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Preface

Conditions are not invariable; terms are not final. Thus the wise man looks
into space, and does not regard the small as too little, nor the great as too
much; for he knows that there is no limit to dimension.1

The material contained in this book represents one way to approach order in space.
The growth in understanding of spatial order seems to follow closely man's own
evolution as a conscious being. First as a tool of orientation, the 'where' of things, and
eventually becoming the 'how' inherent in things.
Pattern has never been the exclusive possession of any one field of human activity;

order as 'pattern' seems to have universal meaning.
The primary idea of order and number is one basis for understanding our universe.
To study space without stressing time might seem inadequate in a post-Einstein

world. But even 'space-time' is a separation from the consciousness that regards it.
We study aspects to assist us in grasping the whole.
I would like to present a few differing points of view as to what space is:

The fundamental element of this cosmos is space…Its nature is emptiness
and because it is empty it can contain and embrace everything…Space is the
precondition of all that exists…2

Thirty spokes converge upon a single hub;

It is on the hole in the middle that the use of the cart hinges.

We make a vessel from a lump of clay;

It is the empty space within the vessel that makes it useful.

1 Chuang Tzu. ch. xvii (4th century sc).
2 LA. Govinda. The Psychological Attitudes of Early Buddhist Philosophy (Rider. London. 1961).
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Wemake doors and windows for a room;

But it is these empty spaces that make the room livable.

Thus while the tangible has advantages

It is the intangible that makes it useful.3

In relativistic cosmology, the geometrical properties of space are directly re-
lated to the distribution of matter. One of Einstein's essential ideas was that
gravitation is not merely influenced by the distribution of matter, but is deter-
mined by it.4

The determining condition of space enables the existing universe to acquire
a structure of position, size, shape and relative motions.5

∫𝐴2𝜓2𝑑𝑥𝑑𝑦𝑑𝑧 = 16

To return to Govinda: 'we can neither imagine an object or being without space.
Space, therefore, is not only a conditio sine qua non of all existence, but a fundamental
property of our consciousness…Our consciousness determines the kind of space in
whichwe live. The infinity of space and the infinity of consciousness are identical…The
way inwhichwe experience space, or inwhichwe are aware of space, is a characteristic
of the dimensions of our consciousness.'
The work presented here represents certain direct relationships in space and

the principles underlying them. As Einstein said: 'We only know energy when it
is exteriorized.' Here we are dealing with exteriorized functions of space.

3 Lao Tzu. Tao Teh Ching, ch. ii. trans. Dr J.C. H. Wu (St John's University Press. Brooklyn. New York.
1961).

4 E. L. Schatzman. The Structure of the Universe, p. 209 (Hutchinson. London: World University
Library).

5 J.G. Bennett. The Dramatic Universe (Hodder & Stoughton. London).
6 Derived from Erwin Schrodinger's wave equation. It relates an amplitude function for the electron

wave (here represented by the Greek letter �, psi, and called the psi function) to the kinetic and
potential energies of the electron and to the space coordinates in terms of which the system is
described. In the equation A is a constant. See H.H. Sisler. Electronic Structure. Properties, and
Periodic Law. p. 7 (Reinhold. New York, and Chapman & Hall, London. 1963).



The book is designed for the visually orientated. It is a manual of space functions.
It aims to show experimental ways in which related division is possible in space—by a
process of economy or least effort between elements. For example, if one holds up the
index finger of each hand, the tips of those fingers cannot be reduced to less than a
point each and the relationship between them a line.
Mechanisms, architecture, applied science and all technologies imply designers.

These designers need to know the basic 'freedoms' of their constructions —space. A
command of the functions possible in space becomes progressivelymore necessary in
a shrinking planet, which points to the real problems; betweenmanandman,man and
his universe andman's continued existence. They are matters of the assessment of
essentials. One of these is that human existence is never less than multi-dimensional.
In a unified world spherical thinking is a prime requisite for both accuracy and un-
derstanding. In the macrocosm, 'nations' are no longer 'flat' but an integral part of
a curved surface dependent for their existence on identical curves meeting at the
boundaries. In the microcosm each of us begins life as a sphere —even the eyes that
read these words are basically spherical.
Yetweare taught so soon toproject ourminds on to the 'flat' andeven trained to think

of geometry at school as starting from the flat and projecting up into the solid. The
truth is, we are finite andwe exist in a finite universe. We educe the infinite in the same
way: we start in the round and can project to the flat-infinite plane, which according to
modern theory is also to be conceived as returning on itself, not continuously 'away'
to infinity.





'The more natural procedure, as followed by Einstein. Infeld and Hoffman,
is to suppose that matter acts as though it were a distribution of mass-
singularities in space, so that there is no need to introduce, artificially,
a continuous distribution of matter in space; it is enough to study the
relationships between attracting ``singular points´´.7

There aremany routes to the understanding of complex ideas. Here we are to follow
the experimental or empirical —where the hand, eye and mind can all work together.
We take the unorthodox route of regarding a 'point' as physically real; its relative size
being dependent on human experience. The point then, can be handled, visualized
and seen to occupy a position in space. By manipulation we can study its behaviour
singly and collectively. Hence all the illustrations in this study are directed towards
experiment or model-making.
Without predetermining the most appropriate form for the ‘point’ we can take a

minute version and see what volumes it describes by tracing it systematically through
space.
If a point moves in an unchanging direction, from a starting position, a trace of its

path describes a 'line' —the so-called first dimension, 1. Moving the 'line' in any other
than the first direction describes a planar trace —the so- called second dimension,
2. The trace of the third change in direction describes a ‘solid’ —the so-called third
dimension, 3.
There are three fundamental ways in which the three moves might be made: the

first andmost economical provides the prime solid, the tetrahedron8 — the four-faced
pyramid; the second andmost commonly used results in the cube; the third, involving
a cyclic movement or a rotation through each dimension, results in the sphere.
The tetrahedron, minimally structured, is the strongest of these solids, being most

able to resist external forces from all directions. It has the greatest surface area for
volume of all polyhedra.
The sphere has the least surface area for volume and ismost suitable for restraining

internal forces (hence the bubble).

7 E. L. Schatzman. The Structure of the Universe, p. 201 (Hutchinson. London: World University
Library).

8 We do not avoid the fact that the tetrahedron so 'traced' is a particular one with three 'straight'
and three 'curved' edges, and two 'flat' and two double curved surfaces. For convenience we bring
the whole into its most economic expression without changing its topological nature.



The cube represents the transitional phase between the two, and is a 'sociable' or
close-packing unit.

The criteria of spatial and structural economy —i.e. least expenditure of energy (or
moves) to accomplish ends —will be applied hierarchically throughout this book.

To return to the initial proposition: what physical form can be given most appropri-
ately to the 'point' for the exploration of ordered 'moves' in space?

Any form, however random, if completely rotated on its centre of gravity eventually
describes a sphere at its extremities, hence the sphere is the most economical form
that is non-exclusive. The sphere thus seems the most suitable form to give to the
'point' as it has complete rotational symmetry and is least 'biased'. Henceforth the
point will therefore be referred to and shown as a 'spherepoint'.9

THEMOVES INTO THE DIMENSIONS

A

THEMINIMAL MOVEMENT

Point of departure

o

TETRAHEDRON

B

THEMEDIAL MOVEMENT

Point of departure

CUBE

C

THEMAXIMAL MOVEMENT

Point of departure

9 An observation from atomic physics: if we take the simplest and nuclear electron shell of all atoms,
the S subshell, we find that the probability distribution (or the time average of electron charge
density) is independent of direction in space and varies only in distance from the nucleus The
distribution is therefore symmetrically spherical in form.



THE THREE BASIC 'WAYS' AND THEIR RESULTING FORM

We now take a closer look at the most economic unfolding of the dimensions.

If a line is considered to have a spherepoint at each end, then the line represents, at
a minimum, a displacement of the diameter of one spherepoint. 1—2. The line can
be regarded as the track of a spherepoint which has moved at least its own diameter.
The spherepoints cannot be closer. Two spherepoints are shown here. 2. with a line
between their centres, to represent their fundamental relationship.

The minimum condition to describe a plane is that three spherepoints should be
set in any other relationship than in a 'straight' line, 3. As before, applying the most
economic conditions, each spherepoint being its own bodily distance from its neigh-
bour, we describe a plane —resulting in an equilateral triangle between the centres of
the spherepoints. Adopting the same criteria and following the same procedure. we
describe 'solid' spacewith the fourth and final spherepoint, 4: the result is a four-faced
pyramid, the tetrahedron. There are six links possible between the four centres of
the spherepoints, these provide the six edges of the tetrahedron. This last pattern of



spherepoints represents the greatest number of equal spheres that can be brought
into simultaneous contact. Each one touches all the others. The final drawing, 5,
shows a perspective view with the bounding lines of the tetrahedron lying outside the
four spherepoints.



1 THE ECONOMICUNFOLDINGOF THE
DIMENSIONS OF SPACE

POINT
Primacy and
unity

LINE
First move, the

PLANE
Secondmove, the
'threeness'.

SOLID

Third
move, the
'fourness'

5



The morphic
point 'twoness'.

has
inher-
ent
the
third
fac-
tor,
the
rela-
tion-
ship
or line

produces our
first and only
'structural'
polygon, the
triangle; this
bounds a
plane. Three
points: three
lines: three
contacts

becomes
the most
simple and
primary
solid, the
tetrahe-
dron. The
relation-
ships
increase to
give: four
vertices,
six linear
edges, four
faces and
twelve

points of contact







2 EVOLUTION OF THE BASIC SPHERE-
POINT CONFIGURATIONS

A Four spheres in tetrahedral configuration are the greatest number than can
be in simultaneous contact

B The tetrahedron, outlined on its edges, with a second set of spheres intro-
duced into the interstices: eight spheres in all

C The second set of spheres shows that the tetrahedron is its own dual —i.e.
the lines joining the centre points of the faces repeat the original figure

D The next most economic regular grouping of spheres is six in octahedral
configuration; each sphere touches four others

E The octahedral group outlined with edges, with eight additional spheres in
the interstices

9





FWhen the edges of the sec-
ond set of spheres are outlined, the cube emerges as the dual of the octahedron:
the lines joining the centre point of the faces of the octahedron result in a cube.
Conversely, the lines linking the centre of the faces of a cube result in an octahedron



G The closest packing of equal spheres around a nucleus of equal size gives the
dymaxion or cuboctahedron. The nuclear sphere is surrounded by twelve spheres,
each touching four neighbours in addition to the nucleus
H The grouping without the nucleus tends to close into the triangulation of the

icosahedral grouping: the twelve spheres are in closer configuration, each touching
five others
I The icosahedron,with its edges outlined, shown on its 5-fold axis with a sphere

introduced into each interstice- 32 spheres in all
J The added set of spheres, when outlined, show that the regular dodecahedron

is the dual of the icosahedron. This demonstrates a hierarchy of the five regular or
Platonic solids by the criteria of numerical and structural economy
Photos: Tony Jenkins
From the arrangements of spherepoints in the photographs the following principles

can be adduced:

1. Four equal spheres are the greatest number that can be in simultaneous contact - the first
regular pattern:

2. six equal spheres are the next regular pattern, with each sphere touching four neighbours:

3. twelve equal spheresmay surround and touch a nucleus of equal size. (When the nuclear
sphere is removed the form contracts into the third regular configuration. with
each sphere touching its five neighbouring spheres; this will be shown later to
be part of a threefold transformation of the 'twelve degrees of freedom'.)

Introducing additional spheres into the interstices of the three regular triangulated
patterns generates the dual solid of each. In the first case, the tetrahedron is its own
dual: in the second case, the cube is the dual of the octahedron; and in the third case,
the regular dodecahedron is the dual of the icosahedron. This provides five regular
solids from three triangulated close packings of equal spheres by the introduction of
a second set of spheres in their interstices.
The next exploration illustrates another method of arriving at the same hierarchy

of solids, adopting the same principles of economy.
The points of contact between spherepoints rather than their centres are to be joined

by lines.



In drawing 1 we see that if the six points of contact (A, B, C, D. E and F) between
the first four spherepoints are joined (E and F being furthest from and nearest to the
eye respectively), the result is the octahedron, a figure composed of eight equilateral
triangles. As the apices of the octahedron are exactly half-way along the edges of the
basic tetrahedron formed by joining the centres of the spherepoints, we can regard
the octahedron as the first 'octave' subdivision of the tetrahedron.

In drawing 2 we see that if the octahedron is isolated and its apices are simultane-
ously expanded to become spherepoints in close-packed relationship one to another,
then the lines linking the twelve points of contact of these spherepoints (a. b. c, d, e. f;
g. h, i, j, k. I) from the figure called the cuboctahedron, which is made up of a total of
twenty-four edges describing eight equilateral triangles and six squares. Professor
R. Buckminster Fuller has named the cuboctahedron the 'dymaxion' to stress its
exceptional properties of equilibrium. The distance between its apices is identical to
that from any apex to the centre of the configuration.

Drawing 3 shows that if the cuboctahedron is isolated and the apices expanded as
spherepoints as before, the resulting figure is seen to be stable on only eight faces
—the triangular relationships —and unstable on six faces —the square relationships.
Triangulation is incomplete. The figure is in equilibrium, but it is unstable because it
has no nuclear sphere.

Drawing 4 shows that without this nucleus, the spheres tend to close into a totally
stable, triangulated position providing the figure called the icosahedron (a. b. c. d, e.
f. g. h. i. j. k, I) which is made up of thirty edges and twenty triangular faces. This is
the third and final regular triangular close-packing pattern of equal spheres - regular
meaning that all planar, linear and angular relationships are equal (in the plane solid
faces, edges and angles).

It will be seen from the drawings of the transpositions that there are three sizes of
spherepoints shown, each one half of that preceding it —three octave subdivisions.
Hence the primary solids have been shown in yet another way to be related in a
hierarchy of occurrence.





The drawings show the full process of transformation from the twelve spheres in the
truncated tetrahedral pattern. 1 (the result of close-packing twelve spheres around
the four initial spheres of the tetrahedron, then taking these four away, leaving a hollow
core). The closing together of the twelve spheres provides first the cuboctahedral
pattern. 2. then the icosahedral pattern. 3.

A full explanation of this closing phenomenon is given in appendix 4.

The central drawing shows all three positions of the transformation, overlaid -
the truncated tetrahedron is shaded, the cuboctahedron is in broken outline, the
icosahedron is heavily outlined.

The last two phases of this transformation were first recognized by Professor R.
Buckminster Fuller who named them the 'twelve degrees of freedom' and demon-
strated that themovement between cuboctahedron and icosahedron could take place
turning either to the right or to the left. This property is known as enantiomorphic.





This page demonstrates the properties of symmetry of the three representative
(structural) regular solids.
The prime solid, the tetrahedron. A, is shown first in perspective; secondly viewed

edge-on. A1, in its 2-fold symmetry (i.e. it can be folded or mirrored only once on
what is known as its 2-fold axis); thirdly, viewed face-on, A2, in its 3-fold symmetry;
and fourthly point-on. A3, in an alternative 3-fold symmetry. Thus the tetrahedron is
described as having 2, 3. 3-fold symmetry.
The secondary solid, the octahedron, B, is shown first in perspective; secondly

edge-on, B1, in 2-fold symmetry; thirdly face-on, B2, in 3-fold symmetry; fourthly
point-on. B3, in 4-fold symmetry. The octahedron has 2. 3, 4-fold symmetry: it is the
prime representative of this family of symmetry.
The tertiary solid, the icosahedron, C, is shown first in perspective; secondly edge-

on. C1. in 2-fbld symmetry; thirdly face-on. C2. in 3-fold symmetry; fourthly point-on,
C3. in 5-fold symmetry. The icosahedron has 2, 3. 5-fold symmetry and is the prime
representative of this family of symmetry.
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3 SYMMETRY
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\Ne have already determined the three regular stable triangulated figures —the

tetrahedron, the octahedron and the icosahedron. Here we are to explore further
the relationships between the points of contact of the six spheres making up the
octahedral pattern and the twelve spheres making up the icosahedral pattern.
The twelve points of contact of six equal spheres resulted in the cuboctahedron or

dymaxion,made up from the eight triangular faces, 1-8.- and six square faces, 1-6.
shown here. Regularly assembled, the six square faces make up a cube, the eight
triangular faces constitute an octahedron.
The thirty points of contact of twelve equal spheres result in an icosidodecahedron,

made up of twenty equilateral triangles, 1-20. and twelve pentagons, 1-12, shown
here. Regularly assembled, the twenty triangular faces make up an icosahedron, the
twelve pentagonal faces constitute the dodecahedron.
The tetrahedron, the octahedron and the icosahedron together with the cube and

the dodecahedronmake up the five regular solids known as the Platonic solids, so
called not because they were discovered by Plato but because of the special emphasis
he placed upon them in expounding the Pythagorean cosmology in the Timaeus. The
figures were regarded as one basis for the structure of the universe. The tetrahedron
represented themolecule of fire, the octahedron themolecule of air. the icosahedron
the molecule of water and the cube the molecule of earth, while the dodecahedron
represented the all-containing ‘ether’ or the heavens.





4 THE SURFACES BETWEEN THE
POINTS OF CONTACT OF THE OC-
TAHEDRAL AND ICOSAHEDRAL
SPHEREPOINT GROUPINGS

THE OCTAHEDRAL GROUPING GIVES

SIX SQUARES AND EIGHT TRIANGLES

The octahedral points of contact

The six square faces of the cube

The plane solid defined by the points of contact is the cuboctahedron

The eight triangular faces of the regular octahedron

The icosahedral points of contact

THE ICOSAHEDRAL GROUPING GIVES TWENTY TRIANGLES AND TWELVE PEN-
TAGONS

THE CUBE

THE

DODECAHEDRON
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The top line of sketches is a visual reminder of the process adopted in establishing
the three dimensions, starting from a point, 1, moving to the line. 2. the plane, 3, and
thus to the prime solid. 4 and 4a. the tetrahedron.

It is possible to display the hierarchy between the five Platonic solids1 by allocating
to each a sphere and grouping these in accord with the pattern used to establish the
three dimensions.

The apices of all the Platonic solids lie in the surface of a circumscribing or contain-
ing sphere, shown in the bottom line.



The first of the solids, the tetrahedron, is allocated to the first sphere, in the middle
range of drawings. The next two spheres are allocated to the octahedron and the
icosahedron as they are the prime representatives of the figures with 2, 3, 4 and 2. 3,
5-fold symmetry (p. 11). Three spheres containing the three triangulated inherently
structural Platonic figures are then grouped together. If the two pairs of spheres,
containing the prime and secondary representatives of the 2, 3. 4 and 2, 3, 5-fold
symmetries,

i. e. octahedron and cube with icosahedron and dodecahedron, are placed in close
packing, the relationship between the four spheres provides the tetrahedron,
completing the cycle and establishing it once again as the master or 'over' solid
—indicated in the small diagram at the end of this range.

The prime and secondary representatives of the 2. 3. 4-fold symmetrical figures,
it should be noted, are duals, i.e. the lines joining the centre-point of the faces of
one of the figures results in the other figure. Similarly the prime and secondary
representatives of the 2. 3, 5-fold symmetrical figures are duals.
‘Definition of a regular or Platonic solid: a convex polyhedron is said to be regular

when its faces are regular and equal, and its vertices are all surrounded alike. If
we denote the faces {p}. and those surrounding each vertex {<?}. the polyhedron is
described by {p. g}. We can examine the possible values of p and q thus: the solid angle
at a vertex has q face-angles, each M - n: these q angles must total less than 2rt so we
get 1 - —< —.
' 111
This gives us - + - > j. or (p - 2) (q - 2) < 4. Therefore {pg} cannot have any other

values than {3. 3}, {3. 4}. {4. 3}. {3. 5} and {5. 3}. which are respectively the regular
tetrahedron, octahedron, cube, icosahedron and dodecahedron. See H.S. M. Coxeter.
Regular Polytopes. 2nd ed.. p. 5 (Macmillan, London).
The first three moves into the dimensions with the
allocation of the regular solids by hierarchy of occurrence
PRIME SOLID
Tetrahedron
REGULAR MEMBERS OF
2, 3, 4-FOLD SYMMETRY
REGULAR MEMBERS OF



2, 3, 5-FOLD SYMMETRY





The diagrams on this page trace the same sequence of relationships between the
Platonic solids as on the previous page, but here the figures are drawn on the surface
of the containing sphere' as geodesies: 1 shows the spherical tetrahedron: 2 the
paired prime representatives of 2. 3. 4 and 2, 3. 5-fold symmetry in the regular solids
- the spherical octahedron and the spherical icosahedron: 3 illustrates these three tri-
angulated regular solids grouped together: 4 shows the pairing of the representatives
of

2. 3, 4 and 2. 3, 5-fold symmetry in the regular solids.

Figure 5 shows this arrangement in close packing and demonstrates in addition that
if eachof the outlined faces of the solids are subdivided into their complete symmetries
—indicated by dotted lines - three out of the six equal triangles (shown shaded)making
up the face of one segment of the octahedron will be seen to be identical to one of
eight equal triangles making up the face of one segment of the cube, while one of the
six equal triangles making up a segment of the icosahedron is the same as one of the
ten making up a pentagonal segment of the dodecahedron.2

The triangles (48 in number) making up two 2. 3. 4-fold symmetrical figures are
larger but proportionally the same as those (120 in number) making up the two 2. 3.
5-fold symmetrical figures. Their exact relationship is shown later in the book (see
page 95).3

Figure 6 represents the completion of the cycle, showing the 2. 3. 4 and 2, 3. 5-fold
symmetrical figures making up the master regular solid, the tetrahedron.

1. In the fourth century ad Pappus observed that reciprocal regular polyhedra. i.e.
dodecahedron and icosahedron, can be inscribed in the same sphere in such
a manner that the twelve vertices of the former lie by threes on four parallel
circles, while the twenty vertices of the latter lie by fives on the same circles. See
H.S. M. Coxeter. Regular Polytopes. 2nd ed.. p. 88. (Macmillan. London).

2. Hypsicles attributed the discovery of the simultaneously similar circumspheres
and inspheres of the icosahedron and dodecahedron to Apollonius of Perga (3rd
century bc).

3. C. 300 bc Euclid (xv. 3—5) demonstrated the reciprocation of octahedron and
cube and the converse, together with the dual function of the icosahedron and
dodecahedron.



THE SPHERICAL SYMMETRY OF THE FIVE PLATONIC FIGURES RELATED TO THE
FIRST THREE MOVES INTO THE DIMENSIONS

POINT

Tetrahedron as point unity

LINE

Octahedron Icosahedron as first bifurcation

PLANE

Tetrahedron

Octahedron Icosahedron as primary structural triangle

FULL TETRAHEDRAL CYCLE SHOWING GREAT CIRCLE VERSION OF BASIC SYM-
METRIES





The drawing illustrated here is a speculative attempt to show the hierarchy and
relationship of the five regular solids and their spherical counterparts to the tetrac-
tys. a triangular pattern made up of ten units - which was apparently the basis of
Pythagorean harmony. In ancient Greece, mathematical problems are thought to have
been demonstrated with physical objects, usually pebbles (given organized form in
the abacus).
These pebbles were grouped to form figures - triangles, squares, hexagons, etc.

—providing what are known as 'figurate numbers’. Thus when three pebbles are
grouped to form a triangle, three is the figurate number, four in the case of a square or
a rhomb, seven (i.e. a nucleus surrounded by six pebbles) in the case of a hexagon, etc.
Triangular numbers can be considered as the base of tetrahedral numbers —that is

numbers to the power of three. The economic significance of the tetrahedral rather
than the standard cubic relationship of numbers has been particularly emphasized in
the work of Professor R. Buckminster Fuller —the tetrahedron being an inherently
‘stable' form of ‘powering', the cube unstable.
The arrangement here shows the figurate number ten as a triangle.
The five regular solids and their spherical counterparts are allocated spheres, and

relationships between them are suggested by arrows. The octahedron and the cube
take up the right-hand side of the figure, the icosahedron and the dodecahedron the
left-hand side. The tetrahedron is both at the apex and the centre, being the master
solid. The whole tetractys pattern can be given tetrahedral form, in which case the
figurate number will be twenty not ten. i.e. twenty spheres would be required to build
up the whole pyramid. The triangular number 10 provides the base, the tetrahedral
number 20 the whole pyramid. It could be speculated that the further fifteen spheres
might have been allocated the thirteen semi-regular or Archimedean solids plus the
spherical rhombic triacontahedron and spherical rhombic dodecahedron.1 (Twenty
is also the greatest number of equilateral triangles that can subdivide a sphere, giving
the faces of the icosahedron.)
The relationship between triangular and tetrahedral numbers is shown below:

units 1 1 1 1 1 1 1 1 1 1
sequential
numbers

1 2 3 4 5 6 7 8 9 10



triangular
numbers

1 3 6 10 15 21 28 36 45 55

tetrahedral
numbers

1 4 10 20 35 56 84 120 165 220

1 See fig. 3 on page 43; these figures are an equilibrium between the octahedron
and cube and the icosahedron and dodecahedron. See page 53, drawing C.







5 THE REGULAR TETRACTYS

Progression of regular polyhedra, first as situated within a sphere, second developed
as surface division of sphere, showing a hierarchy from top and centre - with tetrahe-
dron followed by octahedron and icosahedron, which in turn generate the cube and
dodecahedron; as a dual the points of one are at the face centres of the other.

TETRAHEDRON

OCTAHEDRON

ICOSAHEDRON

OCTAHEDRAL

ICOSAHEDRAL

DODECAHEDRAL

TETRAHEDRAL

DODECAHEDRON

CUBIC

HISTORICAL COMMENTARY

The whole triangle is in the ten- unit shape of the Pythagorean tetractys, a fig-
ure with four units per side and a total of ten units. This pattern may bear a rela-
tion to Pythagorean teaching as it is believed that the cosmology of the Timaeus was
Pythagorean.

It was from the Timaeus and its author, Plato, that these figures were named the
Platonic solids

This chart illustrates the inter-relationship of the five Platonic solids.

The figures in the upper line (A, B. C. D, E) predominate in the inter-relationships.

C D E
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The cuboctahedron or dymaxion displayed on pages 11 and 13 was made up of
twelve equal spherepoints around an identical nuclear sphere. The twelve spheres are
shown here first in plane or figurate number (two triangles and a hexagon containing
three and seven spherepoints respectively), secondly obliquely, showing how they are
combined in close packing to make up the cuboctahedron or dymaxion.

The triangular groups, it should be emphasized, are mirrored arrangements one
through the nuclear sphere of the other. All three symmetrical views of the dymaxion
are shownon the right: the first. A, is in the 3-fold axis, with the triangular face towards
the eye; the second, B. is the 4-fold axis with the square face towards the eye; C shows
the 2-fold axis, with a sphere towards the eye.

Elements close in

I

I

with thirteenth as nucleus

to give closest packing

CUBOCTAHEDRON or

Resultant grouping made up of square and triangle relationships. All intercentres
are equal linear distances





THE COMPOSITION ASSEMBLY AND SYMMETRY OF TWELVE EQUAL
SPHERES AROUND AN EQUAL NUCLEUS
The icosahedral pattern of twelve spherepoints can be assembledmost conveniently

in the ways indicated in the two columns of drawings on the left - the pattern can be
considered as consisting either of four layers, made up of two isolated spherepoints
and two groupings of five spherepoints, or it can be broken down into three layers, the
two extreme ones of three spherepoints each, the middle one a 'buckled' hexagonal
grouping.
The drawings on the right show the icosahedral pattern viewed from its 3-fold (A).

5-fold (B) and 2-fold (C) axes.
The numbering of the spherepoints is constant throughout the series of drawings.
The elements move in without nucleus
2-fold axis
The resultant grouping is the icosahedron. The linear relationships give total trian-

gulation, with twelve points, thirty linear edges and twenty planar faces
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6 THIS ARRANGEMENT OF TWELVE
EQUAL SPHERES CAN ONLY CON-
TAIN A SMALLER NUCLEUS



The two twelve-point configurations are shown in the diagrams on the left, con-
tained for convenience within cubes. The upper drawing shows the cuboctahedron
or dymaxion with four of its twelve apices (e.g. A. B, C. D) lying half-way along four
of the leading edges of the enclosing cube. The lower drawing shows the contracted
twelve-point configuration, now in icosahedral pattern, with the points A. B. C and D
still in the face of an enclosing cube, but whereas D and B have remained in the same
face as before, A and C have moved respectively into the upper and lower faces of the
cube. All the square faces and all the edges of the cuboctahedron lie in the faces of
the enclosing cube, whereas no faces and only six edges of the icosahedron lie in the
face of its containing cube.1

In the top row of diagrams, the pairs of triangular faces of the cuboctahedron are
shaded: in each instance these are the faces diagonally opposite one another, i.e. those
lying on one of the four diagonals of the enclosing cube. This shows that identical
regular tetrahedra can be built up on these faces with a common apex corresponding
to the centre of the cube. The cuboctahedron can thus be regarded as being com-
posed of eight tetrahedra and six half-octahedra. The volumetric significance of this
composition has already been noted by Professor R. Buckminster Fuller.1 2

In the second row of drawings, the four equatorial hexagons are shown, i.e. those
that result by cutting the cuboctahedron in half.

In the third row, the significant rectangles formed by linking the pairs of points lying
opposite one another on the enclosing icosahedron to the faces of the cube are shown
both separately (1, 2. 3) and assembled (4). These rectangles are in GoldenMean ratio,
i.e. their sides are in the relationship of 1:1 -618 . . . etc. Fifteen identical such rectan-
gles could be described within one icosahedron: only those three which are parallel
to the faces of the enclosing cube (the XYZ coordinates) are shown here. Particular
usage of this pattern was made by Rudolf Laban for spatial appreciation in dancing,
the notation he devised for this purpose has since been adapted for ergonomic studies
(see pages 86-89).

1 -—in the lower drawing, each as a proportion of the unit edge of the contained figures.
2 En-Syn Geometry Chart 1944. See John McHale. R. Buckminster Fuller, p. 38 (Prentice Hall. New

York).



In the contraction of the twelve-point configuration of the cuboctahedron to an
icosahedron, the square face ABCD became two equilateral triangular faces ABD and
BDC. folded along the edge BD. If these folded triangles and those correspondingly
opposite are linked (as shown in the bottom row of diagrams) through the common
centre of the solids, the figure formed can be seen to be made up of four identical,
but not regular, tetrahedra. In the fourth drawing of the series the pairs of folded
triangles are left unshaded, the shaded triangles are the eight remaining faces of the
icosahedron, that is those faces which are constantto both the cuboctahedron and
the icosahedron.

' The edge lengths of the cubes are v/2 in the top drawing and k/5 + 1



Thus far we have studied relationships between the seven solid configurations, the
five Platonic:

tetrahedron (four equilateral triangles)



octahedron (eight equilateral triangles)
icosahedron (twenty equilateral triangles)
cube (six squares)
dodecahedron (twelve pentagons);
and the two Archimedean semi-regular solids;1

cuboctahedron or dymaxion (eight triangles and six squares)

icosidodecahedron (twenty triangles and twelve pentagons).

The faces of all these solids are made up by the use of three geometrical figures: the
triangle, the square and the pentagon.
Only seven polygons or shapes, singly or in combination, are needed to define the

primary 'orders’ of ’surface’ or of solid space. These 3. 4. 5. 6. 8. 10 and 12-sided
polygons are shown together here in the large diagram; they are all generated from two
primary circles, with a common radius AB. which is the edge length common to all the
polygons. The first polygon is made up by linking A and B to the point of intersection
of the primary circles, forming an equilateral triangle. This is the only polygon whose
surface is totally enclosed within the common areas of the two primary circles (it
is also the only inherently ‘stable’ structural shape). The subsequent polygons are
generated by the progressive unfolding of the sides of the primary triangle.
We have so far dealt with only two of the semi-regular solids, but there are thirteen

possible semi-regular solids (pages 35 top. 37. 39 left). Each edge of a semi-regular
solid is the same length and is characterized by the centre angle subtended by an edge
at the centre of the enclosing sphere commonly denoted 0 (theta).
The group of drawings on the right shows the semiregular solids and their surfaces

arranged in two parallel columns as successive truncations of the icosahedron, on
the left. and. on the right, of the octahedron.
The surfaces or polygons indicated on the outer edges of the three rows of shapes are

the same, they represent the amount of surface of the original solid left after truncation
in each successive case. The column of surfaces shown vertically shaded are the new
faces formed by truncation. The surfaces shown dotted are edge as opposed to corner
truncations. Only in three instances (shown with a solid outline) does this result in an
additional shape.



The arrangement is in order of hierarchy frommost parent face to least after each
successive truncation. An alternative arrangement would ensue if the cube and do-
decahedron were taken as parent solids.

Archimedes' work on the semi-regular solids has not survived, but one
source. Heron, states that Archimedes ascribed the cuboctahedron to Plato.
See Heath. A History of Greek Mathematics, p 295.

THE ARCHIMEDEAN OR SEMI-REGULAR SOLIDS ANALYSED BY NUMBER AND
SHAPE OF FACES
THE GENERATION OF THE BASIC POLYGONS
Pattern of unfolding or degrees of order in space
THE POLYGONS OF
THE SEMI-REGULAR
SOLID FACES
THE NUCLEAR TRUNCATED TETRAHEDRON
snub dodecahedron
small rhombicosidodecahedron
truncated dodecahedron
I ‘ 1
. ALTERNATIVE
| DODECAHEDRAL|
i FACE I
; ; ;
FACE NODE EDGE
The triangle is the prime polygon and only structural shape, followed by the square,

pentagon, hexagon, octagon, decagon and dodecagon. The broken lines indicate
relationships of concord between the polygons
ICOSAHEDRON
OCTAHEDRON
RELATIONSHIP OF FACES TO PARENT SOLIDS





Six of the semi-regular solids of the octahedral family are shown here in three of
their aspects:
divisions of the sphere surface. All lines are geodesic and great circles. The five regular
solids are:

1 truncated octahedron A tetrahedron
2 cuboctahedron or dymaxion B octahedron
3 truncated cuboctahedron C cube
4 snub-cube (which can be left- or right-handed) D icosahedron
5 rhombicuboctahedron or square-spin E dodecahe-

dron
6 truncated cube

They are arranged in sequence from left to right as a series of increasing truncations
of the parent octahedron. That is. each of the shaded faces shows a diminishing area
of the face of the octahedron from which they were truncated.

The development or 'net' of each of the figures is shown below it: below that is an
exploded spherical projection of each solid (only one face, that corresponding to the
shaded face in the top row of figures, being indicated).1

It may be further noted that the great circle lines on the tetrahedron. A, and cube. C.
are the same as in each case they reciprocate diagonal lines of the other's faces. Also
the great circles of the icosahedron. D. and dodecahedron. E. are the same as they are
duals. The octahedron, B, is divided into triangles similar in proportion to, but larger
than, the icosahedral basic triangle.

In thebottomroware the full spherical symmetries of thefive regular solids, showing
that they are the regular

1 Euclid (xvin, 18) found all the circum radii of the containing spheres of the semi-
regular solids.

E





The six semi-regular solids of the icosahedral family, corresponding to those of the
octahedral family on the previous page, are shown here in three of their aspects:

1. truncated icosahedron

2. icosidodecahedron

3. truncated icosidodecahedron

4. snub-dodecahedron

5. rhombicosidodecahedron

6. truncated dodecahedron

As before, these are arranged in sequence as a series of increasing truncations of
the parent icosahedron.

The development or 'net' of each of the figures is shown below it, with the spherical
projection of the solids on to the circumscribing sphere in the bottom row (7, 8, 9, 10,
11. 12).





A single nuclear sphere totally surrounded by equal and similar spheres, as shown
on pages 13 (in dotted outline in the centre drawing) and 27. has only twelve degrees
of freedom for other spheres to touch it simultaneously. This arrangement of thirteen
spheres in its most regular pattern is known as the cuboctahedron or dymaxion.
On the two previous pages it has been shown that there are six truncations respec-
tively of the regular octahedron and icosahedron. These twelve figures together
with the one possible truncation of the regular tetrahedron give the thirteen finite
Archimedean solids. The definition of an Archimedean or semi-regular solid requires
that all its vertices lie in the surface of a circumscribing sphere. Thus the thirteen
circumspheres of the Archimedean solids can be grouped in regular cuboctahedron
or dymaxion pattern, that is the twelve spheres representing the possible truncations
of the octahedron and icosahedron around the unique truncation of the tetrahedron
(see appendix 4). This truncation of the tetrahedron has the apposite property of
reflecting the twelve degrees of freedom in being the only semi-regular solid figure
with twelve independent axes passing through its vertices from its centre. The ar-
rangement of the twelve se'mi-regular solids around the truncated tetrahedron is in
accord with the hierarchy established on the three preceding pages.

As with the Platonic or regular solids, there are duals to each of the Archimedean or
semi-regular solids. The centre-point of each face of each of the Archimedean solids
is the vertex of the dual. Each of the solids and its dual come into correspondence
when the centre points of their respective edges (crossing at 90°) lie in the surface of a
common sphere, known as the intersphere. The full numerical value of the inspheres,
interspheres and circumspheres for these figures are given in appendix 1.

Figure 2 shows the twelve spheres close packed around an equal and similar nuclear
sphere. Figure 3 shows the twelve spheres closed into icosahedral pattern after the
removal of the nucleus.

In figure 4, the icosahedral grouping is shown expanded, each of the spheres con-
taining the respective dual of the Archimedean solids represented in figure 1.

The six duals of the octahedral family are shown in the top half of the diagram, those
of the icosahedral family in the bottom half.

In this configuration the two families of symmetry separate out into an above and
below reflection of six.





These drawings show the change from a cuboctahedral pattern (twelve spheres
aroundanequal andsimilarnucleus) to an icosahedral pattern (twelve sphereswithout
an equal nuclear sphere). The variation in size of possible nuclear spheres is shown in
the middle drawing, with the maximum size lightly shaded and the minimum darkly
shaded.

The cuboctahedron or dymaxion in figure A, with its points numbered 1—12. is
viewed centrally in its 3-fold axis.

The central figure, B. still viewed in a 3-fold axis, shows the change to the icosahe-
dron. The position of points 1. 2 and 3 (and the corresponding 10. 11 and 12. which
are not shown) does not change in this view; but the position of points 4. 5. 6. 7, 8 and
9 does change, and each of these is shown in two positions, smaller numbers being
used for the first, larger ones for the final position. Of the eight triangular faces of the
initial figure, the two directly central, above and below, remain in the same rotational
position, although they close in towards each other; the remaining six triangles, three
above the meridian and three below, rotate to close in. A tone has been put on the
three upper triangles to show the nature of this rotation, in both positions, with ar-
rows following the direction of movement. In this way it is possible to see how the
square faces close across their diagonals (this path has been indicated with arrows on
the drawing on page 39) to create two equilateral triangles for each original square.
The final icosahedral position. C. is structurally stable as it is a totally triangulated
configuration.

B



The components of seven of the Archimedean duals are shown here:

1. triakis tetrahedron, dual of the truncated tetrahedron —12 faces, 18 edges, 8
vertices

2. (above) tetrakis hexahedron, dual of the truncated octahedron —24 faces. 36
edges, 14 vertices

2. (below) pentakis dodecahedron, dual of the truncated icosahedron - 60 faces. 90
edges. 32 vertices



3. (above) rhombic dodecahedron, dual of the dymaxion —12 faces, 24 edges. 14
vertices

3. (below) RHOMBIC TRIACONTAHEDRON, dual of the icosidodecahedron—30 faces.
60 edges, 32 vertices

4. (above) hexakis octahedron, dual of the truncated dymaxion —48 faces, 72 edges.
26 vertices

4 (below) hexakis icosahedron, dual of the truncated icosidodecahedron -
120 faces, 180 edges, 62 vertices.

The developments of each characteristic group of faces of these duals is shown in
relation to the regular figure on which, if placed, it would make up the whole.

The face angles are noted as are the dihedral angles, i.e. the angles between adjacent
faces, which are marked by small circles lying across the two faces.

The circled numbers in each face refer to the value analogous to the duals of the
two-dimensional spacefilling lattices developed on page 77.



The components of the six remaining Archimedean duals are shown here:



5. (above) pentagonal icositetrahedron. dual of the snub-cube —24 faces, 60 edges,
38 vertices

5. (below) PENTAGONAL H EX A C O N T A H E D R O N , dual of the snub-
dodecahedron - 60 faces, 150 edges, 92 vertices

6. (above) trapezoidal icositetrahedron. dual of the rhombicuboctahedron —24
faces, 48 edges. 26 vertices

6. (below) TRAPEZOIDAL H EX A C O N T A H E D R O N . dual of the rhombicosido-
decahedron - 60 faces.

1 20 edges, 62 vertices

7. (above) triakis octahedron, dual of the truncated cube —24 faces, 36 edges, 14
vertices

7. (below) triakis icosahedron, dual of the truncated dodecahedron —60 faces. 90
edges. 32 vertices.

As before, the circled numbers in each face refer to the value analogous to the duals
of the two-dimensional space-filling lattices developed on page 77.
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This page is divided into two sections, the top half being diagrams displaying prop-
erties of the five of the eight deltahedra having faces composed of equilateral triangles.
The first three (not shown here) are the regular tetrahedron, the regular octahedron
and the regular icosahedron.



Drawing 4 shows the net and a perspective sketch of the 'twin-tetrahedron' or hex-
adeltahedron. Drawing 5 shows the 'twin-icosacap' deltahedron or decadeltahedron.
Drawing 6 shows the net and perspective of the tetra- kaidecadeltahedra or, as the
smaller drawing below it shows, the trigonaldeltahedra. Drawing 7 shows the net
and perspective of the dodecadeltahedra, and drawing 8 the net and perspective of
the cubicantiprismic- deltahedra or hexadecadeltahedron, which can be viewed as
two half-octahedra on a cubic antiprism (seen below it).

The lower halt of the page shows a further version of a single all-space-filling poly-
hedra which is late to emerge and can be considered a transition phase between the
cube and the rhombic dodecahedron. It has particularly interesting properties and
has therefore been explored separately. This also is a 'pristine' solid as it cannot be
otherwise in proportion but is less symmetrical than the snub-tetrahedron. It has
been named the pencil cube (dodecahedron) due to its shape.

Drawing A shows how it can be viewed in terms of unfolding cube or as four space-
filling octahedra. Drawing B demonstrates the 6-fold nature of its packing function.
This can be analysed (C) as the x, y, z axes and can be fitted together as in C1. C2 and
C3. Drawing D shows how three fit together forming a 'cube corner' or half a three-
dimensional cross. In drawing E we see the full three- dimensional cross assembled
with broken lines demonstrating the relationship to the rhombic dodecahedron.

Drawing F explores some of the close-packing patterns expected with this figure.





The figure A at the top of the page is a tetrahedron on its edge; with its four central
axes in heavy line. These axes, numbered 1—4, go from the centre of the figure to the
four nodes.

Figure B shows the X. Y. Z axes, which are the axes of the centres of the opposite
pairs of edges of the tetrahedron; these have here been unfolded from the centre to
give three interpenetrating squares (in dotted outline).

Figure C shows the diagonals AA, BB, CC, DD, of a cube, which can also be considered
as the axes of two interpenetrating tetrahedra. These have been unfolded, as for B.
to give a series of rhombs —twelve in all - describing the rhombic dodecahedron (in
dotted outline).

In figure D the two sets of axes described in B and C are shown in equilibrium, with
a common centre. There are thus fourteen directions, numbered 1—14. This number
of directions corresponds to the number of facets in the ideal close-packing solid
—ideal that is in terms of minimum surface area to maximum interior volume. Even
in random packing, as J. D. Bernal has pointed out.1 the average number of faces is
13-7. which can be considered as 14.

Figures 1-8 are the basic simple close-packing solids. Of these 1—3 are gener-
ated from the square; the snubtetrahedron. 4. and the master solid or truncated
octahedron. 5. are adaptations of the two primary regular solids and can be related
to the fourteen axes in D above them. These two solids have unique qualities: the
snub-tetrahedron being pristine, i.e. it cannot be distorted on any of its axes and
remain a single close-packer; and the truncated octahedron being the most economic
close-packer, hence the 'master solid’ among the close-packing unit figures.

Figures 6-8 are dodecahedra. each related to C in their rhombic faces —the rhombic
dodecahedron, 6. has twelve rhombic faces; the twist rhombic dodecahedron, 7. has
six rhombic faces and six trapezoidal faces; the rhombhex dodecahedron. 8. has eight
rhombic and four hexagonal faces.

The drawings immediately below the line of solids 1-8 show the corresponding
close-packing grids. 1A, 2A and 3A show extensions on a particular axis of the three
primary prisms 1. 2. 3. 1A and 3A indicate the most economic condition of surface to
interior volume (for formulae for volume see appendix 1), 2Amoves away from the
most economic condition of the cube 2.



Figures 9. 10 and 11 show pentagonal close-packing prisms, with an order of
symmetry lower than that of the three regular prisms. Each of the pentagons contains
two right angles on its characteristic surface. Below are the packing grids for these
solids. It should be noted that the packing grids of the regular prisms are in themselves
totally regular, each intersection is the same. The packing grids of the pentagonal
prisms have three- and four-way intersections, indicated by circles, and are hence
less regular.

Figure 12 can be seen to be an orthic projection of the snub-tetrahedron, which
can be assembled in two parts to result in a version of an intersecting twist rhombic
dodecahedron, 15 (see also page 57, drawing 1E). The medial grid of the projection is
shown below it.

Figure 1 3 can be seen to be an orthic projection of the truncated octahedron, which
can also be halved, as in figure 12. The medial grid below is made up of octagons and
squares and qualifies as one of the eight semi-regular patterns on a surface.

Figure 14 shows an adaptation of the rhombic dodecahedron which could be anal-
ysed as a dymaxion with a halfoctahedron added top and bottom.

Figure 15 shows an adaptation of the twist rhombic dodecahedron. Trapezoidal
faces have become triangles (see page 57 for the transformations).

Figure 16 is an adaptation of the rhombhex dodecahedron. The packing grids of
these solids are below them.

1 J. D. Bernal, 'The Structure of Liquids', Scientific American. August 1960.





Page 49 laid out a method of viewing the single all-spacefilling polyhedra in a peri-
odicity of eight. This arranged itself into a three-two-three pattern with the pristine
snubtetrahedronand the truncatedoctahedron (ormaster solid)makingup the central
pair (the arrangement, however, is not exclusive). This page shows transformations of
the truncated octahedron. These have been shown in six representative stages. The
whole movement is generated by turning the diagonal axes of two of the square faces
of each truncated octahedron (ringed and arrowed in the central diagram): these
point directly towards the eye. The central drawing shows stages one and six overlaid
with these separated out in the smaller drawings above and below the centre. The
axes of rotation are arrowed in each case.

In drawing 1 we have four close-packed truncated octahedra, two nearer the eye
and two behind; the uppermost of the nearer pair is outlined by the numbers 1 to 8 on
each corner. Corner 2 and axis A are together as are corner 7 and axis D. The four axes
marked with arrows turn left- handedly in A and C and right-handedly in B and C.

Themovement through 22^° produces a series of enantiomorphic bifurcations (2. 3.
4, 5) until the two upper truncated octahedramerge to become one large demi-regular
version of the master solid. The last figure (efghijkl) has six square faces and eight
hexagonal, but two of the squares are larger and the hexagons are not regular, also the
new figure has not 3-fold symmetry, 6.

Drawing 2 shows the first stages where the upper pair of solids move towards each
other and the lower pair away from the upper pair. This could be named a new single
close packer as it is made up of trapezoids, squares and irregular hexagons. The name
traphexahedron is suggested.

Drawing 3 shows how the trapezoidal faces extend to meet at the central face and
in doing so produce a transformation from a fourteen- to a thirteen-faced solid, now
made up of squares, trapezoids and irregular pentagons. The name trapentahedron
is suggested.

Drawing 4 represents a further phase in the transformation where the trapezoids
now become another form of irregular pentagon and the major interface between two
solids becomes an irregular hexagon. This figure was discovered by D.G. Wood via
one of the pentagonal space-filling prisms and he has suggested the name triskaidec-
ahedron.



Drawing 5 shows the transformation when the interface between the enantiomor-
phic solids becomes an equal-edged hexagon (central seam). This is also a thirteen-
faced solid, and due to its near transformation back into a tetrakaidecahedron is
shorter and more stubby than its neighbour triskaidecahedron; therefore the name
snubtriskaidecahedron is suggested in order to distinguish it.

This bringsus full-circle back todrawing6which shows that the twoenantiomorphic
figures when the pentagonal faces line up become hexagons and squares respectively
of a newly proportioned fourteen-faced solid made up of squares and hexagons in the
same way as in its generating figure, the truncated octahedron. This new figure might
be called the polar tetrakaidecahedron due to its two polar square faces being nearly
twice the size of its remaining four equatorial square faces.

The whole page summarizes the demonstration that there may well be indefinite
numbers of transformations of the basic single space-filling solids, but that there is a
good case to put forward an eightfold periodicity, following the example of the random
all-space-filling deltahedra which are governed by a factor of eight possibilities only.
These are the eight equilaterally faced convex deltahedra (see appendix 2).

rp





This page further demonstrates the subdivisible possibilities of one of the key all-
space-filling solids—the rhombic dodecahedron. At the top of the page drawings A and
B the x, y. z, and a. b, c. d axes are numbered 1—14. Drawing C demonstrates how these
two when put together can be viewed as the octahedron and cube interpenetrating.
When all the points are joined in dashed line the rhombic dodecahedron emerges.
Drawing D at the centre of the page has certain central axes drawn through it (ae, oj,

sq, gd, tr) which indicate axes for bifurcation. All the decomposite parts of the central
figure are single all-space fillers, although in some cases enantiomorphic.
Drawing E shows the significant tetra- and octahedra which are single all-space

fillers as in opposition to their regular counterparts which are only complementary
allspace fillers. This diagram also demonstrates that the volume of the tetrahedron is
% that of the octahedron.
A brief description of the remaining drawings follows:
F1 and F2 are two views of J rhombic dodecahedra with a hexagonal section:
G1 and G2 are further versions of half rhombic dodecahedra:
H1 and H2 are another possible bifurcation of the rhombic dodecahedra;
J1 and J2 are longitudinal bifurcations of the rhombic dodecahedra with a square

section;
K’ and K2 are two views of J rhombic dodecahedra;
L1 and L2 are Fuller's hexahedra, all-space-filling deltahedra made up of a J regular

tetrahedron and a | regular octahedron;
M is a J rhombic dodecahedron as is drawing N and the two views of O' and O2;
P is yet another version of a i rhombic dodecahedron;
Q is | of a rhombic dodecahedron being | of the half H1;
R is another version of a £ rhombic dodecahedron;
S is a | rhombic dodecahedron being | drawing N;
T is also a | rhombic dodecahedron being J drawing P;
U is -g- as it halves drawings O' and O2;
V is J-2 of the rhombic dodecahedron being a 'solid' version to the centre angle of

each of its twelve faces;
W is Jg being £ of the drawing M :
X represented another type of tetrahedron being half the first mentioned - this

tetrahedron needs to be enantiomorphic to be an all-space filler.





This page divides into three figures. The first, drawing 1. is the rhombic dodecahe-
dron with the longer axes of each rhombic face dashed. This demonstrates the nature
of the rhombic dodecahedron as beingmadeup of one octahedronwith eight% regular
tetrahedra, as shown exploded in drawing 1A. From here it is possible to demonstrate
the relationship of this construction to the pristine snubtetrahedron. If one takes
away four of the i regular tetrahedra from the octahedron one is left with a figure as
shown in 1 B. This is not in itself a single space filler. These can be demonstrated in
the transformation, 1C, which shows that the octahedron face has to grow to become
a hexagon. When this becomes regular, 1 D. then the pristine snubtetrahedron is
arrived at. Only with equated edges of the hexagon is single close packing possible.
Drawing 2 shows an analysis of the snub-tetrahedron, a figure discovered by the

author, in terms of subdivisions of regular octahedra and tetrahedra. Each compo-
nent face of the octahedra is shown to have one outer % tetrahedron to make up the
snub. Drawing 2A shows a method of bifurcation into a less regular all-space-filling
polyhedron.
Drawing 3 shows the snub-tetrahedron with its basic axes of subdivision: 3A. 3B.

3C are taken directly out of the parent figure. The upper enneahedron is made up of
three pentagons, three trapezoids and three triangles. The lower heptahedron, 3B.
shows itself to be a quarter of the snubtetrahedron as with the enneahedron. The
heptahedron has the interesting quality of being half the all-space filling 109° 28' hex-
ahedron. 3C. The following names are suggested for these significant components of
the snubtetrahedron: .the all-space-filling enneahedron, heptahedron and rhombic
hexahedron.
Drawing 3D shows another method of bifurcation and is enantiomorphic as a single

space filler.
Drawing 3E is a | snub-tetrahedron.
Drawing 3F is another view of the heptahedron. with sectional axes added.
Drawing 3G is a | snub-tetrahedron bifurcating the heptahedron.
Drawing 3H is a | snub-tetrahedron and 3J halves this and is therefore a snub-

tetrahedron.
Drawing 3K is a enneahedra. Therefore also a snubtetrahedron.
Drawing 3L is a bifurcation of 3K. therefore of the snubtetrahedron but enantiomor-

phic.



Drawing 3M is an ultimate particle of the snub-tetrahedron and is another view of
3L, the part of the snubtetrahedron.

All these decompositions of the parent figure can be regarded as all-space-filling
solids.





This page shows three series of transformations of single close-packing solids.

The top row starts with the hexagonal prism with its hexagonal face divided three
ways, 1; 1A shows the beginning of a transformation towards 1B, which is the twist
rhombic dodecahedron. The lighter dotted lines indicate an intrinsic pair of triangular
prisms. In 1C a further transformation on the same axis is shown, and in 1 D the trape-
zoidal faces have become triangular; 1 E shows the ultimate result of a further series
of transformations from 1 D, when the top three and bottom three rhombs are made
to interpenetrate by contraction on the same axis. Only one of the interpenetrations,
that ringed, shows the surfaces complete, where they have moved beyond the solid.

The middle row starts with the cube with its face divided four ways. 2; 2A shows
an extension on the central axis, resulting in 2B, which is the equal-edged rhombhex
dodecahedron. In 2C we see further transformation on the same axis, where the
hexagon face has become a square plus two equilateral triangles, giving a cubic core
to the solid. Keeping the same cubic core, the longitudinal axis can be reduced to
result in 2D. which has 120° and 60° rhombs. The figure is made up of two dymaxions
plus two half-octahedra, top and bottom, with four tetrahedra to complete the figure
around the middle (dashed lines). Finally 2E retains the cubic core, but reduces the
longitudinal axis further so that the angles of the hexagonal face are 120°.

The bottom row starts with the rhombic dodecahedron, 3, with its cubic core shown
in dashed line. In 3A the four rhombic faces which meet at the top and the four which
meet at the bottom apices have contracted on the polar axis and interpenetrated at
the meridian, resulting in a complementary truncation of the two apices. Drawing 3B
represents a further contraction on the vertical axis to an orthic equilibrium, and 3C
shows a similar figure, viewed rotated slightly, to indicate that all hexagonal faces can
be controlled by a regular square from two parallel edges, shown in dashed line. The
relationship between these squares is determined by equilateral triangles. Drawing
3D shows an extension of the figure on the vertical axis until all the rhombic faces
become squares. Contracted into equilibrium, this provides the master solid, the
truncated octahedron. 3E.





We return now from a consideration of solids defined by points in space to those
shapes made up by the surface areas between the points. Very few basic shapes are
required to order all the regular shapes.

The diagrams in the first column show, successively, the number of points required
to determine the first four basic shapes —two, the centre and the periphery, determine
the circle, three the triangle, four the square, five the pentagon. The triangle, the
square and the pentagon are related directly to the first three Platonic solids - the
tetrahedron is a three-based pyramid, the octahedron can be viewed as three squares
intersecting, while the pentagonal arrangement of points is the characteristic (with
its Golden Mean properties) of the icosahedron.

The diagram at the top of column 2 shows, firstly, how two subsidiary circles, exactly
half the radius of the greater, can fit within it and not intersect. This diagram is
the basis of one of the oldest of Oriental symbols, the universal principle of Yin and
Yang, the greater circle representing the Tao or 'way' of the universe. The remaining
diagrams in column 2 show that each of the other basic shapes or polygons has its
controlling centre-point.

The diagram at the top of column 3 shows three circles, each half the radius of
the greater circle, placed regularly within it. The lines joining the points of contact
between the greater circle and the inner ones pass also through one of their points
of intersection, delineating an inverted triangle exactly one-quarter the area of the
triangle circumscribing the greater circle. A similar, but square, patterning occurs
(column 4) when four subsidiary circles are introduced into the greater circle (also
bisecting the sides of the square at their points of intersection), while five subsidiary
circles (column 5) give the pentacle or 5-pointed star. In this instance a third point of
intersection coincides with the centre-point of the cross-strokes of the pentacle 5.

The second diagram in column 3 shows the development of the hexagon or 6-sided
polygon by overlapping two similar triangles —the hexagon being their common area.
The diagrambelow it shows the octagon resulting from the overlapping of two identical
squares, while the result of joining all points of the pentagon, providing an inverted
pentagon, is shown at the foot of the column. To the right, at the foot of column 4,
is the decagon, 10, the figure resulting from the regular overlapping of two similar



pentagons. Above this is the 12-sided configuration, the dodecagon, resulting from the
regular overlapping of three similar squares. Above'this is the nonagon or enneagon,
resulting from the regular overlapping of three similar equilateral triangles with a
common centre.

The second drawing in column 5 indicates a method of diminishing triangles suc-
cessively by inscribing them one within another, each touching the centre-point of the
edges of the previous one. This is known in architecture as the root three proportional
system, particularly favoured by the builders of the Gothic cathedrals since it has
obvious symbolic links with the concept of the Holy Trinity. The proportional system
is generated by the tetrahedron in the solid, i.e. the proportion of the insphere to the
circumsphere.

The third diagram in column 5 shows a similar diminishing pattern of harmonic
squares, each successive square touching the centre-points of the edges of the pre-
vious one. The arrangement is known, architecturally, as the root two proportional
system, the edges of successive squares diminishing by the square root proportion
of the previous edge. The system was employed both by the architects of the Renais-
sance and by Chinese and Japanese Buddhist architects, the octagon being linked
symbolically by the latter with the 'noble 8-fold path'. The proportional ratio of an
edge to a diagonal axis of the octahedron is also root two.

The bottom diagram in column 5 shows pentagons diminishing harmonically by
linking up points of intersection of pentacles. The proportionate series that emerges
x/5 + 1

is the Golden Mean, ——. In whole integers, this gives

us the harmonic progression 1, 1, 2, 3, 5, 8, 1 3, 21 …in which the sum of any
two successive integers gives that following; conversely the subtraction of a smaller
integer from that following it gives that preceding it. The series is known by the name
of Fibonacci, that of the Italian mathematician who introduced it into Europe. The
system has been noted in the architectural monuments ofmost historical civilizations.
It has also been evidenced in botanical growth patterns.1 It is to be associated directly
with the icosahedron, which can be considered as fifteen intersecting Golden Mean
rectangles - that is a rectangle with adjacent sides in the proportion 1:1-6181.

1 D'Arcy Thompson. On Growth and Form: Lang. The Language of Mathematics.



Space-filling surface patterns

These have been called mosaics, tiles, grids, lattices and tessellations. They can be
viewed as vertices or point conditions, lines or reticulations of the surface, or as the
fitting together of regular shapes to fill a surface.



To cover a surface with regular shapes or polygons, leaving no spaces between
the meeting-points of their vertices, if we take n as the number of sides each regular
polygonwill have, then the interior angles at each vertex of each polygonwill be —180°.
At each vertex there will be

n

360

7 - 2/7 -0 4- 4

- -180 n - 2 n - 2

n

per vertex. In addition A, B, C, D, E and J can be eliminated as they can occur at
only one point and will not provide a continuous pattern covering a whole surface.
Thus there remain only eight conditions of meeting, which, it will be seen, give rise
to twenty-two new patterns or grids. These can be divided by symmetry into those
whose vertices are similar on each occasion and those whose vertices vary. There
are eight semi-regular equipartitions of the plane surface and fourteen demi-regular
equipartitions (see pages 79-83).

The eight combinations that give rise to the eight semi- and fourteen demi-regular
equipartitions are given in table 2 in their new order as established in appendix 2.
Seven of these eight combinations are employed in our definition

of the eight semi-regular partition numbers. The third and sixth are both arrange-
ments of Q (marked Q1 and Q2 in the drawing): L qualifies only for the demi-regular
patterns.

The fourteen demi-regular patterns can be classified as shown in table 3. Only
thefifth of these patterns incorporates three vertex situations; four others (numbers 3.
8.11 and 1 2 in the table) together use three types of vertex, doubling on the combina-
tion of one of these. The remaining nine demi-regular patterns show the characteris-
tics of using two vertex situations, and two of these (numbers 6 and 1 3) double on the
combination of M and N respectively.

1 I am indebted to Professor Maurice Kraitchik for the basis of the mathematical
formulae; seeMathematical Recreations (London. George Allen & Unwin. 1966).



such polygons. In order that this be a whole number for n greater than 2. nmust
have values equal to 3. 4 or 6. the regular shapes for figures with this number of sides
being the equilateral triangle (1), the square (3) and the hexagon (2). These three are
the only regular polygons that cover a plane surface, and are known as the regular
equipartitions of the plane surface.
Earlier deductions have shown that there cannot be less than three polygons nor

more than six around a vertex. The range of three to six polygons surrounding a vertex
provides the equation
pi ~2

n2 - 2
n2
n3 - 2

n3
180° = 360°,

Code
letter

Faces
Code
letter

Faces
n1 n2 ns ”4 ns ne

ny
n2 n3 n4 n3

A 3 7 42 •K 6 6 6
B 3 8 24 L 3 3 4 12
C 3 9 18 M 3 3 6 6
D 3 10 15 N 3 4 4 6
E 3 12 12 •P 4 4 4 4
F 4 5 20 Q2 3 3 3 4 4
G 4 6 12 R 3 3 3 3 6
H 4 8 8 •s 3 3 3 3 3 3
J 5 5 10

Table 1

New number Code letter 7?1 n2 Faces n3 n4 ”a
1 M 3 6 3 6
2 N 3 4 6 4
3 Q' 3 3 4 3 4



4 G 4 6 12
5 R 3 3 3 3 6
6 E 3 12 12
7 H 4 8 8
8 L 3 3 4 12

Table 2
which gives us
±+±+J_=l.
n2
Following the same procedure, we can also say
/?2 ^3
and
and finally
± + ± + ± + ± + ±=3
^2 ^3 ^4 ^5 2

From this it follows that there are seventeen possible solutions in whole numbers,
shown in table 1. Of these, the three marked with an asterisk (K, P and S) can be
discounted as they were the first and only totally regular solutions, i.e. three hexagons,
four squares and six triangles

No.
Code
letters'

771
n2

Faces
n2

n
4

ns n1 n2
Faces

n,
Faces

n3 A. n2 n3 A, ns °6
1 E+L 3 12 12 3 4 3 12
2 L+(1) 3 3 4 12 3 3 3 3 3 3
3 L+Q’ 3 4 3 12 3 3 4 12 3 4 3 3 4
4 N+G 6 4 3 4 12 6 4
5 L+Q'

+(1)
3 3 4 12 3 4 3 3 4 3 3 3 3 3 3

6 M +
M’

3 6 3 6 6 6 3 3

7 N+Q' 4 3 4 6 3 4 3 3 4



8 N +
Q2+Q'

4 3 6 4 3 3 3 4 4 3 3 4 3 4

9 Q’+(1) 4 3 4 3 3 3 3 3 3 3 3
10 Q’+(1) 3 3 4 3 4 3 3 3 3 3 3
11 Q2 +

Q1 +
(1)

3 3 3 4 4 3 3 4 3 4 3 3 3 3 3 3

12 Q2+Q'
+ (1)

3 3 3 4 4 3 3 4 3 4 3 3 3 3 3 3

13 N'+N 4 4 3 6 4 3 4 6
14 N +

Q2
4 3 4 6 3 3 3 4 4

Table 3 • (t) = regular equipartition.

AREAS OF EACH SHAPE ARE INDICATED IN NUMERALS BASED ON UNIT EDGE
LENGTH (L)





The first five of the fourteen demi-regular patterns are shown here with the
nodal condition enumerated in figures; the ringed numbers in the centre of
the polygons represent the analogy value to one of the eight semi-regular pat-
terns.

Diagram 1 can be expressed as E + L. with nodal conditions 3, 12, 12; and 3,
4, 3. 1 2 —analogous to pattern 8 of the semi-regular patterns.

Diagram 2 = L + (1). with nodal conditions 3, 3. 4, 12; and 3, 3, 3, 3, 3, 3
—analogous to pattern 4 of the semiregular patterns.

Diagram 3 = L + Q'_ with nodal conditions 3. 4, 3. 12;

3. 3, 4, 12; and 3, 4, 3, 3, 4 —analogous to pattern 5.

Diagram 4 = N + G, with nodal conditions 6, 4, 3, 4; and 12, 6, 4 - analogous
to pattern 4.

Diagram 5 = L + Q1 + (1). with nodal conditions 3, 3.

4. 12; 3, 4, 3. 3, 4 and 3. 3, 3. 3, 3. 3.



J;



Numbers 6. 7 and 8 of the fourteen demi-regular patterns are illustrated on this
page.
Diagram 6 =M +M'.with nodal conditions 3, 6, 3, 6; and 6. 6, 3. 3.
Diagram 7 = N + Q1, with nodal conditions 4, 3. 4, 6; and 3, 4, 3. 3, 4 —analogous to

pattern 1 of the semiregular patterns.
Diagram 8 = N + Q2 + Q1, with nodal conditions 4, 3. 4, 6; 3. 3. 3. 4. 4; and 3. 3, 4. 3.

4 - analogous to pattern 3.
Above the main diagrams are laid out the nodal conditions of all fourteen of the

demi-regular patterns, with the total range of polygons meeting at each point. The
numbers follow the order of appearance in this particular arrangement starting with
the regular equipartitions (1) following on to the eight semi-regular patterns (2). So in
the first illustration on the right, where we have 9, instead of the numerical expres-
sion 3,12, 3,4 we have a full triangle, dodecagon, triangle and square fitting together
around the common nodal condition (ringed). This schema follows for all the figures.
Above these graphic nodal conditions there is the numerical values of the areas of the
constituent shapes in terms of unit edge lengths. The numbers in the circles represent
the number of sides of the polygon, the numbers following these give the area values
when multiplied by the edge length (L) to the power of two. The total areas coming
together at each ringed node are given as T above each.
T
I �
T
11

® = 11
19615L2

® - 1
OOOOOL2

@ =
0-86602L2

© = 0-43301L2

x6
© = 11 19615L2

® = 1 OOOOOL2

® = 0 866O2L2

® - 0
43301L2

x3

©
= 1 -
OOOOOL2

x2

© = 11
19615L2 © = 2
69808L2 ® = 1
OOOOOL2

T = 13
06217L2

T = 2 59808L2 T = 13-06217L2 T = 3 29903L2 T = 14 79423L2



= 2-59808L2

= 1 OOOOOL2

x2
= 0 86602L2

© =
2-59808L2

x2

© = 0
86602L2 x2

© = 1 OOOOOL2 x2
© = 0 86602L2 x3

© = 259808L2

® = 1
OOOOOL2

x2

© = 0 86602L2
= 5-03109L2 T = 6-06218L2 T = 3 29903L2 T = 5-03109L2

L=edge length T=total area covered by constituent polygons surrounding each
node numbers indicate occurrence in regular, semi-regular and demiregular two-
dimensional patterns



On this page the remaining six demi-regular patterns are illustrated.

Diagram 9 = Q1 + (1). with nodal conditions 4, 3. 4. 3. 3; and 3, 3. 3. 3, 3, 3 -
analogous to pattern 6 of the semiregular patterns.

Diagram 10 = Q1 + (1), with nodal conditions 3. 3. 4. 3.



4 and 3. 3. 3. 3, 3, 3 —analogous to pattern 2.

Diagram 11 = Q2 + Q1 + (1). with nodal conditions 3, 3, 3. 4, 4; 3, 3. 4. 3. 4; and 3, 3.
3. 3. 3, 3 —analogous to pattern 6.

Diagram 12 = Q2 + Q1 + (1), with nodal conditions 3, 3, 3, 4, 4; 3, 3, 4, 3. 4; and 3, 3,
3, 3, 3, 3 —analogous to pattern 4.

Diagram 13 = N' + N, with nodal conditions 4. 4, 3, 6; and 4, 3, 4, 6 —analogous to
pattern 4.

Diagram 14 = N + Q2, with nodal conditions 4, 3, 4, 6; and 3, 3. 3. 4. 4 —analogous to
pattern 7.





The shapes shown here represent patterns extracted from the semi-regular lattices,
known mathematically as closed paths on a given lattice, i.e. a certain number of
moves which completes a cycle within the grid and returns to the starting-point.
Each of the different grids has its own infinite number of closed paths or shapes.
These have a constant 'character' determined by their governing lattices, and can
in certain instances be combined as two- dimensional space fillers. They could be
used as graphic signs or invested with the value of a symbol —many have already
been invested with symbolic content. Because of their mathematical universality they
could be chosen as signs for a universal language —existing alphabets and characters
need not then suffer dilution by adaptation, but could still survive in parallel as the
cultural heritage of a new world-wide communications system.

All the shapes or closed paths in the three groups shown here are derived from the
first three semi-regular grids. The dotted lines show further possible subdivisions.
There are fourteen, seventeen and nineteen shapes in each of the groups, but these
are only a sample of an infinite number of possibilities.

Thenumerals containedwithin each shape represent thenumber ofmoves required
to define it or the 'sides' to the shape.



Groups 4, 5 and 6 of the semi-regular grids give us the sets of shapes or closed-path
patterns shown here.

� -T



The remaining two families of shapes of the semi-regular lattices are shown here.
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In the interpretation of the three regular and eight semi-regular patterns shown
here, we revert to the concept of the touching of spherical points in the plane.

Drawings 1, 2 and 3 show the three regular ways spherepoints can be arranged. The
triangular pattern, 1, is the closest packed for economy; the hexagon, 2. is the most
economic for distribution over the surface; and the square. 3, takes a mid-position in
coverage and packing.

The patterns of the semi-regular divisions of the surface are shown in drawings
A-H. The spherical point —shown here in each instance as a circle —takes up the nodal
position or vertex. On the right-hand side of the page are the results of analysing the
eight patterns as inscribed circles a-h. The values of the circle radii given are related
to the surrounding polygon having a unit edge length.

PATTERNS FORMED BY INSCRIBING CIRCLES IN THE EIGHT SEMI-REGULAR
GRIDS

NUMBERS INDICATE RADII OF CIRCLESWITH UNIT EDGE LENGTH POLYGONS





Here the nature of duality of the regular, semi-regular and demi-regular patterns
is analysed. The dual is formed by taking the centre of a shape and regarding it as a
new vertex or node; these nodes are linked so that the connections cross the edges of
the original shapes half-way along at an angle of 90°. We find that the first two of the
three regular equipartitions. A, B, C. reciprocate each other,

i. e. the dual of the triangular pattern is the hexagon and vice versa. The square is
its own dual.

The semi-regular patterns, 1–8, each have their characteristic dual. These are
isolated on the top right-hand corner of the page and numbered according to their
occurrence in the arrangement of the eight semi-regular patterns:

1. a diamond shape, can be seen to be the result of joining two equilateral triangles:

2. a kite shape, or trapezium, has angles of 60°, 90° and 120°;

3. a pentagon, has angles of 90° and 120°;

4. a triangle, has angles of 30°, 60°, and 90°;

5. a pentagon, has angles of 60° and 120°;

6. another pentagon, has angles of 30° and 120°;

7. a triangle, has angles of 30° and 120°:

8. another triangle, has angles of 45° and 90°.

In analysing the fourteen demi-regular patterns, one of which is shownmiddle right,
we find that the regular hexagon (B) recurs, but only four new duals occur (9, 10, 11,
12). In the ninth of the fourteen demi-regular patterns shown here, the squares of
the original are in tone and the duals in broken line. In demi-regular grids on the
following pages only the duals have been indicated in tone to avoid confusion.
An analysis of the nature of the duality of the regular, semi-regular and demi-regular

patterns; the dual is formed by taking the centre of a shape and regarding it as a new
vertex or node.



In an analysis of the fourteen demi-regular patterns, one of which (the ninth) is
shown on the right, the regular hexagon. B. recurs, but only four new duals occur
—9, 10, 11, 12 —as shown below. In the ninth demi-regular pattern the squares of
the original are shaded and the outlines of the duals shown in broken line. In the
demi-regular grids shown on the following pages only the duals have been indicated
in tone.

6
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8





Five of the dual grids of the fourteen demi-regular two- dimensional space-filling
lattices are illustrated here. Each lattice is characterized by numbering (ringed) re-
lating to the isolated shapes on the previous page. The duals are shown shaded. The
nodal or vertex conditions are characterized by the numerical system employed in the
first equation for determining the regular, semi-regular and demi-regular patterns.
In these cases, we get 5's appearing when they cannot occur in a regular sense, as the
regular pentagon cannot space-fill two-dimensionally. When regular pentagons are
placed edge to edge interstice shapes invariably occur.

The centre pattern is an enantiomorphic pattern, i.e. it can bemirrored to 'spin' the
other way. It will be readily seen that these grids give rise to an unlimited series of
possibilities for closed paths or 'over-shapes'.





Five further examples of the dual lattices of the fourteen demi-regular divisions of
a plane surface are shown here. As on the previous page, each dual is numbered and
one example shown shaded. The nodal or vertex conditions are characterized with
the numbers of side of each polygonmeeting at that point. As before, many subsidiary
patterns, closed-path circuits and 'over-shapes' emerge from these and can easily be
followed by the eye, e.g. A and B.

8
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Shown here are the last four duals of the fourteen demiregular patterns.

The pattern at the top left is shown with aminimal closed-path circuit. Flanking the
pattern at the top right is another, taken to include symmetrically both characteristic
dual shapes. At the bottom centre of the page are the first five closed circuits on
the top left grid pattern, each circuit enclosing and non-contacting the previous one.
The fields between the paths are shaded alternatively. These can be visualized as
infinitely generating rings from the first path. All patterns contain such encircling
closed-path circuits. All thepatterns on this pagehave the regular hexagon in common,
characterized as A.
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The proportional systems used in the architecture of the past were most probably
generated from the two configurations of twelve spheres in close packing shown in A
and B on the left. This can be expressed geometrically, on a plane surface, as in A1,
where the relationship between diminishing proportional triangles and hexagons is
shown. The mathematical ratio of 1 : V3 is expressed in the drawing by the lengths:
from 1 to 2 = one unit, and from 1 to 3 = V3 or 1-732051. This system is particularly
evident in Gothic architecture —not altogether surprisingly in view of the importance
given to the triangle and hexagon as Christian symbols. The equilateral triangle is
regarded as the symbol of the Trinity; the hexagon the Christians inherited from
Judaism, in which it appeared as the Star of David - 'the sixfold symbol of creation
and perfection expressed in divine power, majesty, wisdom, love, mercy and justice'.1

In the religions of the Orient we find the Hindu tri-unity, Brahma, Vishnu and Shiva,
while for the Japanese Zen the triangle is the symbol for Heaven. Earth and Man.
as it was for the ancient Chinese. Similarly the hexagon and six-pointed star have
varying interpretations, all important, in Oriental symbolism, and this accounts for
their use in the planning of temples. In India these figures are considered to be the
interlocking of the two triangles of Shiva and Shaki, forming the wheel or 'chakra of
Vishnu’. Further east, in the Chinese and Japanese traditions, the influence of the
hexagram in the philosophical system known as the Book of Changes is expressed in
hexagonal form.
Drawing A2 gives diagrammatic expression to the root 2 harmonic series, known

in architecture as Pell's series, based on the numerical ratios of 1, 2, 5, 1 2. 29. 70.
etc. The numerical value of root 2 is 1-414214 —the diagonal of a square with side
equal to unit length.2 In drawing A2 from 1 to 2 is unit length, the diagonal from 1 to 3
is root 2. Thus one can follow the harmonic diminution. This system of proportion is
associated also with the octagon, rstuvwyz, contained within the pattern. Both the
square and the octagon are fundamental, and universal, cultural symbols.
Thus we have the four elements of the Ancients and of the Alchemists - Earth. Air.

Fire and Water - and the four Gospels of Christianity, while the square is traditionally
the geometric symbol of earth, the fabric of the architectural edifice. The square is
also the predominant pattern for the Hindu and Buddhistman data or yantra. which is
considered a basic psycho-cosmic symbol both on the individual scale and collectively
on the temple scale. The number eight is associated with the sum of the seven planets
and earth and with the notes of the musical octave; in Christianity eight is the number



of the Resurrection, and this is reflected in the octagonal design of fonts.3 In the Sufi
tradition emphasis is laid on the octagon as the 'arena', while in the Buddhist tradition
the noble eightfold path may well be directly connected with the predominance of
the octagon as a plan shape for the pagoda, the sacred edifice. In the Chinese classic
of change, the / Ching, the full number of changes is eight to the power of two. i.e.
multiplied by itself.

Drawing B1 shows a progression of pentacles; the diagram is self-illustrating in
terms of the relationship of the stars to each other. The harmonic nature of the
progression is expressed in the fact that the relationship between 1 (bottom right)
and A is a Golden Mean proportion to the length between 1 and 2. Also the distance
from A to 2 is equal to that between 2 and 3. This ratio is based on the 'extrememean'
proportion, i.e. in any given line, say from A to B. there is a position, x. on the line so
that the distance fromA to x is greater than that fromx to B and in the same proportion
as the whole line AB is larger than the distance from A to x. This is expressed as a
fraction

1 +y5 = 1-168033

2

and the result, like the other proportional fractions, is an irrational number,4 i.e. it
will not resolve into a whole number. Pythagoras is credited with having discovered
the proportional lengths of taut string to musical sound, and these relationships are
associated with length proportions taken from drawing B1. As an architectural tool
this system of proportioning has been extensively used in Western cultures - from
the Egyptians onward. Its modern use was embodied in the work of Le Corbusier, in
collaboration with Elsa Maillard.

On the right, drawings C. C1 and C2 show the method used to form a Golden Mean
rectangle. The diagonal of half a square is the basis of unfolding a Golden Mean
rectangle from that square. On the diagonal 3—4 of the Golden Mean rectangle thus
formed (drawing C1) a right angle is struck at the mid-point of the original square. 4.
to meet the extended side of the square at 5. The second rectangle thus formed is
made up of two Golden Mean rectangles. The original square can be subdivided into
four larger and eight smaller Golden Mean rectangles (drawing C2).



The combination A1 + A2 shows how the root 3 and root 2 systems can be integrated.
A circle and inscribed square are drawn, and within this square a further circle and
square are inscribed. From the second square two parallel sides are extended until
theymeet thefirst circle at 2 ; the rectangle formed is a root 3 rectangle, anda rhomboid
based on two equilateral triangles is shown within it to emphasize the shape. This
process is repeated three times in all in the drawing. This is thought to be a master
diagram for Gothic cathedrals.

The combination A2 + B1 is a well-knownmethod of reducing a GoldenMean rectan-
gle by a square on the smaller side, leaving each time another Golden Mean rectangle
whose longer side is now equal to the previous shorter side. This generates a loga-
rithmic spiral commonly found in botanical structures. The drawing shows seven
diminutions of this progression.

1. George Ferguson. Signs and Symbols in Christian Art (Oxford University Press.
1961).

2. Professor R. Buckminster Fuller has proposed that the diagonal should be re-
garded as unit length.

3. See George Ferguson, op. cit. (footnote 1).

4. Eudoxus, in the 4th century bc. gave the construction for the golden mean ratio
of a given line. i.e. 1 :1.68033.
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These drawings are to be considered as a possible extension of the methods of
teaching spatial appreciation. Hereweexplore the integrationof thefirst twomembers
of the Archimedean families, the truncated octahedron and truncated icosahedron,
(as set out in appendix 1), in relation to human spatial orientation.

This series is built up systematically on the fundamentals of human spatial expe-
rience and usage as defined for the charting of dance movements by Rudolf Laban.
Central stillness is taken as the starting-point of all movement and its ultimate re-
turning state.1 The first dimensional effort-action is based on the gravity/antigravity
movement of growth and establishes relationships above and below the centre - A and
B in the centre line of sketches. The next dimensional effort is the gesture of lateral
expansion; the establishment of right and left, C and D. Following this is the third
dimensional effort-action which establishes the forward and backward movement in
relation to the centre E. F. Here the geometrical coordinates x, y, z have been given
separate identity on each side of centre lines and are called the 'six dimensional
directions (A, B, C, D, E and F).

Taking the first solid, the truncated octahedron. 1 (top left) as host figure, we can
allocate a square to each of the dimensional directions (A, B, C, D, E, F).

In 2, a ‘corner truncated’ version of the three intersecting GoldenMean rectangles of
the icosahedron is introduced (see page 31), each representing one of Laban's working
planes. The up-down plane A, B, becomes the door' plane. The left-right plane C. D.
becomes the 'table' plane and the front-back E, F, becomes the 'wheel' plane. The
truncation of the planes accords with the use of the truncated icosahedron within the
host figure.

In drawing 3 are shown the eight 'diametrical' effort-actions which take up the
corners of a cube; to each is allocated a hexagon, i.e. one of the eight hexagonal
faces of the truncated octahedron. The eight 'diametrical' effort-actions are gravity-
resisting above and gravity-complying below, they are known as: (above) slide, dab.
float, and flick (jklg); and (below) press, punch, slash, wring (mnih).



In the next drawing, 4. are introduced the concepts of weight, space and time,
relating to the x, y, z axis of the first allocation. This now links weight to gravity or
up and down. Space to extension right and left and time to movement forward or back.
The 'qualities' controlling the eight effort-actions become light or strong on the weight
axis, direct or flexible on the spatial axis, and quick or sustained on the time axis. This
drawing shows that eight of the hexagons of the truncated icosahedron sit on faces of
the truncated octahedron.

The next drawing. 5, showshowone point of each of the pentagonal faces of the'trun-
cated icosahedron touches a square face of the host solid. These pentagons, twelve in
all. take up strategic positions, one for each corner of each of the dimensional working
planes, thereby giving the ‘door’, 'table' and 'wheel’ planes thickness and body.

Drawing 6 shows the 'door' and 'table' planes. With linking broken lines indicating
the thickness factor. The third or 'wheel' plane is shown separately in 7 to avoid
confusion.

Drawing 8 shows the development of movement scales devised by Laban for the
dancer to follow through the full patterns and effort scale of the whole of his working
space.2

’An interesting parallel to the thirteenth note of silence in John Cage's work in
relation to the nuclear sphere - the thirteenth - discussed in this book.

2 For a more detailed study on the work of Laban, see Jane Winearls. Modern Dance
(A. & C. Black), and the notes of Laban, Choreutics. edited by Lisa Ullmann (Macdonald
and Evans, 1966).





Figure 1 illustrates a multi-directional proportional system, to human scale, based
on the truncated octahedron, A-H. The solid is made up of six square faces and eight
equal hexagonal faces. The hexagon, as we have seen earlier, has a root 3 ratio of its
diagonal to a unit edge. y. The square has a root 2 ratio of its diagonal to a unit edge, x.
The ?5 + 1 diagonal of half the square is given as or the Golden Mean ratio to a unit
edge, z. Thus the truncated octahedron can generate the root 3 system in thirty-two
directions, i.e. from its centre outwards through each of its thirty-two edges. The
Golden Mean is generated in eight ways for each of the six square faces; the root 2
system can be generated in two ways in the six directions, from the centre through
the six square faces. For example the vector angle for each edge subtended from the
centre of the figure is 36° 52', and the vector angle for the diagonal of the square 53°
8'.

From this it can be seen that it is possible to generate proportional relationships
multi-directionally from a given centre or within a network of events.

The drawing on the right employs the truncated octahedron as an anthropometric
and ergonomic space unit. The truncated octahedron is proposed as a basis for
determining ergonomic 'effort' assessment and body posture support mechanisms,
with the ranges of adjustment required between the three basic postures. The unit
can be treated as its own gravitational system or related to a larger gravitational
system. The unit gives the possibility of 360° viewing. The theory of this chamber
was developed in 1962 with E. Robinson, methods engineer of B.O.A.C. and B.A.C., at
Hammersmith College. London.
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The largest circles in figure 1 represent the primary spheres in tetrahedral configu-
ration, the next in size are overlaid as zones of the points of contact —representing
the octahedral grouping. These generate the twelve points of contact, represented by
the smaller circular zones, making up the dymaxion and consequently icosahedral
grouping. This overlay is one way of representing the relationship in a scale which we
can describe as three 'octave diminutions' from the initial four spheres.

The next drawing. 2, integrates these three scales of circles with the proportional
figure shown in drawing 1 on the previous page. This uses the circles or spheres in a 3,
6, 8 proportion (on the right) to harmonize with a 4, 8,10 system (on the left) derived
from the truncated octahedron. Other factors emerge from this system; notably that
the edge length of the equilateral triangle from horizontal finger-tips to heels is in
root 2 relationship to the edge of the larger square, that is the one inscribed from
the knees to the upheld finger-tips. This relationship parallels the edge length of the
tetrahedron within a cube of unit edge, which is root 2 to 1.



THE OVERLAID POINT-SPHERES OF THE PRIMARY PATTERNS OF ORDER
IN SPACE, THE TOUCHING FOUR BECOMING THE SIX SPHERES OF THE
OCTAHEDRONWHICH IN TURN PRODUCE THE TWELVE POINT-SPHERES OF
THE CUBOCTAHEDRON USING THE THREE OCTAVES OF DIMINUTION SHOWN IN
FIGURE 1
AS MODULES IN A ’MAN' SCALE

Here, the full rotational lines of symmetry on the icosahedron are analysed.

Thus far we have established that the tetrahedron is the prime plane solid, it is the
minimum definition of solid space, and is also the strongest configuration to resist
forces from without. The octahedron and the icosahedron complete the range of the
three triangulated and 'structural' regular solids. These three figures are the regular



representatives of 2, 3, 3-symmetry, 2. 3. 4-symmetry, and 2, 3, 5-symmetry in
the solid. The other two regular solids, the cube and dodecahedron, are the duals
of the octahedron and icosahedron respectively. The three proportional systems
traditionally used in architecture, the root 3. the root 2 and the Golden Mean system,
relate to the tetrahedron, octahedron and icosahedron respectively.
From the evolution of the regular solids we further discovered that each of the

three triangulated regular solids generated semi-regular figures by truncation, that
is by regular cutting off. The tetrahedron produces one figure, the octahedron and
icosahedron six each. The unfolded nets of these can be related to the eight semi-
regular divisions of a plane surface. From this the idea of duals for both surface figures
and solid figures was developed.
From this study of individual characteristics growing out of our initial point, we

will now take the icosahedron as the last stage in our evolution, and show how one
arrives at the full lines of symmetry on this figure. In 1. at the top left, we have an
icosahedron poised between two arrows, with a line of symmetry a—a, or meridian,
passing through ten faces. The process can be repeated six times, one for each set
of poles, giving a set of six meridians. Next we take for 'poles’ the centre faces of the
figure shown in 2. As the faces are parallel to the picture plane, one has to imagine the
figure resting on a face as base. By rotation, as before, and inscribing a line around
the meridian, we get another set of symmetry lines passing through twelve faces on
each full rotation. This can be repeated for each set of polar faces giving ten additional
meridian lines. We follow this with rotation on the centre-point of opposite edges as
'poles’ shown in 3. and find that our symmetry lines pass through four faces and along
two edges on each full rotation. This can be repeated fifteen times for each polar set
of edges. The combination of this last set of meridians has been shown separately in
4. This process divides each face of the icosahedron into its component 30°. 60°. 90°
triangles giving in all sixty light and sixty dark triangles of this type, as shown in the
centre drawing. This is the greatest number of equal triangles that an icosahedron
can be divided into.
This central drawing gives the full icosahedral lines of symmetry viewed on the

5-f'bld axis. The component triangles in dark and light tone respectively (generated
from the edge rotation) each contain an equal pattern of dissection by the other lines
of symmetry. Those generated by the six apex rotations, indicated by evenly broken
lines, quarter each face of the icosahedron. The long and short broken lines are the ten



rotations of the face-centred poles. Having obtained these lines of full symmetry and
because the icosahedron is the largest number of equilateral triangles that a sphere
can be divided into, we return to our beginning to project and analyse this pattern on
the sphere in the final drawing, overleaf.





Drawings 1 to 3 repeat, in spherical projection, the rotations of symmetry of the
icosahedron, determined on the previous page on the plane figure. It is evident that
on the sphere all meridian lines become equal in length and are 'great circles' —a
'great circle' being the largest section that can be taken through a sphere, invariably
passing through the centre. On the surface of the sphere the shortest, hence most
economical, distance between any two points will be on the path of a great circle. This
standard of economy is known as geodesics.3

Having determined all the great circles of symmetry by the same procedure as for
the plane figure, we arrive at six great circles generated from rotation on the points
or apices of the icosahedron, ten great circles generated by the centre faces of the
icosahedron in 3. and fifteen great circles generated from the centre edges of the
figure.
The large central drawing shows a full projection of all the meridian great circles.

The icosahedron is shown in its 3-fold axis, that is with the centre of a triangular face
towards the eye, outlined in heavy broken line. If we analyse the relationships, we
find that we have come to a series of divisions of the sphere on which all the primary
figures of our geometric evolution can be described. If we start with the icosahedral
face, marked with the symbol I within a triangle, we can see that it is composed of
three dark and three light triangles as in the plane version, on the previous page.
If we add three more such triangles to each edge of this face of the icosahedron we

can see that we have a larger spherical triangle. O or 0. composed of fifteen of the basic
triangles. As we know that there are 120 such basic triangles in the whole sphere, we
also know that fifteen divides the whole into eight. Hence we know that our second
spherical triangle is the face of the spherical octahedron. If we now take the half-way
point of the octahedral face, indicated by a small c in a triangle, and follow the paths
of the lines of symmetry across the face each way, we find we have another triangle
exactly one- quarter the size of the spherical octahedron face —if we follow this around
the sphere, we find it to be the spherical dymaxion or cuboctahedron, that is the
pattern of the twelve points around a nuclear point, and the points of contact between
the octahedral spheres. If we return to our initial icosahedral face, we find that it too

3 On geodesics: 'The essential aim of general relativity is to link the geometrical properties of space
with the distribution of matter in space. In relativity the shortest distance between any two points
is the path which would be followed by a ray of light, so that light rays in space always follow
geodesics.' (E. L. Schatzman. The Nature of the Universe, p. 201).



is intersected half-way along each edge by the six great circles. This 'truncates' the
icosahedron and is the figure we found described between the points of contact of the
icosahedral spheres. So we also have the spherical icosidodecahedron (see page 37,
drawing 8).

If we reconsider both positions for the octahedral face, and follow the great circles
on which its points rest until they meet, we arrive at three points, marked T, falling
just inside our projection. If we carefully add up the basic triangles that make up this
largest spherical triangle, we find that it contains 30. Again if we divide our whole
number for the sphere of 120 basic triangles, we find that 30 is exactly one-quarter of
the whole and therefore this is the spherical projection of the tetrahedron.

In 4 a face of the spherical tetrahedron is isolated; in 5 a face of the spherical
octahedron in one of its two possible positions is shown (within the outline of the
tetrahedral face), while in 6 the spherical cuboctahedron or dymaxion is shown,
the icosahedral face being indicated by a dotted line 1. Because of the two possible
positions for the spherical octahedron it follows that there are two positions for the
spherical dymaxionmarked in figure 6with a small triangle, one for each face position
of the octahedron.

The tetrahedron and the icosahedron faces have one position each, within this
pattern, reflecting the beginning and end of our first evolution (page 11). The move-
ment or apparent gyration between the positions of the spherical dymaxions and the
icosahedron reflects the gyration that takes place in the closing down from the twelve
spherepoints of the dymaxion into the structural configuration of the icosahedron.

This concludes our explorations, showing that the sphere can be both a starting-
point for evolving a hierarchy of the individual finits plane geometries and a resolution
of them into the normality of spherical unity.

'Be expansive, like the points of the compass, boundless without a limit. Em-
brace all creation, and none shall be more sheltered or helped than another.'

Chuang Tzu. ch. xvii (4th century bc).





appendix 1
A PERIODIC ARRANGEMENT OF THE ELEMENTS OF SPATIAL ORDER (compiled by

the author, 1965)
MEMBERS OF
2, 3, 4-FOLD —o
SYMMETRY

Apices 4
Edges 6
Faces 4
Face angles 60°
Dihedral angles 70° 32' 3
Circumsphere radius 1-7321
Intersphere radius 1
Insphere radius 0-5774
Centre angle 0 109° 28'
Volume 0-11785 P

THE FIRST REGULAR SOLID
THE TETRAHEDRON or PRIME PLATONIC SOLID
THE SECONDARY REGULAR ‘PARENT' SOLIDS

COMPLETING THE FIVE PLATONIC FIGURES
OCTAHEDRON
CUBE or

HEXAHEDRON
Ap. 8
E. 12
SIX TRUN
F.
F.a.
D.a.
C’s.r.
Int’s.r.
Ins.r.



8
60°
109° 28' ’
1-4142
Int’s.r.
0-8165
90°
0-4714013

TRIGONAL PRISM
shown with equal edge lengths
90°
90° J
1-2247
0-7071
C.a. 0 70° 32'
Vol. 1 -00000 P

TRUNCATED OCTAHEDRON or‘MECON’
Ap. 24 Ap
E. 36 E.
F. 14 F.
F.a. 90° 120° F.a
D.a. 125° 16'e 109° 28's D.,
C’s.r. 1-0541 C’
Int’s.r. 1 I nt’
Ins.r. 0-9487 Ins
C.a. 0 36° 52' C.
Vol. 12-71 P Vo

PERIODIC ARR
HEXAGONAL PRISM

shown with equal edge lengths-



AT
THE ARCHIMEDEAN ©R SEMI-REGULAR SOLIDS

ONS OF THE OCTAHEDRON AND SIX TRUNCATIONS OF THE ICOSAHEDRON:
THE TWELVE DEGREES OF FREEDOM

y/ 7K

/ 7
Z \ / \ / \A

Cl
JBOCTA-
HEDRON
or ‘DY-
MAXION’

TRUNCATED
CUBOCTAHE-

DRON

SNUB
CUBE

RHOM-
BICUBOCTA-
HEDRON
or‘SQUARE

SPIN’

TRUN-
CATED
CUBE

• 12 Ap. 48 Ap. 24 Ap. 24 Ap. 24
24 E. 72 E. 60 E. 48 E. 36

1
14 F. 26 F. 38 F. 26 F. 14
60° 90° F.a. 90° 120°

135°
F.a. 60° 90° F.a. 60° 90° F.a.- 60° 135°

• 125° 16'J D.a. 144° 44'5
135°''125°
16'5

D.a. 153° 14'5
142° 59'5

D.a. 144° 44'5
135° 5

D.a. 125° 16'5
90° 5

s.r. 1-1547 C's.r. 1-0241 C’s.r. 1 0773 C’s.r. 1-0707 C’s.r. 1-0420



's.r. 1 Int's.r.1 Int's.r.1 Int's.r.1 Int’s.r.1
.r. 0-8660 Ins.r. 0-9765 Ins.r. 0-9282 Ins.r. 0-9340 Ins.r. 0-9597
.
0

60° C.a.
0

24° 55' C.a.
0

43° 41' C.a.
0

41° 53' C.a.
0

32° 39'

1. 2-37 /3 Vol. 45-63 /3 Vol. 7-68 /’ Vol. 8-74 /3 Vol. 17-76 /3

ANGEMENT OF THE SINGLE ALL-SPACE FILLING SOLIDS
hierarchy of vij minimal surface to V maximum interior space
SNUB TETRAHEDRON
TRUNCATED
4
TWIST RHOMBIC DODECAHEDRON
RHOMBHEX

DODECAHEDRON

o ar.
<
LU —1
WZP z
uu
X

Apices 6 Ap. 8 Ap. 12 A
Edges 9 E. 12 E. 18 E.
Faces 5 F. 6 F. 8 F.
Face angles 60° 90° F.a. 90° F.a. 90° 120° F,
Dihedral
angles

60° ‘ 90°4 D.a. 90° ‘ D.a. 120° 4 90° 4 D



Vol. given edae (E)
129904H3 0-25000E3

Vol. 1-00000E3 Vol. 0-86603H3

4-50000E3
_V

THE THIRTEENTH or NUCLEAR ARCHIMEDEAN SOLID
1 2 3
NOTES ON TERMS USED IN THIS CHART
Regularmeans that all faces, angles and angles between faces are the same. There

are only five, without admitting interpenetration: three are triangulated. Semi-regular
means that the faces which make up the solid are in themselves regular, but that
there is more than one type of face. Both regular and semi-regular figures lie with all
vertices or 'points' in a containing sphere, the circumsphere.
Dihedralmeans between two faces.
Inspheremeans the sphere touching the centre of the faces inside the solid.
Intersphere touches the centre edges of the figure.

Apices 12
Edges 18
Faces 4 :4
Face angles 60° 120°
Dihedral angles 70° 32' s 109° 28's
Circumsphere radius 1-1055
Intersphere radius 1
Insphere radius 0-9045
Centre angle 0 50° 28'
Volume 0-394 P

THE TRUNCATED TETRAHEDRON
with twelve independent axes
MEMBERS OF
2, 3, 5-FOLD
SYMMETRY
Ap.
E.



F.
F.a.
D.a.
C’s.r.
Int's.r.
Ins.r.
C.a. 0
Vol.
12
30
20
60°
138° 11' '
1-1756
1
0-9342
63° 26' •
2-18170 /3

Ap-
E.
F.
F.a.
D.a.
C’s.r.
Int's.r.
Ins.r.
C.a. 0
Vol.
20
30
12
90°
116° 34' 5
1 -0705



1
0-8507
41° 49'
7-66312 I3

Ap.
E.
F.
F.a.
D.a.
C’s.r.
Int's.r.
Ins.r.
C.a. 0
Vol.
32 F
108° 120° F.
142° 37' ‘ 138° 11' e D
1-0210
1 I
0-9794 lr
23° 17'
57-56 P
ICOSAHEDRON
DODECAHEDRON
TRUNCATED
ICOSAHEDRON



16
Ap. 24 Ap. 14 Ap. 14 Ap.

18
I

30 (18
unit, 12
lesser)

E. 36 E. 24 E. 24 (18
unit, 3
larger, 3
lesser)

E. 28

16
F. 14 F. 12 F. 12 F. 12

• 109° 28'
35° 16'
120°

F.a. 90° 120° F.a. 109° 28' F.a. 109° 28' F.a. 109°
28'70° 32'
125’ 16'

1. 144° 44'j
70° 32's

D.a.
125°
16'e
109'
28'6

D.a. 120° < D.a. 120°, D.a. 90’ ‘ 120°
'

1. 3-
18198E3

13-
85638E3

Vol. 11-
31371E3

Vol. 3-
07921E3

Vol. 3-079E3

10-388E3

1-299E3

Vol. 5-
74586E3

4 5 6 7 8

30

60

32
60° 108°
a. 142° 37's
s.r. 10515
’s.r. 1
s.r. 0-9511
a. 0 36°



I- 14-31 I3

ICOSIDODECAHEDRON
Ap. 120
180
150
Ap. 60
E. 120
90
Int’s.r.
Ins.r.
C.a. 0
Vol.
90° 120° 144°
159° 6': 148° 17'7

142Z-37'6°
1 -0087
60° 108°
164° 11'3 152° 56's
1 0280
F. 62
F.a. 60° 90° 108°
D.a. 159° 6'’ 148° 17'
32
60’ 144°
142° 37'7 116° 34'7
Int’s.r.
0-9914
15° 6'
21-7913

TRUNCATED
ICOSIDODECAHEDRON
C.a, 0
Vol.
26° 49'



37-7213

SNUB DODECAHEDRON

C’s.r.

Int’s.r.

Ins.r.

C.a. 0

1-0260

1

0-9747

25° 52'

Int’s.r.

1-0145

Vol. 42-01 I3

RHOMBICOSIDODECA-
HEDRON

Ins.r.

C.a. 0

Vol.

0-9857

19° 24'

97-4513

TRUNCATED
DODECAHEDRON
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trigonal prism trigonal prism hexagonal J>nsm

The eight triple all-space filling solids





The ten dual all-space filling solids
The eight 'self' all-space filling solids
Multi combination 'all-space* The eight deltahedra
EXHIB
APPENDIX 3 ASPECTS AND DEFINITIONS
THE FIVE FACTORS OF A CIRCLE
THE FIVE CONIC SECTIONS
arrows indicate line of section through cone.

TRIANGULAR EVOLUTION



RHOMBUS

(60° coordination)

TRAPEZIUM

PARALLELOGRAM

QUADRILATERAL

ISOSCELES TRIANGLE

SIGNIFICANT ANGLES

right

acute

DEFINITIONS

supplementary

complementary





TO CONSTRUCT A REGULAR POLYGON GIVEN EDGE LENGTH
TO CONSTRUCT A REGULAR PENTAGONWITHIN GIVEN CIRCLE
AB=given edge length of regular polygon
A=centre of arc from B through 180° to C
Arc CB is divided by the number of sides of the required polygon
From A produce lines through arc divisions 2. 3.
4, 5. 6
Cut off side lengths at D. E. F. G. H, and join to form polygon, here a heptagon (7

sides)
AB=^ circle or diameter
C=upright from centre. 0. at 90’
D = midway point on radius OB
E=arc from D with radius CD
F=arc from C with radius CE
FC=one side of regular pentagon
CGHIF is completed pentagon within circle
SEMI-REGULAR SOLIDS

The semi-regular solids may be defined in the following three categories:

(A) Spherically as morphic number patterns



Defined under this heading as representatives of the twelve degrees of
freedom around a central nuclear position, as the circumspheres of the
semi-regular polyhedra viewed as the closed set of distribution patterns of
the spherical surface, morphically as close-packing relationships of these
spheres. This has been demonstrated as being a threefold behaviour pattern
from truncated tetrahedron, through the equilibrium of the 'dymaxion'. into
the final 'locked' icosahedral pattern.

(B) Linearly in the woven 'pumping' geometry

Each pattern integrity of nodals or 'zero phases' in space describing a semi-
regular configuration is a basis for demonstrating the behaviour of pumping
geometry. These linear constructions are composed of the interweaving of
tetracaps, octacaps and icosacaps and they demonstrate the threefold na-
ture of (a) dominant regular pattern, (b) recessive regular pattern and (c) in-
termediate semiregular pattern. The 'time' transformation characteristic of
these figures displays the three interdependent solids in action.

(C) Solidly as the resulting figure after intertruncation

The set of thirteen canalso be viewedas the resultant solids after intertrunca-
tion between the regular dual solids. These occur once between tetrahedron
and tetrahedron and six times between octahedron and cube and icosahe-
dron and dodecahedron respectively.

Overleaf

Models to illustrate right- and left-handed complementary truncated tetrahedral
'pumping geometry'. The axes for a 'matrix' are indicated where the two models meet
centrally. The actionwithin thematrixwould be complementary or self-compensating,
with one configuration contracting as the neighbouring configurations expand, and
vice versa. All component members are non-interfering with other members.



Model: F. Hussain Photo: Tony Jenkins

APPENDIX 4

AN INVESTIGATION INTO ASPECTS

OF THE TWELVE DEGREES OF FREEDOM

The text and drawings contained in this appendix were prepared in 1967—8 under
the auspices of a Shell International Research Scholarship.



We will begin this appendix by taking the minimal expression of 'points' describing
volumetric space - four points as spherepoints of the tetrahedron. This configuration
divides 'precessionally' into two pairs at 90° to each other. To express the degrees of
freedom of 'regularity' in the division of space polyhedrally. we can allocate to these
primary spherepoints the icosahedron and dodecahedron. as the co-members of the
2, 3, 5-fold symmetry, and the octahedron and cube as the regular representatives
of 2. 3. 4-fold symmetry. The 'over figure' or embracing form, the tetrahedron,
completes the full five possible regular polyhedral divisions.

If we now proceed to surround this configuration with the next 'sphere' or 'shell' of
close-packed spherepointswefind thatwe canfit exactly twelve. By the sameprinciple
of allocation, we now assign to each of these an Archimedean or semi-regular solid;
we find the families divide into six of 2, 3. 5 and six of 2. 3, 4-fold symmetry. The
thirteenth, the truncated tetrahedron, completes as the 'over figure', in the same way
as the regular tetrahedron 'completed' the pattern of five regular figures.

We now extract the nuclear tetrahedron of spherepoints, and find ourselves left with
twelve spherepoints in unstable equilibrium. This pattern—the truncated tetrahedron
—is the first expression of the twelve degrees of freedom as it is the only one of the
Archimedean solids that has twelve independent axes from its centre through its
vertices.

It can also be seen to be the first phase of the 'wind-in' which encompasses the
dymaxion, at vectorial equilibrium, moving through to the structurally complete and
stable icosahedral configuration. We can now present a way of viewing the range from
least stable and independent axes, through equilibrium into stability, having traversed
the basic symmetries found in nature - starting with the 2. 3. 3- fold (or tetrahedral),
through to the 2, 3, 4-fold (or octahedral) into the 2, 3. 5-fold (or icosahedral) symmetry.
A certain validity is added to'the allocations of the Archimedean solids as they are
definite by the fact that their nodes lie in a containing sphere, hence they could be
regarded as the economic distribution patterns of points lying in the spherical surface.



Figure I (1) shows the truncated tetrahedral configuration of closest packed sphere-
points around the tetrahedral nucleus (shaded). This drawing is shown on its 2-fold
axis, and the centres of the outer truncated tetrahedral grouping have been linked.

Figure I (2) viewsthewhole group of sixteen spherepoints, with the nuclear tetrahe-
dron shaded and the second 'shell' sitting in four groups of three on the four nodal
axes, or triangular faces, of the truncated tetrahedron. The centres of the tetrahedral
grouping are centre-linked as are the outer centres of the truncated tetrahedron.





Figure I (4) indicates the nature natural closing in to tighter configui constituent
spherepoints. This rotatk place to the right or left. The spherepoir 6 twice to indicate
the nature of the all octahedral symmetry and six to the icos the Archimedean figures.
Those of the. are shown in the drawing with the nu. (4). (6). (2) is rotating anti-
clockwise while group (5). 2.1. and group (1). 3. This gives rise to the conditions
where each other (at the centre of the edges o tetrahedron), with three moving in
(marked ss) and three moving in (marked oo).

Figure I (3) is one large tetrahedron, subdivided to show the frequency subdivision
from one to three. The nodes are numbered 1 to 4: 1 is the undivided tetrahedron;
2 is the first frequency subdivision, giving the octahedral nucleus; 3 is the second
frequency subdivision, giving the truncated tetrahedral configuration as nucleus;
and 4. the third frequency subdivision, gives a nuclear condition of the dymaxion or
cuboctahedron. The drawing contains all the direct neighbour linkages in fine line to
show the octahedral and tetrahedral packed nature of the subdivisions.



Figure I (4) indicates the nature of the 'wind-in' or natural closing in to tighter
configuration of the twelve constituent spherepoints. This rotation inward can take
place to the right or left. The spherepoints are numbered 1 to 6 twice to indicate the
nature of the allocations of six to the octahedral symmetry and six to the icosahedral
symmetry of the Archimedean figures. Those of the octahedral symmetry are shown
in the drawing with the numbers ringed. Group (4). (6), (2) is rotating anti-clockwise
as is group (3), 6, 5. while group (5). 2.1, and group (1), 3, 4. rotate clockwise. This
gives rise to the conditions where the groups contact each other (at the centre of the
edges of the basic truncated tetrahedron), with three moving in the same direction
(marked ss) and three moving in opposite directions (marked oo).



Figure I (5) illustrates the new positions of the spherepoints after rotation by 60°.
but placed around the same centre, not having yet moved in toward the centre of
the system. In fact the 'wind-in' rotates and spirals in simultaneously. We have kept
these movements separate for clarity. It can be seen that the triangular groups now
have an edge facing each other which, if linked, would form a system of triangles and
rectangles instead of the hexagons of the truncated tetrahedron which it rotated from.



Figure I (6) illustrates the closing in towards the centre from figure I (5) in lighter
line to the dymaxion or cuboctahedron in heavier line. Also it has been indicated at
this stage of equilibrium that we have the exact space for a nuclear spherepoint, which
in terms of the allocation of strictly one spherepoint per Archimedean solid gives us
thirteen of equal size, the truncated tetrahedron taking the nuclear position.



Figure I (7) illustrates the two extremes of the total three-phase 'wind-in' from
truncated tetrahedral open to icosahedral closed. The shaded nuclear region shows
thenature of the changes inpossible size of thenucleus in eachposition: the larger size
for the open truncated tetrahedral position, the mid or equilibrium of the dymaxion
with nucleus of equal size to the spherepoints, and finally the smaller nucleus of the
icosahedral position. The whole is viewed as indicated on the 3-fold axis.



In the second aspect of this exploration figure II (1) demonstrates the nature of the
allocations. The central nuclear tetrahedral group is allocated the regular divisions
of octahedron, cube, icosahedron and dodecahedron, the 'over figure' being the
fifth, the tetrahedron. The top three spherepoints have been lifted off the 3-fold axis
of the truncated tetrahedral grouping to reveal the nuclear regular solids, and three
neighbouring semi-regular solids have been projected on to the spherepoints of the
outer 'shell'. Those shown are truncated cube (top), truncated icosidodecahedron
(bottom right), and truncated dodecahedron (bottom left).



Figure II (2) is an expanded view of all the outer 'shell' spherepoints with their
respective Archimedean solid allocations. This excludes the truncated tetrahedron
which takes up the 'over figure' as in the regular nucleus. A total number of six
representatives of octahedral symmetry and six of icosahedral symmetry are grouped
in families, with the icosahedral family positioned in a hexagonal ring below.



Figure 11(3) shows the rotational action of the spheres as the figure begins its
transformation towards the dymaxion or cuboctahedron.



Figure II (4) shows the configuration of equilibrium or dymaxion with the possibility
of locating the truncated tetrahedron as nucleus of the same size as the other sphere-
points. We have not drawn it in this figure, as it represents a moving stage towards
the further contracted icosahedral position where it locks. If the nuclear spherepoint
is in position no further contraction can take place.
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Figure II (5) shows the full transformation into the fully locked structural shell
in icosahedral pattern. At this point the twelve representativedegreesof free-
dom or twelve possible outer representatives of the semi-regular subdivision
of the spherical surface have traversed the three symmetries found in na-
ture's structuring strategies —from the 2. 3. 3-fold (or tetrahedral), through
to the 2. 3, 4-fold (or octahedral), and finally into the 2, 3, 5-fold (or icosahe-
dral) symmetry.The parent solids ofthesesymmetries are the three possible
configurations of equilateral triangulation of solid space. The structural sig-
nificance of which has been emphasized by R. Buckminster Fuller.

Summary



In conclusion, we have shown that analogy can be drawn between the be-
haviour of morphic number (sphericality), the degrees of freedom, and the
twelve possible truncations of the regular solids viewed as economic distri-
butions on the circumspheres of the Archimedean solids.

Together with this 'morphic' allocation we have drawn attention to the be-
haviour pattern of the three major transformations from the truncated tetra-
hedral packing around a tetrahedral nucleus through to the equilibrium of the
dymaxion or cuboctahedral configuration, and finally into the 'locked' icosa-
hedral pattern, traversing the three major omnidirectional symmetries em-
ployed in nature. All can be considered phases in the disposition of the twelve
degrees of freedom, or the fundamental origin of the twelve orientations of
each symmetry, the truncated tetrahedral starting-point being unique in hav-
ing twelve independent axes from each node to the centre.
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