-dimensional figure may be described as follows. Given an s-space and
an (n−s)-space which have only one common point (and therefore “ span ” the whole
n-space), we project onto the s-space by drawing, through each point of the figure,
an (n−s)-space parallel to the given (n−s)-space, to meet the s-space in a definite “im-
age” point. This process of parallel projection is called orthogonal projection if the
(n−s)-space is completely orthogonal to the s-space.

FIG. 13.2A

Themost familiar instance of parallel projection (with n=3 and s=2) occurs when
the sun casts a shadow on the ground. The projection is orthogonal if the sun is at
the zenith. Fig. 13.2A shows various orthogonal projections of the icosahedron and
dodecahedron (i.e., shadows of wire models of the vertices and edges). Comparing
this with Fig. 13.1A, we see how such a projection can be derived from a sequence of
sections. Each section is projected (onto a parallel plane) without any distortion ; so
the whole projection can be constructed by superposing the simplified sections and
joining certain pairs of vertices (by foreshortened edges).

In the case of the “ vertex first ” projection, two opposite vertices would naturally
be projected into coincidence at the centre of the plane figure. In Fig. 13.2A we have
avoided this coincidence by making a slight distortion. Wemay justify this distortion
by pretending that the direction in which we project differs from the direction O3 O0
by a very small angle. A similar device has been employed to separate two opposite



edges in the “ edge first ” projection. To save space we have omitted the analogous
figures for the simpler Platonic solids ; but it is worth while tomention that the neatest
way to separate the nearest and farthest faces of the cube in its “ face first ” projection
is to introduce a slight degree of perspective, making the one face a little smaller than
the other. (The result, in this case, is a Schlegel diagram ; cf. page 10.)

n

can be superposed concentrically, in their proper size and orientation, to form
an (n−1)-dimensional projection. The only case of practical interest is when
n 4’s
have beenmade by Donchian, using straight pieces of wire for the edges, and globules
of solder for the vertices. (See Plates IV-VIII.) The vertices are distributed on
a set of concentric spheres (not appearing in the model), one for each pair of
opposite sections. Donchian did not attempt to indicate the faces, because any
kind of substantial faces would hide other parts (so that the model could only be
apprehended by a four-dimensional being). The cells appear as “ skeletons ”, usually
somewhat flattened by foreshortening but still recognizable. Parts that would fall
into coincidence have been artificially separated by slightly altering the direction of
projection, or introducing a trace of perspective.

The “ vertex first ” and “ cell first ” projections of {3, 3, 5} are shown in Plate IV
(facing page 160) and again in Plate VII (page 256). The “ cell first ” projection of {5, 3,
3} is shown in Plate V (page 176) and again in Plate VIII (page 273).

PLATE VI



PROJECTIONS OF THE SIMPLER HYPER SOLIDS

The arrangement of figures in Plate VI is as follows :

Some of these figures are quite easy to describe. Fig. 5 is a tetrahedron with all its
vertices joined to its centre ; Fig. 10 is a cube with its face-diagonals drawn ; and Fig.
14 is a cuboctahedron with its vertices joined to pairs of points near the centres of its
square faces.

Donchian claims, with some justification, that these models are more perspicuous
than those of Schlegel 2, which are exhibited in certain museums. Donchian’s are
more like portraits, involving a minimum of distortion. As he says, “ They help to
remove the mystery from a seemingly complicated subject…. Each component part is
distinctly visible and tangible, in practically its true position and relationship.”

13�3. Plane projections of �n, �n, �n. In Figs. 7.2A, B, C, we assumed that the vertices
of �4 and �4 can be projected into the vertices of the regular pentagon {5} and octagon
{8}, and that �4 can be projected isometrically (so that all the edges project into equal
segments). One feels instinctively that such highly symmetrical figures are really
orthogonal projections. We shall find that this instinctive feeling is in fact justified.

n]
completely orthogonal planes, along with a reflection when n is odd. We saw also
that one of the angles of rotation is 2π/h, while the rest are multiples of that one, say
2mπ/h for various values ofm. (See the table in § 12�5.) It follows that the orthogonal
projections of the Petrie polygon on the various planes are regular polygons {h/m},
withm= 1 in one case.

Whenm= 1, so that the Petrie polygon projects into an ordinary regular h-gon, it is
not surprising to find that the remaining vertices and edges of the polytope project
into points and segments inside the h-gon. (See Figs. 2.6A, 7�2A, B, C, 8�2A, 13�3A,
and the frontispiece.) In other words, the h-gon is the periphery of the projection, like
the shadow of an opaque solid.



When the polytope is �n or �n, all its vertices belong to one Petrie polygon, and
therefore every edge is either a side or a diagonal of that skew polygon. Hence the
vertices and edges of �n can be projected into an {n+1} with all its diagonals, while the
vertices and edges of �n can be projected into a {2n) with all its diagonals except those
that pass through the centre.
The corresponding projection of �n is isometric ; for every edge of �n is parallel to

one of the diameters of the reciprocal �n, and these project into the diameters of the
{2n}, which are all equal. The coordinates 13�11 (on page 239) show clearly that any
vertex

FIG. 13.3A
can be derived from a particular vertex by applying a vector of the form
13�31

where the e’s are selected from n unit vectors in perpendicular directions. In partic-
ular, the vectors e1; e2, . . . , en proceed along n consecutive sides of a Petrie polygon
(with −e1, −e2, . . . , −en along the remaining n sides). We know that there is one plane
on which this skew polygon projects into an ordinary {2n}. Then the vectors ej project
into vectors along n consecutive sides of this {2n}. The projections of the remaining
vertices and edges may be constructed by filling the {2n n=4 and n=5 are shown in
Figs. 7.2C and 13�3A, respectively.
13�4. New coordinates for �n and �n. We found, on page 222, that the angles of rota-

tionof thePetriepolygons foran and �n n n]
odd multiples of π/n, respectively. This remark suggests a new representation for
these polytopes in terms of Cartesian coordinates.
Let Ak denote the point (x1, . . . , xn), where

and if n is odd, xn = (−1)
k/√2. Then, if 0 < k < n + 1,we have

Hence A0 A1 . . . An



Again, let Bk denote the point (x1, …, xn), where

and if n is odd, xn = ( − 1)
k/√2. Then, provided k is not divisible by n,

Hence B1 …B2n is a cross polytope of edge √n.
We obtain the orthogonal projections, {n+1} and {2n}, by keeping the coordinates x1,

x2, and discarding all the rest.
13�5. The dodecagonal projection of {3, 4, 3}. Other polytopes may be treated

similarly. The 24-cell {3, 4, 3} has a Petrie polygon A0 A2 A4 . . . A22, where Ak (k even)
is

Since the triangle A0 A2 A4 is equilateral,

Thus, if the circum-radius is 1, so that the edge also is 1, we have
13�51

In other words, a and b are the positive roots of the equation
6x4 − 6x2 + 1 = 0 .
Now, A0 A2 A4 A6 is part of the Petrie polygon of an octahedron, which has an

equatorial square A0 A4 A6 B1, where B1 is

or

This is one of twelve vertices B1 B3 B5 …B23, where Bk (k odd) is

The 24 vertices of {3, 4, 3} consist of the twelve A’s and the twelve B’s. The 96 edges
are :

In other words, there are 12 like A0 A2, 12 like A0 A4, 24 like A0 B1 (and A2 B1), 24
like A0 B5 (and A6 B1), 12 like B1 B5, and 12 like B1 B11. As for the 24 cells (octahedra),
there are 12 like A0 A2 A4 A6 B5 B1 and 12 like B1 Bn B21 B7 A2 A6. (See Fig. 13.5A.)
The twelve B’s, taken in the order
13�52



B1 B11 B21 B7 B17 B3 B13 B23 B9 B19 B5 B15,
form another Petrie polygon.
After projection onto the (x1, x2)-plane, the A’s and B’s form two concentric do-

decagons, inscribed incircles of radiia and b.

the chordA0 A10 π)
contains the chordB1 B9 Fig.
8.2A (on page 149) is quite easy to draw : within the dodecagon A0 A2 …A22 (Fig.
13.5B) we locate B1 as the point where A0 A10 meets A2 A16. Triangles like A0 A2 B1,
and squares like A2 A4 B5 B1, are projected without distortion.

FIG. 13.5A
Two cells of {3, 4, 3}

FIG. 13.5B
How to locate the B’s
13�6. The triacontagonal projection of {3, 3, 5}. More complicated considerations

of the same kind give us the 120 vertices of the 600-cell {3, 3, 5} in the form
A0 A2 . . . A58, B1 B3 . . . B59, C1 C3 . . . C59, D0 D2 . . . D58,
where, in terms of �=π/30=6°,
Ak (k even) is (a cos k�, a sin k�, d cos 11 k�, d sin 11 k�),

Bk (k odd) is (b cos k�, b sin k�, c cos 11 k�, c sin 11 k�),
Ck (k odd) is (c cos k�, c sin k�, −b cos 11 k�, −b sin 11 k�),
Dk (k even) is (d cos k�, d sin k�, −a cos 11 k�, −a sin 11 k�).
The numbers a, b, c, d are connected in various ways, such as

If the circum-radius is 1, so that the edge is �-1, we have



In other words, a, b, c, d are the positive roots of the equation
45x8 − 90x6 + 60x4 − 15x2 + 1 = 0.
The 720 edges are :

Thus A0 A2 . . . A58 and
13�61

are Petrie polygons.
The various types of cell are all given by taking sets of four consecutive vertices of

two further Petrie polygons :
13�62

and
13�63

(Fig. 13.6A). Thus the 600 tetrahedra consist of thirty of each of the “ symmetrical ”
types
AAAA, AABB, CCDD, DDDD
and sixty of each of the “ asymmetrical ” types
AAAB, AABC, ABBC, ABCC, BBCD, BCCD, BCDD, CDDD.
(For instance, we regardA4 A8 A10 B9 as being of the same type asA6 A2 A0 B1, since

either can be derived from the other by subtracting respective suffixes from 10.)



After projection onto the (x1, x2)-plane, the A’s, B’s, C’s, and D’s form four concentric
triacontagons, inscribed in circles of radii a, b, c, and d. There is no need to compute
these magnitudes ;

FIG. 13.6A

Two Petrie polygons of {3, 3, 5}

for, when we have drawn the outermost triacontagon A0 A2 …A58 (Fig. 13.6B), the
relations

enable us to locate B1, C1, Do as the respective points of intersection

(A2 A40 � A22 A0), (A4 A44 � A18 A58), (A8 A44 · A16 A52).

The vertices of the reciprocal {5, 3, 3}, being the centres of the 600 cells of {3, 3, 5},
project into the centroids of the projected sets of four points, e.g., A0 A2 A4 A6. We
thus have a plane figure in which 600 points occur on twelve concentric circles : thirty
on each of four circles (including the outermost), and sixty on each of the remaining
eight. Such a drawing has been made by B. L. Chilton (Coxeter 20, p. 403).

FIG. 13.6B

How to locate the B’s, C’s, and D’s



13�7. Eutactic stars. So far, we have projected polytopes of more than four dimen-
sions into two dimensions only. It is natural to expect that a clearer idea would be
obtained by projecting them into three dimensions. The simplexes an are already so
simple that there is not much advantage in projecting them. (It is perhaps worth while
tomention that a2p–1 can be projected into �p ; e.g., a5 into an octahedron. See Schoute
6, pp. 253-254.) But we shall describe various projections of the cross polytopes and
measure polytopes.

We have seen that the vertices of �n can be orthogonally projected into the vertices
of a regular 2n-gon in a suitable plane. We now ask whether they can also be projected
into the vertices of a regular or quasi-regular polyhedron in a suitable 3-space. (Of
course this could only happen for certain special values of n, such as 4, 6, 10. For an
icosahedral projection of �6, see Schoute 6, p. 254.) There is no “ Petrie polyhedron ”
to guide us in our choice of a 3-space. Nevertheless, an affirmative answer is obtained
by means of the following considerations, due to Hadwiger.

We define a star (as in § 2�8) to be a set of 2n vectors ±a1, . . . , ±an issuing from a
fixed origin in Euclidean 3-space.143 A vector s (not necessarily belonging to the star)
is called a symmetry vector if the symmetry group of the star admits a subgroup under
which the multiples of s are the only invariant vectors.

We define a cross to be a set of n mutually perpendicular pairs of vectors ± e1, . .
. , ± en of equal magnitude, issuing from a fixed origin in Euclidean n-space. Thus
the end-points of the vectors of a cross are the vertices of a cross polytope, �n. The
orthogonal projection of a cross on any three-dimensional subspace is called a eutactic
star. 144 If the vectors of the cross are of unit magnitude the projection is called a
normalized eutactic star.

For a given set of n vectors, a1, . . . , an, we define the “ vector transformation ”

aj
aj ·,

which transformsanyvectorx intoTx aj

aj ·x aj
· x)aj. This clearly has the properties

T(x+y)=Tx+Ty, T�x=�Tx, Tx�y =x· bTy,



where � is any real number. In particular, if a1, …, an are mutually perpendicular
unit vectors (in n dimensions), the n numbers aj • x are the components of x in those
directions, and Tx=x. We proceed to prove Hadwiger’s principal theorem :

13�71. Vectors ± a1, . . . , ± an, in a 3-space, form a normalized eutactic star if, and
only if, Tx=x for every x in the 3-space.145

First, given a normalized eutactic star, we shall prove that Tx=x. If n=3 the star
is a cross of unit vectors, and the result is obvious. If n>3 let the given star be the
orthogonal projection of a cross of unit vectors ± e1, …, ± en in an n-space containing
the 3-space. Then the completely orthogonal (n—3)-space contains n vectors b1,…, bn
such that

ej = aj + bj (j=1,…,n).

For all vectors x in the n-space, and in particular for such in the 3-space, we have

(ej
• x)ej = x.

But, for x in the 3-space, bj • x= 0.

Hence

(aj
• x)(aj + bj) = x,

and

(aj
• x)bj = x−Tx.

Now, the vector on the right lies in the 3-space, while that on the left lies in the
completely orthogonal (n-3)-space. Hence both vanish, and we have Tx= x.

Conversely, given a star such that Tx=x, we shall prove that it is a normalized eutactic
star. If n=3 we take x to be perpendicular to two of a1, a2, a3, and deduce that it is
parallel to the remaining one, i.e., that the three a’s are all perpendicular ; then taking
x=ak, we deduce that ak

2=1. If n> 3 we regard the 3-space as a subspace of the n-space
spanned by nmutually perpendicular unit vectors p1, p2, p3,…, pn, of which the first
three span the 3-space. In this n-space, consider the three vectors

qµ aj
• pµ)pj (µ = 1, 2, 3).

Since pj • pk = �jk, we have



qµ • qv aj
• pµ)(aj • pv) = Tpµ • pv=pµ • pv= �µv.
Thus the three q’s are all perpendicular. Along with these, take n—3 further vectors

q4, …, qn, such that
qj • qk = �jk (j, k=1, …, n).

Thenanyvectorp qi
• p)qi. Since

qµ pµ
• aj)pj,
we have
qµ •pk pµ

• aj)�jk= pµ • ak, and
ak= (p1 p1 • + p2 p2 • + p3 p3 • )ak=(p1 q1 • + p2 q2 • + p3 q3 •)pk.
So, if we define
bk = (p4 q4 • +…+pn qn • )pk and ek =ak + bk pi

qi • pk,
we have
ej • ek qi

• pj)(qi • pk) = pj • pk =�jk.
We thus express the given star as the orthogonal projection of a cross ± e1,…, ± en
The effect of multiplying all the vectors a1, …, an by a number c, is to multiply Tx by

c2. Hence
Vectors ±a1, …, ±an, in a 3-space, form a eutactic star if, and only if, Tx=�x,where the

number � is the same for all vectors x ( in the 3-space).
If
(a1 a + …+ an an )x=�x and (b1b1. + …+bm b )x=µx,
then
(a1 a +…+an a +b1b +…+bmb )x= (�+µ)x.
Hence
Any two eutactic stars, with the same origin, form together a eutactic star.
The next step in our argument is the following lemma :
If a star ±a1, …, ±an has a symmetry vector s, then Ts is parallel to s.



PROOF. Any symmetry operation of the star, say K, permutes the n vector-pairs ± ai
; thus ai

K= ± aj for some j, not necessarily different from i. This symmetry operation
transforms

Tx ai
ai · x

into

(Tx)K ai
K

ai x
K aj

aj x
K =TxK.

If K belongs to the subgroup under which the multiples of s are the sole invariant
vectors, then sK = s, and we deduce that (Ts)K=Ts. Thus Ts is invariant under transfor-
mation by K, which may be any operation of the subgroup. Hence Ts is a multiple of
s.

We are now ready for our chief theorem :

A star is eutactic if its symmetry group is transitive on a set of symmetry vectors
which span the 3-space.

PROOF. For each symmetry vector s, of the set considered, we have

Ts=�s

for some number �. Since TsK=(Ts)K=�sK, � is the same for all s’s. Since T is a linear
operator, and the s’s span the 3-space, it follows that Tx=�x for every vector x. Hence
the star is eutactic.

If the symmetry group is [3, 4] or [3, 5], the vectors to the vertices of the octahedron
or icosahedron are symmetry vectors which span the space. Hence

Any star having octahedral or icosahedral symmetry is eutactic.

In particular, the vectors (from the centre) to the vertices of the octahedron, cube,
cuboctahedron, icosahedron, rhombic dodecahedron, pentagonal dodecahedron,
icosidodecahedron, and triacontahedron, form eutactic stars. In other words, these
polyhedra are “ orthogonal shadows ” of the respective cross polytopes

�3, �4, �6, �6 again, �7, �10, �15, and �16,



The first case is trivial, since �3 is the octahedron itself. When we say that the cube
is a shadow of �4, we mean that �4 projects into a cube with its interior. Two opposite
cells project (without distortion) into the two regular tetrahedra inscribed in the cube,
eight project into trirectangular tetrahedra (one for each corner of the cube), and the
remaining six project into the faces of the cube (with their diagonals).

If the vector aj of a star has components (cj1, cj2, cj3) in terms of an orthogonal frame
of reference, so that

aj = cj1 e1 + cj2 e2 + cj3 e3, eµ ev = �µv,

thenTeµ cjµ

aj cjµ
(cj1 e1 + cj2 e2 + cj3 e3

The vectors (cj1, cj2, cj3) and their opposites form a normalized eutactic star if, and
only if,

cjµ
cj� = �µ� (µ, � =1, 2, 3).

When n

so that the vectors aj lie along n evenly spaced generators of a cone of revolution
(like the ribs of an umbrella). We obtain the conditions

form (with their opposites) a eutactic star. Thus the cone of semi-vertical angle arc
tan √2 has the remarkable property that vectors of equal magnitude, taken in both
directions along n symmetrically spaced generators, form a eutactic star, for all values
of n. (When n n/3 crosses.) In other words,

A right regular n-gonal prism (n even) or antiprism (n odd) is an orthogonal shadow
of �n, provided its altitude is √2 times the circum-radius of its base.



When n=4 the prism is a cube, which we have already recognized as a shadow of �4.
When n=5 we have a special pentagonal antiprism (with isosceles lateral faces), which
is the most symmetrical projection of �5. For �6, however, we have already found two
other projections which, for most purposes, are preferable to the hexagonal prism.

Shadows of measure polytopes every eutactic star determines a zonohedron which is
an orthogonal shadow of �n, i.e., the surface of an orthogonal projection. In particular,
since a zonohedron has the same symmetry as its star,

Every zonohedron which has octahedral or icosahedral symmetry is an orthogonal
shadow of a measure polytope �n.

The number of dimensions of themeasure polytope is naturally equal to the number
of directions of edges of the zonohedron ; e.g., the rhombic dodecahedron is a shadow
of �4, and the triacontahedron of �6. The fifteen equilateral zonohedra shown in Plate
II (facing page 32) are shadows of �n for the following values of n :

3, 4, 6, 6, 7, 9, 10, 10, 12, 12, 12, 13, 15, 21, 24.

(The numbers in bold type refer to zonohedra having icosahedral symmetry ; the
rest have octahedral symmetry.) Each 2m-gonal face (m>2) has been filled with over-
lapping rhombs (like Fig. 13.3A) so as to exhibit it as a plane projection (orthogonal
or oblique) of an element �m. The three shadows of �12, and the shadow of �24, are
capable of continuous variation, and any two varieties of the former may have their
stars superposed to give a different shadow of �24. But the remaining eleven (along
with shadows of �16, �25, �31, which have icosahedral symmetry) are unique, in the
sense that no other isometric projections of the same �n can have the same symmetry.
This happens because their stars are obtained by selecting one or more of the vertices
0, 1, 2 of the spherical tessellations shown in Fig. 4.5A.

By considering the star formed by equal vectors along evenly spaced generators of
a cone of semi-vertical angle arc tan √2, we see that the polar zonohedra (Fig. 2.8A n
rhombs of angle

for each value of j from1 to n−1. When n n “ vertical ” rhombswhichhave the same
shapeas the facesof the rhombicdodecahedron. Whenn n
squares.



The isohedral rhombic icosahedron (Fig. 2.8A, n=5), whose edges make an angle arc
tan � with its axis of symmetry, is too “ oblate ” to be an orthogonal shadow of �5 ; but
this defect can be remedied by stretching it in the direction of its axis. The stretching
has no visible effect on the particular projection shown in Fig. 2.8A (which is a “ plan ”)
; so I have drawn another projection (an “elevation ”) in Fig. 13.8A. This solid, bounded
by ten rhombs of angle

(five at each “pole ”, shaded in the figure) and ten rhombs of angle

(in the “ tropics ”),146 is one of the most symmetrical shadows that can be found for
� Another is derived from the five unit vectors

PLATE VII

TWO PROJECTIONS OF {3, 3, 5}

(See Fig. 13.8B. In this case the “ plan ” would be indistinguishable from Fig. 2.8A,
n=4.) This elongated dodecahedron

Fig. 13.8A



-Fig. 13.8B

Projections of �5
For simplicity, we have restricted consideration to projections onto a 3-space. But

most of the above theory can be extended to projections onto any subspace of the
n-space. For instance, the four-dimensional shadows of �n n segments in the star.
When the zonohedron is a shadowof �n the various parallelepipeds arise as projections
of elements �3 (i.e., cubes).

Alicia Boole Stott (1860-1940) was the middle one of George Boole’s five daughters.
Her father, who is famous forhis algebraof logic andhis text-bookonFiniteDifferences,
died when she was four years old ; so her mathematical ability was purely hereditary.
She spent her early years, repressed and unhappy, with her maternal grandmother
and great-uncle in Cork. When Alice was about thirteen the five girls were reunited
with their mother (whose books reveal her as one of the pioneers of modern pedagogy)
in a poor, dark, dirty, and uncomfortable lodging in London. There was no possibility
of education in the ordinary sense, but Mrs. Boole’s friendship with James Hinton
attracted to the house a continual stream of social crusaders and cranks. It was during
those years that Hinton’s son Howard brought a lot of small wooden cubes, and set
the youngest three girls the task of memorizing the arbitrary list of Latin words by
which he named them, and piling them into shapes. To Ethel, and possibly Lucy too,
this was a meaningless bore ; but it inspired Alice (at the age of about eighteen) to
an extraordinarily intimate grasp of four-dimensional geometry. Howard Hinton
wrote several books on higher space, including a considerable amount of mystical
interpretation. His disciple didnot care to followhimalong these other lines of thought,
but soon surpassed him in geometrical knowledge. Her methods remained purely
synthetic, for the simple reason that she had never learnt analytical geometry.

In 1890 she married Walter Stott, an actuary ; and for some years she led a life
of drudgery, rearing her two children on a very small income. Meanwhile, in Hol-
land, Schoute (2) was describing the central sections (perpendicular to the principal
directions Oj O4) of the regular four-dimensional polytopes ; e.g., the sections 40,
83 of {3, 3, 5}, and the sections 150, 83 Table V.) Mr. Stott drew his wife’s attention



to Schoute’s published work ; so she wrote to say that she had already determined
the whole sequence of sections i3, the middle section (for each polytope) agreeing
with Schoute’s result. In an enthusiastic reply, he asked when he might come over to
England and work with her. He arranged for the publication of her discoveries in 1900,
and a friendly collaboration continued for the rest of his life. Her cousin, Ethel Everest,
used to invite them to her house at Hever, Kent, where they spentmany happy summer
holidays. Mrs. Stott’s power of geometrical visualization supplemented Schoute’s
more orthodox methods, so they were an ideal team. After his death in 1913 she at-
tended the tercentenary celebrations of his university of Groningen, which conferred
upon her an honorary degree, and exhibited her models.

The work of Schoute and Mrs. Stott, on sections of the regular polytopes, is sum-
marized in Table V (on pp. 298-301). Schoute (6, p. 226) used the letters A, B, C, D, E,
F, G, H to denote the simplified sections 13, 23, 33, 43, 53, 63, 73, 83 of {3, 3, 5}, which
he sketched in his Fig. 75. The corresponding complete sections were described in
detail by Mrs. Stott (1, pp. 8-21). Her Plates III and IV give the beginnings of “ nets ”
which can be folded and stuck together to form cardboard models. “ Diagrams I-VII ”
refer to the sections 23-83 (because 13 is merely a tetrahedron). She also constructed
the sections i3 of {5, 3, 3}, exhibiting the nets in her Plate V. “ Diagrams VIII-XIV ”
refer to the sections 13-73 ; but 83 is missing. Incidentally, Diagram XIII (our 63) is a
rhombicosidodecahedron, the Archimedean solid mentioned on page 117 (which is
No. XV of Catalan 1, pp. 32, 48, and Fig. 51).

The simplified sections i0 of {5, 3, 3} were discussed briefly by Schoute (6, p. 229
147),

who used the letters A, B, ..., K, L,…, P, Q for 00, 10, …, 90, 100, …, 140, 150.

3, or 10 with 00 at its centre], then the exterior shell, with the central grouping
inserted at the last moment and suspended by temporary stay-cords. The process
of connecting the innermost and outermost portions proceeds by constant testing
of the results [by comparison with the known plane projections] and the plodding
application of common sense. The models are fortunately fool-proof, because if a
mistake is made it is immediately apparent and further work is impossible. The final
joining of the inner and outer portions carries something of the thrill experienced by
two tunnelling parties, piercing a mountain from opposite sides, when they finally



break through and find that their diggings are exactly in line.” In 1934 the models
were exhibited at the Century of Progress Exposition in Chicago, and at the Annual
Exhibit of the American Association for the Advancement of Science, in Pittsburgh.
He died in 1967.

1, ±a2, ±a3 may be regarded as a parallel projection of a three-dimensional cross.
Recently Hadwiger (1) discovered the condition for an s-dimensional star to be an
orthogonal projection of an n any s-space. We can show, further, that

In fact, if p1, . . . , ps are smutually perpendicular unit vectors, so that aj=(p1p1 ps ps
aj, then

The special casewhen the a’s are unit vectors was considered long ago by Schlafli,148

who defined such a star by the relation
(a

x)(a y)= y, �=n/s,
for every pair of vectors x, y. (This is clearly equivalent to Tx=�x.) Schläfli showed

that the vectors to the vertices of any regular polytope (from its centre) are eutactic ;
but he did not think of the eutactic star as forming as a projected cross. That important
step was taken by Hadwiger.

. A star is eutactic if its symmetry group is irreducible.
149

orthogonal shadows of measure polytopes. That conjecture is here, at last, justified.



14 CHAPTER XIV STAR-POLYTOPES

N0 - N1 + N2 - N3 = 0.

The density of the star-polytopes takes the strange sequence of values
4, 6, 20, 66, 76, 191.

In view of the figures discussed in Chapter VI, it is natural to extend the definition
of a polytope so as to allow non-adjacent cells to intersect, and to admit star-polygons
and star-polyhedra as elements. Accordingly, we proceed to investigate the pos-
sible regular star-polytopes {p, q, r}, where the cell {p, q} and vertex figure {q, r p, q,
r

Selecting {p, q, r} and {q, r, s p, q, r, s} :

14.15

229



smaller value of p greater value of p or s 150 But subtler considerations force us to
rule out all

r

not
The last four sentences afford an instance of the phenomenon of isomorphism151

Fig. 14.2A is a scheme of the twelve “ pentagonal ” polytopes (which all have the same
symmetry group [3, 3, 5]), represented as points on a circle. Here, as in Fig. 6.6B

FIG. 14.2A
152

it will be seen that the four polytopes

all have the same edges (see Plate IV or VII) ; so also do their four isomorphs

and the pair

Finally, the following pairs have the same faces :

The numbers of elements (see Table I gp,q,r =14400, g3,3 = 24, other gp,q=120, g3
We proceed to investigate the cases where the vertices of a regular polytope {p, q, r}

occur among the vertices of a convex regular polytope, II4 p, q, r
Wemake use of “ simplified ” sections of II, viz., i0 and i3 0 are distant a from the

initial vertex 00, it may happen that they include the vertices of a polyhedron {3, r}
of edge a. Then each face of this {3, r} forms with 00 a regular tetrahedron, and such
tetrahedra are the cells of a {3, 3, r} inscribed in II. More generally, if the vertices of i0



include the vertices of a {q, r} of edge b, where b/a=2 cos π/p (for some rational value of
p), and if a {p, q} of edge a is known to occur in some section of II, then such {p, q}’s are
the cells of a {p, q, r} inscribed in II. In fact, the vertex figure of this {p, q, r} is a {q, r} of
edge a q, r} inscribed in i0. If i=1 the edges (as well as vertices) of {p, q, r} belong to �
; in this case the vertex figure of {p, q, r} is obtained by faceting the vertex figure of II.

Since {p, q} must be one of the nine regular polyhedra, the only admissible values for
p b/a

If the vertices of the {q, r} of edge b are all the vertices of i0, thenwefind either a single
polytope {p, q, r

d
times as many vertices as {p, q, r}. On the other hand, if {q, r} has only some of the
vertices of i0, the possibility of a single polytope is ruled out : if i0 includes the vertices
of c {q, r}’s, we find a compound

d/c
times as many vertices as {p, q, r}. If c and d have a common divisorm (m> 1), itmay
be possible to pick out d/m of the d {p, q, r}’s so as to form

but such cases will require individual consideration.

Ta-

bleVI b
are those in Table V, multiplied by the values of a in § 6�3 (viz., 1, √2, �, �√2,
�2) i.e., every b is of the form �u√� where u=0, 1, 2, 3, 4, or 5, and �=1, 2, 4,
5, 8 or 10. But b/a must be 1, √2, � or �−1. Hence the only sections i0 that
concern us are those in which a has the form �u√�, where u is an integer and
� 0

for �4, where a=√3) are omitted from Table VI. In the case of {5, 3, 3} we also omit
sections 20, 40, 100, because they contain no regular polyhedra.



After finding c {q, r}’s of edge b in the section i0, and deducing {p, q} from the relation
b/a=2 cos π/p, we can complete the table without difficulty. To fill the column headed
“ Location ”, we seek a section that includes one ormore {p, q}’s of edge a. If this entry is
j0
14�31

where e is thenumberof {p, q}’s in j0 d/e
times as many cells as {p, q, r}. On the other hand, if the “ location ” of {p, q} is
k3
14�32

d/e
times as many cells as {p, q, r}, e being the number of {p, q}’s in k3), or a compound

[d{p,

q, r d/e

timesasmanycells as {p, q, r}, so that the {p, q}’s inscribed in thek3 some
of the cells of the d {p, q, r}’s). For instance, in the case of �4[2�4] (see § 8�2), 16 of the
32 cells of the 2 �4’s are inscribed (by pairs) in the 8 cubes of �4 ; the remaining 16 lie
in the bounding hyperplanes of another �4 (reciprocal to the �4). Again, in the case of
2{5, 3, 3} [10{3, 3, 5}],
1200 of the 6000 cells of the ten {3, 3, 5}’s are inscribed (by tens) in the 120 dodeca-

hedra of {5, 3, 3} ; the remaining 4800 have a less symmetrical situation.

0 0

of {3, 3, 5}. This holds also for 14�31 and its reciprocal

[d{r, q, p}] ′.
Again, whenever two reciprocals are inscribed in reciprocals, their cells occur in “

corresponding ” sectionsk3 3

of {3, 3, 5} and {5, 3, 3}, respectively. This holds also for 14�32 and its reciprocal
′[d{r,

q, p}] ′.



These remarks are further illustrations of Pappus’s observation (pages 88 and 238).

We saw, on page 240, that the section 30 of {5, 3, 3} contains an irregular compound
of two icosahedra. The symmetry group of this section is, of course, the same as that
of 10, namely the extended tetrahedral group. The reflections that occur in this group
interchange the two icosahedra ; therefore the rotations are symmetry operations of
the separate icosahedra. Hence, if we take one of the ten {3, 3, 5}’s of 2{5, 3, 3}[10{3, 3,
5}], and apply the direct symmetry operations of {5, 3, 3}, we shall obtain the simpler
compound

{5, 3, 3}[5{3, 3, 5}],

which uses each vertex of {5, 3, 3} just once. In other words, the ten {3,
3, 5}’s inscribed in {5, 3, 3} fall into two enantiomorphous sets of five (just
like the ten tetrahedra inscribed in the dodecahedron). Similarly we find {5, 3,
3}[5

{5, 3, 3}[5{p, q, r}]{3, 3, 5}

where {p, q, r

In view of the existence of the two reciprocal compounds

5{3, 3, 5}[25{3, 4, 3}]{3, 3, 5}, {5, 3, 3}[25{3, 4, 3}]5{5, 3, 3}, it is natural to expect that
five of the latter set of twenty-five {3, 4, 3}’s will be inscribed in each {3, 3, 5} of {5, 3,
3}[5{3, 3, 5}],153 giving a simpler (self-reciprocal) compound

14�33

This expectation can be justified by referring to § 13�6. In fact, the vertices

of {3, 3, 5} belong to one inscribed {3, 4, 3}, from which four others may be derived
by adding in turn 2, 4, 6, 8 to all the suffix-numbers (i.e., by rotating Fig. 14.3C through
successive multiples of 12°).

The reader may be interested to see how the above selection of vertices was made.
Fig. 14.3A shows the dodecahedron 20 corresponding to the vertex 00= A0 of {3, 3, 5}.
(Its vertices were found by going five steps from A0 along various Petrie polygons.)
Fig. 14.3B shows one of the five cubes inscribed in this dodecahedron. This is the
section 10 of the desired {3, 4, 3} ; the parallel sections 20 (an octahedron) and 30



(another cube) are shown too. (Each face of the cube 10 is an equatorial square of an
octahedron of which 00 is one vertex ; the remaining vertex belongs to 20.) The {3, 4,
3} is then easily completed, as in Fig. 14.3C. By viewing this figure obliquely we can
distinguish the sections 13, 23, 33, of Table V (ii).

FIG. 14.3A

A dodecahedral section of {3, 3, 5}

FIG. 14.3B

Parallel sections of {3, 4, 3}

FIG. 14.3C

One {3, 4, 3} of {3, 3, 5}[5{3, 4, 3}]{5, 3, 3}

Inscribing �4’s or �4’s in the {3, 4, 3}’s of 14�33, we obtain the two reciprocal com-
pounds

{3, 3, 5}[15 �4]2{5, 3, 3}, 2{3, 3, 5}[15 �4]{5, 3, 3}.



Collecting results, we see thatwe have found six self-reciprocal compounds, thirteen
reciprocal pairs, and seven compounds which are only vertex-regular. By reciprocat-
ing the last seven we obtain seven which are not vertex-regular but “ cell-regular.”
(See Table VII on page 305, and Coxeter 18.)
14�4. The general regular polytope in four dimensions. The results of §§ 7�7 and

7�9 remain valid for star-polytopes. In particular, the angles �=O0 O4 O1 and �=O2 O4
O3 are still given by
14�41

and

as in 7�91. From these we can derive the circum-radius 0R=l csc �, the other radii

jR (as in § 8�8), and the dihedral angle π−2�. The relation 3R/2R=cos �will serve as a
check. Alternatively, Table VI (iii) shows that the four polytopes

all have the same circum-radius 0R=2l�. For the other polytopes inscribed in {3, 3,
5}, the edge 2l is not 1 but a ; so

0R = 2l�/a.
PLATE VIII

5. 3. 3 }
Defining the volume of {p, q} as in § 6�4, we obtain, for the surface-analogue of {p, q,

r},
S = N3 Cp ,q.
With the analogous convention, the content is
Cp, q, r = 3R S/4



(as in 8�82). The values in the individual cases can be seen in Table I (on page 295).
They may be checked by employing the auxiliary function (j, k) of 8�84.
The density dp, q, r will be computed in § 14�8. We cannot express it by any such

simple formula as 6�41 or 6�42. In fact, the analogue of 6�42 is
14�42

which does not involve dp, q, r.
To prove 14�42, we consider the symmetry group of {p, q, r} and the subgroups

which preserve one of the fundamental points O3, O2, O1, O0 (viz., the centre of a cell
or face or edge, or a vertex). By 6�41, the orders of the subgroups are respectively

By 7�64, these are inversely proportional to the numbers of elements. Hence

14�5. A trigonometrical lemma. In § 6�7 we enumerated the possible regular
polyhedra with the aid of Gordan’s equation
14�51

14�52

whose rational solutions may similarly be shown154 to be the permutations of

In most applications we shall be led to a slightly different form of this equation, viz.,
14�53

whose rational solutions are consequently



14�6. Van Oss’s criterion. In §§ 14�2 and 14�3 we established the existence of
the ten star-polytopes 14�11 which, with the six ordinary polytopes 7�81, make the
grand total sixteen. We now ask why the apparently possible symbols 14�12 fail to
represent finitely-dense polytopes. The simplest criterion is provided by the remark
of van Oss (2, p. 6) that � must be commensurable with π whenever the vertex figure has
central symmetry.
To see this, consider any regular polytope whose vertex figure has central symmetry

(e.g., the octahedron, whose vertex figure is a square). The plane joining any edge to
the centre O (or On) contains a number of edges, forming an “ equatorial ” polygon.
Two consecutive sides of this polygon, say AB and BC, contain opposite vertices of
the vertex figure at their common vertex B. If the equatorial polygon is a {k}, we have
2�=�AOB=2π/k ; so
14�61

Reciprocally, � (and the dihedral angle π−2�) must be commensurable with π when-
ever the cell has central symmetry ; for there is then a “ zone ” of cells. Moreover, when
both cell and vertex figure have central symmetry, not only � and � but also X will be
commensurable with π.
We can begin to construct any one of the would-be polytopes 14�12 by fitting cells

together in the manner indicated by the Schläfli symbol. The question is, Will the
figure eventually close up ? A necessary condition is the closing of the equatorial
polygon, and we shall find that this necessary condition is also sufficient.
Van Oss’s criterion would not be of much use in three dimensions ; for it would

only apply to {p, q} when {q} has central symmetry, i.e., when the numerator
nq is even. But it is admirably suitable for the enumeration of polytopes {p, q,
r} in four dimensions, since eight of the nine possible vertex figures {q, r} do
have central symmetry. In fact, it can be applied in every case except {p, 3, 3},
where there is no question anyhow, as we already know this polytope does exist for
p
By 14�41 and 14�61, every polytope {p, q, r} (where q and r are not both equal to 3)

must correspond to a rational solution of the equation
14�62

where



Themost obvious solution is k=p, h=r ; but this is irrelevant, as we never have h=r.
Another possibility is

i.e.,

By 2�33 (with {p, q} replaced by {q, r}), the numbers p, q, r now satisfy 6�71, and we
have the nine polytopes
14�63

for which k=hp,q. (The occurrence of {4, 3, 3}, with q=r=3, may be regarded as an
accident.)
The remaining possibilities (according to 14�11 and 14�12) are

and the reciprocals of the first and last. Leaving the reciprocals to take care of
themselves, we observe that the respective values of h=hq,r are

and that in each case either p=3 or p=r or h=6. Thus 14�62 may be replaced by one
of the simpler equations

Accordingly, we examine the rational solutions of 14�53, to see whether there are
any of the form

Thus there are only sixteen regular four-dimensional polytopes : six convex and ten
starry. (See Tables I and VIII.)
By examining the distances between pairs of vertices in the notation of § 13·6, we

find the following equatorial polygons for the polytopes that have 120 vertices :



The transition from the decagon to the decagramaffords an instance of the following
rule for interchanging isomorphic polytopes :
Aj → B7j+15, Bj→D7j−15, Cj→A7j+15, Dj→C7j+15 .
(It is understood that the suffixes are to be reduced modulo 60.)
For the analogous consideration of 14.13, we apply van Oss’s criterion to

whose vertex figures would all have central symmetry. We use 7·72 in the form
sin �’ cos � = cos π/p, � = �p, q, r,s, �’ = �q, r, s.

Hence there are no regular star-polytopes in five or more dimensions.
We shall see, in § 14·9, that there are no regular star-honeycombs either. But van

Oss’s criterion is not strong enough to decide that question. The formula naturally
gives �=0 for all 14·14. Incidentally, it makes � imaginary for all 14·15.
14·7. The Petrie polygon criterion. In four dimensions, van Oss’s criterion

amounts to this : if {p, q, r} is a finitely dense polytope, its equatorial polygon
must close. Here {p, q} may be any regular polyhedron, and {q, r} any one ex-
cept {3, 3}. An alternative criterion (cf. page 108), applying without any such
exception, is this : if {p, q, r} is a finitely dense polytope, its Petrie polygon must
close, 1

and �2 must be commensurable with π. In other words, if cos π/h1 and cos π/h2 are the
positive roots of 12·35, then the Petrie polygon projects into plane polygons {h1} and
{h2} in two completely orthogonal planes, so of course the numbers h1 and h2 must be
rational.155

From the sum and product of roots of the quadratic equation for X2, we obtain



Hence, for {3, 3, 4} or {4, 3, 3}, h1 h1 h1
The remaining possibilities may be treated by considering the sum and product of

cos 2π/h1 and cos 2π/h2 (i.e., of cos �1 and cos �2), viz.,

For {3, 3, r} we have s=cos 2π/r and P=−cos2 π/r ; so

must be a solution of 14·52, and the values of h1 and h2 are as follows :

and the corresponding values of cos yπ

h1 =u1, 2/h2 =1−u2, where2cosu1πcosu2π=1 ((0<u1, u2
Comparing this with 14·53, we see that the only rational solution is

1 =1 − u1, 2/h2 = 1 − u2, where

But the only rational values of (u1, u2
We conclude, as before, that the only regular star-polytopes in four dimensions are

14·11.
The absence of regular star-polytopes in five dimensions may be verified analo-

gously, using the equation

π



It is only fair to point out that the Petrie polygon criterion, like van Oss’s, is inade-
quate for the discussion of honeycombs.
14·8. Computation of density. Goursat (1, pp. 80-81) proposed a problem analo-

gous to that of Schwarz (§ 6·8): to find all spherical tetrahedra which lead, by repeated
reflection in their faces, to a finite set of congruent tetrahedra, i.e., to a honeycomb
covering the hypersphere a finite number of times. Clearly, the reflections generate a
group, viz. (in the notation of § 11·5),
[m] x [n] or [3, 3] x [1] or [3, 4] x [1] or [3, 5] x [1]
or [3, 3, 3] or [3, 3, 4] or [3, 3, 5] or [3, 4, 3] or [31,1,1].
Hence the faces and their transforms dissect such a tetrahedron into a set of con-

gruent tetrahedra of one of the following shapes :
14·81

Whenwe compare thiswith the corresponding statement for Schwarz’s triangles, we
are not surprised to find Goursat’s tetrahedra running into hundreds. Their complete
enumeration will (perhaps !) be published elsewhere. The essential tool for that
formidable work is the following process for deriving them from one another.
If one of Goursat’s tetrahedra has a dihedral angle π/r,where r is fractional, one of

the “ virtual mirrors ” will dissect it into two smaller tetrahedra in accordance with
the formula
14·82

where
(p q r) = (p x r1) + (x’ q r2)
and
(t s r) = ( t y r1) + (y ’ s r2).
(See 6·81, and the special cases listed on page 113.) Here, as in § 5·6, each node

of the graph denotes a face of the tetrahedron, and a branchmarked p indicates the
dihedral angle π/p between two faces. Fig. 14.8A shows the dihedral angles at the
various edges. The dissecting plane divides the angle π/r into two parts, π/r1 and π/r2,
and cuts the opposite edge atX.On spheres drawn round the four vertices of the whole
tetrahedron, the trihedra cut out Schwarz’s triangles
(p q r), (t s r), (p t u), (q s u).



FIG. 14.8A

Dissecting a tetrahedron

The first two of these are dissected into (p x r1) + (x′ q r2) and (t y r1) + (y’ s r2). But
the other two, viz.,

and

are retained in the respective parts. (See 14·82.) In practice many of the dihedral
angles are right angles, and then we omit the corresponding branches of the graph.
As before, an unmarked branch will stand for a branch marked “3” (meaning “angle
π/3 ”).

Our present purpose is to obtain an alternative proof for the existence of the ten
star-polytopes 14·11 (independent of the rather tiresome details of §§ 14·2 and 14·3),
and to compute their densities.

Let O4 be the centre of one of these polytopes, O3 the centre of a cell, O2 the centre
of a face of that cell, O1 the mid-point of a side of that face,O0 the vertex at one end
of that side. We can project the tetrahedron O0 O1 O2 O3 from O4 into a spherical
tetrahedron P0 P1 P2 P3. Conversely, beginning with the spherical tetrahedron, we
can reconstruct the polytope by combining the reflections in the tetrahedron’s faces
and considering all the transforms of P0. Thus P0 P1 P2 P3 is a quadrirectangular
tetrahedron (or orthoscheme), and

(cf. 11·71). Accordingly, we are interested in the special tetrahedra

which appear (as D, F, J, O, P, R) in the following list of seventeen particular cases of
the dissection 14·82 :



From this list we extract the significant items

D = 4A, F = 6A, J = 20A, O = 66A, P = 76A, R = 191A,

which reveal the densities of the regular star-polytopes, as recorded in Fig. 14.2A.
In fact, since the 14400 characteristic tetrahedra of {3, 3, 5} fill the spherical space
just once, the equation

R = 191A,

14·9. Complete enumeration of regular star-polytopes and honeycombs. A
similar method may be used for excluding 14·12 (without appealing to § 14·5, which
is so difficult to prove). We dissect the corresponding tetrahedra as follows :

Table III).

π/5 and π

Similarly, to exclude 14·13, we consider the spherical simplexes

wherep=3,



(see Table IV). Hence 14·13 must all be ruled out as having infinite density, and
we see again that there are no regular star-polytopes in five or more dimensions.
Star-honeycombs would have such polytopes for cells or vertex figures ; hence there
are no regular star-honeycombs in five or more dimensions.

The same kind of argument settles the question of the existence of star-honeycombs
in four dimensions. Simplicial subdivision of the apparently possible honeycombs
14·14 would lead to Euclidean simplexes, of which the first is the Y5 of § 11·4, while
the Euclidean nature of the others may be checked similarly, as follows :

Obviously none of these simplexes can be built up from repetitions of any of

Hence 14·14 must all be excluded as having infinite density : there are no regular
star-honeycombs at all.

14·x. Historical remarks. π/3. Wemay justify his stopping there by
remarking that, from the standpoint of topology, the six figures which he missed are
not manifolds but only pseudo-manifolds.

Edmund Hess was born in 1843, took his doctorate at Marburg in 1866 (with a
dissertation on the flow of air through a small orifice), wrote a number of papers on
polytopes, edited Hessel 1 for Ostwald’s Klassiker p, q, r}, we may be sure that he
was not aware of Schläfli’s work. But he computed all the densities, understood the
relation between reciprocals, and obtained the formula 14·42.

� π. (van Oss 2, p. 6.) Our § 14·5 is designed to remedy that deficiency. (The
above theorem of Hess is thus finally established.) § 14·7 provides a full account of
the alternative criterion outlined in Coxeter 3, p. 203.

We saw, in 13·61, that {3, 3, 5} has Petrie polygons

A0 A2 A4 . . . A58 and D0 D22 D44 . . . D38,

Tafel
VIII. By taking alternate vertices we obtain the skew 15-gons

A0 A4 A8 . . . A56 and D0 D16 D32 … D44,

Tafel VIa Tafel VIIa



In § 14·8 we computed the volumes of the various characteristic tetrahedra by the
strictly elementary process of dissection. It is interesting to recall that Schläfli (4,
pp. 101-102, formulae (4)-(6), (8)-(11)) computed these same volumes in terms of his
function f(π/p, π/q, π/r),which enables us to express the density of each star-polytope
in the form

Of the forty-six compounds that arose as by-products in § 14·3, eleven were dis-
covered by Schoute (6, pp. 215, 216, 231 ; cf. Coxeter 4, p. 337). The rest are new,
except
{5, 3, 3} [120 �4] {3, 3, 5},
which is due to Urech (1, p. 47) and was almost anticipated by Hess (4, p. 48) in his

observation that [3, 3, 5] has a subgroup [3, 3, 3].
To save space, we have disregarded the possibility of compounds in more than four

dimensions. Actually, there are none in five or six dimensions. In seven and eight we
find
c�7[16c�7]c�7, c�8[16c�8], [16c�8]c�8,
where c = 1, 15 or 30. The case c = 1 can be generalized to
�n−1[d�n−1]�n−1, �n[d�n], [d�n]�n,
where n=2k k=2, 3, 4, …). The theory of these compounds is connected with

orthogonal156 matrices of ± 1’s. (For proofs of such statements, see Schoute 5, Barrau
1157 and Coxeter 4.) Similarly, the theory of compound honeycombs
�n[d�n]�n.
is connected with orthogonal156 matrices of integers.

14.1 EPILOGUE

WE have now reached the end of our journey. On the way, we visited most of the
domains of elementarymathematics (and somenot so elementary) : algebra, synthetic
and analytic geometry, plane and spherical trigonometry, integral calculus (in § 7·3),
the kinematics of a rigid body, the theory of groups, and topology.



We began with the five Platonic solids, obtaining their numerical andmetrical prop-
erties in Chapters I and II, their symmetry groups in Chapters III and V. We saw that
they fall naturally into two classes : (i) the “ crystallographic ” solids �3 (the tetrahe-
dron), �3 (the octahedron), and �3 (the cube) ; (ii) the icosahedron and dodecahedron,
which form, with the four Kepler-Poinsot solids, a set of six “ pentagonal ” polyhedra
(Fig. 6.6B), all having the same symmetry group. We found that the crystallographic
solids have n-dimensional analogues, whose properties are just such as would be
inferred by pure analogy. On the other hand, the pentagonal polyhedra are related
to twelve pentagonal polytopes in four dimensions (Fig. 14.2A), and there the family
comes to an abrupt end. Another peculiarity of four-dimensional space is the occur-
rence of the 24-cell {3, 4, 3}, which stands quite alone, having no analogue above or
below.

For a strict discussion of regular polytopes, this would be the whole story. But it
seemed worth while (in Chapter XI) to show how the simplexes and cross polytopes
occur, qua ki0 and k11, as members of an interesting family of “uniform” polytopes kij
in n dimensions, where

n = i + j + k + 1 > ijk − 1.

Here the significant number of dimensions is not four but eight.

A more detailed summary of our results can best be given in the form of tables.
These are preceded by some definitions of the tabulated properties.

14.2 DEFINITIONS OF SYMBOLS USED IN THE FOLLOWING TABLES

Table I (i). Each polyhedron {p, q} has N0 vertices, N1 edges, N2 faces {p}, and vertex
figure {q}. Its complete symmetry group [p, q] is of order g = 4N1. The Petrie polygon
projects into an {h} in a suitable plane. The density is d. The characteristic (spherical)
triangle has sides �, �, � (opposite to angles π/p, π/2, π/q). These are conveniently
expressed in terms of the special angles

The dihedral angle is π − 2�. Taking the edge-length to be 2l, the radii are 0R, 1R, 2R,
the surface is S, and the volume is C. These properties are connected by such formulae
as 1·71 and 5·43 (when d= 1), 2·21, 2·33, 2·42-2·46, 6·41-6·43.



Table I (ii). Each polytope {p, q, r} has N0 vertices, N1 edges, N2 faces {p}, N3 cells
{p, q}, and vertex figure {q, r}. Its symmetry group [p, q, r] is of order g. The equatorial
polygon (except when q=r=3), is a {k}. The Petrie polygon, a skew h-gon, projects into
an {h1} in one plane and an {h2} in the completely orthogonal plane. Three dihedral
angles of the characteristic tetrahedron (Fig. 7.9A) are right angles ; the other three
are π/p, π/q, π/r, and occur at edges of lengths �, �, �. These are conveniently expressed
in terms of the special angle

The circum- and in-radii are 0R and 3R, the sum of the volumes of the cells is S, and
the four-dimensional content or hyper-volume is C. These properties are connected
by such formulae as 7·64, 7·65, 7·71, 7·91, 8·82 and 8·86 (with n=4), 12·35 (which has
roots cos π/h1, cos π/h2), and 14·61.
Table I (iii). The polytopes �n, �n, �n occur for every positive integer n; when n ≥ 5

they stand alone. Their properties, analogous to those defined above, are connected
by such formulae as 7·62, 7·63, 8·81, 8·82, 8·87, and 12·33 (which has roots cos π/hk).
Table II. The regular honeycombs fill n-dimensional Euclidean space homoge-

neously, in the sense that the numbers of j-dimensional elements in a large portion
tend to be proportional to definite numbers vj (which are inversely proportional to
gp, . . . , r gu, . . . , w, in the notation of 7·63).
Table III. (p q r) means a spherical triangle with angles π/p, π/q, π/r
Table IV. In the graphical symbols, nodes represent walls or mirrors, perpendicular

whenever the nodes are not directly joined by a branch, but otherwise inclined at an
internal angle π/3 or π/k according as the branch is unmarked or marked k. An stands
for a simple chain of n nodes (and n−1 unmarked branches), Pn+1 for an (n+1)-gon,
and so on. For each spherical simplex we have given the order of the corresponding
group, as computed in 7·66, 7·67, 8·22, 8·51, 11·74, 11·81-11·83.
Table V (i), (iii), (v). For a regular polytope of edge 2l, each section includes all ver-

tices distant 2la from a given vertex. Among these vertices we seek regular polyhedra
of edge 2lb, for use in Table VI, as follows.
Table VI. Such a regular polyhedron {q, r}, of edge b (taking 2l=1), is the vertex figure

of a polytope {p, q, r}, whose cell {p, q} occurs in the section listed under “ Location ”.
Table VII.Here c{l,m, n}[d{p, q, r}]e{s, t, u} means a compound of d {p, q, r}’s having

the vertices of an {l, m, n}, each taken c times, and the bounding hyperplanes of an {s, t,
u}, each taken e times.



TABLE I :

REGULAR POLYTOPES

TABLE I: REGULAR



TABLE II : REGULAR HONEYCOMBS
(§§ 4·1, 4·8, 7·2, 8·5, 9·8)

TABLE III : SCHWARZ’S TRIANGLES
(§ 6·8)

TABLE IV: FUNDAMENTAL REGIONS FOR IRREDUCIBLE GROUPS GENERATED BY
REFLECTIONS



TABLE V



TABLE VI

THE DERIVATION OF FOUR-DIMENSIONAL STAR-POLYTOPES AND COMPOUNDS
BY FACETING THE CONVEX REGULAR POLYTOPES II





TABLE VII
REGULAR COMPOUNDS IN FOUR DIMENSIONS

TABLE VIII
THE NUMBER OF REGULAR POLYTOPES AND HONEYCOMBS IN n DIMENSIONS

(INCLUDING STAR-POLYTOPES BUT NOT COMPOUNDS)
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ABBOTT, E. A.
ABEL, N. H.
Abstract group
ABÛ’L WAFÂ
Acute rhombohedron
Adjoint
Affine coordinates; geometry
a-form
ALEXANDROFF, A. D.
Algebra
Alice through the looking-glass
Alternating group
Alternation
Analogy
Analysis situs
ANDREINI, Angelo
Angle of a polygon
Angular deficiency
Antiprism
Apeirogon { ∞ }
APOLLONIUS of Perga
Archimedean solids
ARCHIMEDES of Syracuse
Area of a polygon; of a polyhedral surface
Associative law
Atoms
Automorphism
Axis of rotation
BADOUREAU, A.
BAKER, H. F.



BALL, W. W. R.
BARLOW, William
BARRAU, J. A.
BENTLEY, W. A.
BERTRAND, J. L. F.
Bessel functions
BILINSKI, Stanko
BIRKHOFF, Garrett
Bitangents of a quartic curve
Body-centred cubic lattice
BOOLE, George
Botany
Boundary
Bounding k-chain
BRADWARDINUS
BRAHANA, H. R.
Branch of a graph
BRAUER, Richard
BRAVAIS, Auguste
BREDWARDIN
BREWSTER, Sir David
BRÜCKNER, Max
BURCKHARDT, J. J.
BURNSIDE, William
Calculus, integral
CARAVELLI, Vito (1724-1800)
CARTAN, Élie
Cartesian coordinates
CATALAN, E. C.
CAUCHY, A. L.
CAYLEY, Arthur
Cayley numbers
Cell
Cell-regular compound



Central symmetry; see also Inversion
Centre
CESÀRO, Ernesto
Chain
Characteristic equation; root; simplex; tetrahedron; triangle; vector
CHASLES, Michel
CHEBYSHEV.
Chess board
CHILTON, B. L.
Chlorine
Chrome alum
Circogonia and Circorrhegma
Circuit
Circum-circle; -radius; -sphere
CLIFFORD, W. K.
Close-packing
Coherent indexing
Collineation
Colunar triangles
Commutative law
Complex numbers
Compound
Cone
Configuration
Congruent transformation
Conjugate
Connected form; graph
Connectivity
Content
Continued fraction
Continuous group
Contravariant
Convex



Coordinates ; see Affine, Cartesian, Normal, Oblique, Quadriplanar, Tangential,
Trilinear
Copper
Core
Coset
COURANT, Richard
Covariant basis; component
COXETER, H. S. M.
CROSBY, W. J. R.
Cross
Cross polytope �n
Crystal; classes; twin
Crystallographic restriction; solids
Cube �3 {4, 3}
Cubic honeycomb �n+1; surface
Cuboctahedron
CURIE, Pierre
CURJEL, H. W.
Cycle
Cyclic group
Cyclotomy
dp; dp, q; dp, q, r; see also Density

Definite form
Degenerate polyhedron; polytope
DEL PEZZO, P.
Density
DESARGUES, Girard
DESCARTES, René
Determinant, Schläfli’s; (j, k)
DICKSON, L. E.
Digon {2}
Dihedral angle; group [p]; kaleidoscope
Dihedron {p}



Dipyramid
Direct product; transformation
DIRICHLET, P. G. L.
Discrete
Disphenoid; see also Rhombic, Tetragonal
Displacement
Dodecagon {12}

Dodecahedron {5, 3}; see also Elongated, Rhombic
DONCHIAN, P. S.
DONKIN, W. F.
DONNAY, J. D. H.
Double rotation
Dreams, prophetic
Dual maps
DUDENEY, H. E.
DUNNE, J. W.
Dupin’s indicatrix
DÜRER, Albrecht
DU VAL, Patrick
DYCK, Walther
DYNKIN, E. B.
Edge
EINSTEIN, Albert
Elements IIj
Elements, the four
Elliptic functions; geometry
Elongated dodecahedron
ELTE, E. L.
Enantiomorphous
Enneagon {9}
Equator
Equatorial polygon {h}
Equilateral zonohedra



Equivalent points
Etruscan dodecahedron
EUCLID of Alexandria
Euclidean geometry
EULER, Leonhard
Euler’s Formula; function; theorem on rotations
Eutactic star; see alsoNormalized
Even face; permutation
EWALD, P. P.
Existence of star polytopes
Expansion and contraction
Extended polyhedral groups
Face; see also Even, Odd
Face-centred cubic lattice
Face-regular compound
Faceting
Factor group
FEDOROV, E. S.
FERMAT, Pierre de
Fibonacci numbers
Finite Differences
Five cubes; octahedra; tetrahedra
FLATHER, H. T.
Flatland
FORCHHAMMER, G.
FORD, L. R.
Forest
Form ; see Quadratic
Four-colour problem
Fourth dimension
FRANKLIN, C. H. H.
Free product
Frontispiece
Function; see also Bessel, Elliptic, Euler’s, Gamma, Hypergeometric, Schläfli



Fundamental region
gp, q; gp, q….. w
GALOIS, Evariste
Gamma function
Garnet
GAUSS, C. F.
Gaussian integers
Generalized kaleidoscope; Petrie polygon
Generating relations
Generators
Genus
GERGONNE, J. D.
GLAISHER, J. W. L.
Glide-reflection
Gold
Golden section
GORDAN, P. A.
GOSSET, Thorold
GOURSAT, Edouard
Graph
GRASSMANN, Hermann

Great stellated triacontahedron
Group; see also Abstract, Alternating, Cyclic, Dihedral, Icosahedral, Infinite, Octa-

hedral, Orthogonal, Polyhedral, Rotation, Space, Symmetric, Symmetry, Symplectic,
Tetrahedral, Trigonal, Unimodular
Groups generated by reflections
GUTHRIE, Francis
h
hIIn
HADWIGER, H.
HAECKEL, Ernst
Half-measure polytope h�n
Half-turn



HAMILTON, Sir W. R.
HAUSSNER, Robert
HAÜY, R. J.
HEATH, Sir T. L.
HEAWOOD, P. J.
HEDRICK, E. R.
Helical polygon
Heptagon {7}
HERMES, J.
HERON of Alexandria
HERSCHEL, A. S.
HESS, Edmund
HESSEL, J. F. C.
HESSENBERG, Gerhard
Hexagon {6}
HILTON, Harold
HINTON, C. H.; James
HIRSCH, Meier
Honeycomb; see also Cubic
HOPPE, Reinhold
Hosohedron
HOUDINI, Harry
HUMPHREYS, W. J.
120-cell {5}
HURWITZ, Adolf
Hyperbolic geometry
Hyper-cube; see also Measure polytope
Hypergeometric functions
Hyperplane
Hyper-sphere ; see Sphere
HYPSICLES
Icosagon {20}
Icosahedral group
Icosahedron {3, 5}; see also Rhombic



Icosian game
Icosidodecahedron
Identity
Image
Incidence matrix
In-circle
Indefinite form
Index of a subgroup
Indexing ; see Coherent
Indices of a crystal
INFELD, Leopold
Infinite groups
Inner product
In-radius n-1R; -sphere
Integral calculus; Cayley numbers; quaternions
Intuition
Invariant
Inverse
Inversion; see also Central
Iron
Irreducible group
Isohedral-isogonal polyhedra
Isometric projection
Isomorphic groups; polyhedra; polytopes
JACOBI, C. F. A.; C. G. J.
JORDAN, Camille
JOUFFRET, E. P.
Kaleidoscope; see also Dihedral, Generalized, Prismatic, Tetrahedral, Trihedral
k-chain and k-circuit
KELVIN, Lord
KEMPE, A. B.
KEPLER, Johannes
Kepler-Poinsot polyhedra
Kinematics of a rigid body



KLEIN, Felix
KÖNIG, Dénes
Königsberg bridges
KOW ALEWSKI, Gerhard
KRONECKER, Leopold
LAGRANGE, J. L.
Lattice; see also Reciprocal
LEIBNIZ, G. W.
LEONARDO of Pisa
LEVI, F. W.
LHUILIER, S. A. J.
LIE, S.
Linear group; transformation
Line of symmetry
Lines on the cubic surface
LISTING, J. B.
LUCAS, Édouard
LYCHE, R. Tambs
MACLANE, Saunders
MAHLER, Kurt
MANNING, H. P.
Map
Matrix
MAUROLYCUS of Messina
MCSHANE, E. J.
Measure polytope �n
Metrical properties
Mid-sphere
MILLER, G. A.; J. C. P., W. H.
MINKOWSKI, Hermann
Mirror; see also Reflection
MÖBIUS, A. F.
Models; see also Plates
MOORE, E. H.



MORE, Henry
MORRIS, G. G.
Murder
Music of the Spheres
Mysticism
N1,N01,etc.
vo, v1, etc.
NAPIER, John
Nature
NEPER ; see Napier
Net
NEVILLE, E. H.
NIGGLI, Paul
NOBLE, C. A.
Node of a graph
Non-existence of star-honeycombs
Non-singular star
Normal coordinates
Normalized eutactic star
Notation
Null graph; polytope II_1
Nullity
Number of elements; of reflections
Oblique coordinates
Obtuse rhombohedron
Octagon {8}
Octahedral group
Octahedron �3 = {3, 4}
Odd face; permutation
Opposite transformation
Order of a group; see also gp, q, etc.
Orthogonal group; matrix; projection; transformation
Orthoscheme
Orthotope



Oss, S. L. van
{p}; {p, q}; {p, q, r}
[p]; [p, q]; [p, q, . . . , w]
PAPPUS of Alexandria
Parallelohedron
Parallelotope
Parallel-sided 2n-gon
Partial truncation
PASCAL, Ernesto
Path
Pentagon {5}
Pentagonal dodecahedron; see Dodecahedron {5}
Pentagonal polyhedra; polytopes

Pentatope �4 = {3, 3, 3}
Period
Permutation
PETERSEN, Julius
PETRIE, J. F.; Sir W. M. F.
Petrie polygon
PEZZO, P. del
Phyllotaxis
PITSCH, Johann
Plane of symmetry
Plates
PLATO
Platonic solids
POHLKE, Karl
POINCARÉ, Henri
POINSOT, Louis
Polar hyperplane; zonohedra
PÓLYA, George
Polygon; see alsoHelical, Petrie, Regular, Skew, Star-
Polyhedral groups



Polyhedron; see also Isohedral-isogonal, Kepler-Poinsot, Platonic. Quasi-regular,
Regular, Star-
Polytope; see alsoNull, Pentagonal, Regular, Spherical
Positive definite form
Prism
Prismatic kaleidoscope
Product; see also Direct, Free, Inner or Scalar, Rectangular, Vector
Projection; see also Isometric, Orthogonal
Projective geometry
PUCHTA, Anton
Pyramid
PYTHAGORAS
Pythagoreans
Quadratic form; see also a-form, Definite, Indefinite, Semidefinite
Quadriplanar coordinates
Quadrirectangular tetrahedron
Quartic curve
Quasi-regular honeycomb; polyhedron; tessellation
Quaternions
Quotient group

0R, 1R, etc. ; see Radii
RADEMACHER, Hans
Radii of a polygon; polyhedron; polytope
Radiolaria
Rank of a matrix
Ray
Reciprocal honeycombs; lattices; polygons; polyhedra; polytopes; properties; tes-

sellations
Rectangular product of polytopes
Recurrence
Reducible group
Reflection
Region ; see Fundamental



Regular honeycomb; map; polygon; see also Apeirogon, Decagon, Digon, Dodecagon,
Enneagon, Heptagon, Hexagon, Icosagon, Octagon, Pentagon, Square, Triacontagon,
Triangle
Regular polyhedron; see also Cube, Dodecahedron, Icosahedron, Octahedron, Tetra-

hedron
Regular polytope; see also Cross polytope, 120-cell, Measure polytope, Pentatope,

Simplex,600-cell, 16-cell, Tessaract, 24-cell
Regular tessellation
Relativity
Rhombic disphenoid; dodecahedron; icosahedron; tessellation; triacontahedron
Rhombicosidodecahedron
Rhombohedron
Ribbon
RICCI, M. M. G.
RICHELOT, F. J.
RICHMOND, H. W.
RIEMANN, Bernhard
Riemann surface
Ring; see also Torus
ROBINSON, G. de B.
RODRIGUES, Olinde
ROHRBACH, Hans
ROOM, T. G.
Rotation; see also Axis, Double
Rotation group
Rotatory-reflection
Rouse BALL, W. W. ; see Ball
RUDEL, K.
RUFFINI, Paolo
Salt
Scaffolding of a graph
Scalar product of vectors
SCHLÄFLI, Ludwig
Schläfli function; symbol



SCHLEGEL, Victor
Schlegel diagram
SCHÖNEMANN, P.
SCHÖNFLIES, A.
SCHÖNHARDT, E.
SCHOUTE, P. H.
SCHUBERT, Hermann
SCHUR, Friedrich
SCHWARZ, H. A.
Screw-displacement
Section; see also Golden
Self-conjugate subgroup
Self-reciprocal polygon; lattice
Semidefinite form
Semi-regular polytope
Shadow
Simplex an; see also Characteristic, Spherical
Simplicial subdivision
Simplified section
Simply-connected
Singular point on a surface
Six-dimensional polytope 221
600-cell {3, 3, 5}
16-cell �4 = {3, 3, 4}
Skew polygon; polyhedron

Small stellated triacontahedron
Snowflake
Snub 24-cells {3, 4, 3 }
Sodium atoms; sulphantimoniate
SOHNCKE, L. A.
SOMMERVILLE, D. M. Y.
Space groups
Space-time



Special subgroup
SPEISER, Andreas
Sphere; see also Circum-, In-, Mid-
Spherical excess; honeycomb; polygon; polytope; simplex; tessellation; tetrahedron;

triangle
Square {4}
Star; see also Eutactic
Star-polygon; -polyhedron; -polytope
STAUDT, G. K. C. von
STEINBERG, Robert
STEINER, Jakob
STEINHAUS, Hugo
STEINITZ, Ernst
Stella octangula
Stellated dodecahedron, great or small; icosahedronvarieties; triacontahedron,

great or small
Stellating
STIEFEL, E.
STOTT Alicia Boole; Walter
STRINGHAM, W. I.

Subgroup
Summation convention
Surface, algebraic
Surface area
SWARTZ, C. K.
SWINDEN, J. H. van
SYLVESTER, J. J.
Symmetric group
Symmetry group; operation; vector
Symplectic group
�
TAIT, P. G.



Tangential coordinates
TAYLOR, Sir G. I.
Ten tetrahedra
Tessaract �4 = {4, 3, 3}
Tessellation
Tetragonal disphenoid
Tetrahedral group; kaleidoscope
Tetrahedrite
Tetrahedrona3 = {3, 3}; see alsoCharacteristic, Quadrirectangular, Spherical, Trirect-

angular
THEAETETUS of Athens
THOMPSON, Sir D’Arcy W.
THOMSON, Sir William ; see Kelvin
THRELFALL, William
TIMAEUS of Locri
Time
TODD, J. A.
Topology
Torus; see also Ring
Transformation; see also Congruent, Linear, Orthogonal
Transitive group
Translation
Transposition
Tree
Triacontagon {30}
Triacontahedron; see also Stellated
Triangle a2 = {3}; see also Characteristic, Spherical
Trigonal group
Trigonometry
Trihedral kaleidoscope
Trilinear coordinates
Trirectangular tetrahedron
Truncated octahedron
Truncation



TSCHEBYSCHEFF ; see Chebyshev
TUTTE, W. T.
TUTTON, A. E. H.
24-cell {3, 4, 3}
Unimodular linear group
URECH, Auguste
VAN DERWAERDEN, B. L.
VAN GOGH, Vincent
VAN OSS, S. L.
VAN SWINDEN, J. H.
VEBLEN, Oswald
Vector
Vector product
Vertex figure
Vertex-regular compound
Virtual mirror
Volume
VON STAUDT, G. K. C.
VOYNICH, Ethel L.
WAERDEN, B. L. van der
Walls of a fundamental region
WELLS, H. G.
WEYL, Hermann
WHITEHEAD, A. N.
WIJTHOFF ; seeWythoff
WITT, Ernst
WOEPCKE, F.
WYTHOFF, W. A.
YOUNG, J. W.
z1, z2, . . .
ZASSENHAUS, Hans
Zone
Zonohedron; see also Equilateral, Polar



1 See, for instance, F. A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry, 3rd
ed. (New York, Interscience, 1972) pp. 21, 226.
2 Listed as “Klein 1” in the Bibliography on pages 306-314.
3 Lucas 1, p. 202. (Such numbers after an author’s name refer to the Bibliography

on pages 306-314.)
For some exquisite photographs of snowflakes, see Bentley and Humphreys 1.
4 See the self-unfolding model in the pocket of Steinhaus 1.
5 See Herschel 1 ; Lucas 1, pp. 201, 208-225 ; Ball 1, pp. 262-266.
6 For such a map having only three edges at each vertex, see Tutte 1, p. 100.
7 See the American Mathematical Monthly, 53 (1946), p. 593 (Problem E 711).
8 König 1, p. 57. See also the American Mathematical Monthly, 50 (1943), p. 566

(Editorial Note).
9 Sommerville 3, Chapter IX; von Staudt 1, p. 20 (§ 4).
10 See, e.g., Ball 1, p. 233.
11 Schlegel 1, pp. 353-358 and Taf. 1; Sommerville 3, p. 164.
12 See Brahana 1 or Threlfall 1. Unfortunately the latter (p. 33) writes {q, p} for our

{p, q}.
13 Klein 2, p. 129; Caravelli 1.
14 Unfortunately Sommerville (2, p. 9) calls this number Nkj instead of Njk. The

present convention agrees with Veblen and Young 1, p. 38.
15 Tutton 1, pp. 40-45 (Figs. 25 and 33).
16 Thompson 1, pp. 724-726 (Fig. 340).
17Heath 1, pp. 159-160. This was done systematically by the artist Dürer (1), who

drew the appropriate “ nets ” (analogous to Fig. 1.6A).
18 Kepler 1, p. 116.
19 Ball 1, pp. 94-96.
20 Our vertex figure is similar to the vertex constituent of Sommerville 3, p. 100,

and the frame figure of Stringham 1, p. 7. It is a kind of “ Dupin’s indicatrix ” for the
neighbourhood of a vertex.
21 German Umkugel, Ankugel, Inkugel. See Schoute 6, p. 151.
22 Brückner (1, p. 123) denotes these radii by R, A, and P. His a is our 2l.
23 Brückner 1, p. 125.
24 Pitsch 1, pp. 21-22.
25 Brückner 1, p. 130.



27 Kowalewski 1, pp. 22-29.
26 Kowalewski 1, p. 50.
28 See also Ball 1, p. 143.
29 This theorem is due to Alexandroff. See Burckhardt 1.
30 Franklin 1, p. 363.
31 See Tutton 2, p. 567 (Fig. 448) or p. 723 (Fig. 585). His cubo-octahedron (properly

truncated octahedron) must not be confused with Kepler’s cuboctahedron. See also
Thompson 1, p. 551.
32Heath 1, p. 295.
33 For 2·33, see Coxeter 3, § 5 (p. 202).
34Hypsicles attributed this discovery (cf. 2·21) to Apollonius of Perga (third century

B.C.).
35 For the botanical application known as phyllotaxis, see Thompson 1, p. 923.
36 Seo Brückner 1, p. 60, or Steinitz and Rademacher 1, pp. 9-10.
37 Coxeter, Du Val, Flather, and Petrie 1, Plates I-XX.
38 Coxeter 9.
39 Kelvin and Tait 1, p. 60.
40 Kelvin and Tait 1, p. 69.
41 Crystallographers prefer to take translation, rotation, and inversion as “ primitive

” transformations, and to regard a reflection as a special rotatory-inversion. See Hilton
1, Donnay 1.
42 Kelvin and Tait 1, pp. 78-79.
43 See Birkhoff and MacLano 1, pp. 124-127.
44 This proof is taken from Levi 1, p. 7. Note that Levi multiplies from right to left.
45 Birkhoff and MacLane 1, p. 146.
46 For an interesting discussion of the identification of isomorphic systems, see

Levi 1, p. 70.
47 Bravais 1, p. 143 (Théorème III).
48 Bravais 1, p. 142.
49 This symbolism is admittedly clumsy, but the obvious alternatives would be

more difficult to print. Note the different roles of the numbers c (or e) and d : we have
d distinct {p, q}’s, but c coincident {m, n}’s.
50 See also Coxeter 13, p. 396.
51 Cf. Schönemann 1.



52 See Infeld 1.
53 Hess 1, pp. 39 (five octahedra), 45 (five or ten tetrahedra), 52 and 68 (five cubes).

Klein (1, p. 19) remarks in a footnote that “ one sees occasionally (in old collections)
models of 5 cubes which intersect one another in such a way. . . .”
54 Hess 3, pp. 295, 340-343. For the regular polyhedra, see also Schoute 6, pp.

155-159.

Bravais 1, p. 166. For this amplification I am indebted to Patrick Du Val. For a quite
different approach, see Ford 1, p. 133 or Zassenhaus, 1, pp. 15-18. It is interesting to
recall that Bravais (at the age of 18) won the prize in the General Competition, on the
occasion when Galois was ranked fifth !
55 Swartz 1, pp. 385-394; Burckhardt 2, p. 71.
56 This can be regarded as the rotation group of the improper tessellation {∞, 2},

which consists of a plane divided into two halves by an apeirogon.
57 Dyck 1, Taf. II; Klein 2, pp. 130-137.
58This iswhere the argumentwould fail if we tried to apply it to the dihedron, whose

two equators coincide with a line of symmetry. In the case of a plane tessellation, an
equator and a line of symmetry may be parallel.
59 For a picture of it, see Andreini 1, Fig. 12, or Ball 1, p. 147.
60 Andreini 1, Fig. 18.
61 Andreini 1, Fig. 33.
62 Wythoff (1) called such a tetrahedron “ double-rectangular ”. The word “

quadrirectangular ” draws attention to the fact that all four faces are right-angled
triangles, whereas a “ trirectangular ” tetrahedron (which can be cut off from one
corner of a cube) has only three right-angled faces.
63 For an alternative proof of this formula, see Cauchy 1, p. 77.
64Kepler 1, pp. 116 (regular), 117 (quasi-regular and rhombic). See also Badoureau

1, p. 93.
65 See Woepcke 1, pp. 352-357.
66 Pólya 1; Niggli 1. For elegant drawings of ornaments having these various sym-

metry groups, see Speiser 1, pp. 76-97.
67Hess 3, p. 25.
68 Brückner 1, pp. 125, 126, 130.
69 For a fine drawing of this arrangement of atoms, see Tutton 2, p. 655.



70A geometrical group is said to be discrete if every given point has a neighbourhood
containing no other point equivalent to the given point. Actually, we see only a finite
number of images even when the angle is incommensurable with π ; this is because
we would have to “ walk through ” in order to observe all the images that theoretically
occur.
71 Klein 1, pp. 20, 24.
72Möbius 1, p. 374; 3, pp. 661, 677, 691 (Figs. 47, 51, 54). See also Hess 3 (pp. 262-

265) and 5 ; Klein 1, p. 24 ; Coxeter 13, p. 390. The original “Kaleidoscope,” invented
by Sir David Brewster about 1816, is here represented by the graph consisting of two
nodes joined by a single unmarked branch.
73Wythoff 2 ; Robinson 1 ; Coxeter 7.
74Heath 2, pp. 368-369 ; Ball 1, p. 133 ; Coxeter 13, p. 399.
75 Poinsot 1, p. 23 = Haussner 1, p. 12.
76 Cf. Haussner 1, pp. 55-57 (Figs. 27-32). This little book has beautiful shaded

drawings at the end.
77 For a full account of all kinds of stellated icosahedra, see Coxeter, Du Val, Flather,

and Petrie 1.
78 Abbott 1.
79 For the usual topological proof, see, e.g., Ford 1, pp. 221-227.
80 Gordan 1, p. 35.
81 It is even valid for hyperbolic tessellations. See Coxeter 17, pp. 262-264.
82 Schwarz 2, p. 321 : “ Alle sphärischen Dreiecke zu finden …”
83Heath 1, p. 162.
84 See Ball 1, p. 248, for a pleasant anecdote about this.
85 Poinsot 1=Haussner 1, pp. 3-48 ; Cauchy 1=Haussner 1, pp. 49-72.
86 Lucas 1, pp. 206-208, 224 ; Haussner 1, p. 105.
87 Badoureau 1, pp. 132 (Fig. 117) and 134 (Fig. 120, incomplete); Hess 2; Pitsch 1,

p. 22.
88 I.e., “Plate IX, Fig. 13”, or, as Brückner himself would put it, “Fig. 13 Taf. IX ”.
89 They are called D andH in Coxeter, Du Val, Flather, and Petrie 1 (Plates I and III).

Their reciprocals are called D′ andH′ in Coxeter 15, p. 302.
90 Sommerville 3 ; Neville 1.
91 Abbott 1.



92 According to Henry More (1614-1687), spirits have four dimensions. See also
Hinton 1.
93 Sommerville 3, p. 29.
94 Schoute 3. Cf. Sommerville 3, p. 113, where the product of j- and k-dimensional

simplexes is called a “ simplotope of type (j, k)”. The name rectangular product is due
to Pólya.
95 �−1 is the “ null polytope ” ; it has no elements at all, but is an element of every

other polytope, just as the “null set” is a part of every set.
96 Cf. E. Cesàro 1, p. 60.
97 Cf. E. Cesàro 1, p. 63.
98 Cf. Sommerville 3, p. 189. (His n is our n − 1; his k1, k2, . . . are our p, q, . . .; and

his �1, �2, . . . are our �′, �″, . . . .)
99 Cf. Problem E 629 in the American Mathematical Monthly, 52 (1945), pp. 100-101 ;

Lucas 2, p. 464.
100 This is the criterion used by Jouffret 1, p. 111, and Sommerville 3, p. 168.
101 Schläfli 4, pp. 46-50 ; Stringham 1, pp. 10-11 ; Puchta 1, pp. 819-822 ; Manning

1, pp. 317-324 ; Sommerville 3, pp. 172-175.
102 This is the C0 C1 . . . Cn of Sommerville 3, p. 188.
103 Cf. Todd 1, p. 216.
104Möbius realized, as early as 1827, that a four-dimensional rotation would be

required to bring two enantiomorphous solids into coincidence. See Manning 1, p. 4.
This idea was neatly employed by H. G. Wells in The Plattner Story.
105 Richmond 1 ; Coxeter 6.
106 Schläfli 1 and 3.
107 Schläfli 2.
108 Schläfli 4.
109 implies (j, j)=0 and (k, j)+(j, k)=0.
110 See Coxeter 7, p. 338.
111 Stott 2 ; Ball 1, p. 139.
112 To see how elegant Schoute’s coordinates really are, compare themwith Puchta

1, pp. 817-819.
113 Poincaré 1 and 2. See also Veblen 1, pp. 76-81.
114 See, e.g., Ball 1, pp. 60, 73, or Birkhoff and MacLane 1, p. 26.
115 Birkhoff and MacLane 1, pp. 167-180.



116Wherever an unqualified � occurs, the variable of summation is understood to
be the one that occurs twice in the expression.
117Here x1, x2, etc., do not mean powers of x. For the rest of this chapter powers

will be avoided, save in such expressions as |x|2, where there cannot be any confusion.
118Miller 1, pp. 1-4 ; Tutton 2, Chapter V.
119Miller 1, pp. 7-10 ; Tutton 2, Chapter VI.
120 Strictly, a collineation group is said to be reducible if it leaves a subspace invari-

ant, and completely reducible if it leaves two complementary subspaces invariant. In
the present case the collineations are congruent transformations, so the one kind of
reduction implies the other.
121 any graph is a chain.
122 pij=1 or 3 or 2 according as i = j or i =j–1 or i < j–1. These are known relations

for the symmetric group (Moore 1). They were generalized by Todd (1, p. 224) and
Coxeter (5, p. 599).
123 The polytopes and honeycomb 021, 121. 221, 321, 421, and 521 are the “ tetroc-

tahedric, 5-ic, 6-ic, 7-ic, 8-ic, and 9-ic semi-regular figures ” of Gosset 1, pp. 45,
47-48.
124 The 2 here comes from the fact that �4 may be derived by removing either of

two distinct nodes.
125When the fundamental region is Pn+1, so that the graph is an (n+1)-gon, we see

at once that the cells of the honeycomb are simple truncations of an of every kind, viz.,
Oij (i+j=n−1 ; i=O, 1, . . . , n−1). Schoute (8) discovered this particular honeycomb in
1908, from a quite different point of view. Its vertices have n+1 integral Cartesian
coordinates with a constant sum (say zero).
The remaining fundamental regions and corresponding honeycombs are as follows

:

126 The corresponding covariant vectors ej are transformed by S into the vector
diagram of van der Waerden 1. Their magnitudes are the reciprocals of the distances
between consecutive hyperplanes in the various families. The lattice generated by
these vectors ej
127 In the general case, yi = zi/|ei|. But the numbers |ei| are no easier to find than

the y’s themselves.
128Witt (1, p. 309) mistakenly gave the order as 36.6!.



129
in his Figs. 3, 5, 6, 7, 8.
130 Elte 1. The last eight lines of his table (p. 128) describe the polytopes which

we call 122, 311, 221, 321, 231, 132, 241, 421. It never occurred to him that they could be
exhibited as members of one family kij.
131 Burnside 1 ; Baker 1, pp. 104-112.
132 Goursat 1, p. 36.
133 Coxeter 11.
134
135 Unhappily, we are using square brackets in two different senses : [p] means the

dihedral groupof order2p
136
137 Schläfli 4, p. 117.
138 The two-dimensional world imagined by Abbott 1.
139Hinton 1, pp. 106-108.
140 Cf. Sommerville 3, p. 177.
141 Schoute 2 ; Robinson 2, p. 45.
142 Brückner 1, VIII 31 and p. 212.
143 Cf. Hadwiger 1, where the definition of a star is slightly different, as Hadwiger

takes only the n vectors a1, …, an. He considers themore general problem of projecting
onto a space of any number of dimensions.
144 Eutaxy means “good arrangement, orderly disposition”. See Schläfli 4, p. 134.
145 Hadwiger 1, “ Satz I ”. His proof is translated here, with a 3-space instead of his

s-space.
146 The ratio of the tropical and polar in-radii is found to be (2√5+3)/√55 =1.0075…,

so this solid is practically indistinguishable from Fedorov 1, Plate XI, Fig. 107, which
has a single in-sphere.
147For thebenefit of anyonewho reads that page, here is a correctionwhichSchoute

himself noticed (too late for printing) : just below the middle of the page, between “
12d2fg)” and “ (12e2hg′,” insert “ (24dfgh, 4e3g′),”. Consequently, two lines later, insert “
28,” between the two adjacent 24’s. (This is our section 120.)
148 Schläfli 3, p. 107 (where “ entactic ” is a misprint for “ eutactic ”) ; 4, p. 138.

(Our n and s are his � and n.)
149 k lines in n dimensions), set h k/n).



150 The first of these four-dimensional honeycombs was considered by Schläfli 4,
p. 119.
151 van Oss 2, p. 7.
152 van Oss 2, p. 7.
153 Corresponding to the two enantiomorphous sets of five {3, 3, 5}’s inscribed in

{5, 3, 3}, there are two enantiomorphous ways of separating either of the compounds
of twenty-five {3, 4, 3}’s into five {3, 3, 5}[5{3, 4, 3}]{5, 3, 3}’s. Thus Schoute (6, p. 231)
was right when he said that the 120 vertices of {3, 3, 5} belong to five {3, 4, 3}’s in ten
different ways. The disparaging remark in the second footnote to Coxeter 4, p. 337,
should be deleted.
154 See Crosby’s solution to problem 4136 in the American Mathematical Monthly, 53

(1946), pp. 103-107.
155 These two rational numbers have a common numerator hp, q, r, which is the

number of vertices of the Petrie polygon. This is the h of Table I (ii).
156Here the word “ orthogonal ” is used in the loose sense, meaning merely that

�cjkcjl=0 when k≠l. (Cf. 12·14.)
157 Barrau’s An, Bn, Cn are our �n, �n, �n.
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