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1 Triangles

In this chapter, we review some of the well-known propositions of elementary ge-
ometry, stressing the role of symmetry. We refer to Euclid’s propositions by his own
numbers, which have been used throughout the world for more than two thousand
years. Since the time of F. Commandino (1509–1575), who translated the works of
Archimedes, Apollonius, and Pappus, many other theorems in the same spirit have
been discovered. Such results were studied in great detail during the nineteenth
century. As the present tendency is to abandon them in favor of other branches of
mathematics, we shall be content to mention a few that seem particularly interesting.

1.1 Euclid

Euclid's work will live long after all the text-books of the present day are su-
perseded and forgotten. It is one of the noblest monuments of antiquity.

Sir Thomas L. Heath (1861–1940)1

About 300 b.c., Euclid of Alexandria wrote a treatise in thirteen books called the
Elements. Of the author (sometimes regrettably confused with the earlier philoso-
pher, Euclid of Mégara) we know very little. Proclus (410–485 a.d.) said that he “put
together the Elements, collecting many of Eudoxus’s theorems, perfecting many of
Theaetetus’s, and also bringing to irrefragable demonstration the things which were
only somewhat loosely proved by his predecessors.” This man lived in the time of the
first Ptolemy, [who] once asked him if there was in geometry any shorter way than
that of the Elements, and he answered that “there was no royal road to geometry.”

1 Heath 1, p. vi. (Such references are collected at the end of the book, pp. 415–417.)
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Heath quotes a story by Stobaeus, to the effect that someone who had begun to read
geometry with Euclid asked him “What shall I get by learning these things?” Euclid
called his slave and said “Give him a dime, since he must make gain out of what he
learns.”
Of the thirteen books, the first six may be very briefly described as dealing respec-

tively with triangles, rectangles, circles, polygons, proportion, and similarity. The next
four, on the theory of numbers, include two notable achievements: IX.2 and X.9, where
it is proved that there are infinitely many prime numbers, and that √2 is irrational
[Hardy 2, pp. 32–36]. Book XI is an introduction to solid geometry, XII deals with
pyramids, cones, and cylinders, and XIII is on the five regular solids.
According to Proclus, Euclid “set before himself, as the end of the whole Elements,

the construction of the so-called Platonic figures.” This notion of Euclid’s purpose
is supported by the Platonic theory of a mystical correspondence between the four
solids

{

cube,
tetrahedron,
octahedron,
icosahedron

}and the four “elements”{

earth,
fire,
air,
water

}

[cf. Coxeter 1, p. 18]. Evidence to the contrary is supplied by the arithmetical books
VII-X, which were obviously included for their intrinsic interest rather than for any
application to solid geometry.

1.2 Primitive Concepts and Axioms

``When I use a word,'' Humpty-Dumpty said, ``it means just what I choose
it to mean—neither more nor less.''

Lewis Carroll (1832–1898)

[Dodgson 2, Chap. 6]

In the logical development of any branch of mathematics, each definition of a con-
cept or relation involves other concepts and relations. Therefore the only way to avoid
a vicious circle is to allow certain primitive concepts and relations (usually as few
as possible) to remain undefined [Synge 1, pp. 32–34]. Similarly, the proof of each



proposition uses other propositions, and therefore certain primitive propositions,
called postulates or axioms, must remain unproved. Euclid did not specify his primitive
concepts and relations, but was content to give definitions in terms of ideas that would
be familiar to everybody. His five Postulates are as follows:

1.2.1 1.21

A straight line may be drawn from any point to any other point.

1.2.2 1.22

A finite straight line may be extended continuously in a straight line.

1.2.3 1.23

A circle may be described with any center and any radius.

1.2.4 1.24

All right angles are equal to one another.

1.2.5 1.25

If a straight line meets two other straight lines so as to make the two interior angles on one side
of it together less than two right angles, the other straight lines, if extended indefinitely, will
meet on that side on which the angles are less than two right angles.2

It is quite natural that, after a lapse of about 2250 years, some details are now seen to
be capable of improvement. (For instance, Euclid I.1 constructs an equilateral triangle
by drawing two circles; but how do we know that these two circles will intersect?)
The marvel is that so much of Euclid’s work remains perfectly valid. In the modern
treatment of his geometry [see, for instance, Coxeter 3, pp. 161–187], it is usual to
recognize the primitive concept point and the two primitive relations of intermediacy
(the idea that one point may be between two others) and congruence (the idea that the

2 In Chapter 15 we shall see how far we can go without using this unpleasantly complicated Fifth
Postulate.



Figure 1.1.: 1.2a

distance between two points may be equal to the distance between two other points,
or that two line segments may have the same length). There are also various versions
of the axiom of continuity, one of which says that every convergent sequence of points
has a limit.
Euclid’s “principle of superposition, ” used in proving I.4, raises the question

whether a figure can bemoved without changing its internal structure. This princi-
ple is nowadays replaced by a further explicit assumption such as the axiom of “the
rigidity of a triangle with a tail” (Figure 1.2a 1.1):

1.2.6 1.26

If 𝐴𝐵𝐶 is a triangle with 𝐷 on the side 𝐵𝐶 extended, while 𝐷′ is analogously related to another
triangle 𝐴′𝐵′𝐶′, and if 𝐵𝐶 = 𝐵′𝐶′, 𝐶𝐴 = 𝐶′𝐴′, 𝐴𝐵 = 𝐴′𝐵′, 𝐵𝐷 = 𝐵′𝐷′, then 𝐴𝐷 = 𝐴′𝐷′.
This axiom can be used to extend the notion of congruence from line segments to

more complicated figures such as angles, so that we can say precisely what we mean
by the relation

∠𝐴𝐵𝐶 = ∠𝐴′𝐵′𝐶′.

Then we no longer need the questionable principle of superposition in order to
prove Euclid I.4:



If two triangles have two sides equal to two sides respectively, and have the
angles contained by the equal sides equal, theywill also have their third sides
equal, and their remaining angles equal respectively; in fact, they will be con-
gruent triangles.

1.3 Pons Asinorum

Minos: If is proposed to prove 1.5 by taking up the isosceles Triangle, turning
it over, and then laying it down again upon itself.

Euclid: Surely that has too much of the Irish Bull about it, and reminds one
a little too vividly of the man who walked down his own throat, to deserve a
place in a strictly philosophical treatise?

Minos: I suppose its defenders would say that it is conceived to leave a trace
of itself behind, and that the reversed Triangle is laid down upon the trace so
left.

C. L. Dodgson (1832–1898)

[Dodgson 3, p. 48]

1.3.1 I.5.

The angles at the base of an isosceles triangle are equal.
The name pons asinorum for this famous theorem probably arose from the bridgelike

appearance of Euclid’s figure (with the construction lines required in his rather com-
plicated proof) and from the notion that anyone unable to cross this bridge must be
an ass. Fortunately, a far simpler proof was supplied by Pappus of Alexandria about
340a.d. (Figure 1.3a 1.2):
Let 𝐴𝐵𝐶 be an isosceles triangle with 𝐴𝐵 equal to 𝐴𝐶. Let us conceive this triangle as

two triangles and argue in this way. Since 𝐴𝐵 = 𝐴𝐶𝑎𝑛𝑑𝐴𝐶 = 𝐴𝐵, the two sides 𝐴𝐵, 𝐴𝐶 are
equal to the two sides 𝐴𝐶, 𝐴𝐵. Also the angle 𝐵𝐴𝐶 is equal to the angle 𝐶𝐴𝐵, for it is the
same. Therefore all the corresponding parts (of the triangles 𝐴𝐵𝐶, 𝐴𝐶𝐵) are equal. In
particular,

∠𝐴𝐵𝐶 = ∠𝐴𝐶𝐵.



Figure 1.2.

The pedagogical difficulty of comparing the isosceles triangle ABC with itself is
sometimes avoided by joining the apex 𝐴 to 𝐷, the midpoint of the base 𝐵𝐶. The
median 𝐴𝐷may be regarded as amirror reflecting 𝐵 into 𝐶. Accordingly, we say that
an isosceles triangle is symmetrical by reflection, or that it has bilateral symmetry. (Of
course, the idealized mirror used in geometry has no thickness and is silvered on
both sides, so that it not only reflects 𝐵 into 𝐶 but also reflects 𝐶 into 𝐵.)

Any figure, however irregular its shape may be, yields a symmetrical figure when
we place it next to a mirror and waive the distinction between object and image. Such
bilateral symmetry is characteristic of the external shape of most animals.

Given any point 𝑃 on either side of a geometrical mirror, we can construct its re-
flected image 𝑃′ by drawing the perpendicular from 𝑃 to the mirror and extending
this perpendicular line to an equal distance on the other side, so that the mirror per-
pendicularly bisects the line segment 𝑃𝑃′. Working in the plane (Figure 1.3b 1.3) with
a line 𝐴𝐵 for mirror, we draw two circles with centers 𝐴, 𝐵 and radii 𝐴𝑃, 𝐵𝑃. The two
points of intersection of these circles are 𝑃 and its image 𝑃′.

We shall find that many geometrical proofs are shortened andmade more vivid by
the use of reflections. But wemust remember that this procedure is merely a short
cut: every such argument could have been avoided by means of a circumlocution
involving congruent triangles. For instance, the above construction is valid because
the triangles ABP, 𝐴𝐵𝑃′ are congruent.

Pons asinorum has many useful consequences, such as the following five:



Figure 1.3.

1.3.2 III.3.

If a diameter of a circle bisects a chordwhich does not pass through the center, it is perpendicular
to it; or, if perpendicular to it, it bisects it.

1.3.3 III.20.

In a circle the angle at the center is double the angle at the circumference, when the rays forming
the angles meet the circumference in the same two points.

1.3.4 III.21.

In a circle, a chord subtends equal angles at any two points on the same one of the two arcs
determined by the chord (e.g., in Figure 1.3c, �𝑃𝑄𝑄′ = ∠𝑃𝑃′𝑄′).

1.3.5 III.22.

The opposite angles of any quadrangle inscribed in a circle are together equal to two right
angles.



Figure 1.4.: 1.3c

1.3.6 III.32.

If a chord of a circle be drawn from the point of contact of a tangent, the angle made by the
chord with the tangent is equal to the angle subtended by the chord at a point on that part of
the circumference which lies on the far side of the chord (e.g., in Figure 1.3c, ∠𝑂𝑇𝑃′ = ∠𝑇𝑃𝑃′).
We shall also have occasion to use two familiar theorems on similar triangles:

1.3.7 VI.2.

If a straight line be drawn parallel to one side of a triangle, it will cut the other sides propor-
tionately; and, if two sides of the triangle be cut proportionately, the line joining the points of
section will be parallel to the remaining side.

1.3.8 VI.4.

If corresponding angles of two triangles are equal, then corresponding sides are proportional.
Combining this last result with III.21 and 32, we deduce two significant properties

of secants of a circle (Figure 1.3c 1.4):

1.3.9 III.35

If in a circle two straight lines cut each other, the rectangle contained by the segments of the one
is equal to the rectangle contained by the segments of the other (i.e., 𝑂𝑃 × 𝑂𝑃′ = 𝑂𝑄 × 𝑂𝑄′.)



Figure 1.5.: 1.3d

1.3.10 III.6

If from a point outside a circle a secant and a tangent be drawn, the rectangle contained by
the whole secant and the part outside the circle will be equal to the square on the tangent (i.e.,
𝑂𝑃 × 𝑂𝑃′ = 𝑂𝑇2.)
Book VI also contains an important property of area:

1.3.11 VI.19.

Similar triangles are to one another in the squared ratio of their corresponding sides (i.e., if
𝐴𝐵𝐶 and 𝐴′𝐵′𝐶′ are similar triangles, their areas are in the ratio 𝐴𝐵2 ∶ 𝐴′𝐵′2.)
This result yields the following easy proof for the theorem of Pythagoras [see Heath

1, p. 353; 2, p. 270]:

1.3.12 I.47.

In a right-angled triangle, the square on the hypotenuse is equal to the sum of the squares on
the two catheti.
In the triangle 𝐴𝐵𝐶, right-angled at 𝐶, draw 𝐶𝐹 perpendicular to the hypotenuse 𝐴𝐵,

as in Figure 1.3d1.5. Then we have three similar right-angled triangles 𝐴𝐵𝐶, 𝐴𝐶𝐹, 𝐶𝐵𝐹,
with hypotenuses 𝐴𝐵, 𝐴𝐶, 𝐶𝐵. By VI.19, the areas satisfy

𝐴𝐵𝐶
𝐴𝐵2

= 𝐴𝐶𝐹
𝐴𝐶2

= 𝐶𝐵𝐹
𝐶𝐵2

Evidently, 𝐴𝐵𝐶 = 𝐴𝐶𝐹 + 𝐶𝐵𝐹. Therefore 𝐴𝐵2 = 𝐴𝐶2 + 𝐶𝐵2.



Exercises

1. Using rectangular Cartesian coordinates, show that the reflection in the 𝑦 −
𝑎𝑥𝑖𝑠(𝑥 = 0) reverses the sign of 𝑥. What happens when we reflect in the line 𝑥 = 𝑦?

2. Deduce I.47 from III.36 (applied to the circle with center 𝐴 and radius 𝐴𝐶)

3. Inside a square 𝐴𝐵𝐷𝐸, take a point 𝐶 so that 𝐶𝐷𝐸 is an isosceles triangle with
angles 15∘ at 𝐷 and 𝐸. What kind of triangle is 𝐴𝐵𝐶? (Hint: Inside the triangle 𝐵𝐶𝐷,
take a point 𝐹 so that 𝐹𝐵𝐷 is congruent to 𝐶𝐷𝐸).

4. Prove theErdös-Mordell theorem: If𝑂 is anypoint inside a triangle 𝐴𝐵𝐶 and𝑃, 𝑄, 𝑅
are the feet of the perpendiculars from 𝑂 upon the respective sides 𝐵𝐶, 𝐶𝐴, 𝐴𝐵,
then

𝑂𝐴 + 𝑂𝐵 + 𝑂𝐶 ≥ 2(𝑂𝑃 + 𝑂𝑄 + 𝑂𝑅).

Hint:3 Let 𝑃1 and 𝑃2 be the feet of the perpendiculars from 𝑅 and 𝑄 upon 𝐵𝐶.
Define analogous points 𝑄1 and 𝑄2 and 𝑅1 and 𝑅2 on the other sides. Using the
similarity of the triangles 𝑃𝑅𝑃1 and 𝑂𝐵𝑅, express 𝑃1𝑃 in terms of 𝑅𝑃, 𝑂𝑅, and 𝑂𝐵.
After substituting such expressions into

𝑂𝐴 + 𝑂𝐵 + 𝑂𝐶 ≥ 𝑂𝐴(𝑃1𝑃 + 𝑃𝑃2)/𝑅𝑄 + 𝑂𝐵(𝑄1𝑄 + 𝑄𝑄2)/𝑃𝑅 + 𝑂𝐶(𝑅1𝑅 + 𝑅𝑅2)/𝑄𝑃3

collect the terms involving 𝑂𝑃,𝑂𝑄,𝑂𝑅, respectively.

5. Under what circumstances can the sign ≥ in Ex. 4 be replaced by = ?

6. In the notation of Ex. 4,

𝑂𝐴 × 𝑂𝐵 × 𝑂𝐶 ≥ (𝑂𝑄 + 𝑂𝑅)(𝑂𝑅 + 𝑂𝑃)(𝑂𝑃 + 𝑂𝑄).

(A. Oppenheim, American Mathematical Monthly, 68 (1961), p. 230. See also L. J.
Mordell,Mathematical Gazette, 46 (1962), pp. 213–215.)

3 LeonBankoff,AmericanMathematicalMonthly,65 (1958), p. 521. For otherproofs seeG.R. Veldkamp
and H. Brabant, Nieuw Tijdschrift voor Wiskunde, 45 (1958), pp. 193–196; 46 (1959), p. 87.



Figure 1.6.

1.4 The Medians and the Centroid

Orientalmathematicsmaybe an interesting curiosity, but Greekmathematics
is the real thing. …The Greeks, as Littlewood said to me once, are not clever
schoolboys or ``Scholarship candidates,'' but ``Fellows of another college.''
So Greek mathematics is ``permanent,'' more permanent even than Greek
literature. Archimedes will be remembered when Aeschylus is forgotten, be-
cause languages die and mathematical ideas do not.

G. H. Hardy (1877–1947) [Hardy 2, p. 21]

The line joining a vertex of a triangle to the midpoint of the opposite side is called a
median.

Let two of the three medians, say 𝐵𝐵′ and 𝐶𝐶′, meet in 𝐺 (Figure 1.4a 1.6). Let 𝐿
and 𝑀 be the midpoints of 𝐺𝐵 and 𝐺𝐶. By Euclid VI.2 and 4 (which were quoted on
page 8), both 𝐶′𝐵′ and 𝐿𝑀 are parallel to 𝐵𝐶 and half as long. Therefore 𝐵′𝐶′𝐿𝑀 is a
parallelogram. Since the diagonals of a parallelogram bisect each other, we have

𝐵′𝐺 = 𝐺𝐿 = 𝐿𝐵, 𝐶′𝐺 = 𝐺𝑀 = 𝑀𝐶.



Thus the twomedians 𝐵𝐵′, 𝐶𝐶′ trisect each other at 𝐺. In other words, this point 𝐺,
which could have been defined as a point of trisection of one median, is also a point of
trisection of another, and similarly of the third. We have thus proved [by the method
of Court 1, p. 58] the following theorem:

1.4.1 1.41

The three medians of any triangle all pass through one point.
This common point 𝐺 of the three medians is called the centroid of the triangle.

Archimedes (c. 287–212 B.C.) obtained it as the center of gravity of a triangular plate
of uniform density.

Exercises

1. Any triangle having two equal medians is isosceles.4

2. The sum of the medians of a triangle lies between 3
4𝑝 and 𝑝, where 𝑝 is the sum

of the sides. [Court 1, pp. 60–61.]

1.5 The Incircle and the Circumcircle

Alone at nights,

I read my Bible more and Euclid less.

Robert Buchanan (1841–1901)

(An Old Dominie's Story)

Euclid III.3 tells us that a circle is symmetrical by reflection in anydiameter (whereas
an ellipse is merely symmetrical about two special diameters: the major andminor
axes). It follows that the angle between two intersecting tangents is bisected by the
diameter through their common point.

4 It is to be understood that any exercise appearing in the form of a theorem is intended to be proved.
It saves space to omit the words “Prove that” or “Show that.”



Figure 1.7.



By considering the loci of points equidistant from pairs of sides of a triangle 𝐴𝐵𝐶,
we see that the internal and external bisectors of the three angles of the triangle meet
by threes in four points 𝐼, 𝐼𝑎, 𝐼𝑏, 𝐼𝑐, as in Figure 1.5a 1.7. These points are the centers
of the four circles that can be drawn to touch the three lines 𝐵𝐶, 𝐶𝐴, 𝐴𝐵. One of them,
the incenter 𝐼, being inside the triangle, is the center of the inscribed circle or incircle
(Euclid IV.4). The other three are the excenters 𝐼𝑎, 𝐼𝑏, 𝐼𝑐: the centers of the three escribed
circles or excircles [Court 2, pp. 72–88]. The radii of the incircle and excircles are the
inradius 𝑟 and the exradii 𝑟𝑎, 𝑟𝑏, 𝑟𝑐.

In describing a triangle 𝐴𝐵𝐶, it is customary to call the sides

𝑎 = 𝐵𝐶, 𝑏 = 𝐶𝐴, 𝑐 = 𝐴𝐵,

the semiperimeter

𝑠 = 1
2
(𝑎 + 𝑏 + 𝑐),

the angles 𝐴, 𝐵, 𝐶, and the area Δ.

Since 𝐴 + 𝐵 + 𝐶 = 180∘, we have

1.5.1 1.51

∠𝐵𝐼𝐶 = 90° + 1
2
𝐴

,

a result which we shall find useful in §1.9.

Since 𝐼𝐵𝐶 is a triangle with base 𝑎 and height 𝑟, its area is 1
2𝑎𝑟. Adding three such

triangles we deduce

Δ = 1
2
(𝑎 + 𝑏 + 𝑐)𝑟 = 𝑠𝑟.

Similarly
Δ = 1

2
(𝑏 + 𝑐 + −𝑎)𝑟𝑎 = (𝑠 − 𝑎)𝑟𝑎

Thus



1.5.2 1.52

Δ = 𝑠𝑟 = (𝑠 − 𝑎)𝑟𝑎 = (𝑠 − 𝑏)𝑟𝑏 = (𝑠 − 𝑐)𝑟𝑐.

From the well-known formula

cos𝐴 =
(𝑏2 + 𝑐2 − 𝑎2)

2𝑏𝑐
,

we find also

sin𝐴 =
[ − 𝑎4 − 𝑏4 − 𝑐4 + 2𝑏2𝑐2 + 2𝑐2𝑎2 + 2𝑎2𝑏2]

1
2

2𝑏𝑐
,

whence

Δ = 1
2
𝑏𝑐 sin𝐴

1.5.3 1.53

= 1
4
[ − 𝑎4 − 𝑏4 − 𝑐4 + 2𝑏2𝑐2 + 2𝑐2𝑎2 + 2𝑎2𝑏2]

1
2

= 1
4
[(𝑎 + 𝑏 + 𝑐)(−𝑎 + 𝑏 + 𝑐)(𝑎 − 𝑏 + 𝑐)(𝑎 + 𝑏 − 𝑐)]

1
2

= [𝑠(𝑠 − 𝑎)(𝑠 − 𝑏)(𝑠 − 𝑐)]
1
2 .

This remarkable expression, which we shall use in §18.4, is attributed to Heron of
Alexandria (about 60 a.d.), but it was really discovered by Archimedes. (See B. L. van
der Waerden,Science Awakening, Oxford University Press, New York, 1961, pp. 228,
277.)
Another consequence of the symmetry of a circle is that the perpendicular bisectors

of the three sides of a triangle all pass through the circumcenter 𝑂, which is the center
of the circumscribed circle or circumcircle (Euclid IV.5). This is the only circle that can
be drawn through the three vertices 𝐴, 𝐵, 𝐶. Its radius 𝑅 is called the circumradius of the
triangle. Since the “angle at the center,” ∠𝐵𝑂𝐶 (Figure 1.5b 1.8), is double the angle 𝐴,
the congruent right-angled triangles 𝑂𝐵𝐴′, 𝑂𝐶𝐴′ each have an angle 𝐴 at 𝑂, whence



Figure 1.8.

Figure 1.9.: 1.5c



𝑅 sin𝐴 = 𝐵𝐴′ = 1
2
𝑎,

1.5.4 1.54

2𝑅 = 𝑎
sin𝐴 = 𝑏

sin𝐵 = 𝑐
sin 𝐶

Draw 𝐴𝐷 perpendicular to 𝐵𝐶, and let 𝐴𝐾 be the diameter through 𝐴 of the circumcir-
cle, as in Figure 1.5c 1.9. By Euclid III.21, the right-angled triangles 𝐴𝐵𝐷 and 𝐴𝐾𝐶 are
similar; therefore

𝐴𝐷
𝐴𝐵

= 𝐴𝐶
𝐴𝐾

, 𝐴𝐷 = 𝑏𝑐
2𝑅

.

Since
Δ = 1

2
𝐵𝐶 × 𝐴𝐷

, it follows that

1.5.5 1.55

4Δ𝑅 = 𝑎𝑏𝑐 = 𝑠(𝑠 − 𝑏)(𝑠 − 𝑐) + 𝑠(𝑠 − 𝑐)(𝑠 − 𝑎) + 𝑠(𝑠 − 𝑎)(𝑠 − 𝑏) − (𝑠 − 𝑎)(𝑠 − 𝑏)(𝑠 − 𝑐)

= Δ2
(𝑠 − 𝑎)

+ Δ2
(𝑠 − 𝑏)

+ Δ2
(𝑠 − 𝑐)

− Δ2
𝑠

Δ(𝑟𝑎 + 𝑟𝑏 + 𝑟𝑐 − 𝑟)

.
Hence the five radii are connected by the formula

1.5.6 1.56

4𝑅 = 𝑟𝑎 + 𝑟𝑏 + 𝑟𝑐 − 𝑟

[Court 1, p. 73].



The lengths 𝑠 − 𝑎, 𝑠−, 𝑠 − 𝑐, which appear in 1.52 as well as in Heron’s formula for Δ,
are easily recognized as the radii of three mutually tangent circles with centers 𝐴, 𝐵, 𝐶.
Frederick Soddy (1877–1956, who is famous for his pioneering work on isotopes and
for his original approach to economics) initiated a fascinating discussion of the two
circles that can be drawn to touch all these three, as in Figure 1.5d 1.10, namely a
small circle surrounded by the three, and a large one which usually encloses the three
(though it fails to do so if the triangle is “very obtuse”). Let these two circles have
centers 𝑆, 𝑆′ and radii 𝜎, 𝜎′, so that

𝑆𝐴 = 𝜎 + 𝑠 − 𝑎, 𝑆𝐵 = 𝜎 + 𝑠 − 𝑏, 𝑆𝐶 = 𝜎 + 𝑠 − 𝑐.

Also let 𝑆𝑎, 𝑆𝑏, 𝑆𝑐 denote the angles at 𝑆 in the three triangles 𝑆𝐵𝐶, 𝑆𝐶𝐴, 𝑆𝐴𝐵. Applying
to these triangles the familiar formulas

cos2 1
2
𝐴 =

𝑠(𝑠 − 𝑎)
𝑏𝑐

, sin2 1
2
𝐴 =

(𝑠 − 𝑏)(𝑠 − 𝑐)
𝑏𝑐

for the angle 𝐴 of any triangle 𝐴𝐵𝐶, we obtain

cos2 1
2
𝑆𝑎 =

(𝜎 + 𝑎)𝜎
(𝜎 + 𝑠 − 𝑏)(𝜎 + 𝑠 − 𝑐)

, sin2 1
2
𝑆𝑎 =

(𝑠 − 𝑏)(𝑠 − 𝑐)
(𝜎 + 𝑠 − 𝑏)(𝜎 + 𝑠 − 𝑐)

,
and so on.
By 1.54, we can write sin𝐴, sin𝐵, sin 𝐶 in place of 𝑎, 𝑏, 𝑐 in

𝑎2 − 𝑏2 − 𝑐2 + 2𝑏𝑐 cos𝐴 = 0.

Then we can replace 𝐴, 𝐵, 𝐶 by any three angles whose sum is 180∘, such as
1
2𝑆𝑎,

1
2𝑆𝑏,

1
2𝑆𝑐. Thus

(𝑠 − 𝑏)(𝑠 − 𝑐)
(𝜎 + 𝑠 − 𝑏)(𝜎 + 𝑠 − 𝑐)

−
(𝑠 − 𝑐)(𝑠 − 𝑎)

(𝜎 + 𝑠 − 𝑐)(𝜎 + 𝑠 − 𝑎)
−

(𝑠 − 𝑎)(𝑠 − 𝑏)
(𝜎 + 𝑠 − 𝑎)(𝜎 + 𝑠 − 𝑏)

+2 [
(𝑠 − 𝑐)(𝑠 − 𝑎)

(𝜎 + 𝑠 − 𝑐)(𝜎 + 𝑠 − 𝑎)
⋅

(𝑠 − 𝑎)(𝑠 − 𝑏)
(𝜎 + 𝑠 − 𝑎)(𝜎 + 𝑠 − 𝑏)

⋅
𝜎(𝜎 + 𝑎)

(𝜎 + 𝑠 − 𝑏)(𝜎 + 𝑠 − 𝑐)
]
1
2
= 0,

whence

𝜎 + 𝑠 − 𝑎
𝑠 − 𝑎

− 𝜎 + 𝑠 − 𝑏
𝑠 − 𝑏

− 𝜎 + 𝑠 − 𝑏
𝑠 − 𝑏

− 𝜎 + 𝑠 − 𝑐
𝑠 − 𝑐

+ 2 [
𝜎(𝜎 + 𝑠 − 𝑏 + 𝑠 − 𝑐)

(𝑠 − 𝑏)(𝑠 − 𝑐)
]
1
2
= 0



Figure 1.10.

Dividing by 𝜎 and using the abbreviations

𝛼 = 1
𝑠 − 𝑎

, 𝛽 1
𝑠 − 𝑏

, 𝛾 1
𝑠 − 𝑐

, 𝛿1𝛼,

we deduce

𝛼 − 𝛽 − 𝛾 − 𝛿 + 2[𝛽𝛾 + 𝛾𝛿 + 𝛿𝛽]
1
2 = 0,

whence

(𝛼 − 𝛽 − 𝛾 − 𝛿)2 = 4(𝛽𝛾 + 𝛾𝛿 + 𝛿𝛽)

(𝛼 − 𝛽 − 𝛾 − 𝛿)2 = 4(𝛼𝛽 + 𝛼𝛾 + 𝛼𝛿 + 𝛽𝛾 + 𝛾𝛿 + 𝛿𝛽)

= 2(𝛼 + 𝛽 + 𝛾 + 𝛿)2 − 2(𝛼2 + 𝛽2 + 𝛾2 + 𝛿2)

,

and finally



1.5.7 1.57

2(𝛼2 + 𝛽2 + 𝛾2 + 𝛿2) = (𝛼 + 𝛽 + 𝛾 + 𝛿)2

.
We have now found a perfectly symmetrical formula connecting the four quantities

𝛼, 𝛽, 𝛾, 𝛿, which are the reciprocals of the radii of four mutually tangent circles. The
reciprocal of the radius of a circle is often called its curvature. Soddy preferred the
simpler term bend, as in his poem The Kiss Precise5 of which the middle verse runs as
follows:

Four circles to the kissing come,

The smaller are the benter.

The bend is just the inverse of

The distance from the centre.

Though their intrigue left Euclid dumb

There's now no need for rule of thumb.

Since zero bend's a dead straight line

And concave bends have minus sign,

The sum of the squares of all four bends

Is half the square of their sum.

Solving 1.57 as a quadratic equation for 𝛿, we obtain the two roots

𝛼 + 𝛽 + 𝛾 ± 2(𝛽𝛾 + 𝛾𝛼 + 𝛼𝛽)
1
2 .

The upper sign yields the larger bend, that is, the smaller circle. Thus the radii are6

1.5.8 1.58

𝜎 = (𝛼 + 𝛽 + 𝛾 + 2√𝛽𝛾 + 𝛾𝛼 + 𝛼𝛽)
−1

(1.1)

5 Nature, 137(1936), p. 1021.
6 Steiner [1, pp. 60–63, 524]. See also Hobson [1, p. 216, Ex. 29] and J. Satterly,Mathematics Teacher,

53 (1960), pp. 90–95.



and
𝜎′ = [𝛼 + 𝛽 + 𝛾 − 2 (𝛽𝛾 + 𝛾𝛼 + 𝛼𝛽)

1
2 ]
−1

This last expression is usually negative, indicating a “concave bend”: the circle with
center 𝑆′ encloses the circles with centers 𝐴, 𝐵, 𝐶.

Writing (𝑠 − 𝑎)−1, (𝑠 − 𝑏)−1, (𝑠 − 𝑐)−1 for 𝛼, 𝛽, 𝛾, we find

𝜎 = Δ/{ Δ
𝑠 − 𝑎

+ Δ
𝑠 − 𝑏

+ Δ
𝑠 − 𝑐

+ 2[𝑠(𝑠 − 𝑎 + 𝑠 − 𝑏 + 𝑠 − 𝑐)]
1
2 }

1.5.9 1.59

Δ/(𝑟𝑎 + 𝑟𝑏 + 𝑟𝑐 + 2𝑠)

= Δ/(4𝑅 + 𝑟 + 2𝑠).

Similarly, 𝜎′ = Δ/(4𝑅 + 𝑟 − 2𝑠).

Exercises

1. Find the locus of the image of a fixed point 𝑃 by reflection in a variable line
through another fixed point 𝑂.

2. For the general triangle 𝐴𝐵𝐶, establish the identities

1
𝑟𝑎

+ 1
𝑟𝑏

+ 1
𝑟𝑐

= 1
𝑟
, 1
𝜎

= 1
𝑠 − 𝑎

+ 1
𝑠 − 𝑏

+ 1
𝑠 − 𝑐

+ 2
𝑟
.

3. The lengths of the tangents from the vertex 𝐴 to the incircle and to the three
excircles are respectively

𝑠 − 𝑎, 𝑠, 𝑠 − 𝑐, 𝑠 − 𝑏.



4. Any triangle having two equal internal angle bisectors (each measured from
a vertex to the opposite side) is isosceles. (Hint: If the angles 𝐵 and 𝐶 are not
equal, one must be less, say 𝐵 < 𝐶. Then, if the equal angle bisectors are 𝐵𝑀 and
𝐶𝑁, there is a point 𝑃 on 𝐴𝑁 such that ∠𝑃𝐶𝑁 = 1

2𝐵, and a point 𝑄 on 𝑃𝑁 such that
𝐵𝑄 = 𝐶𝑃. Compare the angles at 𝑃 and 𝑄 in the congruent triangles 𝐵𝑀𝑄 and 𝐶𝑁𝑃.)

5. The circumcenter of an obtuse-angled triangle lies outside the triangle.

6. Where is the circumcenter of a right-angled triangle?

7. Let 𝑈, 𝑉,𝑊 be three points on the respective sides 𝐵𝐶, 𝐶𝐴, 𝐴𝐵 of a triangle ABC. The
perpendiculars to the sides at these points are concurrent if and only if

𝐴𝑊2 + 𝐵𝑈2 + 𝐶𝑉2 = 𝑊𝐵2 + 𝑈𝐶2 + 𝑉𝐴2.

8. Given a triangle 𝐴𝐵𝐶, for what value of 𝑥 is there a point whose distances from
𝐴, 𝐵, 𝐶 are equal to 𝑥 − 𝑎, 𝑥 − 𝑏, 𝑥 − 𝑐? (J.A.H. Hunter.)

9. In Figure 1.54, what happens to 𝑆′ if

2(𝛼2 + 𝛽2 + 𝛾2) = (𝛼 + 𝛽 + 𝛾)2?

Sketch the case in which 𝑎 = 8, 𝑏 = 𝑐 = 5, so that 𝛼 = 1 and 𝛽 = 𝛾 = 1
4 .

10. A triangle is right-angled if and only if 2𝑅 + 𝑟 = 𝑠.

11. Given a point 𝑃 on the circumcircle of a triangle, the feet of the perpendiculars
from 𝑃 to the three sides all lie on a straight line. (This line is commonly called
the Simson line of 𝑃with respect to the triangle, although it was first mentioned
by W. Wallace, thirty years after Simson’s death [Johnson 1, p. 138].)

12. Given a triangle 𝐴𝐵𝐶 and a point 𝑃 in its plane (but not on a side nor on the circum-
circle), let 𝐴1𝐵1𝐶1 be the derived triangle formed by the feet of the perpendiculars
from 𝑃 to the sides 𝐵𝐶, 𝐶𝐴, 𝐴𝐵. Let 𝐴2𝐵2𝐶2 be derived analogously from 𝐴1𝐵1𝐶1
(using the same 𝑃), 𝐴3𝐵3𝐶3 from 𝐴2𝐵2𝐶2. Then 𝐴3𝐵3𝐶3 is directly similar to 𝐴𝐵𝐶.
[Casey 1, p. 253.] (Hint: ∠𝑃𝐵𝐴 = ∠𝑃𝐴1𝐶1 = ∠𝑃𝐶2𝐵2 = ∠𝑃𝐵3𝐴3.) This result has been
extended by A. Oppenheim from the third derived triangle of a triangle to the
𝑛th derived 𝑛-gon of an 𝑛-gon.



Figure 1.11.

1.6 The Euler Line and the Orthocenter

Although the Greeks worked fruitfully, not only in geometry but also in the
most varied fields of mathematics, nevertheless we today have gone beyond
them everywhere and certainly also in geometry.

F. Klein (1849–1925)

[Klein 2, p. 189]

From now on, we shall have various occasions to mention the name of L. Euler
(1707–1783), a Swiss who spent most of his life in Russia, making important contri-
butions to all branches of mathematics. Some of his simplest discoveries are of such
a nature that one can well imagine the ghost of Euclid saying, “Why on earth didn’t I
think of that?”
If the circumcenter 𝑂 and centroid 𝐺 of a triangle coincide, each median is perpen-

dicular to the side that it bisects, and the triangle is “isosceles three ways,” that is,
equilateral. Hence, if a triangle 𝐴𝐵𝐶 is not equilateral, its circumcenter and centroid lie
on a unique line 𝑂𝐺. On this so-called Euler line, consider a point 𝐻 such that 𝑂𝐻 = 3𝑂𝐺,
that is, 𝐺𝐻 = 2𝑂𝐺 (Figure 1.6a 1.11). Since also 𝐺𝐴 = 2𝐴′𝐺, the latter half of Euclid VI.2
tells us that 𝐴𝐻 is parallel to 𝐴′𝑂, which is the perpendicular bisector of 𝐵𝐶. Thus 𝐴𝐻 is
perpendicular to 𝐵𝐶. Similarly 𝐵𝐻 is perpendicular to 𝐶𝐴, and 𝐶𝐻 to 𝐴𝐵.
The line through a vertex perpendicular to the opposite side is called an altitude.

The above remarks [cf. Court 2, p. 101] show that

The three altitudes of any triangle all pass through one point on the Euler line.



This common point 𝐻 of the three altitudes is called the orthocenter of the triangle.

Exercises

1. Through each vertex of a given triangle 𝐴𝐵𝐶 draw a line parallel to the opposite
side. The perpendicular bisectors of the sides of the triangle so formed suggest
an alternative proof that the three altitudes of 𝐴𝐵𝐶 are concurrent. [Gauss 1, vol.
4, p. 396.]

2. The orthocenter of an obtuse-angled triangle lies outside the triangle.

3. Where is the orthocenter of a right-angled triangle?

4. Any triangle having two equal altitudes is isosceles.

5. Construct an isosceles triangle 𝐴𝐵𝐶 (with base BC), given the median 𝐵𝐵′ and
the altitude 𝐵𝐸. (Hint: The centroid is two-thirds of the way from 𝐵 to 𝐵′.) (H.
Freudenthal.)

6. The altitude 𝐴𝐷 of any triangle 𝐴𝐵𝐶 is of length

2𝑅 sin𝐵 sin 𝐶

.

7. Find the perpendicular distance from the centroid 𝐺 to the side 𝐵𝐶.

8. If the Euler line passes through a vertex, the triangle is either right-angled or
isosceles (or both).

9. If the Euler line is parallel to the side 𝐵𝐶, the angles 𝐵 and 𝐶 satisfy

tan𝐵 tan 𝐶 = 3

.
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1.7 The Nine-point Circle

This circle is the first really exciting one to appear in any course on elementary
geometry.

Daniel Pedoe (1910–)

[Pedoe 1, p. 1 ]

The feet of the altitudes (that is, three points like 𝐷 in Figure 1.6a 1.11) form the
orthic triangle (or “pedal triangle”) of 𝐴𝐵𝐶. The circumcircle of the orthic triangle is
called the nine-point circle (or “Feuerbach circle”) of the original triangle, because it
contains not only the feet of the three altitudes but also six other significant points. In
fact,

1.7.1 1.71

The midpoints of the three sides, the midpoints of the lines joining the orthocenter to the three
vertices, and the feet of the three altitudes, all lie on a circle.

Proof [Coxeter 2, 9.29]. Let𝐴′, 𝐵′, 𝐶′, 𝐴′′, 𝐵′′, 𝐶′′ be themidpoints of𝐵𝐶, 𝐶𝐴, 𝐴𝐵, 𝐻𝐴, 𝐻𝐵, 𝐻𝐶,
and let 𝐷, 𝐸, 𝐹 be the feet of the altitudes, as in Figure 1.7a 1.12. By Euclid VI.2 and 4
again, both 𝐶𝐵′ and 𝐵′′𝐶′′ are parallel to 𝐵𝐶 while both 𝐵′𝐶′′ and 𝐶′𝐵′′ are parallel to
𝐴𝐻. Since 𝐴𝐻 is perpendicular to 𝐵𝐶, it follows that 𝐵′𝐶′𝐵′′𝐶′′ is a rectangle. Similarly
𝐶′𝐴′𝐶′𝐴′′ is a rectangle. Hence 𝐴′𝐴′′, 𝐵′𝐵′′, 𝐶′𝐶′′ are three diameters of a circle. Since
these diameters subtend right angles at 𝐷, 𝐸, 𝐹, respectively, the same circle passes
through these points too.
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If four points in a plane are joined in pairs by six distinct lines, they are called the
vertices of a complete quadrangle, and the lines are its six sides. Two sides are said to
be opposite if they have no common vertex. Any point of intersection of two opposite
sides is called a diagonal point. There may be as many as three such points (see Figure
1.7b 1.13).
If a triangle 𝐴𝐵𝐶 is not right-angled, its vertices and orthocenter form a special

kind of quadrangle whose opposite sides are perpendicular. In this terminology, the
concurrence of the three altitudes can be expressed as follows:

1.7.2 1.72

If two pairs of opposite sides of a complete quadrangle are pairs of perpendicular lines, the
remaining sides are likewise perpendicular.
Such a quadrangle 𝐴𝐵𝐶𝐻 is called an orthocentric quadrangle. Its six sides

𝐵𝐶, 𝐶𝐴, 𝐴𝐵, 𝐻𝐴, 𝐻𝐵, 𝐻𝐶

are the sides and altitudes of the triangle 𝐴𝐵𝐶, and its diagonal points 𝐷, 𝐸, 𝐹 are the
feet of the altitudes. Among the four vertices of the quadrangle, our notation seems to
give a special role to the vertex 𝐻. Clearly, however,

1.7.3 1.73

Each vertex of an orthocentric quadrangle is the orthocenter of the triangle formed by the
remaining three vertices.



The four triangles (just one of which is acute-angled) all have the same orthic
triangle and consequently the same nine-point circle.
It is proved in books on affine geometry [such as Coxeter 2, 8.71] that the midpoints

of the six sides of any complete quadrangle and the three diagonal points all lie on
a conic. The above remarks show that, when the quadrangle is orthocentric, this
“nine-point conic” reduces to a circle.

Exercises

1. Of the nine points described in 1.71, howmany coincide when the triangle is (a)
isosceles, (b) equilateral?

2. The feet of the altitudes decompose the nine-point circle into three arcs. If the
triangle is scalene, the remaining six of the nine points are distributed among
the three arcs as follows: One arc contains just one of the six points, another
contains two, and the third contains three.

3. On the arc 𝐴′𝐷 of the nine-point circle, take the point 𝑋 one-third of the way from
𝐴′ to 𝐷. Take points 𝑌, 𝑍 similarly, on the arcs 𝐵′𝐸, 𝐶′𝐹. Then 𝑋𝑌𝑍 is an equilateral
triangle.

4. The incenter and the excenters of any triangle form an orthocentric quadrangle.
[Casey 1, p. 274.]

5. In the notation of §1.5, the Euler line of Ialblc is IO.

6. The four triangles that occur in an orthocentric quadrangle have equal circum-
radii.

1.8 Two Extremum Problems

Most people have some appreciation ofmathematics, just asmost people can
enjoy a pleasant tune; and there are probably more people really interested
in mathematics than in music.

G. H. Hardy [2, p. 26]
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Their interest will be stimulated if only we can eliminate the aversion toward
mathematics that so many have acquired from childhood experiences.

Hans Rademacher (1892–)
[Rademacher and Toeplitz 1, p. 5]
We shall describe the problems of Fagnano and Fermat in considerable detail be-

cause of the interesting methods used in solving them. The first was proposed in
1775 by J. F. Toschi di Fagnano, who solved it by means of differential calculus. The
method given here was discovered by L. Fejer while he was a student [Rademacher
and Toeplitz 1, pp. 30–32].
FAGNANO′S PROBLEM. In a given acute-angled triangle 𝐴𝐵𝐶, inscribe a triangle 𝑈𝑉𝑊

whose perimeter is as small as possible.
Consider first an arbitrary triangle 𝑈𝑉𝑊with 𝑈 on 𝐵𝐶, 𝑉 on 𝐶𝐴,𝑊 on 𝐴𝐵. Let𝑈′, 𝑈′′ be

the images of 𝑈 by reflection in 𝐶𝐴, 𝐴𝐵, respectively. Then

𝑈𝑉 + 𝑉𝑊 + 𝑊𝑈 = 𝑈′𝑉 + 𝑉𝑊 + 𝑊𝑈′′,

which is a path from 𝑈′ to 𝑈", usually a broken fine with angles at 𝑉 and𝑊. Such a
path from 𝑈′ to 𝑈" is minimal when it is straight, as in Figure 1.8a.
Hence, among all inscribed triangles with a given vertex 𝑈 on 𝐵𝐶, the one with

smallest perimeter occurs when 𝑉 and𝑊 lie on the straight line 𝑈′𝑈′′. In this way we
obtain a definite triangle 𝑈𝑉𝑊 for each choice of 𝑈 on BC. The problem will be solved
when we have chosen 𝑈so as to minimize 𝑈′𝑈′′, which is equal to the perimeter.
Since 𝐴𝑈′ and 𝐴𝑈′′ are images of 𝐴𝑈 by reflection in 𝐴𝐶 and 𝐴𝐵, they are congruent

and
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∠𝑈′𝐴𝑈′′ = 2𝐴.

Thus 𝐴𝑈′𝑈′′ is an isosceles triangle whose angle at 𝐴 is independent of the choice
of 𝑈. The base 𝑈′𝑈′′ is minimal when the equal sides are minimal, that is, when 𝐴𝑈 is
minimal. In other words, 𝐴𝑈 is the shortest distance from the given point 𝐴 to the given
line 𝐵𝐶. Since the hypotenuse of a right-angled triangle is longer than either cathetus,
the desired location of 𝑈 is such that 𝐴𝑈 is perpendicular to 𝐵𝐶. Thus 𝐴𝑈 is the altitude
from 𝐴. This choice of 𝑈 yields a unique triangle 𝑈𝑉𝑊whose perimeter is smaller than
that of any other inscribed triangle. Since we could equally well have begun with 𝐵 or
𝐶 instead of 𝐴, we see that 𝐵𝑉 and 𝐶𝑊 are the altitudes from 𝐵 and 𝐶. Hence The triangle
of minimal perimeter inscribed in an acute-angled triangle 𝐴𝐵𝐶 is the orthic triangle of 𝐴𝐵𝐶.

The same method can be used to prove the analogous result for spherical trian-
gles[Steiner 2, p. 45, No. 7].

The other problem, proposed by Pierre Fermat (1601–1665), likewise seeks to
minimize the sum of three distances. The solution given here is due to J. E. Hofmann.7

FERMAT’S PROBLEM. In a given acute-angled triangle ABC, locate a point 𝑃 whose dis-
tances from 𝐴, 𝐵, 𝐶 have the smallest possible sum.

Consider first an arbitrary point 𝑃 inside the triangle. Join it to 𝐴, 𝐵, 𝐶 and rotate
the inner triangle 𝐴𝑃𝐵 through 60∘ about 𝐵 to obtain 𝐶′𝑃′𝐵, so that 𝐴𝐵𝐶′ and 𝑃𝐵𝑃′are
equilateral triangles, as in Figure 1.8b. Then

𝐴𝑃 + 𝐵𝑃 + 𝐶𝑃 = 𝐶′𝑃′ + 𝑃′𝑃 + 𝑃𝐶,

7 Elementare Losung einer Minimumsaufgabe , Zeitschrift fUr mathematischen und naturwis-
senschaftlichen Unterricht, 60 (1929), pp. 22–23.
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which is a path from 𝐶 to 𝐶, usually a broken line with angles at 𝑃′ and 𝑃. Such a
path (joining C’ to C by a sequence of three segments) is minimal when it is straight,
in which case

∠𝐵𝑃𝐶 = 180∘ − ∠𝐵𝑃𝑃′ = 120∘

and ∠𝐴𝑃𝐵 = ∠𝐶𝑃′𝐵 = 180∘ − ∠𝑃𝑃′𝐵 = 120∘.

Thus the desired point 𝑃, for which 𝐴𝑃 + 𝐵𝑃 + 𝐶𝑃 is minimal, is the point from which
each of the sides 𝐵𝐶, 𝐶𝐴, 𝐴𝐵 subtends an angle of 120∘. This “Fermat point” is most
simply constructed as the second intersection of the line 𝐶𝐶′ and the circle 𝐴𝐵𝐶′ (that
is, the circumcircle of the equilateral triangle 𝐴𝐵𝐶′).

It has been pointed out [for example by Pedoe 1, pp. 11–12] that the triangle 𝐴𝐵𝐶
need not be assumed to be acute-angled. The above solution is valid whenever there
is no angle greater than 120∘.

Instead of the equilateral triangle 𝐴𝐵𝐶′ on 𝐴𝐵, we could just as well have drawn
an equilateral triangle 𝐵𝐶𝐴′ on 𝐵𝐶, or 𝐶𝐴𝐵′ on 𝐶𝐴, as in Figure 1.8c. Thus the three
lines 𝐴𝐴′, 𝐵𝐵′, 𝐶𝐶′ all pass through the Fermat point 𝑃, and any two of them provide an
alternative construction for it. Moreover, the line segments 𝐴𝐴′, 𝐵𝐵′, 𝐶𝐶′ are all equal
to 𝐴𝑃 + 𝐵𝑃 + 𝐶𝑃. Hence

If equilateral triangles 𝐵𝐶𝐴′, 𝐶𝐴𝐵′, 𝐴𝐵𝐶 are drawn outwards on the sides of any triangle 𝐴𝐵𝐶,
the line segments 𝐴𝐴′, 𝐵𝐵′, 𝐶𝐶′ are equal, concurrent, and inclined at 60∘ to one another.



Exercises

1. InFigure1.8a,𝑈𝑉 and 𝑉𝑊makeequal angleswith𝐶𝐴. Deduce that the orthocenter
of any triangle is the incenter of its orthic triangle. (In other words, if 𝐴𝐵𝐶 is a
triangular billiard table, a ball at 𝑈, hit in the direction 𝑈𝑉, will go round the
triangle 𝑈𝑉𝑊 indefinitely, that is, until it is stopped by friction.)

2. How does Fagnano’s problem collapse when we try to apply it to a triangle 𝐴𝐵𝐶
in which the angle 𝐴 is obtuse?

3. The circumcircles of the three equilateral triangles inFigure 1.8c all pass through
𝑃, and their centers form a fourth equilateral triangle.8

4. Three holes, at the vertices of an arbitrary triangle, are drilled through the top
of a table. Through each hole a thread is passed with a weight hanging from it
below the table. Above, the three threads are all tied together and then released.
If the three weights are all equal, where will the knot come to rest?

5. Four villages are situated at the vertices of a square of side one mile. The inhab-
itants wish to connect the villages with a system of roads, but they have only
enoughmaterial to make √3 + 1miles of road. How do they proceed? [Courant
and Robbins 1, p. 392.]

6. Solve Fermat’s problem for a triangle 𝐴𝐵𝐶with 𝐴 > 120∘, and for a convex quad-
rangle 𝐴𝐵𝐶𝐷.

7. If two points 𝑃, 𝑃′, inside a triangle 𝐴𝐵𝐶, are so situated that ∠𝐶𝐵𝑃𝑍𝑃𝐵𝑃′ = 𝑍𝑃′𝐵𝐴,
∠𝐴𝐶𝑃′ = ∠𝑃′𝐶𝑃 = ∠𝑃𝐶𝐵, then ∠𝐵𝑃′𝑃 = ∠𝑃𝑃′𝐶.

8. If four squares are placed externally (or internally) on the four sides of any
parallelogram, their centers are the vertices of another square. [Yaglom 1, pp.
96–97.]

9. Let 𝑋, 𝑌, 𝑍 be the centers of squares placed externally on the sides 𝐵𝐶, 𝐶𝐴, 𝐴𝐵 of a
triangle 𝐴𝐵𝐶.Then the segment 𝐴𝑋 is congruent and perpendicular to 𝑌𝑍 (also 𝐵𝑌
to 𝑍𝑋 and 𝐶𝑍 to 𝑋𝑌).(W. A. J. Luxemburg.)

8 Court [1, pp. 105–107]. See also 𝑀𝑎𝑡ℎ𝑒𝑠𝑖𝑠 1938, p. 293 (footnote, where this theorem is attributed
to Napoleon); and Forder [2, p. 40] for some interesting generalizations.



10. Let 𝑍, 𝑋, 𝑈, 𝑉 be the centers of squares placed externally on the sides 𝐴𝐵, 𝐵𝐶, 𝐶𝐷, 𝐷𝐴
of any simple quadrangle (or “quadrilateral”)𝐴𝐵𝐶𝐷. Then the segment 𝑍𝑈 (joining
the centers of two “opposite” squares) is congruent and perpendicular to 𝑋𝑉.
[Forder 2, p. 40.]

1.9 Morley’s Theorem

Many of the proofs inmathematics are very long and intricate. Others, though
not long, are very ingeniously constructed.

E. C. Titchmarsh (1899–1963)
[Titchmarsh 1, p. 23]

One of the most surprising theorems in elementary geometry was discovered about
1899 by F. Morley (whose son Christopher wrote novels such as Thunder on the Left.) He
mentioned it to his friends, who spread it over the world in the form of mathematical
gossip. At last, after ten years, a trigonometrical proof by M. Satyanarayana and an
elementary proof by M. T. Naraniengar were published.9

MORLEY′S THEOREM. The three points of intersection of the adjacent trisectors of the
angles of any triangle form an equilateral triangle.
In other words, any triangle 𝐴𝐵𝐶 yields an equilateral triangle 𝑃𝑄𝑅 if the angles 𝐴, 𝐵, 𝐶

are trisected by 𝐴𝑄 and 𝐴𝑅, 𝐵𝑅 and 𝐵𝑃, 𝐶𝑃 and 𝐶𝑄, as in Figure 1.9a. (Much trouble
is experienced if we try a direct approach, but the difficulties disappear if we work
backwards, beginning with an equilateral triangle and building up a general triangle
which is afterwards identified with the given triangle 𝐴𝐵𝐶.)
On the respective sides 𝑄𝑅, 𝑅𝑃, 𝑃𝑄 of a given equilateral triangle 𝑃𝑄𝑅, erect isosceles

triangles 𝑃′𝑄𝑅,𝑄′𝑅𝑃, 𝑅′𝑃𝑄whose base angles 𝛼, 𝛽, 𝛾 satisfy the equation and inequali-
ties

𝛼 + 𝛽 + 𝛾 = 120∘, 𝛼 < 60∘, 𝛽 < 60∘, 𝛾 < 60∘.

9 Mathematical Questions and their Solutions from the Educational Times (New Series), 15 (1909), pp.
23–24,47. See also C. H. Chepmell and R. F. Davis, Mathematical Gazette, 11 (1923), pp. 85–86;
F. Morley, American Journal of Mathematics, 51 (1929), pp. 465–472, H. D. Grossman, American
Mathematical Monthly, 50 (1943), p. 552, and L. Bankoff, Mathematics Magazine, 35 (1962), pp.
223–224. The treatment given here is due to Raoul Bricard, Nouvelles Annates de Mathmatiques (5),
1 (1922), pp. 254—258. A similar proof was devised independently by Bottema [1, p. 34].



Figure 1.17.



Extend the sides of the isosceles triangles below their bases until they meet again
in points 𝐴, 𝐵, 𝐶. Since 𝛼 + 𝛽 + 𝛾 + 60∘ = 180∘, we can immediately infer the measurement
of some other angles, as marked in Figure 1.9a. For instance, the triangle 𝐴𝑄𝑅must
have an angle 60∘—𝛼 at its vertex 𝐴, since its angles at 𝑄 and 𝑅 are 𝛼 + 𝛽 and 𝛾 + 𝛼.
Referring to 1.51, we see that one way to characterize the incenter 𝐼 of a triangle 𝐴𝐵𝐶

is to describe it as lying on the bisector of the angle 𝐴 at such a distance that

∠𝐵𝐼𝐶 = 90∘ + 1
2
𝐴.

Applying this principle to the point 𝑃 in the triangle 𝑃′𝐵𝐶, we observe that the line
𝑃𝑃′ (which is a median of both the equilateral triangle 𝑃𝑄𝑅 and the isosceles triangle
𝑃′𝑄) bisects the angle at 𝑃′. Also the half angle at 𝑃′90∘—𝛼, and

∠𝐵𝑃𝐶 = 180∘ − 𝛼 = 90∘ + (90∘ − 𝛼).

Hence 𝑃 is the incenter of the triangle𝑃′𝐵𝐶. Likewise 𝑄 is the incenter of 𝑄′𝐶𝐴, and 𝑅
of𝑅′𝐴𝐵. Therefore all the three small angles at 𝐶 are equal; likewise at 𝐴 and at 𝐵. In
other words, the angles of the triangle𝐴𝐵𝐶 are trisected.
The three small angles at 𝐴 are each 1

3𝐴 = 60∘ − 𝛼; similarly at𝐵and C. Thus

𝛼 − 60∘ − 1
3
𝐴, 𝛽 = 60∘ − 1

3
𝐵, 𝛾 = 60∘ − 1

3
𝐶.

By choosing these values for the base angles of our isosceles triangles, we can ensure
that the above procedure yields a triangle 𝐴𝐵𝐶 that is similar to any given triangle.
This completes the proof.

Exercises

1. The three lines 𝑃𝑃′, 𝑄𝑄′, 𝑅𝑅′ (Figure 1.9a) are concurrent. In other words, the
trisectors of𝐴, 𝐵, 𝐶meet again to formanother triangle𝑃′𝑄′𝑅′which is perspective
with the equilateral triangle 𝑃𝑄𝑅. (In general 𝑃′𝑄′𝑅′ is not equilateral.)

2. What values of 𝛼, 𝛽, 𝛾will make the triangle 𝐴𝐵𝐶 (i) equilateral, (ii) right-angled
isosceles? Sketch the figure in each case.



3. Let 𝑃1 and 𝑃2 (on 𝐶𝐴 and 𝐴𝐵) be the images of 𝑃 by reflection in 𝐶𝑃′ and 𝐵𝑃′. Then
the four points 𝑃1, 𝑄, 𝑅, 𝑃2 are evenly spaced along a circle through 𝐴. In the
special case when the triangle 𝐴𝐵𝐶 is equilateral, these four points occur among
the vertices of a regular enneagon (9-gon) in which 𝐴 is the vertex opposite to
the side 𝑄𝑅.





2 Regular Polygons

We begin this chapter by discussing (without proofs) the possibility of constructing
certain regular polygons with the instruments allowed by Euclid. We then consider
all these polygons, regardless of the question of constructibility, from the standpoint
of symmetry. Finally, we extend the concept of a regular polygon so as to include star
polygons.

2.1 Cyclotomy

One, two! One, two! And through and through The vorpal blade went snicker-
snack!

Lewis Carroll

[Dodgson 2, Chap. 1 ]

Euclid’s postulates imply a restriction on the instruments that he allowed formaking
constructions, namely the restriction to ruler (or straightedge) and compasses. He
constructed an equilateral triangle (I.1), a square (IV.6), a regular pentagon (IV.11), a
regular hexagon (IV.15), and a regular 15-gon (IV. 16). The number of sides may be
doubled again and again by repeated angle bisections. It is natural to ask which other
regular polygons can be constructed with Euclid’s instruments. This question was
completely answered by Gauss (1777–1855) at the age of nineteen [see Smith 2, pp.
301–302]. Gauss found that a regular 𝑛-gon, say {𝑛}, can be so constructed if and only
if the odd prime factors of 𝑛 are distinct “Fermat primes”

𝐹𝑘 = 22𝑘 + 1.

39



Figure 2.1.

The only known primes of this kind are

𝐹0 = 21 + 1 = 3, 𝐹1 = 22 + 1 = 5, 𝐹2 = 24 + 1 = 17, 𝐹3 = 28 + 1 = 257, 𝐹4 = 216 + 1 = 65537.

Since 7 is not a Fermat prime, Euclid’s instruments will not suffice for the construc-
tion of a regular heptagon {7}. Since the factors of 9 are not distinct, the same is true
for a regular enneagon {9}.

To inscribe a regular pentagon in a given circle, simpler constructions than Eu-
clid’s were given by Ptolemy and Richmond.1 The former has been repeated in many
textbooks. The latter is as follows (Figure 2.1a 2.1).

To inscribe a regular pentagon 𝑃0𝑃1𝑃2𝑃3𝑃4 in a circle with center 𝑂: draw the radius
𝑂𝐵 perpendicular to 𝑂𝑃𝑄; join 𝑃0 to 𝐷, the midpoint of 𝑂𝐵; bisect the angle 𝑂𝐷𝑃0 to
obtain 𝑁1 on 𝑂𝑃0; and draw 𝑁1𝑃1 perpendicular to 𝑂𝑃0 to obtain 𝑃1 on the circle. Then
𝑃0𝑃1 is a side of the desired pentagon.

Richmond also gave a simple construction for the {17} 𝑃0𝑃1…𝑃16 (Figure 2.1b 2.2).
Join 𝑃0 to 𝐽, one quarter of the way from 𝑂 to 𝐵. On the diameter through 𝑃0 take 𝐸, 𝐹,
so that ∠𝑂𝐽𝐸 is one quarter of 𝑂𝐽𝑃0 and ∠𝐹𝐽𝐸 is 45°. Let the circle on 𝐹𝑃0 as diameter
cut 𝑂𝐵 in 𝐾, and let the circle with center 𝐸 and radius 𝐸𝐾 cut 𝑂𝑃0 in 𝑁3 (between 𝑂
and 𝑃0) and 𝑁5. Draw perpendiculars to 𝑂𝑃0 at these two points, to cut the original
circle in 𝑃3 and 𝑃5. Then the arc 𝑃3𝑃5 (and likewise 𝑃1𝑃3) is

2
17 of the circumference.

(The proof involves repeated application of the principle that the roots of the equation
𝑥2 + 2𝑥 cot2𝐶 − 1 = 0 are tan 𝐶 and − cot 𝐶.)

1 H. W. 𝑅1chmond, Quarterly Journal of Mathematics, 26 (1893), pp. 296–297; see also H. E. Dudeney,
Amusements in Mathematics (London 1917), p. 38.



Figure 2.2.

Richelot and Schwendenwein constructed the regular 257-gon about 1898. J. Her-
mes spent ten years on the regular 65537-gon and deposited the manuscript in a
large box in the University of Göttingen, where it may still be found.

The next number of the form 𝐹𝑘 = 22𝑘 + 1 is 𝐹5 = 4294967297. Fermat incorrectly
assumed it to be prime. G. T. Bennett gave the following neat proof2 that it is composite
[Hardy andWright 1, p. 14]: the number

641 = 54 + 24 = 5 ⋅ 27 + 1

dividing both

54 ⋅ 228 + 232

and
54 ⋅ 228 − 1

divides their difference, which is 𝐹5.

The question naturally arises whether 𝐹𝑘 may be prime for some greater value
of 𝑘. It is now known that this can happen only if 𝐹𝑘 divides 3(𝐹𝑘−1)/2 + 1. Using this
criterion, electronic computing machines have shown that 𝐹𝑘 is composite for 5 ≤ 𝑘 ≤
16. Therefore Hermes’s construction is the last of its kind that will ever be undertaken!

2 Rediscovered by P. Kanagasabapathy,Mathematical Gazette, 42 (1958), p. 310.



EXERCISES

1. Verify the correctness of Richmond’s construction for {5} (Figure 2.1a).

2. Assuming Richmond’s construction for {17}, how would you inscribe {51} in the
same circle?

2.2 Angle Trisection

To trisect a given angle, we may proceed to find the sine of the angle—say
a—then, if 𝑥 is the sine of an angle equal to one-third of the given angle, we
have 4𝑥3 = 3𝑥 − 𝑎.

W. W. Rouse Ball (1850--1925)

[Ball 1 p. 327]

The problem of trisecting an arbitrary angle with ruler and compasses exercised
the ingenuity of professional and amateur mathematicians for two thousand years
[Ball 1, pp. 333–335]. It is, of course, easy to trisect certain particular angles, such as
a right angle. But any construction for trisecting an arbitrary angle could be applied
to an angle of 60°, and then we could draw a regular enneagon. Since the number 9
has 3 as a repeated factor, this polygon cannot be drawn with ruler and compasses.
In view of Gauss’s discovery, we may say that it has been known since 1796 that the
classical trisection problem can never be solved.
This is probably the reason why Morley’s Theorem (§1.9) was not discovered till

the twentieth century: people felt uneasy about mentioning the trisectors of an angle.
However, although the trisectors cannot be constructed by means of the ruler and
compasses, they can be found in other ways [Cundy and Rollett 1, pp. 208–211]. Even
if these more versatile instruments had never been discovered, the theorem would
still be meaningful. Most mathematicians are willing to accept the existence of things
that they have not been able to construct. For instance, it was proved in 1909 that the
Fermat numbers 𝐹7 and 𝐹8 are composite, but their smallest prime factors still remain
to be computed.



EXERCISE

The number 2𝑛 + 1 is composite whenever 𝑛 is not a power of 2.

2.3 Isometry

One way of describing the structure of space, preferred by both Newton and
Helmholtz, is through the notion of congruence. Congruent parts of space 𝑉,
𝑉′ are such as can be occupied by the same rigid body in two of its positions.
If youmove the body from one into the other position the particle of the body
covering a point 𝑃 of 𝑉 will afterwards cover a certain point 𝑃 of 𝑉, and thus
the result of the motion is a mapping 𝑃 → 𝑃′ of 𝑉 upon 𝑉′. We can extend the
rigid body either actually or in imagination so as to cover an arbitrarily given
point 𝑃 of space, and hence the congruent mapping 𝑃 → 𝑃′ can be extended
to the entire space.

Hermann Weyl (1885--1955)

[Weyl 1, p, 43]

We shall find it convenient to use the word transformation in the special sense of
a one-to-one correspondence 𝑃 → 𝑃′ among all the points in the plane (or in space),
that is, a rule for associating pairs of points, with the understanding that each pair
has a first member 𝑃 and a second member 𝑃′ and that every point occurs as the first
member of just one pair and also as the secondmember of just one pair. Itmay happen
that the members of a pair coincide, that is, that 𝑃′ coincides with 𝑃; in this case 𝑃 is
called an invariant point (or “double point”) of the transformation.
In particular, an isometry (or “congruent transformation,” or “congruence”) is a

transformation which preserves length, so that, if (𝑃, 𝑃′) and (𝑄, 𝑄′) are two pairs of
corresponding points, we have 𝑃𝑄 = 𝑃′𝑄′ ∶ 𝑃𝑄 and 𝑃′𝑄′ are congruent segments. For
instance, a rotation of the plane about 𝑃 (or about a line through 𝑃 perpendicular to
the plane) is an isometry having 𝑃 as an invariant point, but a translation (or “parallel
displacement”) has no invariant point: every point is moved.
A reflection is the special kind of isometry in which the invariant points consist of all

the points on a line (or plane) called themirror.



A still simpler kind of transformation (so simple that itmay at first seem too trivial to
be worth mentioning) is the identity,which leaves every point unchanged. The result
of applying several transformations successively is called their product. If the product
of two transformations is the identity, each is called the inverse of the other, and their
product in the reverse order is again the identity.

2.3.1 2.31

If an isometry has more than one invariant point, it must be either the identity or a reflection.
To prove this, let 𝐴 and 𝐵 be two invariant points, and P any point not on the line 𝐴𝐵

(Figure 1.36). The corresponding point 𝑃′, satisfying

𝐴𝑃′ = 𝐴𝑃, 𝐵𝑃′ = 𝐵𝑃,

must He on the circle with center 𝐴 and radius 𝐴𝑃, and on the circle with center 𝐵
and radius 𝐵𝑃. Since 𝑃 is not on 𝐴𝐵, these circles do not touch each other but intersect
in two points, one of which is 𝑃. Hence 𝑃′ is either 𝑃 itself or the image of 𝑃 by reflection
in 𝐴𝐵.

2.4 Symmetry

Tyger! Tyger! burning bright
In the forests of the night,
What immortal hand or eye
Dare frame thy fearful symmetry?

William Blake (1757--1827)

When we say that a figure is “symmetrical” we mean that we can apply certain
isometries, called symmetry operations,which leave the whole figure unchanged while
permuting its parts. For example, the capital letters E and A (Figure 2.4a) have bi-
lateral symmetry, the mirror being horizontal for the former, vertical for the latter.
The letter N (Figure 2.46) is symmetrical by a half-turn, or rotation through 180° (or
“reflection in a point,” or “central inversion”), which may be regarded as the result of
reflecting horizontally and then vertically, or vice versa. The swastika (Figure 2.4c) is
symmetrical by rotation through any number of right angles.



Figure 2.3.

Figure 2.4.

In counting the symmetry operations of a figure, it is usual to include the identity;
any figure has this trivial symmetry. Thus the swastika admits four distinct symmetry
operations: rotations through 1, 2, 3, 𝑜𝑟4 right angles. The last is the identity. The first
and third are inverses of each other, since their product is the identity.
This use of the word “product” suggests an algebraic symbolism in which the trans-

formations are denoted by capital letters while 1 denotes the identity. (Instead of
1, some authors write E.) Thus if 𝑆 is the counterclockwise quarter-turn, the four
symmetry operations of the swastika are

𝑆, 𝑆2, 𝑆3 = 𝑆−1𝑎𝑛𝑑𝑆4 = 1.

Since the smallest power of 𝑆 that is equal to the identity is the fourth power, we say
that 𝑆 is of period 4. Similarly 𝑆2, being a half-turn, is of period 2 [see Coxeter 1, p. 39].
The only transformation of period 1 is the identity. A translation is aperiodic (that is,
it has no period), but it is conveniently said to be of infinite period.
Some figures admit both reflections and rotations as symmetry operations. The

letter H (Figure 2.4c?) has a horizontal mirror (like E) and a vertical mirror (like A),
as well as a center of rotational symmetry (like N) where the two mirrors intersect.
Thus it has four symmetry operations: the identity 1, the horizontal reflection 𝑅1, the
vertical reflection 𝑅2, and the half-turn 𝑅1𝑅2 = 𝑅2𝑅1.



Figure 2.5.

Figure 2.6.

EXERCISES

1. Every isometry of period 2 is either a reflection or a half-turn [Bachmann 1, pp.
2–3],

2. Express (a) a half-turn, (b) a quarter-turn, as transformations of (i) Cartesian
coordinates, (ii) polar coordinates. (Take the origin to be the center of rotation.)

2.5 Groups

Symmetry, as wide or as narrow as you may define its meaning, is one idea
by which man through the ages has tried to comprehend and create order,
beauty, and perfection.

Hermann Weyl [1, p. 5]



A set of transformations [Birkhoff and MacLane 1, pp. 119–122] is said to form
a group if it contains the inverse of each and the product of any two (including the
product of one with itself or with its inverse). The number of distinct transformations
is called the order of the group. (This may be either finite or infinite.) Clearly the
symmetry operations of any figure form a group. This is called the symmetry group
of the figure. In the extreme case when the figure is completely irregular (like the
numeral 6) its symmetry group is of order one, consisting of the identity alone.
The symmetry group of the letter E or A (Figure 2.4a) is the so-called dihedral group

of order 2, generated by a single reflection and denoted by 𝐷1. (The name is easily
remembered, as the Greek origin of the word “dihedral” is almost equivalent to the
Latin origin of “bilateral.”) The symmetry group of the letter N (Figure 2.4b) is likewise
of order 2, but in this case the generator is a half-turn and we speak of the cyclic group,
𝐶2. The two groups 𝐷1 and 𝐶2 are abstractly identical or isomorphic; they are different
geometrical representations of the single abstract group of order 2, defined by the
relation

2.5.1 2.51

𝑅2 = 1

or 𝑅 = 𝑅−1 [Coxeter and Moser 1, p. 1].
The symmetry group of the swastika is 𝐶4, the cyclic group of order 4, generated

by the quarter-turn S and abstractly defined by the relation 𝑆4 = 1. That of the letter
H (Figure 2.4d) is 𝐷2, the dihedral group of order 4, generated by the two reflections
𝑅1, 𝑅2 and abstractly defined by the relations

2.5.2 2.52

𝑅21 = 1, 𝑅22 = 1, 𝑅1𝑅2 = 𝑅2𝑅1.

Although 𝐶4 and 𝐷2 both have order 4, they are not isomorphic: they have a different
structure, different “multiplication tables.” To see this, it suffices to observe that
𝐶4 contains two operations of period 4, whereas all the operations in 𝐷2 (except the
identity) are of period 2: the generators obviously, and their product also, since



(𝑅1𝑅2)
2 = 𝑅1𝑅2𝑅1𝑅2 = 𝑅1𝑅2𝑅2𝑅1 = 𝑅1𝑅

2
2𝑅1 = 𝑅1𝑅1 = 𝑅21 = 1.

This last remark illustrates what wemean by saying that 2.52 is an abstract definition
for 𝐷2, namely that every true relation concerning the generators 𝑅1, 𝑅2 is an algebraic
consequence of these simple relations. An alternative abstract definition for the same
group is

2.5.3 2.53

𝑅21 = 1, 𝑅22 = 1, (𝑅1𝑅2)2 = 1,

from which we can easily deduce 𝑅1𝑅2 = 𝑅2𝑅1.
The general cyclic group 𝐶𝑛, of order 𝑛, has the abstract definition

2.5.4 2.54

𝑆𝑛 = 1.

Its single generator 𝑆, of period 𝑛, is conveniently represented by a rotation through
360∘/𝑛. Then 𝑆𝑘 is a rotation through 𝑘 times this angle, and the 𝑛 operations in 𝐶𝑛 are
given by the values of 𝑘 from 1 to 𝑛, or from 0 to 𝑛 − 1. In particular, 𝐶5 occurs in nature
as the symmetry group of the periwinkle flower.

EXERCISE

Express a rotation through angle a about the origin as a transformation of (i) polar
coordinates, (ii) Cartesian coordinates. If 𝑓(𝑟, 0) = 0 is the equation for a curve in polar
coordinates, what is the equation for the transformed curve?

2.6 The Product Of Two Reflections

Thou in thy lake dost see
Thyself.

J.M. Legare (1823--1859)

(To a Lily)



Figure 2.7.

In any group of transformations, the associative law

(𝑅𝑆)𝑇 = 𝑅(𝑆𝑇)

is automatically satisfied, but the commutative law

𝑅𝑆 = 𝑆𝑅

does not necessarily hold, and care must be taken in inverting a product, for exam-
ple,

(𝑅𝑆)−1 = 𝑆−1𝑅−1,

not 𝑅−1𝑆1. (This becomes clear when we think of 𝑅 and 𝑆 as the operations of putting
on our socks and shoes, respectively.)

The product of reflections in two intersecting fines (or planes) is a rotation through
twice the angle between them. In fact, if 𝐴, 𝐵, 𝐶, 𝐷, … are evenly spaced on a circle with
center𝑂, let 𝑅1 and 𝑅2 be the reflections in𝑂𝐵 and𝑂𝐶 (Figure 2.6a). Then 𝑅1 reflects the
triangle 𝑂𝐴𝐵 into 𝑂𝐴𝐵, which is reflected by 𝑅2 to 𝑂𝐶𝐷; thus 𝑅1𝑅2 is the rotation through
∠𝐴𝑂𝐶 or ∠𝐵𝑂𝐷, which is twice ∠𝐵𝑂𝐶. Since a rotation is completely determined by its
center and its angle, 𝑅1𝑅2 is equal to the product of reflections in any two lines through
𝑂making the same angle as 𝑂𝐵 and 𝑂𝐶. (The reflections in 𝑂𝐴 and 𝑂𝐵 are actually
𝑅1𝑅2𝑅1 and 𝑅1 whose product is 𝑅1𝑅2𝑅

2
1 = 𝑅1𝑅2.) In particular, the half-turn about 𝑂is

the product of reflections in any two perpendicular lines through 𝑂.



Figure 2.8.

Since 𝑅1𝑅2 is a counterclockwise rotation, 𝑅2𝑅1 is the corresponding clockwise
rotation; in fact,

𝑅2𝑅1 = 𝑅−12 𝑅−11 = (𝑅1𝑅2)
−1.

This is the same as 𝑅1𝑅2 if the two mirrors are at right angles, i n which case 𝑅1𝑅2 is a
half-turn and (𝑅1𝑅2)

2 = 1.

EXERCISES

1. The product of quarter-turns (in the same sense) about 𝐶 and 𝐵 is the half-turn
about the center of a square having 𝐵𝐶 for a side.

2. Let 𝐴𝐶𝑃𝑄 and 𝐵𝐴𝑅𝑆 be squares on the sides 𝐴𝐶 and 𝐵𝐴 of a triangle 𝐴𝐵𝐶. If 𝐵 and 𝐶
remain fixed while 𝐴 varies freely, 𝑃𝑆 passes through a fixed point.

2.7 The Kaleidoscope

𝐷2is a special case of the general dihedral group 𝐷𝑛, which is , for𝑛 > 2, the symmetry
group of the regular 𝑛-gon, {𝑛}. (See Figure 2.7a for the cases 𝑛 = 3, 4, 5.) This is
evidently a group of order 2𝑛, consisting of 𝑛 rotations (through the 𝑛 effectively
distinct multiples of 360∘/𝑛) and 𝑛 reflections. When 𝑛 is odd, each of the 𝑛mirrors
joins a vertex to the midpoint of the opposite side; when 𝑛 is even, 12𝑛mirrors join
pairs of opposite vertices and bisect pairs of opposite sides[see Birkhoff and MacLane
1, pp. 117–118, 135].



The 𝑛 rotations are just the operations of the cyclic group 𝐶𝑛.Thus the operations
of 𝐷𝑛 include all the operations of 𝐶𝑛:in technical language, 𝐶𝑛 is a subgroup of 𝐷𝑛. The
rotation through 360∘/𝑛, which generates the subgroup, may be described as the
product 𝑆 = 𝑅1𝑅2 of reflections in two adjacent mirrors (such as 𝑂𝐵 and 𝑂𝐶 in Figure
2.7a) which are inclined at 180∘/𝑛.

Let 𝑅1, 𝑅2, … , 𝑅𝑛 denote the 𝑛 reflections in their natural order of arrangement. Then
𝑅1𝑅𝑓𝑐+1, being the product of reflections in twomirrors inclined at 𝑘 times 180°/m, is a
rotation through 𝑘 times 360∘/𝑛:

𝑅1𝑅𝑘+1 = 𝑆𝑘.

Thus 𝑅𝑘+1 = 𝑅1𝑆
𝑘, and the 𝑛 reflections may be expressed as

𝑅1, 𝑅1𝑆, 𝑅1𝑆
2, … , 𝑅1𝑆

𝑛−1.

In other words, 𝐷𝑛 is generated by 𝑅1 and S. By substituting 𝑅1𝑅2 for S, we see that
the same group is equally well generated by 𝑅1 and 𝑅2, which satisfy the relations

2.7.1 2.71

𝑅21 = 1, 𝑅22 = 1, (𝑅1𝑅2)
𝑛 = 1.

(The first two relations come from 2.51 and the third from 2.54.) These relations
can be shown to suffice for an abstract definition[see Coxeter and Moser 1, pp. 6, 36].

A practical way to make a model of 𝐷𝑛 is to join two ordinary mirrors by a hinge and
stand them on the lines 𝑂𝐵,𝑂𝐶 of Figure 2.7a so that they are inclined at 180∘/𝑛. Any
object placed between themirrors yields 2𝑛 visible images (including the object itself).
If the object is your right hand, 𝑛 of the images will look like a left hand, illustrating the
principle that, since a reflection reverses sense, the product of any even number of
reflections preserves sense, and the product of any odd number of reflections reverses
sense.



The first published account of this instrument seems to have been by Athanasius
Kircher in 1646. The name kaleidoscope (from /caAos, beautiful; etS o s, a form; and
aKOTreiv,to see) was coined by Sir David Brewster, who wrote a treatise on its theory
and history. He complained[Brewster 1, p.147] that Kircher allowed the angle between
the two mirrors to be any submultipl e of 360° instead of restricting it to submultiples
of 180°.

The case when𝑛 = 2 is , of course, familiar. Standing between two perpendicular
mirrors (as at a corner of a room), you see your image in each and also the image of
the image, which is the way other people see you.

Having decided to use the symbol 𝐷𝑛 for the dihedral group generated by reflections
in two planes making a “dihedral ” angle of 180∘/𝑛, we naturally stretch the notation
so as to allow the extreme val ue 1𝑛 = 1. Thus 𝐷1 is the group of order 2 generated
by a single reflection, that is, the symmetry group of the letter E or A, whereas the
isomorphic group 𝐶2, generated by a half-turn, is the symmetry group of the letter N.

According to Weyl[1, pp. 66,99], it was Leonardo da Vinci who discovered that the
only finite groups of isometries in the plane are

𝐶1, 𝐶2, 𝐶3, … ,

𝐷1, 𝐷2, 𝐷3, … ,

His interest in them was from the standpoint of architectural plans. Of course, the
prevalent groups in architecture have always been 𝐷1 and 𝐷2. But the pyramids of
Egypt exhibit the group 𝐷4, and Leonardo’s suggestion has been followed to some
extent in modem times: the Pentagon Building in Washington has the symmetry
group 𝐷5,and the Bahai Temple near Chicago has𝐷9. In nature, many flowers have
dihedral symmetry groups such as 𝐷6.The symmetry group of a snowflake is usually
𝐷6 but occasionally only 𝐷3.[Kepler 1, pp. 259–280.]

If you cut an apple the way most people cut an orange, the core is seen to have the
symmetry group 𝐷5. Extending the five-pointed star by straight cuts in each ha lf, you
divide the whole apple into ten pieces from each of which the core can be removed in
the form of two thin flakes.



EXERCISES

1. Describe the symmetry groups of (a) a scalene triangle, (b) an isosceles triangle,
(c) a parabola, (d) a parallelogram, (e) a rhombus, (f) a rectangle, (g) an ellipse.

2. Use inverses and the associative law to prove algebraically the “cancellation rule”
which says that the relation

𝑅𝑇 = 𝑆𝑇

implies R = S.

3. Show how the usual defining relations for 𝐷3, namely 2.71 with 𝑛 = 3, may be
deduced by algebraic manipulation from the simpler relations

𝑅12 = 1, 𝑅1𝑅2𝑅1 = 𝑅2𝑅1𝑅2

4. The cyclic group 𝐶𝑚 is a subgroup of 𝐶𝑛 if and only if the numberm is a divisor of
𝑛. In particular, if 𝑛 is prime, the only subgroups of 𝐶𝑛 are 𝐶𝑛 itself and 𝐶1.

2.8 Star Polygons

Instead of deriving the dihedral group 𝐷𝑛 from the regular polygon {𝑛}, we could have
derived the polygon from the group: the vertices of the polygon are just the 𝑛 images
of a point 𝑃0 (the 𝐶 of Figure 2.7a) on one of the twomirrors of the kaleidoscope. In fact,
there is no need to use the whole group 𝐷𝑛: its subgroup 𝐶𝑛 will suffice. The vertex 𝑃𝑘 of
the polygon 𝑃0𝑃1…𝑃𝑛−1 can be derived from the initial vertex𝑃0 by a rotation through 𝑘
times 360∘/𝑛 .
More generally, rotations about a fixed point 𝑂 through angles Θ, 2Θ, 3Θ… transform

any point 𝑃0(distinct from 𝑂) into other points 𝑃1, 𝑃2, 𝑃3, … on the circle with center 𝑂
and radius 𝑂𝑃0. In general, these points become increasingly dense on the circle; but
if the angle Θ is commensurable with a right angle, only a finite number of them will
be distinct. In particular, if Θ = 360∘/𝑛, where 𝑛 is a positive integer greater than 2,
then there will be 𝑛 points 𝑃𝑘 whose successive joins

𝑃0𝑃1, 𝑃1𝑃2, … , 𝑃𝑛−1𝑃0

are the sides of an ordinary regular n-gon.



Figure 2.9.

Let us now extend this notion by allowing 𝑛 to be any rational number greater
than 2, say the fraction 𝑝/𝑑 (where 𝑝 and 𝑑 are coprime). Accordingly, we define a
(generalized) regular polygon {𝑛}, where 𝑛 = 𝑝/𝑑. Its 𝑝 vertices are derived from 𝑃0 by
repeated rotations through 360∘/𝑛,and its 𝑝 sides (enclosing the center 𝑑 times) are

𝑃0𝑃1, 𝑃1𝑃2, … , 𝑃𝑝−1𝑃0

Since a ray coming out from the center without passing through a vertex will cross
𝑑 of the 𝑝 sides, th is denominator 𝑑 is called the density of the polygon [Coxeter 1,
pp. 93–94]. When 𝑑 = 1, so that 𝑛 = 𝑝, we have the ordinary regular 𝑝-gon, {𝑛}. When
𝑑 > 1, the sides cross one another, but the crossing points are not counted as vertices.
Since 𝑑may be any positive integer relatively prime to 𝑝 and less than 1

2𝑝, there is a
regular polygon {𝑛} for each rational number 𝑛 > 2. In fact, it is occasionally desirable
to include also the digon{2}, although its two sides coincide.
When 𝑝 = 5, we have the pentagon {5} of density 1 and the pentagram{52 } of density

2, which was used as a special symbol by the Babylonians and by the Py thagoreans.
Similarly, the octagram{83 } and the decagram have density 3, while the dodecagram{103 }
has density 5 (Fi gure 2.8a). These particular polygons have names as well as symbols
because they occur as faces of interesting polyhedra and tessellations.3

Polygons for which𝑑 > 1are known as starpolygons. They are frequently used in
decoration. The earliest mathematical discussion of them was by Thomas Bradwar-
dine (1290–1349), who became archbishop of Canterbury for the last month of his
life. They were also studied by the great German scientist Kepler (1571–1630)[ see

3 H. S. M. Coxeter , M. S. Longuet-Higgins, and J. C. P. Miller, Uniform polyhedra, Philosophical
Transactions of the Royal Society, A, 246 (1954), pp. 401–450.



Coxeter 1,p. 114]. It was the Swiss mathematician L. Schlafli (1814–1895) who first
used a numerical symbol such as {𝑝/𝑑}. This notation is justified by the occurrence
of formulas that hold for {𝑛} equally well whether 𝑛 be an integer or a fraction. For
instance, any side of {𝑛} forms with the center 𝑂 an isosceles triangle 𝑂𝑃0𝑃1 (Figure
2.86) who se angle at 𝑂 is 2𝜋/𝑛. (As we are introducing trigonometrical ideas, it is
natural to use radianmeasure and write 2𝜋 instead of 360°.) The base of this isosceles
triangle, being a side of the polygon, is conveniently denoted by 2𝑙. The other sides of
the triangle are equal to the circumradius 𝑅 of the polygon. The altitude or median
from 𝑂 is the in radius 𝑟 of the polygon. Hence

2.8.1 2.81

𝑅 = 𝑙 csc 𝜋
𝑛
, 𝑟 = 𝑙 cot 𝜋

𝑛
.

If 𝑛 = 𝑝/𝑑, the area of the polygon is naturally defined to be the sum of t he areas of
the𝑝isosc eles triangles, namely

Figure 2.8b

2.8.2 2.82

𝑝𝑙𝑟 = 𝑝𝑙2 cot 𝜋
𝑛
.

When d =1, this is simply 𝑝𝑙2 cot𝜋/𝑝; in other cases our definition of area has the
effect that every part of the interior is counted a number of times equal to the “lo-
cal density” of that part; for example, the pentagonal region in the middle of the
pentagram {52 } is counted twice.
The angle 𝑃0𝑃1𝑃2 between two adjacent sides of {𝑛} , being the sum of the base angles

of the isosceles triangle, is the supplement of 2𝜋/𝑛, namely



2.8.3 2.83

(1 − 2
𝑛
) 𝜋.

The line segment joining the midpoints of two adjacent sides is called the vertex
figure of {n}. Its length i s clearly

2.8.4 2.84

2𝑙 cos 𝜋
𝑛

[Coxeter 1, pp. 16, 94],

EXERCISES

1. If the sides of a polygon inscribed in a circle are all equal, the polygon is regular.

2. If a polygon inscribed in a circle has an odd number of vertices, and all its angles
are equal, the polygon is regular. (Marcel Riesz.)

3. Find the angles of the polygons

{5}, {5
2
}, {9}, {9

2
}, {9

4
}.

4. Find the radii and vertex figures of the polygons

{8}, {8
3
}, {12}, {12

3
}

5. Give polar coordinates for the 𝑘th vertex of a polygon {𝑛} of circumradius 1 with
its center at the pole, taking 𝑃0 to be (1, 0).

6. Can a square cake be cut into nine slices so that everyone gets the same amount
of cake and the same amount of icing?



3 Isometry in the Euclidean Plane

Havingmade some use of reflections, rotations, and translations, we naturally ask why
a rotation or a translation can be achieved as a continuous displacement (or “motion”)
while a reflection cannot. It is also reasonable to ask whether there is any other kind of
isometry that resembles a reflection in this respect. After answering these questions
in terms of “sense,” we shall use the information to prove a remarkable theorem (§3.6)
and to describe the seven possible ways to repeat a pattern on an endless strip (§3.7).

3.1 Direct and Opposite Isometries

``Take care of the sense, and the sounds will take care of themselves.''

Lewis Carroll

[Dodgson 1,Chap. 9]

By several applications of Axiom 1.26, it can be proved that any point P in the plane
of two congruent triangles 𝐴𝐵𝐶, 𝐴′𝐵′𝐶 determines a corresponding point 𝑃′ such that
𝐴𝑃 = 𝐴′𝑃′, 𝐵𝑃 = 𝐵′𝑃′, 𝐶𝑃 = 𝐶𝑃′. Likewise, another point 𝑄 yields 𝑄′, and 𝑃𝑄 = 𝑃′𝑄′. Hence

3.2 3.11

Any two congruent triangles are related by a unique isometry.
In § 1.3, we saw that Pappus’s proof of Pons asinorum involved the comparison of

two coincident triangles 𝐴𝐵𝐶, 𝐴𝐶𝐵. We see intuitively that this is a distinction of sense:
if one is counter-clockwise the other is clockwise. It is a “topological” property of the
Euclidean plane that this distinction can be extended from coincident triangles to
distinct triangles: any two “directed” triangles, 𝐴𝐵𝐶 and 𝐴′𝐵′𝐶′, either agree or disagree
in sense. (For a deeper investigation of this intuitive idea, see Veblen and Young [2,
pp. 61–62] or Denk and Hofmann [1, p. 56].)
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If 𝐴𝐵𝐶 and 𝐴′𝐵′𝐶′ are congruent, the isometry that relates them is said to be direct
or opposite according as it preserves or reverses sense, that is, according as 𝐴𝐵𝐶 and
𝐴′𝐵′𝐶′ agree or disagree. It is easily seen that this property of the isometry is inde-
pendent of the chosen triangle ABC: if the same isometry relates 𝐷𝐸𝐹 to 𝐷′𝐸′𝐹′, where
𝐷𝐸𝐹 agrees with 𝐴𝐵𝐶, then also 𝐷′𝐸′𝐹′ agrees with 𝐴′𝐵′𝐶′. Clearly, direct and opposite
isometries combine like positive and negative numbers (e.g., the product of two op-
posite isometries is direct). Since a reflection is opposite, a rotation (which is the
product of two reflections) is direct. In particular, the identity is direct. Some authors
call direct and opposite isometries “displacements and reversals” or “proper and
improper congruences.”
Theorem 2.31 can be extended as follows:

Figure 3.1a

12. Two given congruent line segments (or point pairs) AB, A′B′ are related by just two isome-
tries: one direct and one opposite.

To prove this, take any point 𝐶 outside the line 𝐴𝐵, and construct C′ so that the
triangle A′B′C′ is congruent to ABC. The two possible positions of 𝐶 (marked C′, C” in
Figure 3. la) provide the two isometries. Since either can be derived from the other by
reflecting in A′B′, one of the isometries is direct and the other opposite.
For a complete discussion we need the following theorem [Bachmann 1, P-3]:



Figure 3.1b

13. Every isometry of the plane is the product of at most three reflections. If there is an
invariant point, “three” can be replaced by “two.”

Weprove this in four stages, using 3.11. Trivially, if the trianglesABC, A′B′C′ coincide,
the isometry is the identity (which is the product of a reflection with itself). If 𝐴
coincides with A′, and 𝐵with B′,while 𝐶 and C′ are distinct, the triangles are related
by the reflection in 𝐴𝐵. The case when only 𝐴 coincides with A′ can be reduced to one
of the previous cases by reflecting 𝐴𝐵𝐶 in m, the perpendicular bisector of BB′ (see
Figure 3.16). Finally, the general case can be reduced to one of the first three cases by
reflecting 𝐴𝐵𝐶 in the perpendicular bisector of AA′ [Coxeter 1, p. 35].
Since a reflection reverses sense, an isometry is direct or opposite according as it is

the product of an even or odd number of reflections.
Since the identity is the product of two reflections (namely of any reflection with

itself), we may say simply that any isometry is the product of two or three reflections,
according as it is direct or opposite. In particular,

14. Any isometry with an invariant point is a rotation or a reflection according as it is direct
or opposite.

Exercises

1. Name two direct isometries.

2. Name one opposite isometry. Is there any other kind?

3. If 𝐴𝐵 and A’B’ are related by a rotation, how can the center of rotation be con-
structed? {Hint: The perpendicular bisectors of AA’ and 𝑃𝐵′ are not necessarily
distinct.)

4. The product of reflections in three lines through a point is the reflection in
another line through the same point [Bachmann 1, p. 5].

3.3 TRANSLATION

Enoch walked with God; and he was not, for God took him.



Genesis V, 24

The particular isometries so far considered, namely reflections (which are opposite)
and rotations (which are direct), have each at least one invariant point. A familiar
isometry that leaves no point invariant is a translation [Bachmann 1, p. 7], which may
be described as the product of half-turns about two distinct points O, O′ (Figure 3.2a).
The first half-turn transforms an arbitrary point 𝑃 into 𝑃𝐻, and the second transforms
this into Pf with thefinal result that P𝑃𝑇 is parallel toOO′and twice as long. Thus the length
and direction of 𝑃𝑃𝑇 are constant: independent of the position of 𝑃. Since a translation
is completely determined by its length and direction, the product of half-turns about
𝑂 and O′ is the same as the product of half-turns about Q and Q′, provided QQ′ is equal
and parallel to OO’. (This means that OO′Q′Q is a parallelogram, possibly collapsing to
form four collinear points, as in Figure 3.2a.) Thus, for a given translation, the center
of one of the two half-turns may be arbitrarily assigned.

21. The product of two translations is a translation.

For, we may arrange the centers so that the first translation is the product of half-
turns about Oi and O2,while the second is the product of half-turns about 𝑂2 and 𝑂3.
When they are combined, the two half-turns about O2 cancel, and we are left with the
product of half-turns about (9i and 𝑂3.

Figure 3.2a Figure 3.2b

Similarly, ifm andm' (Figure 3.26) are the lines through 𝑂 and O′ perpendicular to
OO', the half-turns about 𝑂 and O′ are the products of reflections inm and OO', OO′ and
m'. When they are combined, the two reflections in OO′ cancel, and we are left with
the product of reflections inm andm'. Hence

22. The product of reflections in two parallel mirrors is a translation through twice the
distance between the mirrors.



If a translation T takes 𝑃 to 𝑃𝑇 and Q to Qf, the segment 𝑄𝑄𝑇 is equal and parallel to
𝑃𝑃𝑇; therefore 𝑃𝑄𝑄𝑓𝑃𝑇 is a parallelogram. Similarly, if another translation U takes 𝑃 to
Q, it also takes 𝑃𝑇 to 2𝑇; therefore

𝑇𝑈 = 𝑈𝑇.

(In detail, if Q is 𝑃𝑢, Qf is 𝑃𝑈𝑇. But U takes 𝑃𝑇 to P™. Therefore 𝑃𝑇𝑈 and 𝑃𝑈𝑇 coincide,
for all positions of P.) In other words,

23. Translations are commutative.

The product of a half-turn H and a translation T is another half-turn; for we can
express the translation as the product of two half-turns, one of which is H, say T = HH′,
and then we have

𝐻𝑇 = 𝐻2𝐻′ = 𝐻′ ∶

24. The product of a half-turn and a translation is a half-turn.

Exercises

1. If T is the product of half-turns about 𝑂 and O',what is the product of half-turns
about O′ and 07

2. When a translation is expressed as the product of two reflections, to what extent
can one of the two mirrors be arbitrarily assigned?

3. What is the product of rotations through opposite angles (a and—a) about two
distinct points?

4. The product of reflections in three parallel lines is the reflection in another line
belonging to the same pencil of parallels.

5. Every product of three half-turns is a half-turn [Bachmann 1, p. 7],

6. If 𝐻𝑖, 𝐻2, 𝐻3 are half-turns, 𝐻𝑖𝐻2𝐻3 = 𝐻3𝐻2𝐻𝑖.

7. Express the translation through distance a along the x-axis as a transformation of
Cartesian coordinates. If/(x, y) = 0 is the equation for a curve, what is the equation
for the transformed curve? Consider, for instance, the circle 𝑥2 + 72 − 1 = 0.



3. GLIDE REFLECTION

We are now familiar with three kinds of isometry: reflection, rotation, and transla-
tion. We have not yet considered the product of the reflections in the sides of a triangle.
We shall find that this is a glide reflection: the product of the reflection in a fine a and a
translation along the same line. Clearly, a glide reflection is determined by its axis a
and the extent of the component translation. Since a reflection is opposite whereas a
translation is direct, their product is opposite. Thus a glide reflection is an opposite
isometry having no invariant point [Coxeter 1, p. 36],
If a glide reflection G transforms an arbitrary point 𝑃 into 𝑃𝐺 (Figure 3.3a), 𝑃 and 𝑃𝐺

are equidistant from the axis a on opposite sides. Hence

The
midpoint of the line segment 𝑃𝑃𝐺 lies on the axis for all positions of P.
Figure 3.3a

Figure 3.3b

Let Ri and T denote the component reflection and translation. They evidently
commute, so that

𝐺 = 𝑅𝑋𝑇 = 𝑇𝑅𝑋.

We have seen (Figure 3.26) that the translation Tmay be expressed as the product
of two half-turns or of two parallel reflections. Identifying the line a in Figure 3.3a with
the line OO′ in Figure 3.3d, let R, R′denote the reflections inm, m'. Then the product of
the two half-turns

𝐻 = 𝑅𝑅𝑗 = 𝑅𝑖𝑅, 𝐻′ = 𝑅′𝑅𝑖 = 𝑅𝑋𝑅′
is 𝑇 = 𝐻𝐻′ = 𝑅𝑅𝑥𝑅𝑖𝑅′ = 𝑅𝑅′,
and the glide reflection is
𝐺 = 𝑅𝑖𝑇 = 𝑅𝑖𝑅𝑅′ = 𝐻𝑅′



= 𝑇𝑅𝑖 = 𝑅𝑅′𝑅𝑖 = 𝑅𝐻′.
Thus a glide reflection may be expressed as the product of three reflections (two

perpendicular to the third), or of a half-turn and a reflection, or of a reflection and a
half-turn. Conversely, the product of any half-turn and any reflection (or vice versa)
is a glide reflection, provided the center of the half-turn does not lie on the mirror.
[Bachmann 1, p. 6.]
We saw in 3.13 that any direct isometry in the plane is the product of two reflec-

tions, that is, a translation or a rotation according as the twomirrors are parallel or
intersecting; also that any opposite isometry with an invariant point is a reflection.
To complete the catalog of isometries, the only remaining possibility is an opposite
isometry with no invariant point. If such an isometry S transforms an arbitrary point
𝐴 into 𝐴consider the half-turn H that interchanges these two points. The product HS,
being an opposite isometry which leaves the point A′ invariant, can only be a reflection
R. Hence the given opposite isometry is the glide reflection
S = H-iR = HR:
Every opposite isometry with no invariant point is a glide reflection.
In other words,
3.31 Every product of three reflections is either a single reflection or a glide reflection.
In particular, the product RT of any reflection and any translation is a glide reflec-

tion, degenerating to a pure reflection when the mirror for R is perpendicular to the
direction of the translation T (in which case the reflections R and RTmay be used as
the two parallel reflections whose product is T). But since a given glide reflection G
has a definite axis (the locus of midpoints of segments 𝑃𝑃𝑎), its decomposition into
a reflection and a translation along the mirror is unique (unlike its decomposition
into a reflection and a half-turn, where wemay either take the mirror to be any line
perpendicular to the axis or equivalently take the center of the half-turn to be any
point on the axis).

Exercises

1. If 𝐵 is the midpoint of A C,what kinds of isometry will transform

(i) 𝐴𝐵 into CB, (ii) 𝐴𝐵 into BC?



2. Every direct isometry is the product of two reflections. Every opposite isometry
is the product of a reflection and a half-turn.

3. Describe the product of the reflection in OO′ and the half-turn about 𝑂.

4. Describe the product of two glide reflections whose axes are perpendicular.

5. Every product of three glide reflections is a glide reflection.

6. The product of three reflections is a reflection if and only if the three mirrors are
either concurrent or parallel.

7. If 𝑅1, 𝑅2, R3 are three reflections, (𝑅1𝑅2𝑅3)
2 is a translation [Rademacher and

Toeplitz 1, p. 29].

8. Describe the transformation

(x,y) >(x + a,—y).
Justify the statement that this transforms the curvef(x,y) = 0 into f(x—a,—y) = 0.

4. REFLECTIONS AND HALF-TURNS

Thomsen* has developed a very beautiful theory in which geometrical properties of
points 𝑂,𝑂𝑖, 𝑂2, … and lines𝑚,𝑚𝑖,𝑚2, … (understood to be all distinct) are expressed
as relations among the corresponding half-turns 𝐻,𝐻𝑖, 𝐻2, … and reflections 𝑅, 𝑅𝑖, 𝑅2, ….
The reader can soon convince himself that the following pairs of statements are
logically equivalent:
<—>m andmi are perpendicular.
𝑅𝑅𝑖𝐻𝑅 = 𝑅𝑋𝑅 = 𝑅𝐻
𝑂 lies onm.
𝑅𝑖𝑅2𝑅

3 = 𝑅3𝑅2𝑅
𝑋 < − − − > 𝑚𝑖,𝑚2, 𝑚3

are either concurrent or parallel.

𝑂 is the midpoint of 𝑂𝑖 < 92.

𝐻𝑖𝐻 = 𝐻𝐻2

𝐻𝑖𝑅 = 𝑅𝐻2

m is the perpendicular bisector of 𝑂𝑖𝑂2.



EXERCISE

Interpret the relations (a) 𝐻1𝐻2𝐻3𝐻4 = 1; (𝑏)𝑅𝑋𝑅 = 𝑅𝑅2.

5. SUMMARY OF RESULTS ON ISOMETRIES

And thick and fast they came at last. And more, and more, and more.

Lewis Carroll
[Dodgson 2, Chap. 4]
Some readers may have become confused with the abundance of technical terms,

many of which are familiar words to which unusually precise meanings have been
attached. Accordingly, let us repeat some of the definitions, stressing both their
analogies and their differences.
* G. Thomsen, The treatment of elementary geometry by a group-calculus,Mathemat-

ical Gazette, 17 (1933), p. 232. Bachmann [1 ] devotes a whole book to the development
of this idea.
In all the contexts that concern us here, a transformation is a one-to-one corre-

spondence of the whole plane (or space) with itself. An isometry is a special kind of
transformation, namely, the kind that preserves length. A symmetry operation belongs
to a given figure rather than to the whole plane: it is an isometry that transforms the
figure into itself.
In the plane, a direct (sense-preserving) isometry, being the product of two reflec-

tions, is a rotation or a translation according as it does or does not have an invariant
point, that is, according as the twomirrors are intersecting or parallel. In the latter
case the length of the translation is twice the distance between the mirrors; in the
former, the angle of the rotation is twice the angle between the mirrors. In particular,
the product of reflections in two perpendicularmirrors is a half-turn, that is, a rotation
through two right angles. Moreover, the product of two half-turns is a translation.
An opposite (sense-reversing) isometry, being the product of three reflections, is, in

general, a glide reflection-, the product of a reflection and a translation. In the special
case when the translation is the identity (i.e., a translation through zero distance),
the glide reflection reduces to a single reflection, which has a whole line of invariant
points, namely, all the points on the mirror.
To sum up:



3.51 Any direct isometry is either a translation or a rotation. Any opposite isometry is either
a reflection or a glide reflection.

Exercises

1. If S is an opposite isometry, 𝑆2 is a translation.

2. If Ri, 𝑅2, R3 are three reflections, (𝑅2𝑅3𝑅1𝑅2𝑅3)
2 is a translation along the first

mirror. (Hint: Since 𝑅𝑋𝑅2𝑅3 and 𝑅2𝑅3𝑅1 are glide reflections, their squares are
commutative, by 3.23; thus

(𝑅1𝑅2𝑅
3)2(𝑅2𝑅3𝑅1)

2 = (𝑅2𝑅3𝑅1)
2(𝑅1𝑅2𝑅3)

2,

that is, Ri and (𝑅2𝑅3𝑅1𝑅2𝑅3)
2 are commutative [cf. Bachmann 1, p. 13].)

6. HJELMSLEV’S THEOREM

…a very high degree of unexpectedness, combined with inevitability and
economy.

G. H. Hardy [2, p. 53]
We saw, in 3.12, that two congruent line segments AB, A′B′, are related by just two

isometries: one direct and one opposite. Both isometries have the same effect on
every point collinear with 𝐴 and B, that is, every point on the infinite straight line
𝐴𝐵 (for instance, the midpoint of 𝐴𝐵 is transformed into the midpoint of A′B′). The
opposite isometry is a reflection or glide reflection whose mirror or axis contains
all the midpoints of segments joining pairs of corresponding points. If two of these
midpoints coincide, the
direct isometry is a half-turn, and they all coincide [Coxeter 3, p. 267]. Hence
HJELMSLEVS THEOREM.When all the points P on one line are related by an isometry to

all the points P′ on another, the midpoints of the segments PP′ are distinct and collinear or else
they all coincide.



In particular, if A, B, C are on one line and A′, B′, C′ on another, with

3.61 AB = A′B′, BC = B′C (Figure 3.6a), then the midpoints of AA′, BB′, CC′ are either
collinear or coincident (J. T. Hjelmslev, 1873–1950).

7. PATTERNS ON A STRIP

Any kind of isometry may be used to relate two equal circles. For instance, the
point 𝑃 on the first circle of Figure 3.7a is transformed into 𝑃𝑇 on the second circle
by a translation, into 𝑃𝑅 by a reflection, into 𝑃𝐻 by a half-turn, and into 𝑃𝐺 by a glide
reflection. (Arrows have been inserted to indicate what happens to the positive sense
of rotation round the first circle.) These four isometries have one important property
in common: they leave invariant (as a whole) one infinite straight line, namely, the
line joining the centers of the two circles. (In the fourth case this is the only invariant
line.)



We have seen (Figure 3.26) that the product of reflections in two parallel mirrors
m, m' is a translation. This may be regarded as the limiting case of a rotation whose
center is very far away; for the two parallel mirrors are the limiting case of twomirrors
intersecting at a very small angle. Accordingly, the infinite group generated by a
single translation is denoted by 𝐶𝑥, and the infinite group generated by two parallel
reflections is denoted by 𝐷𝑥. Abstractly, 𝐶𝑥 is the “free group with one generator.” If T
is the generating translation, the group consists of the translations

… , 𝑇 − 2, 𝑇 − 𝑖, 1, 𝑇, 𝑇2, … .
mm'
𝑅𝑅′𝑅𝑅′𝑅𝑅1𝑅′𝑅𝑅′
Figure 3.7b
Similarly, 𝐷𝑥, generated by the reflections 𝑅, 𝑅′ in parallelmirrorsm,m' (Figure 3.76),

consists of the reflections and translations
… , 𝑅𝑅′𝑅, 𝑅′𝑅, 𝑅, 1, 𝑅′, 𝑅𝑅′, 𝑅′𝑅𝑅′, …
[Coxeter 1, p. 76]; its abstract definition is simply
𝑅2 = 𝑅′2=𝑖.
This group can be observed when we sit in a barber’s chair between two parallel

mirrors (cf. theNewYorker,Feb. 23, 1957, p. 39, where somehow the reflectionRR′RR′R
yields a demon).
A different geometrical representation for the same abstract group 𝐷𝑥is obtained

by interpreting the generators R and R′as half-turns. There is also an intermediate
representation in which one of them is a reflection and the other a half-turn; but in
this case their product is no longer a translation but a glide reflection.
Continuing in this manner, we could soon obtain the complete list of the seven

infinite “one-dimensional” symmetry groups: the seven essentially distinct ways to
repeat a pattern on a strip or ribbon [Speiser 1, pp. 81–82]:

Typical pattern Generators Abstract Group
(i)…L L L L… 1 translation
(ii)…L T L r… 1 glide reflection r '-'oo
(iii)…V V V V… 2 reflections
(iv)…N N N N… 2 half-turns
(v)…V A V A… 1 reflection

and 1 half-turn
>



(vi).. .D D D D… 1 translation
and 1 reflection

𝑐𝑥 x Dr

(vii).. .H H H H… 3 reflections D X Dr

In (iii), the twomirrors are both vertical, one in the middle of a V, reflecting it into
itself, while the other reflects this V into one of its neighbors; thus one half of the V,
placed between the two mirrors, yields the whole pattern. In (vi) and (vii) there is
a horizontal mirror, and the symbols in the last column indicate “direct products”
[Coxeter 1, p. 42]. For all these groups, except (i) and (ii), there is some freedom in
choosing the generators; for example, in (iii) or (iv) one of the two generators could be
replaced by a translation.
Strictly speaking, these seven groups are not “1-dimensional” but “Ildimensional;”

that is, they are 2-dimensional symmetry groups involving translation in one direction.
In a purely one-dimensional world there are only two infinite symmetry groups: 𝐶𝑥,
generated by one translation, and 𝐷𝑥, generated by two reflections (in point mirrors).

Exercises

1. Identify the symmetry groups of the following patterns:

…b b b b…,

…b p b p…,

…b d b d…,

…b q b q…,

…bdpqbdpq….

2. Which are the symmetry groups of (a) a cycloid, (b) a sine curve?
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