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Preface 

For the last thirty or forty years, most Americans have somehow lost interest in geometry. The present book constitutes an attempt to revitalize this sadly neglected subject. The four parts correspond roughly to the four years of college work. However, most of Part II can be read before Part I, and most of Part IV before Part III. The first eleven chapters (that is, Parts I and II) will provide a course for students who have some knowledge of Euclid and elementary analytic geometry but have not yet made up their minds to specialize in mathematics, or for enterprising high school teachers who wish to see what is happening just beyond their usual curriculum. Part III deals with the foundations of geometry, including projective geometry and hyperbolic non-Euclidean geometry. Part IV introduces differential geometry, combinatorial topology, and four-dimensional Euclidean geometry. In spite of the large number of cross references, each of the twenty-two chapters is reasonably self-contained; many of them can be omitted on first reading without spoiling one's enjoyment of the rest. For instance, Chapters 1, 3, 6, 8, 13, and 17 would make a good short course. There are relevant exercises at the end of almost every section; the hardest of them are provided with hints for their solution. (Answers to some of the exercises are given at the end of the book. Answers to many of the remaining exercises are provided in a separate booklet, available from the publisher upon request.) The unifying thread that runs through the whole work is the idea of a group of transformations or, in a single word, symmetry. The customary emphasis on analytic geometry is likely to give students the impression that geometry is merely a part of algebra or of analysis. It is refreshing to observe that there are some important instances (such as the Argand diagram described in Chapter 9) in which geometrical ideas are needed as essential tools in the development of these other branches of mathematics. The scope of geometry was spectacularly broadened by Klein in his Erlanger Programm (Erlangen program) of 1872, which stressed the fact that, besides plane and solid Euclidean geometry, there are many other geometries equally worthy of attention. For instance, many of Euclid's own propositions belong to the wider field of affine geometry, which is valid not 
vii 



viii PREFACE only in ordinary space but also in Minkowski's space-time, so successfully exploited by Einstein in his special theory ofrelativity. Geometry is useful not only in algebra, analysis, and cosmology, but also in kinematics and crystallography (where it is associated with the theory of groups), in statistics (where finite geometries help in the design of experiments), and even in botany. The subject of topology (Chapter 21) has been developed so widely that it now stands on its own feet instead of being regarded as part of geometry; but it fits into the Erlangen program, and its early stages have the added appeal of a famous unsolved problem: that of deciding whether every possible map can be colored with four colors. The material grew out of courses of lectures delivered at summer institutes for school teachers and others at Stillwater, Oklahoma; Lunenburg, Nova Scotia; Ann Arbor, Michigan; Stanford, California; and Fredericton, New Brunswick, along with several public lectures given to the Friends of Scripta Mathematica in New York City by invitation of the late Professor Jekuthiel Ginsburg. The most popular of these separate lectures was the one on the golden section and phyllotaxis, which is embodied in Chapter 11. Apart from the general emphasis on the idea of transformation and on the desirability of spending some time in such unusual environments as affine space and absolute space, the chief novelties are as follows: a simple treatment of the orthocenter (§ 1.6); the use of dominoes to illustrate six of the seventeen space groups of two-dimensional crystallography (§ 4.4); a construction for the invariant point of a dilative reflection(§ 5.6); a description of the general circle-preserving transformation(§ 6.7) and of the spiral similarity (§ 7.6); an "explanation" of phyllotaxis (§ 11.5); an "ordered" treatment of Sylvester's problem (§ 12.3); an economical system of axioms for affine geometry (§ 13.1); an "absolute" treatment of rotation groups (§ 15.4); an elementary treatment of the horosphere (§ 16.8) and of the extreme ternary quadratic form(§ 18.4); the correction of a prevalent error concerning the shape of the monkey saddle(§ 19.8); an application of geodesic polar coordinates to the foundations of hyperbolic trigonometry (§ 20.6); the classification of regular maps on the sphere, projective plane, torus, and Klein bottle(§ 21.3); and the suggestion of a statistical honeycomb (§ 22.5). I offer sincere thanks to M. W. Al-Dhahir, J. J. Burckhardt, Werner Fenchel, L. M. Kelly, Peter Scherk, and F. A. Sherk for critically reading various chapters; also to H .  G. Forder, Martin Gardner, and C. J. Scriba for their help in proofreading, to S. H. Gould, J. E. Littlewood, and J. L. Synge for permission to quote certain passages from their published works, and to M. C. Escher, I. Kitrosser, and the Royal Society of Canada for permission to reproduce the plates. 
Toronto, Canada 
March, 1961 

H. s. M. COXETER 
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Mathematics possesses not only truth, but supreme beauty 
-a beauty cold and austere, like that of sculpture, 
without appeal to any part of our weaker nature . . .  
sublimely pure, and capable of a stern perfection 
such as only the greatest art can show. 

BERTRAND RUSSELL ( 1 872-
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Triangles 

In this chapter we review some of the well-known propositions of elementary geometry, stressing the role of symmetry. We refer to Euclid's propositions by his own numbers, which have been used throughout the world for more than two thousand years. Since the time of F. Commandino (1509-1575), who translated the works of Archimedes, Apollonius, and Pappus, many other theorems in the same spirit have been discovered. Such results were studied in great detail during the nineteenth century. As the present tendency is to abandon them in favor of other branches of mathematics, we shall be content to mention a few that seem particularly interesting. 
1 . 1  EUCLID 

Euclid's work will live long ofter all the text-books of the present day 
ore superseded and forgotten. It is one of the noblest monuments of 
antiquity. 

Sir Thomas L. Heath (1861 -1940)• 

About 300 B.C., Euclid of Alexandria wrote a treatise in thirteen books called the Elements. Of the author (sometimes regrettably confused with the earlier philosopher, Euclid of Megara) we know very little. Proclus (410-485 A.D.) said that he 'fput together the Elements, collecting many of Eudoxus's theorems, perfecting many of Theaetetus's, and also bringing to irrefragable demonstration the things which were only somewhat loosely proved by his predecessors. This man lived in the time of the first Ptolem_y t [who] once asked him if there was in geometry any shorter way than that of the Elements, and he answered that there was no royal road to geometry." Heath quotes a story by Stobaeus, to the effect that someone who had begun to read geometry with Euclid asked him "What shall I get by learning these things?" Euclid called his slave and said "Give him a dime, since he must make gain out of what he learns." 
• Heath 1 ,  p. vi. (Such references are collected at the end of the book, pp. 415-417.) 

3 



4 TRIANGLES Of the thirteen books, the first six may be very briefly described as dealing respectively with triangles, rectangles, circles, polygons, proportion, and similarity. The next four, on the theory of numbers, include two notable achievements: IX.2 and X.9, where it is proved that there are infinitely many prime numbers, and that V 2 is irrational [Hardy 2, pp. 32-36). Book XI is an introduction to solid geometry, XII deals with pyramids, cones, and cylinders, and XIII is on the five regular solids. According to Proclus, Euclid "set before himself, as the end of the whole Elements, the construction of the so- called Platonic figures." This notion of Euclid's purpose is supported by the Platonic theory of a mystical correspondence bet�een the four solids cube, } { earth, tetrahedron, d th ti " 1 t ,, fire, h dr an e our e emen s . octa e on, arr, icosahedron water [cf. Coxeter 1,  p. 18). Evidence to the contrary is supplied by the arithmetical books VII-X, which were obviously included for their intrinsic interest rather than for any application to solid geometry. 
1 .2 PRIMITIVE CONCEPTS AND AXIOMS 

"When I use a word," Humpty-Dumpty said, "it means iust what I 
choose it to mean-neither more nor less . .. 

Lewis Carroll ( 1832 -1 898) 
[ Dodgson 2, Chop. 6 ]  In the logical development of any branch of mathematics, each definition qf a concept or relation involves other concepts and relations. Therefore the only way to avoid a vicious circle is to allow certain primitive concepts and relations (usually as few as possible) to remain undefined [Synge 1 ,  pp. 32-34]. Similarly, the proof of each proposition uses other propositions, and therefore certain primitive propositions, called postulates or axioms, must remain unproved. Euclid did not specify his primitive concepts and relations, but was content to give definitions in terms of ideas that would be familiar to everybody. His five Postulates are as follows: 

1 .21  A straight line may be drawn from any point to any other point. 
1 .22 A finite straight line may be extended continuously in a straight line. 
1 .23 A circle may be described with any center and any radius. 
1 .24 A ll right angles are equal to one another. 
1 .25 If a straight line meets two other straight lines so as to make the two 

interior angles on one side of it together less than two right angles, the other 



CONGRUENCE 5 

s traight lines, if extended indefinitely, will meet on that side on which the an
gles are less than two right angles.* 

It is quite natural that, after a lapse of about 2250 years, some details are now seen to be capable of improvement. (For instance, Euclid I. I constructs an equilateral triangle by drawing two circles; but how do we know that these two circles will intersect?) The marvel is that so much of Euclid's work remains perfectly valid. In the modern treatment of his geometry [see, for instance, Coxeter 3, pp. 161-187], it is usual to recognize the primitive concept point and the two primitive relations of intermediacy (the idea that one point may be between two others) and congruence (the idea that the distance between two points may be equal to the distance between two other points, or that two line segments may have the same length). There are also various versions of the axiom of continuity, one of which says that every convergent sequence of points has a limit. Euclid's "principle of superposition," used in proving I.4, raises the question whether a figure can be moved without changing its internal structure. This principle is nowadays replaced by a further explicit assumption such as the axiom of "the rigidity of a triangle with a tail" (Figure 1.2a): 
1 .26 If AB C  is a triangle with D on the s ide BC extended, while D' is 

analogously related to another triangle A 'B'C', and if BC = B'C', CA = C'A ', 
AB =  A'B', BD = B'D', then AD = A'D'. 

" ' ', 
',, 

' 
B L...-------"-c--''..>,.cc.D 

figure 1.2a 

This axiom can be used to extend the notion of congruence from line segments to more complicated .figures such as angles, so that we can say precisely what we mean by the relation 
L ABC = L A 'B'C'. 

Then we no longer need the questionable principle of superposition in order to prove Euclid I.4: 
If two triangles have two sides equal to two s ides respectively, and have the 

angles contained by the equal sides equal, they will also have their third sides 
equal, and their remaining angles equal respectively; in fact, they will be con
gruent triangles. 

• In Chapter 15 we shall see how far we can go without using this unpleasantly complicated 
Fifth Postulate. 



6 TRIANGLES 

1 .3 PONS ASINORUM 

Minos: It is proposed to prove 1.5 by toking up the isosceles Triangle, 
turning it over, and then laying it down again upon itself. 

Euclid: Surely that hos too much of the Irish Bull about it, and re
minds one a little too vividly of the man who walked down his own 
throat, to deserve a place in a strictly philosophical treatise? 

Minos: I suppose its defenders would say that it is conceived to leave 
a trace of itself behind, and that the reversed Triangle is laid down 
upon the trace so left. 

C. L. Dodgson (1 832 -1898) 

[ Dodgson 3, p. 48] 1.5. The angles at the base of an isosceles triangle are equal. The name pons asinorum for this famous theorem probably arose from the bridgelike appearance of Euclid's figure (with the construction lines required in his rather complicated proof) and from the notion that anyone unable to cross this bridge must be an ass. Fortunately, a far simpler proof was supplied by Pappus of Alexandria about 340 A.D. (Figure 1.3a): 
A A 

Figure 1.3a 

Let ABC be an isosceles triangle with AB equal to AC. Let us conceive this triangle as two triangles and argue in this way. Since AB = A C  and AC= AB, the two sides AB, AC are equal to the two sides AC, AB. Also the angle BA C is equal to the angle CAB, for it is the same. Therefore all the corresponding parts (of the triangles 
ABC, ACB) are equal. In particular, 

L ABC = L A CB. The pedagogical difficulty of comparing the isosceles triangle ABC with itself is sometimes avoided by joining the apex A to D, the midpoint of the base BC. The median AD may be regarded as a mirror reflecting B into C. Accordingly, we say that an isosceles triangle is symmetrical by reflection, or that it has bilateral symmetry. (Of course, the idealized mirror used in geometry has no thickness and is silvered on both sides, so that it not only reflects B into C but also reflects C into B.) 



REFLECTION 1 Any figure, however irregular its shape may be, yields a symmetrical figure when we place it next to a mirror and waive the distinction between object and image. Such bilateral symmetry is characteristic of the external shape of most animals. Given any point P on either side of a geometrical mirror, we can construct its reflected image P' by drawing the perpendicular from P to the mirror and extending this perpendicular line to an equal distance on the other side, so that the mirror perpendicularly bisects the line segment PP '. Working in the plane (Figure 1.3b) with a line AB for mirror, we draw two circles with centers A , B and radii AP, BP. The two points of intersection of these circles are P and its image P '. 

A 

B 
Figure 1.3b 

We shall find that many geometrical proofs are shortened and made more vivid by the use of reflections. But we must remember that this procedure is merely a short cut: every such argument could have been avoided by means of a circumlocution involving congruent triangles. For instance, the above construction is valid because the triangles ABP, ABP' are congruent. 
Pons asinorum has many useful consequences, such as the following five: 
111.3. If a diameter of a circle bisects a chord which does not pass through the center, 

it is perpendicular to it; or, if perpendicular to it, it bisects it. 
111.20. In a circle the angle at the center is double the angle at the circumference, when 

the rays forming the angles meet the circumference in the same two points. 
IIl.21. In a circle, a chord subtends equal angles at any two points on the same one 

of the two arcs determined by the chord (e.g., in Figure 1.3c, LPQQ' = L PP'Q'). 
111.22. The opposite angles of any quadrangle inscn'bed in a circle are together equal 

to two right angles. 
111.32. If a chord of a circle be drawn from the point of contact of a tangent, the angle 

made by the chord with the tangent is equal to the angle subtended by the chord at a point 
on that part of the circumference which lies on the Jar side of the chord (e.g., in Figure 
1.3c, L OTP' = L TPP'). We shall also have occasion to use two familiar theorems on similar triangles: 



8 TRIANGLES 

VI.2. If a straight line be drawn parallel to one side of a triangle, it will cut the other 
sides proportionately; and, if two sides of the triangle be cut proportionately, the line join
ing the points of section will be parallel to the remaining side. 

VI.4. If corresponding angles of two triangles are equal, then corresponding sides are 
proportional. Combining this last result with 111.21 and 32, we deduce two significant properties of secants of a circle (Figure 1.3c): 

figure 1 .3c 

IIl.35. If in a circle two straight lines cut each other, the rectangle contained by the 
segments of the one is equal to the rectangle contained by the segments of the other (i.e., 
OP X OP' = OQ X OQ'). 

111.36. If from a point outside a circle a secant and a tangent be drawn, the rectangle 
contained by the whole secant and the part outside the circle will be equal to the square 
on the tangent (i.e., OP X OP' = OT2). Book VI also contains an important property of area: 

VI.19. Similar triangles are to one another in the squared ratio of their corresponding 
sides (i.e., if A BC and A' B' C' are similar triangles, their areas are in the ratio A B2 : 

A'B''). This result yields the following easy proof for the theorem of Pythagoras [see Heath 1 ,  p. 353; 2, p. 270]: 
1.47. In a right-angled triangle, the square on the hypotenuse is equal to the sum of 

the squares on th7 two catheti. In the triangle A BC, right-angled at C, draw CF perpendicular to the hypotenuse AB, as in Figure 1.3d. Then we have three similar right-angled triangles ABC, A CF, CBF, with hypotenuses AB, A C, CB. By VI.19, the areas satisfy 
ABC _  A CF _ CBF 
AB2 - A C2 - CB2 • 



PYTHAGORAS 9 

Evidently, ABC = A CF +  CBF. Therefore AB2 = AC2 + CB2. 

A 

Figure 1 .3d 
EXERCISES 

1. Using rectangular Cartesian coordinates, show that the reflection in the y-axis (x = 0) reverses the sign of x. What happens when we reflect in the line x = y? 2. Deduce 1.47 from IIl.36 (applied to the circle with center A and radius A C). 3. Inside a square A BDE, take a point C so that CDE is an isosceles triangle with angles 15° at D and E. What kind of triangle is ABC? (Hint: Inside the triangle BCD, take a point F so that FBD is congruent to CDE.) 4. Prove the Erdos-Mordell theorem: If O is any point inside a triangle ABC and P, Q, R are the feet of the perpendiculars from O upon the respective sides BC, CA, AB, then 
OA + OB +  OC ;:;i, 2(OP + OQ + OR). 

(Hint:* Let P1 and P2 be the feet of the perpendiculars from R and Q upon BC. Define analogous points Q1 and Q2, R1 and R2 on the other sides.' Using the similarity of the triangles PRP1 and OBR, express P1P in terms of RP, OR, and OB. After substituting such expressions into 
OA + OB + OC ;:;i, OA(P1P + PP2)IRQ + OB(Q1Q + QQ2)IPR 

+ OC(R1R + RR2)IQP, 
collect the terms involving OP, OQ, OR, respectively.) 5. Under what circumstances can the sign ;:;i, in Ex. 4 be replaced by =? 6. In the notation of Ex. 4, OA x OB x OC ;:;i, (OQ + OR)(OR + OP)(OP + OQ). (A. Oppenheim, American Mathematical Monthly, 68 (1961), p. 230. See also L. J. Mardell, Mathematical Gazette, 46 (1962), pp. 213-215.) 

• Leon Bankolf, American Mathematical Monthly, 65 (1958), p. 521. For other proofs see G. R. Veldkamp and H. Brabant, Nieuw Tijdschrift voor Wiskunde, 45 (1958), pp. 193-196; 46 (1959), p.87. 



IO TRIANGLES 

1 .4 THE MEDIANS AND THE CENTROID 

Oriental mathematics may be on interesting curiosity, but Greek mathe
matics is the real thing . . . .  The Greeks, as Littlewood said to me once, 
ore not clever schoolboys or "scholarship candidates, "  but "Fellows of 
another college." So Greek mathematics is "permanent,"  more per
manent even than Greek literature. Archimedes will be remembered 
when Aeschylus is forgot/en, because languages die and mathematical 
ideas do not. 

A 

Figure 1 .4a 

G. H. Hardy (l 877 -1947) 
[Hardy 2, p. 2 1 )  

The line joining a vertex of a triangle to the midpoint of the opposite side is called a median. Let two of tl:te three medians, say BB' and CC', meet in G (Figure 1.4a). Let L and M be the midpoints of GB and GC. By Euclid Vl.2 and 4 (which were quoted on page 8), both C' B' and LM are parallel to BC and half as long. Therefore B' C' LM is a parallelogram. Since the diagonals of a parallelogram bisect each other, we have 
B'G = GL = LB, C'G = GM =  MC. 

Thus the two medians BB', CC' trisect each other at G. In other words, this point G, which could have been defined as a point of trisection of one median, is also a point of tr��ction of another. and. similarly of the third. We have thus proved [by the method of Court 1 ,  p. 58] the following theorem : 
1.41 The three medians of any triangle all pass through one point. 
This common point G of the three medians is called the centroid of the triangle. Archimedes (c. 287-212 B.c.) obtained it as the center of gravity of a triangular plate of uniform density. 



TR/TAN GENT CIRCLES 

EXERCISES 

1. Any triangle having two equal medians is isosceles.* 

1 1  

2. The sum of the medians of a triangle lies between ¾ p and p, where p is the sum 
of the sides. [Court 1 ,  pp. 60-6 I.] 

1 .5 THE INCIRCLE AND THE CIRCUMCIRCLE 

I a 

Figure 1,5o 

Alone at nights, 
I read my Bible more and Euclid less. 

Robert Buchanan (1841 -1901) 

(An Old Daminie's Story) 

Euclid 111.3 tells us that a circle is symmetrical by reflection in any diameter (whereas an ellipse is merely symmetrical about two special diameters : the major and minor axes). It follows that the angle between two intersecting tangents is bisected by the diameter through their _ common point. 
• It is to be understood that any exercise appearing in the form of a theorem is intended to be 

proved. It saves space to omit the words "Prove that" or "Show that." 



1 2  TRIANGLES By considering the loci of points equidistant from pairs of sides of a triangle ABC, we see that the internal and external bisectors of the three angles of the triangle meet by threes in four points /, Ia, lb, le, as in Figure 1.5a. These points are the centers of the four circles that can be drawn to touch the three lines BC, CA, AB. One of them , the incenter I, being inside the triangle, is the center of the inscribed circle or incircle (Euclid IV.4). The other three are the excenters la, h, le: the centers of the three escribed circles or excircles [Court 2, pp. 72-88]. The radii of the incircle and excircles are the inradius r and the exradii ra, rb, re. In describing a triangle ABC, it is customary to call the sides 
a =  BC, b = CA, C = AB, the semiperimeter 

s = ½(a + b + c), the angles A, B, C, and the area 6.. Since A + B + C = 180° , we have 1 .51  L B/C = 90° + ½A,  a result which we shall find useful in § 1.9. Since /BC is a triangle with base a and height r, its area is tar. Adding three such triangles we deduce 6. = -½{a + b + c)r = sr. Similarly 6. = ½(b + c - a)ra = (s - a)ra. Thus 1 .52 6. = sr = (s - a)ra = (s - b) rb = (s - c)rc. From the well-known formula cos A = (b2 + c2 - a2)/2bc, we find also sin A = [ -a4 - b4 - c4 + 2b2c2 + 2c2a2 + 2a2b2]i/2bc, whence 6. = ½ be sin A 1 .53 = ¼ [ - a4 - b4 - c4 + 2b2cZ + 2cZa2 + 2a2b2]1 
= ¼ [(a + b + c)( - a + b + c)(a - b + c)(a + b - c)]1 

= [s(s - a)(s - b)(s - c)]i. This remarkable expression, which we shall use in § 18.4, is attributed to Heron of Alexandria (about 60 A.D.), but it was really discovered by Archimedes. (See B. L. van der Waerden, Science A wakening, Oxford University Press, New York, 1961, pp. 228, 277.) Another consequence of the symmetry of a circle is that the perpendicular bisectors of the three sides of a triangle all pass through the c:ircumcenter O, which is the center of the circumscribed circle or circumcircle (Euclid IV.5). This is the only circle that can be drawn through the three vertices A ,  B, C. Its radius R is called the circumradius of the triangle. Since the "angle at the center," L BOC (Figure 1.5b), is double the angle A,  the congruent rightangled triangles OBA', OCA' each have an angle A at 0, whence 



Figure 1,Sb 

1 .54 

THE CIRCUMCIRCLE 

Figure 1,5c 

R sin A =  BA' = ½a, 
2R = -/!- = _j!_ = ___ c _ . smA smB sm C 

13 

Draw AD perpendicular to BC, and let AK be the diameter through A of the circumcircle, as in Figure 1.5c. By Euclid III.21, the right-angled triangles ABD and AKC are similar; therefore 
AD AC be 
AB - AK ' AD = 2R . 

Since ti = ½BC X AD, it follows that 
1 .55 4tiR = abc 

= s(s - b)(s - c) + s(s - c)(s - a) + s(s - a)(s - b) 
ti2 ti2 ti2 ti2 = -- + -- + -- --s - a  s - b  s - c  s 

= ti (ra + rb + re - r). 

Hence the five radii are connected by the formula 
1 .56 [Court 1 ,  p. 73]. 

- (s - a)(s - b)(s - c) 

The lengths s - a, s - b, s - c, which appear in 1.52 as well as in Heron's formula for ti, are easily recognized as the radii of three mutually tangent circles with centers A, B, C. Frederick Soddy (1877-1956, who is famous for his pioneering work on isotopes and for his original approach to economics) initiated a fascinating discussion of the two circles that can be drawn to touch all these three, as in Figure l .5d, namely a small circle surrounded by the three, and a large one which usually encloses the three 
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Figure 1 .Sd 

(though it fails to do so if the triangle is "very obtuse"). Let these two circles have centers S, S' and radii a, u', so that 
SA = a + s - a, SB = a + s - b, SC = a + s - e. Also let Sa, Sb, Sc denote the angles at S in the three triangles SBC, SCA, 

SAB. Applying to these triangles the familiar formulas 
cos2 ½A = s(s - a)

' sin2 ½ A = (s - b)(s - e) 
be be for the angle A of any triangle ABC, we obtain 

2 ½ S (a + a)a . 2 ½S (s - b)(s - e) cos a = ---------, sm a = ---------�----:-, (a + s - b)(a + s - e) (a + s - b)(a + s - c) and so on. By 1.54, we can write sin A, sin B, sin C in place of a, b, e in a2 - b2 - c2 + 2 be cos A = 0. Then we can replace A, B, C by any three angles whose sum is 180° , such as ½ Sa, ½ Sb, ½ Sc. Thus 
� - �� - tj � - tj� - aj � - aj� - �  (<1 + s - b)(a + s - c) (a + s - c)(a + s - a) (a + s - a)(a + s - b) 

+2 [  (s - c)(s - a) (s - a)(s - b) a(a + a) ]½ 
(a + s - c)(a + s - a) (a + s - a)(a + s - b) (a + s - b)(a + s - c� 

= 0, 
whence 
a +  s - a _ a +  s - b _ a +  s - c +2 lo(a + s - b + s - c) lt = O. 

s - a s - b s - c L (s - b)(s - c) J 



THE KISS PRECISE Dividing by o and using the abbreviations 
we deduce 

a = -1- ,  s - a  /3 - I - --b , s - y = -1-, s - c  
a - /3 - y - 0 + 2 [/3y + yo + o/J]I = 0, whence (a - fJ - y - 8)2 = 4(/Jy + yo + ofJ), (a + /3 + y + 8)2 = 4(afJ + ay + ao + /Jy + yo + ofJ) 

and finally 1 .57 
= 2(a + fJ. + y + 0)2 - 2(a2 + fJ2 + y2 + 82), 

2(a2 + 132 + y2 + 82) = (a + fJ + y + o)2. 

15 

We have now found a perfectly symmetrical formula connecting the four quantities a, /3, y, o, which are the reciprocals of the radii of four mutually tangent circles. The reciprocal of the radius of a circle is often called its curvature. Soddy preferred the simpler term bend, as in his poem The Kiss Precise, * of which the middle verse runs as follows: 
Four circles to the kissing come, The smaller are the benter. The bend is just the inverse of The distance from the centre. Though their intrigue left Euclid dumb There's now no need for rule of thumb. Since zero bend's a dead straight line And concave bends have minus sign, 
The sum of the squares of all four bends 
Is half the square of their sum. Solving 1.57 as a quadratic equation for o, we obtain the two roots a +  fJ + y + 2(/Jy + ya +  afJ)I. The upper sign yields the larger bend, that is, the smaller circle. Thus the radii are t 

1 .58 and o = [a + fJ + y + 2(/Jy + ya + a/J)IJ-1 o' = [a + fJ + y - 2({3y + ya + a/J)IJ-1 This last expression is usually negative, indicating a "concave bend": the circle with center S' encloses the circles with centers A, B, C. Writing (s - a)-1, (s - b)-1, (s - c)-1 for a, {3, y, we find 
• Nature, 137 (1936), p. 1021. 
t Steiner (1, pp. 60-63, 524]. See also Hobson (1, p. 216, Ex. 29) and J. Satterly, Mathematics 

Teacher, 53 (1960), pp. 90-95. 
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( A A A 
} 

o = AY -- + --b + -- + 2[s(s - a + s - b + s - c)]I s - a  s - s - c  
1 .59 = A/(ra + r,, + Tc +  2s) 

= ll/(4R + r + 2s). 

Similarly, o' = ll/(4R + r - 2s). 

EXERCISES 

1. Find the locus of the image of a fixed point P by reflection in a variable line through another fixed point 0. 2. For the general triangle ABC, establish the identities 
l + ! + ! = l , ! = _1_ + _1_ + _1_ + � .  
Ta r,, re r a s - a s - b s - c r 

3. The lengths of the tangents from the vertex A to the incircle and to the three excircles are respectively 
s - a, s, s - c, s - b. 

4. Any triangle having two equal internal angle bisectors ( each measured from a vertex to the opposite side) is isosceles. (Hint: If the angles B and C are not equal, one must be less, say B < C. Then,ifthe equal angle bisectors are BM and CN, there is a point P on AN such that LPCN = ½B, and a point Q on PN such that BQ = CP. Compare the angles at P and Q in the congruent triangles BMQ and CNP.) 5. The circumcenter of an obtuse-angled triangle lies outside the triangle. 
6. Where is the circumcenter of a right-angled triangle? 7. Let U, V, W be three points on the respective sides BC, CA, AB of a triangle 

ABC. The perpendiculars to the sides at these points are concurrent if and only if 
A W2 + Blf2 + CV2 = WB2 + UC2 + VA2. 

8. Given a triangle ABC, for what value of x is there a point whose distances from 
A, B, C are equal to x - a, x - b, x - c? (J. A. H. Hux:ter.) 

9. In Figure l.5d, what happens to S' if 
2(a2 + 132 + y2) = (a + /3 + y)2? Sketch the case in which a = 8, b = c = 5, so that a = I and /3 = y = ¼, 

10. A triangle is right-angled if and only if 2R + r = s. 
11. Given a point P on the circumcircle of a triangle, the feet of the perpendiculars from P to the three sides all lie on a straight line. (This line is commonly called the Sim

son line of P with respect to the triangle, although it was first mentioned by W. Wallace, thirty years after Simson's death [Johnson 1 ,  p. 138].) 
12. Given a triangle ABC and a point P in its plane (but not on a side nor on the circumcircle), let A1B1 C1 be the derived triangle formed by the feet of the perpendiculars from P to the sides BC, CA, AB. Let A2B2C2 be derived analogously from A1B1C1 (using the same P), and A�sC3 from A2B2C2. Then A3B3C3 is directly similar to ABC. [Casey 1 , p. 253.] (Hint: LPBA = LPA1C1 = LPC2B2 = L PBsA3.) This result has been extended by A. Oppenheim from the third derived triangle of a triangle to the nth derived n-gon of an 11-gon. 

------, 



THE CONCURRENCE OF ALTITUDES 

1 .6 THE EULER LINE AND THE ORTHOCENTER 

17 

Although the Greeks worked fruitfully, not only in geometry buf also in 
the most varied fields of mathematics, nevertheless we today have gone 
beyond them everywhere and certainly also in geometry. 

F. Klein (1849 -1925) [Kl.ein 2, p. 189) 
From now on, we shall have various occasions to mention the name of L. Euler (1707-1783), a Swiss who spent most of his life in Russia, making important contributions to all branches of mathematics. Some of his simplest discoveries are of such a nature that one can well imagine the ghost of Euclid saying, "Why on earth didn't I think of that?" 

A 

B�------0--- ---<)---0c A' D 
Figure 1.6a 

If the circumcenter O and centroid G of a triangle coincide, each median is perpendicular to the side that it bisects, and the triangle is "isosceles three ways," that is, equilateral. Hence, if a triangle ABC is not equilateral, its circumcenter and centroid lie on a unique line OG. On this so-called Euler 
line, consider a point H such that OH = 30G, that is, GH = 20G (Figure 1.6a). Since also GA = 2A 'G, the latter half of Euclid Vl.2 tells us that A H  is parallel to A ' 0, which is the perpendicular bisector of BC. Thus A H  is perpendicular to BC. Similarly BH is perpendicular to CA, and CH to AB. The line through a vertex perpendicular to the opposite side is called an 
altitude. The above remarks [cf. Court 2, p. 101] show that 

The three altitudes of any triangle all pass through one point on the Euler line. 
This common point Hof the three altitudes is called the orthocenter of the triangle. 

EXERCISES 1. Through each vertex of a given triangle ABC draw a line parallel to the opposite side. The perpendicular bisectors of the sides of the triangle so formed suggest an alternative proof that the three altitudes of ABC are concurrent. [Gauss 1 ,  vol. 4, p. 396.] 2. The orthocenter of an obtuse-angled triangle lies outside the triangle. 
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3. Where is the orthocenter of a right-angled triangle? 
4. Any triangle having two equal altitudes is isosceles. 
S. Construct an isosceles triangle ABC (with base BC), given the median BB' and the altitude BE. (Hint: The centroid is two-thirds of the way from B to B'.) (H. Freudenthal.) 
6. The altitude AD of any triangle ABC is oflength 

2R sin B sin C. 
7. Find the perpendicular distance from the centroid G to the side BC. 
8. If the Euler line passes through a vertex, the triangle is either right-angled or isosceles (or both). 
9. If the Euler line is parallel to the side BC, the angles B and C satisfy 

tan B tan C = 3. 
1 .7 THE NINE-POINT CIRCLE 

This circle is the first really exciting one to appear in any course on 
elementary geometry. 

Doniel Pedoe (1910-

( Pedoe 1 ,  p. 1 J 

A 

Figure 1.7a 

The feet of the altitudes (that is, three points like D in Figure 1 .6a) form the orthic triangle (or "pedal triangle") of ABC. The circumcircle of the 
orthic triangle is called the nine-point circle (or "Feuerbach circle") of the 
original triangle, because it contains not only the feet of the three altitudes but also six other significant points. In fact, 

1 .71 The midpoints of the three s ides, the midpoints of the lines joining the 
orthocenter to the three vertices, and the feet of the three altitudes, all lie on a 
circle. 



COMPLETE QUADRANGLES 19 

Proof [Coxeter 2, 9.29]. Let A', B', C : A", B", C" be the midpoints of BC, 
CA, AB, HA, HB, HC, and let D, E, Fbe the feet of the altitudes, as in Figure I .  7 a. By Euclid VI.2 and 4 again, both C' B' and B" C" are parallel to 
BC while both B'C" and C'B" are parallel to AH. Since AH is perpendicular to BC, it follows that B'C'B"C" is a rectangle. Similarly C'A'C"A" is a rectangle. Hence A' A", B' B", C' C" are three diameters of a circle. Since these diameters subtend right angles at D, E, F, respectively, the same circle passes through these points too. If four points in a plane are joined in pairs by six distinct lines, they are called the vertices of a complete quadrangle, and the lines are its six sides. Two sides are said to be opposite if they have no common vertex. Any point of intersection of two opposite sides is called a diagonal point. There may be as many as three such points (see Figure 1.7b). A 

Figure 1.7b 

If a triangle ABC is not right-angled, its vertices and orthocenter form a special kind of quadrangle whose opposite sides are perpendicular. In this terminology, the concurrence of the three altitudes can be expressed as follows: 1 .72 If two pairs of opposite sides of a complete quadrangle are pairs of 
perpendicular lines, the remaining sides are likewise perpendicular. Such a quadrangle ABCH is called an orthocentric quadrangle. Its six sides 

BC, CA, AB, HA, HB, HC are the sides and altitudes of the triangle ABC, and its diagonal points D, E, F are the f ec-t of the altitudes. Among the four vertices of the quadrangle, our notation seems to give a special role to the vertex H. Clearly, however, 1 .73 Each vertex of an orthocentric quadrangle is the orthocenter of the 
triangle formed by the remaining three vertices. The four triangles Gust one of which is acute-angled) all have the same orthic triangle and consequently the same nine-point circle. It is proved in books on affine geometry [such as Coxeter 2, 8.71] that the midpoints of the six sides of any complete quadrangle and the three diagonal points all lie on a conic. The above remarks show that, when the quadrangle is orthocentric, this "nine-point conic" reduces to a circle. 
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EXERCISES 

1. Of the nine points described in 1.71, how many coincide when the triangle is (a) isosceles, (b) equilateral? 
2. The feet of the altitudes decompose the nine-point circle into three arcs. If the triangle is scalene, the remaining six of the nine points are distributed among the three arcs as follows: One arc contains just one of the six points, another contains two, and the third contains three. 3. On the arc A' D of the nine-point circle, take the point X one-third of the way from A' to D. Take points Y, Z similarly, on the arcs B' E, C' F. Then XYZ is an equilateral triangle. 
4. The incenter and the excenters of any triangle form an orthocentric quadrangle. [Casey 1,  p. 274.) 5. In the notation of§ 1.5, the Euler line of lalblc is 10. 
6. The four triangles that occur in an orthocentric quadrangle have equal circumradii. 

1 .8 TWO EXTREMUM PROBLEMS 

Most people hove some appreciation of mathematics, just os most 
people con enjoy o pleasant tune; and there ore probably more people 
really interested in mathematics than in music. 

G. H. Hardy [2, p. 26] 

Their interest will be stimulated if only we con eliminate the aversion 
toward mathematics that so many hove acquired from childhood ex• 
periences. 

Hons Rademacher (1 892 -

[Rademacher and Toeplitz 1 ,  p. 5] 

We shall describe the problems ofFagnano and Fermat in considerable detail because of the interesting methods used in solving them. The first was proposed in 1775 by J. F. Toschi di Fagnano, who solved it by means of differential calculus. The method given here was discovered by L. Fejer while he was a student [Rademacher and Toeplitz 1 ,  pp. 30-32). 
FAGNANO'S PROBLEM. In a given acute-angled triangle ABC, inscribe a 

triangle UVW whose perimeter is as small as possible. Consider first an arbitrary triangle UVW with U on BC, V on CA , W on 
AB. Let U', U" be the images of U by reflection in CA, AB, respectively. Then 

UV + VW + WU = U' V + VW + WU", which is a path from U 'to U", usually a broken line with angles at V and W. Such a path from U' to U" is minimal when it is straight, as in Figure 1.8a. 

l 



FAGNANO'S PROBLEM 21 Hence, among all inscribed triangles with a given vertex U on BC, the one with smallest perimeter occurs when V and W lie on the straight line U' U". In this way we obtain a definite triangle UVW for each choice of U on BC. The problem will be solved when we have chosen U so as to minimize U' U", which is equal to the perimeter. 
A 

U" -- u· 

Figure 1.8a Since A U' and A U" are images of A U by reflection in A C  and A B, they are congruent and 
L U'A U" = 2A. Thus A U' U" is an isosceles triangle whose angle at A is independent of the choice of U. The base U' U" is minimal when the equal sides are minimal, that is, when A U is minimal. In other words, A U is the shortest distance from the given point A to the given line BC. Since the hypotenuse of a right-angled triangle is longer than either cathetus, the desired location of 

U is such that A U is perpendicular to BC. Thus A U is the altitude from A. This choice of U yields a unique triangle UVW whose perimeter is smaller than that of any other inscribed triangle. Since we could equally well have begun with B or C instead of A , we see that BVand CW are the altitudes from B and C. Hence 
The triangle of minimal perimeter inscribed in an acute-angled triangle ABC 

is the orthic triangle of ABC. The same method can be used to prove the analogous result for spherical triangles [Steiner 2, p. 45, No. 7]. The other problem, proposed by Pierre Fermat (1601-1665), likewise seeks to minimize the sum of three distances. The solution given here is due to J. E. Hofmann.* 
FERMAT'S PROBLEM. In a given acute-angled triangle ABC, locate a point 

P whose distances from A, B, C have the smallest possible sum. Consider first an arbitrary point P inside the triangle. Join it to A, B, C and rotate the inner triangle APB through 60° about B to obtain C'P' B, so that ABC' and PBP' are equilateral triangles, as in Figure 1.8b. Then 
AP + BP + CP = CP' + P'P + PC, 

• Elementare Losung einer Minimumsaufgabe, Zeitschrift far mathematischen und naturwis
senschaft/ichen Unterricht, 60 (1929), pp. 22-23. 
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Figure 1 .8b 

which is a path from C' to C, usually a broken line with angles at P' and P. Such a path (joining C' to C by a sequence of three segments) is minimal when it is straight, in which case 
LBPC = 180° - L EPP ' = 120° and LAPE = L C'P'B = 180° - LPP'B = 120° . Thus the desired point P, for which AP + BP + CP is minimal, is the point from which each of the sides BC, CA, AB subtends an angle of 120° . This "Fermat point" is most simply constructed as the second intersection of the line CC' and the circle ABC' (that is, the circumcircle of the equilateral triangle ABC'). It has been pointed out [for example by Pedoe 1 ,  pp. 11-12] that the triangle ABC need not be assumed to be acute-angled. The above solution is valid whenever there is no angle greater than 120°. Instead of the equilateral triangle ABC' on AB, we could just as well have drawn an equilateral triangle BCA' on BC, or CAB' on CA, as in Figure 1.8c. Thus the three lines AA ', BB', CC' all pass through the Fermat point P, and any two of them provide an alternative construction for it. Moreover, the line segments AA', BB', CC' are all equal to AP + BP + CP. Hence 

If equilateral triangles BCA', CAB', ABC ' are drawn outwards on the sides 
of any triangle ABC, the line segments AA', BB', CC' are equal, concurrent, 
and inclined at 60° to one another. 

\ 
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Figure 1 .8c 



FERMAT'S PROBLEM 

EXERCISES 

23 
1. In Figure I .Sa, UV and VW make equal angles with CA. Deduce that the orthocenter of any triangle is the incenter of its orthic triangle. (In other words, if ABC is a triangular billiard table, a ball at U, hit in the direction UV, will go round the triangle 

UVW indefinitely, that is, until i t  is stopped by friction.) 2. How does Fagnano's problem collapse when we try to apply it to a triangle ABC in which the angle A is obtuse? 3. The circumcircles of the three equilateral triangles in Figure I.Sc all pass through 
P, and their centers form a fourth equilateral triangle.• 4. Three holes, at the vertices of an arbitrary triangle, are drilled through the top of a table. Through each hole a thread is passed with a weight hanging from it below the table. Above, the three threads are all tied together and then released. If the three weights are all equal, where will the knot come to rest? 5. Four villages are situated at the vertices of a square of side one mile. The inhabitants wish to connect the villages with a system of roads, but they have only enough 111:iterial to make y3 + 1 miles of road. How do they proceed? [Courant and Robbins 1 ,  p. 392.} 6. Solve Fermat's problem for a triangle ABC with A > 120°, and for a convex quadrangle ABCD. 7. If two points P, P', inside a triangle ABC, are so situated that L CBP = L P  BP' = L P'BA, LACP' = L P'CP = LPCB, then LBP'P = LPP'C. 8. If four squares are placed externally (or internally) on the four sides of any parallelogram, their centers are the vertices of another square. [Yaglom 1 ,  pp. 96-97 .} 9. Let X, Y, Z be the centers of squares placed externally on the sides BC, CA, AB of a triangle ABC. Then the segment AX is congruent and perpendicular to YZ (also 
BY to ZX and CZ to XY). (W. A. J. Luxemburg.) 10. Let Z, X, U, V be the centers of squares placed externally on the sides AB, BC, 
CD, DA of any simple quadrangle (or "quadrilateral") ABCD. Then the segment ZU (joining the centers of two "opposite" squares) is congruent and perpendicular to XV. [Forder 2, p. 40.} 

1 .9 MORLEY'S THEOREM 

Many of the proofs in mathematics are very long and intricate. Others, 
though not long, are very ingeniously constructed. 

E. C. Titchmarsh (1899 -1963) 

[Titchmarsh 1 ,  p. 23) 

One of the most surprising theorems in elementary geometry was discovered about 1899 by F. Morley (whose son Christopher wrote novels such as 
Thunder on the Left). He mentioned it to his friends, who spread it over 

• Court (1,  pp. 105-107]. See also Mathesis 1938, p. 293 (footnote, where this theorem is attrib
uted to Napoleon); and Forder (2, p. 40] for some interesting generalizations. 



24 TRIANGLES the world in the form of mathematical gossip. At last, after ten years, a trigonometrical proof by M. Satyanarayana and an elementary proof by M. T. Naraniengar were published.* 
A 

Figure 1 .9a 

MORLEY' S THEOREM. The three points of intersection of the a djacent tri
sectors of the angles of any triangle form an equila teral triangle. In other words, any triangle ABC yields an equilateral triangle PQR if the angles A, B, C are trisected by A Q and AR, BR and BP, CP and CQ, as in Figure 1 .9a .  (Much trouble is experienced if we try a direct approach, but the difficulties disappear if we work backwards, beginning with an equilateral triangle and building up a general triangle which is afterwards identified with the given triangle ABC.) On the respective sides QR, RP, PQ of a given equilateral triangle PQR, erect isosceles triangles P' QR, Q' RP, R' PQ whose base angles a, /3, y satisfy the equation and inequalities 

a + /3 + y = 120° , a < 60° , /3 < 60° , y < 60°. 
• Mathematical Questions and their Solutions from the Educational Times (New Series), 15 

(1909), pp. 23-24, 47. See also C. H. Chepmell and R. F. Davis, Mathematical Gazette, 1 1 (1923), 
pp. 85-86; F. Morley, American Journal of Mathematics, 51 (1929), pp. 465-472, H. D. Gross
man, American Mathematical Monthly, 50 (1943), p. 552, and L. Bankolf, Mathematics Maga
zine, 35 (1962), pp. 223-224. The treatment given here is due to Raoul Bricard, Nouvelles An
na/es de Mathematiques (5), 1 (1922), pp. 254-258. A similar proof was devised independently 
by Bottema (1, p. 34). 



MORLEY'S THEOREM 25 Extend the sides of the isosceles triangles below their bases until they meet again in points A, B, C. Since a + f3 + y + 60° = 180° , we can immediately infer the measurement of some other angles, as marked in Figure 
l .9a. For instance, the triangle A QR must have an angle 60° - a at its vertex A,  since its angles at Q and R are a + f3 and y + a. Referring to 1.51, we see that one way to characterize the incenter I of a triangle ABC is to describe it as lying on the bisector of the angle A at such a distance that 

L. BIC = 90° + 1A. Applying this principle to the point P in the triangle P'BC, we observe that the line PP' (which is a median of both the equilateral triangle PQR and the isosceles triangle P'QR) bisects the angle at P'. Also the half angle at 
P' is 90° - a, and 

L. BPC = 180° - a = 90° + (90° - a). Hence P is the incenter of the triangle P'BC. Likewise Q is the incenter of 
Q'CA, and R of R'AB. Therefore all the three small angles at C are equal; likewise at A and at B. In other words, the angles of the triangle ABC are trisected. The three small angles at A are each ½A = 60° - a; similarly at B and C. Thus a = 60° - ½A, /3 = 60° - ½B, y = 60° - tC. By choosing these values for the base angles of our isosceles triangles, we can ensure that the above procedure yields a triangle ABC that is similar to any given triangle. This completes the proof. 

EXERCISES 1. The three lines PP', QQ', RR' (Figure 1.9a) are concurrent. In other words, the trisectors of A, B, C meet again to form another triangle P'Q'R' which is perspective with the equilateral triangle PQR. (In general P'Q'R' is not equilateral.) 2. What values of a, p, y will make the triangle ABC (i) equilateral, (ii) rightangled isosceles? Sketch the figure in each case. 3. Let P1 and P2 (on CA and AB) be the images of P by reflection in CP' and BP'. Then the four points Pi, Q, R, P2 are evenly spaced along a circle through A . In the special case when the triangle ABC is equilateral, these four points occur among the vertices of a regular enneagon (9-gon) in which A is the vertex opposite to the side QR. 



2 
Regular Polygons 

We begin this chapter by discussing (without proofs) the possibility of constructing certain regular polygons with the instruments allowed by Euclid. We then consider all these polygons, regardless of the question of constructibility, from the standpoint of symmetry. Finally, we extend the concept of a regular polygon so as to include star polygons. 
2.1 CYCLOTOMY 

One, two/ One, two! And through and through 
The vorpol blade went snicker-snack/ 

Lewis Carroll 
[ Dodgson 2, Chop. 1 ] 

Euclid's postulates imply a restriction on the instruments that he allowed for making constructions, namely the restriction to ruler ( or straightedge) and compasses. He constructed an equilateral triangle (1. 1), a square (IV.6), a regular pentagon (IV.11), a regular hexagon (IV.15), and a regular 15-gon (IV.16). The number of sides may be doubled again and again by repeated angle bisections. It is natural to ask which other regular polygons can be constructed with Euclid's instruments. This question was completely answered by Gauss (1777-1855) at the age of nineteen [see Smith 2, pp. 301-302]. Gauss found that a regular n-gon, say {n}, can be so constructed if and only if the odd prime factors of n are distinct "Fermat primes" 
Fk = 22k + I. 

The only known primes of this kind are 
F0 = 21 + 1 = 3, F1 = 22 + 1 = 5, F2 = 24 + 1 17, 

F3 = 28 + 1 = 257, F4 = 216 + 1 = 65537. 
Since 7 is not a Fermat prime, Euclid's instruments will not suffice for the 
26 



CYCLOTOMY 27 construction of a regular heptagon {7). Since the factors of 9 are not distinct, the same is true for a regular enneagon { 9}. To inscribe a regular pentagon in a given circle, simpler constructions than Euclid's were given by Ptolemy and Richmond.* The former has been repeated in many textbooks. The latter is as follows (Figure 2. la). To inscribe a regular pentagon P0P1P2PaP4 in a circle with center 0: draw the radius OB perpendicular to OP0; join Po to D, the midpoint of OB; bisect the angle ODPo to obtain N1 on OP0; and draw N1P1 perpendicular to OPo to obtain P1 on the circle. Then P0P1 is a side of the desired pentagon. 

D 

0 Nl 
Figure 2. la 

P
.!'...
s _-,;,B--

Figure 2.lb Richmond also gave a simple construction for the {17} PoP1 . . .  P1s (Figure 2. lb). Join Po to J, one quarter of the way from O to B. On the diameter through Po take E, F, so that L OJE is one quarter of Of Po and L FJ E is 45 °.  Let the circle on FP0 as diameter cut OB in K, and let the circle with center E and radius EK cut OP0 in Na (between O and Po) and Ns. Draw perpendiculars to OP0 at these two points, to cut the original circle in Pa and P5. Then the arc PaP5 (and likewise P1Pa) is fr of the circumference. (The proof involves repeated application of the principle that the roots of the equation x2 + 2x cot 2C - 1 = 0 are tan C and -cot C.) Richelot and Schwendenwein constructed the regular 257-gon about 1898. J. Hermes spent ten years on the regular 65537-gon and deposited the manuscript in a large box in the University of Gottingen, where it may still be found. The next number of the form Fk = 22" + I is F5 = 4294967297. Fermat incorrectly assumed it to be prime. G. T. Bennett gave the following neat proof t that it is composite [Hardy and Wright 1 ,  p. 14]: the number 641 = 54 + 24 = 5 • 27 + 1, dividing both 54 • 228 + 232 and 54 • 228 - 1, divides their difference, which is F5• 

• H. W. Richmond, Quarterly Journal of Mathematics, 26 (1893), pp. 296 --297; see also H. E. 
Dudeney, Amusements in Mathematics (London 1917), p. 38. 

t Rediscovered by P. Kanagasabapathy, Mathematical Gazette, 42 (1958), p. 3 10. 



28 REGULAR POLYGONS The question naturally arises whether Fk may be prime for some greater value of k. It is now known that this can happen only if Fk divides 3 < Pk-1 ,12 + 1. Using this criterion, electronic computing machines have shown that 
Fk is composite for 5 < k < 16. Therefore Hermes's construction is the last of its kind that will ever be undertaken! 

EXERCISES 

1. Verify the correctness of Richmond's construction for {5} (Figure 2. la). 
2. Assuming Richmond's construction for { 17} ,  how would you inscribe { 5 1 }  in 

the same circle? 

2.2 ANGLE TRISECTION 

To trisect a given angle, we may proceed to flnd the sine of the angle
say a-then, if x is the sine of on angle equal to one-third of the given 
angle, we have 4x3 = 3x - a. 

W. W. Rouse Boll ( 1 850 -1925) 
[Boll 1 ,  p. 327) The problem of trisecting an arbitrary angle with ruler and compasses exercised the ingenuity of professional and amateur mathematicians for two thousand years [Ball 1 ,  pp. 333-335]. It is, of course, easy to trisect certain particular angles, such as a right angle. But any construction for trisecting an arbitrary angle could be applied to an angle of 60° , and then we could draw a regular enneagon. Since the number 9 has 3 as a repeated factor, this polygon cannot be drawn with ruler and compasses. In view of Gauss's discovery, we may say that it has been known since 1796 that the classical trisection problem can never be solved. This is probably the reason why Morley's Theorem (§ 1.9) was not discovered till the twentieth century: people felt uneasy about mentioning the trisectors of an angle. However, although the trisectors cannot be constructed by means of the ruler and compasses, they can be found in other ways [Cundy and Rollett 1 ,  pp. 208-211]. Even if these more versatile instruments had never been discovered, the theorem would still be meaningful. Most mathematicians are willing to accept the existence of things that they have not been able to construct. For instance, it was proved in 1909 that the Fermat numbers F7 and F8 are composite, but their smallest prime factors still remain to be computed. 

EXERCISE 

The number 2" + I is composite whenever n is not a power of 2. 



2.3 ISOMEYRY 

ISOMETRY 29 

One woy of describing the structure of space, preferred by both New
ton ond Helmholtz, is through the notion of congruence. Congruent 
ports of space V, V' ore such os con be occupied by the some rigid 
body in two of its positions. If you move the body from one into the 
other position the particle of the body covering o point P of V will after
words cover a certain point P' of V', and thus the result of the mo
tion is a mopping P - P' of V upon V'. We con extend the rigid body 
either actually or in imagination so os to cover on arbitrarily given 
point P of space, and hence the congruent mopping P - P' can be 
extended to the entire space. 

Hermann Weyl (1885-1955) 
(Weyl 1 ,  p, 43] We shall find it convenient to use the word transformation in the special sense of a one-to-one correspondence P ➔ P' among all the points in the plane (or in space), that is, a rule for associating pairs of points, with the understanding that each pair has a first member P and a second member P' and that every point occurs as the first member of just one pair and also as the second member of just one pair. It may happen that the members of a pair coincide, that is, that P' coincides with P; in this case P is called an invariant point (or "double point") of the transformation. In particular, an isometry (or "congruent transformation," or "congruence") is a transformation which preserves length, so that, if (P, P') and 

(Q, Q' ) are two pairs of corresponding points, we have PQ = P'Q': PQ and P'Q' are congruent segments. For instance, a rotation of the plane about 
P (or about a line through P perpendicular to the plane) is an isometry having P as an invariant point, but a translation ( or "parallel displacement") has no invariant point: every point is moved. A reflection is the special kind of isometry in which the invariant points consist of all the points on a line (or plane) called the mirror. A still simpler kind of transformation (so simple that it may at first seem too trivial to be worth mentioning) is the identity, which leaves every point unchanged. The result of applying several transformations successively is called their product. If the product of two transformations is the identity, each is called the inverse of the other, and their product in the reverse order is again the identity. 

2.31 If an isometry has more than one invariant point, it must be either the 
identity or a reflection. To prove this, let A and B be two invariant points, and P any point not on  the line AB (Figure 1.3b). The corresponding point P', satisfying 

AP' = AP, BP' = BP, must lie on the circle with center A and radius AP, and on the circle with cen-



30 REGULAR POLYGONS ter B and radius BP. Since P is not on AB, these circles do not touch each other but intersect in two points, one of which is P. Hence P' is either P itself or the image of P by reflection in AB. 

2.4 SYMMETRY 

Tyger! Tyger! burning bright 
In the forests of the night, 
What immortal hand or eye 
Dore frame thy fearful symmetry? 

William Bloke ( 1 757 -1 827) When we say that a figure is "symmetrical" we mean that we can apply certain isometries, called symmetry operations, which leave the whole figure unchanged while permuting its parts. For example, the capital letters E and A (Figure 2.4a) have bilateral symmetry, the mirror being horizontal for the former, vertical for the latter. The letter N (Figure 2.4b) is symmetrical by a 
half-turn, or rotation through 180° (or "reflection in a point," or "central inversion"), which may be regarded as the result of reflecting horizontally and then vertically, or vice versa. The swastika (Figure 2.4c) is symmetrical by rotation through any number of right angles. 

I 

--E-- A N 
Figure 2.4a Figure 2.4b 

In counting the symmetry operations of a .figure, it is usual to include the identity; any figure has this trivial symmetry. Thus the swastika admits four distinct symmetry operations: rotations through I ,  2, 3, or 4 right angles. The last is the identity. The first and third are inverses of each other, since their product is the identity. This use of the word "product" suggests an algebraic symbolism in which the transformations are denoted by capital letters while 1 denotes the identity. (Instead of 1, some authors write E.) Thus if S is the counterclockwise quarter-turn, the four symmetry operations of the swastika are S, S2, S3 = S-1 and S4 = 1. Since the smallest power of S that is equal to the identity is the fourth power, 



SYMMETRY 31 we say that S is of period 4. Similarly S2, being a half-tum, is of period 2 [see Coxeter 1 ,  p. 39]. The only transformation of period I is the identity. A translation is aperiodic (that is, it has no period), but it is conveniently said to be of infinite period. Some figures admit both reflections and rotations as symmetry operations. The letter H (Figure 2.4d) has a horizontal mirror (like E) and a vertical mirror (like A), as well as a center of rotational symmetry (like N) where the two mirrors intersect. Thus it has four symmetry operations: the identity I ,  the horizontal reflection R1 , the vertical reflection R2, and the half-turn R1R2 = R2R1. 

Figure 2.4c Figure 2.4d 

EXERCISES 

1. Every isometry of period 2 is either a reflection or a half-turn [Bachmann 1, pp. 2-3]. 2. Express (a) a half-turn, (b) a quarter-turn, as transformations of (i) Cartesian coordinates, (ii) polar coordinates. (Take the origin to be the center ofrotation.) 
2.5 GROUPS 

Symmetry, as wide or as narrow as you may define its meaning, is one 
idea by which man through the ages has tried to comprehend and 
create order, beauty, and perfection. 

Hermann Weyl [1,  p. 5] 

A set of transformations [Birkhoff and MacLane 1 ,  pp. I 19-122) is said to form a group if it contains the inverse of each and the product of any two (including the product of one with itself or with its inverse). The number of distinct transformations is called the order of the group. (This may be either finite or infinite.) Clearly the symmetry operations of any figure form a group. This is called the symmetry group of the figure. In the extreme case when the figure is completely irregular (like the numeral 6) its symmetry group is of order one, consisting of the identity alone. 



32 REGULAR POLYGONS The symmetry group of the letter E or A (Figure 2.4a) is the so-called di
hedral group of order 2, generated by a single reflection and denoted by D1. (The name is easily remembered, as the Greek origin of the word "dihedral" is almost equivalent to the Latin origin of "bilateral.") The symmetry group of the letter N (Figure 2.4b) is likewise of order 2, but in this case the generator is a half-turn and we speak of the cycl ic group, C2. The two groups D1 and C2 are abstractly identical or isomorphic; they are different geometrical representations of the single abstract group of order 2, defined by the relation 
2.51 R2 = 1 or R = R-1 [Coxeter and Moser 1 ,  p. l] . The symmetry group of the swastika is C4, the cyclic group of order 4, generated by the quarter-tum S and abstractly defined by the relation S4 = 1. That of the letter H (Figure 2.4d ) is D2, the dihedral group of order 4, generated by the two reflections R1, R2 and abstractly defined by the relations 
2.52 Although C4 and D2 both have order 4, they are not isomorphic: they have a different structure, different "multiplication tables." To see this, it suffices to observe that C4 contains two operations of period 4, whereas all the operations in D2 (except the identity) are of period 2: the generators obviously, and their product also, since (R1R2)2 = R1R2R1R2 = R1R2R2R1 = R1R22R1 = R1R1 = R1 2 = 1. This last remark illustrates what we mean by saying that 2.52 is an ab
stract definition for D2, namely that every true relation concerning the generators R1, R2 is an algebraic consequence of these simple relations. An alternative abstract definition for the same group is 
2.53 from which we can easily deduce R1R2 = R2R1. The general cyclic group Cn, of order n, has the abstract definition 
2.54 Its single generator S, of period n, is conveniently represented by a rotation through 360° In. Then S1< is a rotation through k times this angle, and the n operations in Cn are given by the values of k from I to n, or from O to n - l. In particular, C5 occurs in nature as the symmetry group of the periwinkle flower. 

EXERCISE 

Express a rotation through angle a about the origin as a transformation of (i) polar -:oordinates, (ii) Cartesian coordinates. Iffl..r, B) = 0 is the equation for a curve in polar coordinates, what is the equation for the transformed curve? 



CYCLIC AND DIHEDRAL GROUPS 

2.6 THE PRODUCT OF TWO REFLECTIONS 

In any group of transformations, the associative law (RS)T = R(ST) is autom�Jically satisfied, but the commutative law RS = SR 

33 

Thou in thy lake dost see 
Thyself. 

J. M. Legare (1823 -1859) 
(To a Lily) 

does not necessarily hold, and care must be taken in inverting a product, for example, 
(RS)-1 = S-lR-1, not R-1s-1. (This becomes clear when we think of Rand S as the operations of putting on our socks and shoes, respectively.) 
C 

D 

0 
Figure 2.6a 

B 

A 

The product of reflections in two intersecting lines (or planes) is a rotation through twice the angle between them. In fact, if A, B, C, D, . . .  are evenly spaced on a circle with center 0, let R1 and R2 be the reflections in 
OB and OC (Figure 2.6a). Then R1 reflects the triangle OAB into OCB, which is reflected by R2 to OCD; thus R1R2 is the rotation through LAOC or LBOD, which is twice LBOC. Since arotation is completely determined by its center and its angle, R1R2 is equal to the product of reflections in any two lines through O making the same angle as OB and OC. (The reflections in OA and OB are actually R1R2R1 and R1, whose product is R1R2R12 = R1R2.) In particular, the half-tum about O is the product of reflections in any two perpendicular lines through 0. Since R1R2 is a counterclockwise rotation, R2R1 is the corresponding clockwise rotation; in fact, R2R1 = R2-1R1-1 = (R1R2)-1. 



34 REGULAR POLYGONS This is the same as R1R2 if the two mirrors are at right angles, in which case R1R2 is a half-turn and (R1R2)2 = 1. 
EXERCISES 

1. The product of quarter-turns (in the same sense) about C and B is the half-turn 
about the center of a square having BC for a side. 

2. LetA CPQ and BARS be squares on the sides AC and BA of a triangle ABC. If B 
and Cremain fixed while A varies freely, PS passes through a fixed point. 

2.7 THE KALEIDOSCOPE 

D2 is a special case of the general dihedral group Dn, which is, for n > 2, the symmetry group of the regular n-gon, { n}. (See Figure 2. 7 a for the cases 
n = 3, 4, 5.) This is evidently a group of order 2n, consisting of n rotations (through the n effectively distinct multiples of 360° In) and n reflections. When n is odd, each of the n mirrors joins a vertex to the midpoint of the opposite side; when n is even, ½ n mirrors join pairs of opposite vertices and ½ n bisect pairs of opposite sides [see Birkhoff and MacLane 1 ,  pp. 117- 118, 135]. 

Figure 2.7a 

The n rotations are just the operations of the cyclic group Cn. Thus the operations of Dn include all the operations of Cn: in technical language, Cn is a subgroup of Dn. The rotation through 360° In, which generates the subgroup, may be described as the product S = R1R2 of reflections in two adjacent mirrors (such as OB and OC in Figure 2.7a) which are inclined at 180° In. Let R1, R2, . . .  , Rn denote the n reflections in their natural order of arrangement. Then R1Rk+1, being the product of reflections in two mirrors inclined at k times 180° In, is a rotation through k times 360° In: R1Rk+l = Sk. Thus Rk+l = R1Sk, and the n reflections may be expressed as R1, R1S, R1S2, • . •  , R1Sn-l. In other words, Dn is generated by R1 and S. By substituting R1R2 for S, we 

7 



LEONARDO 'S THEOREM 35 see that the same group is equally  well generated by R1 and R2, which satisfy the relations 
2.71 (The first two relations come from 2.51 and the third from 2.54.) These relations can be shown to suffice for an abstract definition [see Coxeter and Moser 1 ,  pp. 6, 36]. A practical way to make a model of Dn is to join two ordinary mirrors by a hinge and stand them on the lines OB, OC of Figure 2.7a so that they are inclined at 180° In. Any object placed between the mirrors yields 2n visible images (including the object itself). If the object is your right hand, n of the images will look like a left hand, illustrating the principle that, since a reflection reverses sense, the product of any even number ofreflections preserves sense, and the product of any odd number of reflections reverses sense. The first published account of this instrument seems to have been by Athanasius Kircher in 1646. The name kaleidoscope (from KaAos, beautiful; e,Sos, a form; and oKo'lTetv, to see) was coined by Sir David Brewster, who wrote a treatise on its theory and history. He complained [Brewster 1 ,  p. 147] that Kircher allowed the angle between the two mirrors to be any submultiple of 360 ° instead of restricting it to submultiples of 180° . The case when n = 2 is, of course, familiar. Standing between two perpendicular mirrors (as at a corner of a room), you see your image in each and also the image of the image, which is the way other people see you. Having decided to use the symbol Dn for the dihedral group generated by reflections in two planes making a "dihedral" angle of 180° In, we naturally stretch the notation so as to allow the extreme value n = 1. Thus 
D1 is the group of order 2 generated by a single reflection, that is, the symmetry group of the letter E or A, whereas the isomorphic group C2, generated by a half-turn, is the symmetry group of the letter N. 

According to Weyl [1, pp. 66 ,99], it was Leonardo da Vinci who discovered that the only finite 
groups ofisometries in the plane are 

C1, C2, Cs, . . - , 
Di. D2, Ds, . . . .  

His interest in them was from the standpoint of architectural plans. Of course, the prevalent 
groups in architecture have always been D1 and D2. But the pyramids of Egypt exhibit the group 
D,., and Leonardo's suggestion has been followed to some extent in modern times: the Pentagon 
Building in Washington has the symmetry group D5,and the Bahai Temple near Chicago has De. 
In nature, many flowers have dihedral symmetry groups such as De. The symmetry group of a 
snowflake is usually D6 but occasionally only D3. [Kepler 1, pp. 259-280.] 

If you cut an apple the way most people cut an orange, the core is seen to have the symmetry 
group D5. Extending the five-pointed star by straight cuts in each half, you divide the whole 
apple into ten pieces from each of which the core can be removed in the form of two thin flakes. 

EXERCISES 

I. Describe the symmetry groups of 

(a) a scalene triangle, (b) an isosceles triangle, 
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(c) a parabola, (e) a rhombus, (g) an ellipse. 

REGULAR POLYGONS 

( d) a parallelogram, (f) a rectangle, 
2. Use inverses and the associative law to prove algebraically the "cancellation rule" which says that the relation 

RT = ST 
implies R = S. 3. Show how the usual defining relations for D3, namely 2.71 with n = 3, may be deduced by algebraic manipulation from the simpler relations 

R12 = I, R1R2R1 = R2R1R2. 
4. The cyclic group C,,, is a subgroup of C,. if and only if the number m is a divisor of 

n. In particular, if n is prime, the only subgroups of Cn are C,. itself and C1. 

2.8 ST AR POLYGONS 

Instead of deriving the dihedral group Dn from the regular polygon { n} ,  
we could have derived the polygon from the group: the vertices of the poly
gon are just the n images of a point Po (the C of Figure 2.7a) on one of the 
two mirrors of the kaleidoscope. In fact, there is no need to use the whole 
group Dn: its subgroup Cn will suffice. The vertex Pk of the polygon 
P0P1 . . .  Pn-l can be derived from the initial vertex Po by a rotation through 
k times 360° In. 

More generally, rotations about a fixed point O through angles 0, 20, 30, 
. . .  transform any point Po (distinct from 0) into other points Pi, P2, P3, 
. . .  on the circle with center O and radius OP0. In general, these points 
become increasingly dense on the circle; but if the angle 0 is commensura
ble with a right angle, only a finite number of them will be distinct. In par
ticular, if 0 = 360° In, where n is a positive integer greater than 2, then there 
will be n points Pk whose successive joins 

PoP1, P1P2, . . .  , Pn-1Po 

are the sides of an ordinary regular n-gon. 
Let us now extend this notion by allowing n to be any rational number 

greater than 2, say the fractionpld (where p and d are coprime). Accord
ingly, we define a (generalized) regular polygon {n}, where n = pld. Its p 
vertices are derived from Po by repeated rotations through 360° In, and its 
p sides (enclosing the center d times) are 

PoP1, P1P2, . . .  , Pp-1Po. 
Since a ray coming out from the center without passing through a vertex 
will cross d of the p sides, this denominator d is called the density of the 
polygon [Coxeter 1 ,  pp. 93-94]. When d = 1 ,  so that n = p, we have the 



ST AR POLYGONS 37 ordinary regular p-gon, {p }. When d > I, the sides cross one another, but the crossing points are not counted as vertices. Since d may be any positive integer relatively prime to p and less than ½P, there is a regular polygon { n} for each rational number n > 2. In fact, it is occasionally desirable to include also the digon {2}, although its two sides coincide. When p = 5, we have the pentagon { 5} of density I and the pentagram { ! } of density 2, which was used as a special symbol by the Babylonians and by the Pythagoreans. Similarly, the octagram {t} and the decagram { lf} have density 3, while the dodecagram { 11} has density 5 (Figure 2.8a). These particular polygons have names as well as symbols because they occur as faces of interesting polyhedra and tessellations.* 

Figure 2.8a 

Polygons for which d > 1 are known as star polygons. They are frequently used in decoration. The earliest mathematical discussion of them was by Thomas Bradwardine (1290-1349), who became archbishop of Canterbury for the last month of his life. They were also studied by the great German scientist Kepler (1571-1630) [see Coxeter 1 ,  p. 114]. It was the Swiss mathematician L. Schlafli (1814-1895) who first used a numerical symbol such as {p/ d}. This notation is justified by the occurrence of formulas that hold for { n} equally well whether n be an integer or a fraction. For instance, any side of { n}  forms with the center O an isosceles triangle 
OP0P1 (Figure 2.8b) whose angle at O is 2'1T/n. (As we are introducing trigonometrical ideas, it is natural to use radian measure and write 2.,, instead of 360° .) The base of this isosceles triangle, being a side of the polygon, is conveniently denoted by 2/. The other sides of the triangle are equal to the circumradius R of the polygon. The altitude or median from O is the inradius r of the polygon. Hence 
2.81 R = l csc '!I, r = l cot '!I .  n n If n = pl d, the area of the polygon is naturally defined to be the sum of the areas of the p isosceles triangles, namely 

• H. S. M. Coxeter, M. S. Longuet-Higgins, and J. C. P. Miller, Uniform polyhedra, Philosoph
ical Transactions of the Royal Society, A, 246 (1954), pp. 401-450. 
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REGULAR POLYGONS 

Figure 2.8b 

plr = p/2 cot !! . n 

When d = 1, this is simply p/2 cot .,,;p; in other cases our definition of area has the effect that every part of the interior is counted a number of times equal to the "local density" of that part; for example, the pentagonal region in the middle of the pentagram (t} is counted twice. The angle P0P1P2 between two adjacent sides of {n},  being the sum of the base angles of the isosceles triangle, is the supplement of 2.,,/n, namely 
2.83 

The line segment joining the midpoints of two adjacent sides is called the 
vertex figure of { n}. Its length is clearly 
2.84 

[Coxeter 1 ,  pp. 16, 94]. 
2/ cos !! n 

EXERCISES 

1. If the sides of a polygon inscribed in a circle are all equal, the polygon is regular. 
2. If a polygon inscribed in a circle has an odd number of vertices, and all its angles are equal, the polygon is regular. (Marcel Riesz.) 3. Find the angles of the polygons 

{5}, {t}, {9}, {½}, {¾}. 
4. Find the radii and vertex figures of the polygons 

{8}, {t},  {12}, { 1f} .  
5. Give polar coordinates for the kth vertex Pk of a polygon { n} of circumradius I with its center at the pole, taking Po to be (1 ,  0). 
6. Can a square cake be cut into nine slices so that everyone gets the same amount of cake and the same amount of icing? 
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lsometry in the Euclidean plane 

Having made some use of reflections, rotations, and translations, we nat
urally ask why a rotation or a translation can be achieved as a continuous 
displacement (or "motion") while a reflection cannot. It is also reasonable 
to ask whether there is any other kind of isometry that resembles a refl.ec
tion in this respect. After answering these questions in terms of "sense," 
we shall use the information to prove a remarkable theorem (§ 3.6) and to 
describe the seven possible ways to repeat a pattern on an endless strip 
(§ 3.7). 

3.1 DIRECT AND OPPOSITE ISOMETRIES 

"Take core of the sense, and the sounds will toke core of themselves."' 

Lewis Carroll 
[Dodgson 1 ,  Chop. 9] 

By several applications of Axiom 1.26, it can be proved that any point P 
in the plane of two congruent triangles A BC, A ' B'C' determines a corre
sponding point P' such that AP = A'P', BP = B'P � CP = C'P'. Likewise 
another point Q yields Q', and PQ = P'Q'. Hence 

3.1 1  Any two congruent triangles a re rela ted by a unique isometry. 
In § 1.3, we saw that Pappus's proof of Pons asinorum involved the com

parison of two coincident triangles ABC, A CE. We see intuitively that this 
is a distinction of sense: if one is counterclockwise the other is clockwise. 
It is a "topological" property of the Euclidean plane that this distinction 
can be extended from coincident triangles to distinct triangles: any two 
"directed" triangles, ABC and A'B'C', either agree or disagree in sense. 
(For a deeper investigation of this intuitive idea, see Veblen and Young [2, 
pp. 61-62] or Denk and Hofmann [1 , p. 56].) 

If ABC and A'B'C' are congruent, the isometry that relates them is said 
to be direct or opposite according as it preserves or reverses sense, that is, 
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40 /SOMETRY IN THE EUCLIDEAN PLANE according as ABC and A'B'C' agree or disagree. It is easily seen that this property of the isometry is independent of the chosen triangle ABC : if the same isometry relates DEF to D' E' F, where DEF agrees with ABC, then also D' E' F' agrees with A' B' C'. Clearly, direct and opposite isometries combine like positive and negative numbers (e.g., the product of two opposite isometries is direct). Since a reflection is opposite, a rotation (which is the product of two reflections) is direct. In particular, the identity is direct. Some authors call direct and opposite isometries "displacements and reversals" or "proper and improper congruences." Theorem 2.31 can be extended as follows: 
A' 

A 

B' 

Figure 3.la 

3.1 2  Two given congruent line segments (or point pairs) AB, A' B' are re
lated by just two isometries: one direct and one opposite. To prove this, take any point C outside the line AB, and construct C' so that the triangle A'B'C' is congruent to ABC. The two possible positions of C' (marked C', C" in Figure 3. l a) provide the two isometries. Since either can be derived from the other by reflecting in A'B', one of the isometries is direct and the other opposite. For a complete discussion we need the following theorem [Bachmann 1 , p. 3]: 

B' B 
C' 

Figure 3.1b 



SENSE 41 

3. 1 3  Every isometry of the plane is the product of at most three reflections. 
If there is an invariant point, "three" can be replaced by "two." 

We prove this in four stages, using 3 . 1 1. Trivially, if the triangles ABC, 
A'B'C' coincide, the isometry is the identity (which is the product of a reflection with itself). If A coincides with A', and B with B', while C and C' are distinct, the triangles are related by the reflection in AB. The case when only A coincides with A' can be reduced to one of the previous cases by reflecting ABC in m, the perpendicular bisector of BB' (see Figure 3. lb). Finally, the general case can be reduced to one of the first three cases by reflecting ABC in the perpendicular bisector of AA' [Coxeter 1 ,  p. 35]. 

Since a reflection reverses sense, an isometry is direct or opposite according as it is the product of an even or odd number of reflections. Since the identity is the product of two reflections (namely of any reflection with itself), we may say simply that any isometry is the product of two or three reflections, according as it is direct or opposite. In particular, 
3. 1 4  Any isometry with an invariant point is a rotation or a reflection ac

cording as it is direct or opposite. 

1. Name two direct isometries. 
EXERCISES 

2. Name one opposite isometry. Is there any other kind? 3. If AB and A'B' are related by a rotation, how can the center of rotation be constructed? (Hint: The perpendicular bisectors of AA ' and BB 'are not necessarily distinct.) 4. The product of reflections in three lines through a point is the reflection in another line through the same point [Bachmann 1,  p. 5]. 
3.2 TRANSLATION 

Enoch walked with God; and he was not, far God took him. 

Genesis V, 24 

The particular isometries so far considered, namely reflections (which are opposite) and rotations (which are direct), have each at least one invariant point. A familiar isometry that leaves no point invariant is a translation [Bachmann 1 ,  p. 7], which may be described as the product of half-turns about two distinct points 0, 0' (Figure 3.2a). The first half-turn transforms an arbitrary point P into PH, and the second transforms this into J'T, with the final result that P PT is parallel to 00' and twice as long. Thus the length and direction of ppr are constant: independent of the position of P. Since a translation is completely determined by its length and direction, the product of half-turns about 0 and 0' is the same as the product ofhalfturns about Q and Q', provided QQ' is equal and parallel to 00'. (This 



42 /SOMETRY IN THE EUCLIDEAN PLANE means that 00' Q' Q is a parallelogram, possibly collapsing to form four collinear points, as in Figure 3.2a.) Thus, for a given translation, the center of one of the two half-turns may be arbitrarily assigned. 
3.21 The product of two translations is a translation. For, we may arrange the centers so that the first translation is the product of half-turns about 01 and 02, while the second is the product of halfturns about 02 and 03. When they are combined, the two half-turns about 

02 cancel, and we are left with the product of half-turns about 01 and 03. 

p pT p pT 

m m' 
Figure 3.2a Figure 3.2b Similarly, if m and m ' (Figure 3.2b) are the lines through 0 and 0' perpendicular to 00', the half-turns about 0 and 0' are the products of reflections in m and 00', 00' and m'. When they are combined, the two reflections in 00' cancel, and we are left with the product of reflections in 

m and m'. Hence 
3.22 The product of reflections in two paral lel mirrors is a t ranslation 

through twice the distance between the mirrors. If a translation T takes P to PT and Q to QT, the segment QQT is equal and parallel to PF; therefore PQQTPT is a parallelogram. Similarly, if another translation U takes P to Q, it also takes PT to QT; therefore 
TU =  UT. (In detail, if Q is pu, QT is puT. But U takes PT to pru. Therefore pTu and puT coincide, for all positions of P.) In other words, 

3.23 Translations are commutative. The product of a half-tum H and a translation T is another half-turn; for we can express the translation as the product of two half-turns, one of which is H, say T = HH', and then we have HT = H2H' = H': 
3.24 The product of a half-turn and a translation is a half-turn. 

EXERCISES 

1. IfT is the product of half-turns about 0 and 0', what is the product of halfturns about 0' and 0? 2. When a translation is expressed as the product of two reflections, to what extent can one of the two mirrors be arbitrarily assigned? 
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3. What is the product of rotations through opposite angles (a and -a) about two 
distinct points? 

4. The product of reflections in three parallel lines is the reflection in another line 
belonging to the same pencil of parallels. 

5. Every product of three half-turns is a half-turn [Bachmann 1,  p. 7]. 
6. If H1, H2, Hs are half-turns, H1H2Ha = HsH2H1. 
7. Express the translation through distance a along the x-axis as a transformation 

of Cartesian coordinates. If j{x, y) = 0 is the equation for a curve, what is the equa
tion for the transformed curve? Consider, for instance, the circle x2 + y2 - 1 = 0. 

3.3 GLIDE REFLECTION 

We are now familiar with three kinds of isometry: reflection, rotation, and translation. We have not yet considered the product of the reflections in the sides of a triangle. We shall find that this is a glide reflection: the product of the reflection in a line a and a translation along the same line. Clearly, a glide reflection is determined by its axis a and the extent of the component translation. Since a reflection is opposite whereas a translation is direct, their product is opposite. Thus a glide reflection is an opposite isometry having no invariant point [Coxeter 1 ,  p. 36]. If a glide reflection G transforms an arbitrary point P into po (Figure 3.3a), 
P and P0 are equidistant from the axis a on opposite sides. Hence 

The midpoint of the line segment P P0 lies on the axis for all positions of P. 

p 

� a �  

pG 

Figure 3.3a 

p pR 

pH 

m 

Figure 3.3b 

pT 

pO 

m' 

Let R1 and T denote the component reflection and translation. They evidently commute, so that 
G = R1T = TR1. We have seen (Figure 3.2b) that the translation T may be expressed as the product of two half-turns or of two parallel reflections. Identifying the line 

a in Figure 3.3a with the line 00' in Figure 3.3b, let R, R' denote the reflections in m, m'. Then the product of the two half-turns 
H = RR1 = R1R, H ' = R'R1 = R1R' 
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and the glide reflection is G = R1T = R1RR' = HR' = TR1 = RR'R1 = RH'. Thus a glide reflection may be expressed as the product of three reflections (two perpendicular to the third), or of a half-turn and a reflection, or of a reflection and a half-turn. Conversely, the product of any half-turn and any reflection (or vice versa) is a glide reflection, provided the center of the half-turn does not lie on the mirror. [Bachmann 1 ,  p. 6.] We saw in 3. 13 that any direct isometry in the plane is the product of two reflections, that is, a translation or a rotation according as the two mirrors are parallel or intersecting; also that any opposite isometry with an invariant point is a reflection. To complete the catalog of isometries, the only remaining possibility is an opposite isometry with no invariant point. If such an isometry S transforms an arbitrary point A into A ', consider the half-turn H that interchanges these two points. The product HS, being an opposite isometry which leaves the point A ' invariant, can only be a reflection R. Hence the given opposite isometry is the glide reflection 
s = H-1R = HR: 

Every opposite isometry with no invariant point is a glide reflection. In other words, 
3.31 Every product of three reflections is either a single reflection or a 

glide reflection. In particular, the product RT of any reflection and any translation is a glide reflection, degenerating to a pure reflection when the mirror for R is perpendicular to the direction of the translation T (in which case the reflections R and RT may be used as the two parallel reflections whose product is T). But since a given glide reflection G has a definite axis (the locus of midpoints of segments P P0), its decomposition into a reflection and a translation along the mirror is unique (unlike its decomposition into a reflection and a half-turn, where we may either take the mirror to be any line perpendicular to the axis or equivalently take the center of the half-turn to be any point on the axis). 
EXERCISES 

1. If B is the midpoint of AC, what kinds of isometry will transform (i) AB into CB, (ii) AB into BC? 

2. Every direct isometry is the product of two reflections. Every opposite isometry is the product of a reflection and a half-tum. 3. Describe the product of the reflection in 00' and the half-�urn about 0. 4. Describe the product of two glide reflections whose axes are perpendicular. 



REFLECTIONS AND HALF-TURNS 

5. Every product of three glide reflections is a glide reflection. 
45 

6. The product of three reflections is a reflection if and only if the three mirrors are either concurrent or parallel. 7. If R1, R2, Ra are three reflections, (R1R2R3)2 is a translation [Rademacher and Toeplitz 1 ,  p. 29). 
8. Describe the transformation 

(x,y) - (x + a, -y). Justify the statement that this transforms the curve /(x, y) = 0 into J(x - a, -y) = 0. 

3.4 REFLECTIONS AND HALF-TURNS 

Thomsen* has developed a very beautiful theory in which geometrical 
properties of points 0, 01, 02, . . .  and lines m, mi, m2, . . .  (understood to be 
all distinct) are expressed as relations among the corresponding half-turns 
H, H1, H2, . . .  and reflections R, R1, R2, . . .  . The reader can soon convince 
himself that the followjng pairs of statements are logically equivalent: 

RR1 = R1R � m and m1 are perpendicular. 

HR = RH � 0 lies on m. 

R1R2Ra = RaR2R1 � m1, m2, m3 are either concurrent or parallel. 

H1H = HH2 � 0 is the midpoint of 0102. 

H1R = RH2 � m is the perpendicular bisector of 0102. 

EXERCISE 
Interpret the relations (a) H1H2H3H4 = I ;  (b) R1R = RRz. 

3.5 SUMMARY OF RESULTS ON ISOMETRIES 

And thick and fast they come at lost, 
And more, and more, and more. 

lewis Carrol l  

[ Dodgson 2, Chop. 4]  

Some readers may have become confused with the abundance of techni
cal terms, many of which are familiar words to which unusually precise 
meanings have been attached. Accordingly, let us repeat some of the defi
nitions, stressing both their analogies and their differences. 

• G. Thomsen, The treatment of elementary geometry by a group-calculus, Mathematical Ga
zette, 17 (1933), p. 232. Bachmann (1 ) devotes a whole book to the development of this idea. 



46 ISOMETRY IN THE EUCLIQEAN PLANE In all the contexts that concern us here, a transformation is a one-to-one correspondence of the whole plane (or space) with itself. An isometry is a special kind of transformation, namely, the kind that preserves length. A 
symmetry operation belongs to a given figure rather than to the whole plane: it is an isometry that transforms the figure into itself. In the plane, a direct (sense-preserving) isometry, being the product of two reflections, is a rotation or a translation according as it does or does not have an invariant point, that is, according as the two mirrors are intersecting or parallel. In the latter case the length of the translation is twice the distance between the mirrors; in the former, the angle of the rotation is- twice the angle between the mirrors. In particular, the product of reflections in two perpendicular mirrors is a half-turn, that is, a rotation through two right angles. Moreover, the product of two half-turns is a translation. An opposite (sense-reversing) isometry, being the product of three reflections, is, in general, a glide reflection: the product of a reflection and a translation. In the special case when the translation is the identity (i.e., a translation through zero distance), the glide reflection reduces to a single reflection, which has a whole line of invariant points, namely, all the points on the mirror. To sum up: 

3.51 Any direct isometry is either a translation or a rotation. A ny oppo
site isometry is either a reflection or a glide reflection. 

EXERCISES 1. If S is an opposite isometry, S2 is a translation. 2. IfR1, R2, R3 are three reflections, (R2R3R1R2R3)2 is a translation along the first mirror. (Hint: Since R1R2Rs and R2RaR1 are glide reflections, their squares are commutative, by 3.23; thus 
(R1R2Rs)2(R2RaR1)2 = (R2RaR1)2(R1RiRs)2, 

that is, R1 and (R2RaR1R2R3)2 are commutative [cf. Bachmann 1 ,  p. 13].) 

3.6 HJELMSLEV'S THEOREM 

. . .  a very high degree of unexpectedness, combined with inevitability 
and economy. 

G. H. Hardy [2, p. 53) We saw, in 3.12, that two congruent line segments AB, A' B ', are related by just two isometries: one direct and one opposite. Both isometries have the same effect on every point collinear with A and B, that is, every point on the infinite straight line A B  (for instance, the midpoint of A B  is transformed into the midpoint of A' B'). The opposite isometry is a reflection or glide reflection whose mirror or axis contains all the midpoints of segments joining pairs of corresponding points. If two of these midpoints coincide, the 
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direct isometry is a half-turn, and they all coincide [Coxeter 3, p. 267]. 
Hence 

HJELMSLEV'S T HEOREM. When all the points P on one line are related by 
an isometry to all the points P' on another, the midpoints of the segments PP' 
are distinct and collinear or else they all coincide. 

A 
C' 

A' 

Figure 3.6a 

In particular, if A, B, C are on one line and A', B', C' on another, with 
3.61 AB = A'B', BC = B'C' 

(Figure 3.6a), then the midpoints of AA', BB', CC' are either collinear or 
coincident (J. T. Hjelmslev, 1873-1950). 

3.7 PATTERNS ON A STRIP 

pR pT 

pG 

Figure 3.7a 

Any kind of isometry may be used to relate two equal circles. For in
stance, the point P on the first circle of Figure 3.7a is transformed into PT 

on the second circle by a translation, into PR by a reflection, into pa by a 
half-turn, and into po by a glide reflection. (Arrows have been inserted to 
indicate what happens to the positive sense of rotation round the first cir
cle.) These four"isometries have one important property in common: they 
leave invariant (as a whole) one infinite straight line, namely, the line 
joining the centers of the two circles. (In the fourth case this is the only in
variant line.) 



48 ISOMETRY IN THE EUCLIDEAN PLANE We have seen (Figure 3.2b) that the product of reflections in two parallel mirrors m, m' is a translation. This may be regarded as the limiting case of a rotation whose center is very far away; for the two parallel mirrors are the limiting case of two mirrors intersecting at a very small angle. Accordingly, the infinite group generated by a single translation is denoted by C00, and the infinite group generated by two parallel reflections is denoted by 
D00• Abstractly, C00 is the "free group with one generator." If T is the generating translation, the group consists of the translations 

RR'R R'R 

T-t , 

R 

1, T, T2, . . . .  
m m' 

R' 

Figure 3.7b 

RR' 

Similarly, D..,, generated by the reflections R, R' in parallel mirrors m, m' (Figure 3.7b), consists of the reflections and translations . . .  , RR'R, R'R, R, 1, R', RR' , R'RR', . . .  [Coxeter 1 ,  p. 76]; its abstract definition is simply R2 = R'2 = 1. This group can be observed when we sit in a barber's chair between two parallel mirrors (cf. the New Yorker, Feb. 23, 1957, p. 39, where somehow the reflection RR'RR'R yields a demon). A different geometrical representation for the same abstract group D.,, is obtained by interpreting the generators R and R ' as half-turns. There is also an intermediate representation in which one of them is a reflection and the other a half-turn; but in this case their product is no longer a translation but a glide reflection. Continuing in this manner, we could soon obtain the complete list of the seven infinite "one-dimensional" symmetry groups: the seven essentially distinct ways to repeat a pattern on a strip or ribbon [Speiser 1 ,  pp. 81-82]: 
Typical pattern 

(i) . . . L L L L .  . .  (ii) . . . L r L r . .  . 
(iii) . . .  V V V V . . . (iv) . . .  N N N N . . . (v) . . . V A V A . . . 
(vi) . . .  D D D D . . . (vii) . . .  H H H H . . . 

Generators 1 translation } 1 glide reflection 2 reflections } 2 half-turns 1 reflection and 1 half-turn 1 translation and 1 reflection 3 reflections 

Abstract Group 

c.., 

Doo 

Coo X D1 D"" X D1 



FRIEZE PATTERNS 49 In (iii), the two mirrors are both vertical, one in the middle of a V, reflecting it into itself, while the other reflects this V into one of its neighbors; thus one half of the V, placed between the two mirrors, yields the whole pattern. In (vi) and (vii) there is a horizontal mirror, and the symbols in the last column indicate "direct products" [Coxeter 1 , p. 42]. For all these groups, except (i) and (ii) , there is some freedom in choosing the generators; for example, in (iii) or (iv) one of the two generators could be replaced by a translation. Strictly speaking, these seven groups are not "I-dimensional" but "!-½dimensional;" that is, they are 2-dimensional symmetry groups involving translation in one direction. In a purely one-dimensional world there are only two infinite symmetry groups: C00, generated by one translation, and 
D.,,, generated by two reflections (in point mirrors). 

EXERCISES 

1. Identify the symmetry groups of the following patterns: . . .  b b b b  . . .  , . . .  b p b p  . . .  , . . .  b d b  d . . .  , . . .  b q b q  . . .  , . . .  b d p q b d p q  . . .  2. Which are the symmetry groups of(a) a cycloid, (b) a sine curve? 
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Two-dimensional crystallography 

Mathematical crystallography provides one of the most important appli
cations of elementary geometry to physics. The three-dimensional theory is 
complicated, but its analog in two dimensions is easy to visualize without 
being trivial. Patterns covering the plane arise naturally as an extension 
of the strip patterns considered in § 3.7. However, in spite of the restric
tion to two dimensions, a complete account of the enumeration of infinite 
symmetry groups is beyond the scope of this book. 

4. 1  LATTICES AND THEIR DIRICHLET REGIONS 

For some minutes Alice stood without speaking, looking out in o/1 direc
tions over the country . . . "I dee/ore it's marked out just like a large 
chessboard . . .  a// over the world-if this is the world at a//." 

Lewis Carroll 
[Dodgson 2, Chap. 2] 

Infinite two-dimensional groups (the symmetry groups of repeating pat
terns such as those commonly used on wallpaper or on tiled floors) are dis
tinguished from infinite "one-dimensional" groups by the presence of 
independent translations, that is, translations whose directions are neither 
parallel nor opposite. The crystallographer E. S. Fedorov showed that there 
are just seventeen such two-dimensional groups of isometries. They were re
discovered in our own century by P6lya and Niggli. * The symbols by which 
we denote them are taken from the International Tables for X-ray Crystal
lography. 

The simplest instance is the group p 1 ,  generated by two independent 
• E. S. Fedorov, Zapiski lmperatorskogo S. Peterburgskogo Mineralogicheskogo Obshchestva 

(2), 28 (1891), pp. 345-390; G. P6lya and P. Niggli, ZeitschriftfUr Kristallographie und Mineralo
gie, 60 (1924), pp. 278-298. [See also Fricke and Klein 1, pp. 227-233.] Fedorov's table shows 
that 16 of the 17 groups had been described by C. Jordan in 1869. The remaining one was rec
ognized by L. Sohncke in 1874; but he missed three others. 

50 



LATTICES 5 1 

6 6 6 6 6 6 6 
6 6 6 6 6 6 

6 6 6 6 6 6 6 
6 6 6 6 6 6 

6 6 6 6 6 6 6 
Figure 4. t a  

translations X, Y. Since the inverse of a translation is a translation, and the 
product of two translations is a translation (3.21), this group consists entirely 
of translations. Since XY = YX, these translations are simply xzy11 for all 
integers x, y. Abstractly, this is the "direct product" Ceo X Ceo, which has 
the single defining relation 

XY = YX 
[Coxeter and Moser 1 ,  p. 40]. Any object, such as the numeral 6 in Figure 
4.la, is transformed by the group pl into an in.finite array of such objects, 
forming a pattern. Conversely, pl is the complete symmetry group of the 
pattern, provided the object has no intrinsic symmetry. If the object is a sin
gle point, the pattern is an array of points called a two-dimensional lattice, 
which may be pictured as the plan of an infinite orchard. Each lattice point 
is naturally associated with the symbol for the translation by which it is 
derived from the original point 1 (Figure 4. lb). 

0 0 0 0 0 0 
x-ly2 y2 xv2 xxy

y 

0 0 0 0 0 0 
x-ly y XY x2v 

0 0 0 0 0 0 0 
x-1 1 X x2 

0 0 0 0 0 0 
y-1 xv-1 

0 0 0 
y-2 

0 0 

Figure 4.1b 

Anyone standing in an orchard observes the alignment of trees in rows in 
many directions. This exhibits a characteristic property of a lattice: the line 
joining any two of the points contains infinitely many of them, evenly spaced, 
that is, a "one-dimensional lattice." In fact, the line joining the points 1 
and xzy11 contains also the points 

xnz1ayn11/d = (XzldYvld)n 

where d is the greatest common divisor of x and y, and n runs over all the 
integers. In particular, the powers of X all lie on one line, the powers of 
Y on another, and lines parallel to these through the remaining lattice points 
form a tessellation of congruent parallelograms filling the plane without in-
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terstices (Figure 4. lc). (We use the term tessellation for any arrangement 
of polygons fitting together so as to cover the whole plane without over
lapping.) 

Figure 4. l c  

A typical parallelogram is formed by the four points 1 , X, XY, Y. The 
translation T = xzyv transforms this parallelogram into another one hav
ing the point T (instead of I) at its "first" corner. There is thus a one-to
one correspondence between the cells or tiles of the tessellation and the 
transformations in the group, with the property that each transformation 
talces any point inside the original cell to a point similarly situated in the new 
cell. For this reason, the typical parallelogram is called a fundamental region. 

The shape of the fundamental region is far from unique. Any parallelo
gram will serve, provided it has four lattice points for its vertices but no 
others on its boundary or inside [Hardy and Wright 1,  p. 28]. This is the 
geometrical counterpart of the algebraic statement that the group generated 
by X, Y is equally well generated by XaYb, XcYd, provided 

ad - be = + I .  

To express the old generators in terms of the new, we observe that 
(XaYb)d(XcYd)-b = xad-bc, (XaYb)-c(XcYd)a = yad-bc. 

But there is no need for the fundamental region to be a parallelogram at all; 
for example, we may replace each pair of opposite sides by a pair of con
gruent curves, as in Figure 4. ld. 

0 

0 

/ 7  0 
Figure 4.1d 

0 0 

0 0 

0 

0 



DIRICHLET REGIONS 53 

Every possible fundamental region, whether we choose a parallelogram 
or any other shape, has the same area as the typical parallelogram of Figure 
4. lc .  For, inside a sufficiently large circle, the number of lattice points is 
equal to the number of replicas of any fundamental region (with an insignifi
cant error due to mutilated regions at the circumference); thus every possible 
shape has for its area the same fraction of the area of the large circle.* It is 
an interesting fact that any convex fundamental region for the translation 
group is a centrally symmetrical polygon (namely, a parallelogram or a cen
trally symmetrical hexagon). t 

Among the various possible parallelograms, we can select a standard or 
reduced parallelogram by taking the generator Y to be the shortest trans
lation ( or one of the shortest) in the group, and X to be an equal or next 
shortest translation in another direction. If the angle between X and Y then 
happens to be obtuse, we reverse the direction of Y. Thus, among all the 
parallelograms that can serve as a fundamental region, the reduced paral
lelogram has the shortest possible sides. The translations along these sides 
are naturally called reduced generators. 

Figure 4.le 

By joining the vertices X, Y .>f the reduced parallelogram, and the cor
responding pair of vertices of each replica, we obtain a tessellation of con
gruent triangles whose vertices are lattice points and whose angles are 
nonobtuse. Each lattice point belongs to six of the triangles; for example, 
the triangles surrounding the point 1 join it to pairs of adjacent points in 
the cycle 

x, Y, x-1Y, x-1, y-1, xy -1 

(Figure 4. le). By joining the circumcenters of these six triangles, we obtain 
the Dirichlet region (or "Voronoi polygon") of the lattice: a polygon whose 
interior consists of all the points in the plane which are nearer to a particu
• Gauss used this idea as a means of estimating w [Hilbert and Cohn-Vossen 1, pp. 33-34}. 
t A. M. Macbeath. Canadian Journal of Mathematics, 13 (1961), p. 177. 

I 
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lar lattice point (such as the point 1) than to any other lattice point.* Such regions, each surrounding a lattice point, evidently fit together to fill the whole plane; in fact, the Dirichlet region is a particular kind of fundamental region. The lattice is symmetrical by the half-turn about the point 1 (or any other lattice point). For this half-turn interchanges the pairs of lattice points 
xzyu, x-zy-u_ (In technical language, the group pl has an automorphism of period 2 which replaces X and Y by their inverses.) Hence the Dirichlet 
region is symmetrical by a half-turn. Its precise shape depends on the relative lengths of the generating translations X, Y and the angle between them. If this angle is a right angle, the Dirichlet region is a rectangle (or a square), since the circumcenter of a right-angled triangle is the midpoint of the hypotenuse. In all other cases it is a hexagon (not necessarily a regular hexagon; but since it is centrally symmetrical, its pairs of opposite sides are equal and parallel). Varying the lattice by letting the angle between the translations X and Y increase gradually to 90°, we see that two opposite sides of the hexagon shrink till they become single vertices, and then the remaining four sides form a rectangle (or square). Reflections in the four or six sides of the Dirichlet region transform the central lattice point 1 into four or six other lattice points which we naturally call the neighbors of the point 1. 

EXERCISES 

1. Any two opposite sides of a Dirichlet region are perpendicular to the line joining their midpoints. 2. Sketch the various types oflattice that can arise ifX and Y are subject to the following restrictions: they may have the same length, and the angle between them may be 90° or 60° . Indicate the Dirichlet region in each case, and state whether the symmetry group of this region is C2, D2, D4, or D6 • 

4.2 THE SYMMETRY GROUP OF THE GENERAL LATTICE 

The investigation of the symmetries of a given mathematical structure 
hos always yielded the masf powerful results. 

E. Arlin (1898 -1962) 
[Artin 1 ,  p. 54] 

Any given lattice is easily seen to be symmetrical by the half-turn about the midpoint of the segment joining any two lattice points [Hilbert and CohnVossen 1 ,  p. 73]. Such midpoints form a lattice of finer mesh, whose generating translations are half as long as X and Y (see the "open" points in Figure 4.2a). 
• G. L. Dirichlct,J ournal fllr die reine und angewandte Mathematik, 40 (1850), pp. 216-219. 
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0 0 0 0 0 

• Y  0 • XY 0 •X2Y 

CJ 
0 0 0 

•X 0 .x
2 

Figure 4.2a 

The "general" lattice occurs when the reduced generators cliff er in length 
and the angle between them is neither 90° nor 60° . In such a case, the trans
lations xryv and the above-mentioned half-turns are its only symmetry 
operations. In other words, the symmetry group of the general lattice is 
derived from p 1 by adding an extra transformation H, which is the half-turn 
about the point 1 .  This group is denoted by p2 [Coxeter and Moser 1 ,  pp. 
41-42]. It is generated by the half-turn H and the translations X, Y, in terms 
of which the half-turn that interchanges the points I and T = xzyv is HT. 
(Note that T itself is the product of H and HT.) The group is equally well 
generated by the three half-turns HX, H, HY, or (redundantly) by these three 
and their product 

HX • H • HY = HXY, 

which are half-turns about the four vertices of the parallelogram shown in 
Figure 4.2a. 

It is remarkable that any triangle or any simple quadrangle (not neces
sarily convex) will serve as a fundamental region for p2. Half-turns about 
the midpoints of the three or four sides may be identified with HX, H, H Y  
(Figure 4.2b), or HX, H, HY, HXY (Figure 4.2c). 

Figure 4.2b 
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ESCHER'S PICTURES 

EXERCISES 

57 

1. Why do the vertices of the quadrangles in Figure 4.2c form two superposed lattices? 2. Draw the tessellation of Dirichlet regions for a given lattice. Divide each region into two halves by means of a diagonal. The resulting tessellation is a special case of the tessellation of scalene triangles (Figure 4.2b) or of irregular quadrangles (Figure 4.2c) according as the Dirichlet region is rectangular or hexagonal. 

Plate I 

4.3 THE ART OF M. C. ESCHER 

The groups p 1 and p2 are two of the simplest of the seventeen discrete 
groups ofisometries involving two independent translations. Several others 
will be mentioned in this section and the next. Convenient generators for all 
of them are listed in Table I on p. 413. 
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The art of filling a plane with a repeating pattern reached its highest development in thirteenth-century Spain, where the Moors used all the seventeen groups in their intricate decoration of the Alhambra [Jones 1 ]. Their preference for abstract patterns was due to their strict observance of the Second Commandment. The Dutch artist M. C. Escher, free from such scruples, makes an ingenious application of these groups by using animal shapes for their fundamental regions. For instance, the symmetry group of his pattern of knights on hq_rseback (Plate I) seems at first sight to be p l ,  generated by a horizontal translation and a vertical translation. But by ignoring the distinction between the dark and light specimens we obtain the more interesting group pg, which is generated by two parallel glide reflections, say O and 0'. We observe that the vertical translation can be expressed equally well as 02 or 0'2. It is remarkable that the single relation 
02 = 0'2 

provides a complete abstract definition for this group [Coxeter and Moser 1 ,  p. 43). Clearly, the knight and his steed (of either color) constitute a fundamental region for pg. But we must combine two such regions, one dark and one light, in order to obtain a fundamental region for p 1 .  Similarly, the symmetry group of Escher's pattern of beetles (Plate II) seems at first sight to be pm, generated by two vertical reflections and a vertical translation. But on looking more closely we see that there are both dark and light beetles, and that the colors are again interchanged by glide reflections. The complete symmetry group cm, whose fundamental region is the right or left half of a beetle of either color, is generated by any such vertical glide reflection along with a vertical reflection. To obtain a fundamental region for the "smaller" group pm, we combine the right half of a beetle of eitheF color with the left half of an adjacent beetle of the other color. A whole beetle ( of either color) provides a fundamental region for the group pl (with one of its generating translations oblique) or equally well for pg. 
EXERCISES 

1. Locate the axes of two glide reflections which generate pg in Plates I and II. 2. Any two parallelograms whose sides are in the same two directions can together be repeated by translations to fill the plane. 
4.4 SIX PATTERNS OF BRICKS 

Figure 4.4a shows how six of the seventeen two-dimensional space groups arise as the symmetry groups of familiar patterns of rectangles, which we may think of as bricks or tiles. The generators are indicated as follows: a 



BRICKS OR DOMINOES 59 broken line denotes a mirror, a "lens" denotes a half-turn, a small square denotes a quarter-turn (i.e., rotation through 90°), and a "half arrow" denotes a glide reflection. In each case, a convenient fundamental region is indicated by shading. This region is to some extent arbitrary except in the case of pmm, where it is entirely bounded by mirrors. The procedure for analysing such a pattern is as follows. We observe that the symmetry group of a single brick is D2 ( of order 4), which has subgroups C2 and D1. If all the symmetry operations of the brick are also symmetry opt:rations of the whole pattern, as in cmm and pmm, the fundamental region is a quarter of the brick, two of the generators are the reflections that generate D2, and any other generator transforms the original brick into a neighboring brick. If only the subgroup C2 or D1 belongs to the whole pat-

Plate II 
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p2 cmm 

pmg pgg 

Figure 4.4a 

I I - ----� -------_ ____ p __ J. ____ ---
I I 
I I 
I I 

pmm 

p4g 

tern (the way C2 belongs to p2 or pgg, and D1 to pmg or p4g), the funda
mental region is half a brick, and the generators are not quite so obvious. 

EXERCISE 

In all these patterns it  is understood that a "brick" is a rectangle in which one side is twice as long as another. In each case, any brick is related to the whole pattern in the same way as any other. (In technical language, the symmetry group is transitive on the bricks.) Are these six the only transitive patterns of bricks? 

4.5 THE CRYSTALLOGRAPHIC RESTRICTION 

A mathematician, like a painter or a poet, is a maker of patterns. If his 
patterns are more permanent than theirs, it is because they are made 
with ideas. 

G. H. Hardy [2, p. 24) 

A complete account of the enumeration of the seventeen two-dimensional 
space-groups would occupy too much space. But it seems worthwhile to give 
Barlow's elegant proof* that the only possible cyclic subgroups are C2, C3, 

C4, and C6. In other words: 
The only possible periods for a rotational symmetry operation of a lattice are 2, 3, 4, 6. 
Let P be any center of rotation of period n. The remaining symmetry 

• W. Barlow, Philosophical Magazine (6), 1 (1901), p. 17. 



POSSIBLE ROTATIONS 61 operations of the lattice transform P into infinitely many other centers of rotation of the same period. Let Q be one of these other centers (Figure 
4.5a)  at the least possible distance from P. A third cei;tter, P', is derived from P by rotation through 21r-/n about Q; and a fourth, Q', is derived from 
Q by rotation through 21T/n about P'. Of course, the segments PQ, QP', 
P' Q', are all equal. It may happen that P and Q' coincide; then n = 6. In all other cases, since Q was chosen at the least possible distance from P, we must have PQ' � PQ; therefore n � 4. (If n = 4, PQP' Q' is a square. If n 
= 5, PQ' is obviously shorter than PQ. If n > 6, PQ crosses P'Q', but it is no longer necessary to use Q' :  we already have PP' < PQ, whicl,l is sufficiently absurd.) 

Q' -------------------- p 

Figure 4.5a 

EXERCISES 

2,r " 

1. If S and T are rotations through 27T/n about P and Q, what is T-1ST? 2. If a discrete group of isometries includes two rotations about distinct centers, i t  includes two such rotations having the same period, and therefore also a translation. If this period is greater than 2, it includes two independent translations. 

4.6 REGULAR TESSELLATIONS 

The mathematician's patterns, like the painter•s or the poet's, must be 
beautiful; the ideas, like the colours or the words, must fit together in 
a harmonious way. Beauty is the first test: there is no pf!rmanent place 
in the world for ugly mathematics. 

G. H. Hordy [2, p. 25] 

It was probably Kepler (1571-1630) who first investigated the possible ways of filling the plane with equal regular polygons. We shall find it convenient to use the Schllifli symbol {p, q} for the tessellation of regular p-gons, 
q surrounding each vertex [Schlafli 1 ,  p. 213]. The cases {6, 3} ,  {4,4}, {3, 6} are illustrated in Figure 4.6a ,  where in each case the polygon drawn in heavy 
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lines is the vertex figure: the q-gon whose vertices are the midpoints of the q edges at a vertex. (Since tessellations are somewhat analogous to polyhedra, it is natural to use the word edges for the common sides of adjacent polygons, and faces for the polygons themselves.) 

!3, 6 ( 

Figure 4.6a 

For a formal definition, we may say that a tessellation is regular if it has regular faces and a regular vertex figure at each vertex. The tessellation { 6, 3} is often used for tiled floors in bathrooms. It can also be seen in any beehive. { 4, 4} is familiar in the form of squared paper; in terms of Cartesian coordinates, its vertices are just the points for which both x and y are integers. {3, 6} is the dual of { 6, 3 }  in the following sense. The dual of { p, q} is the tessellation whose edges are the perpendicular bisectors of the edges of {p, q} (see Figure 4.6b). Thus the dual of {p, q} is { q, p },  and vice versa; the vertices of either are the centers of the faces of the other. In particular, the dual of { 4, 4} is an equal { 4, 4}. 

Figure 4.6b 

The possible values of p and q are easily obtained by equating the angle of a p-gon, namely (1 - 2/p)'TT, to the value it must have if q such polygons come together at a vertex: 
(1 - }) 'TT = 2; , i + ¼ = ½, 
(p - 2)(q - 2) = 4. 

The three possible ways of factorizing 4, namely 
4 • 1 ,  2 • 2, 1 • 4, 

II 



IMPOSSIBLE TESSELLA T/ONS 63 yield the three tessellations already described. However, before declaring that these are the only regular tessellations, we should investigate the fractional solutions of our equation; for there might conceivably be a regular "star" tessellation {p, q} whose face {p} and vertex figure { q} are regular polygons of the kind considered in §2.8. For instance, Figure 4.6c shows ten pentagons placed together at a common vertex. Although they overlap, we might expect to be able to add further pentagons so as to form a tessellation { 5, 1J1} (whose vertex figure is a decagram), covering the plane a number of times. But in fact this number is infinite, as we shall see. Consider the general regular tessellation {p, q}, wherep = nld. Ifit covers the plane only a finite number of times, there must be a minimum distance between the centers of pairs of faces. Let P, Q be two such centers at this minimum distance apart. Since they are centers ofrotation of period 
n, the argument used in §4.5 proves that the only possible values of n are 3, 4, 6. Thus d = I, and these are also the only possible values of p. Hence there 
are no regular star tessellations [Coxeter 1 ,  p. 112]. It is actually possible to cover a sphere three times by using twelve "pentagons" whose sides are arcs of great circles [Coxeter 1,  p. 111). 

Figure 4.6c 

To find the symmetry group of a regular tessellation, we treat its face the way we treated one of the bricks in §4.4. Clearly, the symmetry group of {p, q} is derived from the symmetry group Dp of one face by adding the reflection in a side of that face. Thus it is generated by reflections in the sides of a triangle whose angles are .,,;p (at the center of the face), .,,12 (at the midpoint of an edge), and .,,;q (at a vertex). This triangle is a fundamental region, since it is transformed into neighboring triangles by the three generating reflections. Since each generator leaves invariant all the points on one side, the fundamental region is unique: it cannot be modified by addition and subtraction the way Escher modified the fundamental regions of some other groups. The network of such triangles, filling the plane, is cut out by all the lines of symmetry of the regular tessellation. The lines of symmetry include the 
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lines of the edges of both {p, q} and its dual {q, p}. In the case of {6, 3} 
and {3, 6} (Figure 4.6b), these edge lines suffice; in the case of the two dual 
{ 4, 4} 's we need also the diagonals of the squares. In Figure 4.6d, alternate 
regions have been shaded so as to exhibit both the complete symmetry 
groups p6m, p4m and the "direct" subgroups p6, p4 (consisting of rota
tions and translations) which preserve the colors and the direction of the 
shading [Brewster 1 ,  p. 94; Burnside 1 ,  pp. 416, 417]. 

Instead of deriving the network of triangles from the regular tessellation, 
we may conversely derive the tessellation from the network. For this pur
pose, we pick out a point in the network where the angles are 1rlp, that is, 
where p shaded and p white triangles come together. These 2p triangles com
bine to form a face of {p� q}. 

p6 and p6m p4 and p4m 

Figure 4,6d 

EXERCISES 

1. Justify the formal definition of"regular" on page 62. (It implies that the faces are all alike and that the vertices are all surrounded alike.) 2. Give a general argument to prove thai the midpoints of the edges of a regular tessellation belong to a lattice. (Hint: Consider the group p2 generated by half-turns about three such midpoints.) 3. Pick out the midpoints of the edges of {6, 3). Verify that they belong to a lattice. Do they constitute the whole lattice? 
4. Draw portions of lattices whose symmetry groups are p2, pmm, cmm, p4m, 

p6m. 
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4.7 SYLVESTER'S PROBLEM OF COLLINEAR POINTS 

Reductio ad absurdum, which Euclid loved so much, is one of a mathe
matician's finest weapons. It is a far finer gambit than any chess gam
bit, a chess player may offer the sacrifice of a pawn or even a piece, 
but a mathematician offers the game. 

G. H. Hardy [2, p. 34] As we saw in § 4.1, a lattice is a discrete set of points having the property that the ·line joining any two of them contains not only these two but infinitely many. Figure 4.7a shows a.finite "orchard" in which nine points are arranged in ten rows of three [Ball 1 ,  p. 105]. It was probably the investigation of such configurations that led Sylvester* to propose his problem of 1893: 
Prove that it is not possible to arrange any finite number of real points so that a right 

line through every two of them shall pass through a third, unless they al/ lie in the same 
right line. 

P2 

Figure 4.7o Figure 4.7b 

Neither Sylvester nor any of his contemporaries were able to think of a satisfactory proof. The question was forgotten till 1933, when Karamata and Erdos revived it, and T. Gallai (alias Grunwald) finally succeeded, using a rather complicated argument. Sylvester's "negative" statement was rephrased "positively" by Motzkin: 
If n points in the real plane are not on one straight line, then there exists a straight line 

containing exactly two of the points. The following proof, which somewhat resembles Barlow's proof of the crystallographic restriction (§ 4.5), is due to L. M. Kelly. 
• J. J. Sylvester, Mathematical Questions and Solutions from the Educational Times, 59 (1893), 

p. 98 (Question 11851). See also R. Steinberg, American Mathematical Monthly, 51 (1944), p. 
170; L. M. Kelly, ibid., 55 (1948), p. 28; T. Motzkin, Transactions of the American Mathematical 
Society, 70 (1951), p. 452; L. M. Kelly and W. 0. J. Moser, Canadian Journal of Mathematics, 
10 (1958), p. 213. 



66 TWO-DIMENSIONAL CRYSTALLOGRAPHY The n points P1, . . .  , Pn are joined by at most t n(n - l )  lines P1P2, P1Pa, etc. Consider the pairs Pi, P;Pk, consisting of a point and a joining line which are not incident. Since there are at most t n(n - l )(n - 2) such pairs, there must be at least one, say P1, P2Pa, for which the distance P1 Q from the point to the line is the smallest such distance that occurs. Then the line P2Pa contains no other point of the set. For if it contained P 4, at least two of the points P2, Pa, P 4 would lie on one side of the perpendicular P1Q (or possibly one of the P's would coincide with Q). Let the points be so named that these two are P2, Pa, with P2 nearer to Q (or coincident with Q). Then P2, PaP1 (Figure 4.7b) is another pair having a smaller distance than P1 Q, which is absurd. This completes the proof that there is always a line containing exactly two of the points. Of course, there may be more than one such line; in fact, Kelly and Moser proved that the number of such lines is at least 3n/7. 
EXERCISES 

1. The above proof yields a line P2P3 containing only these two of the P's. The point Q actually lies between P2 and Pa. 2. If n points are not all on one line, they have at least n distinct joins [Coxeter 2, p. 31]. 3. Draw a configuration of n points for which the lower limit of 3n/7 "ordinary" joins is attained. (Hint: n = 7.) 



5 

Similarity in the Euclidean plane 

In later chapters we shall see that Euclidean geometry is by no means the only possible geometry: other kinds are just as logical, almost as useful, and in some respects simpler. According to the famous Erlangen progra m (Klein's inaugural address at the University of Erlangen in 1872), the criterion that distinguishes one geometry from another is the group of transformations under which the propositions remain true. In the case of Euclidean geometry, we might at first expect this to be the continuous group of all isometries. But since the propositions remain valid when the scale of measurement is altered, as in a photographic enlargement, the "principal group" for Euclidean geometry [Klein 2, p. 133] includes also "similarities" (which may change distances although of course they preserve angles). In the present chapter we classify such transformations of the Euclidean plane. In particular, "dilatations" will be seen to play a useful role in the theory of the nine-point center of a triangle. These and other "direct" similarities are treated in the standard textbooks, but "opposite" similarities (§ 5.6) seem to have been sadly neglected. 

5.1  DILATATION 

"If I eat one of these cokes," she thought, "'it's sure to make some 
change in my size." . . . So she swallowed one . . . and wos delighted 
to find that she began shrinking directly. 

lewis Carroll 
[ Dodgson 1, Chap. 4] 

It is convenient to extend the usual definition of para llel by declaring that two (in.finite straight) lines are parallel if they have either no common point or two common points. (In the latter case they coincide.) This convention enables us to assert that, without any exception, 
67 



68 SIMILARITY IN THE EUCLIDEAN PLANE 5.1 1 For each point A and line r, there is just one line through A parallel 
to r. Two figures are said to be homothetic if they are similar and similarly placed, that is, if they are related by a dilatation (or "homothecy"), which may be defined as follows [Artin 1 ,  p. 54]: A dilatation is a transformation which preserves (or reverses) direction: that is, it transforms each line into a parallel line. 

p· 

p 

LL\ 
A Q B B' 

Figure 5. l a 

5.12 Two given parallel line segments AB, A' B' are related by a unique 
dilatation AB ➔ A'B'. For, any point P not on AB is transformed into the point P' in which the line through A' parallel to AP meets the line through B' parallel to BP (Figure 5.la); and any point Q on AB is transformed into the point Q' in which 
A'B' meets the line through P' parallel to PQ. In other words, a dilatation is completely determined by its effect on any two given points [Coxeter 2, 8.51]. Clearly, the inverse of the dilatation AB ➔ A' B' is the dilatation 
A'  B' ➔ AB. Also AB ➔ AB is the identity,AB ➔ BA is a half-turn (about the midpoint of AB), and if ABB' A' is a parallelogram, AB ➔ A' B' is a translation. 

A' 

LU 0 B B' 

A 

Figure 5.1b  

B' 

For any dilatation which is not the identity, the two points A and B may be so chosen that A is not an invariant point and AB is not an invariant line. Such a dilatation AB ➔ A'B' (Figure 5.lb) transforms any point P on AA' into a point P' on the parallel line through A', which is AA' itself. 



DILATATION 69 Similarly, it transforms any point Q on BH ' into a point Q' on BB'. If AA' and BB' are not parallel, these two invariant lines intersect in an invariant point 0. Hence 5. 13 Any dilatation that is not a translation has an invariant point. This invariant point O is unique. For, a dilatation that has two invariant points 01 and 02 can only be the identity, which may reasonably be regarded as a translation, namely a translation through distance zero [Weyl 1 ,  p. 69]. Clearly, any point P is transformed into a point P' on OP. Let us write 
OP' = µOP, with the convention that the number µ is positive or negative according as 

P and P' are on the same side of O or on opposite sides. With the help of some homothetic triangles (as in Figure 5. lb), we see that µ is a constant, that is, independent of the position of P. Moreover, any segment PQ is transformed into a segment µ times as long. We shall use the symbol 0(µ) for the dilatation with center O and ratio µ. (Court [2, p. 40] prefers "(O, µ).") In particular, 0(1) is the identity and 0(- 1) is a half-tum. Clearly, the only dilatations which are also isometries are half-turns and translations. In the case of a translation, such a symbol as 0(µ) is no longer available. 

Figure 5.lc 

EXERCISES 

1. What is the inverse of the dilatation O(p.)? 2. If the product O1().1.1)·O2{'µ,i) is O(JJ.1/l2), where is O? 3. Express the dilatation O(µ.) in terms of (a) polar coordinates, (b) Cartesian coordinates. 4. Explain the action of the pantograph (Figure 5.lc), an instrument invented by Christoph Scheiner about 1630 for the purpose of making a copy, reduced or enlarged, of any given figure. It is formed by four rods, hinged at the corners of a parallelogram AA' BC whose angles are allowed to vary. The three collinear points 0, P, P', on the respective rods AA', A C, A' B, remain collinear when the shape of the parallelogram is changed. The instrument is pivoted at 0. When a pencil point is inserted at 
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P' and a tracing point at P (or vice versa), and the latter is traced over the lines of a given figure, the pencil point draws a homothetic copy. The positions of O and P are adjustable on their respective rods so as to allow various choices of the ratio OA : OA '. (Care must, of course, be taken to keep O and P collinear with P'.) 5. How could the pantograph be modified so as to yield a dilatation O(µ.) with µ. negative? 
5.2 CENTERS OF SIMILITUDE 

0 

I have often wondered why "similitude" ever got into elementary 
geometry. . . . I'm sure youngsters would be much more at ease with 
a pair of circles if they just had centers of '"similarity" instead of being 
made to imagine that some new idea was insinuating itself. 

E. H. Neville (1889-1961 )  

Figure 5.2a 

A dilatation O(µ,), transforming C into C', evidently transforms a circle 
with center C and radius r into a circle with center C' and radius µr (or 
-µ,r, if µ, is negative). Conversely (Figure 5.2a), if two circles have distinct 
centers C, C' and unequal radii a, a', they are related by two dilatations, 
0(a' I a) and 01( -a' I a), whose centers 0 and 01 divide the segment CC' 
externally and internally in the ratio a : a' [Court 2, p. 1 84]. These points 
0 and 01 are called the centers of similitude of the two circles. To construct 
them, we draw an arbitrary diameter PCP1 of the first circle and a parallel 
radius C' P' of the second (with P' on the same side of CC' as P ); then 0 
lies on PP', and 01 on P1P'. 

If two circles are concentric or equal, they are still related by two dilata
tions, but there is only one center of similitude. In the case of concentric circles this is because the two dilatations have the same center. In the case 
of equal circles it is because one of the dilatations is a translation, which 
has no center. (The other is the half-turn about 01, which is now the midpoint of CC'.) 



CENTERS OF SIMILITUDE 

EXERCISES 

71 

1. If two equal circles have no common point, they have two parallel common tangents and two other common tangents through 01 (midway between the centers). If they touch they have only three common tangents. If they intersect they have only the two parallel common tangents. 2. Any common tangent of two unequal circles passes through a center of similitude. Sketch the positions of the centers of similitude, and record the number of common tangents, in the five essentially different instances of two such circles. (Two of the five are shown in Figure 5.2a.) 3. Given two dilatations 0(µ), 01(µ1), with µ =I= µ1, describe the position of the unique point C on which both have the same effect. 
5.3 THE NINE-POINT CENTER 

Consider an arbitrary triangle ABC, with circumcenter 0, centroid G, and orthocenter H. Let A', B', C' be the midpoints of the sides, and A", B", 
C" the midpoints of the segments HA, HB, HC, as in Figure l .7a. Clearly, both the triangles A'B'C', A"B"C" are homothetic to ABC, being derived from ABC by the respective dilatations G( -½), H(½). The former provides a new proof that the medians are concurrent and trisect one another. Since G( -½) and H(½) are the two dilatations by which the nine-point circle can be derived from the circumcircle [Court 2, p. 104], the points 
G, H are the centers of similitude of these two circles, and the Euler line 
GH contains the centers of both circles: not only the circumcenter 0, as we know already, but also the nine-point center N. Since the values of µ. for the dilatations are +½, the nine-point radius is half the circumradius, and the centers of similitude H, G divide the segment ON externally and internally in the ratio 2 : I (Figure 5.3a). Thus N is the midpoint of OH. 

0 G N H 

Figure 5.3a 

A. Vandeghen has observed that the incenter I is a center of similitude of Soddy's two circles with centers S, S' and radii CJ, CJ' (page 14). Moreover, the line SS', which is thus seen to pass through I, either coincides with the Euler line or meets it in the de Longchamps point Z (such that 0 is the midpoint of ZH). 
EXERCISES 

1. Using Cartesian coordinates, find the ordinates y of the centers 0, G, N, H of the isosceles triangle whose vertices a.re (0, 10), (±6, -8). 2. If ABCH is an orthocentric quadrangle (see l.72), the four Euler lines of the triangles BCH, CAH, ABH, ABC a.re concurrent. 
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5.4 SPIRAL SIMILARITY AND DILATIVE REFLECTION 

When a figure is enlarged so as to remain still of the some shape, 
every straight line in it remains a straight line, and every angle re
mains congruent to itself. All the parts of the figure are equally en
larged. When one figure is an enlarged copy of another, the two 
are said to be similar. The degree of enlargement necessary to make 
one figure equal to the other is coiled their ratio of similitude. The 
ratio of two lines in the one figure is equal to the ratio of the two 
corresponding lines in the other. 

W. K. Clifford (1845 -1 879) 
(Mathematical Papers, p. 631} 

A s imilarity ( or "similarity transformation," or "similitude") is a trans
formation which takes each segment AB into a segment A'B' whose length 
is given by 

A 'B' 
AB 

= µ., 

where µ is a constant positive number (the same for all segments) called the 
ratio of magnification (Clifford's "ratio of similitude"). It follows that any 
triangle is transformed into a similar triangle, and any angle into an equal 
(or opposite) angle. When µ = 1, the similarity is an isometry. Other spe
cial cases are the dilatations O(+µ). 

B' 
B' 

Figure 5.4a Figure 5.4b 

A less familiar instance is the spiral similarity (or "dilative rotation," 
Figure 5 .4a), which is the product of a dilatation 0(µ.) and a rotation about 
0. Another is the dilative reflection (Figure 5.4b), which is the product of a 
dilatation 0(µ.) and the reflection in a line through 0. In both cases the in
variant point O is called the center of the similarity. We may, without loss of 
generality, use a dilatation whose µ. is positive (in agreement with our defini
tion of the ratio of magnification). For, the product of a dilatation 0(µ.) and 
a rotation through fJ about O is the same as the product of the dilatation 
0( - µ.) and the rotation through fJ + 'IT; and the product of a dilatation 
0(µ.) and the reflection in a line m through 0 is the same as the product of 
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0( -µ) and the reflection in the line through O perpendicular to m. In fact, a dilative reflection has two perpendicular invariant lines, which are naturally called its two axes. Clearly (cf. 3. 11), 
5.41 Any two similar tripngles ABC, A'B'C' are related by a unique simi

larity ABC ➔ A'B'C', which is direct or opposite according as the sense of 
A'B'C' agrees or disagrees with that of ABC. 

In other words, a similarity is completely determined by its effect on any three given non-collinear points. For instance, the two triangles CBF, A CF used in proving Pythagoras's theorem (Figure 1.3d) are related by a spiral similarity, the product of the dilatation F(A CICB) and a quarter-tum; and the two triangles ABC, A CF (in the same figure) are related by a dilative reflection whose axes are the bisectors of the angle A . Here is another way of expressing the same idea: 
Any two line segments AB, A '  B', are related by just two similarities: one 

direct and one opposite. In the next two sections we shall prove the following analogue of 3.51: 
5.42 Any direct similarity is either a translation or a spiral similarity. Any 

opposite similarity is either a glide reflection or a dilative reflection. 

5.5 DIRECT SIMILARITY 

We proceed to prove that 
A ny direct similarity which is not a translation has an invariant point. 

Figure 5.Sa 

The case of a dilatation (which is always direct, even when µ is negative), is covered by 5.13. In the case of a direct similarity that is not a dilatation, there must be at least one line that is transformed into a nonparallel line. Let C be the point of intersection of such a pair of lines, containing corresponding segments AB, A'B' (Figure 5.5a). Let the circles AA'C, 
BB' C, which have the common point C, meet again in O ( or, if they have C as a point of contact, let O be another name for C). The triangles A BO, A' B'O (possibly collapsing into triads of collinear points) are easily seen to be di-



74 SIMILARITY IN THE EUCLIDEAN PLANE rectly similar. Since they have a common vertex 0, they are related by a spiral similarity with center O [Casey 1 ,  p. 180; Forder 3, p. 16]. 
EXERCISES 

1. What is the product of two spiral similarities? 2. Consider again the direct similarity that transforms AB into A'B'. Let D be the point of intersection of AA', BB'. Let the circles ABD, A'B'D, which have the common point D, meet again in 0. Then the triangles ABO, A 'B'O are directly similar. (Therefore the four circles AA 'C, BB'C, ABD, A' B' D all pass through one point [Baker 1 ,  p. 1 101). How should this construction be modified if AA ' and BB' happen to be parallel? 
5.6 OPPOSITE SIMILARITY In order to deal with the latter half of 5.42, we proceed to prove that 

Any opposite similarity which is not a glide reflection has a n  inva riant point. 

A'2 

--m---0N 

Q 
A ------------ �N 

A2 

Figure 5.6a Consider a given opposite similarity whose ratio of magnification µ is not 1 .  For any point P, this similarity may be regarded as the product of the dilatation P (µ) and an opposite isometry. By 3.51, any such isometry is the product of a translation and a reflection. By 5.13, the product of P (µ) and a translation is another central dilatation, say Q(µ.). Thus the given similarity is the product of Q (µ.) and a reflection, say the reflection in m (Figure 
5.6a). Consider a point O on the perpendicular QN from Q to m. Suppose 
QO = x and QN = c. The given similarity transforms O into a point on QN whose distance from Q is 2c - µx. Equating this to x, we see that, if 
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0 is invariant. Thus the given similarity is a dilative reflection: the product 
of O (µ.) and the reflection in a line through O (parallel to m), or alternatively 
the product of 0(-µ,) and the reflection in the perpendicular line ON. 

This completes the proof of Theorem 5.42 ( cf. Casey 1 ,  p. I 86; Lachlan 
1 ,  p. 134; Johnson 1 ,  p. 27). But it seems worthwhile to mention an in
teresting property of the axes of the dilative reflection. Suppose an arbitrary 
point A is transformed into A ', and A' into A" (Figure 5.6a). The line AA', 
meeting the axes in A1 and A 2, is transformed into A'A", meeting them in 
A'1 and A'2• By the converse of pons asinorum (§ 1 .3), 

A'A , = A'A'. = µAA., A'A2 = A 'A1
2 = µ.AA2. 

Since the first axis passes between A and A', it follows that the segment AA' 
is divided internally at A 1, and externally at A 2, in the ratio I : µ,. Dealing in 
the same way with another point B instead of A, we deduce the following 
simple construction (Figure 5.6b): 
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Figure 5.6b 

Let A B, A'B' be two given unequal segments. Let A1 and A 2 divide AA' 
internally and externally in the ratio AB : A' B'. Let B1 and B2 divide BB' 
in the same manner. Then A1B1 and A 2B2 are the axes of the dilative reflec
tion that transforms A B  into A' B'. (Incidentally, it follows that A 1B1 and 
A 2B2 are at right angles.) 

Combining 5.41 and 5.42, we see that 
Two given similar triangles ABC, A '  B' C, differing in size, are related by a 

unique spiral similarity or dilative reflection. 
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EXERCISES 

1. If two maps of the same country on different scales are drawn on tracing paper and superposed, there is just one place that is represented by the same spot on both maps. (It is understood that one of the maps may be turned over before it is superposed on the other.) [Lachlan 1 ,  pp. 137, 139.] 2. When all the points P on AB are related by a similarity to all the points P' on A 'B', the points dividing the segments PP' in the ratio AB : A 'B' (internally or externally) are distinct and collinear or else they all coincide. 3. If S is an opposite similarity, S2 is a dilatation. 4. What is the product (a) of two dilative reflections? (b) of a spiral similarity and a dilative reflection? 5. Describe the transformation 
(r, 8) - (µr, () + a) 

of polar coordinates, and the transformation 
(x, y) - (µ.x, - µ.y) 

of Cartesian coordinates. 



6 
Circles and spheres 

The present chapter shpws how Euclidean geometry, in which lines and 
planes play a fundam�ntal role, can be extended to inversive geometry, in 
which this role is taken over by circles and spheres. We shall see how the 
obvious statement, that lines and planes are circles and spheres of infinite 
radius, can be replaced by the sophisticated statement that lines and planes 
are those circles an� sph�res which pass through an "ideal" point, called 
"the point at in.fini�y." Ip. § 6.9 we shall briefly discuss a still more unusual 
geometry, called elliptic, which is one of the celebrated "non-Euclidean" 
geometries. 

6.1 INVERSION IN A CIRCLE 

Con it be thqt all the great scientists of the past were really playing 
? game, a gqme in which the rules ore written not by man but by 
qod? . . . Yfhen we play, we do not ask why we ore playing-we 
;ust plqy. Play serves no moral code except that strange code which, 
for some unknown reoson, imposes itself on the play. . . . You will 
search ii') yain through scientific literature for hints of motivation. And 
as for the strange moral code observed by scientists, what could be 
stranger fhan an· abstract regard for truth in a world which is full of 
concealment, deception, and taboos? . . . In submitting to your con
sideration the idea that the human mind is at its best when ploying, 
I om myself playing, and that makes me feel that what I am saying may 
hove in it an element of truth. 

J. L. Synge (1897 - )* 

All the transformations so far discussed have been similarities, which 
transform straight lines into straight lines and angles into equal angles. The 
transformation called inversion, which was invented by L. J. Magnus in 
1 83 1 ,  is new in one respect but familiar in another: it transforms some 

• Hermathena, 19 (1958), p. 40; quoted with the editor's permission. 
77 



78 CIRCLES AND SPHERES straight lines into circles, but it still transforms angles into equal angles. Like the reflection and the half-turn, it is involutory (that is, of period 2). Like the reflection, it has infinitely many invAriant points; these do not lie on a straight line but on a circle, and the center of the circle is "singular:" it has no image! 

0 P' 

Figure 6.1 a  

Given a fixed circle with center O and radius k, we define the inverse of any point P (distinct from 0) to be the point P' on the ray OP whose distance from O satisfies the equation 
OP X OP' = k2. It follows from this definition that the inverse of P' is P itself. Moreover, every point outside the circle of inversion is transformed into a point inside, and every point inside (except the center 0) into a point outside. The circle is. invariant in the strict sense that every point on it is invariant. Every line through O is invariant as a whole, but not point by point. To construct the inverse of a given point P (other than 0) inside the circle of inversion, let T be one end of the chord through P perpendicular to 

OP, as in Figure 6.la. Then the tangent at T meets OP (extended) in the desired point P'. For, since the right-angled triangles OPT, OTP' are similar, and OT = k, 

To construct the inverse of a given point P' outside the circle of inversion, let T be one of the points of intersection of this circle with the circle on OP' as diameter (Figure 6. la). Then the desired point P is the foot of the perpendicular from T to OP'. If OP > ½k, the inverse of P can easily be constructed by the use of compasses alone, without a ruler. To do so, let the circle through O with center P cut the circle of inversion in Q and Q'. Then P' is the second inter-



INVERSION 79 section of the circles through O with centers Q and Q'. (This is easily seen by considering the similar isosceles triangles POQ, QOP'.) There is an interesting connection between inversion and dilatation: 
6. 1 1  The product of inversions in two concentric circles with radii k and k' is the dilatation O(µ,) where µ, = (k'lk)2. To prove this, we observe that this product transforms P into P" (on OP) where 

OP X OP' = k2, OP' X OP" = k'2 and therefore g�" = (f )� 
EXERCISES 

1. Using compasses alone, construct the vertices of a regular hexagon. 2. Using compasses alone, locate a point B so that the segment OB is twice as long as a given segment OA. 3. Using compasses alone, construct the inverse of a point distant t k from the center O of the circle of inversion. Describe a procedure for inverting points arbitrarily near to 0. 4. Using compasses alone, bisect a given segment. 5. Using compasses alone, trisect a given segment. Describe a procedure for dividing a segment into any given number of equal parts. 
Note. The above problems belong to the Geometry of Compasses, which was developed independently by G. Mohr in Denmark (1672) and L. Mascheroni in Italy (1797). For a concise version of the whole story, see Pedoe [1,  pp. 23-25] or Courant and Robbins [ 1 ,  pp. 145-151]. 

6.2 ORTHOGONAL CIRCLES 

A circle is a happy thing ta be
Think haw the joyful perpendicular 
Erected at the kiss of tangency 
Must meet my central paint, my avatar. 
And lovely os I om, yet only 3 
Points are needed to determine me. 

Christopher Morley (1890 -Two circles are said to be orthogonal if they cut at right angles, that is, if they intersect in two points at either of which the radius of each is a tangent to the other (Figure 6.2a). By Euclid IIl.36 (see p. 8) any circle through a pair of inverse points is invariant: the circle of inversion decomposes it into two arcs which invert into each other. Moreover, such a circle is orthogonal to the circle of inversion, and every circle orthogonal to the circle of inversion is invariant in this sense. Through a pair of inverse points we can draw a whole pencil 
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of circles (in.finitely many), and they are all orthogonal to the circle of inversion. Hence 
6.2 1  The inverse of a given point P is the second intersection of any two 

circles through P orthogonal to the circle of inversion. 
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The above remarks provide a simple solution for the problem of drawing, through a given point P, a circle (or line) orthogonal to two given circles. Let P1, P2 be the inverses of P in the two circles. Then the circle PP1P2 ( or the line through these three points, if they happen to be collinear) is orthogonal to the two given circles. If O and C are the centers of two orthogonal circles w and y, as in Figure 
6.2a, the circle on OC as diameter passes through the points of intersection 
T, U. Every other point on this circle is inside one of the two orthogonal circles and outside the other. It follows that, if a and b are two perpendicular lines through O and C respectively, either a touches y and b touches w, 9r a cuts y and b lies outside w, or q. lies outside y and b cuts w. 
6.3 INVERSION OF LINES AND CIRCLES 

Figure 6.3a 
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We have seen that lines through O invert into themselves. What about 
other lines? Let A be the foot of the perpendicular from O to a line not 
through 0. Let A' be the inverse of A,  and P' the inverse of any other point 
P on the line. (See Figure 6.3a where, for simplicity, the circle of inversion 
has not been drawn.) Since 

OP X OP' = k2 = OA X OA', 

the triangles OAP, OP'A' are similar, and the line AP inverts into the circle 
on OA' as diameter, which is the locus of points P' from which OA' sub
tends a right angle. Thus any line not through O inverts into a circle through 
0, and vice versa. 

0 

Figure 6.3b 

Finally, what about a circle not through O? Let P be any point on such 
a circle, with center C, and let OP meet the circle again in Q. By Euclid 
III.35 again, the product 

p = OP X OQ 
is independent of the position of P on the circle. Following Jacob Steiner 
( 1796-1863), we call this product the power of O with respect to the circle. 
It is positive when O is outside the circle, zero when O lies on the circle, 
and we naturally regard it as being negative when O is inside (so that OP 
and OQ are measured in opposite directions). Let the dilatation O(k2/p) 
transform the given circle and its radius CQ into another circle (or possibly 
the same) and its parallel radius DP' (Figure 6.3b, cf. Figure 5.2a), so that 

OP' OD k2 
OQ 

-
OC = p .  

Since OP x OQ = p, we have, by multiplication, 
OP x OP' = k2. 

Thus P' is the inverse of P, and the circle with center D is the desired in-
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verse of the given circle with center C. (The point D is usually not the in
verse of C.) 

We have thus proved that the inverse of a circle not through O is another 
circle of the same kind, or possibly the same circle again. The latter possi
bility occurs in just two cases: ( 1) when the given circle is orthogonal to the 
circle of inversion, so thatp = k2 and the dilatation is the identity; (2) when 
the given circle is the circle of inversion itself, so thatp = -k2 and the dilata
tion is a half-turn. 

When p is positive (see the left half of Figure 6.3b), so that O is outside 
the circle with center C, this circle is orthogonal to the circle with center 0 
and radius yp; that is, the former circle is invariant under inversion with 
respect to the latter. In effect, we have expressed the given inversion as 
the product of this new inversion, which takes P to Q, and the dilatation 
O(k2/p), which takes Q to P'. When p is negative (as in the right half of 
Figure 6.3b), P and Q are interchanged by an "anti-inversion:" the product 
of an inversion with radius y::::j and a half-turn [Forder 3, p. 20). 

When discussing isometries and other similarities, we distinguished be
tween direct and opposite transformations by observing their effect on a tri
angle. Since we are concerned only with sense, the triangle could have been 
replaced by its circumcircle. Such a distinction can still be made for inver
sions (and products of inversions), which transform circles into circles In
stead of a triangle we use a circle: not an arbitrary circle but a "small" circle 
whose inverse is also "small," that is, a circle not surrounding 0. Referring 
again to the left half of Figure 6.3b, we observe that P and Q describe the 
circle with center C in opposite senses, whereas Q and P' describe the two 
circles in the same sense. Thus the inverse points P and P' proceed oppo
sitely, and 

Inversion is an opposite transformation. 
It follows that the product of an even number of inversions is direct. One 

instance is familiar: the product of inversions with respect to two concentric 
circles is a dilatation. 

0 P' 

Figure 6.3c Figure 6.3d 

EXERCISES 

1. For any two unequal circles that do not intersect, one of the two centers of similitude (§ 5.2) is the center of a circle which inverts either of the given circles into the 
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other. For two unequal intersecting circles, both centers of similitude have this property. What happens in the case of equal intersecting circles? 2. Explain the action of Peauce/lier's cell (Figure 6.3c), an instrument invented by A. Peaucellier in 1864 for the purpose of drawing the inverse of any given locus. It is formed by four equal rods, hinged at the corners of a rhombus APBP', and two equal (longer) rods connecting two opposite corners, A and B, to a fixed pivot 0. When a pencil point is inserted at P' and a tracing point at P (or vice versa), and the latter is traced over the curves of a given figure, the pencil point draws the inverse figure. In particular, if a seventh rod and another pivot are introduced so as to keep P on a circle passing through 0, the locus of P' will be a straight line. This linkage gives an exact solution of the important mechanical problem of converting circular into rectilinear motion. [Lamb 2, p. 3 14.) 3. Explain the action of Hart's linkage (Figure 6.3d), an instrument invented by H. Hart in 1874 for the same purpose as Peaucellier's cell. It requires only four rods, hinged at the corners of a "crossed parallelogram" ABCD (with AB = CD, BC = DA). The three collinear points 0, P, P', on the respective rods AB, AD, BC, remain collinear ( on a line parallel to AC and BD) when the shape of the crossed parallelogram is changed. As before, the instrument is pivoted at 0. [Lamb 2, p. 315.J 4. For any triangle, the incircle and the three excircles all touch the nine-point circle. (This is Feuerbach's theorem. For one of the many known proofs, see Pedoe (1 ,  pp. 9-10].) 
6.4 THE INVERSIVE PLANE 

Whereupon the Plumber said in tones of disgust: 
''/ suggest that we proceed ot once to infinity." 

J. L. Synge [2, p. 131 ] 

We have seen that the image of a given point P by reflection in a line 
(Figure 1.3b) is the second intersection of any two circles through P orthog
onal to the mirror, and that the inverse of P in a circle is the second inter
section of any two circles through P orthogonal to the circle of inversion. 
Because of this analogy, inversion is sometimes called "reflection in a cir
cle" (Blaschke 1 ,  p. 47], and we extend the definition of a circle so as to in
clude a straight line as a special ( or "limiting") case: a circle of infinite radius. 
We can then say that any three distinct points lie on a unique circle, and 
that any circle inverts into a circle. 

In the same spirit, we extend the Euclidean plane by inventing an "ideal" 
point at infinity 0', which is both a common point and the common center 
of all straight lines, regarded as circles of infinite radius. Two circles with 
a common point either touch each other or intersect again. This remains 
obvious when one of the circles reduces to a straight line. When both of 
them are straight, the lines are either parallel, in which case they touch at 
O', or intersecting, in which case O' is their second point of intersection 
[Hilbert and Cohn-Vossen 1 ,  p. 251]. 



84 CIRCLES AND SPHERES We can now assert that every point has an inverse. All the lines through 
0, being "circles" orthogonal to the circle of inversion, meet again in O', the inverse of 0. When the center O is O' itself, the "circle" of inversion is straight, and the inversion reduces to a reflection. The Euclidean plane with O' added is called the inversive (or "conformal") 
plane.* It gives inversion its full status as a "transformation" (§ 2.3): a oneto-one correspondence without exception. Where two curves cross each other, their angle of intersection is naturally defined to be the angle between their tangents. In this spirit, two intersecting circles, being symmetrical by reflection in their line of centers, make equal angles at the two points of intersection. This will enable us to prove 

6.41 Any angle inverts into an equal angle ( or, more s trictly, an opposite 
angle). We consider first an angle at a point P which is not on the circle of inversion. Since any direction at such a point P may be described as the direction of a suitable circle through P and its inverse P', two such directions are determined by two such circles. Since these circles are self-inverse, they serve to determine the corresponding directions at P'. To show that an angle at P is still preserved when P is self-inverse, we use 6.11 to express the given inversion as the product of a dilatation and the inversion in a concentric circle that does not pass through P. Since both these transformations preserve angles, their product does likewise. In particular, right angles invert into right angles, and 

6.42 Orthogonal circles invert into orthogonal circles (including lines as 
special cases). 

0 
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w 

Figure 6.4a 

By 6.21, inversion can be defined in terms of orthogonality. Therefore a circle and a pair of inverse points invert (in another circle) into a circle and a pair of inverse points. More precisely, if a circle y inverts P into Q and 
• M. B6cher, Bulletin of the American Mathematical Society, 20 (1914), p. 194. 
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a circle w inverts y, P, Q into y', P', Q', then the circle y' inverts P' into Q'. An important special case (Figure 6.4a) arises when Q coincides with 0, the center of w, so that Q' is O', the point at infinity. Then P is the inverse of O in y, and P' is the center of y'. In other words, if y inverts O into P, whereas w inverts y and P into y' and P', then P' is the center of y'. Two circles either touch, or cut each other twice, or have no common point. In the last case (when each circle lies entirely outside the other, or else one encloses the other), we may conveniently say that the circles miss each other. If two circles, a:1 and a:2, are both orthogonal to two circles /31 and /32 , we can invert the four circles in a circle whose center is one of the points of intersection of a:1 and /31, obtaining two orthogonal circles and two perpendicular diameters, as in the remark at the end of § 6.2. Hence, either 
a:1 touches a:2 and /31 touches /32, or a:1 cuts a:2 and /31 misses /32, or a:1 misses 
a:2 and /31 cuts /32. 
6.5 COAXAL CIRCLES 

In this section we leave the inversive plane and return to the Euclidean plane, in order to be able to speak of distances. 

3 

Figure 6.Sa 

If P and P' are inverse points in the circle w (with center 0), as in Figure 
6.5a, all the lines through P' invert into all the circles through O and P: an 
intersecting ( or "elliptic") pencil of coaxal circles, including the straight line 
OPP' as a degenerate case. The system of concentric circles with center P', 
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consisting of circles orthogonal to these lines, inverts into a nonintersecting (or "hyperbolic") pencil of coaxal circles (drawn in broken lines). These circles all miss one another and are all orthogonal to the intersecting pencil. One of them degenerates to a (vertical) line, whose inverse is the circle (with center P') passing through 0. 

Figure 6.5b 

As a kind of limiting case when O and P coincide (Figure 6.5b), the circles that touch a fixed line at a fixed point O constitute a tangent ( or "parabolic") pencil of coaxal circles. They invert (in a circle with center 0) into all the lines parallel to the fixed line. Orthogonal to these lines we have another system of the same kind, inverting into an orthogonal tangent pencil of coaxal circles. Again each member of either pencil is orthogonal to every member of the other. Any two given circles belong to a pencil of coaxal circles of one of these three types, consisting of all the circles orthogonal to both of any two circles 
orthogonal to both the given circles . (More concisely, the coaxal circles consist of all the circles orthogonal to all the circles orthogonal to the given circles.) Two circles that cut each other belong to an intersecting pencil (and can be inverted into intersecting lines); two circles that touch each other belong to a tangent pencil (and can be inverted into parallel lines); two circles that miss each other belong to a nonintersecting pencil (by the remark at the end of § 6.4). Each pencil contains one straight l ine (a circle of infinite radius) called the radical axis (of the pencil, or of any two of its members).* For an intersecting pencil, this is the line joining the two points common to all the circles (OP for the "unbroken" circles in Figure 6.5a). For a tangent pencil, 

• Louis Gaultier, Journal de /'Ecole Polytechnique, 16 (1813), p. 147. 

- ,  
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it is the common tangent. For a nonintersecting pencil, it is the line mid
way between the two limiting points (or circles of zero radius) which are the 
common points of the orthogonal intersecting pencil. For each pencil there 
is a line of centers, which is the radical axis of the orthogonal pencil. Hence 

6.5 1 If tangents can be drawn to the circles of a coaxal pencil from a point 
on the radical axis, all these tangents have the same length. 

The radical axis of two given circles may be defined as the locus of points 
of equal power (§ 6.3) with respect to the two circles. This power can be 
measured as the square of a tangent except in the case when the given cir
cles intersect in two points 0, P, and we are considering a point A on the 
segment OP; then the power is the negative number A O  x AP. 

It follows that, for three circles whose centers form a triangle, the three 
radical axes (of the circles taken in pairs) concur in a point called the radi
cal center, which has the same power with respect to all three circles. If 
this power is positive, its square root is the length of the tangents to any of 
the circles, and the radical center is the center of a circle (of this radius) 
which is orthogonal to all the given circles. But if the power is negative, 
no such orthogonal circle exists. 

Figure 6.5c 

The possibility of inverting any two nonintersecting circles into concentric 
circles (by taking O at either of the limiting points) provides a remarkably 
simple proof for Steiner's porism: * If we have two (nonconcentric) circles, 
one inside the other, and circles are drawn successively touching them and 
one another, as in Figure 6.5c, it may happen that the ring of touching cir
cles closes, that is, that the last touches the first. Steiner's statement is that, 
if this happens once, it will always happen, whatever be the position of the 
first circle of the ring. To prove this we need only invert the original two 
circles into concentric circles, for which the statement is obvious. 

• Forder [3, p. 53]. See also Coxeter, Interlocked rings of spheres, Scripla Mathematica, 1 1  
(1952), pp. 1 13-121, or Yaglom [2, p. 199). 
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EXERCISES 

1. In a pencil of coaxal circles, each member, used as a circle of inversion, inter
changes the remaining members in pairs and inverts each member of the orthogonal 
pencil into itself. 

2. The two limiting points of a nonintersecting pencil are inverses of each other in 
any member of the pencil. 

3. If two circles have two or four common tangents, their radical axis joins the mid
points of these common tangents. If two circles have no common tangent (i.e., if one 
entirely surrounds the other), how can we construct their radical axis? 

4. When a nonintersecting pencil of coaxal circles is inverted into a pencil of con
centric circles, what happens to the limiting points? 

5. In Steiner's porism, the points of contact of successive circles in the ring all lie 
on a circle, and this will serve to invert the two original circles into each other. Do 
the centers of the circles in the ring lie on a circle? 

6.6 THE CIRCLE OF APOLLONIUS 

The analogy between reflection and inversion is reinforced by the follow
ing 

PROBLEM. To find the locus of a point P whose distances from two fixed 
points A , A' are in a constant ratio 1 : µ,, so that 

A'P = µ,AP. 

Figure 6.6a 

When µ, = 1, the locus is evidently the perpendicular bisector of AA', 
that is, the line that reflects A into A'. We shall see that for other values 
ofµ, it is a circle that inverts A into A'. (Apollonius of Perga, c. 260-190 B.c.) • 
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Assuming µ, =I= l ,  let P be any point for which A'P = µAP. Let the in
ternal and external bisectors of LAPA' meet AA' in A1 and A 2 (as in Fig
ure 6 .6a, where µ, = ½). Take E and F on A P  so that A' E is parallel to 
A 1P and A' F is parallel to A 2P, that is, perpendicular to A 1P. Since F P 
= PA' = PE, we have 

AA1 AP AP 
A 1A' 

= PE
= 

PA' 1 
AA2 AP AP 
A'A2 FP PA' 

(The former result is Euclid V1.3.) Thus A 1 and A2 divide the segment AA' 
internally and externally in the ratio I : µ,, and their location is independ
ent of the position of P. Since L A 1PA2 is a right angle, P lies on the cir
cle with diameter A 1A 2. 

Conversely, if A1 and A 2 are de.fined by their property of dividing AA' in 
the ratio 1 : µ,, and P is any point on the circle with diameter A1A2, we have 

AP 
FP 

Thus FP = PE, and P, being the midpoint of FE, is the circumcenter of 
the right-angled triangle EFA'. Therefore PA' = PE and 

1�, = t; = ¼ 
[Court 2, p. 15]. 

Finally, the circle of Apollonius A1A2P inverts A into A'. For, if O is its 
center and k its radius, the distances a = AO and a' = A'O satisfy 

a - k AA1 AA2 a + k 
k - a' 

= A 1A '  = A'A2 
= a' + k '  

whence aa' = k2• 

EXERCISES 

1. . When µ. varies while A and A' remain fixed, the circles of Apollonius form a nonintersecting pencil with A and A' for limiting points. 2. Given a line / and two points A ,  A' (not on !), locate points P on / for which the ratio A'PIAP is maximum or mini.mum. (Hint: Consider the circle through A, A'  with its center on /. The problem i s  due to N. S. Mendelsohn, and the hint to Richard Blum.) 3. Express k/AA' in terms ofµ.. 4. In Figure 6.6a, let E' be the point of intersection of A' P and A2E (extended). Then AE' is parallel to A'E and A1P. (Hint: Reflection in PA2 transforms EA into 
A'E', and A� into A2E'.) 5. In the notation of Figure 5.6b (which is embodied in Figure 6.6b}, the circles on 
A1A2 and B1B2 as diameters meet in two points O and 0, such that the triangles OAB and OA' B' are similar, and likewise the triangles OAB and OA' B'. Of the two similarities 

OAB - OA'B' and OAB - OA'B', 



90 CIRCLES AND SPHERES 

B' 

Figure 6.6b 

one is opposite and the other direct. In fact, 0 is where A1B1 meets A2B2, and O lies on the four further circles AA'C, BB'C, ABD, A'B'D (cf. Ex. 2 at the end of § 5.5). [Casey 1 ,  p. 185.) If A' coincides with B, 0 lies on AB'. 6. Two given unequal circles are related by infinitely many spiral similarities and by infinitely many dilative reflections. The locus of invariant points (in either case) is the circle having for diameter the segment joining the two centers of similitude of the given circles. (This locus is known as the circle of similitude of the given circles.) What is the corresponding result for two given equal circles? 7. The inverses, in two given circles, of a point on their circle of similitude, are images of each other by reflection in the radical ax.is of the two circles [ Court 2, p. 199). 
6.7 CIRCLE-PRESERVING TRANSFORMATIONS 

Having observed that inversion is a transformation of the whole inversive plane (including the point at infinity) into itself, taking circles into circles, we naturally ask what is the most general transformation of this kind. We distinguish two cases, according as the point at infinity is, or is not, invariant. In the former case, not only are circles transformed into circles but also lines into lines. With the help of Euclid 111.21 (see p. 7) we deduce that equality of angles is preserved, and consequently the measurement of angles is preserved, so that every triangle is transformed into a similar triangle, and the transformation is a similarity (§ 5.4). If, on the other hand, the given transformation T takes an ordinary point 

- 1  
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0 into the point at infinity O', we consider the product J1T, where J1 is the in
version in the unit circle with center 0. This product J1T, leaving O' invari
ant, is a similarity. Let k2 be its ratio of magnification, and h the inver
sion in the circle with center O and radius k. Since, by 6.11, J1Jk is the 
dilatation O(k2), the similarity JiT can be expressed as J1hS, where S is an 
isornetry. Thus 

T = JkS, 
the product of an inversion and an isometry. 

To sum up, 
6.71 Every circle-preserving transformation of the inversive plane is either 

a similarity or the product of an inversion and an isometry. 
It follows that every circle-preserving transformation is the product of at 

most four inversions (provided we regard a reflection as a special kind of in
version) [Ford 1 ,  p. 26]. The product of two inversions ( or of an in version 
and a reflection) is said to be elliptic, parabolic, or hyperbolic according as the 
two inverting circles are intersecting, tangent, or nonintersecting (i.e., accord
ing as the orthogonal pencil of invariant circles is nonintersecting, tangent, 
or intersecting). As special cases we have, respectively, a rotation, a transla
tion, and a dilatation. The most important kind of elliptic transformation is 
the Mobius involution, which, being the inversive counterpart of a half
turn, is the product of inversions in two orthogonal circles (e.g., the product 
of the inversion in a circle and the reflection in a diameter). Any product of 
four inversions that cannot be reduced to a product of two is called a 
loxodromic transformation [Ford 1 ,  p. 20]. By 5.42 and 3.31, this is either a 
s piral s imilarity or the product of an inversion and a glide reflection. 

EXERCISE 

When a given circle-preserving transformation is expressed as JS (where J is an inversion and S an isometry), J and S are unique. There is an eHually valid expression SJ', in which the isometry precedes the inversion. Why does this revised product involve the same S? Under what circumstances will we have J' = J? 

6.8 INVERSION IN A SPHERE 

By revolving Figures 6. la, 6.2a, 6.3a, 6.3b, and 6.4a about the line of 
centers (OP or OA or OC), we see that the whole theory of inversion ex
tends readily from circles in the plane to spheres in space. Given a sphere 
with center O and radius k, we define the inverse of any point P (distinct 
from 0) to be the point P' on the ray OP whose distance from O satisfies 

OP X OP' = k2• 

Alternatively, P' is the second intersection of three spheres through P orthog
onal to the sphere of inversion. Every sphere inverts into a sphere, pro-



92 CIRCLES AND SPHERES vided we include, as a sphere of infinite radius, a plane, which is the inverse of a sphere through 0. Thus, inversion is a transformation of inversive (or "conformal") space, which is derived from Euclidean space by postulating a 
point at infinity, which lies on all planes and lines. Revolving the circle of Apollonius (Figure 6.6a) about the line AA', we obtain the sphere of Apollonius, which may be described as follows: 

6.81 Given two points A, A' and a positive number µ,, let A 1 and A2 divide 
AA' internally and externally in the ratio 1 : µ,. Then the sphere on A 1A2 as 
diameter is the locus of a point P whose distances from A and A' are in this ratio. 

EXERCISES 

1. If a sphere with center O inverts A into A' and B into B', the triangles OA B and 
OB'A' are similar. 2. In terms of a = OA and b = OB, we have (in the notation of Ex. 1) 

A'B' = k2 
AB. 

ab 3. The "cross ratio" of any four points is preserved by any inversion: 

[Casey 1 ,  p. 100.] 
AB/BD A'B'IB'D' --- = ----
AC/CD A 'C'ICD' 

4. Two spheres which touch each other at O invert into parallel planes. 5. Let a, /3, y be three spheres all touching one another. Let 01, a2, . . .  be a sequence of spheres touching one another successively and all touching a, /3, y. Then a6 touches a1, so that we have a ring of six spheres interlocked with the original ring of three.* (Hint: Invert in a sphere whose center is the point of contact of a and /3.) 

6.9 THE ELLIPTIC PLANE 

In some unaccountable way, while he [Davidson] moved hither and 
thither in London, his sight moved hither and thither in o manner that 
corresponded, about this distant island . . . .  When I said that nothing 
would alter the fact that the place [Antipodes Island ] is eight thou
sand miles away, he answered that two points might be a yard away 
on a sheet of paper, and yet be brought together by bending the paper 
round. 

H. G. Wells (l 866-1946) 
(The Remarkable Case of Davidson's Eyes) Let S be the foot of the perpendicular from a point N to a plane er, as in Figure 6.9a. A sphere (not drawn) with center N and radius NS inverts the plane u into the sphere er' on NS as diameter [Johnson 1 , p. 108]. We have • Frederick Soddy, The Hexlet, Nature, 138 (1936), p. 958; 139 (1937), p. 77. 



THE PROJECTIVE PLANE 93 seen that spheres invert into spheres (or planes); therefore circles, being intersections of spheres, invert into circles ( or lines). In particular, all the circles in u invert into circles (great or small) on the sphere u', and all the lines in u invert into circles through N. Each point P in u yields a corresponding point 
P' on u', namely, the second intersection of the line NP with IJ'. Conversely, each point P' on u', except N, corresponds to the point P in which NP' meets 
CJ. The exception can be removed by making CJ an inversive plane whose point at infinity is the inverse of N. This inversion, which puts the points of the inversive plane into one-toone correspondence with the points of a sphere, is known as stereographic 
projection. It serves as one of the simplest ways to map the geographical globe on a plane. Since angles are preserved, small islands are mapped with the correct shape, though on various scales according to their latitude. 
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figure 6.9a 
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figure 6.9b 

Another way is by gnomonic (or central) projection, in which the point from which we project is not N but 0, the center of the sphere, as in Figure 6.9b. Each point P in CJ yields a line OP, joining it to 0. This diameter meets the sphere in two antipodal points Pi, P2, which are both mapped on the same point P. Each line m in CJ yields a plane Om, joining it to 0. This diametral plane meets the sphere in a great circle. Conversely, each great circle of the sphere, except the "equator" (whose plane is parallel to CJ), corresponds to a line in u. This time the exception can be removed by adding to the Euclidean plane CJ a line at infinity (representing the equator) with all its points, called points at infinity, which represent pairs of antipodal points on the equator. Thus, all the lines parallel to a given line contain the same point at infinity, but lines in different directions have different points at infinity, all lying on the same line at infinity. (This idea is due to Kepler and Desargues.) When the line at infinity is treated just like any other line, the plane so extended is called the projective plane or, more precisely, the real projective plane [Coxeter 2). Two parallel lines meet in a point at infinity, and an ordinary line meets the line at infinity in a point at infinity. Hence 
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6.91 Any two lines of the projective plane meet in a point. 
Instead of taking a section of all the lines and planes through 0, we could 

more symmetrically (though more abstractly) declare that, by definition, the 
points and lines of the projective plane are the lines and planes through 0. 
The statement 6.91 is no longer surprising; it merely says that any two planes 
through O meet in a line through 0. 

Equivalently we could declare that, by definition, the lines of the projective 
plane are the great circles on a sphere, any two of which meet in a pair of 
antipodal points. Then the points of the projective plane are the pairs of 
antipodal points, abstractly identified. This abstract identification was 
vividly described by H. G. Wells in his short story, The Remarkable Case of 
Davidson's Eyes. (A sudden catastrophe distorted Davidson's field of vision 
so that he saw everything as it would have appeared from an exactly antip
odal position on the earth.) 

When the inversive plane is derived from the sphere by stereographic pro
jection, distances are inevitably distorted, but the angle at which two circles 
intersect is preserved. In this sense, the inversive plane has a partial metric: 
angles are measured in the usual way, but distances are never mentioned 
[Graustein 1 ,  pp. 377, 388, 395]. 

On the other hand, gnomonic projection enables us, ifwe wisb, to give the 
projective plane a complete metric. The distance between two points P and 
Q in a (Figure 6.9a) is de.fined to be the angle POQ (in radian measure), and 
the angle between two lines m and n in a is defined to be the angle between 
the planes Om and On. (This agrees with the customary measurement of dis
tances and angles on a sphere, as used in spherical trigonometry.) We have 
thus obtained the elliptic plane* or, more precisely, the real projective plane 
with an elliptic metric [Coxeter 3, Chapter VI; E. T. Bell 2, pp. 302-3 1 1 ;  
Bachmann 1 , p. 2 1  ]. 

Since the points of the elliptic plane are in one-to-two correspondence with 
the points of the unit sphere, whose total area is 4'1T, it follows that the total 
area of the elliptic plane (according to the most natural definition of "area") 
is 21r. Likewise, the total length of a line (represented by a "great semi
circle") is 'TT. The simplification that results from using the elliptic plane in
stead of the sphere is well illustrated by the problem of computing the area of 
a spherical triangle A BC, whose sides are arcs of three great circles. Figure 
6.9c shows these great circles, first in stereographic projection and then in 
gnomonic projection. The elliptic plane is decomposed, by the three lines 
BC, CA, AB, into four triangular regions. One of them is the given triangle 
6. with angles A, B, C; the other three are marked a, /3, y in Figure 6.9c. (On 
the sphere, we have, of course, not only four regions but eight.) The two 

• The name "elliptic" is possibly misleading. It does not imply any direct connection with the 
curve called an ellipse, but only a rather far-fetched analogy. A central conic is called an ellipse 
or a hyperbola according as it has no asymptote or two asymptotes. Analogously, a non-Euclid
ean plane is said to be elliptic or hyperbolic (Chapter 16) according as each of its lines contains no 
point at infinity or two points at infinity. 
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lines CA, A B  decompose the plane into two Junes whose areas, being proportional to the supplementary angles A and 7T - A, are exactly 2A and 2(7' - A). The lune with angle A is made up of the two regions I:::. and a. Hence 
I:::. +  a =  2A. 

Similarly I:::. + f3 = 2B and I:::. + y = 2C. Adding these three equations and subtracting 
I:::. + a + f3 + y = 21r, 

we deduce Girard's "spherical excess" formula 
6.92 I:::. = A + B + C - 7T, 

which is equally valid for the sphere and the elliptic plane. (A. Girard, In
vention nouvelle en algebre, Amsterdam, 1629.) 

Figure 6.9c 

EXERCISES 

1. Two circles in the elliptic plane may have as many as four points ofintersection. 2. The area of a p-gon in the elliptic plane is equal to the excess of its angle sum over the angle sum of a p-gon in the Euclidean plane. 



7 
/sometry and similarity 

in Euclidean space 

This chapter is the three-dimensional counterpart of Chapters 3 and 5. 
We have had to discuss circles and spheres first in order to be able to make 
use of the sphere of Apollonius (6.81), which provides the only known con
struction for the invariant point of an arbitrary similarity. In § 7.5 we find 
a simple proof for the well-known kinematical theorem that every motion is 
a screw displacement. In § 7.6 we see that every similarity (except the 
screw displacement and glide reflection, which have no invariant point) may 
be regarded as a special case of a three-dimensional spiral similarity. 

Most isometries are familiar in everyday life. When you walk straight for
ward you are undergoing a translation. When you turn a corner, it is a rota
tion; when you ascend a spiral staircase, a screw displacement. The trans
formation that interchanges yourself and your image in an ordinary mirror 
is a reflection, and it is easy to see how you could combine this with a rotation 
or a translation to obtain a rotatory reflection or a glide reflection, respec
tively. 

7 . 1  DIRECT AND OPPOSITE ISOMETRIES 

A congruence is either proper, carrying a left screw into a left and 
a right one into a right, or it is improper or reflexive, changing a left 
screw into a right one and vice verso. The proper congruences ore 
those transformations which . . .  connect the positions of points of a 
rigid body before and ofter a motion. 

H. Weyl [ 1 ,  pp. 43 -44] 

The axioms of congruence, a sample of which was given in 1.26, can be 
extended in a natural manner from plane geometry to solid geometry. In 
space, an isometry (Weyl's "congruence") is still any transformation that pre-
96 
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serves length, so that a line segment PQ is transformed into a congruent segment P' Q'. The most familiar examples are the rotation about a given line through a given angle and the translation in a given direction through a given distance. In the former case the axis of rotation has all its points invariant; in the latter there is no invariant point, except when the distance is zero so that the translation is the identity. A reflection is the special kind of isometry which has a whole plane of invariant points: the mirror. By a simple argument involving three spheres instead of two circles, we can easily prove the following analogue of Theorem 2.31 : 
7. 1 1  If an isometry has three non-collinear invariant points, it must be 

either the identity or a reflection. 
When two tetrahedra ABCP, ABCP' are images of each other by reflection in their common face, we may regard the "broken line" formed by the three edges AB, BC, CP as a kind of rudimentary screw, and the image formed by 

A B, BC, CP' as an oppositely oriented screw: if one is right-handed the other is left-handed. A model is easily made from two pieces of stiff wire, with right-angled bends at B and C. In this manner the idea of sense can be extended from two dimensions to three: we can say whether two given congruent tetrahedra agree or disagree in sense. In the former case we shall find that either tetrahedron can be moved (like a screw in its nut) to the position previously occupied by the other. This distinction arises in analytic geometry when we make a coordinate transformation. If O is the origin and X, Y, Z are at unit distances along the positive coordinate axes, the sense of the tetrahedron OXYZ determines whether the system of axes is right-handed or left-handed. (A coordinate transformation determines an isometry transforming each point (x,y, z) into the point that has the same coordinates in the new system.) Since an isometry is determined by its effect on a tetrahedron, 
7.1 2  Any two congruent tetrahedra ABCD, A'B'C'D' are related by a 

unique isometry AB CD - A' B' C' D', which is direct or opposite according as 
the sense of A'B'C' D' agrees or disagrees with that of ABCD. 

(Some authors, such as Weyl, say "proper or improper" instead of"direct or opposite.") The solid analogue of Theorem 3.12 is easily seen to be : 
7. 1 3  Two given congruent triangles are related by just two isometries: one 

direct and one opposite. 
As a counterpart for 3.13 we have [Coxeter 1 ,  p. 36] : 
7. 1 4  Every isometry is the product of at most four reflections. If there is an 

invariant point, "four" can be replaced by «three. "  
Since a reflection reverses sense, an isometry is direct or opposite according as it is the product of an even or odd number of reflections : 2 or 4 in the former case, 1 or 3 in the latter. In particular, a direct isometry with 
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an invariant point is the product of just two reflections, and since the two mirrors have a common point they have a common line. Hence 
7.1 5 Every direct isometry with an invariant point is a rotation. 
Also, as Euler observed in 1776, 
7. 1 6  The product of two rotations about lines through a point 0 is another 

such rotation. 

EXERCISE 

The product of rotations through 'Tl' about two intersecting lines that form an angle a is a rotation through 2a. 

7.2 THE CENTRAL INVERSION 

One of the most important opposite isometries is the central inversion (or "reflection in a point"), which transforms each point P into the point P' for which the midpoint of PP' is a fixed point 0. This can be described as the product of reflections in any three mutually perpendicular planes through 0. Taking these three mirrors to be the coordinate planes x = 0, y = 0, z = 0, we see that the central inversion in the origin transforms each point (x,y, z) 
into (-x , -y, -z). The name "central inversion," though well established in the literature of crystallography, is perhaps unfortunate : we must be careful to distinguish it from inversion in a sphere. For most purposes the central inversion plays the same role in three dimensions as the half-turn in two. But we must remember that, since 3 is an odd number, the central inversion is an opposite isometry whereas the half-turn is direct. In space, the name half-turn is naturally used for the rotation through 'TT about a line (or the "reflection in a line"), which is still direct [Lamb 1, p. 9]. 

EXERCISE 

What is the product of half-turns about three mutually perpendicular lines through a point? 
7.3 ROTATION AND TRANSLATION 

The treatment of translation in § 3.2 can be adapted to three dimensions by defining a translation as the product of two central inversions. We soon see that either the first center or the second may be arbitrarily assigned, and that the two inversions may be replaced by two half-turns about parallel axes or by two reflections in parallel mirrors. Thus the product of two reflections is either a translation or a rotation. 
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The latter arises when the two mirrors intersect in a line, the axis of the ro
tation. In particular, the product of reflections in two perpendicular mirrors 
is a half-turn. 

The product of reflections in two planes through a line /, being a rotation 
about I, is the same as the product of reflections in two other planes through 
/ making the same dihedral angle as the given planes (in the same sense). 
Similarly, the product of reflections in two parallel planes, being a transla
tion, is the same as the product of reflections in two other planes parallel 
to the given planes and having the same distance apart. 

EXERCISE 

What is the product of reflections in three parallel planes? 

7.4 THE PRODUCT OF THREE REFLECTIONS 

The three simplest kinds ofisometry,,namely rotation, translation and re
flection, combine in commutative pairs to form the screw displacement, glide 
reflection and rotatory reflection. A screw displacement is the product of a 
rotation with a translation along the direction of the ax.is. A glide reflection 
is the product of a reflection with a translation along the direction of a line 
lying in the mirror, that is, the product of reflections in three planes of which 
two are parallel while the third is perpendicular to both. A rotatory reflec
tion is the product of a reflection with a rotation whose axis is perpendicular 
to the mirror. When this rotation is a half-turn, the rotatory reflection re
duces to a central inversion. 

Any rotatory reflection can be analysed into a central inversion and a re
sidual rotation. For, if the rotation involved in the rotatory reflection is a 
rotation through 0, we may regard it as· the product of a half-turn and a ro
tation through O + 'TT (or O - 'TT). Thus a rotatory reflection can just as well 
be called a rotatory inversion: the product of a central inversion and a rota
tion whose ax.is passes through the center. 

Any opposite isometry T that has an invariant point O is either a single 
reflection or the product of reflections in three planes through 0. Its prod
uct TI with the central inversion in 0, being a direct isometry with an in
variant point, is simply a rotation S about a line through 0. Hence the given 
opposite isometry is the rotatory inversion 

T = SJ-1 = SI: 

7.41 Every opposite isometry with an  invariant point is a rotatory inversion. 
Since three planes that have no common point are all perpendicular to one 

plane a, the reflections in them (as applied to a point in a) behave like the re
flections in the lines that are their sections by a. Thus we can make use of 
Theorem 3.31 and conclude that 
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7.42 Every opposite isometry with no invariant point is a glide reflection. 

EXERCISES 

1. What is the product of reflections in three planes through a line? 2. Let ABC and A' B'C' be two congruent triangles in distinct planes. Consider the perpendicular bisectors of AA', BB', CC'. If these three planes have just one common point 0, the two triangles are related by a rotatory inversion with center 0. (Hint: If they were related by a rotation, the three planes would intersect in a line.) 3. Every opposite isometry is expressible as the product of a reflection and a halftum. 
7 .5 SCREW DISPLACEMENT 

The only remaining possibility is a direct isometry with no invariant point. 
Let S be any direct isom�try (with or without an invariant point), transform
ing an arbitrary point A into A'. Let R1 be the reflection that interchanges A 
and A'. Then the product R1S is an opposite isometry leaving A '  invariant. 
By 7.41, this is a rotatory inversion or rotatory reflection R2Ra�, the prod
uct of a rotation R2Ra and a reflection �. the mirror for � being perpen
dicular to the axis for R2Ra. Since this rotation may be expressed as the 
product of two reflections in various ways (§7.3), we can adjust the mirrors 
for R2 and Ra so as to make the former perpendicular to the mirror for R1. 
Since both these planes remain perpendicular to the mirror for �' we now 
have 

S = R1R2Ra�, 
the product of the two rotations R1R2, Ra�, both of which are half-turns 
[Veblen and Young 2, p. 318]: 

7.51 Every direct isometry is expressible as the product of two half-turns. 

Figure 7,Sa 

If the isometry has an invariant point, it is a rotation, which may be ex
pressed in various ways as the product of half-turns about two intersecting 

.. , 
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lines. When there is no invariant point, the axes of the two half-turns are 
either parallel, in which case the product is a translation, or skew, like two 
opposite edges of a tetrahedron. Two skew lines always lie in a pair of paral
lel planes, namely, the plane through each line parallel to the other. 

Since a half-turn is the product of reflections in any two perpendicular 
planes through its axis, the two half-turns R1R2, R3� with skew axes are re
spectively equal to R' 1R' 2, R' 3R' 4, where the mirrors for R' 2 and R' 4 are par
allel while the other two are perpendicular to them (Figure 7.5a). Hence 

R1R2RaR4 = R'1R'2R'aR'4 = R'1R'aR'2R'4, 
where the interchange of the middle reflections is possible since the half-turn 
R' 2R' 3 may be equally well expressed as R' 3R' 2. We have now fulfilled our 
purpose of expressing the general direct isometry as a screw displacement : 
the product of the rotation R' 1R' 3 and the translation R' 2R' 4 along the axis 
of the rotation. (This axis meets both the skew lines at right angles, and 
therefore measures the shortest distance between them.) In other words, 

7 .52 Every displacement is either a rotation or a translation or a screw 
displacement. 

(For an alternative treatment see Thomson and Tait [ 1 ,  § 102].) 
EXERCISES 

1. What kind of isometry transforms the point (x, y, z) into 
(a) (x, y, -z), (b) ( -y, x, z), (c) (x, y, z + 1), 
(d) (-y, x, z + 1), (e) (-x, y, z + 1), (f) (-y, x, -z)? 2. The product of half-turns about two skew lines at right angles is a screw displacement, namely, the product of a half-turn about the line of shortest distance and a translation through twice this shortest distance [Lamb 1 ,  p. 11 ,  Ex. 6]. 

7 .6 SPIRAL SIMILARITY 

It can be proved by elementary methods that every Euclidean similarity 
other than a rigid motion hos o fixed point. 

Hilbert and Cohn-Vossen [1, p. 331 ] 

In Euclidean space, the definition of dilatation is exactly the same as in the 
plane. In fact, § 5.1 can be applied, word for word, to three dimensions, ex
cept that the special dilatation AB ➔ BA or 0(-1) is not a half-tum but a 
central inversion (§ 7.2). Likewise, § 5.2 applies to spheres just as well as 
to circles: Figure 5.2a may be regarded as a plane section of two unequal 
spheres with their centers C, C' and their centers of similitude 0, 01. Two 
equal spheres are related by a translation and by a central inversion. 

However, an important difference appears when we consider questions of 
sense. In the plane, every dilatation is direct, but in space the dilatation 
O(µ.) is direct or opposite according as µ, is positive or negative; for example, 
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the central inversion 0( - 1) is opposite, as we have seen. Thus in space the 
sign ofµ is an essential consideration and not a mere matter of convention. 

In space, as in the plane, two similar figures are related by a similarity, 
which in special cases may be an isometry or a dilatation. By a natural ex
tension of the terminology we now take a s piral similarity to mean the prod
uct of a rotation about a line / (the axis) and a dilatation whose center O lies 
on /. The plane through O perpendicular to / is invariant, being transformed 
according to the two-dimensional "spiral similarity" of§ 5.5. In the special 
case when the rotation about / is a half-turn, there are infinitely many other 
invariant planes, namely all the planes through /. Any such plane is trans
formed according to a dilative reflection. 

Suppose a spiral similarity is the product of a rotation through angle a and 
a dilatation O(µ) (where O lies on the axis). The following values of a and µ 
yield special cases which are familiar: 

a µ. Similarity 
0 l Identity 
'TT Half-tum 
a Rotation 
'TT - 1 Reflection 0 - 1 Central inversion 
a - 1  Rotatory inversion 
0 µ. Dilatation 

We observe that this table includes all kinds of isometry, both direct and op
posite, except the screw displacement and glide reflection (which have no in
variant points). Still more surprisingly, we shall find that, with these same 
two exceptions, every similarity is a spiral similarity. 

The role of similar triangles is now taken over by similar tetrahedra. 
Evidently 

7.61 Two given similar tetrahedra ABCD, A'B'C'D' are related by a 
unique similarity ABCD � A' B' C' D', which is direct or opposite according as 
the sense of A'  B'C' D' agrees or disagrees with that of ABCD. 

In other words, a similarity is completely determined by its effect on any 
four given non-coplanar points, and we have the following generalization of 
Theorem 7.13: 

7.62 Two given similar triangles ABC, A'B'C' are related by just two 
similarities: one direct and one opposite. 

As a step towards proving that every similarity which is not an isometry 
is a spiral similarity, we remark that 

7.63 Every similarity which is not an isometry has just one invariant point. 
In our two-dimensional work we were able to find the unique invariant 

point by a simple construction. However, in three dimensions it seems 
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easiest to appeal to considerations of continuity (which could also have been 
used in the plane). Since any invariant point of a transformation is also an 
invariant point of the inverse transformation, we lose no generality by con
sidering a similarity 

ABCD � A'B'C'D' 
in which ABCD is the larger of the two given similar tetrahedra. (If it were 
the smaller, we would alter the notation and consider the inverse similarity 
instead.) If A and A'  coincide, we have already found an invariant point. If 
not, suppose the similarity transforms A'  into A", A" into A"', and so on. 
Let µ denote the ratio of �agnification, so that A' B' = µAB and 0 < µ 
< I. Then A'A" = µAA � A"A"' = µA'A", . . . .  Since 

AA' + A 'A" + A"A"' + . . .  = (I + µ + µ2 + . . . )AA' = ( 1  - µ)-1AA', 
the sequence of points A, A', A ", A"', . . .  converges to a limit 0: a point of 
accumulation having the property that every sphere with center O (however 
small) contains infinitely many points of the sequence. Since the similarity 
transforms AA'A" . . .  into A'A"A'" . . .  , which is the same sequence, it trans
forms the limit O into itself; that is, the point O is invariant. 

Finally, there cannot be more than one invariant point, for, if there were 
two, the segment formed by �hem would be invariant instead of being multi
plied by the proper fraction µ.. 

Having established the existence of the invariant point, we can easily con
struct it as one of the two points of intersection of three spheres. But with
out the proof of existence we would have had to face the possibility that the 
spheres might fail to intersect. The actual construction is as follows. 

Consider the two similarities, one direct and one opposite, which trans
form a triangle ABC into a similar (but not congruent) triangleA'B'C'. Sup
pose A' B' = µAB, so that µ. is a positive number different from 1.  Let A 1 and 
A 2 divide AA' internally and externally in the ratio 1 : µ. Let B1 and B2 , C1 
and C2 divide BB', CC' in the same manner. Consider the three spheres 
whose diameters are A 1A2, B1B2, C1 C2. These are "spheres �f Apollonius" 
(Theorem 6.81); for example, the first is the locus of points whose distances 
from A and A' are in the ratio 1 : µ. Any point O for which 

OA' = µ.OA, OB' = µOB, OC' = µOC 
must lie on all three spheres. We have already established the existence of 
two such points. Hence the three spheres do in fact intersect, enabling us 
to locate the centers of the two similarities. 

We are now ready to prove our chief result: 
7.64 Every similarity is either a screw displacement, a glide reflection, or 

a spiral similarity. 
Since the case of an isometry has already been covered, it will suffice to 
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consider a similarity that is not an isometry. Suppose again that it multiplies distances by µ,, a positive number different from l .  If O is its invariant point, the similarity is evidently expressible as the product of the dilatation O(+µ,) and an isometry for which O is again invariant. By choosing the plus or minus sign according as the given similarity is direct or opposite, we can ensure that the residual isometry is direct. By Theorem 7.15, it must be a rotation. Thus the given similarity, being the product of a dilatation from 
0 and a rotation about a line through 0, is a spiral similarity, as desired. 

In § 3. 7 we used a translation to generate a geometric represen talion of the in.finite cyclic group C.,, (which is the free group with one generator). We see now that the same abstract group has a more interesting representation in which the generator is a spiral similarity. Some thirty elements of this group can be seen in the Nautilus shell [Thompson 2, p. 843, Figure 418]. 
EXERCISES 

1. How is the point (x,y, z) transformed by the general spiral similarity whose center and ax.is are the origin and the z-ax.is? 2. Find the ax.is and angle for the similarity 
(x,y, z) ➔ (µ.z, µ.x, µ.y). 

7.7 SPHERE-PRESERVING TRANSFORMATIONS 

The reasoning used in § 6.7 extends readily from two to three dimensions, yielding the following analog* of Theorem 6. 71 : 
7.71 Every sphere-preserving transformation of inversive space is either a 

similarity or the product of an inversion (in a sphere) and an isometry. 

EXERCISE Every sphere-preserving transformation can be expressed as the product of r reflections and s inversions, where 
r < 4, s < 2, r + s < 5. 

• Ren6 Lagrange, Produits d'inversions et m�trique conforme, Cahiers scientifiques, 23 (Gauthier
Villars, Paris, 1957), p. 7. 
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Coordinates 

In the preceding chapters, a few exercises on coordinates have been in
serted for the sake of those readers who are already aquainted with analytic 
geometry. Other readers, having omitted such exercises, are awaiting en
lightenment at the present stage. In addition to the usual rectangular Car
tesian coordinates, we shall consider oblique and polar coordinates. (The 
polar equation for an ellipse is important because of its use in the theory of 
orbits.) After a brief mention of special curves we shall give an outline of 
Newton's application of calculus to problems of arc length and area. The 
section on three-dimensional space culminates in a surprising property of 
the doughnut-shaped torus. 

8.1 CARTESIAN COORDINATES 

Though the idea behind it all is childishly simple, yet the method of 
analytic geometry is so powerful that very ordinary boys of seventeen 
can use it to prove results which would hove baffled the greatest of 
the Greek geometers-Euclid, Archimedes, ond Apollonius. 

E. T. Bell {1883 -1960) 
[E. T. Bell 1 ,  p. 21) 

Analytic geometry may be described as the representation of the points 
in n-dimensional space by ordered sets of n (or more) numbers called co
ordinates. For instance, any position on the earth can be specified by its 
latitude, longitude, and height above sea level. 

The one-dimensional case is well illustrated by a thermometer. There is 
a certain point on the line associated with the number O ;  the positive inte
gers 1, 2, 3, . . .  are evenly spaced in one direction away from 0, the nega
tive integers - 1, -2, -3, . . .  in the opposite direction, and the fractional 
numbers are interpolated in the natural manner. The displacement from 
one point x to another point x' is the positive or negative number x' - x. 

107 
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In the two-dimensional case, the position of a point in a plane may be 
specified by its distances from two fixed perpendicular lines, the axes. This 
notion can be traced back over two thousand years to Archimedes of Syra
cuse and Apollonius of Perga, or even to the ancient Egyptians; but it was 
first developed systematically by two Frenchmen: Pierre Fermat (whose 
problem about a triangle we solved in § 1 .8) and Rene Descartes (1596-1650). 
In their formulation the two distances were taken to be positive or zero. The 
important idea of allowing one or both to be negative was supplied by Sir 
Isaac Newton (1642- 1727), and it was G. W. Leibniz (1646-1716) who first 
called them "coordinates." (The Germans write Koordinaten, the French 
coordonnees.) 

y y 

(x,y) (x,y) 
-------, 

y y 

-0+----.x __ ..___ X 
_o_,_ __ x __ _,__x 

Figure 8.1a 

For some purposes it is just as easy to use oblique axes, as in the second 
part of Figure 8. la. Starting from the origin 0, where the axes intersect, 
we reach the general point (x, y) by going a distance x along the x-axis OX 
and then a distance y along a line parallel to the y-axis O Y. The x-axis is 
said to have the equationy = 0 because every point (x, 0) satisfies this equa
tion; similarly, x = 0 is the equation of the y-axis. On any other line through 
the origin, consideration of homothetic triangles shows that the ratio ylx is 
constant; thus any line through the origin (0, 0) may be expressed as 
ax + by = 0. 

To obtain the equation for any other line, we take a point (xi, Y1) on it. In 
terms of new coordinates x', y', derived by translating the origin from (0, 0) 
to (x1, y1), the line may be expressed as ax' + by' = 0. Since x' = x - X1 

and y' = y - y1, the same line, in terms of the original coordinates, is 

or, say, 
8.1 1  

a(x - X1) + b(y - Y1) = 0 

ax + by + c = 0. 
Thus every line has a linear equation, and every linear equation determines a 
line. In particular, the line that makes intercepts p and q on the axes is 
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LINEAR EQUATIONS 

� + l = I · p q 
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for, this equation is linear and is satisfied by both ( p, 0) and (0, q). Two 
lines of the form 8. I 1 are parallel if they have the same ratio alb (includ
ing, as one possibility, b = 0 for both, in which case they are parallel to the 
y-axis). The point of intersection of two nonparallel lines is obtained by 
solving the two simultaneous equations for x and y. 

If b =I= 0, the equation 8. I 1 may be solved for y in the form y = 
-(ax + c)/b. More generally, points whose coordinates satisfy an equation 
F(x, y) = 0 or y = f(x) can be plotted by giving convenient values to the 
abscissa x and calculating the corresponding values of the ordinate y. This 
procedure is particularly appropriate when/(x) is a one-valued function of 
x. In other cases we may prefer to use parametric equations, expressing x 
and y as functions of a single variable (or parameter) t. For instance, if P1 
denotes the point (xi, Yi), any line through P1 has parametric equations 

8.13 X = X1 + Xt, y = Y1 + Yt, 

where X and Y depend on the direction of the line. 
Sometimes, for the sake of symmetry, the single parameter t is replaced 

by two parameters, t1 and t2, related by an auxiliary equation. For instance, 
the general point (x, y) on the line through two given points P1 and P2 
is given by 

X = l1X1 + l2X2, y = l1Y1 + lz>12, t1 + !2 = 1 .  

This point P, dividing the segment P1P2 in the ratio !2 : !1, is the centroid (or 
"center of gravity") of masses t1 at P1 and /2 at P2. Positions outside the in
terval from P1 (where t2 = 0) to P2 (where /1 = 0) are covered by allowing !2 
or t1 to be negative, while still satisfying t1 + !2 = 1 ;  we may justify this by 
calling them "electric charges" instead of "masses." 

For problems involving the distance between two points or the angle be
tween two lines, it is often advisable to use rectangular axes, so that the dis
tance from the origin to (x,y) is the square root of x2 + y2, and the distance 
P1P2 is the square root of 

(xi - x2)2 + CY1 - Y2)2. 

Multiplication of the expression I = ax + by + c by a suitable number en
ables us to normalize the equation / = 0 of the general line so that a2 + b2 = I .  
Writing / = 0 in the form 

(x - X1 + 2a/i)2 + (y - Yi + 2b/i)2 = (x - x1)2 + (y - Yi)2, 

where Li = ax1 + by1 + c, we recognize it as the locus of points equidistant 
from 



1 10 COORDINATES 

in other words, the line / = 0 serves as a mirror which interchanges these two points by reflection. It follows that the foot of the perpendicular from P1 to 
l = 0 is (x1 - al1, y1 - b/i), and that the distance from P1 to the line is +/1 (provided a2 + b2 = 1). In particular, the distance from the origin to / =  0 • + lS _c, The locus of poin'ts at unit distance from the origin is the circle 

x2 + y2 = I ,  
which has the parametric equations 

x = cos 0, y = sin0 
or, with t = tan ½ 0, 

I - 12 
x = ---1 + t2 ' 

2t y = I + t2 

EXERCISES 

1. In terms of general Cartesian coordinates, the point (x, y) will be transformed into (-x, -y) by the half-tum 0(-1) (§ 5.1), (µ.x, µy) by the dilatation 0(µ), 
(x + a, y) by a translation along the x-axis. 2. In terms of rectangular Cartesian coordinates, the point (x, y) will be transformed into (x, -y) by reflection in the x-axis , 
(y, x) by reflection in the line x = y, ( -y, x) by a quarter-turn about the origin, 
(x + a, -y) by a glide reflection (in and along the x-axis), 
(µ.x, -µy) by a dilative reflection (§ 5.6). 3. Let M1; denote the midpoint of P,P1. For any four points P1, P2, P3, P4, the midpoints of M12Ms4, M13M24, M14M2a all coincide. 

8.2 POLAR COORDINATES 

The deriving of short cuts from basic principles covers some of the finest 
achievements of the greatest mathematicians. 

M. H. A. Newmon (1897 -

(Mathematical Gazette 43 (1959), p. 170) 

For problems involving directions from a fixed origin (or "pole") 0, we often find it convenient to specify a point P by its polar coordinates (r, 0), where r is the distance OP and 8 is the angle that the direction OP makes with a given initial line OX, which may be identified with the x-axis of rectangular Cartesian coordinates. Of course, the point (r, 8) is the same as 
(r, 8 + 2mr) for any integer n. It is sometimes desirable to allow r to be negative, so that (r, 8) is the same as ( -r, 8 + 1r). 
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Given the Cartesian equation for a curve, we can deduce the polar equa
tion for the same curve by substituting 

8.21 x = r cosO, y = r sinO. 

For instance, the unit circle x2 + y2 = I has the polar equation 

(r cos 0)2 + (r sin 0)2 = I, 

which reduces to 
r = I .  

(The positive value of r is sufficient if we allow O to take all values from - '1T 
to '1T or from O to 2?T.) This procedure is helpful in elementary trigonometry, 
where students often experience some difficulty in proving (and remember
ing) the trigonometrical functions of obtuse and larger angles. Taking an 
angle XOP with OP = 1,  we can simply define its cosine and sine to be the 
abscissa and ordinate of P. 

Polar coordinates are particularly suitable for describing those isometries 
(§ 3.5) and similarities (§ 5.4) which have an invariant point; for this point 
may be used as the origin. Thus the general point (r, fJ) will be transformed 
into 

(r, 0 + a) by a rotation through a, 
(r, 0 + '1T) by a half-tum, 
(r, - 0) by reflection in the initial line, 
(r, 2a - 0) by reflection in the line O = a, 
(µr, 0) by the dilatation O(µ), 
(µr, 0 + a) by a spiral similarity with center 0, 
(µr, 2a - 0) by a dilative reflection with center O and axis O = a. 

Likewise, inversion in the circle r = k (see § 6.1) will transform (r, 0) into 
(k2/r, 0). 

The Cartesian expressions for the same transformations can be deduced 
at once. For instance, the rotation through a about O transforms (x, y) 
into (x', y') where, by 8.21, 

x' = r cos ( 0 + a) = r ( cos O cos a - sin O sin a) = x cos a -J' sin a, 
y' = r sin (0 + a) = r (cos O sin a + sin O cos a) = x sin a + y cos a. 

In particular, a quarter-turn transforms (x, y) into ( -y, x), and it follows 
that a necessary and sufficient condition for two points (x, y) and (x', y') to 
lie in perpendicular directions from the origin is 
8.22 xx' + yy' = 0. 
Such a transformation as 

8.23 
x' = x cos a - y sin a, 
y' = x sin a + y cos a 

has two distinct aspects: an "active" or alibi aspect, in which each point 



1 12 COORDINATES 

(x, y) is moved to a new position (x', y'), and a "passive" or alias aspect, in which the point previously named (x, y) is renamed (x', y'). The latter aspect is sometimes used to simplify the equation of a given curve. For instance, the curve 
ax2 + 2hxy + by2 = l 

becomes 
a (x cos a - y sin a)2 + 2h (x cos a - y sin a) (x sin a + y cos a) 

+ b (x sin a + y cos a)2 = l, 
in which the coefficient of xy is no longer 2h but 

2h(cos2 a - sin2 a) - 2(a - b) cos a sin a = 2h cos 2a -(a - b) sin2a. 
Since this vanishes when tan 2a = 2h/(a - b), the equation is simplified by rotating the axes through the particular angle 

a = ½ arctan ....1!1._
b 

. 
a -

The area of a triangle OP1P2, where Pi has polar coordinates (ri, 0i), is taken to be positive if 01 < 02, negative if 01 > 02. With this convention, the area is 
½r1r2 sin (02 - 01) = ½r1r2(sin 02 cos 01 - cos 02 sin 01) 

or, in Cartesian coordinates, 
8.24 I 

X1 Y1 

! (X1Y2 - Xa)l1) = ! 
X2 Y2 

To find the area of any triangle P1P2Pa, we choose new axes parallel to OX, 
O Y  and passing through Pa. Since the new coordinates of Pi (i = 1 or 2) are (xi - xa, Yi - Ya), the area of any triangle P1P2Pa is 
8.25 

Y1 - Ya 
Y2 - Ya 

l l xa Ya 1 
It follows that a necessary and sufficient condition for P1, P2, Pa to be collinear is that this three-rowed determinant should be zero. The equation for the line P1P2 may be derived from this condition by writing (x, y) for (xa, Ya). 

EXERCISES 1. Use a well-known trigonometric formula to obtain an expression for the square of the distance between the points whose polar coordinates are (r1, 81), (r2, 82). 2. Obtain polar coordinates for the midpoint. 
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3. Obtain a polar equation for the line y = x tan a. (Hint: Allow r to take nega
tive values.) 

4. Use 8.22 to obtain the condition 

ad + bb' = 0 

for two lines ax + by + c = 0 and a'x + b'y + c' = 0 to be perpendicular. Deduce 
that 

ax + by + c = 0, bx - ay + c' � 0 

are perpendicular for all values of a, b, c, c'. 
5. Use a suitable rotation of axes to simplify the equation of the curve 

4x2 + 24xy + lly2 = 5. 

8.3 THE CIRCLE 

A figure of universal appeal. 
D. Pedoe [1,  p. vii ]  

The circle with center (x',y' ) and radius k, being the locus of points (x,y) 
distant k from (x', y' ), is 

(x _ x')2 + (y _ y')2 = k2. 
Thus 

8.31 x2 + y2 + 2gx + 2/y + c = 0 

is a circle with center (-g, -f) whenever g2 + /2 > c. If (x1, Yt) lies on 
the circle, the tangent at this point P1 is 

or 
x1x + Y1Y + g (x + x1) + f (y + Y1) + c = 0 

(x1 + g)x + (Y1 + f)y + (gx1 + ./Y1 + c) = 0. 

For this line passes through P1 and is perpendicular to the diameter 

x + g Y + f 
X1 + g 

= 
Y1 + I 

The circle 8.31 is orthogonal to- another circle 

x2 + y2 + 2g' x + 2/ 'y + c' = 0 

if, for a suitable P1, the center of each lies on the tangent at P1 to the other. 
Adding 

(x1 + g) g' + (y + f)f' = gx1 + !Y1 + c 

to the analogous relation with primed and unprimed letters interchanged, 
we see that the orthogonality of the two circles implies 

2gg' + 2jf' = C + c'. 
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Conversely, any two circles that satisfy this relation are orthogonal. In particular, the circles 
8.32 

8.33 

xz + yz + 2gx + c = 0, 
x2 + y2 + 2/y - C = 0, 

whose centers lie on the x- and y-axes respectively, are orthogonal. Keeping c constant and allowing g or f to take various values, we obtain two orthogonal pencils of coaxal circles, whose radical axes are x = 0 and y = 0 respectively. If c = 0, we have two orthogonal tangent pencils, each consisting of all the circles that touch one of the axes at the origin. If c > 0, the circles 8.32, for various values of g, form a nonintersecting pencil, including the two point circles 
(x + g )2 + y2 = 0, g = +ye, 

which are the limiting points (+ ye, 0) of the pencil. The circles 8.33, which pass through these two points, form the orthogonal intersecting pencil. 
EXERCISES 

1. The circle x2 + y2 = k2 inverts (x, y) into 
C2k2;y2 ' x2k;y2) • 

Apply this inversion to the line 8.11 and to the circle 8.31. 2. Find the locus of a point (x, y) whose distances from (kip., 0) and (p.k, 0) are in the ratio 1 : p. ( cf. § 6.6). 3. Obtain the Cartesian equation of the locus of a point the product of whose distances from (a, 0) and (- a, 0) is a2. Deduce the polar equation of this "figure of eight," which is the lemniscate of Jacob Bernoulli. 
4. Given two equal circles in contact, find the locus of the vertices of triangles for which the first is the nine-point circle (§ 1.7), the second is an excircle (§ 1 .5). (Answer: A lemniscate. *) 
5. A circle ofradius b rolls without sliding on the outside of a fixed circle of radius 

nb. The locus of a point fixed on the circumference of the rolling circle is called an 
epicycloid (when n is an integer, an n - cusped epicycloid). Obtain the parametric equations 
8.34 

x = (n + l)b cos t - b cos (n + I)t, 
y = (n + I)b sin t - b sin (n + l}t. 

Sketch the cases n = I (the cardioid), n = 2 (the nephroid), n = 3, and n = ½. [See Robson 1, p. 368.] 6. Shifting the origin to the cusp (b, 0), obtain the polar equation 
r = 2b (I - cos 8) 

for the cardioid (8.34 with n = 1). Deduce that chords through the cusp are of constant length. 
• Richard Blum, Canadian Mathematical Bulletin, 1 (1958), pp. 1-3. 
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7. A circle of radius b rolls without sliding on the inside of a fixed circle of radius 
nb, where n > 1 .  Find parametric equations for the hypocyc/oid (when n is integral, the n-cusped hypocycloid) which is the locus of a point fixed on the circumference of the rolling circle. Sketch the cases n = 2 (which is surprising), n = 3 (the deltoid), and n = 4 (the astroid). Eliminate the parameter in the last two cases, obtaining, for the astroid, 

x213 + y21s = a213 (a = 4b) 

[Lamb 2, pp. 297-303]. Steiner discovered that all the Simson lines for any given triangle touch a deltoid. Three of the lines, namely, those parallel to the sides of Morley's equilateral triangle (§ 1.9), are the "apsidal" tangents which the deltoid shares with the nine-point circle. Their points of contact are the vertices of the equilateral triangle XYZ described in Ex. 3 on page 20. For details, see Baker [1,  pp. 330 -349, especially p. 347]. 

8.4 CONICS 
In addition to the straight lines, circles, planes and spheres with which 
every student of Euclid is familiar, the Greeks knew the properties of 
the curves given by cutting a cone with a plane-the ellipse, parabola 
and hyperbola. Kepler discovered by analysis of astronomical obser
vations, and Newton proved mathematically on the basis of the in
verse square law of gravitational attraction, that the planets move in 
ellipses. The geometry of ancient Greece thus become the corner
stone of modern astronomy. 

'n-�-<>H 
K 

J. L. Synge (1897 -
[Synge 2, p. 32} 

i----------<>-t----QX 

Figure 8.4a 

There are several different ways to define a conic ( or "conic section"). 
One of the most straightforward is the following (cf. § 6.6): A conic is the 
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locus of a point P whose distance OP from a fixed point O is e  times its distance PK from a fixed line HX (Figure 8.4a), where e is a positive constant. Other definitions for a conic, proposed by Menaechmus about 340 B.c. , were reconciled with this one by Pappus of Alexandria (fourth century A.D.) or possibly by Euclid [ see Coolidge 1 ,  pp. 9-13]. The conic is called an ellipse if e < 1, a parabola if e = l ,  a hyperbola if e > l . (These names are due to Apollonius.) The point O and the line HX are called afocus and the corresponding 
directrix. The number e, called the eccentricity, is usually denoted by e (but then, to avoid any possible misunderstanding, we should add "where e need not be the base of the natural logarithms" [Littlewood 1 ,  p. 43]). The chord 
LL' through the focus, parallel to the directrix, is called the latus rectum; its length is denoted by 2/, so that 

I = OL = eLH. 

In terms of polar coordinates with the initial line OX perpendicular to the directrix, we have 
8.41 

so that 
8.42 

r = OP =  ePK = e(LH - r cos fJ) 

= I - er cos fJ, 

l - l + e cos fJ. r 

Since this equation is unchanged when we replace (J by - fJ, the conic is symmetrical by reflection in the initial line. When () = 0, r = 11(1 + e) ; and when fJ = 'TT, r = l/( 1  - e); therefore the conic meets the initial line twice except when e = l. If e < 1, 8.42 makes r finite and positive for all values of fJ; therefore the ellipse is a closed (oval) curve. If e = 1, r is still finite and positive except when (J = 'TT; therefore the parabola is not closed but extends to infinity in one direction. If e > 1 ,  r is positive or negative according as cos fJ is greater or less than - 1/ e; therefore the hyperbola consists of two separate branches, given by 
-a < () <  a, a < () < 2'1T - a, 

respectively, where a = arcsec (-e). Squaring 8.41, we obtain the Cartesian equation 
8.43 xz + yz = (/ - ex)2 

(which indicates that a circle may be regarded as an ellipse with eccentricity zero). If e =I= 1, we can divide by 1 - e2 and then write a for //(1 - e2), obtaining 
x2 + Y2 

2 = la - 2eax I - e 



or 

or 

CONICS 

(x + ea)2 + T y2 = (I + e2a)a = a2 

(x + ea)2 y2 
z + -l = I. a a 

Translating the origin to (-ea, 0), we can reduce this to 
8.44 

where 

xz yz 
az ± b2 = I, 

b2 = I la I = I I - e2 I a2, 

1 17 

so that la = + b2, with the upper or lower sign according as e < I or e >  I. 
In the latter case the above definition makes a negative, but we can reverse 
its sign without altering the equation 8.44. A more important remark is 
that the equation is still unchanged when we reverse the sign of x or y. This 
invariance shows that the ellipse and hyperbola are symmetrical by reflec
tion in either axis, and therefore also by the half-tum about the origin: their 
symmetry group is Dz, in the notation of §  2.5. For this reason the origin 
is called the center, and the ellipse and hyperbola are called central conics. 

b b 

a 

b 

(Ellipse) (Hyperbola) 

Figure 8,4b 

The geometrical significance of a and b is indicated in Figure 8.4b. For 
the ellipse, 2a and 2b are the major and minor aJ(es; for the hyperbola, they 
are the transverse and conjugate axes. The two branches of the hyperbola 
8.441 

xz y2 - - - = I 
az b2 

lie in two opposite angular regions formed by the two lines 
:: - t: = 0 or (� - t)\; +}) = 0. 
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These lines are called the asymptotes of the hyperbola. If a = b, they are perpendicular, and we have a rectangular ( or "equilateral") hyperbola. If e = 1, then 8.43 reduces to 
y2 = 2/(½/ - x) 

or, by reflection in the line x = ¼ /, 
8.45 y2 = 2/x. 

This is the standard equation for the parabola (Figure 8.4c). 

Figure 8.4c 

The most convenient parametric equations are: for the ellipse 
8.46 X = a COS t ,  
for the parabola 
8.47 X = 2/t 2, 

and for the hyperbola 
8.48 

where 
x = a cosh t, 

cosh t - et ± e-t - 2 ' 

y = b sin t, 
y = 2/t, 

y = b sinh t, 
. h et - e-t Slil t = 2 . 

(These functions will be discussed in § 8.6.) 
EXERCISES 

1. What kind of curve bas the polar equation 
r = t / sec2 t 0? 

2. What kind of curve bas the Cartesian equation 
4x2 + 24xy + 11y2 = 5? 

(See Ex. 5 at the end of §8.2.) 3. The sum (or difference) of the distances of a point on an ellipse (or hyperbola) from the two foci is constant. 

" 
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4. Express the eccentricity of a central conic in terms of its semiaxes a and b. What is the eccentricity of a rectangular hyperbola? 5. Given points B and C, the locus of the vertex A of a triangle ABC whose Euler line is parallel to BC (as in Ex. 9 at the end of§ 1.6) is an ellipse whose minor axis is 
BC while its major axis is twice the altitude of the equilateral triangle on BC. (Hint: If A, B, C are (x,y) and (+ 1, 0), the circumcenter, equidistant from A and C, is (0, t y).) 6. An expression such as 

F = ax2 + 2hxy + by2 

is called a binary quadratic form. It is said to be definite if ab > h2, so that F has the same sign for all values of x and y except x = y = 0. It is said to be positive definite if thjs sign is positive. It is said to be semidefinite if ab = h2, so that F is a times a perfect square; positive semidefinite if a > 0, so that F itself is a perfect square; indef
inite if ab < h2, so that Fis positive for some values of x and y, negative for others. The equation F = 1 represents an ellipse if Fis positive definite, a pair of parallel lines of F is positive semidefinite, and a hyperbola if Fis indefinite. 7. What happens to the equation for the rectangular hyperbola x2 - y2 = a2 when we rotate the axes through the angle t 1r? 8. Describe a geometrical interpretation for the parameter / in 8.46. [Hint: Compare (a cos t, b sin t) with (a cos t, a sin t).] 9. In what respect is the hyperbola 8.441 more satisfactorily represented by the equations 

x = a sec u, y = b tan u 

than by the equations 8.48? 
10. The circle r = I inverts the conic 8.42 into the lima�on 

r = I (1 + e cos 8). 

Sketch this curve for various values of e. When e = 1 (so that the conic is a parabola), it is a cardioid. 11. The circle r = a inverts the rectangular hyperbola r2 = a2 sec 28 into the lemniscate of Bernoulli 
r2 = a2 cos 28 

(see Ex. 3 at the end of §8.3). 
8.5 TANGENT, ARC LENGTH, AND AREA 

I do not know what I may appear to the world; but to myself I seem 
to have been only like a boy playing on the seashore, and diverting 
myself in now ond then finding a smoother pebble or o prettier shell 
than ordinary, whilst the great ocean of truth lay all undiscovered be
fore me. 

Sir Isaac Newton 
(Brewster's Memoirs of Newton, vol. 2, Chop. 27) 

The curves with which we shall be concerned are "rectifiable," that is, there 
is a well-defined arc length s between any two points P and Q on such a 



120 COORDINATES curve. Using the temporary notation Po = P, Pn = Q, we subdivide the given arc PQ by n - 1 points P1, P2, . . .  , Pn-l and consider the least upper bound 
of the lengths of the broken lines 

PP1 + P1P2 + . . .  + Pn-1Q, for all possible subdivisions. 

P' 

As 
po----oN 

M 

ds 

dx 

Figure 8.Sa 

dy 

The curve is often usefully regarded as the locus of a "moving" point. Any two points P and P' on the curve are joined by a line called a secant. If P is fixed while P' moves, the secant usually approaches a limiting position which is called the tangent at P. When we use rectangular Cartesian coordinates, we draw P' M parallel to the y-axis, as in  Figure 8.5a, and let 
N be the foot of the perpendicular from P to P' M. The tangent has an 
angle of slope, 1/1, which may be defined as the limit of L NPP'. (The figure can be modified in an obvious manner when this angle is obtuse or negative.) To compute 1/1, we consider the right-angled triangle PP' N whose sides are the "increments" of x, y, s (all tending to zero): 
Thus Ax = PN, Ay = NP', As = PP'. 

cos 1/1 = lim PN = fun 6.x = dx 
PP' 6.s ds ' 

sin 1/1 = lim NP' = lim Ay = dy 
PP' 6.s ds ' 

tan o/ = lim NP' = lim. Ay = dy . 
PN 6.x dx 
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Since PP'2 = PN2 + NP'2 (or since cos2 if, + sin2 if, = 1), the element of arc length ds is given by 
8.51 ds2 = dx2 + dy2, 

and the arc length s, from (x1, Y1) to (x2, Y2), or from t = t1 to t = t2, is 

P' 

0 

Figure 8.5b 

When a curve is given by its polar equation, the direction of the tangent at P is determined either by the angle cf, which this tangent makes with the "radius" OP or (equally well) by the angle 
1/1 = 8 + cf, 

which it makes with the initial line OX (Figure 8.5b). As before, let P and 
P' be two neighboring points on the curve, so that the tangent at P is the limiting position of the secant PP'. Draw PN perpendicular to OP' [Lamb 2, p. 254]. Then 
8.52 

8.53 

cos ,i.. = lim NP' = lim Ar = dr 
'1' p P' /),,s ds ' 

• 
,i.. _ lim NP = lim r A8 = r d8 , sm '1' - PP' !),,s ds 

tan cf, = lim NP = lim r A8 = r d(J . NP' Ar dr 
Since PP'2 = NP'2 + NP2 (or since cos2 q, + sin2 cf, = l), the element of arc length ds is now given by 

8.54 ds2 = dr2 + r2 d82. 
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½ r2 6.0, the area of any closed curve surrounding the origin just once is 
8.55 ½ r2 d0. 12,,. Such a formula can be translated into terms of Cartesian coordinates by means of the relations 8.21, which imply 
8.56 dx = dr cos0 - r sin 0 d0, dy = dr sin 0 + r cos 0 d0, so that x dy - y dx = r cos O dy - r sin 0 dx = r2(cos2 0 + sin2 O)dO = r2 d0 and 
8.57 t f r2 dO = t J (x dy - y dx). This must, of course, be interpreted as 
8.58 

fl� dy dx) ½ x - - y - dt 
dt dt ' where x and y are given in terms of a parameter t, and the integration is over the values of t that take us all round the curve. 

0 

Figure 8.5c Figure 8.Sd The same formula can be used to compute the area of the "sector" obtained by joining the origin to a given arc (Figure 8.5c or d). In polar coordinates, if the arc goes from O = 01 to O = 02, the area is 

When we transfer this to Cartesian coordinates, we regard the boundary of the sector as a closed "curve" consisting of the arc and the two radii. Since 

... 
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d l.. = x dy - y dx , 
X x2 
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the radii (along which ylx remains constant) make a zero contribution to the integral on the right side of 8.57. Hence, if the arc goes from t = t1 to 
t = t2, the area of the sector is 
8.59 ½ ('' (x 

dy - y dx) dt 
)� dt dt 

[ cf. Courant 1, p. 273}. 
EXERCISES 

I. The line x - (t + t') y + 2/tt' = 0 is a secant of the parabola 8.47, meeting it in the points whose parameters are t and t'. Making t' tend to t, deduce the equation 
X - 2ty + 2/!2 = 0 

for the tangent at the point whose parameter is t, so that, if (x1, y1) lies on the parabola 8.45, the tangent at this point is 
Y1Y = l(x + x1). 2. The line 

� cos a +  l sin a = cos /3 
a b 

is a secant of the ellipse 8.46, meeting it in the points t = a + {3. Making /3 tend to 0, deduce the equation 
� cos t + � sin t = 1 
a b 

for the tangent at the point whose parameter is t [Robson 1 ,  p. 274). Obtain analogous results for the hyperbola 8.48. Deduce that, if (x1, Y1) lies on the central conic 8.44, the tangent at this point is 
X1X + Y1Y = l .  a2 b2 

3. At the point t on the ellipse 8.46, the normal, being perpendicular to the tangent, is 
..!!!_ - by = a2 - b2 . 
cos t sin t 

Differentiating partially with respect to t and then eliminating t, obtain the envelope of normals in the form 
( ax ) ½ ( by ) '! 1 a2 - b2 + a2 - b2 = 

[Forder 3, pp. 36-37; Lamb 2, p. 350). Hint: 

ax .
3 

by cos3 t = --- , sm t = - ---a2 - b2 a2 - b2 4. Use 8.56 to reconcile 8.51 and 8.54. 
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8.6 HYPERBOLIC FUNCTIONS 

The hyperbolic sine and cosine have a property in reference to 
the rectangular hyperbola, exactly analogous to that of the sine 
and cosine with reference to the circle. For this reason the former 
functions are called hyperbolic functions, just as the latter are 
called circular functions. 

E. W. Hobson (1856-1933) 
[ Hobson 1, pp. 329 -330] 

As a very simple application of the formula 8.59, consider the unit circle x2 + y2 = 1 or 
X = COS t, y = sin t 

(Figure 8.5c). Since 
dx = - sin t = -y and dy = cos t = x, dt dt 

the area of the sector from t = 0 to any other value is 
½ lo ( x � - y �) dt = ½ lo (x2 + y2)dt 

= ½ lo dt = t t, 
which, of course, we knew already. More interestingly (Figure 8.5d), if the curve is the rectangular hyperbola x2 - y2 = 1 or 
so that 

x = cosh t, y = sinh t, 

dx "nh d dy h dt = s1 t = y an 
dt = cos t = x, 

the area of the sector is again 
t 1 ( x � - y � )  dt = ½ lo (x2 - y2)dt 

= t lo dt = t t. 

Comparing the above results, we see clearly the analogy that relates the circular and hyperbolic functions. In Figures 8.5c and d, we have a sector 
AOP of the circle or rectangular hyperbola, respectively. In both cases OA 
= 1 and the parameter t is twice the area of the sector. In the former, 
OM = cos t and PM = sin t. In the latter, OM = cosh t and PM = sinh t. 
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1. Find the area of the ellipse 

x = a cost, y = b sin t. 

2. Find the area of the t sector of the general hyperbola 

x = a cosh t, y = b sinh t. 

8.7 THE EQUIANGULAR SPIRAL 

I 

In the equiangular spiral of the Nautilus or the snail-shell or Globige
rino, the whorls continually increase in breadth, and do so in o steady 
and unchanging ratio . . . .  It follows that the sectors cut off by succes
sive radii, ot equal vectorial angles, ore similar to one another in every 
respect; and that the figure may be conceived as growing continuously 
without ever changing its shape the while. 

Sir D'Arcy W. Thompson (1860-1948) 
[Thompson 2, pp. 753-754 J 

The circle r = a may be regarded as the locus of the transform of the point 
(a, 0) by a continuous rotation, which transforms each point (r, 0) into 
(r, 0 + t) where t varies continuously. Similarly, the ray (or half line) 0 = 0 
is the locus of the transform of (a, 0) by a continuous dilatation, which yields 
(r, 0) for all positive values of r. By judiciously combining these two trans
formations, we obtain a continuous spiral similarity. Let µ, denote the ratio of 
magnification corresponding to rotation through 1 radian. Then µ,2 is the 
ratio of magnification for 2 radians, µ,3 for 3 radians, . . . , µ'IT for 'TT radians, 
. . .  , µ,1 for t radians. Thus the spiral similarity transforms the general point 
(r, 0) into (µ,1r, 0 + t), where t varies continuously. The locus of the trans
form of (a, 0) is the equiangular spiral ( or "logarithmic spiral"), whose para
metric equations 

r = µ,t a, () = t 

may be combined into the single polar equation 
8.71 

This curve was first recognized by Descartes, who discussed it in 1638 in his letters to Mersenne. 
Jacob Bernoulli (1654-1705) found it so fascinating that he arranged to have it engraved on his 
tombstone (in the Milnster at Basel, Switzerland) with the inscription 

Eadem mutata resurgo. 
These words (which E. T. Bell translates as "Though changed I shall arise the same") express a 
remarkable consequence of the way the curve can be shifted along itself by a spiral similarity: 
any dilatation has the same effect on it as a rotation, and vice versa. In fact, the rotation 8 ➔ 

8 + a, changing r = aµ• into aµ•+a = µ"r, is equivalent to the dilatation 0(}'"). Steinhaus [1, 
p. 97) describes this property as an optical illusion. Having drawn an equiangular spiral (Figure 
8.7a), he remarks: "If we turn it round (in this case together with the book), it seems to grow 
larger or smaller." 
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Figure 8.7a 

dr I dO = r ogµ, 

8.53 shows that the angle cp, between the position vector OP and the tangent 
at P, is given by 

1 dr l cot cp = r dB 
= og µ, 

that is, this angle is constant: a result which could have been foreseen from 
the fact that similarities preserve angles. In terms of this constant angle cp, 
which is about 80° in Figure 8.7a, we can write 

µB = eB log µ. = eB cot ,t,, 
thus expressing the spiral in its classical form 
8.72 

By 8.52, 

r = aeB cot ,t, 

dr 
ds = cos cp, 

(a and cp constant). 

so that r - s cos cp is constant. This shows that the length of the arc from 
r = r1 to r = r2 is 

(r2 - r1) sec cp, 
and that the length from the origin (r = 0) to the general point (although 
this involves infinitely many turns) is 

r sec ct,. 
EXERCISES 

1. The spiral r = aµ8 is homothetic to itself by means of the dilatation 0(µ.2""). How is it affected by inversion in the circle r = a? 
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2. Find all the points of intersection (if any) of the spirals (i) r = aµ.0 and r = aµ-6, (ii) r = aµ.0 and r = aµ.e+w_ 
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Sketch the curves in both cases. (For convenience, take µ.,,,,,3 = 1.1 or µ."'16 = 1.05, and use a compound interest table.) 

8.8 THREE DIMENSIONS 

To Kastner, the Analyst, it appeared that the application of algebra to 
geometry would free the student from the stern discipline of Euclid. It 
would enable him to think for himself instead of having to watch the 
lips of his teacher. One of Kostner's sentences could fitly be inscribed 
over the door of any modern school: "The greatest satisfaction that we 
know is to find the truth for ourselves." 

J. L. Synge [2, p. 174] 

To set up a system of Cartesian coordinates in space we use three axial 
planes meeting by pairs in three axes OX, OY, OZ. Starting from the origin 
0, we reach the general point (x, y, z) by going a distance x along the x-axis 
0 X, then a distance y in the direction of the y-axis O Y, and finally a distance 
z in the direction of the z-axis OZ. The three axial planes have the equations 
x = 0, y = 0, z = 0, which can be taken in pairs to determine the axes. For 
instance, the z-axis, consisting of all the points (0, 0, z), has the two equa
tions x = y = 0. Any line through the origin (0, 0, 0) has parametric 
equations 
8.81 X = Xt, y = Yt, z = Zt. 

The mutual ratios of the coefficients X, Y, Z determine the direction of the 
line. By a translation to a new origin, we see that the parallel line through 
(x1, Yi, z1) is 

8.82 X = X1 + Xt, y = Y1 + Yt, 
Eliminating t, we obtain the two equations 

Z = Z1 + Zt. 

8.83 X - X1 y - Yl Z - Z1 

X = Y 
= Z ' 

which have to be interpreted by a special convention when XYZ = 0. The 
centroid of masses t1 at (x1, y1, z1) and t2 at (x2, Y2, z2), with t1 + 12 = 1 ,  
is 

The origin and (x1, y1, z1) are opposite vertices of the parallelepiped formed 
by the three pairs of parallel planes 
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/ (0, 0,0) Xt 

Figure 8.8a 

as in Figure 8.8a. (In the tongue-twisting word "parallelepiped" we stress 
the syllable "ep," belonging to the Greek prefix epi, which occurs also in 
such words as "epithet" and "epicycloid.") For the rest of the present sec
tion we shall take the axes to be mutually orthogonal, so that this is a rec
tangular parallelepiped (or '"box"). The three-dimensional extension of 
Pythagoras's theorem shows that the length of the diagonal 

(0, 0, 0) (x1, Yi, z1) 

is the square root of x12 + Yi2 + z12. Similarly, the distance between 
(x,y, z) and (x',y', z') is the square root of 

(x - x')2 + (y - y')2 + (z - z')2. 
If the parameter t in 8.81 is adjusted so that 

8.84 x2 + Y2 + z2 = 1, 

it measures the distance from the origin to the general point (x, y, z) on the 
line. The coefficients X, Y, Z, satisfying 8.84, are called the direction cosines 
of the line, because they are the cosines of the angles which the line makes 
with the coordinate axes. More precisely, they are the direction cosines of 
one of the two rays into which the line is decomposed by the origin; the op
posite ray has the direction cosines -X, - Y, - Z. Two rays forming an 
angle meet the unit sphere 

x2 + y2 + z2 = 1 
in two points, say (X, Y, Z), (X', Y', Z'), whose coordinates are equal to the 
direction cosines of the rays. By "solving" the isosceles triangle which 
these points form with the origin, we obtain the expression 

XX' + YY' + ZZ' 
for the cosine of the angle between the rays. In particular, the rays (and 
therefore also the lines) are at right angles if 

XX' + YY' + ZZ' = 0. 
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It follows that the plane through the origin perpendicular to the line 8.81 is 

Xx + Yy + Zz = 0. 

By a translation, we deduce the parallel plane through (x1, y1, z1) :  

8.85 Xx + Yy + Zz = T, 

where T = Xx1 + Yy1 + Zz1. Still assuming 

X2 + Y2 + Z2 = X'2 + Y'2 + Z'2 = I ,  
we deduce that the two supplementary angles between the planes 

Xx + Yy + Zz = T, X'x + Y'y + Z'z = T' 

are the angles whose cosines are 
+(XX' + YY' + ZZ'). 

We see now that every plane has a linear equation, and every linear equa
tion determines a plane. In particular, the plane that makes intercepts p, q, r 
on the axes is 

� + l + � = I. p q r 
Two planes of the form 8.85 are parallel if they differ only in their "constant" 
terms T. The line of intersection of two nonparallel planes can be reduced 
to the standard form 8.83 by eliminating first z and then x. 

An equation connecting x, y, z (not necessarily linear) usually represents a 
surface; two such equations together represent a curve, the intersection of 
two surfaces. In particular, an equation 

F(x,y) = 0, 

involving only x and y, represents a cylinder, the locus of a line that passes 
through a variable point on the curve F(x,y) = z = 0 while remaining paral
lel to the z-axis. A homogeneous equation 

f(x,y, z) = 0 

(whose left side is merely multiplied by a power ofµ when x,y, z are replaced 
by µ.x, µ,y, µ,z) represents a cone, the locus of a line that joins the origin to a 
variable point on the curve 

f(x, y, 1) = 0, z = I. 
Important instances are the quadric cylinders 

x2 + Y2 
= 1 and y2 = 2lx, 

a2 - b2 
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including the ordinary cylinder of revolution ( or "right circular cylinder") 
x2 + y2 = k2, and the quadric cones 

ax2 + by2 + cz2 = 0, 
including the cone of revolution ( or "right circular cone") x2 + y2 = cz2. 

The equation xz + y2 + z2 = 0, which is satisfied only by (0, 0, 0), may 
be regarded either as a peculiar kind of cone or as a sphere of radius zero. 
The general sphere, having center (x', y', z') and radius k, is, of course, 

(x - x' )2 + (y - y' )2 + (z - z' )2 = kZ. 
We observe that this is an equation of the second degree in which the coeffi
cients of xz,yz, zZ are all equal while there are no terms inyz, zx, xy. 

The sphere x2 + y2 + z2 = k2, whose center is the origin, inverts the point 
(X, Y, Z) into 

( k2X k2Y k2Z ) 
� + � + V ' � + � + V ' P + � + V . 

The plane through this inverse point, perpendicular to the line 8.81 , namely, 

Xx + Yy + Zz = k2, 
is called the polar plane of (X, Y, Z) with respect to the sphere. If (X, Y, Z) 
lies in the sphere, the polar plane is simply the tangent plane. 

The three-dimensional analogues of the conics are the quadric surfaces or 
quadrics, whose plane sections are conics ( or occasionally pairs of lines, 
which may be regarded as degenerate conics). These surfaces, whose equa
tions are of the second degree, include not only the elliptic and hyperbolic 
cylinders, the quadric cone, and the sphere, but also the ellipsoid 

xz yz z2 

az + bZ + cz = l, 

the hyperboloid of one sheet 

8.86 xz yz z2 - + - - - =  1 
az bZ cz 

[R. J. T. Bell 1 ,  p. 149, Fig. 41], the hyperboloid of two sheets 

xz yz zZ - - - - - = 1 az b2 cz 

[Salmon 2, p. 80, Fig. 1-4], the elliptic paraboloid 
xz yz 
a2 + 

b2 = 2z, 

and the hyperbolic paraboloid 
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x2 y2 - - - = 2z 
a2 b2 8.861 

[R. J. T. Bell 1 ,  p. 150, Fig. 42]. The nature of these surfaces can be roughly discerned by considering their sections by planes parallel to the coordinate planes. Their names were invented by G. Monge in 1805 [see Blaschke 1 ,  p .  13 1). Important special cas·es are the quadrics of revolution, formed by revolving a conic about one of its axes. For instance, the special ellipsoid obtained by revolving an ellipse about its major or minor axis is a prolate spheroid or an 
oblate spheroid, respectively. For the investigation of surfaces of revolution it is often convenient to use 
cylindrical coordinates (r, 0, z), in which the first two of the three Cartesian coordinates are replaced by polar coordinates 

(J = arctan l, 
X 

while z retains its usual meaning. To revolve a plane curve 
F(x, z) = 0, y = O  

about the z-axis, we simply replace x by r; thus the surface of revolution is 
F(r, z) = 0, 

or, in Cartesian coordinates, F(yx2 + y2, z) = 0. For instance, revolving the hyperbola 8.441 about its conjugate axis, we obtain the hyperboloid of revolution (of one sheet) 
r2 z2 - - - =  1 
a2 b2 

x2 + y2 z2 or a2 - b2 = I. 
Replacing x2 + y2 by (x cos a + y sin a)2 + (y cos a - x sin a)2, we may express this equation in the form 

(x cos a + y sin a)2 - (azlb)2 = - (y cos a - x sin a)2 + a2 

which shows that, for each value of a, every point on the line 
x cos a + y sin a = azlb, y cos a - x sin a = a 

lies on the hyperboloid. Allowing a to vary from O to 2'1T, we obtain a continuous system of generators: lines lying entirely on the surface. Reflecting in the (x, y)-plane by reversing the sign of z, we obtain a second system of generators on the same hyperboloid. The plane 
8.87 x cos a + y sin a = azlb, 
through the center, touches the asymptotic cone 

_x_2 _+--'-y_2 - z2 = 0 a2 b2 



132 

along the line 
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X --- = a cos a 
y z 

= - ,  a sin a b 
and meets the hyperboloid in two parallel lines: one in each of the planes 
y cos a - x sin a = + a. Another interesting surface of revolution is the ring-shaped torus 

(r - a)2 + z2 = b2 (a > b), 
which is obtained by revolving a circle of radius b about an exterior line in its plane, distant a from the center. This surface evidently contains two systems of circles: the "meridians," ofradius b, and the "parallels" (in planes parallel to z = 0), whose radii vary between a - b and a + b. It is less obvious that the torus contains also two "oblique" systems of circles of radius 
a, such that two circles of opposite systems meet twice while two distinct circles of the same system do not meet at all.* In fact, by expressing the equation 
8.88 ( y x2 + y2 _ a)2 + z2 = b2 

in the form 
(x2 + y2 + z2 _ 02 + b2)2 + 4(a2 _ b2)z2 = 4b2(x2 + y2) 

= 4b2 { (x cos a + y sin a)2 + (y cos a - x sin a)2 } or 
(x2 + y2 + z2 - a2 + b2)2 - 4b2(y cos a - x sin a)2 

= 4b2(x cos a + y sin a)2 - 4(a2 - b2)z2, 

we see that, for each value of a, the torus contains the whole of the section of the sphere 
x2 + y2 + z2 - a2 + b2 = 2b(y cos a - x sin a) 

by the plane 
8.89 b(x cos a + y sin a) = ya2 - b2 z. 

Since the sphere can be expressed as 
(x + b sin a)2 + (y - b cos a)2 + z2 = a2 

and the plane passes through its center ( -b sin a, b cos a, 0), the section is a great circle, and its radius is a. Allowing a to vary from O to 2,,,, we ob-• For drawmgs of the torus, showing all four systems of circles, see Hermann Schmidt, Die In
version und ihre Anwendungen (Oldenbourg, Munich, 1950), p. 82. (The "elevation" is not as well drawn as the "plan.") See also Martin Gardner, Scientific American, 203 (1960), pp. 194, 196. These circles were discovered by Yvon Villarceau, Nouve/les Anna/es de Mathematiques (I), 7 (1848), pp. 345-347. 
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tain a continuous system of such circles, and a second system by reversing 
the sign of z. 

The plane 8.89 meets the torus in two circles, one in each system (with a 
replaced by a + 'TT in the second system). Since these two circles are sec
tions of the two spheres 

xz + yz + zZ - az + b2 = + 2b(y cos a - x sin a), 

their points of intersection are the two "antipodal" points 

( + a2 - b2 cos a, + az - b2 sin a, + !!. V a2 - b2 ) a a a 
(with signs agreeing). Since each of these is a point of contact, 8.89 is a 
bitangent plane [R. J. T. Bell 1 ,  p. 267]. 

Comparing 8.89 with 8.87, we see that the "oblique" circles on the torus 
lie in the same planes (through the center) as the pairs of parallel genera
tors of the hyperboloid of revolution 

x2 + yz zZ 

a2 - b2 - b2 l .  

(This remark is due to A. W. Tucker.) 
EXERCISES 

1. The plane through three given points (x1, y1, z1) (i = 1, 2, 3) is 

X1 Yt Zt I 
X2 Y2 Zz I = 0. 
Xs Ys Z3 I 
X y z I 

If the requirement of passing through a point is replaced (in one or two cases) by the 
requirement of being parallel to a line with direction numbers X1, Y;, Z;, the correspond
ing row of the determinant is replaced by 

X1 Y1 Z1 0. 

2. In terms of general Cartesian coordinates, the point (x, y, z) will be transformed 
into 

(-x, -y, -z) by the central inversion 0(-1), 
(µ.x, µ,y, µ,z) by the dilatation O(JJ.) (§7.6), 
(x, y, z + c) by a translation along the z-axis. 

3. In terms of rectangular coordinates, the point (x, y, z) will be transformed into 
(x, y, -z) by reflection in the (x, y)-plane, 
(y, x, z) by reflection in the plane x = y, 
(-y, x, z) by a quarter-turn about the z-axis, 
(x, -y, z+c) by a glide reflection (§7.4). 

4. In terms of cylindrical coordinates, the point (r, 8, z) will be transformed into 
(r, 8 + ex, z + c) by a screw displacement, 
(µ,r, 8 + ex, µ,z) by the general spiral similarity (§ 7.6). 
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5. Obtain the condition 

2uu' + 2vv' + 2ww' = d + d' 

for two spheres 

x2 + y2 + z2 + 2ux + 2vy + 2wz + d = 0, 
x2 + y2 + z2 + 2u'x + 2v'y + 2w'z + d' = 0 

to be orthogonal. 
6. If (X, Y, Z) is outside the sphere x2 + y2 + z2 = k2, its polar plane contains 

the points of contact of all the tangent planes that pass through (X, Y, Z). 
7. By expressing 8.86 in the form 

(
X y • ) 

2 (y X • 
) 

2 (Z) 2 

;; cos a + 1; sm a + b cos a - ;; sm a = l + � , 

find the two systems of generators on the general hyperboloid of one sheet. Two gen
erators of opposite systems intersect (or occasionally are parallel), but two distinct 
generators of the same system are skew. This observation applies also to the two sys
tems of generators on the hyperbolic paraboloid 8.861. 
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Complex numbers 

The extension of the Euclidean plane to the inversive plane (§6.4) or to 
the elliptic plane (§6.9) is the geometric counterpart of a familiar procedure 
in algebra: the extension of the concept of number. Beginning with the 
natural numbers such as 1 and 2, we proceed to the integers, then to the ra
tional numbers, then to the real numbers, then to the complex numbers 
(and ifwe had time we could continue with hypercomplex numbers*). Each 
stage is motivated by our desire to be able to solve a certain kind of equa
tion. Real numbers were understood remarkably well by the ancient Greeks. 
Complex numbers were used freely, by R. Bombelli (in his Algebra, Bologna, 
1572) and especially by Euler, many years before they could be treated rigor
ously; that was how the word "imaginary" acquired its technical meaning. 
To put "the square root of minus one" on a firm foundation, it is convenient 
(though not essential) to use a geometric representation. Such an interpre
tation was suggested by J. Wallis (1685), formulated completely by C. Wessel 
(1797), rediscovered by J. R. Argand (1806), and rediscovered again by 
Gauss.t 

The present discussion of number is not intended to be a formal develop
ment but rather to emphasize the role of geometry in the working rules. For 
a more complete treatment see Robinson [1, pp. 73-84]. 

9.1 RATIONAL NUMBERS 

"The northern ocean is beautiful,·· said the Ore, "and beautiful the 
delicate intricacy of the snawRake before it melts and perishes, but 
such beauties are as nothing to him who delights in numbers, spurn
ing alike the wild irrationality of life and the baffling complexity of 
nature's laws." 

J. L. Synge [2, p. l 01] 

The first numbers that we consider in arithmetic are the natural numbers, 

• See, for instance, Coxeter, Quaternions and reflections, American Mathematical Monthly, 53 
(1946), pp. 136-146. 

t See the excellent article on Complex numbers, by C. C. MacDutree, in the Encyclopaedia 
Britannica (Chicago edition). 

1 35 
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forming a sequence that begins with 1 and never ends. The problem of 
solving such an equation as 

x + 2 = 1 

motivates the discovery of the integers, which include not only the natural 
numbers (or "positive integers") but also zero and the negative integers. 
The sequence of integers 

. . .  , -2, - 1, 0, 1 , 2, . . .  , 

which has neither beginning nor end, is conveniently represented by points 
evenly spaced along an infinite straight line, which we may think of as the 
x-axis of ordinary analytic geometry. In this representation, addition and 
subtraction appear as translations: the transformation x ➔ x + a shifts each 
point through a spaces to the right if a is positive and through - a spaces 
to the left if a is negative; in other words, the operation of adding a is the 
translation that transforms O into a. 

The problem of solving such an equation as 
2x = 1 

motivates the discovery of the rational numbers µ, = alb, where a is an in
teger and bis a positive integer; these include not only the integers a = al I , 
but also fractions such as 1/2 (or ½) and -413. The rational numbers can
not be written down successively in their natural order, because between 
any two of them there is another, and consequently an infinity of others; 
for example, between alb and cld we find (a + c)l(b + d). The corre
sponding points are dense on the x-axis, and at first sight seem to cover it 
completely. Multiplication and division appear as dilatations :  the trans
formation x ➔ µ,x is the dilatation O(µ,), where O is the origin (which rep
resents zero); in other words, multiplication by µ, is the dilatation with cen
ter O that transforms I into µ,. Of course, µ, may be either positive (Figure 
9.Ia) or negative (Figure 9.lb). In particular, multiplication by - 1  is the 
half-turn about 0. (The point I is joined to an arbitrary point on the y
axis.) 

1 :c µ µ:,: 

Figure 9.1 a 

µx :c 

Figure 9.1b 
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We can derive the rational number alb from the integer a by applying 
the dilatation O(llb), which transforms b into l .  (Figure 9. Ic illustrates 
the derivation of the rational numbers 3/2 and - 1/2.) This construction 
shows clearly why we cannot allow the denominator b to be zero. There 
would be no harm in allowing b to be negative, but we naturally identify 
al(-b) with - alb. In the same spirit we usually write each fraction in its 
"lowest terms," so that the numerator and denominator have no common 
factor. 

a b 
b 

a a a 0 
b 

Figure 9. l c 

EXERCISE Use the method of Figure 9.lc to construct t-
9.2 REAL NUMBERS 

b 

"'What was that?" inquired Alice. "'Reeling and Writhing, of course, to 
begin with,"' the Mock Turtle replied, "'and then the different branches 
of Arithmetic-Ambition, Distraction, Uglification, and Derision."' 

The problem of solving such an equation as 
x2 = 2 

Lewis Carroll 

[Dodgson 1 , Chapter 9] 

motivates the discovery of the real numbers, which include not only the ra
tional numbers but also the irrational numbers (such as y2 and ?T), which 
cannot be expressed as fractions. (Actually, ?T cannot even be expressed as 
a root of an algebraic equation.) Pythagoras's proof of the irrationality of 
y2 was considered by Hardy [2, pp. 32-36) to be one of the most ancient 
instances of first-rate mathematics, "as fresh and significant as when it was 
discovered." In Cantor's treatment [Robinson 1 ,  p. 79), a real number is 
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defined to be the limit of a convergent sequence of rational numbers, or 
(more precisely) the set of all sequences "equivalent" (in a specified sense) 
to a given sequence; for example, the real number .,, is the limit of the se
quence 

3, 3.1, 3.14, 3.141, 3.1415, 

or of the "equivalent" sequence 
4, 3.2, 3.15, 3.142, 3.1416, . . . .  

The corresponding point on the x-axis is defined to be the limit of a con
vergent sequence of"rational" points. 

The real numbers can be further subdivided into algebra ic numbers (such 
as y2 and "f2), which can be expressed as roots of equations 

9.21 

with integers for coefficients, and transcendental numbers (such as .,, and e) 
which cannot be so expressed. Among the algebraic numbers, it is some
times desirable to distinguish the quadratic numbers, such as v 2 and 
y(2 - y2), which can be constructed with compasses. 

9,3 THE ARGAND DIAGRAM 

I met o man recently who fold me that, so far from believing in the 
square root of minus one, he did not even believe in minus one. This is 
at any rate a consistent attitude. 
There are certainly many people who regard v2 as something per
fectly obvious, but jib at vi -l ). This is because they think they can 
visualize the former as something in physical space, but not the latter. 
Aduof/y vi-l) is o much simpler concept. 

The problem of solving such an equation as 
9.31 x2 + I = o. 

E. C. Titchmorsh [ 1 ,  p. 99) 

motivates the discovery of the complex numbers (so named by Gauss), which 
include not only the real numbers but also such "imaginary" numbers as 
the square root of - 1. Since the real numbers occupy the whole x-axis, it 
is natural to try to represent the complex numbers by all the points in the 
(x, y)-plane, that is, to define them as ordered pairs of real numbers with 
suitable rules for their addition and multiplication [Synge 2, Chapter 9]. 
In this so-called Argand diagram (invented by Caspar Wessel in 1"797, a few 
years before Argand himself), points are added like the corresponding vec
tors from the origin O (which represents 0): 
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9.32 (x, y) + (a, b) = (x + a, y + b) 
(Figure 9.3a). In other words, to add (a, b) we apply the translation that 
takes (0, 0) to (a, b). 

(x,y) + (a, b) 

Figure 9.3a Figure 9.3b 

Multiplication by an integer still appears as a dilatation; for instance 
2(x, y) = (x, y) + (x, y) = (2x, 2y) 

(Figure 9.3b). In particular, multiplication by - 1  is the half-tum about 0. 
What, then, is multiplication by "the square root of - 1"? This must be a 
transformation whose "square" is the half-turn about 0. The obvious an
swer is a quarter-turn about 0 [Hardy 1,  p. 83]. 

0 

(a, b)(:c,y) 

(1,0) 
(Cartesian coordinates) 

0 

Figure 9.3c 

(cr, 8 + a) 

(1,0) 
(Polar coordinates) 

Then multiplication by an arbitrary complex number should be a trans
formation which leaves 0 invariant and includes both dilatations and rota
tions as special cases. The obvious transformation of this kind is a spiral 
similarity (§5.4). Accordingly, the operation of multiplying the general point 
(x,y) by any particular point (a, b) is defined to be the spiral similarity (with 
center 0) that transforms (1, 0) into (a, b) [Klein 1 ,  p. 57]. To see how this 
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works, let the points (a, b), (x,y) have p'olar coordinates (c, a), (r, 0), so that 

a = c cos a, b = c sin a, x = r cos 0, y = r sin 0. 

Then the spiral similarity (Figure 9.3c), multiplying r by c and adding a to 
8, transforms 

and 

into 

and 

r COS 8 = X 

r sin 0 = y 

er cos (8 + a) = cr(cos 0 cos a - sin 0 sin a) 
= (c cos a)(r cos 0) - (c sin a)(r sin 8) 
= ax - by 

er sin (0 + a) = er (sin 0 cos a + cos 0 sin a) 
= (c cos a)(r sin 0) + (c sin a)(r cos 8) 
= ay + bx. 

Hence, finally, the rule for multiplication is (in Cartesian coordinates) 
9.33 (a, b)(x, y) = (ax - by, ay + bx) 
[Hardy 1 ,  p. 80]. 

Since (x, y) + (a, 0) = (x + a, y) and (a, 0)(x, y) = (ax, ay), we natur
ally identify the complex number (a, 0) with the real number a, so that 

a(x, y) = (ax, ay) 
and (x, y) = (x, 0) + (0, y) = x + y (0, I). 
Introducing Euler's special symbol i to denote the complex number (0, 1 ), 
we have 

(x, y) = X + yi 
= X + iy 

and i2 = (0, 1)(0, I) = (-1, 0) = -1.  In this notation, the rules 9.32 and 
9.33 become 

(x + yz) + (a + bz) = (x + a) + (y + b)i, 
(a + bz)(x + yi) = ax - by + (ay + bx)i, 

which may simply be thought of as ordinary addition and multiplication, 
treating i as an indeterminate, followed by the insertion of - 1  for i2 [Birk
hoff and MacLane 1 ,  p. 102]. 

EXERCISES 

1. Solve the equation z2 - 4z + S = 0. 
2. The equation u + vi = 0 implies both u = 0 and v = 0. 
3. Express (a + bi)-1 in the form x + yi. 
4. Adapt Figure 9.3c to the cases (i) b = 0, (ii) a2 + b2 = 1. 
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9.4 MODULUS AND AMPLITUDE 
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Abraham Demaivre (more correctly written as de Moivrej . . .  died in 
London on November 27, 1754 . . . .  Shortly before [ his death] he de
clared that it was necessary for him to sleep some ten minutes or a 
quarter of an hour longer each day than the preceding one. The day 
ofter he had thus reached o total of something over twenty-three hours 
he slept up to the limit of twenty-four hours, and then died in his sleep. 

W. W. Rouse Ball 
[Ball 2, pp. 383-384] 

The conversion of Cartesian coordinates to polar coordinates shows that 
any complex number z = x + yi is expressible in the form 

r ( cos O + i sin 0). 
The radial distance r is called the modulus (or "absolute value") of z, and is 
denoted by I z I - The angle O is called the amplitude ( or "argument") of z, 
and is denoted by am z. Thus 

I x  + yi I = yx2 + y2, am (x + yz) = arctan l. 
X 

Since multiplication by c = a + bi is represented by a spiral similarity 
which is the product of a dilatation in the ratio I c I : I and a rotation through 
am c, we have 

I CZ I = I C I I z I ' am (cz) = am c + am z. 

If I c I = I, multiplication by c is represented by a pure rotation. Such 
a number c is of the form 

cos a + i sin a, 
where a = am c is the angle of the rotation. Repeating this rotation n times, 
we obtain de Moivre's theorem 

(cos a + i sin a)n = cos na + i sin na. 
In particular, multiplication by 

w = cos 27T + i sin 21t 
n n 

is represented by a rotation through 21tln. Applying this rotation and its 
successive powers to the point 1, we obtain the vertices of a regular n-gon, 
{ n }, inscribed in the unit circle I z I = l .  These n points represent the roots 

1, w, w2, . . .  ' wn-1 

of the cyclotomic equation zn = 1 (see §2.1). From the theory of equations 
we deduce the identity 

zn - 1 = (z - l)(z - w)(z - w2) . . .  (z - wn-1). 
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In particular, the four fourth roots of 1 are 
1, i, j2 = - 1, j3 = -i. 

Since i4 = 1, the higher powers yield the same cycle over and over again; 
for example, 

j5 = i, j6 = - 1, j7 = -i, j8 = 1. 

Each complex number z = x + yi has a conjugate z = x - yi, derived 
by reflection in the x-axis. Since 

zi = x2 + y2 = I z 12, 

the reciprocal of z is 
z-1 = 1 z 1-2 z. 

In particular, we have 
(cos a + i sin a)-1 = cos a - i sin a, 

which is de Moivre's theorem with n = - 1. 
Inversion in the circle I z I = 1 transforms r ( cos 8 + i sin 8) into 

r-1(cos (J + i sin 8), that is, it transforms z into 
z-1 = I z 1-2z. 

De Moivre's theorem is easily extended from integral values of n to ra
tional values, and then to real values. In particular, a point continuously 
describing the circle I z I = 1 represents the complex number 

9.41 cos (J + i sin e = ( cos 1 + i sin 1 )8, 
where 8 varies continuously from O to 21r. 

Applying the same idea to the complex number 
z = µ,(cos 1 + i sin 1), 

of modulus µ, =I= I, we see that its powers 

z11 = µ,11 (cos 8 + i sin 8) 

are represented by a point describing the equiangular spiral r = µ,11 (§ 8.6). 

EXERCISE 

Use de Moivre's Theorem to find 
(a) the two square roots of 3 + 4i; 
(b) the three cube roots of 1, say 1, w, w2; 
(c) the six sixth roots of l (in terms of w); 
(d) the twelve twelfth roots of 1. 
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9.5 THE FORMULA e 77; + 1 = 0 
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There is a famous formula-perhaps the most compact and famous of 
oil formulas-developed by Euler From a discovery of de Moivre: 
e•-:r + 1 = 0 . . . .  It appeals equally to the mystic, the scientist, the 
philosopher, the mathematician. For each it has its own meaning. 
Though known for over a century, de Moivre ·s formula come to Ben
jamin Peirce (1809- 1880) as something of a revelation. Hoving dis
covered it one day, he turned to his students . . . .  "Gentlemen, "  he 
said, "that is surely true, it is absolutely paradoxical; we cannot un
derstand it, and we don ·t know whot it meons, but we hove proved it, 
and therefore we know it must be the truth." 

E. Kosner and J. Newmon 

[ 1,  pp. 103 -104] 

Having accepted real powers such as µ-9 = e9 10' ", we naturally ask 
whether any meaning can be attached to complex powers. A partial answer 
is supplied by the theory of infinite series such as 

xz x4 cos x = I - 2! + 4! 
- . . .  , 

. x3 x5 sm x = x - 3T + 
5

! - . . . .  

The first series,. which is familiar when x is real, provides a definition for ez in 
other cases; for instance, 

·2 ·3 •4 ·5 
ei = I +  i + �! 

+ �! 
+ �! 

+ ;! 
+ • • • 

. I i I i - l + 1 - 2! - 3! + 4! + 5! - • • •  

( I - 1! + l! - . · )  + i (1 - !, + �! 
- • •  ·) 

= cos I + i sin I .  
These series enable us to express 9.41 in Euler's concise form 

9.51 cos O + i sin (} = e'i, 
which is a refinement of the identity 

Oi = lo� (cos (} + i sin 0) 
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of R. Cotes* ( 1682-1716), after whose untimely death Newton said, "If Cotes 
had lived, we might have known something!" 

Setting O = 7T in 9.51, we obtain the "famous formula" 

e,,,i = - 1, 
which connects in such a surprising way the three important numbers 

e = 2.71828 . . .  , 7T = 3.14159 . . .  , 

and i. 
EXERCISES 

1. Evaluate el"'· Is ;1 real? e'' + e-•1 e•i - e-,1 2. From 9.51 deduce cos 8 = 2 , sin 8 = 2i , the familiar formulas 
for cos (8 + a), sin (8 + a), and the derivatives of cos 8, sin 8. 
9.6 ROOTS OF EQUATIONS 

Gauss . . .  was the first mathemarician to use complex numbers in o 
really confident and scientific way. 

G. H. Hordy 
[Hordy and Wright 1 ,  p. 188) 

In the field of complex numbers we can solve any quadratic equation that 
has real coefficients; for example, the equation 9.31 has the two roots i and 
-i. Still more remarkably, we can solve any quadratic equation with com
plex coefficients; indeed, not only any quadratic equation but also any equa
tion of degree 3 or 4. In saying that we can "solve" an equation we mean 
here that we can find explicit expressions for the roots in terms of the coeffi
cients. It was proved by E. Galois (who was murdered inl832 when he was 
only 20 years old) that the general algebraic equation 9.21 with n > 4 cannot 
be solved in this sense [lnfeld 1 ]. Nevertheless, the fundamental theorem 
of algebra (which Gauss proved in 1799) asserts the existence of roots for 
all values of n, even when explicit expressions are not available. (For a 
neat proof, see Birkho.tf and MacLane [1,  pp. 107-109].) In fact, numerical 
solutions can be found, correct to any assigned number of decimal places. 

EXERCISE A ladder, 24 feet long, rests against a wall with the extra support of a cubical box of edge 7 feet, placed at the bottom of the wall with one horizontal edge against the ladder. How far up the wall does the ladder reach? (Hint: Take 7x to be the height of the top of the ladder above the top of the box. Obtain an equation whose relevant root is 1x = 9 + 4y2.) 
• Harmonia mensurarum, Cambridge, 1722, p. 28. 
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9.7 CONFORMAL TRANSFORMATIONS 

We saw, in § 9.3, that the transformation 

z' = z + b 
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(which adds to the complex variable z the complex constant b) is a transla
tion, whereas 

z' = az 
(which multiplies z by the complex constant a) is a spiral similarity about the 
point 0, including as special cases a dilatation (when a is real) and a rotation 
(when I a I = 1 ). It follows that a spiral similarity about the general point c is 

z' - c = a(z - c) 
or z' = az + (1 - a)c. 
Hence the general direct similarity, as described in §5.5, is the general linear 
transformation 

z' = az + b 

[Ford 1 ,  p. 3]; and this is a translation or a spiral similarity according as 
a = 1 or a =I= l. (In the latter case, c = bl(l - a).) 

Since the product of an opposite similarity and a reflection is direct, any 
given opposite similarity may be expressed as the product of a given reflec
tion and a suitable direct similarity. Using the reflection in the x-axis, 
namely 

z' = z 
(§ 9.4), we see that the general opposite similarity is the "conjugate" linear 
transformation 

z' = az + b. 
Since the ratio of magnification is again I a I, this is a glide reflection (possi
bly reducing to a pure reflection) if I a I = 1, and a dilative reflection other
wise. 

We saw, in § 9.4, that the transformation z' = z-1 is the inversion in the 
unit circle I z I = 1. Similarly, k2 z' = -z 
is the inversion in the circle I z I = k, of radius k. It follows that the in
version in the general circle I z - a I = k is z' - a = k2 l(z - ii) or 

9.71 k2 z' = a + -=---=. z - a 



146 COMPLEX NUMBERS 

By 6.71, any circle-preserving transformation that is not a similarity is the product of such an inversion and an isometry 
z' = p"i + q or z' = pz + q ,  

where IP  I = 1 .  To express this product, we replace the z on the right of 9. 71 by pl + q or pz + q, obtaining 

or 
k2 az + b z' = a + pz + q - a = 

CZ + d 

, k2 az + b z = a + pz + q - a = CZ + d 

respectively, where b and dare certain expressions involving k2, p, q, a and a. Hence 
Every circle-preserving transformatiol,1, direct or opposite, is a linear frac

tional transformation 

9.72 
, az + b , ai + b 

z = --- or z = ---
cz + d cz + d  (ad =I= be), 

where c may be taken to be O or I according as the transformation is, or is not, a 
similarity. 

Conversely, every linear fractional transformation 9.72 transforms circles into 
circles. The easiest way to see this is by direct substitution in the equation jz-u j  = kor 

(z- u)(z - u) = k2 
for the general circle. This is clearly transformed into an equation of the same kind. The following alternative procedure is suggested by a remark of N. S. Mendelsohn.• If c = 0, the transformation is a similarity, as we have seen. If c =I= 0, we could arrange to have c = 1, as before; but we shall find it more convenient to use a different normalization, namely, to multiply all of a, b, c, d (if necessary) by such a number as to make the revised coefficients satisfy 
ad - be = I [Ford 1, p. 14]. Then we have, in the notation of continued 

fractions, the identity 
az + b 

= ac-1 + _I_ I I 1 
cz + d c + -c-1 + c + c-ld + z ' 

which, of course, continues to hold when we replace z by z on both sides. Thus the "homography" 
zo = az ± b (c =/= 0, ad - be = I) 

CZ + d 

• A�rlcan Mathematical Monthly, 51 (1944),p. 171. 
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may be expressed as the product of the nine simpler transformations 

zs = ac-1 + zs, zs = l ,  z1 = c + zs , zs = !. , zs = -c-1 + z4, Z4 = l , � � � 
z3 = c + z2 , z2 = 1 ,  z1 = c-1d + z, 

Z1 

which are alternately translations z' = b + z and Mobius involutions of 
the special form z" = 1/z: the product of the inversion z'' = 1/z' and the 
reflection z' = z. (The number of steps could be reduced from nine to four 
by using the spiral similarity z' = c-2z; but it is interesting to observe that 
this more complicated transformation is itself a product of translations and 
"horizontal" Mobius involutions.) For the "antihomography" 

z' = az + b 
cz + d 

we proceed in the same way with one further reflection z' = z. Since all 
these are circle-preserving transformations, the desired result follows. 

The more powerful methods of the theory of functions of a complex vari
able enable us to prove [Ford 1,  pp. 3, 15] that every angle-preserving trans
formation of the whole inversive plane is of the form 9.72. This shows that 
angle-preserving transformations and circle-preserving transformations are 
synonymous. 

EXERCISES 1. When I a I = I and a =I= l , the transformation z' = az + b is a rotation. Find its angle. 2. When I a I =I= 1 , the transformation z' = az + b is a dilative reflection. What angle does its axis make with the x•axis? 
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The five Platonic solids 

We saw, in §4.6, that the Euclidean plane can be filled with squares, four 
at each vertex. If we try to fit squares together with only three at each ver
tex, we find that the figure closes as soon as we have used six squares, and 
we have a cube {4, 3}. Similarly, we can fill the plane with equilateral tri
angles, six at each vertex, and it is interesting to see what happens if we 
use three, four, or five instead of six. Another possibility is to use penta
gons, three at each vertex, in accordance with the symbol {5, 3}.  

With the possible exception of spheres, such polyhedra are the simplest 
solid figures. They provide an easy approach to the subject of topology as 
well as an interesting exercise in trigonometry. They can be defined and 
generalized in various ways [see, e.g., Hilbert and Cohn-Vossen 1 ,  p. 290). 

10.1 PYRAMIDS, PRISMS, AND ANTIPRISMS 

Although a Discourse of Solid Bodies be on uncommon and neglected 
Port of Geometry, yet that it is no inconsiderable or unprofitable Im
provement of the Science will (no doubt) be readily granted by such, 
whose Genius lends as well to the Practical as Speculative Parts of it, 
for whom this is chiefly intended. 

Abraham Sharp (1651 -1742) 
(Geometry lmprov'd, London! 1717, p. 65) 

A convex polygon (such as {n}, where n is an integer) may be described 
as a finite region of a plane "enclosed" by a finite number of lines, in the 
sense that its interior lies entirely on one side of each line. Analogously, a 
convex polyhedron is a finite region of space enclosed by a finite number of 
planes [Coxeter 1 ,  p. 4). The part of each plane that is cut off by other planes 
is a polygon that we call a face. Any common side of two faces is an edge. 

The most familiar polyhedra are pyramids andprisms. We shall be con
cerned solely with "right regular" pyramids whose faces consist of a regu
lar n-gon and n isosceles triangles, and with "right regular" prisms whose 
148 
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faces consist of two regular n-gons connected by n rectangles (so that there 
are two rectangles and one n-gon at each vertex). The height of such a prism 
can always be adjusted so that the rectangles become squares, and then we 
have an instance of a uniform polyhedron: all the faces are regular poly
gons and all the vertices are surrounded alike [Ball 1 ,  p. 135]. When n = 4, 
the prism is a cube, which is not merely uniform but regular: the faces are 
all alike, the edges are all alike, and the vertices are all alike. (The phrase 
"all alike" can be made precise with the aid of the theory of groups. We 
mean that there is a symmetry operation that will transform any face, edge, 
or vertex into any other face, edge, or vertex.) 

The height of an n-gonal pyramid can sometimes be adjusted so that the 
isosceles triangles become equilateral. In fact, this can be done when n < 6; 
but six equilateral triangles fall flat into a plane instead of forming a solid 
angle. A triangular pyramid is called a tetrahedron. If three, and there
fore all four, faces are equilateral, the tetrahedron is regular. 

By slightly distorting an n-gonal prism we obtain an n-gonal antiprism (or 
"prismatoid," or "prismoid"), whose faces consist of two regular n-gons 
connected by 2n isosceles triangles. The height of such an antiprism can 
always be adjusted so that the isosceles triangles become equilateral, and 
then we have a uniform polyhedron with three triangles and an n -gon at 
each vertex. When n = 3, the antiprism is the regular octahedron. When 
n = 5, we can combine it with two pentagonal pyramids, one on each "base," 
to form the regular icosahedron [Coxeter 1 ,  p. 5]. A pair of icosahedral dice 
of the Ptolemaic dynasty can be seen in one of the Egyptian rooms of the 
British Museum in London. 

We have now constructed four of the five convex regular polyhedra, 
namely those regarded by Plato as symbolizing the four elements: earth, 
fire, air, and water. The discrepancy between four elements and five solids 
did not upset Plato's scheme. He described the fifth as a shape that en
velops the whole universe. Later it became the quintessence of the medie
yal alchemists. A model of this regular dodecahedron can be made by fit
ting together two "bowls," each consisting of a pentagon surrounded by 
five other pentagons. The two bowls will actually fit together because their 
free edges form a skew decagon like that formed by the lateral edges of a 
pentagonal antiprism (with isosceles lateral faces). Steinhaus [2, pp. 161-
163] described a very neat method for building up such a model. From a 
sheet of cardboard, cut out two nets like Figure 10. l a, one for each bowl. 
Run a blunt knife along the five sides of the central pentagon so as to make 
them into hinged edges. Place one net crosswise on the other, with the 
scored edges outward, and bind them by running an elastic band alternately 
above and below the corners of the double star, holding the model fl.at with 
one hand. Removing the hand so as to allow the central pentagons to move 
away from each other, we see the dodecahedron rising as a perfect model 
(Figure 10. lb). 

The most elementary properties of the five Platonic solids are collected 



150 THE FIVE PLATONIC SOLIDS 

Figure 10.1a Figure 10.1b 

in Table II on p. 413. Each polyhedron is characterized by a Schlafl.i sym
bol { p, q } ,  which means that it has p-gonal faces, q at each vertex. The 
numbers of vertices, edges, and faces are denoted by V, E, and F. They 
can easily be counted in each case, but their significance will become clearer 
when we have expressed them as functions of p and q. We shall also ob
tain an expression for the dihedral angle, which is the angle between the 
planes of two adjacent faces. 

EXERCISES 

1. Give an alternative description of the octahedron (as a dipyramid). 
2. Describe a solid having five vertices and six triangular faces. 
3. Describe the following sections: (i) of a regular tetrahedron by the plane mid

way between two opposite edges, (ii) of a cube by the plane midway between two op
posite vertices, (iii) of a dodecahedron by the plane midway between two opposite faces. 

4. Six congruent rhombi, with angles 60° and 120°, will fit  together to form a 
rhombohedron ("distorted cube"). From the two opposite "acute" corners of this 
solid, regular tetrahedra can be cut off in such a way that what remains is an octa
hedron. In other words, two tetrahedra and an octahedron can be fitted together to 
form a rhombohedron. Deduce that the tetrahedron and the octahedron have sup
plementary dihedral angles, and that infinitely many specimens of these two solids 
can be fitted together to fill the whole Euclidean space [Ball 1, p. 147]. 

10.2 DRAWINGS AND MODELS 

You boil it in sawdust: you salt it in glue: 
You condense it with locusts and tape: 

Still keeping one principal object in view
To preserve its symmetrical shape. 

Lewis Carroll 

[Dodgson 2a, Fit 5) 

Leonardo da Vinci made skeletal models of polyhedra, using strips of 
wood for their edges and leaving the faces to be imagined [Pacioli 1 ]. When 
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Tetrahedron 13, 3 I 

Cube 14, 3 1  

Octahedron 13, 4 I 

Dodecahedron js, 3 I 

Icosahedron J 3, 5 I 

Figure 10.2a 
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152 THE FIVE PLATONIC SOLIDS such a model is seen in perspective from a position just outside the center of one face, this face appears as a large polygon with all the remaining faces filling its interior. Such a drawing of the solid is called a Schlegel diagra m [Hilbert and Cohn-Vossen 1 ,  pp. 145-146]. Figure 10.2a shows each of the Platonic solids in three aspects: an ordinary perspective view, a net which can be folded to make a cardboard model, and a Schlegel diagram. Each can be checked by observing the nature of a face and the arrangement of faces at a vertex. 
EXERCISES 

1. Sketch a Schlegel diagram for a pentagonal antiprism. 
2. What is the smallest number of acute-angled triangles into which a given ob

tuse-angled triangle can be dissected? (F. W. Levi.t) 
3. What is the smallest number of acute-angled triangles into which a square can 

be dissected? (Martin Gardner.*) 

10.3 EULER'S FORMULA 

Euler . . .  overlooked nothing in the mathematics of his age, totally 
blind though he wos for the lost seventeen years of his life. 

E. T. Bell [2, p. 330] The Schlegel diagram for a polyhedron shows at a glance which vertices belong to which edges and faces. Each face appears as a region bounded by edges, except the "initial" face, which encloses all the others. To ensure a one-to-one correspondence between faces and regions we merely have to associate the initial face with the infinite exterior region. Any polyhedron that can be represented by a Schlegel diagram is said to be simply connected or "Eulerian," because its numerical properties satisfy Euler's formula 
V - E + F = 2 [Hilbert and Cohn-Vossen 1 ,  p. 290], which is valid not only for the Schlegel diagram of such a polyhedron, but for any connected "map" formed by a finite number of points and line segments decomposing a plane into nonoverlapping regions: the only restriction is that there must be at least one vertex! A proof resembling Euler's may be expressed as follows. Any connected map can be built up, edge by edge, from the primitive map that consists of a single isolated vertex. At each stage, the new edge either joins an old vertex to a new vertex, as in Figure 10.3a, or joins two old vertices, as in Figure 10.3b. In the former case, V and E are each increased by 1 while 

t MaJhematics Student, 14 (1946). 
• Scientific American, 202 (1960), p. 178. 

- , 
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F is unchanged; in the latter, V is unchanged while E and F are each in
creased by l .  In either case, the combination V - E + F is unchanged. 
At the beginning, when there is only one vertex and one region (namely, all 
the rest of the plane), we have 

V - E + F = I - 0 + l = 2. 
This value 2 is maintained throughout the whole construction. Thus, Eu
ler's formula holds for every plane map. In particular, it holds for every 
Schlegel diagram, and so for every simply connected polyhedron. (For an
other proof, due to von Staudt, see Rademacher and Toeplitz [ 1 ,  pp. 75-
76].) 

Figure 1 0.3a Figure 10.3b 

In the case of the regular polyhedron { p, q }, the numerical properties 
satisfy the further relations 
1 0.31 qV = 2E = pF. 
In fact, if we count the q edges at each of the V vertices, we have counted 
every edge twice: once from each end. A similar situation arises ifwe count 
the p sides of each of the F faces, since every edge belongs to two faces. 

We now have enough information to deduce expressions for V, E, F as 
functions of p and q. In fact, 

V E  F V - E + F 
1

-
1

=
_1

= 
l _ l + l  

q 2 p q 2 p 
whence 
1 0.32 

2 4pq = 
l +· ! _ l = 2p + 2q - pq ' 
q p 2 

V = 4P , E = 2Pq , F = 4q 
� + ¾ - M � + ¾ - M � + � - M 

Since these numbers must be positive, the possible values of p and q are 
restricted by the inequality 2p + 2q - pq > 0 or 
1 0.33 (p - 2)(q - 2) < 4. 
Thus p - 2 and q - 2 are two positive integers whose product is less than 
4, namely, 
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1 • 1 or 2 • 1 or 1 • 2 or 3 • 1 or 1 • 3. 
These five possibilities provide a simple proof of Euclid's assertion [Rademacher and Toeplitz 1, pp. 84-87): 

There are just five convex regular polyhedra: 
{3, 3}, {4, 3}, {3, 4}, {5, 3}, {3, 5}. 

The inequality 10.33 is not merely a necessary condition for the existence of {p, q} but also a sufficient condition; for in § IO. I we saw how to construct a solid corresponding to each solution. The same inequality arises in a more elementary manner when we construct a model of the polyhedron from its net. At a vertex we have q p-gons, each contributing an angle 

In order to form a solid angle, these q face angles must make a total less than 2?T. Thus 
q (t -i) ?T < 27T 

whence, as before, (p - 2)(q - 2) < 4. 
Any maker of models soon observes that the amount by which the sum of the face angles at a vertex falls short of 21r is smaller for a complicated solid like the dodecahedron than for a simple one like the tetrahedron. Descartes proved that if this amount, say 6, is the same at every vertex, it is actually equal to 4?7'/V[Briickner 1, p. 60). In the case of {p, q}, this is an immediate consequence of the formula 10.32 for V, which yields 

4?T = (2p + 2q - pq)!! = 2,,, - q f 1 - .i\,,,, V p \ p) 
EXERCISES 1. The number of edges of {p, q} is given by 

E-t = p-1 + q-1 _ t, 
2. Consider an arbitrary polyhedron having p-gonal faces for various values of p, and q faces at a vertex for various values of q. Generalize the equations 10.31 in the form �q = 2E = �p. 

where the first summation is taicen over all the vertices and the last over all the faces. Deduce that every polyhedron has either a face withp = 3 or a vertex with q = 3 (or both). (Hint: If not, we would have �q > 4V and �P > 4F.) 3. If the faces are all alike and the edges are all alike and the vertices are all alike, the faces are regular. Show by an example that this result for polyhedra is not valid for tessellations. 
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1 0.4 RADI I  AND ANGLES 
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A solid model of {p, q} can evidently be built from F p-gonal pyramids 
of suitable altitude, placed together at their common apex, which is the cen
ter 03 of the polyhedron. This point 03 is the common center of three 
spheres: the circumsphere which passes through all the vertices, the mid
sphere which touches all the edges at their midpoints, and the insphere which 
touches all the faces at their centers. The circumradius 0R appears as a lat
eral edge of any one of the pyramids (Figure 10.4a), the midradius 1R as 
the altitude of a lateral face, and the inradius 2R as the altitude of the whole 
pyramid. 

03 
Oa 

oR 

---

O'o 

Figure 10.4a Figure 10.4b 

Such a p-gonal pyramid has p planes of symmetry (or "mirrors") which 
join its apex 03 to the p lines of symmetry of its base. By means of these 
p planes, the solid pyramid is dissected into 2p congruent (irregular) tetra
hedra of a very special kind. Let 00010203 (Figure 10.4c) be such a tetra
hedron, so that 00 is a vertex of the polyhedron, 01 the midpoint of an edge 
000' 0, 02 the center of a face, and 03 the center of the whole solid. (The 

Figure 1 0.4c 
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net has been drawn to scale for the case of the cube { 4, 3} ,  in which 
0001 = 0102 = 0203.) Since the plane 010203 perpendicularly bisects 
the edge 000' 0, 0001 is perpendicular to both 01 02 and 01 03. Since 
000102 is the plane of a face, the inradius 0302 is perpendicular to both 
0002 and 0102. Thus the three lines OoO1, 0102, O2Oa are mutually per
pendicular and the tetrahedron is "quadrirectangular": all four faces are 
right-angled triangles. Schlafli called such a tetrahedron an orthoscheme 
[Coxeter 1 ,  p. 137]. 

Many relations involving the radii 
oR = 0003, 1R = 01 Oa, 2R = O2Oa 

can be derived from the four right-angled triangles, in which 0001 = / and 
L 000201 = 77/p. But the whole story cannot be told till we have found 
the angle 

cp = L OoOaO1 

which is half the angle subtended at the center by an edge [Coxeter 1 ,  pp. 
21-22]. 

Another significant angle is 
tJ, = L O1OaO2, 

whose complement, L 020103, is half the dihedral angle of the polyhedron. 
In other words, the dihedral angle is 7T - 2tJ,. 

In seeking these angles, it is useful to define the vertex figure of {p ,. q} : the 
polygon formed by the midpoints of the q edges at a vertex 00. This is in
deed a plane polygon, since its vertices lie on the circle of intersection of two 
spheres: the midsphere (with center 03 and radius 1R = 0301), and the 
sphere with center 00 and radius / = 0001. We see from 2.84 that the ver
tex figure of {p, q} is a { q} of side 

2/cos :!!. .  p 

Since its plane is perpendicular to 0300, its center Q is the foot of the per
pendicular from 01 to 0300 (Figure 10.4b ), and its circumradius is 

Q01 = I cos cp. 
By 2.81 (with / cos 77/p for /), this circumradius is 

Hence 

1 0.41 

[Coxeter 1, p. 21]. 

/ cos '.!!: csc '.!!: .  p q 

cos cp = cos :!!. csc :!!. = cos :!!. /sin :!!. p q P/ . q 
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The right-angled triangles in Figure 10.4c now yield 
oR = I csc 4>, 1R = / cot 4>, 

2R2 = 1R2 - (1 cot :!!.)2

, cos t/, = � . 
p 1R 

157 

In order to eliminate cf>, it is convenient to introduce the temporary abbrevia
tion 

k2 = sin2 
:!!. - cos2 

:!!. = sin2 
:!!. - cos2 !. , 

q p p q 
so that sin 4> = k csc 7T I q. Then 

1 0.42 

1 0.43 

R l . 7T o = - sm- , k q 

I 7T 7T 
2R = -kcot -cos- , 

p q 

cos t/, = cos :!!./sin :!!. . 

q p 

This last result enables us to compute the dihedral angle 

7T - 2t/, = 2 arcsin (cos �/ sin i) . 

EXERCISES 1. Verify that k = sin '1T/2c, where c = (2 + p + q)/(IO - p - q) [Coxeter 4, p. 753), and that E = c(c + 1). 2. Check the values of the dihedral angle given in Table II on p. 413. (Your calculations should agree with the observation that the dihedral angles of the tetrahedron and octahedron are supplementary. See Ex. 4 at the end of§ IO. I.) 3. If a polyhedron has a circumsphere and a midsphere and an insphere, and if these three spheres are concentric, then the polyhedron is regular. 
1 0.5 RECIPROCAL POLYHEDRA 

The Platonic solid (p, q} has a reciprocal which may be defined as the 
polyhedron enclosed by a certain set of V planes, namely, the planes of the 
vertex figures at the V vertices of (p, q}. Clearly, its edges bisect the edges 
of (p, q} at right angles. Among these E edges, those which bisect the p 
sides of a face of (p, q} all pass through a vertex of the reciprocal, and those 
which bisect the q edges at a vertex (p, q} form a face of the reciprocal. Thus 

The reciprocal of {p, q} is {q,p}, 



158 THE FIVE PLATONIC SOLIDS 

and vice versa. There is a vertex of either for each face of the other; in fact, 
the centers of the faces of {p, q} are the vertices of a smaller version of the 
reciprocal { q, p} [Steinhaus 1 , pp. 72-79). 

Figure 10.Sa 

A 

CO'' :;__---1----if 
I D 
I 
I 
I 
I 
ID, »-----

B�-----
Acr' 

Figure 1 O.Sb 

B' 

C 

Figure 10.5a shows how the octahedron {3, 4} arises as the reciprocal of 
the cube { 4, 3} ( or vice versa), and how the reciprocal of a regular tetra
hedron {3, 3} is an equal tetrahedron. The combination of two reciprocal 
tetrahedra, ABCD and A' B' C' D', occurs in nature as a crystal twin. Pacioli 
[1, Plates XIX, XX] named it octaedron elevatum. Kepler, rediscovering it a 
hundred years later, called it simply stella octangula. The twelve edges of the 
two tetrahedra are the diagonals of the six faces of a cube (Figure 10.5b). 

By interchangingp and q in the formula 10.32 for V ( or F) we obtain the 
formula for F(or V). Similarly, since Q, on 0300 (Figure 10.4b), is the cen
ter of a face of { q, p}, the angular property q, of {p, q} is equal to the angular 
property if! of { q,p }, and therefore the expression 10.43 for the property if! of 
{p, q} could have been derived from 10.41 by the simple device of inter
changingp and q. 

EXERCISES I. A cube of edge I, with one vertex at the origin and three edges along the Cartesian axes, has the eight vertices (x, y, z), where each of the three coordinates is either O or I, independently. 2. A cube of edge 2, with its center at the origin and its edges parallel to the Cartesian axes, has the eight vertices 
(±1, +I, ± 1). 

3. Where is the center of the dilatation that relates the cubes described in the two preceding exercises? 4. Obtain coordinates for the vertices of a regular tetrahedron by selecting alternate vertices of a cube. Find the equations of the face planes and compute the angle between two of them. 5. Obtain coordinates for the vertices of an octahedron by locating the face centers of the cube in Ex. 2. Find the equations of the face planes and compute the angle between two that contain a common edge. 
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6. The points (x, y, z) that belong to the solid octahedron are given by the inequality 

l x l + IYl + l z l � L  
7. If each edge ofa regular tetrahedron is projected into an arc of a great circle on 

the circumsphere, at what angles do these arcs intersect? Find the equations of the 
planes of the six great circles. 
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The golden section and phyllotaxis 

Euclid's construction for the regular pentagon depends on the division of 
a line segment in the ratio ,,. : I, where ,,. = (y5 + l)/2. This algebraic 
number is the subject of a book published in 1509, in which Luca Pacioli 
describes its properties or "effects," stopping at thirteen "for the sake of 
our salvation." We shall see that, when it is expressed as a continued frac
tion [Ball 1 , pp. 55-56], all the partial quotients are l ,  making it the simplest 
(and slowest to converge) of all infinite continued fractions. The conver
gents are found to be quotients of successive members of the sequence of 
Fibonacci numbers 1 ,  1 ,  2, 3, 5, 8, . . .  , which any child can begin to write 
though no explicit formula was found till 1843. A subtle manifestation of 
this "divine proportion" in the structure of plants helps to explain the phe
nomenon of phyllotaxis, which is most clearly seen in the arrangement of 
cells on the surface of a pineapple. 

1 1 .  1 EXTREME AND MEAN RATIO 

Geometry hos two great treasures: one is the Theorem of Pythagoras; 
the other, the division of a line into extreme and mean ratio. The 
first we may compare to a measure of gold; the second we may name 
a pre_cious jewel. 

J. Kepler (1571 -1630) 

As we see in Figure 2.8b, the vertex figure of a regular pentagon of side 
2/ is a line segment of length ,,./, where 
1 1 . 1 1  ,,. = 2 cos ,,,;5_ 
In other words, a pentagon PQRST of side I (Figure 1 1 .  la) has diagonals 
of length 7'. Let the diagonals QS, RT intersect in U. They are said to di
vide each other according to the golden section (or "in extreme and mean 
ratio"). To see what this means, we observe that the homothetic isosceles 
triangles QTU, SRU yield 
160 
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p 

Figure 1 1 . l a 

H 

Figure 1 1 .  1 b 

QU QT QS QS 
US = RS = ,,. = 

PT 
= 

QU 

16 1 

(since PT and Q U are opposite sides of the rhombus PQ UT). Thus the 
diagonal QS is divided at U in such a way that the ratio of the larger part to 
the smaller is equal to the ratio of the whole to the larger part. 

If Q U  = PT = I, so that QS = ,,., then US = ,,.-1 and 
1 + ,,.-1 = 7'. 

Hence ,,. is the positive root of the quadratic equation 
1 1 .1 2 7'2 - 7' - 1 = 0, 

namely, 7' = y5 + I 
2 = 1.618033989 . . . .  

Figure 1 1 .  lb shows an easy way to extend a given segment Q U to S so 
that QS = TQU. (Here M is the midpoint of the side QU of the square 
AQUH, and MS =  MH = y5 MU.) Euclid (IV.10) used such a procedure 
"to construct an isosceles triangle having each of the angles at the base 
double the remaining one" ( QST or P RS in Figure 1 1 . la). 

Figure 1 1 . 1 c 
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The figure of a pentagon with diagonals can be neatly displayed by tying 
a simple knot in a long strip of paper and carefully pressing it flat (Figure 
1 1 .  lc). 

EXERCISES 

1. Defining -r to be the ratio of the diagonal of a regular pentagon to its side, establish 1 1. 1 1  by applying 1.54 to the isosceles triangle P RS. 2. Show how one further setting of the compasses will yield a point (in Figure I I. lb) dividing the given segment QU in the ratio -r : I. 
1 1 .2 DE DIVINA PROPORTIONE 

Del suo secondo essentiale effecto . . .  Del ter�o suo singulore effecto 
. . .  Del quarto suo ineffabile effecto . . . . . .  Del . 10. suo supremo 
effecto . . .  Del suo . 1 1 .  excellentissimo effecto . . .  Del suo . 12. quosi 
incomprehensibile effecto . . .  

Luco Pocioli (co. 1445 -1509) 

[ Pocioli 1, pp. 6 -7] 

Under the beneficent influence of the artist Piero della Francesca (ca. 
1416-1492), Fra Luca Pacioli (or Pacciolz) wrote a book about ,,., called De 
divina proportione, which he illustrated with drawings of models made by 
his friend Leonardo da Vinci. His enthusiasm for the subject is apparent 
in the above titles that he chose for various chapters. (It is interesting to 
observe how closely some of his old Italian resembles English.) 

"The seventh inestimable effect" is the occurrence of,,. as the circumra
dius of a regular decagon of side 1. 0l{e can thus inscribe a pentagon in a 
given circle by first inscribing a decagon and then picking out alternate ver
tices.) "The ninth effect, the best of all" is that two crossing diagonals of 
a regular pentagon divide one another in extreme and mean ratio. "The 
twelfth almost incomprehensible effect" is the following property of the regu
lar icosahedron {3, 5} .  

Figure 1 1 .2a Figure 1 1 .2b 
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The faces surrounding a vertex of the icosahedron belong to a pyramid 
whose base is a regular pentagon (similar to the vertex figure). Any two 
opposite edges of the icosahedron belong to a rectangle whose longer sides 
are diagonals of such pentagons. Since the diagonal of a pentagon is ,,. times 
its side, this rectangle is a golden rectangle, whose sides are in the ratio ,,. : 1 .  
In fact, the twelve vertices of the icosahedron (Figure 1 1.2a) are the twelve 
vertices of three golden rectangles in mutually perpendicular planes (Figure 
1 1.2b). A model is easily made from three ordinary postcards (which are 
nearly golden rectangles). In the middle of each card, cut a slit parallel to 
the long sides and equal in length to the short sides. For a practical rea
son, the slit in one of the cards must be continued right to the edge. Then 
the cards can easily be put together so that each passes through the middle 
of another, in cyclic order. 

Figure 1 1 .2c 

We see from Figure 1 1 .2c that a golden rectangle can be inscribed in a 
square so that each vertex of the rectangle divides a side of the square in 
the ratio ,,. : 1. Identifying this with one of the three "equatorial" squares 
of a regular octahedron, we deduce that an icosahedron can be inscribed in 
an.octahedron so that each vertex of the icosahedron divides an edge of the 
octahedron in the ratio ,,. : 1 .  

EXERCISES 

1. Using Cartesian coordinates referred to the planes of the three golden rectangles, 
obtain the 12 vertices of the icosahedron in the form 

(0, ±T, ±1), (+l, 0, +,-), (±T ±1,  0). 
2. These 12 points divide the 12 edges of the octahedron 

(±-r2, 0, 0), (0, ±,-2, 0), (0, 0, ±T2) 
in the ratio -r : 1 .  

3. Obtain coordinates for the 20 vertices of the regular dodecahedron [Coxeter 1,  
p.  53]. 
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1 1 .3 THE GOLDEN SPIRAL 

A 

Archimedes, leonordo, Newton-all very practical men, but with some
thing more. A sense of wonder, perhaps . . .  Very mysterious, very 
mysterious. And very exciting. That is the thing-excitement. You 
get it by being God, by constructing, and you get it by watching God, 
by observing things as they ore. 

J. L. Synge [2, p. 163} 

Figure 1 1 .3a 

The relation -r = l + 1/-r shows that the golden rectangle ABDF (Fig
ure l l.3a) can be dissected into two pieces: a square ABCH and a smaller 
golden rectangle. (The points B, C, D may be identified with the Q, U, S 
of Figure 1 1. lb.) Prom the smaller rectangle CDFH we can cut off an
other square, leaving a still smaller rectangle, and continue the process in
definitely. 

Since the rectangle HJEF is homothetic to ABDF, the vertex J of the 
former lies on the diagonal BF of the latter. In fact, the lines AE, BF, CG, 
DH together contain all the vertices of all the rectangles. To derive CDFH 
from ABDF, we may use a spiral similarity whose center is 0, the point of 
intersection BF · DH. This spiral similarity, which transforms each of the 
points A, C, E, G, I, . . .  into the next, and each of the points B, D, F, H, J, 
. . .  into the next, is the product of a negative quarter-tum about O and the 
dilatation O(-r-1). Therefore DH is perpendicular to BF. The inverse simi
larity, which transforms each rectangle into the next larger one, is the prod
uct of a positive quarter-turn about O and the dilatation 0(-r). 

Since 
OB BC 
OD

= 
-r = CD ' 
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OC bisects the (right) angle BOD. Thus the lines CG, AE pass through 0 
and bisect the angles between BF, DH. 

In terms of polar coordinates with pole 0, the spiral similarity that trans
forms OE into OC transforms any point (r, 8) into ('rr, 8 + -½'IT). Taking OE 
as the initial line, and the length OE as the unit of measurement, so that E is 
(1, 0), we deduce the coordinates (r, ½'IT) for C, (r2, ?T) for A, (T3, tn') for the 
vertex opposite to A in a new square placed on AF, and so on. Similarly, 
G is (r-1, - ½  ?T), I is (r-2, -'IT) or (r-2, ?T), and so on. We thus obtain an 
infinite sequence of points 

. . .  , I, G, E, C, A, . . .  

whose polar coordinates 
r = 'Tn, 8 = ½ ?Tn 

satisfy the equation r = r281'1T. Hence all these points lie on the equiangu
lar spiral 

r = µ.8, 
where µ = -r21'1T. This true spiral [Cundy and Rollett 1, p. 64] is closely 
approximated by the artificial spiral formed by circular quadrants inscribed 
in the successive squares, as in Figure 1 1.3a. (But the true spiral cuts the 
sides of the squares at very small angles, instead of touching them.) 

EXERCISE 

Obtain polar coordinates for the points J, H, F, D, B. They lie on another equian
gular spiral which is both congruent (by rotation through what angle?) and homo
thetic (by what ratio of magnification?) to the spiral IGECA . 

1 1 .4 THE FIBONACCI NUMBERS 

Sint minimi 1 et 1 quos imaginoberis inoequoles. Adde, fient 2. cui 
odde moiorem 1 fient 3. cui odde 2 fient 5. cui adde 3 fient 8. cui 
odde 5 fient 13. cui adde 8 fient 21. 

J. Kepler [1 , p. 270] 

In 1202, Leonardo of Pisa, nicknamed Fibonacci ("son of good nature"), 
came across his celebrated sequence of integers /n in connection with the 
breeding of rabbits.* He assumed that rabbits live forever, and that every 
month each pair begets a new pair which becomes productive at the age of 
two months. In the first month the experiment begins with a newborn pair 
of rabbits. In the second month there is still just one pair. In the third 
month there are 2 ;  in the fourth, 3; in the fifth, 5; and so on. Let/n de
note the number of pairs of rabbits in the nth month. The first few values 
(and their successive ratios) may be tabulated as follows: 

• R. C. Archibald, Golden Section, American Mathematical Monthly, 25 (1918), pp. 232-238. 
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11: 0 1 1 2 3 4 5 6 7 8 9 10 0 I I 2 3 5 8 13 21 34 55 oo l 2 1.5 1.6 1.6 1.625 1.6154 l.6190 1.6176 1.6182 
Four centuries later, Kepler stated explicitly what Fibonacci must surely 

have noticed: that the sum of any two f's is equal to the next, so that the 
sequence is determined by the recursion formula 

1 1 .41 

Kepler observed also that the ratios /n : /n+l approach I : r more and more 
closely as n increases. (See the third line of the above table.) However, 
another hundred years passed before R. Simson (1687-1768, who was not 
really the discoverer of the "Simson line") recognized /n+1l/n as being the 
nth convergent of the continued fraction 

1 I I 1 + T+ 1 + T+ " "  

(The "convergents" are the numbers 

1, I + I = 2, 

and so on.) To prove that lim (/n+11/n) = r, Simson made repeated use of 
the relation r = I + 1/r, as follows: 

I 1 1 I I I r = l +
,:-

= l + 1 + ; = l + 1 + 1 + T = . . .  

Along with/n, E. Lucas (1842-1891) considered the related numbers g,, 
defined by 

go = 2, g1 = }, 8k + 8k+l = 8k+2· 

The fust few values are as follows: 

g:: I � I � I ; I ! I � I l; I 1! I 2� 
It is easily proved by induction that (for n > 0) 

1 1 .42 

8 47 9 I 10 1 . .  . 76 123 . .  . 

Leaving this as an exercise for the reader, we proceed to establish Lucas's 
identities 
1 1 .43 

1 1 .44 

/2n = fn 8n, 

/2n+1 = /n2 + /n!1, 
which are obvious when n = 0 or I. To prove them both by induction, we 
add the tentative relations 



obtaining 

and then add 

obtaining 
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/2k-1 = /k�l + /k
2 and /2k = /k8k, 

/2k+l = /k�l + /k(/k-1 + /k+I) + /k2 

= (/k-1 + /k)/k+l + /k2 

= /k
2 + /Si, 

/2k = /kgk and /2k+l = /k2 + /k;l , 

/2k+2 = /k
2 + /k(/k-1 + /k+1) + JS1 

= /k/k+l + /k+l/k+2 

= /k+l 8k+1· 

Similarly, to establish the identity 

1 1 .45 -rn = /n'T + /n-1, 

which is obvious when n = l or 2 ,  we add 
-rk = /k-r + /k-1 and -rk+I = /k+1-r + /k, 

obtaining -rk+2 = /k+2-r + /k+I• 
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The identity 1 1.45 continues to hold when n is negative, provided we de
fine /-k = f -k+2 - f -k+l (for k > 0), so that 

Thus 
1 1 .46 

and 
1 1 .47 

1 1 .471 

/-k = (- l)k+l /k· 

-r-k = f-k'T + /-k-1 

= (- l)k+1(f k'T' -/k+1). 

( --r)-k = /k+l -ftT 

= f'f<-1 - /k-r-l. 

Adding 1 1.45 (with k for n) and 11 .47, we obtain 

1 1 .48 8k = ,rk + ( - -r)-k . 

Similarly, subtracting 11 .471 from 11 .45 (with k for n), we obtain 

1 1 .49 fi 
_ ,rk _ (--r)-k _ -rk _ (--r)-k 

k - - ' 'T + -r-1 y5 
an explicit formula which was discovered by J. P. M. Binet in 1843. 

From 1 1 .48 and 1 1 .49 we immediately deduce 

,rk = 8k + f,.-y5 , (- -r)-k = 
81c - /1cy5 ; 

2 2 
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for example, 

-r3 = y5 + 2, -r-3 = y5 - 2, 

-r6 = 9 + 4y5, -r-6 = 9 - 4y5. 

EXERCISES 

1. Express the sum of the finite series 
1 + 1 + 2 + 3+ . . .  +J,. 

in terms of /n+2· 2. Prove Simson's identity 
/n-1 /n+l - /n2 = (- 1)". 

This is the basis for an amusing puzzle [Ball 1,  p. 85). • 3. Verify Lagrange's observation that the final digits of the Fibonacci numbers recur after a cycle of sixty: 1, 1 ,2,3, � 8, 3, 1,4, . . .  ,7 ,2, 9, 1,0. 4, From the identity 
(1 - / - /2)(1 + I + 2t2 + 3/3 + . . .  + /n+l I" + . . .  ) = l ,  which implies 

deduce Lucas's formula for Fibonacci numbers in terms of binomial coefficients: 
5. Setting t = 0.0l in the identity }: .fn+1 I" = (1 - t - t2)-1, deduce an easy method for writing down the first 19 digits in the decimal for �-
6. Tabulate gn+1/gn and find its limit when n tends to infinity. 

• See also Coxeter, The golden section, phyllotaxis, and Wythotrs game, Scripta Mathematica, 
19 (1953), p. 139. More generally, f..+h /,.+1< -/,. f..+h+I< = (-J)n /h /1,; see A. E. Danese, American Mathematical Monthly, 67 (1960), p. 81. 



BOTANY 169 

1 1 .5 PHYLLOT AXIS 

In the doctrine of Metamorphosis and the enunciation of the Spiral 
Theory we have . . .  two remarkable generalizations which, originat
ing in the fertile imagination of Goethe, hove passed through the chaos 
of Nature Philosophy and emerged . . .  to form the groundwork of 
our present views of Pion/ morphology. 

A. H. Church (l 865 -1937) 

[Church 1, p. I ]  

The Fibonacci numbers have a botanical application in the phenomenon 
called phyllotaxis (literally "leaf arrangement"). In some trees, such as the 
elm and basswood, the leaves along a twig seem to occur alternately on 
two opposite sides, and we speak of"½ phyllotaxis." In others, such as the 
beech and hazel, the passage from one leaf to the next is given by a screw 
displacement involving rotation through one-third of a turn, and we speak 
of "t phyllotaxis." Similarly, the oak and apricot exhibit t phyllotaxis, the 
poplar and pear ¾ ,  the willow and almond iJ, and so on. We recognize 
the fractions as quotients of alternate Fibonacci numbers, but consecutive 
Fibonacci numbers could be used just as well; for example, a positive rota
tion through ¾ of a turn has the same effect as a negative rotation through 
¾ [Weyl 1 , p. 72). 

Another manifestation of phyllotaxis is the arrangement of the florets of 
a sunflower, or of the scales of a fir cone, in spiral or helical whorls (or 
"parastichles"). Such whorls are particularly evident in a pineapple (Fig
ure 1 1 .5a), whose more-or-less hexagonal cells are visibly arranged in rows 
in various directions: 5 parallel rows sloping gently up to the right, 8 rows 
sloping somewhat more steeply up to the left, and 13 rows sloping very 
steeply up to the right. (Sometimes the sense is consistently reversed.) If 
we regard the surface of the pineapple as a cylinder, cut it along a vertical 
line (generator), and spread it out fl.at on a plane, we obtain a strip between 
two parallel lines which represent two versions of the vertical cut. In Fig
ure 1 1 .5b these parallel lines are taken to be the lines x = 0 and x = 1 ,  
and the hexagonal cells, numbered successively in  the order of their distances 
from the x-axis, appear as the Dirichlet regions of a lattice (§ 4.1). The lat
tice point marked O appears at the origin, and reappears at (1, 0), as if the 
cylinder were rolled along the plane. The lattice point marked 1 has co
ordinates ('r-1, h), where the height h remains to be computed; and for all 
values of n the nth lattice point is (x, y) where y = nh and x is the frac
tional part of m (or of m-1), namely, 

x = m - [nrJ, 

where (m] is the integral part. The repetition of the strip has the effect that 
the number n appears at the point 

(m- + m, nh), 
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Figure 1 1 .Sa 

for all integers n and m, and the numbers in any straight row are in arith
metic progression. When the plane is wrapped round the cylinder, such a 
straight line becomes a helix, the shape of the rail of a "spiral" staircase. 

Since the ratios /k+il/k of consecutive Fibonacci numbers converge to
wards ,,., the number /kT is nearly an integer (namely /k+i), that is, its frac
tional part is small. Therefore one of the points marked /k is close to the 
y-axis (especially for large values of k), and the most nearly vertical rows 
are those in which the difference of the arithmetic progressions are Fibo
nacci numbers. 

Such an arrangement can be made for any positive value of h. In Fig
ure I I .Sb the value Th,- has been chosen. We soon find by trial that this is 
about the right size to ensure that the neighbors of0 are the Fibonacci num
bers 5, 13, 8 and their negatives, as in a pineapple (Figure 1 1.Sa). In other 
words, the most obvious rows (with the closest spacing) are those, in which 
the arithmetic progression has difference /6 = 8. The effect of increasing h 
would be to decrease the obtuse angle between the directions 05 and 08, so 
that at a certain stage this would become a right angle, and then the Dirichlet 
region would be a rectangle instead of a hexagon. Similarly, the effect of 
decreasing h would be to increase the angle between the directions of 8 and 
13, so that at a certain stage this would become a right angle, and after
wards the next Fibonacci number 21  would appear as a neighbor of 0. 
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Figure 1 1 .Sb 

To determine the critical yalues of h for which such transitions occur, we seek the condition for the points /k and /k+1 to lie in perpendicular direc
tions from 0, that is, the condition for the points 

(jk'T - fk+t, fkh), (ik+i'T - /k+2, /k+1h) 
to lie in perpendicular directions from (0, 0). By 8.22, this condition is 

(jk'T - fk+1)(Jk+1'T - /k+2) + /kfk+ih2 = 0. 
Using 1 1.12, 1 1.41, 1 1 .42, then 1 1 .43, 1 1.44, and finally 11.46, we deduce 

f,./k+1h2 = (ik2 + J,.!1) 'T - /k+!Sk+l 
whence = /2k+l 'T -/2k+2 = ,,--<2k+l>, 

1 1 .5 1  

We conclude that the numbers of whorls in various directions (which are 5,  8, 13 in the case of the pineapple) are fk- 1, /k.fk+i for values of h between 
Uk-tfk)-4 'T-<k-l> and (j·,./k+1)-l ,,--<k+I>. 

As a convenient "standard" value between these critical values, we naturally choose 
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For instance, the value chosen in Figure 1 1 .5b is approximately 
7-6 

- 0.055727 . . . - 0 006966 f6 - 8 - • • • • • 
The same pattern, interpreted as an arrangement of leaves on a twig, 

could reasonably be called n phyllotaxis or, in the general case,/k-1//k+1 

phyllotaxis. For, as Church [ 1 ,  p. 5] remarks: "Bonnet . . .  saw quite clearly 
in the case of the Apricot that successive f cycles were really not vertically 
superposed." According to the late A. M. Turing, the gradual advance from 
one pair of"parastichy numbers" to another, corresponding to the continu
ous decrease of h, may take place during the growth of a single plant. (For 
convenience we have taken the girth of the cylinder as our unit of measure
ment; thus h will decrease if the cylinder grows faster in girth than in length.) 

When the cylinder is replaced by a cone, as in the analogous description 
of a fir cone, the lines of the plane no longer represent helices but rather 
concho-spirals [Moseley 1 ]. By allowing the generators of the cone to be
come more and more nearly perpendicular to its axis, we approach a limit
ing situation in which the concho-spirals become plane equiangular spirals, 
cutting one another at the same angles as the helices on the cylinder, that 
is, at the same angles as the lines in the plane of the lattice [Church 1 ,  p. 
58]. Fibonacci numbers as large as/10 = 55,f11 = 89,/12 = 144 arise as 
the numbers of visible spirals in certain varieties of sunflower [see Church 
1 ,  Plates V, VII, XIII, and especially Plate VI]. However, it should be 
frankly admitted that in some plants the numbers do not belong to the se
quence off's but to the sequence of ts (Church 1 ,  Plate XXV], or even to 
the still more anomalous sequences 

3, 1, 4, 5, 9, . . .  ; 5, 2, 7, 9, 16, . . .  
[Church 1 ,  Plate IX]. Thus we must face the fact that phyllotaxis is really 
not a universal law but only a fascinatingly prevalent tendency. 

EXERCISE 

Draw a version of Figure I I.Sb with h = t .  Is this close to the value given by 1 1 .51 
with k = I? 
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1 2  
Ordered geometry 

During the last 2000 years, the two most widely read books have undoubt
edly been the Bible and the Elements. Scholars find it an interesting task 
to disentangle the various accounts of the Creation that are woven together 
in the Book of Genesis. Similarly, as Euclid collected his material from 
various sources, it is not surprising that we can extract from the Elements 
two self-contained geometries that differ in their logical foundation, their 
primitive concepts and axioms. They are known as absolute geometry and 
affine geometry. After describing them briefly in § 12.1, we shall devote 
the rest of this chapter to those propositions which belong to both: propo
sitions so fundamental and "obvious" that Euclid never troubled to men
tion them . 

12.1 THE EXTRACTION OF TWO DISTINCT GEOMETRIES FROM EUCLID 

The pursuit of on idea is as exciting as the pursuit of o whale. 

Henry Norris Russell (1877 -1957) 

Absolute geometry, first recognized by Bolyai (1802-1860), is the part of 
Euclidean geometry that depends on the first four Postulates without the 
fifth. Thus it includes the propositions I.1-28, IIl.1-19, 25, 28-30; IV.4-9 
(with a suitably modified definition of "square"). The study of absolute 
geometry is motivated by the fact that these propositions hold not only in 
Euclidean geometry but also in hyperbolic geometry, which we shall study 
in Chapter 16. In brief, absolute geometry is geometry without the assump
tion of a unique parallel (through a given point) to a given line. 

On the other hand, in affine geometry, first recognized by Euler (1707-
1783), the unique parallel plays a leading role. Euclid's third and fourth 
postulates become meaningless, as circles are never mentioned and angles 
are never measured. In fact, the only admissible isometries are half-turns 
and translations. The affine propositions in Euclid are those which are pre
served by parallel projection from one plane to another [Yaglom 2, p. 17]: 

175 
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for example, I. 30, 33-45, and VI. 1, 2, 4, 9, 10, 24-26. The importance of 
affine geometry has lately been enhanced by the observation that these 
propositions hold not only in Euclidean geometry but also in Minkowski's 
geometry of time and space, which Einstein used in his special theory of 
relativity. 

Since each of Euclid's propositions is affine or absolute or neither, we 
might at first imagine that the two geometries (which we shall discuss in 
Chapters 13 and 15, respectively) had nothing in common except Postu
lates I and II. However, we shall see in the present chapter that there is a 
quite impressive nucleus of propositions belonging properly to both. The 
essential idea in this nucleus is intermediacy (or "betweenness"), which Eu
clid used in his famous definition: 

A line (segment) is that which lies evenly between its ends. 
This suggests the possibility ofregarding intermediacy as a primitive con

cept and using it to define a line segment as the set of all points between 
two given points. In the same spirit we can extend the segment to a whole 
infinite line. Then, if B lies between A and C, we can say that the three 
points A, B, C lie in order on their line. This relation of order can be ex
tended from three points to four or more. 

Euclid himself made no explicit use of order, except in connection with 
measurement: saying that one magnitude is greater or less than another. It 
was Pasch, in 1882, who first pointed out that a geometry of order could be 
developed without reference to measurement. His system of axioms was 
gradually improved by Peano (1889), Hilbert (1899), and Veblen (1904). 

Etymologically, "geometry without measurement" looks like a contradic
tion in terms. But we shall find that the passage from axioms and simple 
theorems to "interesting" theorems resembles Euclid's work in spirit, though 
not in detail. 

This basic geometry, the common foundation for the affine and absolute 
geometries, is sufficiently important to have a name. The name descriptive 
geometry, used by Bertrand Russell [ 1 ,  p. 382), was not well chosen, be
cause it already had a different meaning. Accordingly, we shall follow 
Artin [1, p. 73] and say ordered geometry. 

We shall pursue this rigorous development far enough to give the reader 
its flavor without boring him. The whole story is a long one, adequately 
told by Veblen [1 )  and Forder [ 1 ,  Chapter II]. 

It is important to remember that, in this kind of work, we must define 
all the concepts used (except the primitive concepts) and prove all the state
ments (except the axioms), however "obvious" they may seem. 

EXERCISES 1. Is the ratio of two lengths along one line a concept belonging to absolute geometry or to affine geometry or to both? (Hint: In "one dimension," i.e., when we 
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consider only the points on a single lihe, the distinction between absolute and affine disappears.) 2. Name a Euclidean theorem that belongs neither to absolute geometry nor to a.ffine geometry. 3. The concurrence of the medians of a triangle (1.41) is a theorem belonging to both absolute geometry and affine geometry. To which geometry does the rest of§ 1.4 belong? 4. Which geometry deals (a) with parallelograms? (b) with regular polygons? (c) with Fagnano's problem (§ 1.8)? 
12.2 INTERMEDIACY 

A discussion of order . . .  hos become essential to any understanding of 
the foundation of mathematics. 

Bertrand Russell (1872-

[Russell 1 ,  p. 199) 

In Pasch's development of ordered geometry, as simplified by Veblen, the 
only primitive concepts are points A, B, . . .  and the relation ofintermediacy 
[ABC], which says that B is between A and C. If B is not between A and C, 
we say simply "not (ABC]." There are ten axioms (12.21-12.27, 12.42, 12.43, 
and 12.51), which we shall introduce where they are needed among the vari
ous definitions and theorems. 

AXIOM 1 2.21 There are at least two points. 
AXIOM 1 2.22 If A and B are two distinct points, there is at least one point 

C for which (ABC]. 
AXIOM 1 2.23 If [ABC], then A and C are distinct: A =I= C. 
AXIOM 1 2.24 If [ABC], then [CBA] but not [BCA]. 
THEOREM 1 2.241 If [ABC] then not [ CAB]. 
Proof By Axiom 12.24, ( CAB] would imply not [ABC]. 
THEOREM 1 2.242 If [ABC], then A =fa B =fa C (that is, in view of Axiom 

12.23, the three points are all distinct). 
Proof If B = C, the two conclusions of Axiom 12.24 are contradictory. 

Similarly, we cannot have A = B. 
DEFINITIONS. If A and B are two distinct points, the segment AB is the set 

of points P for which [APB]. We say that such a point Pis on the segment. 
Later we shall apply the same preposition to other sets, such as "lines." 

THEOREM 1 2.243 Neither A nor B is on the segment AB. 
Proof If A or B were on the segment, we would have [AAB] or [ABB], 

contradicting 12.242. 
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THEOREM 1 2.244 Segment AB = segment BA. 
Proof By Axiom 12.24, [APB] implies [BPA]. 
DEFINITIONS. The interval AB is the segment AB plus its end points A 

and B: 
AB = A +  AB + B. 

The ray Al B ("from A, away from B") is the set of points P for which [PAB]. 
The line AB is the interval AB plus the two rays Al B and Bl A :  

lineAB = AIB + AB +  BIA. 
COROLLARY 1 2.2441 Interval AB = interval BA ; line AB = line BA. 
AXIOM 12.25 If C and D are distinct points on the line AB, then A is on the 

line CD. 
THEOREM 1 2.251 If C and D are distinct points on the line AB then 

line AB = line CD. 
Proof If A, B, C, D are not all distinct, suppose D = B. To prove that 

line AB = line BC, letXbe any point on BC except A or B. By 12 .25,A, like 
X, is on BC. Therefore B is on AX, and X is on AB. Thus every point on 
BC is also on AB. Interchanging the roles of A and C, we see that similarly 
every point on AB is also on BC. Thus AB = BC. Finally, if A, B, C, D are 
all distinct, wehaveAB = BC =  CD. 

COROLLARY 12.251 1 Two distinct points lie on just one line. Two dis
tinct lines (if such exist) have at most one common point. (Such a com mon 
point Fis called a point of intersection, and the lines are said to meet in F.) 

COROLLARY 1 2.2512 Any three distinct points A, B, C on a line satisfy 
just one of the relations [ABq, [BCA], [CAB]. 

AXIOM 1 2.26 If AB is a line, there is a point C not on this line. 
THEOREM 1 2.261 If C is not on the line AB, then A is not on BC, nor B on 

CA: the three lines BC, CA, AB are distinct. 
Proof By 12.25, if A were on BC, C would be on AB. 
DEFINITIONS. Points lying on the same line are said to be  collinear. 

Three non-collinear points A, B, C determine a triangle ABC, which consists 
of these three points, called vertices, together with the three segments BC, CA, 
AB, called sides. 

AXIOM 1 2.27 If ABC is a triangle and [BCD] and [ CEA 1 then there is, on 
the line DE, a point F for which [AFB]. (See Figure 12.2a.) 

THEOREM 1 2.271 Between two distinct points there is another point. 
Proof Let A and B be the two points. By 12.26, there is a point E not on 

the line AB. By 12.22, there is a point C for which [AECl By 12.251, the 
line AC is the same as AE. By 12.26 1  (applied to ABE), B is not on this 
line: therefore ABC is a triangle. By 12.22 again, there is a point D for which 
[BCD]. By 12.27, there is a point F between A and B. 
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THEOREM 1 2.272 In the notation of Axiom 12.27, [DEF]. 
Proof Since Flies on the line DE, there are (by 12.2512) just five possi

bilities: F = D, F = E, [EFD], [FD.E], [DEF]. Either of the first two would 
make A, B, C collinear. 

If[EFD], we could apply 12.27 to the triangle DCEwith [CEA] and [EFD] 
(Figure 12.2b), obtaining X on AF with [DXC]. Since AF and CD cannot 
meet more than once, we have X = B, so that [DBC]. Since [BCD], this 
contradicts 12.24. 

Similarly (Figure 12.2c) we cannot have [FD.E]. The only remaining pos
sibility is [DEF]. 
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This proof is typical; so let us be content to give the remaining theorems 
without proofs [Veblen 1 ,  pp. 9-15; Forder 1 ,  pp. 49-55}. 

1 2.273 A line cannot meet all three sides of a triangle. (Remember that 
the "sides" are not intervals, nor whole lines, but only segments.) 

1 2.274 if [ABC] and [BCD], then [ABD] . 
1 2.275 lf [ABC] and [ABD] and C =,= D, then [BCD] or [BDq, and [A CD] or [ADC]. 
1 2.276. lf[ABD] and [ACD] and B =,= C, then [ABC] or[ACB]. 
1 2.277 lf[ABC] and [ACD], then [BCD] and[ABD]. 
DEFINITION. If[ABC] and [A CD], we write [ABCD]. 
This four-point order is easily seen to have all the properties that we should 

expect, for example, if [ABCDJ, then [DCBA], but all the other orders are 
false. 

Any point O on a  segment AB decomposes the segment into two segments: 
A O  and OB. (We are using the word decomposes in a technical sense 
[Veblen 1 ,  p. 21), meaning that every point on the segment AB except O itself 
is on just one of the two "smaller" segments.) Any point O on a ray from 
A decomposes the ray into a segment and a ray: AO and 01 A. Any point 0 on a line decomposes the line into two "opposite" rays; if[AOB], the rays 
are 0/ A and 0/ B. The ray 01 A, containing B, is sometimes more conven
iently called the ray OB. 

For any intege� n > 1 ,  n distinct collinear points decompose their line into 
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two rays and n - 1 segments. The points can be named P1, P2, . . . . .  P n in 
such a way that the two rays are P11 Pn, P.,I P1, and the n - l segments are 

P1P2, P2Pa, . . .  , Pn-1Pn , 
each containing none of the points. We say that the points are in the order 
P1P2 . . .  Pn, and write [P1P2 . . .  P.,]. Necessary and sufficient conditions for 
this are 

[P1P2Pa], [P2PaP4], . . .  , fPn-2Pn-1Pn]-
Naturally, the best logical development of any subject uses the simplest or 

"weakest" possible set of axioms. (The worst occurs when we go to the op
posite extreme and assume everything, so that there is no development at 
all!) In his original formulation of Axiom 12.27 [Pasch and Dehn 1 ,  p. 2 : 
"IV. Kemsatz"] Pasch made the following far stronger statement: If a line in 
the plane of a given triangle meets one side, it also meets another side ( or 
else passes through a vertex). Peano's formulation, which we have adopted, 
excels this in two respects. The word "plane" (which we shall define in 
§ 12.4) is not used at all, and the line DE penetrates the triangle A BC in a 
special manner, namely, before entering through the side CA, it comes 
from a point D on Cl B. It might just as easily have come from a point on 
Al B (which is the same with C and A interchanged) or from a point on Bl A 
or BIC (which is quite a different story). The latter possibility (with a slight 
change of notation) is covered by the following theorem (12.278). Axiom 
12.27 is "only just strong enough"; for, although it enables us to deduce the 
statement 12.278 of apparently equal strength, we could not reverse the roles: 
ifwe tried instead to use 12.278 as an axiom, we would not be able to deduce 
12.27 as a theorem! A 

H 
Figure 12.2d 

THEOREM 1 2.278 If ABC is a triangle and[AFB] and [BCD], then there is, 
on the line D F, a point E for which [CEA]. 

Proof. Take Hon Bl F (as in Figure 12.2d) and consider the triangle DFB 
with [FBH] and [BCD]. By 12.27 and 12.272, there is a point R for which 
[DRF] and [HCR]. By 12.274, [AFB] and [FBH] imply [AFR]. Thus we 
have a triangle DAF with [AFR] and [FRD]. By 12.27 and 12.272 again, 
there is a point L for which [DLA] and [HRL). By 12.277, [HCR] and [HRL] 
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imply [CRL]. Thus we have a triangle CAL with [ALD] and [LRC]. By 
12.27 a third time, there is, on the line DR (=DF), a point E for which [CEA]. 

EXERCISES 
I. A line contains infinitely many points. 
2. We have defined a segment as a set of points. At what stage in the above de

velopment can we assert that this set is never the null set? [Forder 1, p. 50.) 
3. In the proof of 12.272, we had to show that the relation [FDE) leads to a con

tradiction. Do this by applying 12.27 to the triangle BFD (instead of EAF). 
4. Given a finite set of lines, there are infinitely many points not lying on any of 

the lines. 
5. If ABC is a triangle and [BLC), [CMA], [ANB], then there is a point E for which 

[AEL) and [MEN]. [Forder 1,  p. 56.) 
6. If ABC is a triangle, the three rays BIC, AIC, Al B have a transversal (that is, a 

line meeting them all). (K. B. Leisenring.) 
7. lf ABC is a triangle, the three rays BIC, CIA, AIB have no transversal. 

1 2.3 SYLVESTER'S PROBLEM OF COLLINEAR POINTS 

Almost any field of mathematics offered on enchanting world for dis
covery to Sylvester. 

E. T. Bell [ 1,  p. 433] 

It may seem to some readers that we have been using self-evident axioms 
to prove trivial results. Any such feeling of irritation is likely to evaporate 
when it is pointed out that the machinery so far developed is sufficiently 
powerful to deal effectively with Sylvester's conjecture (§ 4.7), which baffled 
the world's mathematicians for forty years. This matter of collinearity 
clearly belongs to ordered geometry. Kelly's Euclidean proof involves the 
extraneous concept of distance: it is like using a sledge hammer to crack 
an almond. The really appropriate nutcracker is provided by the follow
ing argument. 

THEOREM. If n points are not all collinear, there is at least one line con
taining exactly two of them. 

Proof Let P1, P2, . . .  , Pn be the n points, so named that the first three 
are not collinear (Figure 12.3a). Lines joining P1 to all the other points of 
the set meet the line P2P3 in at most n - l points (including P2 and P3). Let 
Q be any other point on this line. Then the line P1 Q contains P1 but no 
other Pi. 

Lines joining pairs of P's meet the line P1 Q in at most ( n 2 1) + 1 points 
(including P1 and Q). Let P1A be one of the segments that arise in the de
composition of this line by all these points. (Possibly A = Q.) Then no 
joining line P1P; can meet the "empty" segment P1A. By its definition, A 
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Figure 12.3a Figure 1 2.3b 

lies on at least one joining line, say P4Ps. If P4 and Ps are the only P's on 
this line (as in Figure 12.3a) our task is finished. If not, we have a joining 
line through A containing at least three of the P's, which we can name P 4, 

P5, Pa in such an order that the segment APs contains P 4 but not Pa. (Since 
A decomposes the line into two opposite rays, one of which contains at least 
two of the three P's, this special naming is always possible. See Figure 
12.3b.) We can now prove that the line P1Ps contains only these two P's. 

1s 1i 
Figure 1 2.3c 

A A 

Figure 1 2.3d 

We argue by reductio ad absurdum. If the line P1P5 contains (say) P1, we 
can use 12.27 and 12.278 to deduce that the segment P1A meets one of the 
joining lines, namely, PGP1 or P4P1. In fact, it meets PaP7 if [P1P7P5] (as 
in Figure 12.3c), and it meets P4P7 if [ P1P5P7] or [ P5P1P7] (as in Figure 
12.3d). In either case our statement about the "empty" segment is contra
dicted. 

Thus we have found, under all possible circumstances, a line (P 4P5 or 
P1Ps) containing exactly two of the P's. 

EXERCISE 

Justify the statement that the joining lines meet the line P1Q in at most { n 2 1 } + 1 
points. In the example shown in Figure 12.3b, this number (at most 11)  is only 5; 
why? (The symbol(�Jstands for the number of combinations of i things takenj at a 

time; for instance,(�}is the number of pairs, namely t i  (i - 1).) 
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1 2.4 PLANES AND HYPERPLANES 
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If i hyperplanes in n dimensions ore so placed that every n but no 
n + 1 hove o common point, the number of regions info which they 
decompose the space is 

Ludwig Schlofli (1814-1895) 
(Schlofli 1, p. 209] 

It is remarkable that we can do so much plane geometry before defining 
a plane. But now, as the Walrus sai9, "The time has come . . . .  " 

DEFINITIONS. 1f A, B, C are three non-collinear points, the plane ABC 
is the set of all points collinear with pairs of points on one or two sides of 
the triangle ABC. A segment, interval, ray, or line is said to be in a plane 
if all its points are. 

Axioms 12.21 to 12.27 enable us to prove all the familiar properties of 
incidence in a plane, including the following two which Hilbert [1,  p. 4} took 
as axioms: 

Any three non-collinear points in a plane a completely determine that 
plane. 

If two distinct points of a line a lie in a plane a, then every point of a 
lies in a. 

DEFINITIONS. An angle consists of a point O and two non-collinear rays 
going out from 0. The point O is the vertex and the rays are the sides of 
the angle [Veblen 1 ,  p. 2 1 ;  Forder 1 ,  p. 69]. If the sides are the rays OA 
and OB, or a1 and b1, the angle is denoted by LAOB or a1b1 (or L BOA, 
or b1a1). The same angle a1b1 is determined by any points A and B on its 
respective sides. If C is any point between A and B, the ray OC is said to 
be within the angle. 

From here till the statement of Axiom 12.41, we shall assume that all the 
points and lines considered are in one plane. 

A convex region is a set of points, any two of which can be joined by a 
segment consisting entirely of points in the set, with the extra condition that 
each of the points is on at least two non-collinear segments consisting en
tirely of points in the set. In particular, an angular region is the set of 
all points on rays within an angle, and a triangular region is the set of all 
points between pairs of points on distinct sides of a triangle. An angular 
(or triangular) region is said to be bounded by the angle (or triangle). 

It can be proved [Veblen 1 ,  p. 21} that any line containing a point of a 
convex region "decomposes" it into two convex regions. In particular, a 
line a decomposes a plane (in which it lies) into two half planes. Two points 
are said to be on the same side of a if they are in the same half plane, on 
opposite sides if they are in opposite half planes, that is, if the segment join-
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ing them meets a. In the latter case we also say that a separates the two 
points. (It is unfortunate that the word "side" is used with two different 
meanings, both well established in the literature. However, the context will 
always show whether we are considering the two sides of an angle, which 
are rays, or the two sides of a line, which are half planes.) 

Figure 1 2.4a 

As we remarked in § 12.2, any point O on a  line·a decomposes a into two 
rays, say a1 and a2• Any other line b through O is likewise decomposed by 
0 into two rays b1 and b2, one in each of the half planes determined by a. 
Each of these rays decomposes the half plane containing it into two angu
lar regions. Thus any two intersecting lines a and o together decompose 
their plane into four angular regions, bounded by the angles 

as in Figure 12.4a. The opposite rays a1 and a2 are said to separate the 
rays b1 and b2; they likewise separate all the rays within either of the angles 
a1b1, b1a2 from all the rays within either of the angles a2b2, b2a1. We also 
say that the rays a1 and b1 separate all the rays between them from a2, b2, 
and from all the rays within b1a2, a2b2, or b2a1, 

It follows from the definition of a line that two distinct points, A and B, 
decompose their line into three parts: the segment AB and the two rays 
AIB, BIA. Somewhat similarly, two nonintersecting (but coplanar) lines, 
a and b, decompose their plane into three regions. One of these regions lies 
between the other two, in the sense that it contains the segment AB for any 
A on a and B on b. Another line c is said to lie between a and b if it meets 
such a segment AB but does not meet a or b, and we naturally write [acb]. 

1 2.401 If ABC and A'B'C' are two triads of collinear points, such that 
the three lines AA ', BB', CC' have no intersection, and if[A CB] , then [A'C' B']. 

Analogous consideration of an angular region yields 
1 2.402 If ABC and A 'B'C' are two triads of collinear points on distinct 

lines, such that the three lines AA', BB: CC' have a common point O which is not 
between A and A', nor between B and B� nor between C and C', and if[A CB], 
then [A'C'B1-

We need one or more further axiom·s to determine the number of dimen
sions. If we are content to work in two dimensions we say 

AXIOM 1 2.41 All points are in one plane. 
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If not [Forder 1 ,  p. 60], we say instead: 
AXIOM 1 2.42 If ABC is a plane, there is a point D not in this plane. 
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We then define the tetrahedron ABCD, consisting of the four non-coplanar 
points A , B, C, D, called vertices, the six joining segments AD, BD, CD, 
BC, CA, AB, called edges, and the four triangular regions BCD, CDA, 
DAB, ABC, called/aces. The space (or "3-space") ABCD is the set of all 
points collinear with pairs of points in one or two faces of the tetrahedron 
ABCD. 

We can now deduce the familiar properties of incidence of lines and planes 
[Forder 1 ,  pp. 6 1-65). In particular, any four non-coplanar points of a space 
determine it, and the line joining any two points of a space lies entirely in the 
space. If Q is in the space ABCD and P is in a face of the tetrahedron 
ABCD, then PQ meets the tetrahedron again in a point distinct from P. 

If we are content to work in three dimensions, we say 
AXIOM 1 2.43 All points are in the same space. 

D 

C 

B 

Figure 12.4b 

Consequently: 
THEOREM 1 2.431 Two planes which meet in a point meet in another point, 

and so in a line. 
Proof Let P be the common point and a one of the planes. Take A, 

B, C in a  so that P is inside the triangle ABC. Let DPQ be a triangle in 
the other plane {3 (Figure 12.4b). If D or Q lies in a, then a and /3 have 
two common points. If not, PQ meets the tetrahedron ABCD in a point R 
distinct from P; and DR, in {3, meets the triangle ABC in a point common 
to a and /3. 

If, on the other hand, we wish to increase the number of dimensions, we 
replace 12.43 by 

AXIOM 1 2.44 If A0A1A2A3 is a 3-space, there is a point A4 not in this 
3-space. 
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We then define the simplex AoA1AzA3A4 which has 5 vertices Ai, 10 edges 
A;A; (i < J), 10 faces A,A;Ak (i < j < k), and 5 cells A0;A"'4 1 (which are 
tetrahedral regions.) The 4-space AoA1AzA_JA4 is the set of points collinear 
with pairs of points on one or two cells of the simplex. 

The possible extension to n dimensions (using mathematical induction) 
is now clear. The n-space AoA1 . . .  An is decomposed into two convex re
gions (half-spaces) by an (n- 1)-dimensional subspace such asAo.A 1 . . .  An-i , 
which is called a hyperplane (or "prime," or "(n- 1)-flat"). 

EXERCISES 1. Any 5 coplanar points, no 3 collinear, include 4 that form a convex quadrangle. 2. A ray OC within LA OB decomposes the angular region into two angular regions, bounded by the angles AOC and COB. [Veblen 1,  p. 24.) 3. If m distinct coplanar lines meet in a point 0, they decompose their plane into 2m angular regions [Veblen 1,  p. 26). 4. If ABC is a triangle, the three lines BC, CA, AB decompose their plane in to seven convex regions, just one of which is triangular. 5. If m coplanar lines are so placed that every 2 but no 3 have a common point, they decompose their plane into a certain number of convex regions. Call this number /(2, m). Then 
/(2, m) = /(2, m - l) + m. But /(2, 0) = 1. Therefore /(2, 1) = 2, /(2, 2) = 4, /(2, 3) = 7, and /(2, m) 

= I +  m + (�) -

6. If m planes in a 3-space are so placed that every 3 but no 4 have a common point, they decompose their space into (say)/(3, m) convex regions. Then 
/(3, m) = /(3, m - I) + /(2, m - l). But/(3, 0) = I .  Therefore/(3, I) = 2, /(3, 2) = 4, /(3, 3) = 8,  /(3, 4) = 15,  and 

/(3, m) = l + ( 7) + ( ;) + ( ;) . 

7. Obtain the analogous result for m hyperplanes in an n-space. 
1 2,5 CONTINUITY 

Nothing but Geometry con furnish a thread for the labyrinth of the 
composition of the continuum . . .  and no one will arrive at a truly 
solid metaphysic who hos not passed through that labyrinth. 

G. W. Leibniz (1646-1716) 
[Russell 2, pp. 1 OB -109) 

Between any two rational numbers (§ 9.1) there is another rational num
ber, and therefore an infinity of rational numbers; but this does not mean 
that every real number (§ 9.2) is rational. Similarly, between any two points 
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( 12.271) there is another point, and therefore an infinity of points; but this 
does not mean that the axioms in § 12.2 make the line "continuous." In fact, 
continuity requires at least one further axiom. There are two well-recog
nized approaches to this subtle subject. One, due to Cantor and Weier
strass, defines a monotonic sequence of points, with an axiom stating that 
every bounded monotonic sequence has a limit [Coxeter 2, Axiom 10.1 1]. The 
other, due to Dedekind, obtains a general point on a line as the common 
origin of two opposite rays [Coxeter 3, p. 162]. Its arithmetical counter
part is illustrated by describing y2 as the "section" between rational num
bers whose squares are less than 2 and rational numbers whose squares are 
greater than 2. Dedekind's Axiom, though formidable in appearance, is 
the more readily applicable; so we shall use it here: 

AXIOM 1 2.51 For every partition of all the points on a line into two non
empty sets, such that no point of either lies between two points of the other, 
there is a point of one set which lies between every other point of that set and 
every point of the other set. 

This axiom is easily seen to imply several modified versions of the same 
statement. Instead of "the points on a line" we could say "the points on a 
ray" or "the points on a segment" or "the points on an interval." (In the 
last case, for instance, the rest of the line consists of two rays which can be 
added to the two sets in an obvious manner.) Another version [Forder 1 ,  
p. 299] is: 

THEOREM 1 2.52 For every partition of all the rays within an angle into 
two nonempty sets, such that no ray of either lies between two rays of the other, 
there is a ray of one set which lies between every other ray of that set and every 
ray of the other set. 

To prove this for an angle LAOB, we consider the section of all tbe rays 
by the line AB, and apply the "segment" version of 12.51 to the segment AB. 

1 2.6 PARALLELISM 

In the last few weeks I have begun to put down a few of my own Medi
tations, which are already ta some extent nearly 40 years aid. These I 
had never put in writing, so I have been compelled three or four times 
to go aver the whole matter afresh in my head. 

C. F. Gauss (1777 -1855) 
(Letter to H. K. Schumacher, Moy 17, 1831, os lronslated by Bonola 

[1, p. 67]) 

The idea of defining, through a given point, two rays parallel to a given 
line (in opposite senses), was developed independently by Gauss, Bolyai, 
and Lobachevsky. The following treatment is closest to that of Gauss. 
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THEOREM 1 2.61 For any point A and any line r, not through A, there are 
just two rays from A, in the plane Ar, . which do not meet r and which separate 
all the rays from A that meet r from all the other rays that do not. 

B C D E 

Figure 12,6a 

Proof Taking any two distinct points B and C on r, we apply 12.52 to 
the angle between the rays AC and Al B (marked in Figure 12.6a). We con
sider the partition of all the rays within this angle into two sets according 
as they do or do not meet the ray Cl B. Clearly, these sets are not empty, 
and no ray in either set lies between two in the other. We conclude that 
one of the sets contains a special ray p1 which lies between every other ray 
of that set and every ray of the other set. In fact, p1 belongs to the second set. For, if it met Cl B, say in D, we 
would have [BCD]. By Axiom 12.22, we could take a point E such that 
[ CDE], with the absurd conclusion that AE belongs to both sets : to the first, 
because E is on Cl B, and to the second, because AD lies between AC and 
AE. 

We have thus found a ray Pi, within the chosen angle, which is the "first" ray that fails to meet the ray Cl B; this means that every ray within the angle between AC and p1 does meet Cl B. Interchanging the roles of B 
and C, we obtain another special ray q1, on the other side of AB, which 
may be described (for a counterclockwise rotation) as the "last" ray that 
fails to meet BIC. Since the line r  consists of the two rays BIC, Cl B, along 
with the interval BC, we have now found two rays p1, q1, which separate all 
the rays from A that meet r from all the other rays (from A) that do not. [Forder 1 ,  p. 300.] 

These special rays from A are said to be parallel to the line r in the two senses: p1 parallel to Cl B, and q1 parallel to Bl C. (Two rays are said to 
have the same sense if they lie on the same side of the line joining their in
itial points.) For the sake of completeness, we de.fine the rays parallel to r from a point 
A on r itself to be the two rays into which A decomposes r. The distinction between affine geometry and hyperbolic geometry depends on the question whether, for other positions of A, the two rays Pi, q1 are still the two halves of one line. If they are, this line decomposes the plane into two half planes, 
one of which contains the whole of the line r. If not, the lines p and q (which 
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contain the rays) decompose the plane into four angular regions 

p1q1, q1])2, p2q2, q2p1. 

In this case, by 12.61, r lies entirely in the regionp1q1. 

COROLLARY 1 2.62 For any point A and any line r, not through A, there is 
at least one line through A, in the plane Ar, which does not meet r. 

D 

r C 

Figure 12.6b Figure 12.6c 

Another familiar property of parallelism is its "transmissibility": 
THEOREM 1 2,63 The parallelism of a ray and a line is maintained when 

the beginning of the ray is changed by the subtraction or addition of a segment. 
Proof [Gauss 1 ,  vol. 8, p. 203]. Letp1 be a ray from A which is parallel 

to a line r through B, and let A' be any point on this ray (Figure 12.6b) or on 
the opposite ray p2 (Figure 12.6c). The modified ray p'1, beginning at A', 
is A'IA or A'A, respectively; it obviously does not meet r. What remains 
to be proved is that every ray from A', within the angle between A'B and 
p'1, does meet r. Let D be any point on such a ray·(Figure 12.6b) or on its 
opposite (Figure 12.6c). Since Pt (from A) is parallel to r, the line AD ( con
taining a ray within the angle between AB and Pt) meets r, say in C. The 
line A'B, separatmg A from D, meets the segment AD, say in E. By Axiom 
2.27, applied to the triangle CBE with [BEA'] and [£DC] (Figure 12.6b) or 
to the triangle BCE with [CED] and [EA'B] (Figure 12.6c), the line A'D 
meets BC. Thus p' 1 is parallel to r. 

This property of transmissibility enables us to say that the line p = AA' 
is parallel to the line r = BC, provided we remember that this property is 
associated with a definite "sense" along each line. 

Busemann [ 1,  p. 139 (23.5)] has proved that it is not possible, within the 
framework of two-dimensional ordered geometry, to establish the "sym
metry" of parallelism: that if p is parallel to r then r is parallel top. To sup
ply this important step we need either Axiom 12.42 [as in Coxeter 3, pp. 
165-177] or the affine axiom of parallelism (13.11) or the absolute axioms 
of congruence(§ 15 .1). 
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THEOREM 12.64 If two lines are both parallel to a third in the same sense, 
there is a line meeting all three. 

Proof In affine geometry this is obvious, so let us assume the geometry to 
be hyperbolic. Let q be the other one of the two lines parallel to r through 
a point A on p, and let r be in the angular region p1q1, so that the rays Pi 
and q1 (from A) are parallel to r in opposite senses and s is parallel to r in 
the same sense as p1. Let B and D be arbitrary points on r and s, respec
tively. 

If D is in the region p1q1, the line AD is a transversal. If D is in p1q2, 
BD is a transversal. If D is in p2q2, both AD and BD are transversals. 
Finally, if D is in p2q1, AB is a transversal. 

EXERCISES 

1. Ifp is parallel to s and [prs], thenp is parallel to ,. (See Figure 15.2c with s for q.) 
2. Consider all the points strictly inside a given circle in the Euclidean plane. Re

gard all other points as nonexistent. Let chords of the circle be called lines. Then all 
the axioms 12.21-12.27, 12.41, and 12.51 are satisfied. Locate the two rays through 
a given point parallel to a given line. Note that they form an angle (as in Figure 16.2b). 



1 3  

Affine geometry 

The first three sections of this chapter contain a systematic development 
of the foundations of affine geometry. In particular, we shall see how length 
may be measured along a line, though independent units are required for 
lines in different directions. In §§ 13.4-7 we shall investigate such topics 
as area, affine transformations, lattices, vectors, barycentric coordinates, 
and the theorems of Ceva and Menelaus. Finally, in § 13.8 and § 13.9, we 
shall extend these ideas from two dimensions to three. 

According to Blaschke [1 , p. 31 ;  2, p. 12], the word "affine" (German 
a.ffin) was coined by Euler. But it was only after the launching of Klein's 
Erlangen program (see Chapter 5) that this geometry became recognized as 
a self-contained discipline. Many of the propositions may seem familiar; 
in fact, most readers will discover that they have often been working in the 
affine plane without realizing that it could be so designated. 

Our treatment is somewhat more geometric and less algebraic than that 
of Arlin's Geometric Algebra [Artin 1 ;  see especially pp. 58, 63, 71]. Inci
dentally, we shall find that our Axiom 13.12 (which he calls DP) implies 
Theorem 13.122 (his Da): this presumably means that his Axiom 4b implies 
4a. 

1 3.1 THE AXIOM OF PARALLELISM AND THE "DESARGUES" AXIOM 

Mathematical language is difficult but imperishable. I do not believe 
that any Greek scholar of to-doy con understand the idiomatic under
tones of Plato's dialogues, or the jokes of Aristophanes, as thoroughly 
as mathematicians can understand every shade of meaning in Archi
medes' works. 

M. H. A. Newman 

(Mathematical Gazette 43, 1959, p. 167) 

In this axiomatic treatment, we regard the real affine plane as a special 
case of the ordered plane. Accordingly, the primitive concepts are point 
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and intermediacy, satisfying Axioms 12.21-12.27, 12.41 and 12.51. Affine 
geometry is derived from ordered geometry by adding the following two 
extra axioms: 

AXIOM 1 3. 1 1  For any point A and any line r, not through A, there is at 
most one line through A, in the plane Ar, which does not meet r. 

AXIOM 1 3. 1 2  If A, A', B, B', C, C', 0 are seven distinct points, such that 
AA', BB', CC' are three distinct lines through 0, and if the line AB is parallel to 
A'B', and BC to B'C', then also CA is parallel to C'A'. 

The affine axiom of parallelism (13.1 1) combines with 12.62 to tell us that, 
for any point A and any line r, there is exactly one line through A,  in the 
plane Ar, which does not meet r. Hence the two rays from A parallel to r 
are always collinear, any two lines in a plane that do not meet are parallel, 
and parallelism is an equivalence relation. The last remark comprises three 
properties: 

Parallelism is reflexive. (Each line is parallel to itself.) 
Parallelism is symmetric. (If p is parallel to r, then r is parallel to p.) 
Parallelism is transitive. (If p and q are parallel to r, then p is parallel to 

q. Euclid I. 30.) 
In the manner that is characteristic of equivalence relations, every line 

belongs to a pencil of parallels whose members are all parallel to one an
other. 

Figure 13.1 a Figure 13, 1 b 

Axiom 13. 12 (see Figure 13. la) is probably familiar to most readers either 
as a corollary of Euclid Vl.2 or as an affine form of Desargues's theorem. 
We shall see that it implies 

THEOREM 1 3.121 If ABC and A' B' C' are two triangles with distinct ver
tices, so placed that the line BC is parallel to B'C', CA to C'A', and AB to 
A'B', then the three lines AA', BB', CC' are either concurrent or parallel. 

Proof. If the three lines AA', BB', CC' are not all parallel, some two of 
them must meet. The notation being symmetrical, we may suppose that 
these two are AA' and BB', meeting in 0, as in Figure 13. lb. Let 0C meet 
B'C' in C1. By Axiom 13.12, applied to AA', BB', CC1, the line A C  is paral
lel to A'C1 as well as to A'C'. By Axiom 13. 1 1 ,  C1 lies on A'C' as well as 
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on B'C'. Since A'B'C' is a triangle, C1 coincides with C'. Thus, if AA', 
BB', CC' are not parallel, they are concurrent [Forder 1, p. 158]. 

Roughly speaking, Axiom 13.12 is the converse of one half of Theorem 
13.121. Th� converse of the other half is 

THEOREM 1 3. 1 22 If A, A', B, B', C, C' are six distinct points on three 
distinct parallel lines AA', BB', CC', so placed that the line AB is parallel to 
A'B', and BC to B'C', then also CA is parallel to C'A'. 

Proof Through A' draw A'C1 parallel to AC, to meet B'C' in C1, as in 
Figure 13.lc. By 13.121, applied to the triangles ABC and A'B'C1, since 
AA' and BB' are parallel, CC1 is parallel to both of them, and therefore 
also to CC'. Hence C1 lies on CC' as well as on B'C'. Since the parallel 
lines BB' and CC' are distinct, B' cannot lie on CC'. Therefore C1 coincides 
with C', and A'C' is parallel to AC. 

Figure 1 3. 1 c 

EXERCISES 

1. If a line in the plane of two parallel lines meets one of them, it meets the other 
also. 

2. Can we always say, of three distinct parallel lines, that one lies between the other 
two? 

13.2 DILATATIONS 

Dilatations . . .  ore one-to-one mops of the plane onto itself which 
move all points of a line into points of a parallel line. 

E. Artin [1 ,  p. 51] 

Four non-collinear points A, B, C, D are said to form a parallelogram 
ABCD if the line AB is parallel to DC, and BC to AD. Its vertices are the 
four points; its sides are the four segments AB, BC, CD, DA, and its diag
onals are the two segments A C, BD. Since B and D are on opposite sides 
of A C, the diagonals meet in a point called the center [Forder 1 ,  p. 140). 



194 AFFINE GEOMETRY 

As in § 5.1, we define a dilatation to be a transformation which transforms 
each line into a parallel line. But now we must discuss more thoroughly 
the important theorem 5.12, which says that two given segments, AB and 
A'B', on parallel lines, determine a unique dilatation AB -) A'B'. 

A B 

Figure 13.2a 

For any point P, not on AB, we can find a corresponding point P' by 
drawing A' P' parallel to AP, and B' P' parallel to BP, as in Figure 5. la. (The 
lines thus drawn through A' and B' cannot be parallel, for, if they were, AP 
and BP would be parallel.) Similarly, another point C yields C', as in Figure 
13.2a. By 13.121, the three lines AA', BB', CC' are either concurrent or 
parallel. So likewise are AA', BB', PP'. 

If the two parallel lines AB and A' B' do not coincide, it follows that the 
four lines AA', BB', CC', PP' are all either concurrent or parallel. Then, 
by 13.12 or 13.122 (respectively), CP and C' P' are parallel, so that the trans
formation is indeed a dilatation. If the lines AB and A' B' do coincide, we 
can reach the same conclusion by regarding the transformation as A C -) A' C' 
instead of AB -) A'B'. 

We see now that a given dilatation may be specified by its effect on any 
given segment. The inverse of the dilatation AB -) A' B' is the dilatation 
A'B' -) AB. The product of two dilatations, AB -) A' B' and A' B' -) A" B", 
is the dilatation AB -) A" B". In particular, the product of a dilatation with 
its inverse is the identity, AB -) AB. Thus all the dilatations together form 
a (continuous) group. 

The argument used in proving 5.13 shows that, for a given dilatation, the 
lines PP' which join pairs of corresponding points are invariant lines. The 
discussion of5.12 shows that all these lines are either concurrent or parallel. 

If the lines PP' are concurrent, their intersection 0 is an invariant point, 
and we have a central dilatation 

0A - 0A' 
(where A' lies on the line 0A). The invariant point 0 is unique; for, if 0 
and 01 were two such, the dilatation would be 001 -) 001, which is the 
identity. 
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D D' 
Figure 13.2b 

If, on the other hand, the lines PP' are parallel, there is no invariant point, 
and we have a translation AB ➔ A'B', where not only is AB parallel to A'B' 
but also AA' is parallel to BB'. If these two parallel lines are distinct, 
AA' B' B is a parallelogram. If not, we can use auxiliary parallelograms 
AA'C'C and C'CBB' (or AA' D' D and D' DBB') as in Figure 13.2b. Two ap
plications of 13. 122 suffice to prove that, when A, B, A' are given, B' is inde
pendent of the choice of C ( or D). Hence 

1 3.21 Any two points A and A' determine a unique translation A ➔ A'. 
We naturally include, as a degenerate case, the identity, A ➔ A. It follows 

that a dilatation, other than the identity, is a translation if and only if it has 
no invariant point. Moreover, a given translation may be specified by its 
effect on any given point; in fact, the translation A ➔ A' is the same as 
B ➔ B' if AA' B' B is a parallelogram, or if, for any parallelogram AA'C'C 
based on AA', there is another parallelogram C'CBB'. 

We next prove that dilatations are "ordered transformations:" 
1 3.22 The dilatation AB ➔ A' B' transforms every point between A and B 

into a point between A' and B'. 
Proof If the lines AB and A' B' are distinct, the fact that [A CB] implies 

[A' CB'] follows at once from 12.401 (for a translation) or 12.402 (for a central 
dilatation). To obtain the analogous result for two corresponding triads on 
an invariant line CC', we draw six parallel lines through the six points, as in 
Figure 13.2c, and use the"fact that [acb] implies [a'c'b']. 

To prove Theorem 3.21, which says that the product of two translations is a 
translation, we can argue thus: since translations are dilatations, the product 
is certainly a dilatation. If it is not a translation it has a unique invariant 
point 0. If the first of the two given translations takes 0 to 0', the second 
must take O' back to 0. But the translation O' ➔ 0 is the inverse of 
0 ➔ 0'. Thus the only case in which the product of two translations has 
an invariant point is when one of the translations is the inverse of the other. 
(By our convention, the product is still a translation even then.) Hence 

13.23 The product of two translations A ➔ -B and B ➔ C is the translation 
A ➔ C. 
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a C b a' 

B' 

Figure 13.2c 

To prove that this is a commutative product (as in 3.23), we consider first 
the easy case in which the two translations are along nonparallel lines. 
Completing the parallelogram ABCD, we observe that the translations 
A ➔ B and B ➔ Care the same as D ➔ C and A ➔ D, respectively. Hence 
their product in either order is the translation A ➔ C: 

(A ➔ B)(B ➔ C) = (A ➔ D)(D ➔ C) 
= (B ➔ C)(A ➔ B). 

To deal with the product of two translations T and X along the same line, 
let Y be any translation along a nonparallel line, so that X commutes with 
both Y and TY. Then 

and therefore 

TXY = TYX = XTY 

TX = XT 

[cf. Veblen and Young 2, p. 76). 

As a special case of 5.12, we see that any two distinct points, A and B, are 
interchanged by a unique dilatation AB ➔ BA, or, more concisely; 

A � B, 
which we call a half-turn. (Of course, A � B is the same as B �A.) If C is 
any point outside the line AB, the half-turn transforms C into the point D in 
which the line through B parallel to A C  meets the line through A paral
lel to BC (Figure 13.2d). Therefore ADBC is a parallelogram, and the same 
half-tum can be expressed as C � D. The invariant lines AB and CD, being 
the diagonals of the parallelogram, intersect in a point 0, which is the in
variant point of the half-turn. It follows that any segment AB has a mid
point which can be defined to be the invariant point of the half-turn A � B, 
and we have proved that the center of a parallelogram is the midpoint of each 
diagonal, that is, that the two oiagonals "bisect" each other. To see how the 
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half-turn transforms an arbitrary point on AB, we merely have to join this 
point to C (or D) and then draw a parallel line through D (or C). 

By considering their effect on an arbitrary point B, we may express any 
two half-turns as A � B and B � C. If their product has an invariant point 
0, each of them must be expressible in the form O � O', that is, they must 
coincide. In every other case, there is no invariant point. Hence 

13.24 The product of two half-turns A - B and B - C is the translation 
A - c. 

Figure 1 3.2d 

We have seen (Figure 13.2d) that, if ADBC is a parallelogram, the half
turn A � B is the same as C - D, and the translation A - D is the same 
as C - B. This connection between half-turns and translations remains 
valid when the parallelogram collapses to form a symmetrical arrangement 
of four collinear points, as in Figure 13.2e: 

A C D B 

Figure 1 3.2e 

1 3.25 The half-turns A � B and C - D are equal if and only if the trans
lations A - D and C - B are equal. 

In fact, the relation (A � B) = ( C - D) implies 
(A - D) = (A - B)(B B D) 

= (C B D)(D � B) = (C - B) 
anq., conversely, the relation (A - D) = (C - B) implies 

(A B B) =  (A - D)(D BB) 
= (C - B)(B (:-'> D) = (C- D). 

In the special case when C and D coincide, we call them C' and deduce that 
C' is the midpoint of AB if and only if the translations A - C' and C' - B 
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are equal. This involves the existence of parallelograms A C' A' B' and 
A'B'C'B, as in Figure 13.2/ Completing the parallelogram B'C'A'C, we ob
Cain a triangle ABC with A', B', C' at the midpoints of its sides. Hence 

1 3.26 The line joining the midpoints of two sides of a triangle is parallel to 
the third side, and the line through the midpoint of one side parallel to another 
passes through the midpoint of the third. 

A 

C 

C' 

Figure 13,2f 

B 

Two figures are said to be homothetic if they are related by a dilatation, 
congruent if they are related by a translation or a half-tum. In particular, 
a directed segment AB is congruent to its "opposite" segment BA by the half
turn A � B. Thus, in Figure 13.21, the four small triangles 

AC'B', C'BA', B'A'C, A'B'C' 
are all congruent, and each of them is homothetic to the large triangle ABC. 

EXERCISES 1. Such equations as those used in proving 13.25 are easily written down if we remember that each must involve an even number of double-headed arrows (indicating half-turns). Explain this rule. 2. The translations A - C and D - B are equal if the translations A - D and C - B are equal. (This is obvious when ADBC is a parallelogram, but remarkable when all the points are collinear.) 3. Setting A = C in the equation 
(A - B)(B - C) = (A - C), 

deduce that any given point C is the invariant point of a half-turn (C +-+ B)(B - C) which, by a natural extension of the symbolism, may be written as 
c - c. 4. If the three diagonals of a hexagon (not necessarily convex) all have the same midpoint, any two opposite sides are parallel (as in Figure 4. le). 5. From any point A1 on the side BC of a triangle ABC, draw A1B1 parallel to BA to meet CA in B1, then B1C1 parallel to CB to meet AB in C1, and then C1A2 parallel to AC to meet BC in A2. If A1 is the midpoint of BC, A2 coincides with it. If not, continue the process, drawing A2B2 parallel to BA, B2C2 parallel to CB, and C2Aa parallel to AC. The path is now closed: A3 coincides with A1. (This is called Thom-
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Figure 13.29 

sen's figure. See Geometrical Magic, by Nev R. Mind, Scripta Mathematica, 19 
(1953), pp. 198-200.) 

6. The midpoints of the four sides of any simple quadrangle are the vertices of a 
parallelogram (Figure 13.2g; cf. Figure 4.2c). This theorem was discovered by Pierre 
Varignon (1654-1722). It shows that the bimedians, which join the midpoints of op
posite sides of the quadrangle, bisect each other. Thus the corollary to Hjelmslev's 
theorem (§ 3.6) becomes an affine theorem when we replace the hypotheses 3.61 by 

AB = BC, A'B' = B'C'. 
7. The midpoints of the six sides of any complete quadrangle are the vertices of a 

centrally symmetrical hexagon ( of the kind considered in Ex. 4, above). 

13.3 AFFINE COORDINATES 

"Yes, indeed," soid the Unicorn, . . . "Whot con we meosure? . . .  
We ore experts in the theory of meosurement, not its proc!ice." 

J. L. Synge [2, p. 51] 

The results of§ 13.2 may be summarized in the statement that all the trans
lations of the affine plane form a continuous Abelian group, which is a sub
group of index 2 in the group of translations and half-turns; and the latter is 
a subgroup ( of infinite index) in the group of dilatations [Veblen and Young 
2, pp. 79, 93]. 

Moreover, the group of translations is a normal subgroup (or "self-con
jugate" subgroup)* in the group of dilatations, that is, if T is a translation 
while S is a dilatation, then S-1TS is a translation [Artin 1 ,  p. 57]. To 
prove this, suppose if possible that the dilatation S-1TS has an invariant 
point. Since this invariant point could have been derived from a suitable 
point O by applying S, we may denote it by os. Thus S-1TS leaves os in
variant. But S-lTS transforms as into OTs. Hence QTs = os. Applying 
S-1, we deduce QT = O, which is absurd (since T has no invariant point). 

If T is A ➔ B and S is A B ➔ A8Bs, then S-1TS is As ➔ Bs. Accord
ingly, it is sometimes convenient to write Ts for S-1TS [see, e.g., Coxeter 1 ,  
p. 39] and to say that the dilatation S transforms the translation T into the 
translation T8• (Since AsBs is parallel to AB, T8 has the same direction as 
T.) In other words, a dilatation transforms the group of translations into 

• Birkhoff and MacLa.ne 1 , p. 148; Coxeter 1, p. 42. 
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itself in the manner of an automorphism: if it transforms T into Ts and 
another translation U into US, it transforms the product TU into (TU)S 
= Tsus and any power of T into the same power of Ts. 

It is convenient to use the italic letter Tfor the point into which the trans
lation T transforms an arbitrarily chosen initial point ( or origin) 1 . Then, if 
a central dilatation S has J as its invariant point, it not only transforms T into 
Ts but also transforms Tinto 'JS. 

X x2 xs 

Figure 1 3.3a 

Applying to the arbitrary point I all the integral powers of a given transla
tion X, we obtain a one-dimensional lattice consisting of infinitely many 
points "evenly spaced" along a line, as in Figure 13.3a. We may regard 
every such point X" as being derived from the point X by a dilatation 
lX - lX" (which leaves the point J invariant). At first we take µ to be an 
integer; but since the same dilatation transforms each Xn into 

(X")n = XJJn, 
we can consistently extend the meaning of X" so as to allow µ to have any 
rational value, and finally any real value. In other words, we can interpolate 
new points between the points of the one-dimensional lattice and then define 
X", for any real µ, to mean the translation I - X". The details are as 
follows. 

For each rational number µ = alb (where a is an integer and b is a positive 
integer) we derive from the point X a new point X" by means of the dilata
tion J}{b - 1xa. A convenient way to construct this point X" is to use the 
lattice of powers of an arbitrary translation Y along another line through the 
initial point 1, drawing a line through the point Y parallel to the join of the 
points J'b and xa, as in Figure 13.3b (cf. Figure 9. lc). 

To verify that the order of such points X" agrees with the order of the ra
tional numbers µ, we take three of them and reduce their µ's to a common 
denominator so as to express them as Xailb, xa,lb, xa,lb. If a1 < a2 < a3, 
so that [Xa, xa, xa,], we can apply 13.22 to the dilatation l}{b � lX, with 
the conclusion that 

[Xa,lb xa,lb xa,lb]. 

Ifµ is irrational, we define X" to be the Dedekind section between all the 
rational points xaib for which alb < µ and all those for which alb > µ. 
More precisely, supposing for definiteness that µ is positive, we apply the 
"ray" version of 12.5 1 to two sets of points, one consisting of all the points 
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yb 
yb 

Y. 

Figure 13.3b 

whose exponents are positive rational numbers less than µ,, and all the points 
between pairs of these, whereas the other set consists of the rest of the "posi
tive" ray JX. (If µ, is negative, we make the same kind of partition of the 
"negative" ray 1 IX.) Finally X" is, by definition, the translation 1 ➔ X". We have now interpreted the symbol X" for all real values of µ, (including O and I, which yield x0 = 1 and X1 = X). Conversely, every point on 
the line JX can be expressed in the form X". This is obvious for any point of the interval from X-1 to X. Any other point T satisfies either (1 X 11 or [J X-1 71. If [1 X 1], the dilatation 
JT ➔ JX transforms X into a point between 1 and X, say X!'. The inverse 
dilatation JX!' ➔ JX transforms X into X11>-; therefore T = x11>-. If, on the other hand, [1 X-1 11, we make the analogous use of IT ➔ IX-1. In 
either case we obtain an expression for T as a power of X. Thus, assuming Dedekind's axiom, we have proved the "axiom of Archimedes": 

13.31 For a ny point T (except J) on the line of a translation X, there is 
an integer n such that T lies between the points 1 and X11• 

The exponent µ, provides a measure of distance along the line IX. In fact, 
the segment X" X" (v < µ,) is said to have length µ, - v in terms of the segment 
IX as unit: 

x•x" 
IX 

= µ, - P. 

Along another line I Y (Figure 13.3c) we have an independent unit. Since 
the dilatation 1 X ➔ 1 X" transforms the point Y into Y", where the line X" Y" is parallel to XY, we have 

lX" lY" JX = J Y  
in agreement with Euclid VI.2 (see § 1.3). Thus we can define ratios of the 
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lengths on one line, or on parallel lines, and we can compare such ratios on 
different lines. But affine geometry contains no machinery for comparing 
lengths in different directions: it is a meaningless question whether the trans
lation Y is longer or shorter than X. 

Figure 13.3c 

The above definition for the length of the segment X• Xµ (v < µ) suggests 
the propriety of allowing the oppositely directed segment Xµ X• to have the 
negative length v - µ. This convention enables us to write µ = 1 Xµ I 1 X for 
negative as well as positive values ofµ, and to add lengths of collinear seg
ments according to such formulas as 

AB + BC = AC, BC + CA + AB = 0, 

regardless of the order of their end points A, B, C. 
Now, to set up a system of affine coordinates in the plane, we let (x, y) de

note the point into which the origin J is transformed by the translation XzY11. 
This simple device establishes a one-to-one correspondence between points 
in the plane and ordered pairs of real numbers. In particular, the point Xx is 
(x, 0), Y11 is (0, y), and the origin itself is (0, 0). When x and y are integers, the 
points (x, y) form a two-dimensional lattice, as in Figure 4. lb. The remaining 
points (x, y) are distributed between the lattice points in the obvious manner. 

In affine coordinates (as in Cartesian coordinates) a line has a linear equa
tion. The powers of the translation X-b ya transform the origin into the 
points ( -µb, µa) whose locus is the line ax + by = 0. The same powers 
transform (x1, Y1) into the points 

(xi - µb, Yi + µa) 
whose locus is 

a(x - x1) + b(y - Y1) = 0. 

We can thus express a line in any of the standard forms 8 . 1 1 ,  8.12, 8.13. 
In 1872, Klein made the important suggestion that various geometries 

should be distinguished by the groups of transformations under which their 
propositions remain valid. (This is known as the Erlangen program; see 
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Chap. 5.) Thus Euclidean geometry is characterized by the group of simi
larities, and inversive geometry by the group of circle-preserving (or con
formal) transformations (§ 6.7). The proper group for affine geometry con
sists of the affine col/ineations or linear transformations (x, y) ➔ (x', y'), where 

13.32 
x' = ax + by + j, 
y' = ex + dy + k, ad ::fa be. 

(The inequality ad::fabc is required in order that we may solve the equations 
for x andy in terms of x' andy', so as to obtain the inverse transformation.) 
We easily verify that such a transformation preserves parallelism, in fact, it 
could be defined (without the use of coordinates) by its property of trans
forming parallel lines into parallel lines. It is more general than a dilatation, 
as it does not necessarily preserve direction. The affine analogue of 5.41 
[Veblen and Young 2, p. 72] is: 

1 3.33 Any two triangles are related by a unique affine co/Ii neat ion. 
To prove this, it suffices to take the first triangle to be (0, 0)(1, 0)(0, 1). The 

vertices 

(j, k), (a + j, c + k), (b + j, d + k), 

of the second triangle, may be identified with any three given non-collinear 
points. (Their non-collinearity is ensured by the condition ad ::fa be.) 

EXERCISES 1. Express the dilatation O(p.) as a transformation of affine coordinates with origin 0. 2. Describe the transformations 
(i) x' = x + j, y' = y + k, 
(ii) x' = j - x, y' = k - y. 3. What affine collineation will transform the triangle 

(0, 0)(1, 0)(0, I) 
into (0, 0)(1, O)(b, 1 )? How does it affect (0, -1 )? 
1 3.4 AREA 

For he, by Geomelrick scale, 
Could lake the size of Pols of Ale. 

Samuel Butler (1600-1680) 
(Hudibros, 1.1 ) 

We are now ready to show how the comparison oflengths on parallel lines 
can be extended to yield a comparison of areas in any position [ cf. F order 
1 ,  pp. 259-265; Coxeter 2, pp. 125-128]. For simplicity, we restrict con
sideration to polygonal regions. (Other shapes may be included by a suit-
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able limiting process of the kind used in integral calculus.) Clearly, any 
polygonal region can be dissected into a finite number of triangles."' Follow
ing Hilbert, we declare two such regions to be equivalent either if they can be 
dissected into a finite number of pieces that are congruent in pairs (by trans
lations or by half-turns), or if it is possible to annex to them one or more con
gruent pieces so that the completed polygons are equivalent in the first sense. 
In other words, two polygons are equivalent if they can be derived from each 
other by dissection and rearrangement with the understanding that extra 
pieces may be "borrowed." By superposing two different dissections, we 
see that this kind of equivalence, which is obviously reflexive and symmetric, 
is also transitive; two polygons that are equivalent to the same polygon are 
equivalent to each other. 

0 --------11 
I \  

p P' Q Q' p P' Q 

Figure 1 3.4a Figure 13.4b 

I I / I / I / I / I I ' 
1 
I 

Q' 

The parallelograms OPQR and OP'Q'R of Figure 13.4a are equivalent, 
since the same trapezoid OPQ'R is obtained by annexing the triangle RQQ' 
to the former or the congruent triangle OPP' to the latter. Hence 

13.41 Two parallelograms are equivalent if they have one pair of opposite 
sides of the same length lying on the same pair of parallel lines. 

Since a parallelogram can be dissected along a diagonal to make two tri
angles that are congruent by a half-turn, it follows that two triangles (such as 
OPQ and OP' Q' in Figure 13.4b) are equivalent if they have a common ver
tex while their sides opposite to this vertex are congruent segments on one 
line. In particular, if points Po, P1, . . .  , Pn are evenly spaced along a line 
(not through 0), so that the segments P0P1, P1P2, . . .  are all congruent, 
as in Figure 13.4c, then the triangles OP0P1, OP1P2, . . .  are all equivalent, 
and we naturally say that the area of OPoPn is n times the area of OP0P1 . 
By interpolation of further points on the same line, we can extend this idea 
to all real values of n, with the conclusion that, if Q is on the side PQ' of a 
triangle OPQ', as in Figure 13.4d, the Cevian OQ divides the area of the tri
angle in the same ratio that the point Q divides the side: 

1 3.42 OPQ PQ 
OPQ' = PQ' . 

• N. J. Leones, American Journal of Mathematics, 33 (191 I), p. 46. 
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We naturally regard this ratio as being negative if P lies between Q and Q' ,  
that is, if the two triangles are oppositely oriented. 

0 

Po pl P2 A P' 
Figure 1 3.4c Figure 1 3.4d 

These ideas enable us to define the area of any polygon in such a way that 
equivalent polygons have the same area, and when two polygons are stuck to
gether to make a larger polygon, the areas are added. To compute the area 
of a given polygon in terms of a standard triangle OAB as unit of measure
ment, we dissect the polygon into triangles and add the areas of the pieces, 
each computed as follows. 

By applying a suitable translation, any given triangle can be shifted so that 
one vertex coincides with the vertex O of the standard triangle OAB. Ac
cordingly, we consider a triangle OPQ. Let the line PQ meet OA in P', and 
OB in Q', as in Figure 13.4d. Multiplying together the three ratios 

OPQ PQ OP'Q' OP' OAQ' OQ' 
OP'Q' 

= 
P'Q' ' OA Q' = OA ' OAB 

= 
OB 

we obtain the desired ratio 

1 3.43 
OPQ PQ OP' OQ' 
OAB = P'Q' OA OB 

To obtain an analytic expression for the area of a triangle OPQ, referred 
to axes through the vertex 0, we take the coordinates of the points 

o, A, B, P, Q, P' , Q' 

to be 

(0, 0), (I, 0), (0, 1), (x1, Yi), (x2, Y2), (p, 0), (0, q), 

respectively. Since the equation 
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for the line PQ is satisfied by (x1, Y1) and (x2, Y2), we have 

whence 

1 - Y1/ q l I - Y2I q - - =  , 
X1 p X2 

Taking the product of 

PQ Xi - X2 
P'Q' = p 

we obtain 

13.44 

OP' 
OA = P, OQ' 

OB 

We deduce, as in § 8.2, that a triangle 
(xi, Yi) (x2, Y2) (x3, y3), 

of general position, has area PQR, where 

1 3.45 PQR 
OAB = 1 

X3 Y3 1 
Since the homogeneous linear transformation 

x' = ax +  by, 
takes the triangle OAB to 

y' = ex +  dy 

(0, O)(a, c)(b, d), 
we conclude that the affine collineation 13.32 preserves area if and only if 

ad - be = 1.  
Such a transformation is called an equiaffine collineation [Veblen and Young 
2, pp. 105, 106]. The group of equiaffine collineations (like the group of 
dilatations) contains the group of translations and half-turns as a normal 
subgroup, and is itself a normal subgroup in the group of affine collineations. 

Any directed triangle ABC is related to the oppositely directed triangle 
A CB by the affine reflection 

[A; B � C] : 
an affine collineation which interchanges B and C while leaving invariant 
every point on the median AD (Figure 13.4e; cf. Figure 1.3a). Recalling 
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that an affine collineation transforms parallel lines into parallel lines, we can 
construct the transform P' of any given point P as follows. Locate the point 
where AD meets PB (or PC), join this to C (or B). The line so constructed 
will meet the line through P parallel to BC in the desired point P'. (Oearly 
AD bisects the segment PP'.) 

A 

p P' 

C 

Figure 13.4e 

Affine reflections are not included in the category of equiaffine collinea
tions, as they reverse the sense of a directed triangle and thus reverse the 
sign of an area. In other words, they are among the affine collineations 
13.32 for which ad - be = - l .  It follows that 

Every affine co/Ii neat ion is expressible as the product of two or three affine 
reflections and a dilatation. 

Moreover, it is not very difficult to prove that 
Every affine collineation of period two is either a half-turn or an affine re

flection. 
EXERCISES 1. Two triangles have the same area if they have congruent sides on one line and opposite vertices on a parallel line. (This agrees with the familiar notion of "equal bases and equal altitudes," except that the word "altitude" suggests a perpendicular direction, which is meaningless in affine geometry.) 2. If the two triangles OAB and OA' B' are homothetic (i.e., related by a dilatation), then the two triangles OAB' and OA'B have the same area. 3. The equivalent triangles OPQ and OP'Q' in Figure 13.4b are related by theshea,.. (O; P ➔ P']: a special equiaffioe collineation which transforms P into P' and leaves invariant every point on the line through O parallel to PP'. Describe the effect of this transformation on all the other points of the plane. 4. If an equiaffine collinea tion has an invariant line through every point, it is either a half-turn or a translation or a shear. 5. Express as the product of two affine reflections (i) a half-turn, (ii) a translation. 

• Veblen and Young (2, p. 1 12]; Coxeter, The affine plane, Scripta Mathematica, 21 (1955), p. 
1 1 .  (Note the misprint "member" for "number," in the description of an equiaffine collineation.) 
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6. The translation P ➔ P' is the product of two shears 

[P; Q ➔ Q'] [Q; p ➔ P'] • 
where PP'Q'Q is a parallelogram. 

7. The shear [O; P➔ P') is the product of two affine reflections 

[O; P (:-'> q [O; P' - CJ,  

for a suitable point C. What is the locus of possible positions for this point? 
8. Every equiaffine collineation can be expressed as the product of two affine re

flections. 
9. Describe the transformations 

(i) (x, y) ➔ (x + µy, y), 
(ii) (x, y) ➔ (-x, y). 

13.5 TWO-DIMENSIONAL LATTICES 

Farey has a notice of twenty lines in the Dictionary of National Biog• 
raphy . . . .  His biographer does not mention the one thing in his life 
which survives. 

G. H. Hordy 
(Hardy and Wright 1 ,  p. 37) 

Our treatment oflattices in § 4.1 (as far as the description of Figure 4. Id) 
is purely affine. In fact, a lattice is the set of points whos·e affine coordi
nates are integers. Any one of the points will serve as the origin 0. 

Let A' be any lattice point, and A the first lattice point along the ray OA '. 
Following Hardy and .Wright ( 1 ,  p. 29] , we call A a visible point, because 
there is no lattice point between O and A to hide A from an observer at O. • 
In terms of affine coordinates, a necessary and sufficient condition for (x, y) 
to be visible is that the integers x and y be coprime, that is, that they have 
no common divisor greater than 1 .  The three visible points 

(1, 0), (1, 1), (0, 1) 

form with the origin a parallelogram. This is called a unit cell ( or "typical 
parallelogram") of the lattice, because the translations transform it into in
finitely many such cells filling the plane without overlapping and without 
interstices: it is a fundamental region for the group of translations. Thus 
it serves as a convenient unit for computing the area of a region. 

According to Steinhaus (2, pp. 76-77, 260] it was G. Pick, in 1899, who 
discovered the following theorem:* 

• For an extension to three dimensions, see J. E. Reeve, On the volume of lattice polyhedra, 
Proceedings of the London Mathematical Society (3), 7 (1957), pp. 378-395. 
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0 0 0 0 

0 0 

0 0 

D 
Figure 13.5a 

13.51 The area of any simple polygon whose vertices are lattice points is 
given by the formula 

½ b  + c - 1, 

where b is the number of lattice points on the boundary while c is the number of 
lattice points inside. 

(By a "simple" polygon we mean one whose sides do not cross one an
other. Figure 13.5a shows an example in which b = 1 1 ,  c = 3.) 

Proof We first observe that the �xpression t b + c - 1 is additive when 
two polygons are juxtaposed. In fact, if two polygons, involving bt + Ct and 
b2 + c2 lattice points respectively, have a common side containing n (� 0) 
lattice points in addition to the two vertices at its ends, then the values of 
b and c for the combined polygon are 

so that 

b = bi + b2 - 2n - 2, c = Ct + c2 + n, 

t b + c - 1 = (½ bt + ct - l) + (tb2 + c2 - l). 

Next, the formula holds for a parallelogram having no lattice points on 
its sides (so that b = 4 and the expression reduces to c + 1). For, when 
N such parallelograms are fitted together, four at each vertex, to fill a large 
region, the number of lattice points involved (apart from a negligible pe
ripheral error) is N(c + 1), and this must be the same as the number of unit 
cells needed to fill the same region. 

Splitting the parallelogram into two congruent triangles by means of a 
diagonal, we see that the formula holds also for a triangle having no lattice 
points on its sides. A triangle that does have lattice points on a side can 
be dealt with by joining such points to the opposite vertex so as to split the 
triangle into smaller triangles. This procedure may have to be repeated, 
but obviously only a finite number of times. Finally, as we remarked on 
page 204, any given polygon can be dissected into triangles; then the ex
pressions for those pieces can be added to give the desired result. 

In particular, any parallelogram for which b = 4 and c = 0 has area 1 
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and can serve as a unit cell. If the vertices of such a parallelogram (in counterclockwise order) are 
(0, 0), (x, y), (x + Xi, y + Yi), (xi, Yi), 

we see from 13.44 that 
1 3.52 xyi - yxi = l. 
In other words, this is the condition for the points 
13.53 (0, 0), (x, y), (xi, Yi) 
to form a positively oriented "empty" triangle of area ½, which could be used just as well as (0, 0) (1, 0) (0, 1) to generate the lattice. Thus a lattice is completely determined, apart from its position, by the area of its unit cell. Moreover, although there are infinitely many visible points in a given lattice, they all play the same role. (These properties of affine geometry are in marked contrast to Euclidean geometry, where the shape of a lattice admits unlimited variation and each lattice contains visible points at infinitely many different distances.) 

0 

0 
T 

0 

0 

Figure 13.5b 
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5 
I 
I 
I 
I 
I 1 

5 
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\ 
I 
\ 
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George P6lya • has applied 13.52 to a useful lemma in the theory of numbers. The Farey series Fn of order n is the ascending sequence of fractions from O to 1 whose denominators do not exceed n. Thus ylx belongs to Fn if x and y are coprime and 
13.54 

For instance, F5 is 
• Acta Lillerarum ac Scientiarum Regiae Universitatis Hungaricae Francisco-Joseph/nae, Sectio 

Scientiarum Mathcmaticarum, 2 (1925), pp. 129-133. 
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The essential property of such a sequence, from which many other properties 
follow by simple algebra, is that 13.52 holds for any two adjacent fractions 

l and Yi . 
X Xi 

To prove this, we represent each termylx of the sequence by the point (x,y) 
of a lattice. For example, the terms of F5 are the lattice points emphasized 
in Figure 13.5b (where, for convenience, the angle between the axes is ob
tuse). Since the fractions are in their "lowest terms," the points are visible. 
By 13.54, they belong to the triangle (0, 0) (n, 0) (n, n). A ray from the ori
gin, rotated counterclockwise, passes through the representative points in 
their proper order. If ylx and Yilx1 are consecutive terms of the sequence, 
then (x, y) and (x1, y1) are visible points such that the triangle joining them 
to the origin contains no lattice point in its interior. Hence this triangle 
is one half of a unit cell, and 13.52 holds, as required. 

0 0 0 0 

0 A 0 

0 0 

0 C 0 

0 
B 

0 

Figure 1 3.Sc 

Another result belonging to affine geometry is 
1 3.55 If the sides BC, CA, AB of a triangle ABC are divided at L, M, N 

in the respective ratios A :  l, µ. : 1, JI :  1, the Cevians AL, BM, CN form a tri
angle whose area is 

(Aµ.J1 - 1)2 

(Aµ. + A + l)(µ.J1 + µ. + l)(J1A + JI + 1) 

times that of ABC. 
This was discovered by Routh [1 , p. 82; see also Dorrie 1 , pp. 41-42). We 

shall give a general proof in § 13.7, but it is interesting to observe that, when 
A = µ. = JI, so that the ratio of areas is (A - 1)3/(A3 - 1), the result can 
be deduced from 13.51. For instance, when A = µ = JI = 2, so that each 
side is trisected [Steinhaus 2, p. 8] , the central triangle is one-seventh of 
the whole, and we can see this immediately by eJJ1bedding the figure in a 
lattice, as in Figure 13.Sc. Since the central triangle has b = 3, c = 0 while 
ABC has b = 3, c = 3, the ratio of areas is ½I½ = t. 
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EXERCISES 

1. If ylx and Yilxi are two consecutive te_rms of a Farey series, x and xi are coprime. 
2. If y0/x0, y/x, Yilxi are three consecutive terms of a Farey series, 

Yo + Yi Y --- =  
Xo + Xi X 

(C. Haros, 1802.) 3. The points A, B, C in Figure 13.5c belong to a lattice whose unit cell has seven times the area of that of the basic lattice. (For the Euclidean theory of such compound lattices, see Coxeter, Configurations and maps, Reports of a Mathematical Col
loquium (2), 8 (1948), pp. 18-38, especially Figs. i, v, vii.) 

4. Use lattices to verify 13.55 when (a) 'A = µ. = v = 3, (b) 'A = µ. = v = t .  S. Join the vertices A, B, C, D of a parallelogram to the midpoints of the respective sides BC, CD, DA, AB so as to form a smaller parallelogram in the middle. Its area is one-fifth that of ABCD. Another such parallelogram is obtained by joining 
A, B, C, D to the midpoints of CD, DA , AB, BC. The common part of these two small parallelograms is a centrally symmetrical octagon whose area is one-sixth that of ABCD [Dorrie 1,  p. 40] . 

6. In the notation of 13.55, the area of the triangle LMN is 
• 'Aµ.v + 1 ('A + l)(µ. + l)(v + 1) 

times that of ABC. (Hint: Use 13.42 to compute the relative area of CLM, etc.) 7. Of the four triangles ANM, BLN, CML, LMN, the last cannot have the smallest area unless L, M, N are the midpoints of BC, CA, AB. (H. Debrunner. *) 
1 3.6 VECTORS AND CENTROIDS 

A vector is really the same thing as a translation, although one uses 
different phraseologies for vectors and translations. Instead of speak
ing of the translation A - A' which carries the point A into A' one 

speaks of the vector AA'. . . . The some vector laid off from B ends 
in B' if the translation carrying A into A' carries B into B'. 

H. Weyl [1 , p. 45] 

As we saw in § 2.5, a group is an associative system containing an iden
tity and, for each element, an inverse. Arithmetical instances are provided 
by the positive rational numbers, the positive real numbers, the complex 
numbers of modulus 1 ,  and all the complex numbers except 0, combined, 
in each case, by ordinary multiplication. Such instances make it natural to 
adopt a multiplicative notation for all groups, so that the combination of S 
and T is ST, the inverse of S is S-1, and the identity is 1. However, it is 
often convenient, especially in the case of Abelian (i.e., commutative) 

• Elemente der Mathematik, 12 ( 1957), p. 43, Aufgabe 260. 
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groups, to use instead the additive notation, in which the combination of 
S and T is S + T, the inverse of S is -S, and the identity is 0. To see 
that this other notation has equally simple arithmetical instances, we merely 
have to consider in turn the integers, the rational numbers, the real num
bers, and the complex numbers, combined, in each case, by ordinary addi
tion. 

The transition from a multiplicative group to the corresponding additive 
group is the foundation of the theory of logarithms [Infeld 1 ,  pp. 97-100). 

When we go outside the domain of arithmetic, the choice between mul
tipJjcation and addition is merely a matter of notation. In particular, the 
Abelian group of translations, wruch we have expressed as a multiplicative 
group, becomes the additive group of vectors. 

In this notation, 13.21 asserts that any two points A and A' determfoe a -
uruque vector AA' (going from A to A'), Figure 13.2b illustrates a situation 
in which 

1 3.23 asserts that 

- - -
AA' = CC' = BB' , 

- - -
AB + BC = AC, 

and 3.23 asserts that, for any two vectors a and b, 

a +  b = b + a. 

In the same spirit the "origin" will henceforth be called O instead of 1, and 
the zero vector will be denoted by 0. The integral multiples of any non
zero vector proceed from the origin to the points of a one-dimensional lat
tice. Two vectors e and f are said to be independent if neither is a (real) 
multiple of the other, that is, if the only numbers that satisfy the vector 
equation 

xe + yf = 0 

are x = 0 and y = 0. Two such vectors (corresponding to the translations 
X and Y in Figure 4. lc) provide a basis for a system of affine coordinates: 
they enable us to define the coordinates of any point to be the coefficients 
in  the expression 

xe + yf 

for the position vector which goes from the origin to the given point. In 
other words, with reference to a triangle OAB, the affine coordinates of a 
point P are the coefficients in the expression - - -

OP = x OA + y OB. 

We shall find it useful to borrow from statics the notion of the centroid 
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(or "center of gravity") of a set of "weighted" points, that is, of points to 
each of which a real number is attached in a special way. For convenience, 
we shall call these numbers masses, although, when some of them are nega
tive, electric charges provide a more appropriate illustration. 

Let masses t1, . . .  , tk be assigned to k distinct points A 1, . . .  , Ak, let O be 
any point (possibly coincident with one of the A's), and consider the vector 

- -') 

t1 OA1 + . . .  + tk OAk . 

If t1 + . . .  + tk = 0, this vector is independent of the choice of 0. For, 
if we subtract from it the result of using O' instead, we obtain � - -') -

t1 (OA1 - O'A1) + . . .  + tk (OAk - O'Ak) 
-

= (ti + . . .  + tk) QQ' = 0. 
More interestingly, if 

we have - - -
ti OAi + . . .  + tk OAk = (ti + . . .  + tk) OP, 

where the point P is independent of the choice of 0. For, if the same pro
cedure with O' instead of O yields P' instead of P, we have, by subtraction, 

whence 

- - -
(t1 + . . .  + tk) 00' = (t1 + . . .  + tk)(OP - O'P') - - � 

OP' = 00' + O'P' = OP, 
so that P' coincides with P. This point P, given by 

---') -') 
�t, OP = �t, OA;, 

is called the centroid (or "barycenter") of the k masses t, at A;. 
Since, having found P, we may choose this position for 0, we have 

If there are only two points, 
-') -

ti PAi = -t2 PA2, 
so that P lies on the line A1A2 and divides the segment A 1A2 in the ratio 
t2 : t1. In particular, if t1 = t2, P is the midpoint of A1A2. 

For a triangle A1AzAs, we have 
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� - - -
(t1 + !2 + t3) OP = t10A1 + t20A2 + t30A3 � -

= t10A1 + (t2 + t3) OQ, 

215 

where Q is the centroid of !2 at A2 and t3 at A3. Thus, in seeking the centroid 
of three masses, we may replace two of them by their combined mass at their 
own centroid. (There is an obvious generalization to more than three 
masses.) In particular, when !1 = t2 = ta ( = 1, say), Q is the midpoint of 
AzA3, and.P divides A 1Q in the ratio 2 :  1. Thus the "centroid" G of a tri
angle (§ 1.4) is the centroid of equal masses at its three vertices. 

Figure 1 3,6a 

This same point G, where the medians concur, is also the centroid of a 
triangular lamina or "plate" of uniform density. (Strictly speaking, this no
tion requires integral calculus.) For we may divide the triangle into thin 
strips parallel to the side AzA3, as in Figure 13.6a. The centroids of these 
strips evidently lie on the median A1Q. Hence the centroid of the whole 
lamina lies on this median, and similarly on the others. (This argument was 
used by Archimedes in the third century B.C.) 

1. Verify in detail that EXERCISES 

(i) the positive rational numbers, (ii) the positive real numbers, (iii) the complex numbers of modulus 1 ,  (iv) all the complex numbers except 0 form multiplicative groups; and that (v) the integers, (vi) the rational numbers, (vii) the real numbers, (viii) the complex numbers 
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form additive groups. Explain why the first four sets do not form additive groups, and why the last four do not form multiplicative groups. 2. If A, B, C are on one line and A', B', C' on another with 
AB BC 

A'B' = B'C ' 

then points dividing all the segments AA', BB', CC' in the same ratio are either collinear or coincident (cf. § 3.6). (Hint: Consider the centroid of suitable masses at 
A, C, A', C'.) 3. The centroid of equal masses at the vertices of a quadrangle is the center of the Varignon parallelogram (Figure 13.2g). 

Figure 1 3.6b 

4. The centroid of a quadrangular lamina is the center of the Wittenbauer parallelogram, whose sides join adjacent points of trisection of the sides, as in Figure 13.6b. This theorem, due to F. Wittenbauer (1857-1922) (Blaschke 2, p. 13], was rediscovered by J. J. Welch and V. W. Foss.• 5. For what kind of quadrangle will the centroids described in the two preceding exercises coincide? 
13.7 BARYCENTRIC COORDINATES 

If t1 + t2 =I= 0, masses !1 and !2 at two fixed points A1 and A 2 determine 
a unique centroid P, as in Figure 13.7a. This point is A 1 itself if t2 = 0, A2 
if t1 = 0. It is on the segment A1A2 if the t's are both positive (or both 
negative), on the ray A1/ A2 if 

/1 > -t2 > 0, 

and on the ray A2/ Ai if 

• Mathematical Gazette, 42 (1958), p. 55; 43 (1959), p. 46. 
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p 

Figure 1 3.7a 

Conversely, given a point P on the line A1A2, we can find numbers t1 and 
t2 such that 

t2 A1P ti PA2 - = -- or - = -- ; 
ti PA2 t2 A1P 

then P will be the centroid of masses t1 and t2 at A1 and A2. Since masses 
µti and µt2 (where µ =I= 0) determine the same point as t1 and t2, these bary
centric coordinates are homogeneous: 

(µ =I= 0). 

Similarly, as Mobius observed in 1827, we may set up barycentric coor
dinates in the plane of a triangle of reference A 1AzA3. If t1 + t2 + ta =I=- 0, 
masses !1, t2, t3 at the three vertices determine a point P (the centroid) whose 
coordinates are (t1, t2, t3). In particular, (1, 0, 0) is A1, (0, 1, 0) is A2, 
(0, 0, I) is Aa, and (0, !2, t3) is the point on Az,43 whose one-dimensional co
ordinates with respect to A2 and A3 are (t2, t3). To find coordinates for a 
given point P of general position, we find t2 and t3 from such a point Q on 
the line A 1P, as in Figure 13.7b, and then determine t1 as the mass at A1 
that will balance a mass t2 + t3 at Q so as to make P the centroid. Again, 
as in the one-dimensional case, these coordinates are homogeneous: 

(t1, t2, ta) = {µt1, µt2, µta) (µ =I=- 0). 

Joining P to A1, A2, A3, we decompose A1AzAa into three triangles hav
ing a common vertex P. The areas of these triangles are proportional to the 
barycentric coordinates of P, as in Figure 13.7c. This fact follows at once 
from 13 .42, since 

ta A2Q A 1A2Q PA2Q A1A2Q - PA2Q PA1A2 - = - - = = -- = = -- , 
12 QAa A 1QAa PQAa A1QAa - PQAa PAaA1 

Figure 13.7b Figure 1 3.7c 
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and similarly for t1/t3, t2/t1. Positions of P outside the triangle are covered 
by means of our convention for the sign of the area of a directed triangle. 

The inequality 
t1 + t2 + t3 -=I=- 0 

enables us to normalize the coordinates so that 
13.71 !1 + t2 + !3 = 1. 

(We merely have to divide each coordinate by tlie sum of all three.) These 
normalized barycentric coordinates are called areal coordinates, because 
they are just the areas of the triangles PA zA 3, PA aA 1, PA 1A 2, expressed in 
terms of the area of the whole triangle A 1Az,43 as unit of measurement. 
Areal coordinates are not homogeneous but "redundant": the position of a 
point is determined by two of the three, and the third is retained for the 
sake of symmetry. However, any expression involving them can be made 
homogeneous by inserting suitable powers of t1 + t2 + t3 in appropriate 
places. 

Figure 13,7d 

In affine coordinates, as we have seen, a line has a linear equation. In 
barycentric coordinates, as we shall soon see, a line has a linear homogene
ous equation. For this purpose we use the segments AaA1 and AaA2 as axes 
for affine coordinates, as in Figure 13.7d, so that the coordinates of P, A 1, 

A2, A3, which were formerly 
(t1, !2, !3), (1, 0, 0), (0, 1, 0), (0, 0, 1), 

are now 
(x, y), (1, 0), (0, 1), (0, 0). 

By 13.44, the areas of PAzA3 and PAaA1, as fractions of the ''unit" triangle 
A1AzA3, arejust 

By subtraction, the area of PA1A2 is 1 - x - y. Hence the areal coordi
nates of P are related to the affine coordinates by the very simple formulas 
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!1 = X, t2 = y, ta = 1 - X - y. 
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The general line, having the affine equation 8.11, has the areal equation 
at1 + bt2 + c = 0. 

Making this homogeneous by the insertion of t1 + t2 + ta, we deduce the 
barycentric equation 

or 
at1 + bt2 + c(t1 + t2 + ta) = 0 

(a + c)t1 + (b + c)t2 + eta = 0 
or, in a more symmetrical notation, 

1 3.72 

Thus every line has a linear homogeneous equation. In particular, the 
lines AzAa, AaA1, A1A2 have the equations 
1 3.73 

The line joining two given points (r) and (s), meaning 

(r1, r2, ra) and (s1, s2, sa), 
has the equation 

r1 r2 ra 
1 3.74 S1 S2 Sa = 0. 

ti !2 la 

For, this equation is linear in the t's and is satisfied when the t's are replaced 
by the r's or the s's. Another way to obtain this result is to ask for the fixed 
points (r) and (s) to form with the variable point (t) a "triangle" whose area 
is zero. In terms of areal coordinates, with the triangle of reference as unit, 
the area of the triangle (r)(s)(t) is, by 13.45 and 13.71, 

r1 r2 I r1 r2 r1 + r2 + ra r1 r2 ra 
S1 S2 1 = S1 S2 S1 + S2 + Sa = S1 S2 S3 • 
ti t2 I t1 !2 !1 + !2 + ta ti t2 ta 

Hence the area in general barycentric coordinates is this last determinant 
divided by 

(r1 + r2 + ra)(s1 + s2 + sa)(t1 + t2 + /3). 

We are now ready to prove Routh's theorem 13.55 in its full generality. 
Identifying ABC with A1Az,43, so that the points L, M, N are 

(0, I ,  A), (µ, 0, I), (1, 11, 0), 
we can express the lines AL, BM, CN as 

At2 = t3, µ.t3 = t1, 11!1 = t2. 
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They intersect in pairs in the three points 
(µ, µv, 1), (1, v, vA), (Aµ, 1, A), 

forming a triangle whose area, in terms of that of the triangle of reference, 
is the result of dividing the determinant 

µ, µv I 
I v PA = (Aµv - I )2 
Aµ A 

by (µ, + µ,v + 1)(1 + v + vA)(Aµ + I + A), in agreement with the state
ment of 13.55. 

As an important special case we have 
CEVA'S THEOREM. Let the sides of a triangle ABC be divided at L, M, N 

in the respective ratios A :  1, µ, : 1, v :  1. Then the three lines AL, BM, CN 
are concurrent if and only if Aµ,v = 1. 

The general line 13.72 meets the sides 13.73 of the triangle of reference 
in the points 

(0, Ts, - T2), ( - Ta, 0, T1), (T2, - Ti, 0), 
which divide them in the ratios 

T2 Ta T1 - Ta ' - T1 ' 
- T2 ' 

whose product is - 1 .  Conversely, any three numbers whose product is - 1  
can be expressed in this way for suitable values of T1, T2, Ta. Hence 

MENELAUS'S THEOREM. Let the sides of a triangle be divided at L, M, N 
in the respective ratios A :  1, µ, : 1, v :  1. Then the three points L, M, N are 
collinear if and only if Aµv = - 1 .  

N 

Figure 1 3.7e 

The coefficients T1, T2, Ta in the equation 13.72 for a line are sometimes 
called the tangential coordinates of the line. These homogeneous "coordi
nates" have a simple geometric interpretation [Salmon 1 ,  p. I I]: they may 
be regarded as the distances from A1, A2, Aa to the line, measured in any di-
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rection (the same for all). To prove this, let A1F1, AzF2, AaF3 be these dis
tances, as in Figure 13.7e. Since 

A1N _ T1 
NA2 - - Tz ' 

the homothetic triangles NA1F1 and NAzF2 yield 

A1Fi A1N T1 

AzFz 
= A2N 

= 
Tz • 

Hence 
A1F1 = AzFz 

T1 r;-• 
and similarly each of these expressions is equal to Ai3 . 

Mobius's invention of homogeneous coordinates was one of the most far
reaching ideas in the history of mathematics: comparable to Leibniz's in
vention of differentials, which enabled him to express the equation 

Jx f(x) = /' (x) 

in the homogeneous form 

df (x) = f'(x) dx 

(for instance, d sin x = cos x dx). 

EXERCISES 

1. Sketch the seven regions into which the lines Az,43, AaA1, A1A2 decompose the plane, marking each according to the signs of the three areal coordinates. 2. Verify that 13.45 yields l - x - y as the area of the triangle PA1A2 in Figure 13.7d. 3. In areal coordinates, the midpoint of (s1, s2, s3)(t1, t2, t3) is 
(S1 + l1 S2 + t2 S3 + l3) --

2
- , --

2
- ,  --

2
- .  

4. The centroid of masses o and -r at points whose areal coordinates are (s1, s2, S3) and (t1, t2, t3) is the point whose barycentric coordinates are 
(os1 + 'T/1, <JS2 + -r/2, <JSs + T/3). 5. In barycentric coordinates, any point on the line (s)(t) may be expressed in the form (os1 + T/i, <JS2 + 'Tl2, <JS3 + T/3). 6. Apply barycentric coordinates to Ex. 6 at the end of§ 13.S. What becomes of this result when L, M, N are collinear? 7. In what way do the signs of T1, T2, Ts depend on the position of the line 13.72 in relation to the triangle of reference? When T2 and Ts are positive, describe the cases T2 < Ts, T2 = Ts, T2 > Ts. 
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13.8 AFFINE SPACE 

Give me something to construct and I shall become God for the time 
being, pushing aside oil obstacles, winning all the hord knowledge I 
need for the construction . . .  advancing Godlike to my goo/! 

J. L. Synge (2, p. 162] 

Affine geometry can be extended from two dimensions to three by using 
Axioms 12.42 and 12.43 instead of 12.41. The total number of axioms is 
not really increased, as 13.12 now becomes a provable theorem [Forder 1 ,  
pp. 155-157]. A line and a plane, or two planes, are said to be parallel if 
they have no common point ( or if the line lies in the plane, or if the two 
planes coincide). Thus any plane that meets two parallel planes meets them 
in parallel lines; if two planes are parallel, any line in either plane is paral
lel to the other plane; if two lines are parallel, any plane through either line 
is parallel to the other line. 

The existence of parallel planes is ensured by the following theorem (cf. 
Axiom 13.11): 

13.81 For any point A and any plane y, not through A, there is just one 
plane through A parallel to y. 

Proof Let q and r be two intersecting lines in y. Let q' and r' be the re
spectively parallel lines through A. Then the plane q'r' is parallel to y. For 
otherwise, by 12.431, the two planes would meet in a line /. Since q' and r' 
are parallel to y, they cannot meet /. Thus q' and r' are two parallels to / 
through A, contradicting 13. 1 1 .  This proves that q'r' is parallel to y. More
over, q'r' is the only plane through A parallel to y. For, two such would meet 
in a line s' through A, and we could obtain a contradiction by considering 
their section by the plane As, where s is a line in y not parallel to s'. 

p r 

q q' 

Q 

Figure 13.8a 

Parallelism for lines is transitive in space as well as in a plane: 
13.82 If p and q are both parallel to r, they are parallel to each other. 

L 
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Proof [Forder 1 ,  p. 140]. When all three lines are in one plane, this fol
lows at once from 13.11,  so let us assume that they are not. For any point 
Q on q, the planes Qp and Qr meet in a line, say q' (Figure 13.8a). Any 
common point of q' and r would lie in both the planes Qp, pr, and there
fore on their common line p; this is impossible, since pis parallel to r. Hence 
q' is parallel to r. But the only line through Q parallel to r is q. Hence q 
coincides with q', and is coplanar with p. Any common point of p and q 
would lie also on r. Hence p and q are parallel. 

The transitivity of parallelism provides an alternative proof for 13.81. To 
establish the impossibility of a point O lying on both planes y and q'r', we 
imagine two lines through 0, parallel to q (and q'), r (and r'). The planes 
y and q'r', each containing both these lines, would coincide, contradicting 
our assumption that A does not lie in y. 

The three face planes OBC, OCA, OAB ofa tetrahedron OABCfonn with 
the respectively parallel planes through A, B, C a  parallelepiped whose faces 
are six parallelograms, as in Figure 13.8b [Forder 1 ,  p. 155]. 

A 
Figure 13.8b 

(1,1,1) 

0 

I 
I I 

I 
I 
I 

,,_ ______ ___ _ 
/,,.-".B A 

Figure 13.8c 

(x,y,z) 

It is now easy to build up a three-dimensional theory of dilatations, trans
lations, and vectors. Three vectors d, e, f are said to be dependent if they 
are coplanar, in which case each is expressible as a linear combination of 
the other two. Three vectors e, f, g are said to be independent if the only 
solution of the vector equation 

xe + yf + zg = 0 

is x = y = z = 0. Three such vectors provide a basis for a system ofthree
dimensional affine coordinates. In fact, if - - -

e = OA, f = OB, g = OC, 

� 
as in Figure 13.8c, the general vector OP may be exhibited as a diagonal of 
the parallelepiped formed by drawing through P three planes parallel to 
OBC, OCA , OAB. Then 

--+ 
OP = xe + yf + zg, 
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where the terms of this sum are vectors along three edges of the parallele
piped. 

In space, as in a plane, the centroid P of masses ti at points Ai is deter-
mined by a vector OP such that 

➔ 
If OAi = Xte + Yif + Zi9, we deduce 

Lti OP = Ltixie + LtiJif + LtiZi9• 
Hence, in terms of affine coordinates, 

13.83 The centroid of k masses ti (Lti =I= 0) at points (xi, Yi, zi) 
(i = 1, . . .  , k) is 

In particular, if t1 + t2 + t3 = 1 , the centroid of three masses ti, t2, /3 

at the points 
(1, 0, 0), (0, 1, 0), (0, 0, 1) 

13.84 The affine coordinates of any point in the plane x + y + z = I 
are the same as its areal coordinates referred to the triangle cut out from this 
plane by the coordinate planes x = 0, y = 0, z = 0. 

It follows that there is a line 

X 
= l_ = Z 

ti l2 l3 

through the origin (in affine space) for each point with barycentric coordi
nates (t1, t2, t3). On the other hand, lines lying in the plane x + y + z = 0 
yield no corresponding points in the parallel plane x + y + z = l , unless 
we agree to extend the affine plane by postulating a line at infinity 

t1 + t2 + t3 � 0 
so as to form the projective plane. This possibility has already been men
tioned in § 6.9; we shall explore it more systematically in Chapter 14. 

EXERCISES 1. If a line a is parallel to a plane a, and a plane through a meets a in b, then a and b are parallel lines. If another plane through a meets a in c, then b and c are parallel lines. 2. If a, /3, y are planes intersecting in lines /3 • y = a, y • a = b, a • /3 = c, and 
a is parallel to b, then a, b, c are all parallel. 3. All the lines through A parallel to a are in a plane parallel to a [F order 1,  p. I 55]. 
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4. Each of the six edges of a tetrahedron lies on a plane joining this edge to the 
midpoint of the opposite edge. The six planes so constructed all pass through one 
point: the centroid of equal masses at the four vertices. 

5. Develop the theory of three-dimensional barycentric coordinates referred to a 
tetrahedron A1A:iA:04-

13.9 THREE-DIMENSIONAL LATTICES 

The small parallelepiped built upon the three tronslotions selected as 
unit translations . . .  is known os the unit cell. . . . The entire crystal 
structure is generated through the periodic repetition, by the three unit 
translations, of the matter contained within the volume of the unit cell. 

M. J. Buerger (1903-

(Buerger 1, p. 5) 

The theory of volume in affine space is more difficult than that of area in 
the affine plane, because of the complication introduced by M. Dehn's ob
servation that two polyhedra of equal volume are not necessarily derivable 
from each other by dissection and rearrangement. A valid treatment, sug
gested by Mrs. Sally Ruth Struik, may be described very briefly as follows. 
It is found that any two tetrahedra are related by a unique affine collinea
tion, which transforms parallel lines into parallel lines. In particular, a tet
rahedron ABCD is transformed into ABDC by the affine reflection 

[AB; c - D], 
which interchanges C and D while leaving invariant every point in the plane 
that joins AB to the midpoint of CD. Two tetrahedra are said to have 
the same volume if one can be transformed into the other by an equiaffine 
collineation: the product of an even number of affine reflections. Such a 
comparison is easily extended from tetrahedra to parallelepipeds, since a 
parallelepiped can be dissected into six tetrahedra all having the same 
volume. 

In three dimensions, as in two, a lattice may be regarded as the set of 
points whose affine coordinates are integers. However, as it is independent 
of the chosen coordinate system, it is more symmetrically described as a 
discrete set of points whose set of position vectors is closed under subtrac
tion, that is, along with any two of the vectors the set includes also their 
difference. Subtracting any one of the vectors from itself, we obtain the 
zero vector 

c - c = O  

and hence also O - b = - b, a .:.... ( - b) = a + b, a + a = 2a, and so 
on: the set of vectors, containing the difference of any two, also contains the 
sum of any two, and all the integral multiples of any one. The lattice is one-, 
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two-, or three-dimensional according to the number of independent vectors. 
In the three-dimensional case, a set of three independent vectors e, f, g is 
called a basis for the lattice if all the vectors are expressible in the form 
13.91 xe + yf + zg, 

where x, y, z are integers. If three of these vectors, say r1, r2, r3 form an
other basis for the same lattice, there must exist 18 integers 

such that 

and therefore 

whence 

(a = I ,  2, 3) 

A b B C [1 if a = /3, 
aa p + a p + Ca p = lO if a =/= /3. 

Since the product of two determinants is obtained by combining the rows 
of one with the columns of the other, we have 

a1 b1 c1 
a2 b2 c2 

as bs cs 

Ai A2 A3 I O 0 
B1 B2 Ba = 0 1 0 = 1 .  
C1 C2 Cs O O 1 

Since the two determinants on the left are integers whose product is 1, each 
must be +I .  Conversely, if aa, ba, Ca. are given so that their determinant is 
+l, we can deriveAa., Ba., Ca. by "inverting the matrix," and the given basis 
e, f, g yields the equally effective basis r a· Hence 

A necessary and sufficient condition for two triads of independent vectors 
e, f, g and 

to be alternative bases for the same lattice is 

13.92 
a1 b1 c1 
a2 b2 c2 = + 1  
as bs c3 

[cf. Hardy and Wright 1 ,  p. 28; Neville 1 ,  p. 5]. 

(a = 1, 2, 3) 

In other words, a lattice is derived from any one of its points by applying a 
discrete group of translations: one-, two-, or three-dimensional according as 
the translations are collinear, coplanar but not collinear, or not coplanar. 
In the one-dimensional case the generating translation is unique (except that 
it may be reversed), but in the other cases the two or three generators, that is, 
the basic vectors, may be chosen in infinitely many ways. When they have 
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been chosen, we can use them to set up a system of affine coordinates so that, 
in the three-dimensional case, the vector 13.91 goes from the origin (0, 0, 0) 
to the point (x,y, z), and the lattice consists of the points whose coordinates 
are integers. The eight points 

(0, 0, 0), (I,  0, 0), (0, 1, 0), (0, 0, I), (0, I ,  1), (I, 0, I), (1, I, 0), (I, I, 1), 
derived from the eight vectors 

0, e, f, g, f + g, g + e, e - f, e + f + g, 
evidently form a parallelepiped, which is a unit cell of the lattice. By an argu
ment analogous to that used for a two-dimensional lattice in § 4.1, any two 
unit cells for the same lattice have the same volume. 

Any line joining two of the lattice points contains infinitely many of them, 
forming a one-dimensional sublattice of the three-dimensional lattice. In 
fact, the line joining (0, 0, 0) and (x, y, z) contains also (nx, ny, nz) for every 
integer n. If x, y, z have the greatest common divisor d, the lattice point 

(xld, yld, z/d) 
lies on this same line, and the corresponding translation generates the group 
of the one-dimensional lattice. The lattice point (x,y, z) is visible if and only 
if the three integers x, y, z have no common divisor greater than 1.  

Any triangle of lattice points determines a plane containing a two-dimen
sional sublattice. For, if vectors 

r1 = x1e + Y1f + z19 and r2 = x2e + y2f + z29 
have integral components, so also does t1r1 + t2r2 for any integers t1 and t2. 
The parallel plane through any other lattice point will contain a congruent 
sublattice. Thus we may regard all the lattice points as being distributed 
among an in.finite sequence of parallel planes, called rational planes [Buer
ger 1 ,  p. 7]. 

Any such plane, being the join of three points whose coordinates are in
tegers, has an equation of the form 
1 3.93 Xx + Yy + Zz = N, 

where the coefficients X, Y, Z, N are integers, so that the intercepts on the 
coordinate axes have the rational values NIX, NIY, NIZ. (This is the rea
son for the name "rational" planes.) We may assume that the greatest 
common divisor of X, Y, Z is l ;  for, any common factor of X, Y, Z would 
be a factor of N too, and then we could divide both sides of the equation 
by this number, obtaining a simpler and equally effective equation for the 
same plane. 

Conversely, any such equation (in which the greatest common divisor of X, Y, Z is I) represents a plane containing a two-dimensional sublattice. 
This is obvious when X = 1, since then we can assign arbitrary integral 
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values toy, z, and solve 13.93 for x. When X, Y, Z are all greater than 1,  we 
consider the set of numbers 

xX + yY + zZ, 

where x, y, z are variable integers while X, Y, Z remain constant. This set 
(like the set of lattice vectors) is an ideal: it contains the difference of any 
two of its members and (therefore) all the multiples of any one. Let d de
note its smallest positive member, and N any other member. Then N is a 
multiple of d: for otherwise we could divide N by d and obtain a remainder 
N - qd, which would be a member smaller than d. Thus every member of 
the set is a multiple of d. But X, Y, Z are members. Therefore d, being a 
common divisor, must be equal to I, and the set simply consists of all the 
integers. In other words, the equation 13.93 has one integral solution (and 
therefore infinitely many) [cf. Uspensky and Heaslet 1 ,  p. 54]. 

For each triad of integers X, Y, Z, coprime in the above sense (but not 
necessarily coprime in pairs), we have a sequence of parallel planes 13.93, 
evenly spaced, one plane for each integer N. Since every lattice point lies in 
one of the planes, the infinite region between any two consecutive planes is 
completely empty. One of the planes, namely that for which N = 0, passes 
through the origin. The nearest others, given by N = -+- l, are appropriately 
called.first rational planes [Buerger 1 ,  p. 9]. We shall have occasion to con
sider them again in § 18.3. 

EXERCISES 

1. How can a parallelepiped be dissected into six tetrahedra all having the same volume? 2. Identify the transformation (x, y, z) - (x, y, -z) with the affine reflection that leaves invariant the plane z = 0 while interchanging the points (0, 0, + l). 
3. A lattice is transformed into itself by the central inversion that interchanges two of its points. 
4. Every lattice point in a first rational plane is visible. 5. Is every rational plane through a visible point a first rational plane? 6. Find a triangle oflattice points in the first rational plane 

6x + lOy + l5z = I .  7. Obtain a formula for all the lattice points in this plane. 
8. The origin is the only lattice point in the plane 

X + y2y + y3 Z = 0. 
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Projective geometry 

In affine geometry, as we have seen, parallelism plays a leading role. 
In projective geometry, on the other hand, there is no parallelism: every pair 
of coplanar lines is a pair of intersecting lines. The conflict with 12.61 is ex
plained by the fact that the projective plane is not an "ordered" plane. The 
set of points on a line, like the set of lines through a point, is closed: given 
three, we cannot pick out one as lying "between" the other two. At first 
sight we might expect a geometry having no circles, no distances, no angles, 
no intermediacy, and no parallelism, to •be somewhat meagre. But, in fact, 
a very beautiful and intricate collection of propositions emerges: proposi
tions of which Euclid never dreamed, because his interest in measurement 
led him in a different direction. A few of these nonmetrical propositions 
were discovered by Pappus of Alexandria in the fourth century A.D. Others 
are associated with the names of two Frenchmen: the architect Girard De
sargues (1591-1661) and the philosopher Blaise Pascal (1623- 1662). Mean
while, the related subject of perspective [Yaglom 2, p. 31 ]  had been studied 
by artists such as Leonardo da Vinci (1452-1519) and Albrecht Diirer (1471-
1528). 

Kepler's invention of points at infinity made it possible to regard the 
projective plane as the affine plane plus the line at infinity. A converse 
relationship was suggested by Poncelet's Traite des proprietes projectives des 
figures (1 822) and von Staudt's Geometrie der Lage (1847), in which projec
tive geometry appeared as an independent science, making it possible to 
regard the affine plane as the projective plane minus an arbitrary line o, and 
then to regard the Euclidean plane as the affine plane with a special rule for 
associating pairs of points on o (in "perpendicular directions") [Coxeter 2, 
pp. 1 15, 138). This standpoint became still clearer in 1899, when Mario Pieri 
placed the subject on an axiomatic foundation. Other systems of axioms, 
slightly different from Pieri's, have been proposed by subsequent authors. 
The particular system that we shall give in § 14.1 was suggested by Bach
mann [1 , pp. 76-77). To test the consistency of a system of axioms, we ap
ply it to a "model," in which the primitive concepts are represented by fa
miliar concepts whose properties we are prepared to accept [Coxeter 2, pp. 

229 
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186-187]. In the present case a convenient model for the projective plane 
is provided by the affine plane plus the line at infinity (§ 6.9). We shall ex
tend the barycentric coordinates of § 13.7 to general projective coordinates, 
so as to eliminate the special role of the line at infinity. The result may be 
regarded as a purely algebraic model in which a point is an ordered triad of 
numbers (x1, x2, xa), not all zero, with the rule that (JLX1, JLX2, JLXa) is the same 
point for any µ. =I= 0, and a line is a homogeneous linear equation. One ad
vantage of this model is that the numbers x"' and µ. are not necessarily real. 
The chosen axioms are sufficiently general to allow the coordinates to be
long to any field: instead of real numbers we may use rational numbers, com
plex numbers, or even a finite field such as the residue classes modulo a prime 
number. Accordingly we speak of the real projective plane, the rational pro
jective plane, the complex projective plane, or a finite projective plane. 

14. 1 AXIOMS FOR THE GENERAL PROJECTIVE PLANE 

The more systematic course in the present introductory memoir . . . 
would hove been to ignore altogether the notions of distance and 
metrical geometry. . . . Metrical geometry is o port of descriptive 
geometry, and descriptive geometry is oil geometry. 

Arthur Coyley "'(1821 -1 895) 

The projective plane has already been mentioned in § 6.9. As primitive 
concepts we take point, line, and the relation of incidence. If a point and a 
line are incident, we say that the point lies on the line and the line passes 
through the point. The related words join, meet (or "intersect"), concurrent 
and collinear have their usual meanings. Three non-collinear points are the 
vertices of a triangle whose sides are complete lines. ("Segments" are not de
fined.) A complete quadrangle, its four vertices, its six sides, and its three di
agonal points, are defined as in § 1.7. A hexagon A 1B2C1A 2B1C2 has six 
vertices A 1, B2, . . .  , C2 and six sides 

A1B2, B2C1, C1A2, A2B1, B1C2, CzA1. 

Opposite sides are defined in the obvious manner; for example, A2B1 is op
posite to A 1B2. After these preliminary definitions, we are ready for the five 
axioms. 

AXIOM 1 4. 1 1  

NOTATION. 

Any two distinct points are incident with just one line. 
The line joining points A and B is denoted by AB. 

• Collected Mathematical Papers, 2 (Cambridge, 1889), p. 592. Cayley, in 1859, used the word 
"descriptive" where today we would say "projective." His idea of the supremacy of projective ge
ometry must now be regarded as a slight exaggeration. It is true that projective geometry includes 
the affine, Euclidean and non-Euclidean geometries; but it does not include the general Rieman
Dian geometry, nor topology. 
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AXIOM 14.12 Any two lines are incident with at least one point. 
THEOREM 14. 1 2 1  Any two distinct lines are incident with just one point. 
NOTATION. The point of intersection oflines a and b is denoted by a · b; 

that of AB and CD by AB · CD. The line joining a · b and c • dis denoted by 
(a · b)(c • d). 

AXIOM 14. 1 3  There exist four points of which no three are collinear. 
AXIOM 1 4. 1 4  (Fano's axiom) The three diagonal points of a complete 

quadrangle are never collinear. 
AXIOM 14.1 5 (Pappus's theorem) If the six vertices of a hexagon lie al

ternately on two lines, the three points of intersection of pairs of opposite sides 
are collinear. 

One of the most elegant properties of projective geometry is the principle 
of duality, which asserts (in a projective plane) that every definition remains 
significant, and every theorem remains true, when we consistently inter
change the words point and line (and consequently interchange lie on and 
pass through, join and intersection, collinear and concurrent, etc.). To estab
lish this principle it will suffice to verify that the axioms imply their own 
duals. Then, given a theorem and its proof, we can immediately assert the 
dual theorem; for a proof of the latter could be written down mechanically 
by dualizing every step in the proof of the original theorem. 

The dual of Axiom 14. 1 1  is Theorem 14.121, which the reader will have 
no difficulty in proving (with the help of 14.12). The dual of Axiom 14.12 
is one-half of 1 4. 1 1 . The dual of Axiom 14.13 asserts the existence of a 
complete quadrilateral, which is a set of four lines (called sides) intersecting 
in pairs in six distinct points (called vertices). Two vertices are said to be 
opposite if they are not joined by a side. The three joins of pairs of oppo
site vertices are called diagonals. If PQRS is a quadrangle with sides 

p = PQ, q = PS, r = RS, s = QR, w = PR, u = QS, 
as in Figure 14.1 a, then pqrs is a quadrilateral with vertices 

P = p · q, Q = p ·s, R = r ·s, S = q·r, W = p ·r, U = q ·s. 

Figure 14. 1 a 
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Axiom 14.14 tells us that the three diagonal points 
U = q • s, V = w • u, W = p • r 

are not collinear. Its dual asserts that the three diagonals of a complete 
quadrilateral are never concurrent. If this is false, there must exist a par
ticular quadrilateral whose diagonals are concurrent. Let it be pqrs, with 
diagonals 

u = QS, V = WU, w = PR. 

Since these are concurrent, the point w • u = V must lie on v, contradicting 
the statement that U, V, Ware not collinear. 

Figure 14. 1 b 

Axiom 14.15 involves nine points and nine lines, which can be drawn in 
many ways (apparently different though projectively equivalent), such as the 
two shown in Figure 14.lb. A1B2C1A2B1C2 is a hexagon whose vertices lie 
alternately on the two lines A1B1C1, A2B2C2. The points of intersection of 
pairs of opposite sides are 

A3 = B1C2 • B2C1, B3 = C1A2 • Cz,41, C3 = A1B2 • A2B1. 

The axiom asserts that these three points are collinear. Our notation has 
been devised in such a way that the three points Ai, B;, Ck are collinear 
whenever 

(mod 3).* 
Another way to express the same result is to arrange the 9 points in the form 
ofa matrix 

14. 1 51 
A1 B1 C1 
A2 B2 C2 
As Ba C3 

• Coxeter, Self-dual con.figurations and regular graphs, Bulletin of the American Mathematica/ 
Society, 56 (1950), p. 432. 
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If this were a determinant that we wished to evaluate, we would proceed to 
multiply the elements in triads. These six "diagonal" triads, as well as the 
first two rows of the matrix, indicate triads of collinear points. The axiom 
asserts that the points in the bottom row are likewise collinear. Its inherent 
self-duality is seen from an analogous matrix of lines 

a1 b1 Ci 
a2 b2 c2 

a3 b3 c3 

These lines can be picked out in many ways, one of which is 

a1 = A3B1C2, bi = A1B3C2, c1 = A2B2C2, 
a2 = A2B3C1, b2 = A3B2C1, c2 = A1B1C1, 
a3 = A1B2C3, b3 = A2B1C3, c3 = A3B3C3. 

This completes our proof of the principle of duality. 

EXERCISES 

1. Every line is incident with at least three distinct points. (This statement, and the 
existence of a nonincident point and line, are sometimes used as axioms instead of 14.13 
[Robinson 1 ,  p. 10; Coxeter 2, p. 13).) 

2. A set of m points and n lines is called a configuration (me, nd) if c of then lines pass 
through each of the points while d of the m points lie on each of the lines. The four 
numbers are not independent but satisfy cm = dn. The dual of (me, nd) is (nd, m.j. 

In the case of a self-dual configuration, we have m = n, c = d, and the symbol (nd, nd) 
is conveniently abbreviated to nd. Simple instances are the triangle 32, the complete 
quadrangle (43, 62) and the complete quadrilateral (62, 43). Axiom 14.14 asserts the 
nonexistence of the Fano configuration* 73• The points and lines that occur in Axiom 
14.15 (Figure 14.lb) form the Pappus configuration 93, which may be regarded (in how 
many ways?) as a cycle of three triangles such as 

A 1B1 C2, A2B2C3, AJ.iaC1, 
each inscribed in the next (cf. Figure 1.8a, where UVW is inscribed in ABC). The self
duality is evident. 

By a suitable change of notation, Axiom 14.15 may be expressed thus: If AB, CD, 
EF are concurrent, and DE, FA, BC are concurrent, then AD, BE, CF are concurrent. 

3. A particular finite projective plane, in which only 13 "points" and 13 "lines" ex.isl, 
can be defined abstractly by calling the points P; and the lines p, (i = 0, 1, . . .  , 12) with 
the rule that P; and p; are "incident" if and only if 

i + j _ 0, 1, 3 or 9 (mod 13). 
Construct a table to indicate the 4 points on each line and the 4 lines through each point 
[V�blen and Young 1 ,  p. 6). Verify that all the axioms are satisfied; for example, 
PoP1P2P5 is a complete quadrangle with sides 

PoP1 = Po, PoP2 = pi, P1Ps = Ps, PoPs = pg, P2Ps = Pu, P1P2 = p12 

• Coxeter, Bulletin of the American Mathematical Society, 56 (19S0), pp. 423-42S. 
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and diagonal points P3 = Po · Pu, P4 = p9 • P12, Pa = P1 • pa, A possible matrix for Axiom 14.15 is 
Po P2 Pa 
Pa P4 Ps 
P9 Pio Ps The first row may be any set of three collinear points. The second row may be any such set on a line not incident with a point in the first row. The last row is then determined; e.g., in the above instance it consists of 

This differs from the general "Pappus matrix" 14.151 in that sets of collinear points occur not only in the rows and generalized diagonals but also in the columns. In other words, the 9 points form a configuration which is not merely 93 but (94, 123). When any one of the 9 points is omitted, the remaining 8 form a self-dual configuration 83 which may be regarded as a pair of mutually inscribed quadrangles (such as P0P9P5P8 and 
P�3P1oPs). [Hilbert and Cohn-Vossen 1,  pp. 101-102.] 4. The geometry described in Ex. 3 is known as PG(2, 3). More generally, PG (2,p) is a finite plane in which each line contains p+ I points. Consequently, each point lies 
onp+ I lines. There arep2+p+ l points (and the same number of lines) altogether. In other words, the whole geometry is a con.figuration nd with n = p2 + p + I and d = p + l.  (Actually p is not arbitrary, e.g., although it  may be any power of an odd prime, for instance, 5, 7, or 9, it cannot be 6.)* The possibility of such finite planes indicates that the projective geometry defined by Axioms 14. l l to 14. 15 is not categorical: it is not just one geometry but many geometries, in fact, in.finitely many. 5. In any finite projective geometry, Sylvester's theorem (§ 4.7) is false. 
14.2 PROJECTIVE COORDINATES 

Modern olgebro does not seem quite so terrifying when expressed in 
these geometrical terms/ 

G. de B. Robinson ( 1906 • 
[ Robinson 1 , p. 94] 

We saw, in § 13.7, that three real numbers t1, t2, t3 will serve as barycentric 
coordinates for a point in the affine plane (with respect to any given triangle 
ofreference) if and only if 

!1 + t2 + (3 =I= 0. 
Also a linear homogeneous equation 13.72 will serve as the equation for a 
line if and only if the coefficients T1, T2, Ta are not all equal. The remarks 

• By not insisting on Axiom 14.14, we can develop a "geometry of characteristic 2" in whichp is 
a power of 2. By not insisting on Axiom 14. 15, we can develop a "non-Desarguesian plane." For 
the application to mutually orthogonal Latin squares, see Robinson 1, p. 161, Appendix II. 
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just after 13.84 indicate that these artificial restrictions will be avoided when 
we have extended the real affine plane to the real projective plane by adding 
the line at infinity 
14.21 
and all its points (which are the points at infinity in various directions). 

When we interpret T1, T2, Ta as the distances from A 1, A2, A3 to the line 
T1t1 + T2t2 + Tata = 0, 

it is obvious that a parallel line is obtained by adding the same number to all three T's. Hence the point of intersection of two parallel lines satisfies 
14.21, that is, it lies on the line at infinity. 

To emphasize the fact that, in projective geometry, the line at infinity no longer plays a special role, we shall abandon the barycentric coordinates 
(ti, t2, ta) in favor of general projective coordinates (x1, X2, xa), given by 

t1 = JJ-1X1, t2 = JJ-2X2, /3 = JJ-3X3, 

where JJ-1, JJ-2- µ._-,, are constants, µ1µ.2µ.3 =:/= 0. Thus (x1, x2, xa) is the cen
troid of masses JJ-aXa at Aa (a = I, 2, 3), and the line at infinity has the un
distinguished equation 

JJ-1X1 + JJ-2X2 + /J.3X3 = 0. 
The contrast between these two kinds of coordinates may also be expressed as follows. Barycentric coordinates can be referred to any given triangle; the "simplest" points 

(I, 0, 0), (0, I, 0), (0, 0, I) 
are the vertices, and the unit point (1, 1, 1) is the centroid. More usefully, 
projective coordinates can be referred to any given quadrangle! Taking 
three of the four vertices to determine a system of barycentric coordinates. suppose the fourth vertex is (µ.1, µ.2, µ.3). By using these µ.'s for the transition 
to projective coordinates, we give this fourth vertex the new coordinates (1, 1, 1). Just as, in affine geometry, all triangles are alike, so in projective geometry all quadrangles are alike. To prove that projective coordinates provide a model (in the augmented 
affine plane) for the abstract projective plane described in § 14.1, we can take each of our geometric axioms and prove it analytically (i.e., algebraically). To prove 14.11, we merely have to observe that the line joining points (y1, Y2, Ya) and (z1 , z2, za) is 
14.22 j Y2 Ya I X1 + I Ya Yi I X2 + I Y1 Y2 1 X3 = 0 � � � � � � 
(cf. 13.74). Similarly, for 14.12 (or rather, 14.121), the point of intersection 
of lines � Ya x .. = 0 and �Za Xa = 0 is 
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For 14.13, we can use the four points 

14.23 (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 1). 
The diagonal points of the quadrangle so formed are 

(0, 1 ,  1), (1, 0, 1), (1, l, 0). 

If these three points lay on a line �Xa Xa = 0, we should have 

14.24 

whence X1 = X2 = X3 = 0, which is absurd. This proves 14.14. 

Finally, to prove 14.15 we use the coordinates 14.23 for the four points 

Ai, A2, Aa, C1. 
On the lines C1A1, C1A2, C1Aa, which are 

we take the points B1, B3, B2 to be 
(p, 1, 1), (1, q, 1), (1, 1, r). 

The three lines A3B1, A1B3, A2B2, being 
x1 = px2, x2 = qx3, xa = rx1, 

all pass through the same point C2 if 
1 4.25 pqr = 1. 

all pass through the same point C3 if 

qpr = I .  

Since this condition agrees with 14.25, the proof is complete. However, 
it is important to observe that the above deduction can be carried through 
in the more general situation where the coordinates belong not to a field 
but to an arbitrary division ring [Birkhoff and MacLane 1 ,  p. 126). We can 
still speak of points and lines, but Axiom 14.15 will have to be replaced by 
a weaker statement if the coordinate ring includes elements p and q such 
that pq =t= qp. 

For instance, we might have p = k and q = j in a "quaternion geometry" 
whose coordinates are based on "units" i, j, k satisfying 

z'2 = j2 = k2 = ijk = -1 .  
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When the A's and B's are so chosen, 14.15 is false. We have thus estab
lished an important connection between geometry and algebra: Hilbert's 
discovery that, when homogeneous coordinates are used in a plane satisfy
ing the first four axioms, Pappus's theorem is equivalent to the commutative 
law for multiplication. 

EXERCISES 

1. Given five points, no three collinear, we can assign the coordinates 14.23 to any 
four of them, and then the coordinates (x1, x2, x3) of the fifth are definite (apart from 
the possibility of multiplying all by the same constant). If the mutual ratios of the 
three x's are rational, we can multiply by a "common denominator" so as to make them 
all integral. In this case we can derive the fifth point from the first four by a linear 
construction, involving a finite sequence of operations of joining two known points or 
taking the point of intersection of two known lines. Devise such a construction for 
the point (I, 2, 3). 

2. The four points (I ,  ±1 ,  +I) form a complete quadrangle whose diagonal tri
angle is the triangle of reference. 

3. A configuration 83, consisting of two mutually inscribed quadrangles, exists in 
the complex projective plane, but not in the real projective plane. When it does exist, 
its eight points appear in four pairs of "opposites" whose joins are concurrent. The 
complete figure is a (94, 123). Hint: Let the two quadrangles be PoP2P4Ps and 
P1P3P5P1, so that the sets of three collinear points are 

PoP1Pa, P1P2P4, P2P3P5, PsP4Ps, P�sP1, PsPsPo, PsP1P1, P1PoP2. 

Take PoP1P2 as triangle of reference and let P3, P4, P1 be {I, I, 0), (0, I, I), (I, 0, x). 
Deduce that P5 and P6 are (.I, 1, x + I) and (1, x + I, x). Obtain an equation for x 
from the collinearity of P0P5Ps. 

4. If p is an odd prime, a finite projective plane PG(2, p) can be obtained by tak
ing the coordinates to belong to the field GF(p) which consists of the p residues (or, 
strictly, residue classes) modulo p (Ball 1 ,  pp. 60-61]. For instance, the appropriate 
"finite arithmetic" for PG(2, 3) consists of symbols 0, I, 2 which behave like ordinary 
integers except that 

I + 2 = 0 and 2 X 2 = l. 
In the notation of Ex. 3 at the end of§ 14. l ,  take P0P1P2 to be the triangle of reference 
and P5 the unit point (1, 1 ,  1). Find coordinates for the remaining points, and equations 
for the lines. 

Such finite planes, and the analogous finite n-spaces PG(n, p), were discovered by 
Gino Fano. * Fano took p to be a prime. The generalization PG(n, p") is due to 
0. Veblen and W. H. Bussey.t 

5. Taking the coordinates to belong to GF(2), which consists of the two "numbers" 
0 and l witb the rule for addition 

l + 1 = 0, 
we obtain a finite "geometry" in which the diagonal points of a complete quadrangle 
are always collinear! Our proof of 14.14 breaks down because now the equations 14.24 
• Giornale di Matematiche, 30 (1892), pp. 1 14-124. 
t Transactions of the American Mathematical Society, 7 (1906), pp. 241-259. 
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have not only the inadmissible solution Xi = X2 = Xa = 0 but also the significant 
solution X1 = X2 = X3 = l, which yields the line 

Xi + X2 + X3 = 0. 

This PG(2, 2) can be described abstractly by calling its seven points P; and its seven 
lines p; (i = 0, 1, . . .  , 6) with the rule that P, and PJ are incident if and only if 

i + j = 0, l or 3 (mod 7). 

14,3 DESARGUES'S THEOREM 

The fundamental idea for this pure geometry come from the desire of 
Renaissance painters to produce o "visual" geometry. How do things 
really look, and how con they be presented on the plane of the draw• 
ing? For example, there will be no porollel lines, since such lines op• 
pear lo the eye lo �onverge. 

S. H. Gould (1909 -
(Gould 1 ,  p. 298) 

Two triangles, with their vertices named in a particular order, are said to 
be perspective from a point ( or briefly, "perspective") if their three pairs of 
corresponding vertices are joined by concurrent lines. For instance, in Fig
ure 14.lb, the triangles A1AzA3 and B1B3B2 (sic) are perspective from C1 . 
By permuting the ·vertices of B1B3B2 cyclically, either forwards or back
wards, we see that the same two triangles are also perspective from C2 or 
Cs. In fact, one of the neatest statements of Axiom 14.15 [see Veblen and 
Young 1,  p. 100] is: 

If two triangles are doubly perspective they are trebly perspective. 
Dually, two triangles are said to be perspective from a line if their three 

pairs of corresponding sides meet in collinear points. It was observed by 
G. Hessenberg* that our axioms suffice for a proof of 

DESARGUES'S THEOREM. If two triangles are perspective from a point they 
are perspective from a line, and conversely. 

The details are as follows. Let two triangles PQR and P' Q' R' be per
spective from 0, as in Figure 14.3a, and let their corresponding sides meet 
in points 

D = QR · Q'R', E = RP ·  R'P', F = PQ • P'Q'. 

We wish to prove that D, E, F are collinear. After defining four further 
points 

S = PR · Q'R', 
U =  PQ • OS, 

T = PQ' • OR, 
V = P'Q' • OS, 

we have, in general,t enough triads of collinear points to make three applica
tions of Axiom 14.15. The "matrix" notation enables us to write simply 

• Mathematische Annalen, 61 (1�5), pp. 161-172. 
t Pcdoc 2, pp. 35-42. Sec also Coxctcr, Unverglingliclre Geometrie, Birkh!iuscr, Basel, 1963, pp. 

290-291. 
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DESARGUES'S THEOREM 

0 p P' 
Q' R' S 
E V T 

The last row of the last matrix exhibits the desired collinearity. 
The converse follows by the principle of duality. 
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Figure 14.3a 

EXERCISES 1. The triangle (p, 1, l)  (1, q, 1) (1, l, r) is perspective with the triangle of reference from the unit point (1, l ,  1). Pairs of corresponding sides meet in the three collinear points (0, q - l, 1 - r), (l -p, 0, r - l), (p - l, l - q, 0). 2. Desargues's theorem involves 10 points and 10 lines, forming a configuration 103. To obtain a symmetrical notation, consider triangles PaPuPa4 and P1sP2sP3s, perspective from a point P45 and consequently from a line P2aPa1P12- Then three points P11 are collinear if their subscripts involve just three of the numbers 1, 2, 3, 4, 5. If the remaining two of the five numbers are k and l, we may call the line Ptl· Then the same two triangles may be described asp1sP2sPas andpup2,p34, perspective from the linep45. 3. In the finite projective plane PG(2, 3), the two triangles P1P2P1 and PJPaP -t are perspective from the point Po and from the line PsP12P10- Identify the remaining points in Figure 14.3a. (In this special geometry, U and V both coincide with F, which is not surprising in view of the fact that Figure 14.3a involves 14 points whereas the whole plane contains only 13.) 
14.4 QUADRANGULAR AND HARMONIC SETS 

Desargues's theorem enables us to prove an important property of a 
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quadrangular set of points, which is the section of the six sides of a com
plete quadrangle by any line that does not pass through a vertex: 

1 4.41 Each point of a quadrangular set is uniquely determined by the re
maining points. 

Proof Let PQRS be a complete quadrangle whose sides PS, QS, RS, 
QR, RP, PQ meet a line g (not through a vertex) in six points A, B, C, D, 
E, F, certain pairs of which may possibly coincide. (The first three points 
come from three sides all containing the same vertex S; the last three from 
the respectively opposite sides, which form the triangle PQR.) To show 
that F is uniquely determined by the remaining five points, we set up an
other quadrangle P' Q' R'S' whose first five sides pass through A, B, C, D, E, 
as in Figure 14.4a. Since the two triangles PRS and P'R'S' are perspective 
from the line g, the converse of Desargues's theorem tells us that they 
are also perspective from a point; thus PP' passes through the point 
0 = RR' · SS'. Similarly, the perspective triangles QRS and Q'R'S' show 
that QQ' passes through this same point 0. In fact, all the four lines PP', 
QQ', RR', SS' pass through 0, so that PQRS and P'Q'R'S' are "perspec
tive quadrangles." By the direct form of Desargues's theorem, the triangles 
PQR and P'Q'R', which are perspective from the point 0, are also perspec
tive from the line DE, which is g; that is, the sides PQ and P' Q' both meet 
g in the same point F. 

A F 

Figure 1 4.4a 

Following Veblen and Young [1 , p. 49] we use the symbol 

Q(ABC, DEF) 
to denote the statement that the six points form a quadrangular set in the 
above manner. This statement is evidently unchanged if we apply any .per
mutation to ABC and the same permutation to DEF. It is also equivalent 
to any of 

Q(AEF, DBC), Q(DBF, AEC), Q(DEC, ABF). 
To obtain other permutations we need a new quadrangle. With the ex-
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A F 

Figure 14,4b 

ercise of some ingenuity we can retain two of the four old vertices, say Q 
and S. Defining 

R' = QR • SF, P' = PS · QC, 

as in Figure 14.4b, we apply Axiom 14.15 to the hexagon PRQCFS accord
ing to the scheme 

with the conclusion,'that R' P' passes through E. Now, just as the quad
rangle PQRS yields Q(ABC, DEF), the quadrangle P'QR'S yields Q(ABF, 
DEC). In other words, the statement Q(ABC, DEF) implies Q(ABF, DEC), 
and hence also 

14.42 Q(A BC, DEF) implies Q(DEF,ABC). 
In the important special case Q(ABC, ABF), which is abbreviated to 

H(AB, CF), 

we say that the four points form a harmonic set, or, more precisely, that F 
is the harmonic conjugate of C with respect to A and B. This means that A 
and B are two of the three diagonal points of a quadrangle while C and F 
lie respectively on the remaining sides, that is, on the sides that pass through 
the third diagonal point. Axiom 14.14 tells us that the harmonic conjugates 
C and F are distinct (except in the degenerate case when they coincide with 
A or B). 

A C B F A 

Figure 14.4c 

p 

F B C 
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EXERCISES 

1. H(AB, CF) is equivalent to H(BA, CF) or H(AB, FC) or H(BA, FC). 
2. Describe in detail a construction for the harmonic conjugate of C with respect 

to two given points A and B (on a line through C, as in Figure 14.4c). 
3. The harmonic conjugate of (0, I, ;\) with respect to (0, 1, 0) and (0, 0, 1) is 

(0, I ,  ->-). 
4. In PG(2, 3) (see Ex. 3 at the end of§ 14.1), every set of four collinear points is a 

harmonic set in every order; e.g., H( P0P1, P3P9), H( PoP3, P9P1), H( PoPg, P1P3). 
5. In Figure 6.6a, H(AA', A1A2). Deduce the metrical definition 

AA1 AA2 
A1A' = A'A2 

for a harmonic set. (Hint: Defining E' as in Ex. 4 at the end of § 6.6, consider the 
quadrangle formed by P, E, E' and the point at infinity on A 1P.) 

1 4.5 PROJECTIVITIES 

A range is the set of all points on a line. Dually, a pencil is the set of all lines through a point. Ranges and pencils are instances of one-dimensional 
forms. We shall often have occasion to consider a (one-to-one) correspond
ence between two one-dimensional forms. The simplest possible correspondence between a range and a pencil arises when the lines of the pencil 
join the points of the range to another point, so that the range is a section 
of the pencil. The correspondence between two ranges that are sections of 
one pencil by two distinct lines is called a perspectivity; in such a case we write 

X = X' or X g X', 
/\ /\ 

meaning that, if X and X' are corresponding points of the two ranges, their join XX' continually passes through a fixed point 0, which �e call the cen
ter of the perspectivity. There is naturally also a dual kind of perspectivity relating pencils instead of ranges. The product of any number of perspectivities is called a projectivity. Two ranges (or pencils) related by a projectivity are said to be projectively related, and we write 

X i\ X'. 

For instance, in the circumstances illustrated in Figure 14.5a, 
ABCD g AoBoCoDo <2:1 A'B'C'D', 

/\ /\ 
ABCD i\ A'B'C'D'. 
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A' 

A 

Do A B C X 

Figure 1 4.5a Figure 1 4.5b 

Analogously, we can define a projectivity relating a range to a pencil, or vice 
versa. 

Given three distinct points A, B, C on a line, and three distinct points 
A', B', C' on another line, we can relate them by a pair of perspectivities in 
the manner of Figure 14.5b, where the axis (or "intermediary line") of the 
projectivity joins the points 

so that 

Bo = AB' · BA', Co = AC' · CA'; 

ABC 4' AoBoCo 4 A'B'C'. 
I\ I\ 

For each point X on AB we obtain a corresponding point X' on A'B' by 
joining A to the point X0 = A'X ·BoCo, so that 

ABCX 4' A0B0CoXo 4 A'B'C'X'. 
I\ I\ 

By Axiom 14.15, the axis B0C0, being the "Pappus line" of the hexagon 
AB'CA' BC', contains the point BC' • CB'. Similarly, it contains the point 
of intersection of the "cross joins" of any two pairs of corresponding points. 
In particular, we could have derived the same point X' from a given point 
X by using perspec(ivities from B' and B (or any other pair of correspond
ing points) instead of A '  and A. 

It can be proved [Baker 1 ,  pp. 62-64; Robinson 1 ,  pp. 24-36] that the 
product of any number of perspectivities can be reduced to such a product 
of two, provided the initial and final ranges are not on the same line. In 
other words, 

1 4.5 1 Any projectivity relating ranges on two distinct lines is expressible 
as the product of two perspectivities whose centers are corresponding points (in 
reversed order) of the two related ranges. 

To relate two triads of distinct points ABC and A' B' C' on one line, we 
may use an arbitrary perspectivity ABC � A1B1C1 to obtain a triad on an
other line, and then relate A1B1C1 to A'B'C' as in 14.5 1. Hence 
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14.52 It is possible, by a sequence of not more than three perspectivities, 
to relate any three distinct co/lineaf points to any other three distinct collinear 
points. 

A projectivity X I\ X' on one line may have one or more invariant points 
(such that X = X'). If it has more than two invariant points, it is merely 
the identity, X I\ X. In fact, the above construction for a projectivity 

ABCX i\ ABCX' 
on one line involves four points on another line such that 

ABCX � A1B1C1X1 i\ ABCX'. 
By 14.51, there is essentially only one projectivityA1B1C1 A ABC. We have 
thus proved 

THE FUNDAMENTAL THEOREM OF PROJECTIVE GEOMETRY. A projectivity 
is determined when three points of one range and the corresponding three points 
of the other are given. 

If a projectivity relating ranges on two distinct lines has an invariant point 
A , this point, belonging to both ranges, must be the common point of the 
two lines, as in Figure 14.Sc. Let B and C be any other points of the first 
range, B' and C' the corresponding points of the second. The fundamental 
theorem tells us that the perspectivity 

ABC � AB'C', I\ 
where O = BB' · CC', is the same as the given projectivity ABC A AB'C'. 
Hence 

14.53 A projectivity between two distinct lines is equivalent to a perspec
tivity if and only if their point of intersection is invariant. 

R 

A F 

Figure 14.Sc Figure 1 4.Sd 

Returning to the notion of a projectivity between ranges on one line 
(i.e., a projective transformation of the line into itself), we recall that, if such 
a transformation is not merely the identity, it cannot have more than two 
invariant points. It is said to be elliptic, parabolic, or hyperbolic according 
as the number of invariant points is 0, 1 ,  or 2. When coordinates are used, 
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invariant points arise from roots of quadratic equations; thus elliptic pro
jectivities do not occur in complex geometry, but 

ABC A BCA 

is elliptic in real geometry [Coxeter 2, p. 48). 

Figure 14.Sd (cf. 14.4a) suggests a simple construction for a hyperbolic 
projectivity ABF A A CE in which one of the invariant points is given: 

Q R ABF = ASP = ACE. 
I\ I\ 

Here S and P may be any two points collinear with A, and then the other 
two vertices of the quadrangle are 

Q = BS • FP, R = CS • EP. 

The second invariant point is evjdently D, on QR. When the same projec
tivity is expressed in the form ADB A ADC (that is, when both invariant 
points are given), we have the analogous construction 

Q R ADB = A US = ADC, A /\ 
where U = AS ·QD. This can still be carried out if A and D coincide (i.e., if 
g passes through the diagonal point U = PS · QR of the quadrangle), in 
which case we have the parabolic projectivity 

AAB A AAC 

[Coxeter 2, p. 50). 

R 

A D C 

Figure 14.Se 

F 

An involution is a projectivity of period 2, that is, a projectivity which in
terchanges pairs of points. Figure 14.Se is derived from Figure 14.Sd by 
adding extra points T, W, Z. We may imagine this figure to have been de
rived from any four given collinear points A, C, D, F by taking a point R 
outside their line, letting the joins RA, RD, RC meet an arbitrary line 
through Fin T, Q, W, respectively, and then taking Z = AQ • RC. Since 
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we have 

1 4.54 

PROJECTIVE GEOMETRY 

ADCF � ZRCW 4 QTFW � DAFC, 
/\ /\ /\ 

ADCF i\ DAFC. 

But, by the fundamental theorem, there is only one projectivity ADC i\ DAF. 
Hence, if a projectivity interchanging A and D transforms C into F, it inter
changes C and F. In other words, 

14.55 Any projectivity that interchanges two points is an involution. 
Applying the same set of three perspectivities to another point B, we have 

Q A R B = S = P = E. 
/\ /\ /\ 

Since Q(ABC, DEF), we have now proved the theorem of the quadrangu
lar set: 

1 4.56 The three pairs of opposite sides of a quadrangle meet any line (not 
through a vertex) in three pairs of an involution. 

Combining this with 14.55, we have an alternative proof for 14.42 [Veb
len and Young 1 ,  p. 101]. 

Since the involution A CD I\ DFA is determined by its pairs AD and CF 
(or any other two of its pairs), it is conveniently denoted by 

(AD)(CF) 
or (DA)(CF) or (CF)(AD), etc. Thus Q(ABC, DEF) implies that the pair 
BE belongs to (AD)(CF), and CF to (AD)(BE), and AD to (BE)(CF). The 
points in a pair are not necessarily distinct. When A = D and B = E, so 
that H(AB, CF), we have the hyperbolic involution (AA)(BB) which inter
changes pairs of harmonic conjugates with respect to A and B. Since this 
same involution is expressible as (AA)( CF), 

14.57 If an involution has one invariant point, it has another, and con
sists of the correspondence between harmonic conjugates with respect to these 
two points. 

It follows that there is no parabolic involution. 

EXERCISES 
1. Let the lines OA,OB, . . . , 01A', 01B', . . .  and A0B0 in Figure 14.5a be denoted 

by a, b, . . .  , a', b', . . .  and o. Use the principle of duality to justify the notation 

abed £ a'b'c'd'. 

2. The harmonic property is invariant under a projectivity: if H(AB, CF) and 
ABCF A A'B'C'F, then H(A'B', C'F') [Coxeter 2, p. 23]. 

3. H(AB, CF) implies H(CF, AB). (Hint: By 14.54, ACBF I\ CAFB.) 
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4. Draw a quadrangle and its section, as in Figure 14.5d. Take an arbitrary point 
X on g and construct the corresponding point X' in the hyperbolic projectivity 

ABF
/\ 

ACE. 

Do the same for ADB I\ ADC, and draw the modified figure that is appropriate for �he parabolic projectivity AAB I\ AAC. 5. Two perspectivities cannot suffice for the construction of an elliptic projectivity. 6. In the notation of Figure 14.4b, 
ADCF g A UP'P g DUR'R � DAFC. 

I\ I\ I\ 7. Any projectivity may be expressed as the product of two involutions [Coxeter 2, p. 54]. 8. The projectivities on the line x3 = 0 are the linear transformations 
µ.x' 1 = C11X1 + C1zX2, 

µ.x' 2 = C21X1 + C2zX2, 

where c11c22=r!= c12c21, Under what circumstances is such a projectivity (i) parabolic, (ii) an involution? 
1 4.6 COLLINEATIONS AND CORRELATIONS 

A co/lineation is a transformation (of the plane) which transforms collinear 
points into collinear points. Thus it transforms lines into lines, ranges into 
ranges, pencils into pencils, quadrangles into quadrangles, and so on. A 
projective collineation is a collineation which transforms every one-dimen
sional form projectively. 

1 4.61 A ny col/ineation that transforms one range into a projectively re
lated range is a projective collineation. 

Proof [Bachmann 1 ,  p. 85]. Let the given collineation transform the range 
of points X on a certain line a into a projectively related range of points X' 
on the corresponding line a', and let it transform the points Y on another 
line b into corresponding points Y' on b'. AJJ.y perspectivity relating X and Y 
will be transformed into a perspectivity relating X' and Y'. Hence 

y A X I\ X' A Y', 

so that the collineation induces a projectivity Y I\ Y' between the points of 
b and b', as desired. 

It follows that a projective collineation is determined when two corre
sponding quadrangles (or quadrilaterals) are given [Coxeter 2, p. 60]. 

A perspective collineation with center O and axis o is a collineation which 
leaves invariant all the lines through O and all the points on o. (By 14.61, 
every perspective collineation is a projective collineation.) Following Sophus 
Lie (1842-1899), we call a perspective collineation an elation or a homology 
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according as the center and axis are or are not incident. A harmonic ho
mology is the special case when corresponding points A and A', on a line a 
through 0, are harmonic conjugates with respect to O and o • a. Every pro
jective collineation of period 2 is a harmonic homology [Coxeter 2, p. 64]. 

We have seen that a collineation is a point-to-point and line-to-line trans
formation which preserves incidences. Somewhat analogously, a correla
tion is a point-to-line and line-to-point transformation which dualizes inci
dences: it transforms points A into lines a', and lines b into points B', in 
such a way that a' passes through B' if and only if A lies on b. Thus a cor
relation transforms collinear points into concurrent lines (and vice versa), 
ranges into pencils, quadrangles into quadrilaterals, and so on. A projec
tive correlation is a correlation that transforms every one-dimensional form 
projectively. In a manner resembling the proof of 14.61, we can establish 

1 4.62 Any correlation that transforms one range into a projectively re
lated pencil (or vice versa) is a projective correlation. 

It follows that a projective correlation is determined when a quadrangle 
and the corresponding quadrilateral are given [Coxeter 2, p. 66]. 

A polarity is a projective correlation of period 2. In general, a correlation 
transforms a point A into a line a' and transforms this line into a new point 
A". When the correlation is of period two, A" always coincides with A and 
we can simplify the notation by omitting the prime ( '  ). Thus a polarity re
lates A to a, and vice versa. Following J. D. Gergonne (177 1-1 859), we 
call a the polar of A, and A the pole of a. Clearly, the polars of all the points 
on a form a projectively related pencil of lines through A. 

Since a polarity dualizes incidences, if A lies on b, a passes through B. 
In this case we say that A and B are conjugate points, a and b are conjugate 
lines . It may happen that A and a are incident, so that each is self-conjugate. 
We can be sure that this does not always happen, for it is easy to prove that 
the join of two self-conjugate points cannot be a self-conjugate line. It is 
slightly harder to prove that no line can contain more than two self-con
jugate points [Coxeter 2, p. 68]. The following theorem will be used in 
§ 14.7: 

1 4.63 A polarity induces an involution of conjugate points on any line that 
is not self-conjugate. 

Proof On a non-self-conjugate line a, the projectivity X I\ a ·  x (Figure 
14.6a) transforms any non-self-conjugate point B into another point C = a ·  b, 
whose polar is AB. The same projectivity transforms C into B. Since it 
interchanges B and C, it must be an involution, 

Dually, x and AX are paired in the involution of conjugate lines through A.  
Such a triangle ABC, in  which each vertex is the pole of the opposite side 

(so that any two vertices are conjugate points, and any two sides are con
jugate lines), is said to be self-polar. If P is any point not on a side, its 
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polar p does not pass through a vertex, and the polarity may be described 
as the unique projective correlation that transforms the quadrangle ABCP 
into the quadrilateral abcp. An appropriate symbol, analogous to the sym
bol (AB)(PQ) for an involution, is 

(ABC)(Pp). 
Thus any triangle ABC, any point P not on a side, and any line p not through 
a vertex, determine a definite polarity (ABC)(Pp), in which the polar x of 
an arbitrary point X can be constructed by simple incidences. As a first 
step towards this construction we need the following lemma:• 

A 

I \ 
I \ 
I \ 

C I \ b 
/ x\ 
I \ 
I \ 

B X a C 

Figure 1 4.6a 

14.64 The polars of the vertices of a non-self-polar triangle meet the re
spectively opposite sides in three collinear points. 

Proof Let APX be a triangle whose sides PX, XA, AP meet the polars 
a, p, x of its vertices in points A1, P1, X1, as in Figure 14.6b. The polar of 
X1 = x • A P  is, of course, x1 = X(a • p). Define also the extra points 
P' = a · A P, X' = a · AX and their polars p' = A(a ·p), x' = A(a · x). 
By 14.54 and the polarity, we have 

AP'PX1 i\ P'AX1P i\ p'axl]} A AX'XP1. 
By 14.53, AP'PX1 = AX'XP1. Since the center of this perspectivity is 
P'X' • PX = A 1, the1hree points A1, P1, X1 are collinear, as desired. 

We are now ready for the construction (Figure 14.6c): 

14.65 In the polarity (A BC)(Pp ), the polar of a point X (not on AP, BP, 
or p) is the line X1X2 determined by 

• This is known as Chasles's theorem. The proof given in The Real Projective Plane [Coxeter 
2, p. 71) suffices for real geometry but not for the more general geometry which is developed 
here. Lemma 5.54 of that book is false in the finite geometry PG(2, 3), which admits a quadri
lateral whose three pairs of opposite vertices P1P2, PJP&, P5P9 arc pairs of conj�gate points in 
the polarity P, --> p1 although the four sides P1P3Ps, P2P6Ps. P2P3P5, P1P5P6 contain their re
spective poles Po, P1, P8, Pu, (The remaining three of the thirteen points in this finite plane are 
the diagonal points of the quadrangle P0P1PsP11; their joins in pairs are the diagonals of the 
quadrilateral PoP1 pap11.) Sec also W. G. Brown, Canadian Mathematical B111/etin. 3 {1960). pp. 
221-223. 
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A A 

, .x 

Figure 14.6b 

.x 

Figure 1 4.6c 

A1 = a · PX, P1 = p • AX, X1 = AP ·  A 1P1, B2 = b • PX, P2 = p • BX, X2 = BP · B2P2. 
Proof By 14.64, the polars a, p, x meet the lines PX, AX, A P  in three 

collinear points, the first two of which are A1 and P1. Hence x passes 
through X1 = AP · A1P1. Similarly x passes through X2 = BP · B2P2. 

In terms of coordinates, a projective collineation is a linear homogene
ous transformation 

14.66 

where the summation is understood to be taken over the repeated index /1 
(for each value of a). The nonvanishing of the determinant makes it pos
sible to solve the equations for Xp in t::rms of x' a so as to obtain the in
verse collineation. By suitably adjusting the coefficients Cap, we can trans
form the particular quadrangle 14.23 into any given quadrangle [Coxeter 2, 
p. 197]. 

Since the product of two correlations (e.g., a polarity and another corre
lation) is a collineation, any given projective correlation can be exhibited 
as the product of an arbitrary polarity and a suitable projective collinea
tion. The most convenient polarity for this purpose is that in which the line 

�XaXa = 0 
is the polar of the point (X1, X2, X3). Combining this with the general col
lineation 14.66, we obtain the correlation that transforms each

. 
point (y) 

into the line 

14.661 

where again we must have det(cap) -=fa. 0. In fact, the correlation is associ
ated with the bilinear equation 

�l:CapX�p = 0 
[cf. Coxeter 2, p. 200]. 

The correlation is a polarity if it is the same as its inverse, whose equa
tion, derived by interchanging (x) and (y), is 
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��Cc:rtv'..Xp = 0, or ��Cp..X.J'p = 0. 
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Thus a polarity occurs when Cpc:r = "A.cap, where "A is the same for all a and /3, 
so that c0p = "Acp" = "A.2cc:rp, "A.2 = 1, "A = + 1. But we cannot have "A = - 1, 
as this would make the determinant 

0 C12 -C31 

-C12 0 C23 = 0. 
C31 -C23 0 

Hence "A = 1, and cp" = Cc:rp• In other words, 

14.67 A projective correlation is a polarity if and only if its matrix of co
efficients is symmetric. 

Thus the general polarity is given by 

1 4.68 Cpc:r = Cc:rp, det(cc:rp) =I= 0, 
meaning that the polar of (y1, y2, y3) is 14.661, or that 14.68 is the condi
tion for points (x) and (y) to be conjugate. Setting YP = Xp, we deduce 
the condition 

��Cc:rpX.,Xp = 0, 
or C11X1 2 + C22X22 + C33X32 + 2c23X2X3 + 2c31X3X1 + 2c12X1X2 = 0, 
for the point (x) to be self-conjugate. Hence 

1 4.69 If a polarity admits self-conjugate points, their locus is given by an 
equation of the second degree. 

EXERCISES 

1. Given the center and axis of a perspective collineation, and one pair of corre
sponding points (collinear with the center), set up a construction for the transform X' 
of any point X [Coxeter 2, p. 62]. 

2. Any two perspective triangles are related by a perspective collineation. 
3. A collineation which leaves just the points of one line invariant is an elation. 
4. An elation with axis o may be expressed as the product of two harmonic ho

mologies having this same axis o [Coxeter 2, p. 63]. 
5. In PG(2, 3), the transformation P1 ➔ P1+1 (with subscripts reduced modulo 13) 

is evidently a collineation of period 13. Is it a projective collineation? Consider also 
the transformation P1 ➔ Pa1-

6. What kind of collineation is 
(i) x'1 = Xt, X12 = X2, X13 = CX3; 

(ii) x't = X1 + C1X3, X'2 = X2 + C2X3, X3 = X3? 

7. Use 14.64 to prove Hesse's theorem: If two pairs of opposite vertices of a com
plete quadrilateral are pairs of conjugate points (in a given polarity), then the third 
pair of opposite vertices is likewise a pair of conjugate points. 

8. Give an analytic proof of Hesse's theorem. (Hint: Apply the condition 14.68 to 
the pairs of vertices 

(0, l, -+-1), (+ I, 0, I), (I, ± 1, 0) 
of the quadrilateral X1 -+- x2 ± x3 = 0.) 
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9. The bilinear equation 

X1.Y1 + X�z + Xa)/3 = 0 

is the condition for (x) and (y) to be conjugate in the polarity (ABC)(Pp), where ABC 
is the triangle of reference, P is (1, 1 ,  l), and p is x1 + x2 + x3 = 0. Are there any 
self-conjugate points? Consider, in particular, the case when the coordinates are residues 
modulo 3. 

1 4.7 THE CONIC 

The three familiar curves which we call the .. conic sections·· have a 
long history. The reputed discoverer was Menoechmus, who flour• 
ished about 350 B.C. They attracted the attention of the best of the 
Greek geometers down to the time of Pappus of Alexandria. . . . A 
vivid new interest arose in the seventeenth century. . . . It seems cer• 
toin that they will always hold a place in the mathematical curriculum. 

J. L. Coolidge (1873 -1954) 

[ Coolidge 1 ,  Preface] 

In the projective plane there is only one kind of conic. The familiar dis
tinction between the hyperbola, parabola, and ellipse belongs to affine 
geometry. To be precise, it depends on whether the line at infinity is a 
secant, a tangent, or a nonsecant [Coxeter 2, p. 129). 

C 
Figure 14.7a 

A polarity is said to be hyperbolic or elliptic according as it does or does 
not admit a self-conjugate point. (In the former case it also admits a self
conjugate line: the polar of the point.) The self-conjugate point P, whose 
existence suffices to make a polarity hyperbolic, is by no means the only 
self-conjugate point: there is another on every line through P except its polar 
p. To prove this we use 14.63, which tells us that every such line contains 
an involution of conjugate points. By 14.57, this involution, having one in
variant point P, has a second invariant point Q, which is, of course, another 
self-conjugate point of the polarity. Thus the presence of one self-con
jugate point implies the presence of many (as many as the lines through a 
point; for example, infinitely many in real or complex geometry). Their 
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locus is a conic, and their polars are its tangents. This simple definition, 
due to von Staudt, exhibits the conic as a self-dual figure: the locus of self
conjugate points and also the envelope of self-conjugate lines. 

The reader must bear in mind that there are only two kinds of polarity 
and that there is only one kind of conic. The terminology is perhaps not 
very well chosen: a hyperbolic polarity has many self-conjugate points, form
ing a conic; an elliptic polarity has no self-conjugate points at all, but still 
provides a polar for each point and a pole for each line; there is no such 
thing as a "parabolic polarity." 

A tangent justifies its name by meeting the conic only at its pole, the point 
of contact. Any other line is called a secant or a nonsecant according as it 
meets the conic twice or not at all, that is, according as the involution of 
conjugate points on it is hyperbolic or elliptic. Any two conjugate points 
on a secant PQ, being paired in the involution (PP)(QQ), are harmonic con
jugates with respect to P and Q. 

Let PQR be a triangle inscribed in a conic, as in Figure 14.7a. Any line 
c conjugate to PQ is the polar of some point C on PQ. Let RC meet the 
conic again in S. Then C is one of the three diagonal points of the inscribed 
quadrangle PQRS. The other two are 

A = PS · QR, B = QS · RP. 

Their join meets the sides PQ and RS in points C1 and C2 such that H(PQ, 
CC1) and H(RS, CC2). Since C1 and C2 are conjugate to C, the line AB, 
which contains them, is c, the polar of C. Similarly BC is the polar of A. 
Therefore A and B are conjugate points. These conjugate points are the 
intersections of c with the sides QR and RP of the given triangle. Hence 

SEYDEWITZ'S THEOREM. If a triangle is inscribed in a conic, any line con
jugate to one side meets the other two sides in conjugate points. 

From this we shall have no difficulty in deducing 
STEINER'S THEOREM. Let lines x and y join a variable point on a conic to 

two fixed points on the same conic; then x 1i.. y. 
Proof. The tangents p and q, at the fixed points P and Q, intersect in D, 

the pole of PQ. Let c be a fixed line through D (but not through P or Q), 
meeting x and y in B and A, as in Figure 14.7b. By Seydewitz's theorem, 

q 

Figure 14.7b 



254 PROJECTIVE GEOMETRY 

B2 

Figure 14,7c 

BA is a pair of the involution of conjugate points on c. Hence, when the 
point x • y varies on the conic, 

x
i\ 

B
A 

A "j;_ Y· 

The following construction for a conic through five given points, no three 
collinear, was discovered by Braikenridge and Maclaurin independently, 
about 1733 [Coxeter 2, p. 91]. Let Ai, B2, Ci, A2, Bi be the five points, as 
in Figure 14.7c; then the conic is the locus of the point 

C2 = Ai(z • CiA2) • Bi(z • CiB2), 

where z is a variable line through the point A1B2 • B1A2. This is the con-
verse of 

PASCAL'S THEOREM. If a hexagon A iB2C1A�1C2 is inscribed in a conic, 
the points of intersection of pairs of opposite sides, namely, 

B1C2 • B2Ci, CiA2 • CzA1, A 1B2 • A2Bi, 
are collinear. 

Pascal discovered his famous theorem [Coxeter 2, p. 103] when he was 
only sixteen years old. More than 150 years later, it was dualized (see Fig
ure 14.7d): 

BRIANCHON'S THEOREM. If a hexagon is circumscribed about a conic, its 
three diagonals are concurrent. 

We saw, in § 8.4, that the familiar conics of Euclidean geometry have equa
tions of the second degree in Cartesian coordinates. The same equations 
in affine coordinates remain valid in affine geometry, and yield homogene
ous equations of the second degree in barycentric coordinates (§ 13.7) and 
in projective coordinates (§ 14.2). Thus 14.69 serves to reconcile von Staudt's 
definition of a conic with the classical definitions. In particular, 

is a conic touching the lines x3 = 0 and X1 = 0 at the respective points 
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Figure 14.7d 

(I ,  q, 0) and (0, 0, l). This conic can be parametrized in the form 

X1 : X2 : X3 = t2 : t : I, 

255 

which exhibits it as the locus of the point of intersection of corresponding 
members of the projectively related pencils of lines 

x1 = txz and Xz = tx3. 

If det (c,.p) = 0, the quadratic form };};ca/lX..X.e may be expressible as the 
product of two linear forms };a,.x .. and }:b/lx/l. Accordingly, a pair of lines 
is sometimes regarded as a degenerate conic. In this sense, Axiom 14.15 is 
a special case of Pascal's theorem. 

EXERCISES 

1. If a quadrangle is inscribed in a conic, its diagonal points form a self-polar tri
angle. The tangents at the vertices of the quadrangle form a circumscribed quadrilat
eral whose diagonals are the sides of the same triangle [Coxeter 2, pp. 85, 86]. 

2. Referring to the projectivity x A y of Steiner's theorem, investigate the special 
positions of x and y when A or B coincides with D. 

3. If a projectivity between pencils of lines x and y through P and Q bas the effect 
xpd i\ ydq, where dis PQ, the locus of the point x • y is a conic through P and Q whose 
tangents at these points are p and q. (This construction is often used to define a conic; 
see, e.g., Robinson [1, p. 38].) 

4. Of the conics that touch two given lines at given points, those which meet a third 
line (not through either of the points) do so in pairs ofan involution [Coxeter 2, p. 90]. 

5. If two triangles are self-polar for a given polarity, their six vertices lie on a conic 
or on two lines [Coxeter 2, p. 93]. 

6. If two triangles have six distinct vertices, all lying on a conic, they are self-polar 
for some polarity [Coxeter 2, p. 94]. 

7. In PG(2, 3) (Ex. 3 at the end of§ 14.1), the polarity P, -p, or ( P4P10P12)( P0p0) 

determines a conic consisting of the four points Po, P1, Pe, Pu and the four lines p0, 

P1,Ps,P11• (Hint: PoPzPaP12 'f P1P1Pr,P• A PoP2PsP12,) 
8. The equation x12 + x22 - x32 = 0 represents a conic for which the triangle of 

reference is self-polar. Verify Pascal's theorem as applied to the inscribed hexagon 
(0, I , I) (0, - 1, I) (I, 0, I) (-1, 0, 1) (3, 4, 5) (4, 3, 5). 
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14.8 PROJECTIVE SPACE 

Our Geometry is on abstract Geometry. The reasoning could be fol
lowed by o disembodied spirit who hod no idea of o physical point; 
just os o man blind from birth could understand the Electromagnetic 
Theory of Light. 

H. G. Forder [ 1 ,  p. 43) 

Axiom 14. 12 had the effect of restricting the geometry to a single plane. 
If we remove this restriction, we must know exactly what we mean by a 
plane. First we define a fiat pencil to be the set of lines joining a range of 
points (on a line) to another point. Then we define a plane to be the set of 
points on the lines of a flat pencil and the set of lines joining pairs of these 
points. Accordingly we replace Axiom 14.12 by three new axioms. The first 
(which may be regarded as a projective version of Pasch's axiom, 12.27) al
lows us to forget the role of a particular flat pencil in the definition of a plane. 
The second enables us to speak of more than one plane. The third ( cf. 
12.431) restricts the number of dimensions to three. 

AXIOM 14.81 If A, B, C are three non-collinear points, and D is a point 
on BC distinct from B and C, while E is a point on CA distinct from C and A, 
then there is a point F on AB such that D, E, F are collinear. 

AXIOM 14.82 There is at least one point not in the plane ABC. 
AXIOM 1 4.83 Any two planes meet in a line. 
We now have a different principle of duality: points, lines and planes cor

respond to planes, lines and points (cf. § 10.5). Two intersecting lines, a 
and b, determine a point a ·  b and a plane ab; these are dual concepts. Two 
lines that do not intersect are said to be skew. The theory of collineations 
and correlations [Coxeter 3, pp. 63-70) is analogous to the two-dimensional 
case, except that the number of self-conjugate points on a line is no longer 
restricted to 0, I, or 2. In fact, instead of two kinds of polarity we now have 
four: one "elliptic," having no self-conjugate points, two "hyperbolic," whose 
self-conjugate points form a quadric (nonruled or ruled), and one, the null 
polarity ( or "null system"), in which every point in space is self-conjugate! 

The idea of defining a quadric as the locus of self-conjugate points in a 
three-dimensional polarity ( of the second or third kind) is due to von Staudt. 
Another approach, using a two-dimensional polarity in an arbitrary plane 
w, was devised by F. Seydewitz. * The quadric appears as the locus of the 
point 

PA · Qa, 
where P and Q are ftxed points (on the quadric) while A is a variable point 
on w and a is its polar. This definition allows the quadric to degenerate to 
a cone or a pair of planes. 

To sample the flavor of solid projective geometry, let us consider a few 
• Archiv fllr Mathematik und Physik, 9 (1848), p. 158. 
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Figure 14.Sa 

typical theorems. Suppose a complete quadrangle PQRS yields a quadrangular set Q(ABC, DEF) on a line g, as in Figure 14.8a. In another plane 
through g, let the sides of a triangle P' Q' R' pass through A, B, C, and let 
DP' meet EQ' in S'. Theorem 14.42 tells us that S' lies on R'F. This re
mark yields two interesting configurations: one consisting of eight lines (Figure 14.8b), and the other of two mutually inscribed tetrahedra. 

GALLUCCl'S THEOREM. If three skew lines all meet three other skew lines, 
any transversal to the first set of three meets any transversal to the second set. 

Proof Let the two sets of lines be PQ', P' Q, RS; PQ, P' Q', R'S. This notation agrees with Figure 14.8a, for, since PS and Q'R' both pass through 
A, PQ' meets R'S, and since QS and R' P' both pass through B, P' Q meets 
R'S. The transversal from R to PQ' and P' Q is 

RPQ' • RP'Q = REQ' • RDP' = RS'. 

The transversal from R' to PQ and P' Q' is 
R'PQ ·R'P'Q' = R'FQ • R'FQ' = R'F. 

Since S' lies on R' F, these transversals meet, as desired. 

R 

Q 
p 

s 

p• Q' 

Figure 14.Sb 
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MOBIUS'S THEOREM. If the four vertices of one tetrahedron lie respectively 
in the four face planes of another, while three vertices of the second lie in three 
face planes of the first, then the remaining vertex of the second lies in the re
maining face plane of the first. 

Proof Let PQRS' and P' Q' R'S be the two tetrahedra, with 

P, Q, R, S' ' P' , Q', s 
in the respective planes 

Q'R'S, P'R'S, P'Q'S, P'Q'R', QRS', PRS', PQR, 

as in Figure 14.8a. Since R'S' passes through F, on PQ, the remaining ver
tex R' lies in the remaining plane PQS', as desired. 

Changing the notation from 

S, P, Q, R, P', Q', R', S' 
to 

S, S14, S24, S34, S23, S13, S12, S1234, 

we deduce the first of a remarkable "chain" of theorems due to Homersham 
Cox:* 

COX'S FIRST THEOREM. Let a1, a2, a3, a4 be four planes of general position 
through a point S. Let Si; be an arbitrary point on the line ai • a; . Let a,;k 
denote the plane Si;SikS;k• Then the four planes 0'234, 0'134, <1124, <1123 all pass 
through one point S1234. 

Clearly, <11, <12, <13, <1123 are the face planes of the tetrahedron P'Q'R'S, 
while <1234, a134, <1124, <14 are those of the inscribed-circumscribed tetrahedron 
PQRS'. Let as be a fifth plane through S. Then Sis, S2s, Sas, S4s are four 
points in a5; O'i;5 is a plane through the line S.15S;5 ; and Si;k5 is the point 
<11;5 • O'ikS • a1k5• By the dual of Cox's first theorem, the four points S2345, 
S1345, S1245, S1235 all lie in one plane. Interchanging the roles of <14 and <15, 
we see that S1234 lies in this same plane S2345S1345S124s, which we naturally 
call <112345. Hence 

COX'S SECOND THEOREM. Let a1, . . . , a5 be five planes of general posi
tion through S. Then the five points S2345, S1345, S1245, S1235, S1234 al/ lie in 
one plane <112345. 

Adding the extra digits 56 to all the subscripts in the first theorem, we 
deduce 

COX'S THIRD THEOREM. The six planes <123455, <113455, <112456, <112356, <112345, 
<112345 all pass through one point S123455. 

The pattern is now clear: we can continue indefinitely. "Cox's (d-3)rd 
• Quarterly Journal of Mathematics, 25 (1891), p. 67. See also H. W. Richmond, Journal of 

the London Mathematical Society, 16 (1941), pp. 105-112, and Coxeter, Bulletin of the American 
Mathematical Society, 56 (1950), p. 446. When we describe four planes through a point as being 
''of general position," we mean that their six lines of intersection are all distinct. 
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theorem" provides a configuration of 2a-1 points and 2a-1 planes, with d of 
the planes through each point and d of the points in each plane. 

Our next result would be difficult to obtain without using coordinates. 
Since the equation of the general quadric 

C11X12 + . . .  + C44X42 + 2c12X1X2 + . . .  + 2c34X3,X4 = 0 
has 4 + 6 = lO  terms, a unique quadric L = 0 can be drawn through nine 
points of general position; for, by substituting each of the nine given sets 
of x's in L = 0, we obtain nine linear equations to solve for the mutual 
ratios of the ten e's. Similarly, a "pencil" (or singly infinite system) of 
quadrics 

1 + µ,1' = O 
can be drawn through eight points of general position, and a "bundle" (or 
doubly infinite system) of quadrics 

1 + µ,L' + v1" = 0 

can be drawn through seven points of general position. But, by solving the 
simultaneous quadratic equations 

1 = 0, �
I = 0, 1" = 0 

for the mutual ratios of the four x's, we obtain eight points of intersection 
for these three quadrics. Naturally these eight points lie on every quadric 
of the bundle. Hence 

Seven points of general position determine a unique eighth point, such that 
every quadric through the seven passes also through the eighth. 

This idea of the eighth associated point provides an alternative proof for 
Cox's first theorem (and therefore also for the theorems of Mobius and 
Gallucci). Let S1234 be defined as the common point of the three planes 
<1234, <1134, <1124. (The theorem states that S1234 lies also on <1123.) Since the 
plane pairs <11<1234, a2a134, a3a124 form three degenerate quadrics through 
the eight points 

these are eight associated points. The first seven belong also to the plane 
pair <14<1123. Since S1234 does not lie in <14, it must lie in <112s, as desired. 

The locus of lines meeting three given skew lines is called a regulus. Gal
lucci's theorem shows that the lines meeting three generators of the regulus 
(including the original three lines) form another "associated" regulus, such 
that every generator of either regulus meets every generator of the other. 
The two reguli are the two systems of generators of a ruled quadric. 

Let a1, h1, c1, d1 be four generators of the first regulus, and a2, b2, c2, d2 
four generators of the second, as in Figure 14.Sc. The three lines 

as = h1c2 • b2c1, bs = c1a2 • c2a1, cs = a1b2 • a2b1 
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Figure 1 4,8c Figure 14.8d 

evidently form a triangle whose vertices are a1 • 02, b1 • b2, c1 • c2. G. P. 
Dandelin, in 1824, coined the name hexagramme mystique for the skew 
hexagon a1b2c1a2b1c2. Taking the section of its sides by a plane o of gen
eral position, he obtained a plane hexagon A1B2C1A2B1C2 whose sides 
A1B2, B2C1, . . .  lie in the planes a1b2, b2c1, . . .  (Figure 14.8d). The points 
of intersection of pairs of opposite sides, namely, 

A3 = B1C2 • B2C1, B3 = C1A2 • CzA1, C3 = A1B2 • A2B1, 

each lying in both the planes a3b3c3 and o, are collinear. By allowing c2 to 
vary while the remaining sides of the skew hexagon remain fixed, we see 
from the Braikenridge-Maclaurin construction (which is the converse of 
Pascal's theorem, Figure 14.7c), that 

The section of a ruled quadric, by a plane of general position, is a conic. 
If o, instead of being a plane of general position, is the plane d1d2, the 

vertices of the hexagon A1B2C1A2B1 C2 line alternately on d2 and d1, as in 
Axiom 14.15. Thus Pappus's theorem may be regarded as a "degenerate" 
case of Pascal's theorem. In fact, instead of assuming Pappus's theorem 
and deducing Gallucci's theorem, we could have taken the latter as an axiom 
and deduced the former. Bachmann [1, p. 254] gives a particularly fine fig
ure to illustrate this deduction. 

EXERCISES 

1. If a and b are two skew lines and R is a point not on either of them, Ra • Rb is 
the only transversal from R to the two lines. 

2. Any plane through a generator of a ruled quadric contains another generator. 
(Such a plane is a tangent plane.) Any other plane section of the ruled quadric is a 
conic. 

3. If two tetrahedra are trebly perspective they are quadruply perspective (cf. § 14.3). 
More precisely, if A 1AzA3A4 is perspective with each of B2B1B4Bs, BsB1B1B2, 
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B4B3B2B1, it is also perspective with B1B,z]1JB4. (Hint: Since A1B1 meets A;B1, A 1B1 

must meet A1B;.) 
4. The four centers of perspective that were implied in Ex. 3 form a third tetra

hedron which is perspective with either of the first two from each vertex of the rem'llin
ing one. 

5. In the finite space PG(3, 3), which has 4 points on each line, there are altogether 
40 points, 40 planes, and how many lines? 

14.9 EUCLIDEAN SPACE 

The set of lines drown from the artist's eye to the various points of 
the object . . .  constitute the pro;ection of the obiect and ore called 
the Euclidean cone. Then the section of this cone mode by the can
vas is the desired drawing . . . .  Poro/le/ lines in the object converge 
in the picture lo the point where the canvas is pierced by the line from 
the eye parallel to the given lines. 

S. H. Gould [ 1 ,  p. 299] 

The elementary approach to affine space is to regard it as Euclidean space 
without a metric; the elementary approach to projective space is to regard 
it as affine space plus the plane at infinity and then to ignore the special 
role of that plane. It is equally effective to begin with projective space and 
derive affine space by specializing any one plane, calling it the plane at in
finity. (This is still, of course, a projective plane.) Each affine concept has 
its projective definition: for example, the midpoint of AB is the harmonic 
conjugate, with respect to A and B, of the point at infinity on AB [Coxeter 
2, p. 1 1 9]. We then derive Euclidean space by specializing one elliptic po
larity in the plane at infinity, calling it the absolute polarity. Two lines are 
orthogonal if their points at infinity are conjugate in the absolute polarity; 
a line and a plane are orthogonal if the point at infinity on the line is the 
pole of the line at infinity in the plane. A sphere is the locus of the point 
of intersection of a line through one fixed point and the perpendicular plane 
through another; thus it is a special quadric according to Seydewitz's defi
nition. Two segments with a common end are congruent if they are radii 
of the same sphere [Coxeter 2, p. 146]. 

When we use projective coordinates (x1, x2, x3, x4), referred to an arbi
trary tetrahedron 

(I ,  0, 0, 0) (0, I, 0, 0) (0, 0, I, 0) (0, 0, 0, 1), 
it is convenient to take the plane at infinity to be x4 = 0. Any other equa
tion becomes an equation in affine coordinates x1, x2, x3 by the simple de
vice of setting X4 = I. In affine terms, the tetrahedron of reference for the 
projective coordinates is formed by the origin and the points at infinity on 
the three axes. Finally, we pass from affine space to Euclidean space by 
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declaring that two points (x1, x2, xa) and (Yi, Y2, Ya) are in perpendicular 
directions from the origin if they satisfy the bilinear equation 

XJ.Y1 + XzY2 + XaYa = 0, 

that is, if the points at infinity 

(x1, x2, xa, 0) and (Y1, Y2, Ya, 0) 

are conjugate in the absolute polarity. 
All the theorems that we proved in § 14.8 remain valid in Euclidean space. 

An interesti.pg variant of Cox's chain of theorems can be obtained by means 
of the following specialization. Instead of an arbitrary point on the line 
<Ji ·  a;, we take Si; to be the second intersection of this line with a fixed sphere 
through S. Since the sphere is a quadric through the first seven of the eight 
associated points 

S, S14, S24, Sa4, S23, S1a, S12, S12a4, 
it passes through S12a4 too, and similarly through S12a5 and the rest of the 
2.i-1 points. The 2d-1 planes meet the sphere in 2d-1 circles, which remain 
circles when we make an arbitrary stereographic projection, as in § 6.9. We 
thu$ obtain Clifford's chain of theorems* in the inversive (or Euclidean) 
plane. 

CLIFFORD'S FIRST THEOREM. Let <11, a2, aa, <14 be four circles of general po
sition through a point S. Let Sii be the second intersection of the circles ai 
and a;. Let ai;k denote the circle Si;SikS;k• Then the four circles <1234, 0'134, 
<1124, 0'123 all pass through one point S1234. 

CLIFFORD'S SECOND THEOREM. Let a5 be a fifth circle through S. Then 
the five points S2345, S1345, S1245, S1235, S1234 all lie on one circle 0'12345 . 

• CLIFFORD'S THIRD THEOREM. The six circles 0'23455, <113455, <112456, <112356, 
<112345, <112345 all pass through one point S123456• 

And so on! 

EXERCISES 

1. Why is the absolute polarity elliptic? 
2. Draw a careful figure for Clifford's first theorem. 
3. The circumcircles of the four triangles formed by four general lines all pass 

through one point (cf. Ex. 2 at the end of§ 5.5). 
4. The circumcenters of the four triangles of Ex. 3 all lie on a circle which passes also 

through the point of concurrence of the four circumcircles [Forder 3, pp. 16-22; Baker 
1 ,  p. 328]. 

• W. K. Clifford, Mathematical Papers (London, 1882), p. 51.  Apparently Clifford did not 
state these theorems in their full generality. Instead of circles through S he took ai, a2, . . .  to 
be straight lines. In other words, he took S to be the point at fofinity of the inversive plane. 
Thus his special form of the theorems could have been derived from the configuration of circles 
on the sphere by taking the center of the stereographic projection to be the point Son the sphere 
[Balter 1 ,  p. 133). 
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Absolute geometry 

In the present chapter we shall re-examine the material of some of the 
earlier chapters in the light of the axiomatic approach outlined in Chapter 
12, regarding classical geometry as ordered geometry enriched with the 
axioms of congruence 15. 1 1-15.15, the last of which is a restatement of 1.26. 
Except in §§ 15.6 and 15.8, we shall work in the domain of absolute geometry, 
that is, we shall take care not to assume any form of Euclid's fifth postu
late. Accordingly, our results will be valid not only in Euclidean geometry 
but also in the non-Euclidean geometry of Gauss, Lobachevsky, and Bolyai. 

In § 15.4 we shall give a simple account of the complete enumeration of 
finite groups of isometries. According to Weyl [1, p. 79], "This is the mod
ern equivalent to the tabulation of the regular polyhedra by the Greeks.'' 
The relevance of these kinematical results to crystallography makes it na
tural, in § 15.6, to reintroduce the full machinery of Euclidean geometry. 
But in § 15.7 we shall return to absolute geometry for a discussion of finite 
groups generated by reflections. 

1 5. 1 CONGRUENCE 

Every teacher certainly should know something of non-Euclidean ge
ometry . . . .  It forms one of the few ports of mathematics which . . .  
is talked about in wide circles, so that any teacher may be asked about 
it at any moment. 

F. Klein (2, p. 135] 

To give a rigorous approach to absolute geometry, we begin with ordered 
geometry (Chapter 12) and introduce congruence as a third primitive concept: 
an undefined equivalence relation among point pairs (or segments, or inter
vals). We use the notation AB = CD to mean "AB is congruent to CD." 
The following axioms are those of Pasch with some refinements due to Hil
bert and R. L. Moore [see Kerekjart6 1 ,  pp. 90-101). 

263 
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Axioms of Congruence 

1 5.1 1 If A and B are distinct points, then on any ray going out from C 
there is just one point D such that AB = CD. 

1 5.12 If AB = CD and CD = EF, then AB = EF. 
1 5.13 AB = BA. 
1 5.14 If[ABC] and [A'B'C'] and AB = A'B' and BC = B'C', then 

AC = A'C'. 
1 5.1 5  If ABC and A' B' C' are two triangles with BC _ B' C', CA = C' A', 

AB = A'B', while D and D' are two further points such that [BCD] and [B'C'D'] 
and BD =IJ'D', then AD = A'D'. 

By two applications of 15.13, we have AB - AB; that is, congruence is re
flexive. From 15. 1 1  and 15.12 we easily deduce that the relation AB = CD 
implies CD = AB; that is, congruence is symmetric. Axiom 15.12 itself says 
that congruence is transitive. Hence congruence is an equivalence relation. 
This result, along with the additive property of 15.14, provides the basis fop a 
theory of length [Forder 1 ,  p. 95). Axiom 15.15 enables us to extend the re
lation of congruence from point pairs or segments to angles [Forder 1 , p. 132). 

We follow Euclid in defining a right angle to be an angle that is congruent 
to its supplement; and we agree to measure angles on such a scale that the 
magnitude of a right angle is t'IT. 

The statement AB = CD for segments is clearly equivalent to the state
ment AB = CD for lengths, so no confusion arises from using the same sym
bol AB for a segment and its length. A similar remark applies to angles. 

The circle with center O and radius r is defined as the locus of a variable 
point P such that OP = r. A point Q such that OQ > r is said to be out
side the circle. Points neither on nor outside the circle are said to be inside. 
It can be proved [Forder 1 ,  p. 131] that if a circle with center A has a point in
side and a point outside a circle with center C, then the two circles meet in 
just one point on each side of the line AC. Euclid's first four postulates 
may now be treated as theorems, and we can prove all his propositions as 
far as I.26; also I.27 and 28 with the word "parallel" replaced by "noninter
secting." We can define reflection as in § 1.3, and derive its simple conse
quences such as pons asinorum (Euclid I.5) and the sym,metry of a circle 
about its diameters (III.3; see § 1.5). But we must be careful to avoid any ap
peal to our usual idea about the sum of the angles of a triangle; for example, 
we can no longer assert that angles in the same segment of a circle are equal 
(Euclid III.21). Lacking such theorems as VI.2-4, which depend on the af
fine properties of parallelism, we have to look for some quite different way 
to prove the concurrence of the medians of a triangle.* On the other hand, 
the concurrence of the altitudes (of an acute-angled triangle) arises as a by
product of Fagnano's problem, which can still be treated as in § 1.8. (Fer
mat's problem would require a different treatment because we can no longer 
assume the angles of an equilateral triangle to be 7T /3.) 

• Bachmann 1, pp. 74-75. 
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EXERCISES 1. Complete the proof that congruence is symmetric: if AB = CD then CD = AB. 2. How much of§ 1.5 remains valid in absolute geometry? [Kerekjart6 1 ,  pp. 161-163.] (See especially Ex. 1, 3, 4.) 3. For any simple quadrangle inscribed in a circle, the sum of two opposite angles is equal to the sum of the remaining two angles [Sommerville 1,  p. 84). 
15.2 PARALLELISM 

I have resolved to publish a work on the theory of parallels as soon as I 
have put the material in order . . . .  The goal is not yet reached, but 
I have made such wonderful discoveries that I have been almost over
whelmed by them . . . .  I have created a new universe from nothing. 

Janos Bolyoi (1802-1860) 
{From o letter lo his father in 1823) 

Following Gauss, Bolyai, and Lobachevsky, we say that two lines are 
parallel if they "almost meet." For the precise meaning of this phrase, see 
§ 12.6. (We use the notation p1 for one of the two rays into which the line 
p is decomposed by a point that lies on it.) 

The idea of the incenter (§ 1.5) may be extended from a triangle to the 
figure formed by two parallel lines and a transversal, enabling us to prove 
that parallelism is symmetric: 

J 

Pi 

I 
' '1 

' ' 
B L D 91 

Figure 1 5.2a 

1 5.21 If p1 is parallel to q1, then q1 is parallel to P1• 

Proof [Sommerville 1 ,  p. 32). If p1, through A, is parallel to q1, through 
B, as in Figure 15.2a, the internal bisector AD of the angle at A completes a 
triangle ABD. Let the internal bisector of B meet AD in /. Draw perpen
diculars IJ, IK, IL, to p1, AB, q1. Reflecting in IA and IB, we see that lJ 
= IK = IL. Let r1 be the internal bisector of L LIJ. Reflection in the line 
r interchanges J and L, and therefore interchangesp and q. Since p is paral
lel to q, it follows that q is parallel top in the same sense, that is, q1 is parallel 
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to Pt• (In the terminology of Gauss, J and L are corresponding points on the 
two parallel rays.) 

We can now use the methods of ordered geometry to prove that paral
lelism is transitive: 

15.22 If Pt is parallel to qi, and q1 is parallel to r1, then P1 is parallel 
to r1. 

Proof [Gauss 1 ,  vol. 8, pp. 205-206]. We have to show that, if p1 and r1 

are both parallel to q1, they are parallel to each other. We see at once that Pi 
and r1 cannot meet; for if they did, we would have two intersecting lines 
p and r both parallel to q in the given sense. By Theorem 12.64, we may 
assume that p1, q1, r1 begin from three collinear points A , B, C. For the 
rest of the proof we distinguish the case in which B lies between A and C 
from the case in which it does not. 

Cer------'�---- Bo--------0-- - - -
D 

Figure 15.2b Figure 1 5.2c 

If [ABC], as in Figure 15.2b, any ray from A within the angle between AC 
and Pt meets q1 (since P1 is parallel to q1) and then meets r1 (since q1 is paral
lel to rt). Therefore Pt is parallel to r1. 

If B is not between A and C, suppose for definiteness that [A CB], as in 
Figure 15.2c. Any ray from A within the angle between A C  and Pt meets 
q1, say in D. Since r separates A from D, it meets the segment AD. There
fore P1 is parallel to rt, 

In this second part of the proof we have not used the parallelism of q1 and 
r1. In fact, 

15,23 If a ray r1 lies between two parallel rays, it is parallel to both. 
Having proved that parallelism is an equivalence relation, we consider the 

set of lines parallel to a given ray. We naturally call this a pencil of parallels, 
since it contains a unique line through any given point [Coxeter 2, p. 5]. 
Pursuing its analogy with an ordinary pencil (consisting of all the lines 
through a point), we may also call it a point at infinity or, following Hilbert, 
an end. Instead of saying that two rays (or lines) are parallel, or that they be
long to a certain pencil of parallels M, we say that they have M for a common 
end. In the same spirit, the ray through A that belongs to the given pencil of 
parallels is denoted by AM, as ifit were a segment; the same symbol AM can 
also be used for the whole line. 
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Let AM, BM be parallel rays, and e an arbitrarily small angle. Within the 
angle BAM (Figure 15.2d), take a ray from A making with AM an angle 
less than t:. This ray cuts BM in some point C. On CM (which is Cl B), 
take D so that CD = CA. The isosceles triangle CAD yields 

LADC = L CAD < LCAM < t:. 

Hence, when BD tends to infinity, so that AD tends to the position AM, 
LADB tends to zero. 

This conclusion motivates the following assertion of Bolyai [1, p. 207]: 
1 5.24 When two parallel lines are regarded as meeting at infinity, the 

angle of intersection must be considered as being equal to zero. 

Figure 1 5.2d Figure 1 5.2e 

When A M  and BM are parallel rays, we call the figure ABM an asymp
totic triangle. Such triangles behave much like finite triangles. In particu
lar, two of them are congruent if they agree in the finite side and one angle 
[Carslaw 1 ,  p. 49]: 

1 5.25 If two asymptotic triangles ABM, A' B' M' have AB = A' B' and 
A = A', then also B = B'. 

It is a consequence of Axiom 15.11 that, if two lines have a common per
pendicular, they do not intersect. The following theorem provides a kind 
of converse for this statement. 

1 5.26 If two lines are neither intersecting nor parallel, they have a com
mon perpendicular. 

Proof From A on the first line AL, draw AB perpendicular to the sec
ond line BM, as in Figure 15.2e. If AB is perpendicular to AL there is no 
more to be said. If not, suppose L is on that side of AB for which L BAL 
is acute. Since the two lines are neither intersecting nor parallel, there is a 
smaller angle BAM such that AM is parallel to BM. If [BCD] on BM, we 
can apply Euclid 1.16 to the triangle A CD, with the conclusion that the in
ternal angle at D is less than the external angle at C. Hence, when BD in
creases from O to oo, so that LDAL decreases from LBAL to L MAL, 
LADB decreases from a right angle to zero. At the beginning of this process 
we have 

LDAL < LADB 
(since L BAL is acute); but at the end the inequality is reversed (since 
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L MAL is positive). Hence there must be some intermediate position for 
which 

LDAL = LADE. 

(To be precise, we can apply Dedekind's axiom 12.51 to the points on BM 
satisfying the two opposite inequalities.) For such a point D (Figure 15.2!) 
we obtain two triangles OAE, ODF by drawing EF perpendicular to BD 
through 0, the midpoint of AD. Since these triangles are congruent, EF is 
perpendicular not only to BD but also to AL. 

Nonintersecting lines that are not parallel are said to be ultraparal/el (or 
"hyperparallel"). We are not asserting the existence of such lines, but merely 
showing how they must behave if they do exist. 

A E 

--::r;:>---------'----0>----: 
B F D 

Figure 1 5.2f 

EXERCISES 

1. Prove 15.25 without referring to Carslaw 1 .  
2. Give a complete proof that, if two lines have a common perpendicular, they do 

not intersect. 
3. Example 4 on p. 16 remains valid when A is an end so that the triangle is asymp

totic. 

1 5.3 ISOMETRY 

Beside the actual universe I can set in imagination other universes in 
which the laws are different. 

J. L. Synge [2, p. 21] 

The whole theory of finite groups of isometries (§§ 2.3-3.1) belongs to 
absolute geometry, because it is concerned with isometries having at least 
one invariant point. The first departure from our previous treatment (§ 3.2) 
is in the discussion of isometries without invariant points. We must now 
distinguish between a translation, which is the product of half-turns about 
two distinct points, and a parallel displacement, which is the product of re
flections in two parallel lines. 

The product of half-turns about two distinct points 0, O' is a translation 
along a given line (called the axis of the translation) in a given sense through 
a given distance, namely, along 00' in the sense of the ray O' IO through 
the distance 200'. Since a translation is determined by its axis and directed 
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distance, the product of half-turns about 0, 0' is the same as the product 
of half-turns about Q, Q', provided the directed segment QQ' is congruent 
to 00' on the same line (Figure 3.2a). If P is on this line, the distance PF 
is just twice 00'. (If not, it may be greater!) 

By the argument used in proving 3.21, the product of two translations 
with the same ax.is, or with intersecting axes, is a translation. (It is only in 
the former case that we can be sure of commutativity.) More precisely, we 
have 

1 5.31 (Donkin's theorem*) The product of three translations along the 
directed sides of a triangle, through twice the lengths of these sides, is the 
identity. 

We shall see later that the product of two translations with nonintersect
ing axes may be a rotation. 

By the argument used in proving 3.22, if two lines have a common per
pendicular, the product of reflections in them is a translation along this com
mon perpendicular through twice the distance between them. (Such lines 
may be either parallel or ultraparallel according to the nature of the geom
etry.) 

Again, as in 3.13,  every isometry is the product of at most three reflec
tions. If the isometry is direct, the number of reflections is even, namely 2. 
It follows from 15.26 that 

1 5.32 Every direct isometry (of the plane) with no invariant point is either 
a parallel displacement or a translation. 

It is remarkable that absolute geometry includes the whole theory of glide 
reflection. The only changes needed in the previous treatment (§ 3.3) are 
where the word "parallel" was used. (In Figure 3.3b we must define m, m' 
as being perpendicular to 00'; they are not necessarily parallel to each 
other.) As an immediate application of these ideas we have Hjelmslev's 
theorem, which is one of the best instances of a genuinely surprising result 
belonging to absolute geometry. The treatment in § 3.6 remains valid with
out changing a single word! 

Likewise, the one-dimensional groups of § 3.7 belong to absolute geom
etry, the only change being that again the mirrors m, m' (Figure 3.7b) should 
not be said to be "parallel" but both perpendicular to the same (horizontal) 
line. On the other hand, the whole theory of lattices (Chapter 4) and of 
similarity (Chapter 5) must be abandoned. 

The extension of absolute geometry from two dimensions to three presents 
no difficulty. In particular, much of the Euclidean theory of isometry (§ 7 .1) 
remains valid in absolute space. It is still true that every direct isometry 
is the product of two half-turns, and that every opposite isometry with 

• W. F. Donkin, On the geometrical theory of rotation, Philosophical Magazine (4). 1, (1851), 
187-192. Lamb [ 1 ,  p. 6] used half-turns about the vertices A, B, C of the given triangle to con
struct three new triangles which, he said, "are therefore directly equal to one another, and 'sym
metrically' equal to ABC." This was a mistake: all four triangles are directly congruent! 
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an invariant point is a rotatory inversion (possibly reducing to a reflection 
or to a central inversion). Moreover, the classical enumeration of the five 
Platonic solids (§§ 10.1-10.3) is part of absolute geometry. The few neces
sary changes are easily supplied; for example, the term rectangle must be 
interpreted as meaning a quadrangle whose angles are all equal (though not 
necessarily right angles), and a square is the special case when also the sides 
are equal. 

EXERCISES 1. If/ is a line outside the plane of a triangle ABC, what can be said about the three lines in which this plane meets the three planes Al, Bl, Cl? (If two of the three lines intersect, or are parallel, or have a common perpendicular, the same can be said of all three. This property of three lines m1, m2, m3 is equivalent to R1R2Ra = R3R2R1 in the notation of§ 3.4.) 2. The product of reflections in the lines p and r of Figure 15.2a is a parallel displacement which transforms J into L. 

1 5.4 FINITE GROUPS OF ROTATIONS 

These groups, in porticulor the lost three, ore an immensely oHroctive 
subject for geometric investigotion. 

H. Weyl [ 1 , p. 79) 

One of the simplest kinds of transformation is a permutation (or rearrange
ment) of a finite number of named objects. For instance, one way to per
mute the six letters a, b, c, d, e,f is to transpose (or interchange) a and b, 
to change c into d, dinto e, e into c, and to leave/unaltered. This permu
tation is denoted by (a b)(c d e). The two "independent" parts, (a b) and 
(c d e), are called cycles of periods 2 and 3. A permutation that consists of 
just one cycle is said to be cyclic. Clearly, the cyclic group Cn may be rep
resented by the powers of the generating permutation (a1a2 . . .  an) ; for in
stance, the four elements of C4 are 

1, (a b c d), (a c)(b d), (a d c b). 
A cyclic permutation of period 2, such as (a b), is called a transposition. 

Since 
(a1a2 . . .  a,,) = (a1a,,)(a2an) . . .  , 

any permutation may be expressed as a product of transpositions. A per
mutation is said to be even or odd according to the parity of the number of 
cycles of even period; for instance, (a c)(b d) is even, but (a b)(c d e) is odd. 
The identity, 1, has no cycles at all, and is accordingly classified as an even 
permutation. It is easily proved [see Coxeter 1 ,  pp. 40-41] that every prod
uct of transpositions is even or odd according to the parity of the number 
of transpositions. It follows that the multiplication of even and odd per-
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mutations behaves like the addition of even and odd numbers; for example, 
the product of two odd permutations is even. 

It follows also that every group of permutations either consists entirely 
of even permutations or contains equal numbers of even and odd permuta
tions. The group of all permutations of n objects is called the symmetric 
group of order n ! ( or of degree n) and is denoted by S11• The subgroup con
sisting of all the even permutations is called the alternating group of order 
½ n! (or of degree n) and is denoted by A11• In particular, S2 is the same 
group as C2, and Aa the same as Ca, so we write 

More interestingly, Sa :::::: Da (see Figure 2.7a). For, the six elements of 
the dihedral group Da, being symmetry operations of an equilateral triangle, 
may be regarded as permutations of the three sides of the triangle. The 
even permutations 

1, (a b c), (a c b) 

(which form the subgroup Aa :::::: Ca) are rotations, whereas the odd permu
tations 

(b c), (c a), (ab) 
are reflections in the three medians. If we regard the triangle as lying in 
three-dimensional (absolute) space, the rotations are about an axis through 
the center of the triangle, perpendicular to its plane. The reflections may 
then be interpreted in two alternative ways, yielding two groups which are 
geometrically distinct but abstractly identical or isomorphic: we may either 
reflect in three planes through the axis or rotate through half-turns about 
the medians themselves. In the latter representation, all the six elements 
of Da appear as rotations. We may describe this as the group of direct sym
metry operations of a triangular prism. More generally, the 2n direct sym
metry operations of an n-gonal prism form the dihedral group Dn, whereas 
of course the n direct symmetry operations of an n-gonal pyramid form 
the cyclic group C11• The rotations of C11 all have the same axis, and Dn is 
derived from C11 by adding half-turns about n lines symmetrically disposed 
in a plane perpendicular to that axis. 

We have thus found two infinite families of finite groups of rotations. 
Other such groups are the groups of direct symmetry operations of the five 
Platonic solids {p, q}. These are only three groups, not five, because any 
rotation that takes { p, q} into itself also takes the reciprocal { q, p} into it
self: the octahedron has the same group of rotations as the cube. and the 
icosahedron the same as the dodecahedron. 

The regular tetrahedron {3, 3} is evidently symmetrical by reflection in 
the plane that joins any edge to the midpoint of the opposite edge. As a 
permutation of the four faces a, b, c, d (Figure 15.4a), this reflection is just 
a transposition. Thus the complete symmetry group of the tetrahedron, 
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Figure I 5.4a 

being generated by such reflections, is isomorphic to the symmetric group 
S4, which is generated by transpositions; and the rotation group, being gen
erated by products of pairs of reflections, is isomorphic to the alternating 
group A4, which is generated by products of pairs of transpositions. The 1 2  rotations may be counted as follows. The perpendicular from a vertex 
to the opposite face is the axis of a trigonal rotation (i.e., a rotation of pe
riod 3); the 4 vertices yield 8 such rotations. The line joining the midpoint 
of two opposite edges is the axis of a half-turn (or digonal rotation); the 3 pairs of opposite edges yield 3 such half-turns. Including the identity, we thus have 8 + 3 + 1 = 12 rotations. As permutations, the 8 trigonal rotations are 

� c �  � d 4  0 c �  0d4 0 b �  0d� 0 b 4  0 c �  
and the 3 half-turns are 

(b c)(a d), (c a)(b d), (a b)(c d). 

Figure I 5.4b 

The octahedron {3, 4} can be derived from the tetrahedron by truncation: its eight faces consist of the four vertex figures of the tetrahedron and truncated versions of the four faces. Every symmetry operation of the tetra
hedron is retained as a symmetry operation of the octahedron, but the octa
hedron also has symmetry operations that interchange the two sets of four faces. For instance, the line joining two opposite vertices is the axis of a 
tetragonal rotation (of period 4), and the line joining the midpoints of two opposite edges is the axis of a half-turn. When the four pairs of opposite faces are marked a, b, c, d, as in Figure 15.4b, such a half-turn appears as a transposition, which is one of the permutations that belong to S4 but not 
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figure 1 5.4c 

to A 4. It follows that the rotation group of the octahedron ( or of the cube) 
is isomorphic to the symmetric group S4. 

1n Figure 15 .4c, the twenty faces of the icosahedron {3, 5} have been 
marked a, b, c, d, e in sets of four, in such a way that two faces marked alike 
have nothing in common, not even a vertex. In fact, the four a's (for in
stance) lie in the planes of the faces of a regular tetrahedron, and the re
spectively opposite faces (marked b, c, d, e) form the reciprocal tetrahedron. 
The twelve rotations of either tetrahedron into itself (represented by the 
even permutations of b, c, d, e) are also symmetry operations of the whole 
icosahedron. This behavior of the four a's is imitated by the b's, e's, d's 
and e's, so that altogether we have all the even permutations of the five let
ters: the rotation group of the icosahedron (or of the dodecahedron) is iso
morphic to the alternating group A5. The 60 rotations may be counted as 
follows: 4 pentagonal rotations about each of 6 axes, 2 trigonal rotations 
about each of 10 axes, I half-turn about each of 15 axes, and the identity 
[Coxeter 1 ,  p. 50]. 

We shall find that the above list exhausts the finite groups of rotations. 
As a first step in this direction, we observe that all the axes of rotation must 
pass through a fixed point. In fact, we can just as easily prove a stronger 
result: 

1 5.41 Every finite group of isometries leaves at least one point invariant. 

Proof. A finite group of isometries transforms any given point into a finite 
set of points, and transforms the whole set of points into itself. This, like 
any finite ( or bounded) set of points, determines a unique smallest sphere that 
contains all the points on its surface or inside: unique because, if there were 
two equal smallest spheres, the points would belong to their common part, 
which is a "lens"; and the sphere that has the rim of the lens for a great 
circle is smaller than either of the two equal spheres, contradicting our sup
position that these spheres are as small as possible. (The shaded area in 
Figure 15.4d is a section of the lens.) The group transforms this unique 
sphere into itself. Its surface contains some of the points, and therefore all 
of them. Its center is the desired invariant point. 
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Figure 1 5.4d 

It follows that any finite group of rotations may be regarded as operat
ing on the surface of a sphere. In such a group G, each rotation, other than 
the identity, leaves just two points invariant, namely the poles where the 
axis of rotation intersects the sphere. A pole Pis said to be p-gonal (p � 2) 
if it belongs to a rotation ofperiodp. The p rotations about P, through vari
ous multiples of the angle 2'TTlp, are those rotations of G which leave P invari
ant. Any other rotation of G transforms P into an "equivalent" pole, which 
is likewise p-gonal. Thus all the poles fall into sets of equivalent poles. All 
the poles in a set have the same period p, but two poles of the same period 
do not necessarily belong to the same set; they belong to the same set only 
if one is transformed into the other by a rotation that belongs to G. 

Any set of equivalent p-gonal poles consists of exactly nip poles, where n 
is the order of G. To prove this, take a point Q on the sphere, arbitrarily 
near to a pole P belonging to the set. The p rotations about P transform 
Q into a small p-gon round P. The other rotations of G transform this p
gon into congruent p-gons round all the other poles in the set. But the n 
rotations of G transform Q into just n points (including Q itself). Since 
these n points are distributed into p-gons round the poles, the number of 
poles in the set must be nip. 

The n - l rotations of G, other than the identity, consist of p - l for 
eachp-gonal axis, that is, ½ (p - l) for eachp-gonal pole, or 

f(p - l)nlp 
for each set of nip equivalent poles. Hence 

n - I = ½n � (p - I)lp, 
where the summation is over the sets of poles. This equation may be ex
pressed as 

Ifn = I, so that G consists of the identity alone, there are no poles, and the 
sum on the right has no term. In all other cases n � 2, and therefore 

1 � 2 - i < 2. n 



FINITE GROUPS OF ROTATIONS 275 

It follows that the number of sets of poles can only be 2 or 3; for, the single 
term 1 - 1 Ip would be less than 1,  and the sum of 4 or more terms would be 

> 4(1 - ½) = 2. 
If there are 2 sets of poles, we have 

that is, 

2 - f- = I - .1 + 1 - l. , n Pi P2 

I!_ + .!!. = 2. 
Pt P2 

But two positive integers can have the sum 2 only if each equals 1; thus 

Pt = P2 = n, 
each of the 2 sets of poles consists of one n-gonal pole, and we have the 
cyclic group Cn with a pole at each end of its single axis. 

Finally, in the case of 3 sets of poles we have 

whence 

2 - f.. = I - l_ + 1 - l_ + I - .1 , n Pt P2 p3 

1 5.42 .!.. + J_ + J_ = 1 + 1 .  
P1 P2 p3 n 

Since this is greater than t + t + t = 1, the three periods p, cannot all be 
3 or more. Hence at least one of them is 2, say p3 = 2, and we have 

whence 

1. + 1. = l + l , Pt P2 2 n 
(pt - 2)(p2 - 2) = 4(1 - PtP2ln) < 4 

(cf. 10.33), so that the only possibilities (withp1 ¾ P2 for convenience) are: 

P1 = 2, P2 = p, n = 2p; 
Pt = 3, P2 = 4, n = 24; 

P1 = 3, p2 = 3, n = 12; 
Pt = 3, p2 = 5, n = 60. 

We recognize these as the dihedral, tetrahedral, octahedral and icosahedral 
groups. 

This completes our proof [Klein 3, p. 129] that 
1 5.43 The only finite groups of rotations in three dimensions are the cyclic 

groups Cp (p = I ,  2, . . .  ), the dihedral groups Dp (p = 2, 3, . . .  ), the tetra
hedral group A4, the octahedral group S4, and the icosahedral group As. 

(To avoid repetition, we have excluded D1 which, when considered as a 
group of rotations, is not only abstractly but geometrically identical with 
C2.) 

Any solid having one of these groups for its complete symmetry group 
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Figure 1 5.4e 

(such as the Archimedean snub cube* shown in Figure I5.4e, whose group 
is S4) can occur in two enantiomorphous varieties, dextro and laevo (i.e., 
right- and left-handed): mirror images that cannot be superposed by a con
tinuous motion. 

EXERCISES 

1. Interpret the following permutations as rotations of the octahedron (Figure 
15.4b): 

(ab c d), (a b c), (a b), (a b)(c d). 
Count the rotations of each type, and check with the known order of S4. 

2. Using the symbol (p1, p2, p3) for the group having three sets of poles of periods 
P1,P2,Pa, consider the possibility of stretching the notation so as to allow (l ,p,p) :::: Cp 
as well as 

(2, 2, p) = Dp, 
(2, 3, 4) :::: S4, 

(2, 3, 3) :::: A4, 
(2, 3, 5) :::: As. 

1 5.5 FINITE GROUPS OF ISOMETRIES 

Having enumerated the finite groups of rotations, we can easily solve the 
wider problem of enumerating the finite groups of isometries (cf. § 2.7). 
Since every such group leaves one point invariant, we are concerned only 
with isometries having fixed points. Such an isometry is a rotation or a ro
tatory inversion according as it is direct or opposite (7.15, 7.41). 

If a finite group of isometries consists entirely of rotations, it is one of 
the groups G considered in § 15.4. If not, it contains such a group G as a 
subgroup of index 2, that is, it is a group of order 2n consisting of n rota
tions S1, S2, . . . , Sn and an equal number of rotatory inversions T 1, 

• The vertices of the snub cube constitute a distribution of24 points on a sphere for which the 
smallest distance between any 2 is as great as possible. This was conjectured by K. Schlltte and 
B. L. van der Wacrden (Mathematiscl,e Annalen, 123 (1951), pp. 108, 123) and was proved by 
R. M. Robinson (ibid., 1 4 4  (1961), pp. 17-48). The analogous distribution of 6 or 12 points is 
achieved by the vertices of an octahedron or an ieosaliedron, respectively. For 8 points the fig
ure is not, as we might at first expect, a cube, but a square antiprism [Fejes T6th 1,  pp. 162-164). 
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T 2, . . .  , T n• For, if the group consists of n rotations Si and (say) m rota
tory inversions Ti, we can multiply by T1 so as to express the same n + m 
isometries as SiT1 and TiT1. The n isometries S1T1, being rotatory inver
sions, are the same as Ti (suitably rearranged if necessary), and the m isom
etries T; T 1, being rotations, are the same as S1. Therefore m = n. 

If the central inversion I belongs to the group, the n rotatory inversions 
are simply 

Sil = IS; (i = I, 2, . . .  , n ), 

and the group is the direct product G X {I}, where G is the subgroup con
sisting of the S's and {I} denotes the group of order 2 generated by I. (As 
an abstract group, {I} is, of course, the same as C2 or D1.) 

If I does not belong, the 2n transformations S, and T1I form a group of 
rotations of order 2n which has the same multiplication table as the given 
group consisting of S; and T1. For, if S1T; = Tk, 

S1T1I = Tkl, 

T1IT;I = T1I2T; = T1T1 = sk. 

In other words, a group of n rotations and n rotatory inversions, not in
cluding I, is isomorphic to a rotation group G' of order 2n which has a sub
group G of order n. To complete our enumeration, we merely have to seek 
such pairs of related rotation groups. Each pair yields a "mixed" group, 
say G' G, consisting of all the rotations in the smaller group G, along with 
the remaining rotations in G' each multiplied by the central inversion I. 
Looking back at § 15.4, we see that the possible pairs are 

C2nCn, DnCn, DnD1:n (n even), S,04. 
Thus we can complete Table III on p. 413. 

EXERCISES 1. Determine the symmetry groups of the following figures: (a) an orthoscheme 00010203 (Figure 10.4c) with 0001 = 0203; (b) an n-gonal antiprism (n even or odd). 2. Designate in the G'G notation the direct product of the group of order 3 generated by a rotation about a vertical axis and the group of order 2 generated by the reflection in a horizontal plane. 
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1 5.6 GEOMETRICAL CRYSTALLOGRAPHY 

The sense in which o snail's shell winds is on inheritable character 
founded in its genetic constitution, as is . . .  the winding of the intestinal 
dvct in the species Homo sopiens . . . .  Also the deeper chemical consti
tution of ovr hvman body shows that we hove o screw, o screw that is 
turning the some way in every one of vs.• . . . A horrid manifestation of 
this genotypical asymmetry is o metabolic disease co/led phenylketo
nvria, leading to insanity, that man contracts when o small quantity of 
laevo-phenylalanine is added to his food, while the dextro- form has no 
svch disastrous effects. 

H. Weyl [ 1 ,  p. 30) 

The discussion of symmetry groups has been phrased in such a way as to 
be valid not only in Euclidean space but in absolute space. However, it 
seems appropriate to mention the application of these ideas to the practical 
science of crystallography. Accordingly, in this digression the geometry is 
strictly Euclidean. 

Crystallographers are interested in those finite groups ofisometries which 
arise as subgroups (and factor groups) of symmetry groups of three-dimen
sional lattices. By § 4.5, these are the special cases in which the only rota
tions that occur have periods 2, 3, 4 or 6. This crystallographic restriction 
reduces the rotation groups to 

C1, C2, Cs, C,i, Cs, D2, Ds, D4, Ds, A4, S4, 
the direct products to these eleven each multipled by {I}, and the mixed 
groups to 

C2C1, C4C2, CsCs, D2C2, DsCs, D4C4, DsCs, D,iD2, DsDs, S,i.A4. 

(Of course, C1 x {I} isjust {I} itself.) 
These 32 groups are called the crystallographic point groups or "crystal 

classes. " Every crystal has one of them for its symmetry group, and every 
group except C6Cs occurs in at least one known mineral. In the more fa
miliar notation of Schoen.flies [see, e.g., Burckhardt 1 ,  p. 71), the groups are 
respectively 

C1, C2, Cs, C4, C6, D2, Ds, D4, D6, T, 0, 
Ci, C2h, Csi, c4h, c6h, D2h, Dsd, D4h, Dsh, Th, oh, 

Ca, S4, Csh, C2v, Csv, C4v, Csv, D2d, D3h, Td, 
To avoid possible confusion, observe that our C4C2 and S4 (''S" for "sym
metric") are Schoenflies's S4 and O (for "octahedral"). The 32 groups are 
customarily divided into seven crystal systems, as follows: 

Triclinic: C1, {I}. 
Monoclinic: C2, C2 X {I}, C2C1, 
Orthorhombic: D2, D2 X {I}, D2C2. 

• The DNA molecule? 
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Rhombohedral: Cs, Ca X {I}, Da, D3 X {I}, DaCa. 
Tetragonal: C4, C4 X {I}, C4C2, D4, D4 X {I}, D4C4, DJJ2. 
Hexagonal: Cs, Cs X {I}, CsCa, Ds, Ds X {I}, DsCs, DsDa. 
Cubic: A4, A4 X {I}, S4, S4 X {I}, S,iA4. 

Table I ( on p. 413) is a complete list of the 17 discrete groups of isometries 
in two dimensions involving two independent translations. The analogous 
groups in three dimensions are the discrete groups of isometries involving 
three independent translations. The enumeration of these space groups is 
the central problem of mathematical crystallography. The complete list con
tains 65 + 165 = 230 groups. 

The first 65 are composed entirely of direct isometries. Although these 
were enumerated as long ago as 1869 by C. Jordan [see Hilton 1, p. 258], 
they are usually attributed to L. Sohncke who, in 1879, pointed out their ap
plication to crystallography. The most obvioll$ group consists of transla
tions alone. The remaining 64 of the 65 contain also rotations and screw 
displacements; 22 of them occur in 1 1  enantiomorphous pairs which are 
mirror images of each other (one containing right-handed screw displace
ments and the other the reflected left-handed screw displacements). This 
explains the phenomenon of optical activity [Sayers and Eustace 1, pp. 238-
241 , 248-252]. From the standpoint of pure geometry or pure group theory, 
it would be more natural to ignore this distinction of sense, thus reducing the 
number 65 to 54, and the total of230 to 219 [Burckhardt 1 ,  p. 161). 

The remaining 165 groups contain not only direct but also opposite isome
tries: reflections, rotatory reflections ( or rotatory inversions), and glide reflec
tions. Their enumeration, by Fedorov in Russia (1890), Schoen.flies in 
Germany (1891), and Barlow in England (1894), provides one of the most 
striking instances of independent discovery in different places using different 
methods. Fedorov, who obtained the 230 as 73 + 54 + 103 instead of65 + 
165, was probably unaware of the preliminary work of Jordan and Sohncke. 
It is quite certain that Schoen.flies knew nothing of Fedorov, and that Bar
low's work was independent of both. 

EXERCISE 

Determine the symmetry groups of the following figures: (a) a rectangular parallel
epiped (e.g., a brick), (b) a rhombohedron; (c) a regular dodecahedron with an inscribed 
cube (whose 8 vertices occur among the 20 vertices of the dodecahedron). 

1 5.7 THE POLYHEDRAL KALEIDOSCOPE 

In combining three reRedions . . .  the effed is highly pleasing. 

Sir David Brewster{l781 -1848) 
[ Brewster 1,  p. 93] 

Table III (on p. 413) is a complete list of the finite groups of isometrics. 
In the preceding section, we selected from this list those groups which satisfy 
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the crystallographic restriction. Another significant way to make a selection 
(partly overlapping with the previous way) is to pick out those groups which 
are generated by reflections, namely, 

D2nDn (n odd), 
S4 X {I}, 

Dn X {I} (n even), 
A5 X {I}. 

(We have now returned to absolute geometry!) 
D1C1 (Schoenflies's Cs, which we previously denoted by C2C1) is the group 

of order 2 generated by a single reflection. D2C2 or D2D1 (Scboenflies's C211) 
is the group of order 4 generated by two orthogonal reflections. The remain
ing groups DnCn are the symmetry groups of the n-gonal pyramids. In other 
words, these are the groups Dn of§ 2.7 in a different notation. (We now re
serve the symbol Dn for the dihedral group of rotations, which is, of course, 
isomorphic to DnCn. Weyl [1, p. 80) makes the distinction by calling the ro
tation group D' n and the mixed group D' n Cn.) 

D2 x {I} is a group of order 8 (abstractly C2 x C2 x C2) generated by 
three orthogonal reflections. The remaining groups D2nDn (n odd) and 
Dn X {I} (n even) are the symmetry groups of the n-gonal prisms, or of their 
reciprocals, the dipyramids. 

S�4, the symmetry group of the regular tetrahedron, is derived from the 
rotation group A4 by adjoining reflections, such as the reflection in the plane 
ABA 'B' (Figure I 0.5a) which joins the edge AB to the midpoint of the op
posite edge CD. (The product of this reflection and the central inversion is 
the half-turn about the join of the midpoints of the two opposite edges CD', 
C'D of the cube. This half-turn, which interchanges the two reciprocal tetra
hedra ABCD, A 'B'C'D', is one of the twelve rotations in S4 that do not be
long to the subgroup A4; thus it illustrates our special meaning for the 
"mixed" symbol S�4.) Since the remaining Platonic solids are centrally 
symmetrical, their symmetry groups are simply S4 X {I} and A5 X {I}. 

For a practical demonstration in Euclidean space, take the two hinged mirrors of§ 2. 7, inclined 
at 180° In, which demonstrate the group DnCn. Standing them upright on a separate horizontal 
mirror, we obtain the symmetry group of the n-gonal prism, i.e., the direct product of Dn Cn and the 
group of order 2 generated by the horizontal -reflection. To demonstrate the three remaining 
groups, remove the third mirror, and let the first two stand vertically on the table at an angle of60°, 
as in the demonstration of D3C3• Now bold the third mirror obliquely, with its horizontal edge / 
on the table top at right angles to one of the vertical mirrors and touching the front lower corner of 
the other. Gradually rotating this third mirror about its edge / from an almost horizontal posi
tion (by raising its nearer edge, opposite to /), we observe at a certain stage two faces ofa regu
lar tetrahedron {3, 3). Each face is subdivided into six right-angled triangles, one of which is 
actually the exposed portion of the table top. At a later stage we see three faces of an octahedron 
{3, 4}; still later, four faces of an icosahedron {3, 5}. Finally, when the adjustable mirror is ver
tical like the others, we see a theoretically infinite number of faces of the regular tessellation 
{3, 6}, subdivided in the manner of Figure 4.6d. This device, employing ordinary rectangular 
mirrors, is a simplified version of M6bius's trihedral kaleidoscope in which the three mirrors are 
cut in the shape of suitable sectors of a circle [Coxeter 1, p. 83]. 

When the E edges of the general Platonic solid {p, q} are projected from 
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its center onto a concentric sphere, they become E arcs of great circles, de
composing the surface into F regions which are "sphericalp-gons." In this 
manner the polyhedron yields a "spherical tessellation" which closely re
sembles the plane tessellation of § 4.6. The symmetry group of {p, q} is 
derived from the symmetry group of one face by adding the reflection in a 
side of that face. Thus it is generated by reflections in the sides of a spheri
cal triangle whose angles are 1rlp (at the center of a face), 1r/2 (at the 
mid point of an edge), and 1r I q ( at a vertex). This spherical triangle is a 
fundamental region for the group, since it is transformed into neighboring 
regions by the three generating reflections. 

Figure 1 5.7a 

The network of such triangles, filling the surface of the sphere, is cut out 
by all the planes of symmetry of the polyhedron, namely the planes joining 
the center to the edges of both {p, q} and its reciprocal { q, p}. In Figure 
15. 7 a (where p and q are 3 and 5), alternate regions have been blackened so 
as to exhibit both the complete symmetry group As X {I} and the rotational 
subgroup As, which preserves the coloring. 

Instead of deriving the network of spherical triangles from the regular 
polyhedron, we may conversely derive the polyhedron from the network. 
The ten triangles in the middle of Figure 15.7a evidently combine to form 
a face of the blown-up dodecahedron, and the six triangles surrounding a 
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point where the angles are 60° combine to form a face of the blown-up 
icosahedron. 

EXERCISES 

1. Interpret the symbol {p, 2} as a spherical tessellation ("dihedron") whose faces consist of two hemispheres, and {2, p} as another whose faces consist of p tunes. 2. How many planes of symmetry does each Platonic solid have? Provided p and 
q are greater than 2, this number is always a multiple of 3, namely 3c in the notation of Ex. l at the end of § 10.4. 3. Dividing 4'1T_by the area of the fundamental region, obtain a formula for the order of the symmetry group of {p, q}. Reconcile this with the formula for E (the number of edges) in 10.32. 
1 5.8 DISCRETE GROUPS GENERATED BY INVERSIONS 

In the present section we make one more digression into Euclidean space, 
so as to be able to talk about inversion. (The absolute theory of inversion 
presents difficulties that would take us too far afield. [See Sommerville 1 ,  
Chapter VIII.]) 

Figure 15.7a, being an orthogonal projection, represents 10  of the 15  great 
circles by ellipses. (The difficult task of drawing it was undertaken by J. F. 
Petrie about 1932). An easier, and perhaps more significant, way to repre
sent such figures is by stereographic projection (§ 6.9), so that the great circles 
remain circles (or lines) [Burnside 1 ,  pp. 406-407]. The reader can readily do 
this for himself, with the aid of the following simple instructions. 

Y' X' 
Po---------0S 

oo 

Qo---------oR 
V' 

Figure 1 5.8a 

Figure 15.8a shows a square PQRS with center 0, and a regular pentagon 
VWXYZ with its sides extended to form a pentagram V'X'Z'W'Y'. With 
radius PQ and centers P, Q, R, S, draw four circles. These, along with two 
lines through O parallel to the sides of the square, represent 6 great circles, 
one in each of the 6 planes of symmetry of the tetrahedron {3, 3 },  which 
are the planes joining pairs of opposite edges of a cube. Adding the ci!-
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cumcircle and diagonals of the square, we have altogether 9 great circles, 
one in each of the 9 planes of symmetry of the cube { 4, 3 }, which include 
3 planes parallel to its faces. 

With radius VX' ( = VX) and centers V, W, X, Y, Z, draw five circles. 
With radius VW' ( = V' W') and centers V', W', X', Y', Z', draw five more 
circles. These ten circles, along with the five lines W, WW', XX', YY', ZZ', 
represent 15 great circles (Figure 15.7a), one in each of the 15 planes of sym
metry of the icosahedron {3, 5} or of the dodecahedron {5, 3}. (These planes 
join pairs of opposite edges of either solid.) 

To justify these statements we merely have to examine the curvilinear tri
angles* and observe that each has angles 1rlp, 1rlq, 'lt/2. 

Since stereographic projection is an inversion (Figure 6.9a), and since an 
inversion transforms a reflection into an inversion, the figures so constructed 
are, in fact, representations of the abstract groups S4, S4 X C2, and As X C2 
as groups generated by inversions. In other words, they are configurations 
of circles so arranged that the whole figure is symmetrical by inversion in 
each circle. (Of course, any straight lines that occur are to be regarded as 
circles of infinite radius. As we saw in § 6.4, inversion in such a "circle" is 
simply reflection in the line.) Any one of the regions into which the plane 
is decomposed will serve as a fundamental region, and the generators of the 
group may be taken to be the inversions in its sides. 

For a group generated by just one inversion, we may invert the circle into 
a straight line so as to obtain the group Di of order 2, generated by a single 
reflection (§ 2.5). The groups generated by inversions -in two intersecting 
circles are essentially the same as the groups Dn of order 2n, generated by 
reflections in two intersecting lines (§ 2. 7). If the circles of two generating 
inversions are in contact, they can be inverted into parallel lines, and we 
have the limiting case D .. (Figure 3.7b). Two nonintersecting circles can 
be inverted into concentric circles. Inversions in them generate an infinite 
sequence of concentric circles whose radii are in geometric progression. 
Abstractly, the group is again D,.,, but the center is a "point of accumula
tion" (§ 7.6). So is the point of contact in the case of the group generated 
by inversions in two touching circles. A group is said to be discrete if it 
has no points of accumulation. Thus, in describing discrete groups gener
ated by inversions, we may insist that every two of the generating circles in
tersect properly, and do not touch. 

For a discrete group generated by three inversions, the fundamental region 
is a curvilinear triangle whose angles are submultiples of 1r: say 1rlp1, 1rlp2, 
'1Tlps. For instance, two radii of a circle, forming an angle '1Tlp, cut out a 
sector which may be regarded as a "triangle" with angles '1Tlp, w/2, w/2; this 
is a fundamental region for the group D,, X Di of order 4p, generated by re
flections in the radii and inversion in the circle. In this case 

• For the effect of projecting in a different direction. see Coxeter, American Mathematical 
Monthly, 45 (1938), pp. 523-525, Figs. 4 and 5. 
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_!_ + _!_ + _!_ > 1, 
Pt P2 p3 

so that the angle sum of the triangle is greater than 'TT: an obvious conse
quence of the fact that the sector is derived from a spherical triangle (see 
§ 6.9) by stereographic projection, which preserves angles. Every solution 
of the inequality 15.81 (cf. 15.42) is a triangle that can be drawn with great 
circles on a sphere. We thus obtain again the symmetry groups 

S4, S4 X C2, As X C2 

of the Platonic solids. 
When l/p1 + l/p2 + l/p3 = 1, so that the angle sum is exactly 'TT, we 

have the infinite "Euclidean" groups p6m, p4m, p31 m (see Table I and 
Figure 4.6d). We could transform all the straight lines into circles by means 
of an arbitrary inversion; but then, since the pattern is infinitely extended, 
the center of inversion would be a point of accumulation. 

When l/p1 + Ilp2 + l/p3 < 1, so that the angle sum of the fundamental 
region is less than 'TT, we may still take two of the three sides to be straight, but 
now their point of intersection A is outside the circle q to which the third side 
belongs, with the result that there is a circle Q orthogonal to all three (Fig
ure 15.8b); the tangents from A to q are radii of Q. 

Since Q is invariant for each of the generating inversions, it is invariant 
for the whole group. The circle q decomposes the interior of Q into two 

Figure 1 5.8b 
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unequal regions and inverts each of these regions into the other. There
fore the number of triangles is the same in both regions. But the larger 
region includes a replica of the smaller. Hence, by Bolzano's definition of an 
infinite set (namely, a set that has the same power as a proper subset), the 
number of triangles is infinite; that is, the group is infinite. 

Figure 1 5.8c 

The case whenp1,p2,p3 are 6, 4, 2 is shown in Figure 15.8c. Unlike Fig
ure 15.7a, this is not a picture of a solid object. Our familiarity with three
dimensional space enables us to accept the idea that the triangles in Figure 
15.7a are all the same size, even though the peripheral ones are made to look 
smaller by perspective foreshortening. In the case of Figure 15.8c, the 
smaller peripheral triangles are essentially the same shape as those in the 
middle (since they have the same angles), but we no longer find it easy to 
imagine that they are, in some sense, the same size. In trying to stretch our 
imagination to this extent, we are taking a first step towards appreciating 
hyperbolic geometry, which is the subject of our next chapter. 

The reader may wonder why we admit such groups as being worthy of con
sideration, seeing that the circle n contains infinitely many points of accumu
lation. However, when we accept the non-Euclidean standpoint, so that the 
circles and inversions are regarded as lines and reflections, the consequent 
distortion of distance makes n infinitely far away, so that the points of ac
cumulation disappear. 
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EXERCISES 1. If a system of concentric circles is transformed into itself by inversion in each _ circle, the radii are in geometric progression. 2. If three circles form a "triangle" with angles '1Tlp1, 1Tlp2, '1Tlp3, the inversions R1, R2, Ra in its sides satisfy the relations 
R12 = R22 = R32 ·= (R2Ra/1 = (RaR1t• = (R1R2)p3 = l .  

These relations suffice to define the abstract group generated by R1, R2, R3 [Coxeter and Moser 1,  pp. 37, 55]. 3. Given an angle '1T/p1 at the center A ofa circle Q of unit radius, as in Figure 15.8b, find expressions (in terms of p1 and p2) for the radius of the circle q and for the distance from A to its center, in the case whenp3 = 2. 4. Invert Figure 15.8c in a circle whose center lies on O; that is, replace the circle Q by a straight line, so that all the inverting circles have their centers on this line. (Such an arrangement provides an alternative proof that the group !S infinite. For if its order is g, the infinite half plane is filled with g curvilinear triangles, each having a finite area!) 5. In Figure 15.8c, two of the small triangles (one white and one black) with a common hypotenuse form together a "curvilinear kite" having three right angles and one angle of 60°. Trace part of the figure so as to exhibit a network of such kites, alternately white and black. We now have an instance of a group generated by four inversions. Can it happen that more than four inversions are needed to generate a discrete group? 
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Hyperbolic geometry 

Absolute geometry is not categorical: it is two geometries in one. To be 
precise, it leaves open the question of the existence ofultraparallel lines (see 
the end of§ 15.2). In § 16. 1 we shall compare the two possible answers, giv
ing the unfamiliar the same status as the familiar. In § 1 6.2 we shall justify 
this action by means of a proof of relative consistency. Thereafter, casting 
aside all scruples, we shall plunge wholeheartedly into the "new universe" 
which Bolyai "created from nothing." 

1 6.1 THE EUCLIDEAN AND HYPERBOLIC AXIOMS OF PARALLELISM 

In the author there lives the perfectly purified convidion (such as he 
expects too from every thoughtful reader} that by the elucidation of 
this subiect one of the most important and brilliant contributions hos 
been mode to the real victory of knowledge, to the education of the 
intelligence, and consequently to the uplifting of the fortunes of men. 

J. Bolyoi (1802-1860) 
[Carslaw 1, p. 31] 

In § 12.6, we mentioned the question whether the two rays parallel to a 
given line r from an outside point A are, or are not, collinear. By applying 
a suitable isometry, we see that the answer is independent of the position 
ofr. 

It is true, though less obvious, that, for a given r, the answer is independent 
of the position of A .  Suppose, if possible, that the rays parallel to r from A 
are the two halves of a line q while the rays parallel tor from another point A' 
form an angle, as in Figure 16. la. By the transitivity of parallelism, these 
rays from A' are parallel to q and also to the infinite sequence of parallel lines 
derived from q and r by applying the group Doo generated by reflections in q 
and r (Figure 3.7b). We obtain a manifest absurdity by considering any one 
of these lines that lies beyond A' (i.e., in such a position that A' lies between 
that line and r). (Strictly, this argument makes use of the so-called Axiom 
of Archimedes, 13.31, which is a consequence of 12.51.) 

287 
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A' 
A 

q 

r 

Figure 16.1 a 

Thus we have a clear-cut distinction between two kinds of geometry, called 
Euclidean and hyperbolic, which are derived from absolute geometry by add
ingjust one of the following two alternative axioms: 

THE EUCLIDEAN AXIOM. For some point A and some line r, not through A, 
there is not more than one line through A, in the plane Ar, not meeting r. 

THE HYPERBOLIC AXIOM. For some point A and some line r, not through A, 
there is more than one line through A, in the plane Ar, not meeting r. 

EXERCISE Each of these axioms implies the stronger statement with "some point A and some line r' replaced by "any point A and any line r." The Euclidean axiom, so amended, is equivalent to the celebrated Postulate V (our 1.25). How does Postulate V break down if we assume the hyperbolic axiom? 

1 6.2 THE QUESTION OF CONSISTENCY 

What ore we to think of the question: Is Euclidean Geometry true? It 
hos no meaning. We might os well ask . . .  if Cartesian coordinates ore 
true and polar coordinates false. One geometry cannot be more true 
thon another; it con only be more convenient. 

H. Poincore (1854 -191 2) 

(Science and Hypothesis, New York, 1952) 

.We observe that the Euclidean and hyperbolic axioms differ by just one 
word: the vital word "not." It is meaningless to ask which of the two ge
ometries is true, and practically impossible to decide which provides a more 
convenient basis for describing astronomical space. From the standpoint of 
pure mathematics, a more important question is whether either axiom is logi
cally consistent with the remaining axioms of absolute geometry. Even this 
is difficult to answer; for according to the philosopher Godel, there is no in
ternal proof of consistency for a system that includes infinite sets. We have 
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to be content with relative consistency: if Euclidean geometry is free from 
contradiction, so is hyperbolic geometry, and vice versa. Relative consist
ency is established by finding in each geometry a model of the other. 

One Euclidean model of the hyperbolic plane (due to Poincare) was men
tioned in § 15.8. This uses a circle n, as in Figure 16.2a. Each pair of inverse 
points represents a hyperbolic point, and each circle orthogonal to n repre
sents a hyperbolic line. The two parallels tor from A are simply the circles 
through A that touch r at its points of intersection with n. (These points are 
the "ends" of r.) We call this a conformal model because angles retain their 
proper values though distances are inevitably distorted. 

w 

Figure 1 6.2a Figure 16.2b 

A different Euclidean model, suggested by Beltrami (1835-1900), uses an
other circle w, as in Figure 16.2b. Each point inside w represents a hyper
bolic point. The two parallels tor from A are the chordsjoiningA to the ends 
of the chord r. (Chords whose lines intersect outside w represent ultra
parallel lines.) We call this a projective model because straight lines remain 
straight. Nothing is lost if we replace the circle win the Euclidean plane by a 
conic in the projective plane. In fact, much is gained; for it is possible to ex
tend the hyperbolic plane into a projective plane by means of entities defined 
in the hyperbolic geometry itself [Coxeter 3, p. 196]. In this way we can 
prove that hyperbolic geometry is unique or categorical [Borsu.k and Szmie
lew 1 ,  p. 345], unlike absolute geometry, which includes two contrasting 
possibilities. 

When using models, it is desirable to have two rather than one, so as to 
avoid the temptation to give either of them undue prominence. Our geo
metric reasoning should all depend on the axioms. The models, having 
served their purpose of establishing relative consistency [Pedoe 1 ,  p. 61; 
Sommerville 1, pp. 154-159], are no more essential than diagrams. 

Klein (4, p. 296] exhibited a connection between the conformal and pro
jective models in the manner of Figure 16.2c. A sphere, having the same 
radius as w, touches the (horizontal) plane at S, the center of both w and n. 
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Figure 1 6.2c 

Beginning with the projective model, we use orthogonal (vertical) projection 
to map w on the "equator" 1J of the sphere, and each interior point on two 
points: one in the southern hemisphere and another (not shown) in the north
ern hemisphere. Every chord of w yields a circle in a vertical plane, that is, 
a circle orthogonal to 1/· We now map the sphere back into the plane by 
stereographic projection, so that 1/ projects into the larger circle n, concen
tric with w. Because of the angle-preserving and circle-preserving nature 
of stereographic projection, the vertical circles yield horizontal circles ortho
gonal to n, and we have the conformal model. 

Instead of stereographic projection onto the tangent plane at the "south 
pole" S (i.e., inversion with respect to a sphere of radius NS), we could have 
used stereographic projection (from the same "north pole" N) onto the equa
torial plane (i.e., inversion with respect to a sphere through 11) so as to make 
both w and Q coincide with 1J [Coxeter 3, p. 260]. Klein's procedure is justi
fied by its property of making the two models agree in the immediate vicinity 
of S. This must have seemed to him more important than making them 
agree "at infinity." 

It must be remembered that both models are in one respect misleading: 
they give us the impression that the center S should play a special role, 
whereas, in the abstract hyperbolic plane, atl points are alike. 

For the sake of completeness, we should mention the problem that the in
habitants of a hyperbolic world would face in trying to visualize the Euclid
ean plane. One solution [Coxeter 3, pp. 1 97-198] is that they could repre
sent the Euclidean points and lines by the lines and planes parallel to a given 
ray in hyperbolic space! 

EXERCISES 

t. Reflection in a line of the hyperbolic plane appears, in the conformal model, as inversion with respect to a circle, and in the projective model as a harmonic homology. What is the corresponding transformation in the space of Klein's sphere? 
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2. Circles appear as circles (not meeting il) in the conformal model, and therefore as circles on the sphere (say, in the southern hemisphere) and as ellipses in the projective model. 
16.3 THE ANGLE OF PARALLELISM 

. . .  a sea-change into something rich and strange. 

A 

W. Shakespeare (1564-1616) 
(The Tempest, Act I, Scene 2) 

N�M 
B r 

Figure 16.3a 

For the rest of this chapter the geometry will be hyperbolic, that is, 
we shall assume the hyperbolic axiom, which implies that, for any point A 
and line r, not through A, the two parallels form an angle NAM, as in Fig
ure 16.3a. From A draw AB perpendicular to r. Reflection in AB shows 
that L BAM and L NAB are equal acute angles. Following Lobachevsky, 
we call either of them the angle of parallelism corresponding to the distance 
AB, and write 

LBAM = II(AB). 

Before we can prove that this function is monotonic, we need a few more 
properties of asymptotic triangles. While proving 15.26 we discovered that, 
if a transversal (AD in Figure 15.2/) meets two lines in such a way that the 
"alternate" angles are equal, then the two lines are ultraparallel. Hence 
[Carslaw 1 ,  p. 48]: 

1 6.31 In an asymptotic triangle EFM, the external angle at E (or F) is 
greater than the internal angle at F ( or E). 

In other words, the sum of the angles of an asymptotic triangle is less 
than 1r. This will enable us to prove a kind of converse for Theorem 15.25, 
to the effect that an asymptotic triangle is determined by its two positive 
angles: 

1 6.32 If two asymptotic triangles AEM, A' E' M' have A = A' and E = E, 
then AE = A'E'. 

Proof [Carslaw 1 ,  p. 50]. If AE andA'E' are not equal, one of them must 
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A' 

r------- M M' 
Fo-------➔ Eo--------

Figure 1 6.3b 

be the greater; let it be A' E', as in Figure 16.3b. On El A, take F so that AF 
= A'E', and draw FM parallel to AM. By 16.31 and 15.25, we have 

L MEA > L MFA = L M'E'A' = L MEA, 
which is absurd. 

These results will enable us to establish the existence of a common parallel 
to two given rays forming an angle NOM, that is, a line MN which is parallel 
to OM at one end and to ON at the other. From the given rays OM, ON, 
cut off any two equal segments OA, OA', as in Figure 16.3c. Draw A'M 
parallel to OM, and AN parallel to ON. Bisect the angles NAM and NA' M 
by lines a and a'. We shall prove that these lines are ultraparallel, and that 
the desired common parallel MN is perpendicular to both of them. 

N 

F 

0 

I 
i' 
L 

F 

Figure 1 6,3c 

M 

Let A' M meet AN in C, and a in E. Since the whole figure is symmetrical 
by reflection in OC, the two angles at A and the two angles at A' are all equal. 

If possible, let a and a' have a common point L, which is, of course, equi
distant from A and A'. Applying 15.25 to the congruent asymptotic triangles 
ALM and A' LM, we deduce that L MLA = L MLA', which is absurd. 

If possible, let a and a' be parallel, with a common end L. Applying 16.32 
to the congruent asymptotic triangles AEM and A' EL, we deduce that AE = 
A' E, whence E coincides with C, which is absurd. 

We conclude that a and a' are ultraparallel. By 15.26, they have a com-
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man perpendicular FF'. Applying 15.25 to the congruent asymptotic tri
angles AFM and A' F' M, we conclude that 

L MFA = L MF'A'. 

If F' Fwere not parallel to OM, we would have an asymptotic triangle FF'M 
whose angle sum is 7T, contradicting 16.31. Hence, in fact, F'Fis parallel to 
OM, and similarly FF' to ON; that is, the line FF' is a common parallel to 
the two rays as desired. 

Moreover, this common parallel is unique, since two such would be paral
lel to each other at both ends, contradicting the "clear-cut distinction" 
between the Euclidean and hyperbolic properties of parallelism (Figure 
16.la). It follows that 

1 6.33 Any two ultraparal/el lines have a unique common perpendicular. 
For, given a and a', we can reconstruct Figure 16.3c as follows: draw any 

common perpendicular FF', take O on its perpendicular bisector, and let the 
two parallels through O to the line FF' meet a in A, a '  in A'. 

For the sake of brevity, we have been content to assert the existence of a 
line through a given point parallel to a given ray, and of a common perpen
dicular to two given ultraparallel lines. Actual "ruler and compasses" con
structions for these lines have been given by Bolyai and Hilbert, respectively 
[see Coxeter 3, pp. 204, 191]. Hilbert apparently failed to notice that his 
construction for the common parallel to AM and A'N remains valid if these 
lines meet in a point that is not equidistant from A and A', or even if they do 
not meet at all. In fact [Carslaw 1, p. 76], 

1 6.34 Any two nonparallel rays have a unique common parallel. 
This result justifies our use of ends as if they were ordinary points: any 

two ends, M and N, determine a unique line MN. 

N 

B M 

C 

Figure 16.3d 

The line through A parallel to BM (Figure 16.3a or d) determines the 
angle of parallelism II(AB). Conversely, we can now find a distance x 
whose angle of parallelism Il(x) is equal to any given acute angle [Carslaw 
1 ,  p. 77]. In other words, given an acute angle CAM, we can find a line 
BM which is both perpendicular to AC and parallel to AM. We merely have 
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to reflect AM in AC, obtaining AN, and then draw the common parallel 
MN, which meets A C  in the desired point B. Incidentally, since we can 
draw through any point a ray parallel to a given ray, it follows that 

1 6.35 For any two nonperpendicular lines we can find a line which is per
pendicular to one and parallel to the other. 

If A' is on the ray AIB, so that A'B > AB (as in Figure 16.3d), then 

II(A'B) < II(AB). 

(This is simply 16.31, applied to the asymptotic triangle AA' M.) It follows 
that the function II(x) decreases steadily from t.,,  to O when x increases from 
0 to oo. 

We naturally call AMN a doubly asymptotic triangle [Coxeter 3, p. 188). 
We have seen that such a "triangle" is determined by its one positive an
gle; in other words, 

1 6.36 Two doubly asymptotic triangles are congruent if they have equal 
angles. 

Applying 16.34 to rays belonging to two parallel lines LM, LN, we ob
tain a third line parallel to both, forming a trebly asymptotic triangle LMN. 
In view of Bolyai's remark 15.24, we may regard such a triangle as a doubly 
asymptotic triangle whose angle is zero. Accordingly, we shall not be sur
prised to find that 

16.37 Any two trebly asymptotic triangles are congruent. 
Proof (due to D. W. Crowe). Given any two trebly asymptotic triangles, 

dissect each into two right-angled doubly asymptotic triangles by drawing 
an altitude (perpendicular to one side and parallel to another, as in 16.35). 
By 16.36, all the four doubly asymptotic triangles are congruent. There
fore the two trebly asymptotic triangles must be congruent. 

EXERCISES 1. Draw figures for Theorems 16.33-I 6.35 in terms of the conformal and projective models. 2. If a quadrangle ABED has right angles at D and E while AD = BE, then the angles at A and B are equal acute angles. (Hint: Draw AM and BM parallel to DIE; apply 16.31 to the asymptotic triangle ABM.) 3. The sum of the angles of any triangle is less than two right angles. (Hint: For a given triangle ABC, draw AD, BE, CF perpendicular to the line joining the midpoints of BC and CA.) 4. Given an asymptotic triangle ABM with acute angles at both A and B, draw 
AD perpendicular to BM, and BE perpendicular to AM, meeting in H. Draw HF perpendicular to AB. Then FH is parallel to AM [Bonola 1, p. 106]. What happens if we deal similarly with rays through A and B which are not parallel but ultraparallel? 5. If two trebly asymptotic triangles have a common side, by what isometry are 
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they related? (Of course, two trebly asymptotic triangles may have a common side 
without having a common altitude). 

6. The inradius of a trebly asymptotic triangle is the distance whose angle of paral
lelism is 60° . 

7. From any point on a side of a trebly asymptotic triangle, lines drawn perpen
dicular to the other two sides are themselves perpendicular [Bachmann 1,  p. 222). 

16.4 THE FINITENESS OF TRIANGLES 

I could be bounded in a nutshell and 
count myself a king of infinite space. 

W. Shakespeare 
(Hom/et, Act II, Scene 2) 

One of the most elegant passages in the literature on hyperbolic geom
etry since the time of Lobachevsky is the proof by Liebmann [1,  p. 43] that 
the area of a triangle remains finite when all its sides are infinite. C. L. 
Dodgson (alias Lewis Carroll) could not bring himself to accept this the
orem; consequently he believed non-Euclidean geometry to be nonsense. 

Instead of pursuing a philosophical discussion of the meaning of area 
[Carslaw 1 ,  pp. 84-90], let us be content to regard it as a numerical func
tion, defined for every simple closed polygon, invariant under isometries, 
and additive when two polygons are juxtaposed. 

Let ABM be any asymptotic triangle. Reflect it in the bisector AF of 
the angle A to obtain AA1N, as in Figure 16.4a, F being the point where 
the bisector meets the common parallel MN. Reflect the line BM in the 
bisector A 1F1 of L NA 1M to obtain A2N (with A2 on AM), and then reflect 

A 

N 
M 

Figure 16.4a 
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this in AF. Continuing in this manner, we construct a network of triangles 
whose "vertical" sides bisect the angles at B, A,  A 1, A 2, A 3, . . .  and are per
pendicular to MN at G, F, Fi, F2, F3, . . . . These points are evenly spaced 
along MN, since they are all derived from F and F1 by the group D,,., gen
erated by reflections in AF and A 1F1 ; for instance, G is the image of F1 in 
the mirror AF. The numbered triangles which fit together to fill the asymp
totic triangle ABM are respectively congruent to those which fit together 
within the finite pentagon ABGF1A 1; in fact, any two triangles that are num
bered alike are related by some power of the translation from G to F1 (or 
from F to F2). Hence the area of the asymptotic triangle is less than or 
equal to the area of the pentagon: 

16.41 Any asymptotic triangle has a finite area. 
Since any doubly asymptotic triangle (Figure 16.3a) can be dissected into 

two asymptotic triangles, it follows that 
1 6.42 Any doubly asymptotic triangle has a finite area. 
By 16.36, the area of a doubly asymptotic triangle is a function of its an

gle. Comparing the triangles AMN and A'MN of Figure 16.3d, we see that 
this is a decreasing function: the larger triangle has the smaller angle. 

Since any trebly asymptotic triangle can be dissected into two doubly 
asymptotic triangles (as in the proof of 16.37), 16.42 implies 

1 6.43 Any trebly asymptotic triangle has a finite area. 
By 16.37, this area is a constant, depending only on our chosen unit of 

measurement. 

16.5 AREA AND ANGULAR DEFECT 

Gauss . . .  did not recognize the existence of a logically sound non• 
Euclidean geometry by intuition or by a flash of genius: . . .  on the 
contrary, he had spent upon this subject many laborious hours before 
he had overcome the inherited prejudice against it. [He] did not let 
any rumour of his opinions get obroad, being certain that he would 
be misunderstood. Only lo a few trusted friends did he reveal some
thing of his work. 

R. Bonolo [ 1 ,  pp. 66 -67) 

Janos Bolyai, or Bolyai Janos (as it is written in Hungarian), announced 
his discovery of absolute geometry in an appendix to a book by his father, 
Bolyai Farkas, who was a friend of Gauss. When Gauss saw this book and 
read the appendix, he wrote a remarkable letter to his old friend, congratu
lating Janos and admitting that he himself had thought along the same lines 
without publishing the results. The original letter (of March 6, 1832) is lost, 
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but the younger Bolyai's copy of it has been preserved, and it was eventu
ally published in Gauss's collected works [Gauss 1, vol. 8, pp. 220-225]. 

This letter contains a wonderful proof that the area of a triangle ABC is 
proportional to its angular defect 

77 - A - B - C: 

the amount by which its angle sum falls short of two right angles. The fol
lowing paraphrase fills up a few gaps in the argument, while retaining 
Gauss's systematic division into seven steps, numbered with Roman nu
merals. 

I. All trebly asymptotic triangles are congruent. (This is our 16.37.) 

II. The area of a trebly asymptotic triangle has a finite value, say t. (This 
is our 16.43.) 

Ill. The area of a doubly asymptotic triangle AMN is a function of its an
gle, NAM, say /(cf,), where cf, is the supplement of this angle. Given the angle 
cf,, we can construct the triangle in a unique fashion (Figure 16.5a; cf. 16.3c). 
Gauss used the supplement, rather than the angle NAM itself, to ensure that 
/(cf>) is an increasing function of ct,. (See the remark after 16.42.) 

N _______ _ 

Figure 1 6.Sa 

N 

/.,� 
L 4' -ir - ,t,  M 

A 
Figure 1 6.Sb 

IV. /(cf>) + f(7r - cf>) = t. 
This may be seen by fitting together two doubly asymptotic triangles AMN 

and ANL with supplementary angles, as in Figure 16.5b. Here it is under
stood that 0< cf, < 77. But when cf, approaches zero, the doubly asymptotic 
triangle collapses, and when ct, approaches 77 it tends to become trebly asymp
totic. Hence 
1 6.51 J(0) = 0, /(77) = t, 
and IV is valid for 0 < cf> < 77. 

V. /(cf>) + J(i/J) + /(77 - cf, - i/1) = t. 
This, with cf> > 0, ip > 0, ct, + i/J < 'Tf, may be seen by fitting together three 

doubly asymptotic triangles whose angles add up to 277, as in Figure 16.5c. 
It evidently remains valid when cf> or i/J is zero or cf, + i/J = 77. 
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VI. f(cp) + f(iJ,) = f(cp + iJ,). 
This, with cp > 0, iJ, > 0, cp + iJ, � .,,, is obtained algebraically, by writing 

</> + 1/, instead of cp in IV and then using V. It follows that/(</>) is simply a 
multiple of cp, namely, 
1 6.52 /(cp) = µ.</> 
where, by 16.51, µ. = t!TT. 

J. H. Lindsay has pointed out that this deduction can be made without 
assuming the function to be continuous. By VI, with cp = iJ,, 

f(cp) = -½  f(2cp). 
Thus 16.52 holds when cp = -½.,,, again when cp = ¼.,,, and so on; that is, it 
holds when cp is .,, divided by any power of 2. Appealing again to VI, we 
deduce thatf(cj,) = µ.cp whenever cp = nTT, where n is a number which ter
minates when expressed as a "decimal" in the scale of 2 [cf. Coxeter 3, p. 
102). For brevity, let us call this a binary number. 

Suppose, if possible, that, for some particular value of cf>, f (cf>) =/= µ.cp. 
Choose a binary number n between the two distinct real numbers cp/TT and 

f(cp)lµ.TT. Iff(cf>) > µ.cp, so that 

cp < nTT </(cf>) , µ. 
we have, since f ( cp) is an increasing function, 

f(cp) <J(n'TT) = µ.nTT <f(cp), 
which is absurd. If, on the other hand,f(cf>) < µ.cp,we can argue the same way 
with all the inequalities reversed. Hence, in fact,f(cp) = µ.cf> for all the values 
of cp (from O to TT). 

r - f

N

� 11\ 
� + �.::.::..__\ µ�\ 

L ______ M L µC M 

Figure 16.5c Figure 16.5d 

VII. The area 6. of any triangle ABC (with finite sides) is a constant multiple 
of its angular defect: 

6. = µ, (TT - A - B - C). 

For this final step, Gauss exhibited ABC as part of a trebly asymptotic 
triangle by extending its sides in cyclic order, as in Figure 16.5d. The re-
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maining parts are doubly asymptotic triangles whose areas are µA, µB, uC. 
Hence 

!::. + µA + µ.B + µC = t = µ.w, 
and the desired formula follows at once. 

If we wish, we can follow Lobachevsky in using such a unit of measure
ment* that the area of a trebly asymptotic triangle is 'TT. Then µ = l ,  and 
the formula is simply 
1 6.53 !::. = w - A - B - C. 

This is strikingly reminiscent of the formula 6.92, which tells us that the 
area of a spherical triangle drawn on a sphere of radius R is 

(A + B + C - '1T)R2. 
In fact, setting R2 = - l, we find that Gauss's result agrees formally with 
the area of a triangle drawn on a sphere of radius i. Long before the time 
of Gauss, it was suggested by J. H. Lambert (1728-1777) that, if a non
Euclidean plane exists, it should resemble a sphere of radius i. This analogy 
enabled him to derive the formulas of hyperbolic trigonometry (which were 
later developed rigorously by Lobachevsky) from the classical formulas of 
spherical trigonometry. Its full significance did not appear till Minkowsk:i 
( 1864- 1909) discovered the geometry of space-time, which provided a geo
metrical basis for Einstein's special theory of relativity. We know now that, 
in a (2 + !)-dimensional space-time, the hyperbolic plane can be repre
sented without distortion on either sheet of a sphere of time-like radius. In 
the underlying affine space, this kind of sphere is a hyperboloid of two 
sheets.t 

EXERCISES 

1. Gauss's formula 16.53 remains valid when the triangle has one or more zero 
angles. 

2. The area of any simple p-gon is equal to its angular defect: the amount by which 
its angle sum falls short of that of a p-gon in the Euclidean plane. (Hint: Dissect the 
polygon into triangles. Of course, we are now assumingµ = 1.) In Figure 16.4a, the 
area of ABM is equal to that of ABGF1A 1, 

3. The product of three translations along the directed sides of a triangle (through 
the lengths of these sides themselves) is a rotation through the angular defect of the 
triangle. (These translations are half as long as tliose in Donkin's theorem, 15.31.) 
[Lamb 1 ,  p. 7.] 

4. The product of half-turns about the midpoints of the sides ofa simple quadrangle 
(in their natural order) is a rotation through the angular defect of the quadrangle. 

5. Any polygon whose angle sum is a submultiple of 2-.r can be repeated, by half
• Coxeter, Hyperbolic triangles, Scripta Mathematica, 22 (1956), p. 9. 
t Coxeter, A geometrical background for de Sitter's world, A-rican J.fatht!matical MonJhly, 50 

(1943), p. 220. 
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turns about the midpoints of its sides, so as to cover the whole plane without interstices [cf. Somerville 1 ,  p. 86, Ex. 15). (Hint: See Figures 4.2b and c.) 
1 6.6 CIRCLES, HOROCYCLES, AND EQUIDISTANT CURVES 

A circle is the orthogonol trojectory of o pencil of lines with o real vertex . . .  
A horocycle is the orthogonal trajectory of o pencil of parallel lines. . . . The 
orthogonal trajectory of o pencil of lines with on idea/ vertex . . .  is co/led on 
equidistant-curve. 

D. M. Y. Sommerville (1879-1934) 
[Sommerville 1,  pp. 51-52] 

By 15.26, any two distinct lines are either intersecting, parallel, or ultra
parallel. In other words, they belong to a pencil of lines of one of three 
kinds: an ordinary pencil, consisting of all the lines through one point, a 
pencil of parallels, consisting of all the lines parallel to a given ray, or a pen
cil of ultraparallels, consisting of all the lines perpendicular to a given line. 
By 15.32, the product of reflections in the two lines is a rotation, a parallel 
displacement, or a translation, respectively. By fixing one of the two lines 
and allowing the other to vary in the pencil, we see that each of these three 
kinds of direct isometry can be applied as a continuous motion. 

A circle with center 0 may be de.fined either as in § 15.1 or to be the locus 
of a point P which is derived from a fixed point Q ( distinct from 0) by con
tinuous rotation about 0, or to be the locus of the image of Q by reflection in 
all the lines through 0. When the radius OQ becomes infinite, we have a 
horocycle with center M (at infinity): the locus of a point which is derived 
fro.qi a fixed point Q by a continuous parallel displacement, or the locus of 
the image of Q by reflection in all the lines parallel to the ray QM [Coxeter 
3, p. 213]. The rays parallel to QM are called the diameters of the horo
cycle. The first "o" in the word "horocycle" is short, as in "horror." 

The locus of a point at a constant distance from a fixed line o is not a pair 
of parallel lines, as it would be in the Euclidean plane, but an equidistant 
curve (or "hypercycle"), having two branches, one on each side of its axis o. 
Either branch may be described as the locus of a point which is derived from 
a fixed point Q (not on o) by continuous translation along o, or as the locus of 
the image of Q by reflection in all the lines perpendicular to o. 

Orthogonal to the pencil of lines through O we have a pencil of concentric 
circles. A rotation about 0 permutes the lines and slides each circle along 
itself. Orthogonal to the pencil of parallels with a common end M we have a 
pencil of concentric horocycles. A parallel displacement with center M per
mutes the parallel lines and slides each horocycle along itself. Orthogonal to 
the pencil of ultraparallels perpendicular to o we have a pencil of coaxal equi
distant curves. A translation along o permutes the ultraparallel lines and 
slides each equidistant curve along itself. 
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We are now ready to fulfill the promise, made after 15.31, to show that 
"the product of two translations with nonintersecting axes may be a rotation." 
Referring to Figure 16.3d, we see that the line through C perpendicular to AB 
is ultraparallel to AM and AN. Therefore, it has a common perpendicular 
GH with AM, and a common perpendicular FE with AN, forming a penta
gon AEFGH with right angles at E, F, G, H as in Figure 16.6a. The re
maining angle (at A) may be as small as we please; ifit is zero, the pentagon 
is "asymptotic." The product of reflections in AE and FG is a translation 
along EF (through 2EF). The product of reflections in FG and AH is a 
translation along GH (through 2GH). Hence the product of these two trans
lations is the same as the product of reflections in AE and AH, which is a ro
tation or, if A is an "end," a parallel displacement. Since the axes of the two 
translations are both perpendicular to FG, we have thus proved that the 
product of translations along two ultraparallel lines may be either a rotation 
or a parallel displacement. (Of course, it may just as easily be another trans
lation.) 

(b � 
I 

E H B 

A"�--- o M F C G A A' 
Figure 16.6a Figure 1 6.6b 

The product of translations along two parallel lines, AM and BM, leaves 
invariant the common end M; therefore it cannot be a rotation, but must 
be either a translation along another line through M or a parallel displace
ment with center M. We shall soon see that the latter possibility arises when 
the two given translations are of equal length, one towards Mand the other 
away from M. In fact, the translation along AM from A to A' (Figure 16.6b) 
transforms the arc AB ofa horocycle through A into a_n equal arcA'B' of the 
concentric horocycle through A'. Let Bo denote the point in which the latter 
arc is cut by the diameter through B. The translation along this diameter 
fr9m Bo to B transforms the arc BoA' of the second horocycle into the equal 
arc BA" of the first. Thus the product of the two translations is the parallel 
displacement that transforms the arc AB into A" B"; it slides this horocycle 
(and every concentric horocycle) along itself. 

EXERCISES 

1. The three vertices of a (finite) triangle all lie on each of three equidistant curves, 
whose axes join midpoints of pairs of sides, and on a fourth "cycle," which may be either 
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a circle or a horocycle or another equidistant curve (with all three vertices on one branch). [Sommerville 1 ,  pp. 54, 189.] 
2. The three sides of a (finite) triangle all touch a circle (the incircle) and three other "cycles," each of which may be of any one of the three kinds. 
3. In Figure 15.2a, the horocycle through J with diameter p1 passes also through L. 
4. How many horocycles will pass through two given points? 5. An equidistant curve may have as many as four intersections with a circle or a horocycle or another equidistant curve. 
6. Develop the analogy between conics in the affine plane and generalized circles in the hyperbolic plane. A horocycle, like a parabola, goes to infinity in one direction: if the points P and Q on it are variable and fixed, respectively, the limiting position of the line QP is the diameter through Q. An equidistant curve, like a hyperbola, has two branches. 7. Unlike the conjugate axis of a hyperbola, the axis of an equidistant curve is on the concave side of each branch. 

16,7 POINCARt'S "HALF-PLANE" MODEL 

There is a gain in simplicity when the fundamental circle is taken as a 
straight line, say the axis of x . . . . We may avoid dealing with pairs 
of points by considering only those points above the x-axis. A proper 
circle is represented by a circle lying entirely above the x-axis; a 
horocycle by a circle touching the x-axis; an equidistant-curve by the 
upper port of a circle cutting the x-axis together with the reflexion of 
the part which lies below the axis. 

D. M. Y. Sommerville [ 1 ,  pp. 188 - 189) 

From the conformal model (Figure 16.2a) in which the lines are repre
sented by circles (and lines) orthogonal to a fixed circle Q, Poincare derived 
another conformal model by inversion in a circle whose center lies on Q. The inverse of U is a line, say a "horizontal" line, which we shall again denote by 
U. The points of the hyperbolic plane are represented by pairs of points which are images of each other by reflection in Q, and the lines are represented by circles and lines orthogonal to U, that is, circles whose centers lie on U, and vertical lines [Burnside 1 ,  p. 387]. 

Through a pair of points which are images in U, we can draw an inter
secting pencil of coaxal circles (like Figure 6.5a turned through a right angle) 
representing an ordinary pencil of lines. The orthogonal nonintersecting pencil, having Q for its radical axis, represents a pencil of concentric circles. The limiting points of the nonintersecting pencil represent the common center of the concentric circles. 

Another pencil of circles (situated as in Figure 6.5a itself) can be drawn through two points on U. One member of this pencil, having its center on U, represents a line o. The remaining circles (or strictly, pairs of them re-
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lated by reflection in S2) represent coaxal equidistant curves with axis o. For, 
the orthogonal nonintersecting pencil represents the pencil of ultraparallel 
lines perpendicular to o. 

A tangent pencil of circles whose centers lie on n (Figure 6.5b) represents 
a pencil of parallels, whereas the orthogonal tangent pencil (touching fl) rep
resents a pencil of concentric horocycles. One particular pencil of parallels 
(special in the model but, of course, not special in the hyperbolic geometry it
self) is represented by all the vertical lines (which pass, like n itself, through 
the point at infinity of the inversive plane). The horocycles having these 
lines for diameters are represented by all the horizontal lines except n (or 
strictly, pairs of such lines related by reflection in fl). Since reflections in 
the vertical lines represent reflections in the parallel lines, horizontal trans
lations represent parallel displacements. Hence the horizontal lines (other 
than S2 itself) represent the horocycles isometrically: equal segments repre
sent equal arcs. 

EXERCISE 

What figure is represented by two lines forming an angle that is bisected by 9? 

1 6.8 THE HOROSPHERE AND THE EUCLIDEAN PLANE 

F. L. Wachter (1792-1817) . . . in a letter to Gouss (Dec., 1816) . . . 
speaks of the surface to which a sphere tends as its radius approaches 
infinity . . . . He affirms that even in the case of the Fifth Postulate being 
folse, there would be o geometry on this surface identical with thot of 
the ordinary plane. 

R. Bonola [ 1 , pp. 62 -63] 

The ideas in §§ 16.6 and 16.7 extend in an obvious manner from two to 
three dimensions. The locus of images of a point Q by reflection in all the 
planes through a point O is a sphere with radius OQ. As a limiting case we 
have a horosphere with center M (at infinity): the locus of images of a point Q 
by reflection in all the planes parallel to the ray QM [Coxeter 3, p. 218]. The 
locus of images of a point Q by reflection in all the planes perpendicular to a 
fixed plane w is one sheet of an equidistant surface, which consists of points at 
a constant distance from w on either side. 

There is a conformal model in inversive space in which the points of 
hyperbolic space are represented by pairs of points related by reflection in 
a fixed "horizontal" plane n, and the planes are represented by spheres and 
planes ortlfogonal to n, that is, spheres whose centers lie on n, and vertical 
planes. The representation of lines (which are intersections of planes) fol
lows immediately. Of particular interest is the bundle of vertical lines, 
which represents the bundle of lines parallel to a given ray QM (special in 
the model, though not in the hyperbolic geometry itself). The horospheres 
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that have these lines for diameters are represented by all the horizontal 
planes except Q. Since every vertical plane provides a model ( of the kind 
described in § 16.7) for a plane in the hyperbolic space, each horizontal 
plane ( except Q) represents a horosphere, and every line in the plane repre
sents a horocycle on the horosphere. Since distances along such lines agree 
with distances along the corresponding _horocycles, the representation of the 
horosphere by the Euclidean plane is isometric: for any figure in the Eucli
dean plane there is a congruent figure on the horosphere (with lines replaced 
by horocycles). 

This astonishing theorem was discovered independently by Bolyai and Lo
bachevsky. For two different proofs, see Coxeter [3, pp. 1 97, 251). It means 
that, along with ordinary spherical geometry, the inhabitants of a hyperbolic 
world would also study horospherical geometry, which is the same as Eucli
dean geometry! 

EXERCISE When hyperbolic space is represented conformally with a sphere for Q instead of a plane, a tangent plane to the sphere represents a horosphere. How are the horocycles on the horosphere represented in this plane? 



Part IV 





1 7  
Differential geometry of curves 

Differential geometry is concerned with applying the methods of analysis 
to geometry, especially to the study of curves and surfaces. Classically, 
the study is made in Euclidean space of three dimensions. But in the twen
tieth century other spaces, such as inversive, affine, or projective, have been 
used. In other words, differential geometry is still significant when there 
is no concept of distance. However, both distance and parallelism are usu
ally present, in which case the notion of a vector is fundamental. 

A curve, being the locus of a point P, is intimately associated with a varia
ble vector, namely the position vector 

r = OP 
which goes from a fixed origin O to the point P. For simplicity we shall con
sider only rectifiable curves for which there is a well-defined tangent at each 
point [Kreyszig 1 ,  p. 29]. 

After a preliminary discussion of vectors, we shall consider the curvature 
of plane curves, and the curvature and torsion of twisted curves, applying 
the results to many important special cases such as spirals and helices. 

17.1 VECTORS IN EUCLIDEAN SPACE 

We have already considered, in § 13.6, the affine properties of vectors, such 
as addition and subtraction, multiplication by numbers, independence, and 
the unique expression 

1 7. 1 1  c = xe + yf + zg 
for any vector c as a linear combination of three basic vectors e, f, g. The 
time has now come to introduce two kinds of multiplication of vectors by 
one another. We shall employ the notation of J. W. Gibbs (1839-1903), al
though some authors, such as Birkhoff and MacLane [1, p. 188) and Forder 
[2], prefer that ofH. Grassmann (1809-1877). 

307 
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Euclidean geometry allows us to speak of the length (or "magnitude," or 
"absolute value") I a I ,  of any given vector a. If O is the angle between a 
and another vector b, we define the inner ( or "scalar") product a • b and the 
outer (or "vector") product a X b by the formulas 

a • b = I a I 1 b I cos 0, a X b = I a I I b I sin O g, 
where g is the unit vector orthogonal to the plane ab on the side from which 
0 appears as a positive angle. The introduction of the auxiliary vector g 
(orthogonal to both a and b) is justified by the elegant algebra that follows. 

We see at once that, if m and n are numbers, 
ma · nb = mna • b, 

b · a  = a ·  b, 

ma X nb = mna X b, 

b X a = - a  X b. 

Thus inner multiplication is commutative (like the multiplication of num
bers), whereas outer multiplication is "anticommutative." Since a X a = 0, 
we naturally take a2 to mean a· a: 

a2 = l a  1 2. 
Two vectors a and b are orthogonal if a ·  b = 0, parallel if a X b = 0. 

➔ -
Consider two vectors a = OA, b = OB, and let BN be the perpendicular 

from B to OA, as in Figure 17.la. The algebraic distance ON (negative if 
LA OB is obtuse) is called the projection of b on a. If I a I = I ,  so that a is 
a unit vector, this projection is clearly a •  b. Removing the restriction to a 
unit vector, we find that a ·  b is I a I times the projection. This geometrical 
interpretation makes it easy to establish, for inner products, the distributive 
law 

a • (b + b') = a • b + a • b', 
which may also be expressed as 

(b + b') • a = b • a + b' • a 
in virtue of the commutative law b • a = a ·  b. Replacing b' by - b', we 
obtain the corresponding results for differences instead of sums. 

The distributive law provides a useful method for establishing certain iden
tities. If b and b' stand for expressions which we wish to prove equal, it is 
sometimes helpful to introduce an arbitrary vector c and to compare b • c 
with b' • c. If we find that 

b • c  = b' • c 
for all choices of c (or even for three independent e's), we can safely assert 
that b = b'. For, since (b - b') • c = 0, if b - b' is not the zero vector it 
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Figure 1 7.l a  Figure 17.1 b 

must be orthogonal to c; and, since c is arbitrary, this is impossible. 
As a step towards establishing the distributive law for outer products, we 

compare two expressions for the area of a parallelogram, namely 

l a  X b l = l a l b · f, 

where f is a unit vector orthogonal to a in the plane ab (as in Figure 17.lb) so 
that b • f is the altitude of the parallelogram from its base I a I •  Analogously, 
the parallelepiped formed by three independent vectors a, b, c has base 
I a X b j , altitude c • g, and volume (with a suitable convention of sign, de
pending on whether the trihedron abc is positively or negatively oriented) 

I a X b I c • g = I a X b I g • c = ( a X b) • c. 

Since we could just as well regard another face of the parallelepiped as its 
base, the same volume is expressible as 

(b X c) •a  = a•(b X c). 

Thus we can interchange the cross and the dot: 

(a X b) • c  = a • (b X c). 

(This is as near as we can come to an "associative law" for products of vec
tors.) Since the dot and cross are interchangeable, it is convenient to use, 
for ( a X b) • c or a • (b x c ), the special symbol [ a b c ], so that the volume 
of the parallelepiped is 

[a b c] = [b c a] = [ca b] = -[c b a]. 

If [a b c] = 0, the parallelepiped collapses, and the three vectors are co
planar, that is, dependent. Thus a necessary and sufficient condition for 
a, b, c to be independent is 

[a b c] ::;i!= O. 

To prove the distributive law for outer products, we introduce an arbi
trary vector c (like a catalyst) and find 
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{(a + a') X b}•c  = (a +  a') · (b X c) 
= a • (b X c) + a' • (b X c) 
= (a X b) • c  + (a' X b) · c  
= {(a X b) + (a' X b)} • c. 

Since c is arbitrary, we conclude that 

(a + a') X b = (a X b) + (a' X b). 

Since the outer product of two vectors is a vector, we might at first ex
pect the associative law to hold. To see why (a x b) x c and a x (b x c) 
are, in general, different, let us evaluate both expressions, using a procedure 
devised by Coe and Rainich. * Consider unit vectors e and f in the plane 
ab, orthogonal to b and a respectively, as in Figure 17. lb. Since the vec
tor a X b is perpendicular to the plane ab ( or ef), the two vectors 

(a X b) X e, (a X b) X f 
lie in this plane and have the same length I a X b I ,  which may be expressed 
in either of the forms 

Since they have the same directions as b, -a, respectively, they are exactly 

( a X b) X e = a • e b, ( a X b) X f = -b • f a. 
If g is perpendicular to the plane, we have also 

(a X b) X g = 0. 
Using the three vectors e, f, g as a basis, we may express an arbitrary vec
tor c in the form 17. 1 1 ;  thus 

(a X b) X c = (a X b) X (xe + y f + zg) 
= x( a X b) X e + y( a X b) X f + z( a X b) X g 
=x(a •e) b  - y (b· f ) a  = (a · xe) b  - (b·yf) a  
= a • (xe + yf + zg) b - b · (xe + yf + zg)a, 

since a ·  f, a ·  g, b • e, b • g are all zero. Hence, finally, 

17.12 (a X b) X c = (a · c) b - (b • c) a. 
Interchanging a and c, we deduce 

a X (b X c) = (c X b) X a = (c· a) b - (b • a) c 
= (a · c) b - (a • b)c. 

By considering { ( a X b) X c} • d, we find also that any four vectors a, b, c, 
d satisfy Lagrange's identity 

17.13 (a X b) • (c X d) = (a • c)(b · d) - (b • c)(a • d). 

• C. J. Coe and G. Y. Rainicb, American Mathematical Monthly, 56 (1949), pp. 175-176. 
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I t  is sometimes desirable to express a vector in terms of its components 
in the directions of the axes of rectangular Cartesian coordinates, that is, to 
let the c�ordinate symbol (x, y, z) for the point P to be used also for the 
vector OP, where O is the origin (0, 0, 0). In other words, we use P = 
(x,y, z) as an abbreviation for 

1 7.1 4 r = xi + yj + zk, 

where i, j, k are unit vectors along the three axes (so that this is a special case 
ofl7.ll).  Since 

1 7.1 5 
12 = j2 = k2 = 1, j • k = k • I = i • j = 0, 

i = j X k, i = k X i, k = i X j, [i j k] = 1, 
we easily deduce, for any three vectors r, r', r'', the products 
1 7.1 5 1  r • r' = xx' + yy' + zz', 

r x r' = j �, z 1 .  I z z' 1 + 
z
' X 1 • I X  x' 1 + x' � , k 

and 
X y z 

1 7.1 6 [r r' r''] = x' y' 
z

' 
x" y'' z" 

Since the product of two determinants (like the product of two matrices) 
is obtained by writing down the inner products of the rows of the first with 
the columns of the second, we can bring in three more vectors such as 
q = ui + vj + wk and find 

u V w X x' x'' 
[ q q' q" ] [ r r' r''] = u' v' w' y y' y" 

u'' v'' w'' z z' z'' 

q · r  q • r' q • r'' 
1 7.1 7  q' . r q' · r' q' • r'' . 

q" . r q" . r' q" . r'' 

Returning to 17.14, we observe that 
r ·  I = x, r· I = y, r · k  = z. 

Thus we can express any vector r in terms of any orthogonal trihedron of unit 
vectors in the form 

1 7.1 8 r = (r· i) I + (r· i ) i + (r·k)k. 

We shall also have occasion to use the following theorem: 
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1 7. 1 9  If two vectors, a and b, lie in perpendicular planes which intersect 
the line of a unit vector k, then 

(a • k)(k · b) = a • b. 
Proof Since the planes ak and kb are perpendicular, 17. 1 3  yields 

0 = (a X k) · (k X b) = (a • k)(k·b) - k2(a · b) = (a • k)(k · b) - (a • b). 
EXERCISES 

1. How must a, b, c be related in order to satisfy the associative law (a X b) X c 
= a X (b X c)? 

2. Simplify (a x b) x (c X d) two ways and, by equating the results, deduce an 
identity connecting four vectors such as [a b c) d. 

3. Simplify (a x b) • (a X b), and show that the result could have been anticipated 
in virtue of a well known trigonometrical identity. 

17.2 VECTOR FUNCTIONS AND THEIR DERIVATIVES 
Vector functions can be differentiated in the same manner as numerical functions. Let the vector 

a = a(s) 
be a function of the numerical variable s, and let Aa be the increment in the vector corresponding to the increment As in the variable s, so that 

a(s + Lls) = a + Aa. 
If the vector Aa/ Lls tends to a limit as As tends to zero, the vector function 
a(s) is said to be differentiable, and the limit is the derivative: 

a = da 
= lim Aa 

= lim a(s + Lls) - a(s) . ds As - o As As ➔ o Lls 
The rule for differentiating a product is the same as for ordinary functions. 

In fact, 
(a + Aa) • (b + Ab) - a • b  = a • Ab + Aa · b  + Aa • Ab 

and therefore 

Similarly, 
and 

= a • b  + a · b  . 
.i!.... (ma) = ma +  ma ds 

� ( a X b) = ( a X b) + ( � X b ). 
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(Since outer products are anticommutative, we must be careful not to write 
the second term on the right as b x a . )  

Since 
d 
ds 

a2 = 2a•a, 

a variable vector of constant length is always orthogonal to its derivative. 
Since the Cartesian basic vectors i, i, k are constant, their derivatives are 

zero, and 
; = :s (xi + Yi + zk) = .xi + Yi + ik = (x,y, i). 

Thus, when we differentiate a vector, the components of the derivative are 
simply the derivatives of the components. 

EXERCISE 

When a particle moves in a circular orbit (like a stone swung at the end of a string), 
its position vector from the center has constant length. In which direction is its veloc
ity? U its speed is constant, its velocity is a vector of constant length. In which di
rection is its acceleration? 

1 7.3 CURVATURE, EVOLUTES AND INVOLUTES -
The simplest instance of a variable vector is the position vector r = OP 

of a point P that moves along a curve (including a straight line as the simplest 
case of all). To define the length of an arc of the curve, we approximate it by 
a sequence of broken lines, as in §8.5. The increment l:lr may be identified 
with the vector along one of the segments of the broken line, so that, before 
we pass to the limit, the corresponding increment of arc is the length 11:lrl.  

For most purposes, the directed arc s (measured along the curve from a 
fixed point A to a variable point P)  is the most convenient parameter to 
use in describing the curve. That is, we regard the vector r = OP as a func-
tion of s. Since 

lim I !: I = lim [( � ) 
2 

+ ( t ) 2 + ( �) 2
]

1 
= (x2 + j2 + z2)1 = 1 

[Struik 1 ,  p. 7], the limit of l:lr/ /:ls is the unit tangent vector 

t = r. 
If another parameter u is used instead of s, we can easily make the neces
sary adjustment. The derivative dr!du is still a tangent vector, namely 

dr = dr ds = ds t; 
du ds du du 

the connection between s and u is determined by the length, ds/ du, of this 
vector, and t is the unit vector in the same direction. 
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For instance, in the case of the circle 

of radius p, we have 
X = p COS U, y = p sin u, 

r = p (cos u, sin u), 
1� t = p (-sin u, cos u), 
ds ( • ) du = p, t = -sin u, cos u . 

For any curve in the (x, y)-plane, the tangent vector is 

1 7.31 t = (cos 1[,, sin 1[,), 

where 1[, is the angle that t makes with the vector i along the x-axis. The 
curvature of the plane curve is the arc derivative of this angle: 

1 7.32 di/I 
IC =  - = o/· 

ds 
Since t is a unit vector, its derivative is in the perpendicular direction, that 
is, in the direction of the unit normal vector n = ( - sin 1[,, cos 1[,), which is 
derived from t by a positive quarter-turn. Thus 

t = �( -sin 1[,, cos 1[,) 
1 7.33 = ,en, 
and we regard ,c as being positive or negative according as n is on the con
cave or convex side of the curve. 

The derivative ofn, being orthogonal to n, is a certain multiple oft. By 
differentiating the inner product n • t, which is zero, we find the precise ex
pression 
17.34 n = -Kt. 

Applying this ·method to the circle 
r = p (cos u, sin u), 

for which t = ( -sin u, cos u), we find 
,en = t = u(-cos u, -sin u), 

whence 
,c = u = lip and n = -(cos u, sin u). 

This means that the curvature of the circle is the reciprocal of its radius, 
Soddy's "bend" (p. 15), and its normal is towards the center along the radius. 

At a point P on any plane curve, the center of curvature Pc is the center 
of the circle of curvature, which is the circle of "closest fit," having the same 
normal and the same curvature. Its "radius" 
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THE EVOLUTE OF A CURVE 

P = l/,c 
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(which we allow to be positive or negative with ,c) is the radius of curvature. 
The center of curvature at P, being distant p from P along the normal there, 
has the position vector 

17.36 re = r + pn. 
When P moves along the given curve (which we now assume not to be a 

circle nor a straight line), the center of curvature Pc moves along a related 
curve called the evolute,* which may be expressed parametrically in terms 
of its own arc length Sc. Its unit tangent tc is given by 

sc tc = fs (r + pn) = ;. + pn + j,n 

= t - pKt + pn = pn. 

Since tc and n are unit vectors, it follows that 

Sc = +p and tc = +n: 
the tangent at Pc to the evolute is the same line as the normal at P to the 
original curve (see Figure 17.3a). Thus the evolute, which we have defined 
as the locus of the center of curvature, could equally well be defined as the 
envelope of normals. 

Figure 17.3a 

Integrating the differential equation dsc = +dp, we find that, for some 
constant a, 

Sc = a +  p. 

Regarding the line PPc as a rigid bar that rolls (without sliding) on the evo
lute, we now see that the end P of the bar traces out the original curve. In 

• For a full discussion of this subject, see A. Ostrowski, Ober die Evoluten von endlichen 
Ovalen, Jouma/flJr die reine und angewandte Mathematik, 198 (1957), pp. 14-27. 
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other words, the locus of P is an involute of the locus of Pc. We say "an 
involute" rather than "the involute" because different choices of the tracing 
point on the rolling bar yield an infinite family of "parallel" curves, each of 
which is an involute. 

By a change of notation (from re, sc, tc to r, s, t) we can assert that the 
position vector of a point which traces out an involute of a given curve is 

r + (a - s)t. 

To find t, n, and K for a particular curve, the procedure that we applied 
to a circle Gust after 17 .34) is usually effective whenever the Cartesian co
ordinates are given in terms of a parameter. However, in the case of a cen
tral conic, the best way to obtain the evolute is as the envelope of normals. 
(See Ex. 3 at the end of§ 8.5.) 

Figure 17.3b 

For curves given in terms of polar coordinates, a more geometrical pro
cedure may be desirable. For instance, to locate the center of curvature Pc 
at any point P on the equiangular spiral 8.71, we observe (Figure 17.3b) that 
tJ, = fJ + cp. Since also 

'!fs = cos cp and C:O = r cot cp, 
we have 

so that 

dtj, dfJ dfJ dr sin cf, 
K - - - - - - - - --- ds 

- ds - dr ds 
- r ' 

pp C = p = r CSC <p. 
Thus OPc is orthogonal to OP [Lamb 2, p. 337] and Pc is (re, Be) where 

re = r cot cp, 8c = fJ + ½77. 
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Since r = re tan cf> and O = Oc-½'1T, the evolute has the equation 

r tan ct, = aµ_e-iw. 
Since 

tan cf> = /1, log tan 9/log 11 = /1, log tall 9/co1 9 = /1, tan 9 log tan 9 ' 

this is equivalent to 

r = aµB-l?T-lnn tf, log tan 1\ 
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which shows that the evolute is derived from the original spiral by a suit
able rotation. (This result could have been seen from simple geometric prin
ciples, since the spiral similarity that slides the original spiral along itself 
must also slide the evolute along itself.) 

The spiral is its own evolute if the "suitable rotation" consists of n whole 
turns, that is, if there is a positive integer n for which 

½'TT + tan ct, log tan ct, = 2n'1T. 

This happens if tan ct, satisfies the transcendental equation 

x log x = (2n - ½)'TT. 

From a table of natural logarithms we see that there is a unique solution 
for each positive integer n. The values n = 1 and n = 2 yield ct, = 74° 39' 
[Cundy and Rollett 1 ,  p. 64] and ct, = 80° 41'. When n increases, <f> ap
proaches 90° and the spiral acquires a smaller and smaller "pitch." 

EXERCISES 
I. Find the evolute of the cycloid 

x = u + sin u, y = I + cos u. 
(Hint: t = (cos tu, -sin ½u). A synthetic treatment is given by Lamb [2, pp. 351-
352).) 

2. Find the involute of the circle 
X = COS U, y = sin u, 

beginning at the point where u = 0. 
3. From "simple geometric principles," the radius of curvature of an equiangular 

spiral is proportional to the arc s, measured from the origin. In fact, 
p = s cot ,p. 

17.4 THE CATENARY 

The catenary is an infinite curve, the idealized shape of a uniform chain 
hanging freely under the action of gravity. The curve evidently lies in a 
plane, which we may take to be the (x, y)-plane with the y-axis vertical, as in 
Figure 1 7.4a. Let W denote the weight of a unit length of the chain. We 
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y 
t 

____ ___..__ _______ x 
Figure 1 7 .4a 

consider the forces acting on arc AP, where A is the lowest point (s = 0) and P is at distance s, measured along the curve. The tangent t at P makes 
a certain angle tJ, with the x-axis i, and the normal n makes the same angle 
with the y-axis i, so that 

i • t = I •  n = cos tJ,, i • n = -sin tJ,. 
By considering various points P on the same chain, we may regard the in
clination tJ, as a function of the arc s, or vice versa, while conditions at A 
remain constant. The three forces that act on the arc AP are: the tension 
Tat P, acting along the tangent t, the tension Wa (equivalent to the weight of a certain length a of the chain) along the tangent - i at A, and the weight 
Ws in the direction -1. Since these three forces are in equilibrium, we have 

Tt - Wai - Wsj = 0. 

To eliminate the unknown (and uninteresting) tension T, we take the inner 
product with n, obtaining 

Wa sin ,j, - Ws cos ,j, = 0, whence 
1 7.41 s = a tan ,j,. 

This equation, expressing the arc-length as a function of the inclination tJ,, 
is called the intrinsic equation of the catenary. To deduce the Cartesian 
equation [ cf. Lamb 2, p. 290] we observe that 

dx = ds cos "1, dy = ds sin 1/; 
(Figure 8.5a) and make the "Gudermannian substitution" 

cosh u = sec 1/J, sinh u = tan "1 

(Figure 17.4b), which implies 
sinh u du = sec "1 tan "1 di/,, 

du = sec "1 d"1. 
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Differentiating 17.41, we obtain ds = a sec2 1{I di/,, whence 

dx = ds cos 1{I = a sec 1{I dip = a du, 
dy = ds sin "1 = a sec "1 tan 1{I di/, = a d(sec 1{1) = ad( cosh u). 
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Taking the lowest point A (where s = 0, 1{I = 0, and u = 0) to be (0, a), we 
deduce 

or, in a single equation, 

1 7.42 

x = au, y = a cosh u 

y = a cosh �a 

l 

Figure 17.4b 

EXERCISES 

sinh u 

I. A uniform chain OP is held at P and hangs over a smooth peg at A, so placed that the chain just above A is horizontal and the peg gives it a right-angled bend. If the part of the chain from A to P is in the position indicated in Figure 17.4a, where is the free end O? 2. For the catenary, s = a sinh u and p = a cosh2 u. 
3. Deduce 17.42 from ds = sec ,J, = II + (:..) 2] i and dy = !. . • dx � a dx a 4. Obtain intrinsic equations for (a) the cycloid x = u + sin u, y = cos u; (b) the parabolay2 = 2/x. 
S. Use the Gudermannian substitution to work out f sec ,f, d,f,. 

1 7.5 THE TRACTRIX 

Let us now investigate the involute of the catenary, unwinding from its 
"lowest" point A,  as in Figure 17.Sa [Steinhaus 2, pp. 212-213]. Since the 
position vector of the general point P on the catenary is 

r = (au, a cosh u) = a(u, cosh u), 
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y 

Figure 17.Sa 

t 

where u is given in terms of s by the relation s = a sinh u, the unit tangent 
vector is given by 

h ds dr dr inh ) a cos u t = duds = du = a(I, s u , 

t = (sech u, tanh u), 
and the position vector of the general point Q on the involute is 

r - st = a(u, cosh u) - a sinh u (sech u, tanh u) 
= a(u - tanh u, sech u). 

Thus the involute, which is known as the tractrix, has the parametric equa
tions 

1 7.51 x = a(u - tanh u), y = a sech u 
[Lamb 2, p. 325], from which there is no advantage in trying to eliminate u. 

Since the unit normal vector at P to the catenary is ( - tanh u, sech u), the 
unit tangent vector at Q to the tractrix is (tanh u, -sech u), and the position 
vector of the point N at distance a along it is 

a(u - tanh u, sech u) + a(tanh u, -sech u) = (au, 0). 

Thus the length of this tangent QN, from its point of contact to its intersec
tion with the x-axis, has the constant value a. This is the property that gives 
the tractrix its name: if the (x,y)-plane is horizontal and you walk along the 
x-axis dragging a stone (originally at A) by means ofa string oflength a, the 
path of the stone is the tractrix. The x-axis is clearly an asymptote. 

Another way of expressing the same property is that the tractrix is an 
orthogonal trajectory of a system of congruent circles whose centers lie on a 
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straight line. E. H. Lockwood* has developed this idea into an approximate 
construction for both the tractrix and the catenary. 

EXERCISE Compute p for the tractrix. What is its value at the "cusp" A, where u = O? 
1 7.6 TWISTED CURVES 

We saw, in 7.52, that every displacement is a rotation or a translation or 
a screw displacement (the product of a rotation and a translation). As G. 
Mozzi remarked in 1763, this description evidently holds not only for a finite 
displacement but also for a continuous displacement: in the most general 
motion of a rigid body, there is at each instant a definite screw ax.is. In the 
case of a pure rotation, or of the motion of a screw in its nut, this axis remains 
invariant; but in general it is continually changing. For instance, the in
stantaneous axis of a wheel rolling along a road is not the line of the axle 
(which is moving as fast as the vehicle) but a parallel line on the road. 

Any rotation may be described by its effect on a variable orthogonal tri
hedron of unit vectors which, for reasons that will appear a little later, we 
denote by tpb, so that 

t2 = p2 = b2 = I ,  p • b = b • t = t • p = 0, 
1 7.61 

t = p X b, p = b X t, b = t X p, [t p b] = 1 

( cf. 1 7  . 15). We regard these unit vectors as functions of a parameter s. Since 
the derivative of any unit vector is in a perpendicular direction, the deriva
tive of each oft, p, b lies in the plane of the other two and is a linear com
bination of them. Differentiating the relation p • b = 0, we see that the co
efficient of p in the expression for b differs only in sign from the coefficient 
ofb in the expression for p; similarly for the other pairs of vectors. Hence, 
for suitable numbers K, A, ,,. (functions of s), we have 
1 7  .62 i = Kp - Ab, p = 'Tb - Kt, b = At - 'Tp. 

These derivatives are conveniently expressed in terms of Darboux's vector 

d = rt + Ap + ,cb. 

For, we easily verify that 
a =  d X a, 

where a = t or p or b or any other vector rigidly attached to the moving 
trihedron [cf. K.reyszig 1 ,  p. 44]. We may even omit the variable vector a 
and write "symbolically" 

• Mathematical Gazette, 43 (1959), pp. 117-118. 
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Jl... = d x . ds 
At any point P on a twisted curve, the unit tangent vector t = r can be 

defined in the same way as for a plane curve. But instead of a unique nor
mal orthogonal to t, we have a normal plane containing a whole flat pencil 
of normals. Among the unit normal vectors, we give special names to two: 
the· principal normal p, in the direction of i, and the binorma/ 

b = t X p, 
perpendicular to the plane tp. Since this plane contains the derivative oft 
as well as t itself, its order of contact with the curve is higher than that of 
any other plane through t. Because of the more intimate contact, we call 
tp the osculating plane at the point P. (It contains the directions of veloc
ity and acceleration of a point moving along the curve [Forder 3, p. 13 1].) 

The formulas 17.62 for the derivatives oft, p, b are applicable, with the 
simplification A = 0 due to our choice of p in the direction oft. Thus we 
have the Serret-Frenet formulas 

1 7.64 

. 
t = KP, 
p = Tb - Kt, 
b =  - 7'p, 

which may be epitomizc::d in the form 17.63 with 

17.65 d = Kb + rt. 
The coefficients K and 7' are called the curvature and torsion of the curve (at P). 

When K is constantly zero, t never changes and the "curve" is a straight 
line. As the name "curvature" suggests, K measures the :i:ate at which any 
nonstraight curve tends to depart from its tangent. Like a plane curve, a 
twisted curve has a circle of curvature of radius IIK, which lies in the oscu
lating plane and has its center on the principal normal; that is, the position 
vector of its center is r + pp, where p = II K is the radius of curvature. 

When 7' is constantly zero, the osculating plane never changes, and we 
have a plane curve, with n = p. The torsion (so named by L. I. Vallee in 
1825) measures the rate at which a twisted curve tends to depart from its 
osculating plane. 

The formulas 17.64 were first given by Serret (1851) and Frenet (1852) 
without the vector notation, that is, as formulas for the derivatives of the 
direction cosines of the tangent, principal normal, and binormal. Combin
ing them with 

we obtain 
whence 

;. = t, 
r = Kp, ·,.• = ,cp + K('Tb - Kt), 

I •• 1 [ • • • ···1 2 r = K, r r r = K r. 
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EXERCISES 

1. For a curve drawn on a sphere, the center of the circle of curvature at any point is the foot of the perpendicular from the center of the sphere upon the osculating plane at the point. 2. The tangent to the locus of the center of the circle of curvature of any curve is perpendicular to the tangent at the corresponding point on the original curve. 
3. For any twisted curve, [ t 't 't'] = ,c3(Ki - KT) = � ! (;)• 

1 7.7 THE CIRCULAR HELIX 

As we saw in § 8.7, the locus of a point moving in a plane under the ac
tion of a continuous spiral similarity is an equiangular spiral. Analogously, the locus of a point moving in space under the action of a continuous screw 
displacement is a circular helix (§ 1 1.5). In terms of cylindrical coordinates 
(r, 0, z), defined by 

x = r cos 0, y = r sin 0, z as usual, 
a screw displacement along and around the z-axis is 

(r, fJ, z) ➔ (r, (J + u, z + uc): 
the product of the rotation (J ➔ (J + u and the translation z ➔ z + uc. Applying this screw displacement to the point (a, 0, 0), we obtain (a, u, uc). Thus the circular helix has the parametric equations 
or r = a, 0 = u, Z = UC, 

x = a cos u, y = a sin u, z = cu 

[Weatherburn 2, p. 16]. In other words, the helix, which is the shape of 
the rail of a "spiral" staircase, has the equations 

or 
r = a, z = cfJ 

l = tan .:., 
X C 

which express it as the curve of intersection of two surfaces: the circular cylinder 

and the helicoid 

r = a, or x2 + y2 = a2, 

(J l - tan !. z = c , or - , 
X C 
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which is the shape of the ceiling of the staircase (or of a propellor blade) 
[Steinhaus 2, p. 196). 

Differentiating 
r = (a cos u, a sin u, cu) 

with respect to s, we obtain 
t = u ( -a sin u, a cos u, c). 

Since this must be a unit vector, we have 
u = 11✓a2 + c2, 

and we shall find it convenient to retain the symbol u as a temporary ab
breviation for this constant. The Serret-Frenet formulas yield 

1Cp = t = u.2 ( -a cos u, -a sin u, 0) = -u2a (cos u, sin u, 0), 
IC = u2a = a , 

a2 + c2 

p = -(cos u, sin u, 0) 

b = t X p = u (c sin u, -c cos u, a), 
-'Tp = .; = u2c (cos u, sin u, o), 

'T = u,2c = C 
a2 + c2 

(perpendicular to the z-axis), 

Thus both IC and 'T are constant, a result which could have been seen from 
first principles without any trouble, since the screw displacement that slides 
the circular helix along itself transforms the curvature and torsion at one 
point into the same properties at another point. Conversely, since every 
displacement is a screw displacement, every curve whose curvature and tor
sion are constant is a circular helix if we include, as limiting cases, the 
straight line (1C = 0, a = 0) and the circle ('T = 0, c = 0). 

When IC and 'T are constant, Darboux's vector 17.65, being rigidly at
tached to the moving trihedron, is one of the vectors to which 17 .63 is ap
plicable. Thus 

d = d X d = 0, 

and d is constant. In fact, just as the motion of the tangent at a point de
scribing a plane curve is, at each instant, a rotation about the center of curva
ture, so the motion of the tpb trihedron at a point describing a twisted curve 
is, at each instant, a screw displacement about a certain line in the direc
tion of Darboux's vector. In the case of the plane curve, the center of curva
ture appeared as the center of the circle of "closest fit": having the same 
tangent and curvature as the given curve. Analogously for the twisted curve, 
the screw axis can be obtained as the axis of the circular helix of closest fit: 
having the same tpb and the same curvature and torsion. Thus the screw 
axis is the line in the direction 1Cb + 'Tt through the point whose position 
vector is 
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r + ap, 
where a, being the radius of the circular cylinder containing the helix, is 
obtained by eliminating c from the equations 

in fact, 

,c - a 7 _ C . 
- a2 + c2 ' - a2 + c2 , 

a =  
K 

1(2 + 72 

In the case of a plane curve we have -r = 0, a = p, the position vector r + ap becomes r + pn, and Darboux's vector becomes Kb: perpendicular 
to the plane of the curve. 

EXERCISES 

1. The orthogonal projection of the circular helix on a plane through its axis, such 
as the plane x = 0, is the sine curve 

y = a sin�. 

2. Describe the surface formed by the midpoints of all the chords of a circular helix. 
3. The locus of centers of circles of curvature of a circular helix His another circular 

helix H', and the locus of centers of circles of curvature of H' is H itself. For what 
value of cla (or rlK) will H and H' be congruent? (It is, of course, sufficient to con
sider a single point on H, such as the point where 11 = 0.) 

1 7.8 THE GENERAL HELIX 

We have seen that the circular helix is characterized by its property of 
having constant curvature and constant torsion. It is a special case of the 
general helix, which may be defined either as a curve whose curvature and 
torsion are in a constant ratio or as a curve whose tangent makes a con
stant angle with a fixed vector. We proceed to prove the equivalence of 
these two definitions. 

Suppose first that the curvature and torsion are in a constant ratio (i.e., 
a ratio independent of s), say 

Then 
. 
t = Kp, 

7' = CIC • 

b = --rp = -CKp, 
ct +  6 = o. 

Since this is the derivative of ct + b, the latter is a fixed vector, say a, which 
makes a constant angle with t since 

a • t = { ct + b) • t = c. 

Conversely, suppose t makes a constant angle /3 with a fixed unit vector k. 
Differentiating the equation 
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we obtain 
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t· k = cos /3, 
Kp • k  = 0. 

Assuming that K =I= 0, we have p • k = 0, so that the constant vector k lies in 
the bt plane and makes complementary angles with b and t. Since t • k = 
cos /3, we have also 

b •  k = sin /3. 

Differentiating the equation p • k = 0, we obtain 

('rb - Kt) · k = 0, 

'r Sin /3 - K COS /3 = 0, 

� = tan/3. 
'r 

Lines in the constant direction k through all the points of the curve gener
ate a (general) cylinder. Thus the helix can alternatively be described as a 
curve drawn on a cylinder in such a way as to cut the generators at a con
stant angle. In other words, it can be obtained by drawing a straight line 
obliquely on a sheet of paper and then wrapping the paper on the cylinder. 

EXERCISES 

1. Using Darboux's operator 17.63 to differentiate the constant vector k, obtain 
d X k = 0. 

Deduce that Darboux's vector d = Kb + rt is parallel to k: its direction is constant 
(though its length, VK2 + 'T2, may vary). 

2. Find K and 'T for the curve 
x = 3u - u3, y = 3u2, z = 3u + ua, 

and deduce that this curve is a helix. 

17.9 THE CONCHO-SPIRAL 

The spirals described on shells, and called concho-spirals, are such as 
would result from winding plane logarithmic spirals on cones. 

Henry Moseley (1801 -1872) 
[Moseley 1, p. 301 ]  

The two most interesting helices are: (I) the circular helix, which is the 
locus of a point under the action of a continuous screw displacement, so 
that its curvature and torsion are constant; and (2) the concho-spiral, which 
is the locus of a point under the action of a continuous spiral similarity, so 
that its curvature and torsion are both inversely proportional to its arc s, 
measured from the apex O of the cone on which it evidently lies (cutting 
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the generators at a constant angle). A considerable arc of this curve can 
be seen on the shell Turritella duplicata [Weyl 1 1 p. 68]. Architectural ap
plications appear on spires in Copenhagen, notably that of the Stock Ex
change Building, where the tails of four dragons are twisted together. 

In terms of cylindrical coordinates, a spiral similarity round the z-axis, say 

(r, 0, z) ➔ (µu r, 0 + u, µu z), 
applied to the point (a, 0, c), yields the concho-spiral 

r = µu a, 0 = u, z = µu c. 
To see how the circular helix can arise as a limiting form of the concho

spiral, we change the origin by writing z + c for z, and then make c tend to 
infinity and µ to 1 in such a manner that (p. - l)c approaches a finite number 
b. Instead of r = µu a and z = µu c, we have r = a and 

z = (p.u - l) c = µ,u -/ (p. - l)c ➔ ub. 
µ -

Thus the limiting form is the circular helix 

r = a, 0 = u, z = ub. 
EXERCISES 

1. Express the parametric equations for the concho-spiral in terms of Cartesian coordinates. 2. Verify from these equations that the tangent t to the concho-spiral makes a constant angle with the z-axis. 3. Obtain a formula for the angle at which the concho-spiral cuts the generators of the cone r z - =-.  
Q C 

4. A familiar model for a cone of revolution is obtained by cutting out a circular sector from a sheet of paper and rolling it up so that the center of the circle becomes the vertex of the cone. The angle a of the sector and the semivertical angle /3 of the cone are connected by the formula 
a = 2'1T sin {J; for example, the sector is a semicircle if fJ = ?Tl6. If sin fJ = 1/n, where n is an integer greater than I, the unfolded form of any concho-spiral on the cone consists of a sequence of arcs belonging to n equiangular spirals. 5. Like any other helix, the concho-spiral lies on a cylinder and cuts the generators at a constant angle. What kind of cylinder is this in the present case? 
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The tensor notation 

In this interlude between the differential geometry of curves ( Chapter 17) 
and the differential geometry of surfaces (Chapter 19) we introduce Ricci's 
famous notation, which is both suggestive and economical. (Without its aid 
the general theory of relativity could hardly have been formulated.) One of 
its simplest applications has no direct connection with differential geometry: 
"reciprocal lattices" are used in both x-ray crystallography (§ 18.3) and the 
geometry of numbers (§ 18.4). 

1 8. 1 DUAL BASES 

The tensor method . . .  hos the great advantage th at it is not o new 
notation, but a concise way of writing the ordinary notation. 

Harold Jeffreys (1891 -
[ Jeffreys 1, Preface] 

As a basis for our vector space (or a frame for affine coordinates), instead 
ofe, f, g (as in 17.11) or i, i, k (as in 17.14), it is more systematic to write 
r1, r2, r3. Along with this set of three independent vectors we use also the 
dual basis r1, r2, r3, defined in terms of r1, r2, r3 by the equation 

1 8.1 1  

where the Kronecker delta 8j is a useful symbol which means 1 or O according 
as a and /3 are equal or unequal. (The " 1,  2, 3" of the dual basis are not ex
ponents but "upper indices" or "superscripts," analogous to the subscripts 
used in the original basis.) Thus r1 is perpendicular to the plane r2ra and its 
length is adjusted so that r1 • r1 = I;  similarly for r2 and r3. Each ra, being 
perpendicular to two rp's, may be expressed as an outer product: 

18.12 

where, since ra • r a = 1,  

18.13 
328 

3 r1 X r2 r = J ' 
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Since the basic vectors r a are independent, J =:/= 0. By 17.17, we have rl . r1 r1 • r2 rl . r3 1 0 0 (rl r2 r3] [r1 r2 r3] = r2 . r1 r2 . r2 r2 • r3 = 0 1 0 = I, r3 • r1 r3 • r2 r3 . ra 0 0 I 
so that 

1 8.14 [rl r2 r3] = J-1 

and the dual basic vectors are likewise independent. Interchanging "uppers 
and lowers" in 18.12, we obtain 

1 8. 1 5  

EXERCISE 

Deduce 18.14 from 18.12 without using 17.17. (Hint: Apply 17.13 to r2, r3, r2, r3.) 
1 8.2 THE FUNDAMENTAL TENSOR 

Any vector u may be expressed as }; Ua ra (meaning u1 r1 + u2 r2 + U3 r3) 
or as L ua r a· The covariant* components ua and contravariant components 
ua are simply the inner products u • ra and u • r<>; for 

and 
u • rp = Lua r"' • rp = � Ua � = ufJ 

U • r/J = };ua ra • rP = };ua 8! = ufl 

(In such expressions as }; ua ra • rp, it is understood that the summation is 
taken over the index a that appears twice, once "up" and once "down," and 
not over the index (3 which only appears once. The sum };� ua involves 
three values of a, one of which must be equal to /3, so the "incomplete sym
bol" L8p serves as a substitution operator transforming Ua into u/J.) 

Thus 

1 8.21 

In particular, this holds when u = ra or ra, in which cases the components 
up = u • rp and uP = u • rP are denoted by 

1 8.22 

so that 

1 8.221 

g"P = r« . rfl, 
•For the whole story of the subtleties that underlie the terms covariant and contravariant, sec K.reyszig [1, p. 88]. The present treatment was suggested by G. Hessenberg. Vektorielle Bcgrllndung der Differentialgcomctric, Mathemalische Annalen, 78 (1917), 187-217. 



330 THE TENSOR NOTATION 

(In the expression �gap rP, it is /3 that appears twice, so we sum over /3, ob
taining ga1 r1 + ga2 r2 + ga3 r3.) The commutativity of inner products shows 
that 

The connection between the covariant tensor gap and the contravariant ten
sor gtzP is found as follows: 

�gay gaP = �gay ra • rP = ry • rP 

1 8.23 = l3f 

Thus the two symmetric matrices !I gap I I  and II gtzP II have as their product the 
unit matrix. The two corresponding determinants cannot vanish, since their 
product is 1 .  When the coefficients gay are given, we have, in 18.23 for each 
value of /3, a set of three linear equations 

(y = I,  2, 3) 
to be solved for the three unknowns g1P, g2P, g313. By Cramer's rule [Birkhoff 
and MacLane 1 ,  p. 306], the solution is 

gaP = ( cofactor of gap in G)/ G, G = det(gap)-

In particular, if g23 = g31 = g12 = 0, we have 
gaa = 1/gaa 

and g23 = g31 = g12 = o. 
To express either kind of components of a vector u in terms of the other 

kind, we have 

1 8.24 

Ua = U • r a = U • � gap rP 

= � gap uP, 

and similarly, ua = � gaP up. The inner product of two vectors 
u = � ua r a = � Ua ,a and V = � vP r p = � V p rP 

may be expressed in various ways as a bilinear form: 

u • V = k u"' r a .  V = k ua Va, 
U • V = � Ua ra • V = � U., V°', 

u • V = k u"' r a . � vP r p = kk gap ua vP' 

u • V = � Uc, ra . k V p rP = k� gaP Ua VP· 
In particular, the length I u I is given by 

I u 12 = u • u = k u., u"' 

1 8.25 
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Let us regard u and v as the position vectors of points having contra
variant coordinates (ul, u2, ua) and covariant coordinates (v1, v2, va), respec
tively. If u is fixed while v varies, the two equations 

1 8.26 u · v  = 0, u · v  = 1 
define respectively the plane through the origin perpendicular to u, and the 
parallel plane whose distance from the origin, being the length of the projec
tion ofv on the unit vector u/ I u I ,  is 

u 1 
-r;r·v 

= 
Tur· 

The latter plane, passing through the inverse of(u1, u2, ua) in the unit sphere 

v • v  = 1, 
is the polar plane of (ui, u2, ua) with respect to the sphere. (See § 8.8.) 

It is sometimes convenient to express the basic vectors in terms of Car
tesian coordinates: 

Then, by 18.22 and 17.151, 

1 8.27 gap =  ra • rp = X,;Jep + YaYp + ZaZp, 

Xi Yi Z1 
1 8.28 J = [ ri r2 ra] = X2 Y2 z2 , 

xa Ya za 

and the determinant of the fundamental tensor is 

g11 gi2 g13 
1 8.29 G =  g2i g22 g2a 

ga1 ga2 gaa 

1. U • V = u1 Y1 + u2 V2 + u3 V3. 

-
Xi Yi Zi Xi 
X2 Y2 Z2 Yi 
Xa Ya Za Z1 

EXERCISES 

X2 
Y2 
Z2 

Xa 
Ya = J2. 
Za 

2. I u 1 2  = gn(u1)2 + g22(u2)2 + gss(u3)2 + 2g2s u2u3 + 2831 u3u1 + 2gu uiu2. 

Give the corresponding expression for u • v. 

3. Use 18.12, 18.221 and 18.15 to prove 17.12 in the form 

(l'J. X r2) X ra = g1sr2 - g2s'1• 

4. � r" X r« = 0. 
S. Express det (g"/1) in terms of G = det (g.11). 
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1 8.3 RECIPROCAL LATTICES 

It can fairly be said that the reciprocal lallice provides one of the mast 
important tools available in the study of the diffraction of x-rays by 
crystals. 

M. J. Buerger [ 1 ,  p. l 07) 

The study of x-ray diffraction has confirmed the notion that the symmet
rical appearance of a crystal is a result of the symmetrical pattern formed 
by its atoms or molecules. In other words, there is an infinite group of sym
metry operations transforming the pattern (regarded as extending through
out the whole space) into itself. These operations may or may not include 
rotations, reflections, glide reflections, rotatory reflections or screw displace
ments, but in any case the translations contained in the symmetry group 
form a nonempty normal subgroup. This translation subgroup determines 
a lattice whose unit cell contains one or more atoms. The arrangement of 
atoms in the first cell determines their arrangement in all the other cells de
rived by the translations. If the cell contains only one atom, we naturally 
choose the origin at the center of such an atom; then instead of an atom 
inside each cell, we shall have one at every vertex, that is, at every lattice 
point. But if the cell contains several atoms there will be several super
posed lattices of atoms. Thus a given crystal has a perfectly definite trans
lation group, and the lattice becomes definite as soon as we have chosen an 
origin (at the center of an atom or elsewhere). There is still a theoretically 
unlimited choice of unit cells, though in practice we tend to use basic vec
tors of roughly equal lengths. However, the volume of the unit cell is defi
nite, since it depends on the number of lattice points in a crystal of a given 
size. In fact, any three independent vectors generate a parallelepiped, and 
this is a unit cell whenever it has a lattice point at each of its eight vertices 
but none on its edges, nor on its faces, nor inside. 

The affine theory shows that a sequence of "rational planes" 13.93 can 
be chosen in infinitely many ways. In Euclidean geometry these are no 
longer indistinguishable: each sequence has its interplanar spacing, which 
can be measured as the distance from the origin to the "first" plane 
1 8.31 Xx + Yy + Zz = I .  

Each sequence of planes contains all the lattice points. Hence, when we 
compare one such sequence with another, the interplanar spacing is pro
portional to the density of distribution of lattice points in one plane of the 
sequence. This idea is physically important because the face planes and 
cleavage planes of a crystal naturally tend to occur among the rational planes 
of high density. Accordingly, we are chiefly interested in the sequences that 
have a relatively large interplanar spacing. On the other hand, the most 
interesting visible points are those at a relatively small distance from the 
origin. The two lattices which we are going to consider are related in such 
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a way that the visible points of either are in directions perpendicular to the 
rational planes of the other and at distances reciprocal to the interplanar 
spacings [Buerger 1 ,  p. 1 1 7]. Thus the more important planes of either lat
tice will correspond to the more important points of the other. 

The definition in terms of a basis is extremely simple [Coxeter 1 ,  p. 181] 
and the result is easily seen to be independent of the chosen basis. If a 
given lattice consists of the points whose contravariant coordinates are in
tegers, the reciprocal lattice consists of the points whose covariant coordi
nates are integers. In other words, the position vectors are 

u = � u" ra and V = � V
a

r>, 

respectively, where ua and v a are integers and ,.a ·  r p = c5;. The equation 
u · v  = I or 

u1v1 + u2v2 + u3va = 1 
(see 18.26) implies that the three u's are coprime, and likewise the three v's. 
For each visible point (u1, u2, u3) of the given lattice, this equation may be 
identified with 18.31: it represents a first rational plane of the reciprocal lat
tice; perpendicular to u and at the reciprocal distance I u 1 -1. Since the dis
tinction between "covariant" and "contravariant" is made by an arbitrary 
choice, the relation between the two lattices is symmetric: the first rational 
planes of either are the polar planes (with respect to the unit sphere) of the 
visible points of the other. 

The shapes of the unit cells of the two lattices are determined by the inner 
products 18.22. For the edge lengths of these parallelepipeds, it is conven
ient to use the abbreviations 

1 8.32 

so that the angles between pairs of adjacent edges are the angles whose co
sines are 

g23 g31 g12 . 823 g3l 812 

8283 8381 ' 8ig2 
1 

gZg3 ' g38l ' 8182 • 

By 18.13 and 18.14, their volumes are J and J-1 where, by 18.29, 

J = yG, G = det (g.,p). 
The simplest special case is the cubic lattice consisting of the points whose 

rectangular Cartesian coordinates are integers. In this case 
r1 = r1 = I, r2 = r2 = I, ra = r3 = k, 

the distinction between covariant and contravariant disappears, and the lat
tice is its own reciprocal. Other important lattices are obtained as sublat
tices of the simple cubic lattice, that is, by putting suitable restrictions on 
these integral Cartesian coordinates. By making the three coordinates of 
each point have an even sum, we obtain the face-centered cubic lattice; and 
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by making them either all even or all odd, the body-centered cubic lattice. 
(These names refer to a larger simple lattice whose points have only even 
coordinates. In this larger lattice the center of a face has two odd coordi
nates and the center of a cell or "body" has three odd coordinates.) Each 
of these two lattices is similar to the reciprocal of the other; for, the bases 

1 8.33 r1 = (0, 1, 1), r2 = (1, 0, 1), r3 = (1, 1, 0), 

1 8.34 rl = (-1 ,  1, 1), ,2 = (1, - 1, 1), r3 = (1, 1, - 1) 

evidently satisfy a trivially modified form of 18 . 11 ,  namely, 

ra • rp = 2 8p .  

This means that they are reciprocal with respect to a sphere of radius y2. 
To make them reciprocal with respect to a unit sphere, we merely have to 
divide all the coordinates of one lattice by 2 (or all the coordinates of both 
by y2). 

For comparison with Buerger [1 1 pp. 1 17-127], it is perhaps worth while 
to point out that his 

a, b, c, a*, b*, c*, a, b, c, a*, b*, c*, d<hkli , ahkl, V, V* 

are our 

J, J-1. 
EXERCISES 

1. Consider two plane lattices derived from one another by a quarter-turn about the origin. Exhibit them as "reciprocal lattices" 
u1r1 + u2r2 and v1r1 + v2r2. 

(Hint: r1 is perpendicular to r2, and r2 to r1; also rl • r1 = r2 • r2.) 2. Write out the fundamental tensors for the face-centered and body-centered cubic lattices with bases 18.33 and 18.34. Sketch the unit cells, which are rhombohedra. (The former may be regarded as a solid octahedron with a regular tetrahedron stuck on to each of two opposite faces.) 3. A lattice, in three dimensions as in two (§ 4.1), has a Dirichlet region (or Voronoi polyhedron) consisting of all the points that are as near to the origin as to any other lattice point. For the simple cubic lattice, this is a cube; for the face-centered lattice it is a rhombic dodecahedron, whose faces are twelve equal rhombi; and for the body-centered lattice it is a truncated octahedron, whose faces consist of six squares and eight regular hexagons [Steinhaus 2, pp. 152, 157]. 
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1 8.4 THE CRITICAL LATTICE OF A SPHERE 

335 

Given a bounded region K . . .  which contains the origin O as an inner 
point, we consider all those lattices which hove no point except O in 
the interior of K. The lower bound of their determinants is called the 
critical determinant of K . . .  and the lattices for which this lower bound 
is attained are called the critical lattices of K. 

Harold Davenport (1907 • )• 

Every lattice has a certain minimum distance c between pairs of lattice 
points, and a certain volume J for its unit cell (§ 13.9). This J is called the 
determinant of the lattice, because it is the determinant of the Cartesian 
components of the three basic vectors ,... We proceed to prove that, for a 
given value of c, the minimum value of J occurs when the lattice is face
centered cubic.t 

lb(ZZI 
A C B 

Figure 18.4a 

Consider any point A of a given lattice whose unit cell has volume J. 
Choose a lattice point B at the minimum distance c from A, and a lattice 
point C outside the line AB, at the shortest distance b (;;;i, c) from A. These 
points can always be chosen so that the angle A and sides a, b, c of the tri
angle ABC satisfy 

a ;;;i, b ;;;i, c, 
and therefore 

(Figure 1 8.4a). Let t:,. and R denote the area and circumradius of this tri
angle, so that, by 1.53 and 1.55, 

16!:,.2 = -a4 -b4 -c4 + 2b2c2 + 2c2a2 + 2a2b2, 16t:J.2R2 = b2c2a2. 
The plane ABCis, of course, a rational plane of the lattice. In one of the 

two nearest parallel planes of the same system, there is a lattice point D 
• Recent progress in the geometry of numbers, Proceedings of the International Congress of 

Mathematicians, 1950, vol. I, p. 166. 
t A. P. Dempster, The minimum of a definite ternary quadratic form, Canadian Journal of 

Mathematics, 9 (1957), pp. 232-234. 
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whose orthogonal projection D1 on the plane ABC is not outside the paral
lelogram ABA'C. Replacing the triangle ABC, if necessary, by the triangle 
A'BC, we may assume that D1 is not outside the triangle ABC. (The pos
sible change of notation involves the central inversion that interchanges B 
and C.) Denoting by d the distance DD1 from D to the plane A BC, we have 

J = 2!::..d. 
Since none of AD, BD, CD is parallel to AB, all of them are greater than or 

equal to the next shortest distance b. Since the triangle ABC has no ob
tuse angle, circles of radius R with centers at the vertices overlap in such a 
way that every interior point of the triangle except the circurncenter is in
side at least one of these circles. Therefore the distance of D1 from at least 
one vertex is less than R, except that it is equal to R when D1 is the circum
center. Thus at least one of AD, BD, CD has its square less than or equal 
to·�- + d2, and consequently ... .. 

R2 + d2 > b2, 
with equality only when D1 is the circumcenter (and possibly not even then). 
Hence 

J2 = (2t::..d)2 

> 4!::..2(b2 _ R2) = fb2(-a4 _ b4 _ c4 + 2b2c2 + c2a2 + 2a2b2) 
= ,tcs + fc2(b2 _ c2)(3b2 + 2c2) + fb2(a2 _ b2)(b2 + c2 _ a2) 
> ½cs, 

with equality only when 

and either 
R2 + d2 = b2, b = c, 

(i) a = b or (ii) b2 + c2 = a2. 
Thus there are apparently two "critical" lattices for which the ratio JI c3 at
tains its minimum value y f. However, we shall soon see that these two 
are merely di.ff erent aspects of one: the face-centered cubic lattice. 

In case (i) (Figure 1 8.4b) the tetrahedron ABCD is regular, and we may 
choose Cartesian coordinates 

(0, 0, 0), (0, I ,  I), (1, 0, 1), (I, 1, 0) 

C A' 
C A' 

b D1 

A C B A C B 
Figure 18.4b Figure 18.4c 



EXTREME QUADRATIC FORMS 337 

for its vertices, in agreement with the basis 18.33 for the face-centered cubic 
lattice. In case (ii) (Figure 18.4c) ABA'C is a square, the base of a pyra
mid whose sloping faces (such as ABD) are equilateral triangles. Choosing 
A, B and D as before, we now have C at (0, I, -1), yielding the alternative 
basis 
1 8.41 r1 = (0, 1 ,  1), rs - r2 = (0, 1, - 1), r3 = (1, 1, 0) 
for the same lattice. Thus we have proved that the face-centered cubic lat
tice (whose points have integral Cartesian coordinates with an even sum) is 
really the only "critical" lattice. 

By 18.25, the square of the length of the lattice vector 
u = I ua ra 

is I� gaJJ ua uJJ, 

and c2 is the minimum value of this positive definite ternary quadratic form 
when the coordinates ut, u2, u3 are restricted to integral values other than 
0, 0, 0. Hence, among all such forms with a given minimum value c2, the 
minimum determinant G = J2 = ½c6 occurs when the basic vectors are 
given by 18.33, so that the form is 

(:i Ua ra)2 = (u2 + u3, u3 + ul, ul + u2)2 

= (u2 + u3)2 + (u3 + u1)2 + (ul + u2)2 

= 2{(u1)2 + (u2)2 + (u3)2 + u2u3 + u3ul + ulu2). 

In other words, every "extreme" form in three variables is equivalent to 

(ul)2 + (u2)2 + (u3)2 + u2u3 + u3ul + u1u2. 

This is a famous result, first proved by Gauss [1, vol. 2, pp. 192-196].* 
EXERCISE 

Using the basis 18.41 instead of 18.33, obtain the equivalent form 
(u1)2 + (u2)2 + (u3)2 + u2u3 + u3ul. 

1 8.5 GENERAL COORDINATES 

The position of a point in Euclidean space may be specified by three num
bers in many ways. Rectangular Cartesian coordinates (x,y, z) are the most 
familiar; but we have seen (e.g., in § 17.7) that other systems, such as cylin
drical coordinates, are sometimes more convenient. Let us use the notation 
(u1, u2, u3) for general coordinates. The essential requirements are that, 
within a suitable range of variation, x, y, z are single-valued differentiable 
functions of u1, u2, u3, while u1, u2, u3 are equally well-behaved functions 
of x, y, z. For instance, if (u1, u2, u3) are cylindrical coordinates, we have 

• For an account of the history of extreme forms up to 195 1, see Coxeter, Canadian Journal 
of Mathematics, 3 (1951), p. 393. 
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x = u1 cos u2, 

u1 = -Jx2 + y2, 

THE TENSOR NOTATION 

y = u1 sin u2, 

u2 = arctan l , 
X 

For arbitrary constants a, b, c, the surfaces 

1 8.51 u1 = a, u2 = b, u3 = C 

z = u3; 

u3 = z. 

are called level surfaces, and their three curves of intersection such as 
u2 = b, u3 = c 

are called level curves. Through a given point there is usually one level sur
face of each kind, and one level curve of each kind, but exceptions are al
lowed. For instance, in the case of cylindrical coordinates the level surfaces 
are cylinders u1 = a or x2 + y2 = a2, planes u2 = b or y = x tan b through 
the z-ax.is, and planes z = c orthogonal to the z-axis. The z-axis itself is 
exceptional because each of its points lies on infinitely many planes u2 = b 
(in fact, on all of them). 

According to the ordinary meaning of partial differentiation, the partial 
derivatives of the position vector 

r = xi +  yj + zk 
are the unit vectors along the Cartesian axes: 

_£! _ i or _ . or _ k - , - I, - . ox oy oz 
The differential of r, representing displacement in any given direction, is 

dr = i dx + j dy + k dz = (dx, dy, dz), 
and the element of arc of any curve in this direction is ds, where 
1 8.52 (ds)2 = I dr I 2 = dr • dr = (dx)2 + (dy)2 + (dz)2. 

Instead ofregarding r as a function of x, y, z, we may regard it as a func
tion of u1, u2, u3. Using a subscript a to indicate a partial derivative with re
spect to ua (so that Xa = ox/oua, etc.), we have 

1 8.53 

and 

or . . k ra = - = Xa I + Ya I +  Za ou" 
dr = r1 du1 + r2 du2 + ra du3 = 1: ra dua. 

For a displacement along the level curve u2 = b, u3 = c we have du2 = 0, 
du3 = 0, and dr = r1 du1. Thus r1 is a tangent vector to this level curve. 
Similarly r2 is a tangent vector to the curve u3 = c, u1 = a, and r3 is a tan
gent vector to ul = a, u2 = b. At a general point in space we thus have a 
definite trihedron r1 r2 r3 depending on the coordinate system. These basic 
vectors are not necessarily of unit length, and not necessarily orthogonal 
(though they do happen to be orthogonal in the case of cylindrical coordi-
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nates). The derivatives of the Cartesian coordinates are expressible in terms 
of them: 
18.54 

At a general point in space, any two of the three basic vectors determine a 
tangent plane to one of the three level surfaces through the point. For in
stance, the plane r2r3 touches the surface u1 = a since it contains tangents 
to two curves lying in that surface. Hence the dual basic vectors 18.12, 
orthogonal to the tangent planes r2r3, r3r1, r1r2, are normals to the level sur
faces 18.51: not, in general, of unit length, but adjusted so that 

(a = I, 2, 3). 

The notation 18.22 provides the following formula for the element of arc 
ds in the direction of a given displacement dr: 

(ds)2 = dr • dr = '2. ra du" · "2. rp dull 

1 8.55 = L,L, gall dua duP 
= g11 (du1)2 + g22 (du2)2 + g33 (du3)2 

+ 2g2a du2 du3 + 2g31 du3 du1 + 2g12 du1 du2. 
In the special case when u1, u2, u3 are x,y, z, this reduces to 18.52. In gen
eral, the coefficients gap are not constants but functions of the coordinates 
and their derivatives (see 18.27). 

To deal with any given system of coordinates, we work out gall = ra • rp 
from the derivatives 18.53, then obtain gall by taking the cofactor of gap in 
the determinant G and dividing by G itself. 

Our use of the letter J in 18.13 and 18.28 commemorates the German 
mathematician C. G. J. Jacobi (1804--1851). In fact, for transforming the 
triple integral of a function 

f(x, y, z) = F(u1, u2, u3) 

from Cartesian to other coordinates, we use the formula 

JJJ f(x,y, z) dx dy dz = JJJ F(u1 u2 u3) o(x,y, z) du1 du2 du3 ' , o(u1, u2, u3) ' 

which involves the Jacobian 

X1 Yi Z1 
o(x, y, z) 

o(u1, u2, u3) = X2 Y2 Z2 = [ri r2 r3] = J. 

X3 Ya Z3 

EXERCISES 

1. If u1, u2, u3 are affine coordinates, they are the components of r with reference 
to three fixed independent vectors r1, r2, r3, so that 
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1 8.56 

THE TENSOR NOTATION 

(This notation is appropriate since it makes r .. = ar/ou".) The components ofr with reference to i, j, k are 
r" = x.,i + y .. j + z .. k is a constant vector for each a, and all the g .. p are constants. 

2. Oblique Cartesian coordinates are affine coordinates with the same unit of measurement along all three axes, so that I r  .. I = I. In this case g .... = l, and g,.p is the cosine of the angle between r .. and rp (which are the axes of the coordinates u" and uP). 3. Rectangular Cartesian coordinates (with axes rotated to new positions without changing the origin) arise when r1r2r3 is an orthogonal trihedron of unit vectors, like i j k, so that 
18.57 

(meaning l or O according as a and /3 are equal or unequal). By 18.54, x .. is the cosine of the angle between the new axis ra and the old axis i; similarly for y .. and z ... Interchanging the roles of the new and old axes in the relation 
we obtain 
18.58 k = k Za ra. 
(Since now ra = r a, the distinction between covariant and contra variant disappears.) From 18.56 deduce 

ua = r a • r = x .. X + Ya y + Za z 
so that (paradoxically) 

From 18.27 and 18.57 deduce 
X" Xp + YaYfJ + Za Zp = 8ap• 

With the help of 18.58, evaluate k x .. 2 and k y" z,,_. (In technical la_E-guage, these properties make 

an "orthogonal matrix.") 
X1 Yi Z1 

X2 Y2 Z2 

X3 Ya za 
4. Find gap in the case of cylindrical coordinates. Verify that G = J2. 5. Find gap in the case of spherical polar coordinates, defined by 

x = u3 sin u1 cos u2, y = u3 sin ul sin u2, z = u3 cos ui. 
Describe the level surfaces. 6. Find gap in the case of confocal coordinates, defined by (A - ul)(A - u2)(A - u3) (B - ul)(B - u2)(B - uS) x2 = -'------':...;._ __ ..:....;_ __ ...c., y2 = ..;_ __ ;_;_ __ ..:....;_ __ ....:.., (A - B)(A - C) (B - C)(B - A) (C - ul)(C - u2)(C - u3) z2 - ..:.... __ :...;._ __ .:...:... __ ...c. - (C - A)(C - B) ' 
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where u1 < C < u2 < B < u3 < A (and x2 means "x squared"). In this case the level surfaces are the central quadrics 
18.59 

x2 y2 z2 
A - X + B - X + C - X = I, 

which are ellipsoids ui = X if X < C, one-sheet hyperboloids u2 = X if C < X < B, and two-sheet hyperboloids u3 = X if B < X < A. In fact, u1, u2, u3 are the roots of 18.59, regarded as a cubic equation for X [Weatherbum 2, p. 2 I l ]. 
1 8.6 THE ALTERNATING SYMBOL 

As a kind of counterpart of the Kronecker delta, we shall find it conven
ient to use the "alternating epsilon" 

e"/JY = Eapy = ½ (/3 - y)(y - a)(a - /3), 

which is I if af3y is an even permutation of 123, - 1  if it is an odd permuta
tion, and O otherwise. This trick provides one of the best ways to introduce 
the theory of determinants [Jeffreys 1 ,  p. 13]: 

1 8.61 
X1 Y1 Z1 
X2 Y2 Z2 = III ea/J"'( XaY/J Zy, 
X3 Y3 Z3 

gu g12 g13 g21 g22 g23 = III ea/JY g1a g2/J g3y. g31 g32 g33 
From 18.12-18.15 we deduce 

[ra rp ry] = Eapy J, J-1 r .. X rp = k Eapy rY, 
Since �� eafly gap = 0, it follows that 

[ra r/J rY) = e,a/JY J-1, 
J ,a X r/J = � e,a/JY r r 

k ra X r a = I r"' X � ga/Jr/J = IiI e,a/JY ga/J ryl J 
= 0. 

The analogous "two-dimensional" symbol is 
ei; = e,; = j - i 

which enables us to write 

I gu g12 1 = Ii eii gu g2;g21 g22 

(i = 1 or 2, j = 1 or 2) 

(Y,/e use Latin or Greek indices according as the range of values is 12 or 123.) 
EXERCISES 

1. Use 18.61 to obtain a formula for the cofactor of x.,. Work this out for the case when a =  3. 2. If cli = cl', �� e,1 cli = 0. Use the same idea to justify the step �� e«IIY g.,11 = O in the above evaluation of� r" X r.,. 
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Differential geometry of surfaces 

The present chapter extends the notion of curvature from curves to sur
faces. This extension is achieved by considering plane sections of a given 
surface, especially normal sections. Through the normal at a given point 
we can draw infinitely many planes; in fact, we can imagine such a plane 
to rotate continuously about the normal. In general, the curvature of the 
section varies continuously. For one of the planes the curvature attains its 
maximum value, for another, its minimum. We shall see that these two 
planes are at right angles, and that the product of the two "principal curva
tures" determines the essential nature of the surface. For instance, this 
"Gaussian curvature" is positive for an oval surface such as an ellipsoid, 
zero for a developable surface such as a cylinder or cone, and negative for 
a saddle-shaped surface such as a hyperbolic paraboloid. 

1 9. 1  THE USE O F  TWO PARAMETERS ON A SURFACE 

To fix the position of a point on the earth's surface, we may give its 
latitude and longitude . . . .  Through points on the equator draw me
ridians; through points on the Greenwich meridian, draw parallels of 
latitude. The position of a point . . .  is then given by the two curves, 
one of each family, which go through it . . . . Each point, except the 
poles, acquires two definite coordinates. We can generalize this 
method to any surface, or rather to a piece of any surface; we take 
two families of curves on the surface, such that through each point 
goes ;ust one curve of each family . . .  as if a fine fishing-net were 
thrown over the surface. 

H. G. Forder (3, p. 133] 

A surface f(x, y, z) = 0 is often conveniently represented by a set of three 
parametric equations 

x = x(ul, u2), y = y(ul, u2), z = z(ul, u2), 

from which the single equation f = 0 could be derived by eliminating the 
342 
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parameters ul, u2• We shall assume, as before, that the functions involved 
are continuous and possess all the continuous derivatives that we need. 

A simple instance arises when we regard x and y as the parameters, so 
that the three equations become 

x = u1, y = u2, z = F( ul, u2), 
where the expression for z is the result of solving the equationf(x, y, z) = 0 
for z in terms of x and y. Such an equation 

z = F(x,y) 
is called Monge's form of the equation for a surface. For instance, the sphere 
x2 + y2 + z2 = 1 becomes 

z = + V 1 - x2 - y2 . 

The square root makes this a clumsy way to investigate the sphere. It is 
far better to take ul and u2 to be colatitude and longitude, so that 

19.1 1 x = sin u1 cos u2, y = sin u1 sin u2, 

(Colatitude u1 means latitude t'IT -· u1.) 
The vector equation for a surface is 

1 9. 12  r = r(ul, u2), 

Z = COS U1• 

just as the vector equation for a curve is r = r(u). The essential difference 
is that the curve has only one parameter, whereas the surface has two inde
pendent parameters. 

One way to explore a surface is to investigate families of curves lying on 
it. Among these are the parametric curves 

u1 = a and u2 = b, 
where a and b are arbitrary constants. Through a given point there is usu
ally one parametric curve of each kind, but exceptions are allowed. For 
instance, when colatitude and longitude are used on the unit sphere, the 
curves u1 = a are circles called parallels of latitude and the curves u2 = b 
are great circles called meridians. Almost every point on the sphere lies on 
one "parallel" and one meridian, but the north and south poles lie on all 
the meridians. 

The position vector r, of a point on the surface, is a vector function of 
u1 and u2 . Using a subscript i to indicate a partial derivative with respect 
to u', we have 

dr = r1 du1 + r2 du2 = � r1 du1, 

where r1 = ;;. 

The differential dr may be regarded as a displacement along a given curve 
on the surface or, more precisely, a displacement along a tangent. In the 
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case of the parametric curve u2 = b, we have du2 = 0, so that dr = r1 du1. 
Thus r1 is a tangent vector to this curve, and similarly r2 is a tangent vec
tor to the other parametric curve u1 = a. It follows that the plane r1r2, 

spanned by these two covariant basic vectors, is the tangent plane to the sur
face at the point considered, which is the point (u1, u2) = (a, b). In the 
same plane we define the two contravariant basic vectors ri to be normal 
to the parametric curves, adjusted so that 

• t-i r1 • r; = o;. 

In the tangent plane, there are tangent vectors going out from the point 
of contact in all directions. Any such vector 
19.13 
is said to have covariant components ai and contravariant components ai. 

It is easily verified (cf. § 18.2) that 
19.14 a; = t • r;, ai = t • ri. 

In particular, the basic vectors themselves have components gi;, gii, such that 

19.15 

In terms of the fundamental magnitudes of the first order 

gu, g12 = g21, g22, 

defined by gii = ri • r;, we have the following formula for the element of arc 
ds (of any curve on the surface): 

ds2 = dr • dr = � ri dui • }:  r; dui 
19.16 = }:}:gi; dui dui 

= gu(du1)2 + 2g12 du1 du2 + g22 (du2)2. 

The fundamental magnitudes (which are functions of the parameters ui) 
are spoken of collectively as a covariant tensor. The corresponding con
travariant tensor gii is given by the last part of 19.15, which implies 

}: g;k gii = c5i, 
For each value of}, this is a pair of equations to be solved for the t�o un
knowns gii (i = l,  2). The solution is 

gii = (cofactor of g;1 in g)lg, 

where g =  
g21 g22 

Since the number of rows (or columns) in this determinant is only 2, the 
cofactors are single elements, and we have the explicit expressions 
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1 9.1 7 811 = 822 , 812 = 821 = _812 , 8
22 = 811 . g 8 g 
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It is now easy to derive the covariant components of the tangent vector t 
from its contravariant components, or vice versa: 

a; = t • r; = I ai ri • r1 = '}'; 8ii ai, 
ai = t • ,; = '}'; a1 ri • ri = '}'; gii ai. 

Of course, we are free to interchange i andj, obtaining 
1 9. 1 8  

Since 812 = r1 • r2, where r1 and r2 are tangents to the parametric curves, 
the condition for the two families of parametric curves to intersect at right 
angles is 

812 = 0. 

Thus in the case of orthogonal parametric curves we have simply 

whence by 19.15, 
8 = 811 822, 812 = 0, 8'1 = 1/gu, 

EXERCISES 

1. The basic vector r1 has covariant components g;;, contravariant components 6{. 
2. � ri X r; :;:: 0. Interpret this geometrically in terms of areas of triangles. 
3. Find ,1 and r2 for the general surface of revolution 

r = (u1 cos u2, u1 sin u2, z), 

where z is a function of ul alone. 
4. Find g;; and gii for the unit sphere expressed in terms of colatitude and longitude. 

1 9. 2  DIRECTIONS ON A SURFACE 

Just as a curve in the (x, y)-plane is given by an equation connecting x and 
y, a curve on the surface 19.12 is given by an equation connecting u1 and u2• 
A-differential equation determines a family of curves. In general, a first
order, first-degree differential equation 

'}'; Ci dui = 0 

determines a one-parameter family of curves: one curve through each point 
of general position on the surface, going out from that point in a direction 
determined by du2/du1 = -c1/c2; for instance, the equation 

du2 = 0 
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determines the "first" family of parametric curves. On the other hand, a 
first-order, second-degree equation 

1 9.21 
where c12 = c21 and cu c22 < c122, determines a net of curves: two curves 
through a general point on the surface; for example, the quadratic equation 

du1 du2 = 0 

determines a net consisting of the two families of parametric curves taken 
together. 

We have seen that the vectors ri are in the directions of the tangents to 
the parametric curves. Since 

their lengths are y gu. Because of its frequent occurrence, we shall use the 
abbreviation g1 for this square root; thus 

gi = \jgu = l rtl , 
and analogously 

t = v gii = I ri I . 
In this notation, the unit tangent vectors to the parametric curves (touch
ing du2 = 0 and du1 = 0, respectively) are 

r1/ g1 and r2/ g2. 
The angle cf, at which the two parametric curves intersect is given by 

1 9.22 cos cf, = 
r1 . r2 

= g12 . 
g1 g2 g1 g2 

We see from 19.17 that g1 = g2/yg, g2 = g1/yg; therefore 

that is, 

sin ct, =  yg 
= 

_1_ 
= 

_1_, 
g1 g2 g1 gl g2 g2 

It follows from the definition of an outer product that the length of the 
vector r1 X r2 is 
1 9.23 
and that the element of area on the surface (naturally defined as the ele
ment of area in the tangent plane) is 
1 9.24 dS = I r1 du1 X r2 du2 I = y g du1 du2 

[Kreyszig 1 ,pp. 1 1 1-1 17]. The equation 19.23, in the form 
g = (r1 X r2)2, 

is sometimes useful as a means of computing g without first finding g,1. 
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A displacement along any curve on the surface is given by 
dr = � rt dul. 

Ifs is the arc of this curve, the unit tangent vector is 
1 9.25 

where 
1 9.251 
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(i = 1, 2). 
Thus the arc derivatives of the parameters are the contravariant compo
nents oft. We shall not attempt to find a corresponding interpretation for 
the covariant components ai, given by 19.14 or 19.18. On the other hand, it is easy to give a geometrical interpretation for both kinds of component. 
Let .PQ1 and PQ2 be tangent vectors to the parametric curves, of such lengths 
that PT, representing t, is a diagonal of the parallelogram PQ1TQ2, as in 
Figure 19.2a. Let t divide the angle q, = L Q1PQ2 into the two parts 8 and 
q, - e. Let PR1TR2 be a parallelogram whose sides are perpendicular to the tangents. Since 

- ➔ ➔ PT = t = a1 r1 + a2 r2 = PQ1 + PQ2 
= a1 r1 + Oz r2 = i�.1 + Pft..2, 

the lengths of the various lines are: 
PQt = g, ai, PRt = gi Ot, PS, = t• r.lg, = atlg;. 

Ri 

FlguN 19,2a 
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The angles are given by 
cos O = PS1, 

By taking the inner product of 19.13 with itself in various ways, we can 
express the obvious relation t2 = 1 in the equivalent forms 

1 9.26 
In virtue of 19.251, the last of these relations is a restatement of 19.16. 

Similarly, by working out the inner product of two such unit tangent vec
tors 

L ai ri = � ai r, and L bi ri = L bi r;, 
we obtain various expressions for the cosine of the angle between them: 
1 9.27 L� g•i ai b; = L lZi b• = L a; bi = LL g,i ai bi = � ai b •. 

Eliminating ds from the two equations 19.251, we obtain the differential 
equation 

a2 du1 - a1 du2 = 0 

for a family of curves whose typical tangent is given by 19.25. Another 
family, cutting all the members of the first family at right angles, has the 
differential equation 
1 9.28 b2 du1 - b1 du2 = 0, 
where, by 19.27, 

LI g,; a• bl = 0. 
Writing this relation in the form I ai bi = 0 or 

a1 b1 + a2 b2 = 0, 
where a; = I gi; ai, we find that the equation 19.28 is equivalent to 

a1 du1 + a2 du2 = 0. 
In other words, 

The orthogonal trajectories of the curves a2 du1 - a1 du2 = 0 are the curves 

L lZi dui = 0. 
It follows also that the two families of curves 

I b; dui = 0 
are orthogonal if and only if 
1 9.29 I:£ gii a, b; = 0. 

The net of curves given by the quadratic differential equation 19.21 is an 
orthogonal net if and only if 

1 9.291 

■ 
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For, this condition is the same as 19.29 if the quadratic expression factorizes 
in the form 

kk Ci; dui dui = k ai dui • k b; dui, 

so that Ci; + CJi = ai b; + a1 bi. 
EXERCISES 1. Use 17.13 to prove that (r1 X r2)2 = g (cf. 19.23). 2. Express tan cf> in terms of the fundamental magnitudes g;; and their determinant g. 3. In Figure 19.2a, TS1 = a2/g2 and TS2 = al/g1. 

4. Reconcile the formulas 

with 19.22. 
cos 8 = a1/g1, cos (cf> - II) = a2lg2, sin 8 = a2/g2, sin (cf> - II) = al/gl 

5. The net of curves bisecting the angles between the parametric curves (du1 du2 = 0) is given by the differential equation 
Kn (du1)2 - g22 (du2)2 = 0. 

(Hint: Find the condition for the parallelogram PQ1TQ2 to be a rhombus.) 6. Interpret the equation 19.21 in the case when c11 = c22 = 0. What does the condition 19.291 tell us in this case? What does it tell us about the curves described in the preceding exercise? 7. Use 19.24 to prove that the area of the unit sphere 19.ll is 4w. 
1 9.3 NORMAL CURVATURE 

The unit normal vector n at a point P on the surface is naturally defined 
as the unit vector perpendicular to the tangent plane in such a direction 
that the three vectors r1 r2 n form a right-handed trihedron. In virtue of 
19.23, we have r1 X r2 = yg n, so that 

1 9.31 r1 X r2 
n =  yg 

[r1 r2 n] = yg, 
and 
1 9.32 ri X r; = e,; ygn (EiJ = j - 1). 
Identifying this trihedron r1 r2 n with the r1 r2 r3 of§ 18.1, we see from 18.12 
that 

Thus 1 9.33 

1 r2 X n r = --- ,  
yg 

r2 = n X r1 , yg 
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The tangent plane at P contains a flat pencil of tangents 
t = "2. airi 

each of which determines a normal plane tn. The section of the surface by 
such a plane is called a normal section; it is a plane curve whose curvature K 

at P is called the normal curvature at P in the direction t. Differentiating 
with respect to the arc s of the normal section, we obtain 

• d . � dai . d t = ds "2. airi = "' ds ri + "2. a' ds ri • 

By 17.33, this is Kn. Since n is perpendicular to ri, inner multiplication by n 
will eliminate the first sum on the right. (To differentiate ri we use the 
operator 

.!!... = "2. ai _Q_  
ds aui ' 

where ai = dui/ds.) Thus we are left with 

K = Kn •  n = t · n = "2. (ai fs ri) • n 

� ( · � · a ) �� · · a2r ...... • • = "' a• "' a, -. rt • n ::: "'"' at ai-.-. • n = "'"' at a1ri • • n. au, out au, , 

Introducing the important notation 
1 9.34 (i,j = 1,  2) 
we now have the simple formula 
1 9.35 

for the normal curvature in the direction "2. airt. Since rt; is a second deriva
tive, 

bt; = b;t, 
The three functions bu, b12, b22 are known as fundamental magnitudes of the 
second order. Like those of the first order, they occur as coefficients in a 
quadratic differential form: 
1 9.36 K ds2 = "2."2. biidui dui 

= bu(du1)2 + 2h12 du1 du2 + b22(du2)2. 

(It must be remembered that the normal curvature K depends on the direc
tion of the tangent, and therefore on du1 : du2.) 

Differentiating the identity ri • n = 0, we obtain 

rt; • n + rt • n1 = 0, 
whence bt; = - rt · n, = -n, • r;. 
Along with the "covariant tensor" bt1, we shall sometimes find it convenient 
to consider the "mixed tensor" 
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1 9.37 

and the "contravariant tensor" 
1 9.371 bik = � gii b7 = }:}: gii gkl b;1 

= �� gkl ii b;z = � gkl bi = bki. 

The derivative ni, being perpendicular to the normal n, is a tangent vec
tor, capable of being expressed as a linear combination of the basic vectors 
ri or r;. Since its covariant and contravariant components are 

n, • ri = -b/, 
the expressions are 

19.38 

We have thus established the "Weingarten equations" 

n1 = -b½ r1 - b� r2, 

n2 = -b½ r1 - b� r2, 

which express the derivatives of the normal n in terms of the derivatives of 
the position vector r. 

1. Evaluate r1 X r2. 

EXERCISES 

2. Work out bu for the unit sphere in terms of colatitude and longitude. Verify that 
the normal curvature is the same in all directions and the same at all points on the 
sphere. (Hint: Since n = r, h1; = -glJ,) 

1 9.4 PRINCIPAL CURVATURES 

Toke a unif sphere and draw the radius parallel to the normal at a 
poinf P of [ a given] surface. The radius meets the sphere in the spher
ical representation of P. Clearly we must distinguish between the two 
sides of the surface, and draw the normal on the selected side. By this 
representation, to a curve on the surface corresponds, in general, a 
curve on the sphere, and to a piece, a piece. But as normals to the sur
face at different points may be parallel, pieces on the sphere might 
overlap even when they correspond to non-overlapping pieces on the 
surface. But if we take pieces on the surface, not too large, this will not 
occur . . . .  To a small piece round P on the surface will correspond o 
small piece on the sphere, and the ratio of the area of the latter to the 
area of the former, as these areas shrink to zero, tends to the total cur
vature at P. 

H. G. Forder [3, pp. 139-140] 

Consider a variable plane through the normal at a point P on a given 
surface. For each position of the plane, the normal section has curvature 
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K given by 19.35. In exceptional cases (e.g., at the north and south poles of 
a spheroid) it may happen that K remains constant; such a point P is called 
an umbilic. If Pis not an umbilic, a continuous rotation of the normal plane 
nt makes K vary in such a way as to return to its original value as soon as a 
half-turn has been completed. With the help of 19.26 we may express 19.35 
in the homogeneous form 

or 
1 9.41 

K kk 8i; ai a; = kk bi; ai ai 

This exhibits K as a continuous function of the ratio 

a2 du2 

a1 
= du1 ' 

which determines the direction of the tangent 
t = kai ri. 

In the course of its continuous variation, the normal curvature K must attain 
at least one maximum and at least one minimum. We proceed to prove that 
there is just one of each, and that they occur in perpendicular directions. 
The maximum and minimum values of K are called the principal curvatures, 
the positions oft in which they occur are called the principal directions, and 
the curves whose direction is always principal are called (perhaps not too 
happily) the lines of curvature. 

As a temporary abbreviation, we write 

Ci; = bi; - K8i;, 

so that Ci; = CJi• To find the principal curvatures and principal directions, we 
may differentiate 19.41 and then set dK = 0 or, more conveniently, differ
entiate 19.41 regarding K as a constant. Since biJ and 8i; depend only on 
the fixed point P, this means that we differentiate 

k� Ci; aia; = 0 

treating the coefficients CiJ as constants. Differentiating partially with re
spect to ak, we find 

o
!

k 
�� CtJ ai {fl = �� Cij (:� {fl + Qi :: )  

= �� Cij (8iai + ai 03) = � Ckj cP + � Cik ai 

= �(Cki + Cik)ai = 2� Cik ai. 

Restoring the proper expression for c;k, we deduce 
1 9.42 (k = I, 2). 
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Multiplying by gik (and summing over k) to eliminate the coefficient g11" we 
obtain 
19.43 
that is, 
1 9.44 U = l ,  2). 

From these two equations we can find the principal curvatures by eliminat
ing a2/a1, and the principal directions by eliminating K. 

When written out in detail, the equations are: 
(bl - tc) a1 + b} a2 = 0, 
b? a1 + (b½ - ,c) a2 = 0. 

Eliminating a2/al, we obtain 

I :; - IC b½ _
b
! I = 0, 

that is, 
1 9.45 

This quadratic equation has for its two roots the principal curvatures K11i, 
"<2> , whose product and arithmetic mean are known as the Gaussian curva
ture K and the mean curvature H. Thus tc111 and K12, are the roots of the 
equation 

,c2 - 2HK + K = 0, 

where 
1 9.46 
and 

1 9.47 

Since 

gK = I gu 812
1 I bl b½ I = I bu bi2 I = b, g21 g22 bf b½ b21 b22 

say, another expression for K is the ratio of the two fundamental determi
nants: 

19.471 K = £. g 
When K is positive, the normal curvature (never going outside the range 

from ,c111 to K121) has the same sign in all directions; the tangent plane at P 
meets the surface "instantaneously" at P and not anywhere else in the 
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neighborhood of P. The surface is then said to be synclastic (or "oval"). 
Ellipsoids, elliptic paraboloids, and hyperboloids of two sheets are every
where synclastic. 

When K is negative, the normal curvature changes sign twice ( during the 
rotation of the normal plane through a half-turn about the normal at P); 
therefore it is zero in the directions of two special tangents, called the in
flectional tangents at P. The surface crosses its tangent plane, and its sec
tion by this plane is a pair of curves that cross each other at P, the two 
tangents at this "node" being the inflectional tangents. 

A practical instance is the general shape of the ground at the top of a 
mountain pass. The tangent plane is the horizontal plane, which touches 
the curve of the footpath and cuts into the ground on both sides. The fact 
that the tangent section has a node is seen in a map on which contour lines 
are marked. The mountain pass occurs where one of the contour lines 
crosses itself [Hardy 1 , p. 65]. 

Such a surface is said to be antic/astic (or "saddle-shaped"). Nondegen
erate ruled quadrics (namely, hyperbolic paraboloids and hyperboloids of 
one sheet) are everywhere anticlastic. 

Surfaces more complicated than quadrics may be synclastic in some re
gions and anticlastic in others. Regions of the two kinds are then separated 
by a locus of parabolic points, at which K = 0. Hilbert and Cohn-Vossen [1 , 
p. 197, Fig. 204] show a bust of Apollo on which the curves of parabolic 
points have been drawn. They are quite complicated, especially round the 
nose and mouth. 

Surfaces on which K = 0 everywhere are said to be developable. Such sur
faces include cones and cylinders, and also the surface traced out by the tan
gents of any twisted curve. 

The Weingarten equations 19.38 provide a useful expression for the Gaus
sian curvature as a triple product: 

1 9.48 
In fact, 

[n n1n2] = [n I b{r; I b� rk] = II b4b;[n r; rk] 

= II b{ b�e;k yg = det (b{) y g 

= K yg. 
Another expression, involving an arbitrary unit tangent vector t, was dis

covered by A. J. Coleman: 

1 9.49 
where the final subscript indicates differentiation with respect to uJ. This 
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is deduced from Lagrange's identity 17.13 by introducing another unit tan
gent vector m = n X t, so that n = t x m and 

[n n1 n2] = (t X m) · (n1 X n2) 
= t · n1 m· n2 - t• n2 m · n1 
= �� eii t • ni m • n1. 

Differentiating t • n = 0, m • n = 0, and using 17.19, we see that 
t • n1 m • n; = t1 • n m;- n = ti · n n • m1 

= ti• m; = (ti • m); - tw m. 

Since �� eli ti; = 0, it follows that 

y g  K = LL eii (ti • m); = �� eii (m ·ti); 
= LL eii [ n t ti1• 

(We have interchanged the t and m of Kreyszig [1, p. 146].) 
Since n1 X n2 is parallel to n, 19.48 may be expressed in the form 

jn1 X n2 l = IKI yg, 
which can be used to establish Gauss's geometrical interpretation for K. To 
obtain his spherical representation of a surface, Gauss considered the locus 
of the end Q of a vector 

OQ = n, 

where O is a fixed point and n is the unit normal at a point P which varies 
on the given surface [Hilbert and Cohn-Vossen 1, pp. 193-196]. When P 
travels over a sufficiently small region F, bounded by a simple closed curve 
on the surface, Q travels over a corresponding region G of the unit sphere 
with center 0. Gauss defined the total curvature of the surface at P to be 
the limit of the ratio of the areas of G and F when these regions are shrunk 
to single points. By 19.24, the area of Fis 

//1 r1 du1 X r2 du2 1 = ff ygdu1 du2• 

Analogously, the area of G is 
ffln1 du1 X n2 du2 l = ff l KI ygdu1 du2• 

Hence the limit of the ratio is I Kl . 
The characteristic property of a developable surface is that, instead of a 

two-parameter family of tangent planes, it only has a one-parameter family 
of tangent planes, and so also a one-parameter family of normals. In this 
case G is not a proper region but merely an arc, and therefore K = 0. 

If the parametric curves are orthogonal, so that g12 = 0, we have 
g11 = l/g11, g12 = O, g22 = l/g22, whence, by 19.37, 

b{ = � ?Jk b,k = ?Ji bij = b,;I g,,. 
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In this case the mean curvature His given by 

2H = � bi. = bu + b22. ' gu g22 
EXERCISES 

1. Find the mean curvature H at a given point on the helicoid y = x tan (z/c), parametrized in the form 
x = u1 cos u2, y = ul sin u2, z = cu2. 

2. Find the mean curvature Hat a given point on the general surface of revolution 
r = (u1 cos u2, u1 sin u2, z), 

where z is a function of u1 alone. This mean curvature is zero when z is given by 
u1 = a cosh (z - c)la, 

i.e., when the surface is a catenoid. 3. Locate the curves of parabolic points on the torus 
x = (a + b cos u1) cos u2, y = (a + b cos ul) sin u2, z = b sin u1. 

4. The tangents t = r ofa twisted curve r = r (s) generate a surface 
r (s, u) = r (s) + u t (s). 

Using s and u as parameters, obtain the fundamental magnitudes 
b11 = K'TU, Deduce that K = 0 everywhere. 5. The mean curvature and Gauss curvature are connected by the inequality 

1/2 ;;;,, K. 
At what kind of point do we find H2 = K? (Hint: H2 - K = t (Kci> - K<2>)2.) 6. Derive 19.48 another way, by applying Lagrange's identity to (r1 X r2) • (n1 X n2). 7. Derive 19.49 another way, by applying 17.62 in the form 
(where A1, µ;, v, are functions of u1 and u2), so that 

[ n n1 n2] = A1/J,2 - A2µ1 = m2 • t1 - m1 • t2. 

19.5 PRINCIPAL DIRECTIONS AND LINES OF CURVATURE 

Returning to 19.44, which may be expressed as 
k bf a; = Kak (k = I, 2), 

we find that the easiest way to eliminate K is to multiply by k Eik ai and sum 
over k, obtaining 
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III Eik bf ai cfl = IC II £ik ai ak = 0. 

(This sum is zero because the only nonvanishing terms involve e12 al a2 and 
£21 a2 a1, which cancel.) Thus the principal directions }: ai r1 are given by 
the roots of the quadratic equation 

LLL Ejk bf ai tfl = 0 

for a1 : a2. In other words, the lines of curvature are determined by the dif
ferential equation 

1 9.51 

or 

1 9.52 

To prove that the lines of curvature form an orthogonal net, we may ap
ply the criterion 19.291 either to 19.51 or to 19.52, using 

Cij = L Eik bf. 

We obtain, in the notation of 19.371, 

LL gii Cij = LLL Eik gi; bf = LL Ejk bik = 0. 

It follows that, at any point P on a surface, the two principal directions are 
perpendicular. 

Another consequence of 19.44 is Rodrigues's formula 

1 9.53 dn + 1C dr = 0, 
which shows what happens to the normal n when r is displaced in a prin
cipal direction. (The coefficient IC is the corresponding principal curvature.) 
In fact, by combining the Weingarten equations 

ni = -kb{ ,, 

(19.38) with 19.44 in the form 

1 9.54 

we obtain 

dn = k n-1 dui = -IL b{ r; dui 

= -KL r1 dui = -1Cdr. 

(Olinde Rodrigues, 1794-1851.) 
It follows that, if dr is in a principal direction, dn is in the same (or the op

posite) direction. Moreover, the principal directions are the only directions 
in which this happens. For, if dn is parallel to dr, the analysis given above 
shows that, for some number "'A, 

LL b{ r; du1 = "'A L r; dui. 
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Writing this in the form 

we see that it implies 

U = 1, 2). 

Eliminating A, the way we eliminated " before, we again obtain 19.51, which 
is the differential equation for the lines of curvature. 

If the parametric curves are orthogonal, so that b{ = b;;/ 8;;, the equation 
19.52 becomes 

-b12 (du1)2 + ( b11 - b22) dul du2 + b12 (du2)2 = 0. 
822 811 g22 g 11 

19.55 

For the investigation of a given surface, any net of curves on the surface 
may be used as parametric curves. The lines of curvature provide a stand
ard net which is always available. Comparing 19.52 with du1 du2 = 0, we 
see that 

1 9.56 

Hence 
The parametric curves are the lines of curvature if and only if br and b� are 

identically zero. 
In this case the equation 19.45 reduces to 

1 2 (,c - b1) (,c - b2) = 0, 
so the two principal curvatures are bf and bt To see which is which, we 
apply Rodrigues's formula 19.53 to displacements along the parametric 
curves. The "first" principal direction is naturally the one along which u1 

varies while u2 remains constant, that is, the direction of r1 ; and the "sec
ond" is the direction of r2. Thus 
1 9.57 

Taking inner products with r; and ri> we deduce 
-b{ + "<i) o{ = o, -b;; + "ii> gij = o. 

Hence the two principal curvatures are precisely 

19.58 

and we see also that 

b1 bu 
Kcl) = 1 = -, 

811 

b12 = "cl> 812 = 0 
(since the lines of curvature are orthogonal). 

Conversely, if the parameters on any surface are so chosen that 
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1 9.59 

then the parametric curves are the lines of curvature; for, since 

g21 = - g12 = 0, 
g 

we have 

b� = � g2; b1; = g22 b12 = 0 

and likewise b1 = 0. In f.act, the conditions 19.59 are equivalent to 19.56. 

EXERCISES 1. Apply 19.291 to 19.52, so as to prove the orthogonality of the principal directions without using the symbol e;k, 2. The differential equation for the lines of curvature may be expressed in the form 
t: t: i:: I = o. (du2)2 -du1du2 (dul)2 3. Find the lines of curvatures on the hyperbolic paraboloid x2 - y2 = 2z, parametrized in the form 

x = sinh u1 + sinh u2, y = sinh u1 - sinh u2, z = 2 sinh u1 sinh u2. 4. Find the lines of curvature on the helicoid y = x tan (z/c), parametrized in the form 
x = ul cos u2, y = u1 sin u2, z = cu2. 

5. The equations 19.56 or 19.59, holding at a particular point (but not necessarily identically), are conditions for the parametric directions to coincide with the principal directions at the point considered. The formulas 19.58 still hold at this point. 
1 9.6 UMBILICS 

An umbilic is a point at which the normal curvature K is the same in all 
directions. At such a point, the equations 19.42, 19.43 are satisfied for all 
values of a1 : a2, and therefore 

In fact, we have two alternative sets of conditions for an umbilic: one set is 

b11 : b12 : b22 = gu : g12 : g22, 

and the other, 
19.61 

If a surface is symmetrical by reflection in a plane, its section by the plane 
is a line of curvature. To see why this happens, consider a point P on the 
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section. If the principal directions at P were oblique to the plane, either of 
them would reflect into another principal direction associated with the same 
principal curvature. Such an abundance of principal directions would make 
P an umbilic. But a curve consisting entirely of umbilics is, trivially, a line of 
curvature. 

In particular, on any surface of revolution, the meridians and parallels are 
lines of curvature. An interesting special case arises when we rotate a plane 
curve about one of the normals of its evolute; that is, if C is the center of 
curvature for a point P on the plane curve, we rotate about the line through 
C parallel to the tangent at P. In this case the locus of P is an "equator" 
whose radius is equal to the radius of curvature of the meridian. The equa
tor, like the meridian, is both a line of curvature and a normal section. Since 
the two principal curvatures are equal, every point on the equator is an 
umbilic. 

At an umbilic, Rodrigues's formula 19.53 holds for all displacements on 
the surface. In particular, we can apply it to displacements along the para
metric curves, obtaining 

1 9.62 
Hence 

n; + icr; = 0 U = 1, 2). 

1 9.63 If every point is an umbilic, the surface is either a plane or a sphere. 
For, in this case 19.62 holds everywhere. Differentiating, we deduce 

and "1 = 1e2 = 0. Thus ,c is constant, and 1 9.62 yields (n + icr); = 0, so that 
n + ,er is constant. If" = 0, n is constant, and we have a plane. If ,c =I= 0, a 
suitable origin makes r = -ic-1n, I r I = I ic j -1, and we have a sphere. 

EXERCISES 
1. How can the equation 19.52 be used to derive the conditions 

for an umbilic? 2. What happens to the equation 19.45 when these conditions are satisfied? 3. Anticlastic surfaces have no umbilics. 4. The surface 
x = y2 cos u1, y = y2 cos u2, z = sin ul sin u2 

has a curve of umbilics lying on the sphere x2 + y2 + z2 = 4. 
5. Does every umbilic lie on infinitely many lines of curvature? 
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1 9.7 DUPIN'S THEOREM AND LIOUVILLE'S THEOREM 

361 

Dupin investigated triply orthogonal families of surfaces, not as a bar
ren exercise in the differential calculus but because certain ins/onces of 
such families are of the first importance in . . .  mathematical physics. 
[They) were the occasion for one of Darboux' more famous works, 
extending to 567 pages. 

E. T. Bell (2, p.331) 

In the exercises at the end of§ 18.5, we found several instances of three
dimensional coordinates having the special property 

823 = 831 = 812 = 0, 
so that the level surfaces all cut one another at right·angles. In such a case 
the three systems of surfaces are said to be mutually orthogonal. 

Differentiating the equation r1 • r2 = 0 with respect to u3, we obtain 

r13 • r2 + r1 • r23 = 0. 
From this and two other such equations (derived by cyclic permutation of 
123) we deduce 

r1 • r23 = r2 • r31 = r3 • r12 = 0. 
Since r3 is normal to the surface u3 = c of the third system, this surface 

satisfies not only g12 = 0 but also, since r3 • r12 = 0, 

b12 = n • r12 = 0, 

as in 19.59. Hence the parametric curves u1 = a and u2 = b on this sur
face are lines of curvature. Since a similar result holds for a surface of either 
of the other systems, we have now proved 

DUPIN'S THEOREM. In three mutually orthogonal systems of surfaces, the 
lines of curvature on any surface in one of the systems are its intersections with 
the surfaces of the other two systems. 

Moreover, any surface may be exhibited as a member of one of three mu
tually orthogonal systems. This can actually be done in many ways. One 
way is to use a system of parallel surfaces, defined as the loci of points at con
stant distances along the normals of the given surface. Using the lines of 
curvature as parametric curves, we may express the position vector of a typi
cal parallel surface in the form 

r =  r + u3 n. 

We see from 19.57 that the directions of the parametric curves on the new 
surface are given by 

r, = (r + u3n)1 = r; + u3n; 
= r, - u3 K<i> r, = (I - KiiJ u3) r1, 
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that is, they are parallel to those on the original surface. Therefore, both surfaces have the same normal: ii = n. Since 
ff12 = r1 • r2 = o 

and 
b12 = -ii1 ·r2 = - n1 · r2 = 1<<1, r1 · f2 = 0, 

the parametric curves on the new surface are again lines of curvature [W eatherburn 2,  p. 159]. Allowing u3 to take various values, we obtain a whole system of parallel surfaces. The other two orthogonal systems are traced out by the normals at points that run along the lines of curvature [La Vallee Poussin 2,p. 447]. 
In § 6.7 and § 7.7 we analysed the general circle-preserving and spherepreserving transformations. In § 9.7 we indicated how the theory of functions of a complex variable could be employed to prove that the circle-preserving transformations are the only angle-preserving transformations of the whole inversive plane into itself. It is very remarkable that the analogous theorem in three (or more) dimensions is elementary! We merely have to observe that, if a transformation of space preserves the angles at which surfaces cut, it transforms mutually orthogonal systems of surfaces into mutually orthogonal systems of surfaces. Hence, if it transforms a surface <1 into another surface <1', it transforms the lines of curvature on <1 into the lines of curvature on o'. Since a sphere (including a plane as a special case) is characterized by the property that all directions on it are principal directions, we can immediately deduce 
LIOUVILLE'S THEOREM. Every angle-preserving transformation is a sphere

preserving transformation. Taking this along with 7.71, we see that every angle-preserving transformation is either a similarity or the product of an inversion and an isometry [Forder 3, pp. 137-1381. 
EXERCISES 1. When the surfaces ul = a and u2 = b are traced out by normals along lines of curvature, while the surfaces u3 = c are "parallel," the fundamental magnitudes for u1 = a are naturally denoted by 822, 823, 83a, b22, b23, b33. Dupin's theorem shows that 823 = b23 = 0. Compute baa, and deduce that for this surface K = 0. 2. The central quadrics 

x2 y2 z2 -- + -- + -- = l  (A > B > C)  
A - X B - X C - X  

(which are ellipsoids when X < C, hyperboloids of one sheet when C < X < B, hyperboloids of two sheets when B < X < A) are said to be confocal. At a point (x, y, z) on such a quadric, the direction of the normal is 
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When x, y, z are given, 18.59 is a cubic equation for >., whose roots ui, u2, u3 (numbered in increasing order) satisfy 

u1 < C < u2 < B < u3 < A. 
Deduce that any point for which xyz =I= 0 lies on three quadrics of the system (one of each kind), cutting one another orthogonally [La Vallee Poussin 2, p. 448). 3. Where are the lines of curvature on an ellipsoid? [Hilbert and Cohn-Vossen 1 ,  p. 189.) 
19.8 DUPIN'S INDICATRIX 

Although the indicotrix wos not invented by Dupin, he mode more effec
tive use than had his predecessors of this suggestive conic in whic.h a 
plane parallel to, and "infinitesimally near to," the tangent plane at 
any point of o surface intersects the surface. 

E. T. Bell [2, p. 331 ) 

When a surface is given in Mange's form z = F(x, y), it is often conven-
ient to use the coordinates x, y themselves as parameters, so that z is a 
function of x and y with derivatives 

az 
Z1 = - ,  

ax 

Differentiating r = (x, y, z), we obtain 

r1 = ( 1, 0, z1), r2 = (0, 1, z2), riJ = (0, 0, Zi;), 

whence 

g11 = 1 + z12, 812 = z1z2, 822 = 1 + z22, 
g = g11g22 - g122 = 1 + z12 + z22, 

V g n = r1 X r2 = ( -z1, -z2, I), 

V g biJ = V g n • ri; = Z;1-

If the coordinate axes are so chosen that the point under consideration 
is the origin and the normal there is the z-axis, we have 

n = (0, 0, 1), 

whence z1 = z2 = 0, g11 = 1, 812 = 0, 822 = 1, 8 = 1, b,, = z,;. 

Since z is a function of x and y, we can expand it in a Maclaurin series 

z = z(O, 0) + z1 x + Z2Y + t (z11 x2 + 2z12 xy + z22Y2) + ¼ (z111 x3 + . . .  ) + . . .  
= t (b11 x2 + 2b12 xy + b22y2) + (terms ofhigher degree inx andy). 
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The "terms of higher degree" become important if b11 = b12 = b22 = 0, in 
which case the origin is a parabolic umbilic. In all other cases the section 
by a plane z = e, parallel to the tangent plane z = 0 at a small distance I e I ,  
resembles the conic 

bu x2 + 2b12 xy + b22 y2 = 2e, 
which is similar to Dupin's indicatrix 

19.81 

We shall find that this conic (or pair of conics) indicates, in a remarkably 
simple manner, the normal curvature in every direction. We first observe 
that this part of the surface is synclastic, anticlastic, or parabolic, accord-
ing as 

b > 0, b < 0, or b = 0, 

that is, according as the indicatrix is an ellipse, two conjugate hyperbolas, 
or two parallel lines. (In the synclastic case the ambiguous sign in the equa
tion 19.81 must agree with the sign of bu; otherwise the plane z = e would 
fail to meet the surface. In the anticlastic case we need both signs: one for 
each of the two conjugate hyperbolas.) 

In the plane z = 0, which is the tangent plane at the origin, the vector 
(cos fJ, sin fJ, 0), making an angle (J with the x-axis (1 ,  0, 0), may be identi
fied with the tangent 

➔ 
PT = t = � at ri = (al, a2, 0) 

of Figure 19.2a. Thus the contravariant components oft are a1 = cos fJ, 
a2 = sin 8, and, by 19.35, the normal curvature in this direction is 

K = �� bi; ai a; 

19.82 = bu cos2 fJ + 2b12 cos 8 sin fJ + b22 sin2 fJ. 
Expressing the indicatrix 19.81 in polar coordinates, we obtain 

bu r2 cos2 fJ + 2b12 r2 cos (} sin fJ + b22 r2 sin2 fJ = + 1,  
that is, Kr2 = +I, or 

r = , K , -1, 

In other words [La Vallee Poussin 2, p. 427], 
The radius of the indicatrix in any direction is equal to the square root of 

the radius of normal curvature in this direction. 
Another way of expressing the same idea is to remark that the surface is 

approximated by the paraboloid or parabolic cylinder 
2z = bu x2 + 2b12 xy + b22 y2. 

In any direction (at the origin) the given surface and the quadric have the 
same normal curvature. 
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Figure 19.8a 

If we choose the x- and y-axes along the principal directions at the origin, 
as in Figure 19.8a, so that b12 = 0 and, by 19.58, Keh = bii, the indica
trix 19.81 is simply 

Kc 1> x2 + K12, Y2 = +I, 
and 19.82 yields Euler's formula 

K = Kc 1, cos2 0 + K,2, sin2 0 

for the normal curvature in a direction making an angle O with the first prin
cipal direction. 

EXERCISES 

1. For which directions on a surface is the normal curvature equal to the arithmetic mean of the two principal curvatures? 2. For the surface z = F(x,y), 

2H = g22 b11 - 2g12 b12 + gu b22 (l + z22)z11 - 2z1 z2 z12 + (l + z12)z22 
g (I + zi2 + z22)312 

3. The surface xyz = l has umbilics at the four vertices of a regular tetrahedron [Salmon 2, p. 300]. 
4. The surface z = x(x2 - 3y2) has a parabolic umbilic at the origin. Sketch the section by a plane z = e, where e is a small number, positive or negative. This surface is called the monkey saddle because it would be the right kind of saddle for a monkey riding a bicycle: one way down for each hind leg and a third for the tail. Hilbert and Cohn-Vossen [1, p. 202, Fig. 213] made a nice drawing of the surface but a very misleading one of its generalized indicatrix [ibid., p. 192, Fig. 200). For the true shape, see the second edition ofStruik [1, p. 85). 
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Geodesics 

Imagine a two-dimensional creature, sufficiently intelligent to make pre
cise measurements on the surface he inhabited, but unable to conceive of a 
third dimension. His world might be a plane or a parabolic cylinder; he 
could not tell the difference. If it were a circular cylinder, local measure
ments would still give the same results, though an expedition all the way 
round would reveal a topological peculiarity. In all these cases his conclu
sion would be that his surface had zero curvature: K = 0. If, on the other 
hand, the surface were a sphere, he could detect its positive curvature by 
measurements within easy reach of his home, even if the radius of the sphere 
were relatively large. This informatioq is a consequence of Gauss's formula 
20.16, which expres$es K in terms of the fundamental magnitudes of the 
first order. In § 20.3 we shall see how Gauss's complicated expression can 
be replaced by his simple one involving the three angles of a triangle 
(like our formula 6.92 for the area of a spherical triangle). In § 20.4 we shall 
extend these local measurements to global measurements, which would en
able our intelligent ant to determine the topological nature of his world: an 
idea which we shall investigate more systematically in Chapter 21.  

The remaining sections of the present chapter deal with the differential
geometric approach to the non-Euclidean planes, which may be regarded 
as surfaces of constant curvature. 

20.1 THEOREMA EGREGIUM 

The Christoffel symbols are called after Erwin Bruno Christoffel ( 1829 -
1901), who introduced (them] in 1869, . . .  denoting our fJkby PD· 
The change to our present notation has been made under the influence 
of tensor theory. 

D. J. Struik (1894 -

(Struik 1 ,  p. 108] 

For an adequate discussion of "geodesics," which are the most important 
366 
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curves on a surface, we need one more notational device: the Christoffel 
symbols 
20.1 1 

In virtue of 19.15, these symbols are related as follows: 
20. 1 2  

Clearly, f 21,k = f 12,k and ql = r�2· 

Since the derivatives of the fundamental magnitudes gi; are 

(gi;)k = _L (ri • r;) = r;k • r, + ri • r1k 
ouk 

20.1 3 

we can compute the Christoffel symbols of the first kind by means of the 
formula 
20.14 

and then deduce the Christoffel symbols of the second kind by means of the 
latter half of 20.12. 

Applying 18.21 with u = rt; and r3 = r3 = n, we obtain 

20.1 5 
= ft; r1 + fr1'2 + rij ·n n 
= � r f; rk + bt; n. 

These expressions for the second derivatives of r are known as "the equa
tions of Gauss." 

Another of Gauss's discoveries, which pleased him so much that he named 
it Theorema egregium, is an expression for Kin terms of the ts and their 
derivatives. This means that the Gaussian curvature can be computed by 
measurements made on the surface itself, without reference to the three
dimensional space in which it may lie. In other words, K is a "bending in
variant," unchanged by the kind of distortion that takes place when a flat 
sheet of paper is rolled up to make a cylinder or a cone. The expression 
appears in the literature in various forms, not obviously identical. One of 
the neatest, discovered by Liouville, • is 

20. 16 y K - �  (Y8 TI) - � ( y'8 TI ) .  8 -ou2 811 11 oul 811 12 

This can be derived by applying 19.49 to the unit tangent vector t = r1/81• 
Since [n r1 r1] = 0 and (by 19.33) n X r1 = v8 r2, we have 

• J. Liouville, Sur la th�orie gfo6rale des surfaces, Journal de Mathbnatiques 1 6  (1851), pp. 
130-132. 
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Hence 

GEODESICS 

[n t ti] = In r1 r1!7 = (n X r1) · rli [ g1 gt] g11 
-V g ,2 • rli = v g r2 gu gu li • 

\jg K = }:}:eii( \j
g rt) gu i 

- ( \jg f2 J - gu 11 2 ( \jg f2 ) gu 12 1· 
Theorema e8re8ium takes a more symmetrical form when the parametric 

curves are orthogonal, so that 

g12 = 0, gii = 1/gii = l/(8i)2, 
v8 q2 = g1g2 (g22h = g2 2g2(82h = ( 82)1 g11 811 2g22 g1 2g22 g1 

and 

In fact, 

20.1 7 

( yg f2 ) g11 12 1 
f(g2)1) \ g1 1 + 

[Weatherburn 2, p. 98; Struik 1 ,  p. 1 13]. 
EXERCISES 

1. Obtain a variant of20.16 by taking t = r2/g2. 

g2 2g1(g1)2 -g1 2g22 

(yg 
f2 ) 811 11 2 

((g1)2) 82 2 

2. For the case when g12 = 0, express all the Christoffel symbols in terms of gn, g22, and their derivatives. 3. Compute the Christoffel symbols for polar coordin;ites in the plane. 
4. For a surface in Monge's form z = F(x, y), 
s. � f/1 = Oog yg)J-

ft = Z1; Zk/(} + z12 + z22). 
6. *Compute K for a surface on which (u2)2 + 02 -u1 u2 gu = {(ul)2 + (u2)2 + a2)2 ' g12 = {(ul)2 + (u2)2 + a2}2 ' 

(ul)2 + 02 

• E. Beltrami, Annali di Matematica (I) 7 (1866), pp. 197-198. 
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20.2 THE DIFFERENTIAL EQUATIONS FOR GEODESICS 

Every sufficiently small portion of a geodesic is the shortest path on 
the surface connecting the end-points of the portion . . . .  All the in
trinsic properties of a surface {such as its Gaussian curvature) can be 
determined by drawing geodesics and measuring their arc lengths . . . .  
We can obtain on approximation to the geodesics by moving a very 
small buggy along the surface on two wheels, the wheels being rigidly 
fastened lo their common oxis so that their speeds of rotation ore 
equal. . . . The entire course of o geodesic is determined if one of its 
points and its direction al this point are given. . . . The straightest lines 
may also be characterized by the geometric requirement that the OS· 
culoting plane of the curve is to contain the normal to the surface at 
every point of the curve. 

Hilbert ond Cohn-Vossen 
(1, pp. 220-221] 

Consider the possibility of a curve on a surface having all its principal 
normals normal to the surface. As we saw in § 19.3, any curve on a sur
face satisfies 

In the present case, since p = n is perpendicular to rk, we have 

(� ui ri + II zii ui ri;) • rk = 0. 

Since ri • rk = st and rii • rk = rt, these equations reduce to 

20.21 uk + �I n. zii ui = o ,, 
meaning 

d2uk + II n. dui dui = 0 
ds2 '' ds ds 

(k = l, 2), 

[Struik 1 , p. 132]. Theoretically, we could eliminate s from these two equa
tions so as to obtain a single differential equation; but it is usually more 
convenient either to use both equations or to use one of them along with 
19.16. 

The curves so determined are called geodesics [Weatherburn 2, p. 100]. 
Since the equations express the second derivatives of uk in terms of the first 
derivatives, there is a geodesic through any given point A (on the surface) 
in any given direction. There is also, in general, a unique geodesic joining 
two given points A and B. In these respects the geodesics on a surface re
semble the straight lines in a plane; in fact, as we shall see, they are straight 
when the surface is a plane. 

When g12 = 0, so that the parametric curves are orthogonal, the differ
ential equations take the form 
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20.22 

20.23 

GEODESICS 

gu iil + f{gnh (u1)2 + (guh zjl zj2 - ½(g22)1 (u2)2 = 0, 

g22 ii2 - ·Hguh (u1)2 + (g22h u1 u2 + ½(g22h (u2)2 = o. 

The latter shows that the parametric curves u2 = 0 occur among the geo
desics if and only if g11 is a function of u1 alone (not involving u2), so that 
(g11)2 = 0. In this case the curves u2 = 0 are a one-parameter system of 
geodesics and the curves zil = 0 are their orthogonal trajectories. Since 
g11 is a function of u1 alone, the differential form 

ds2 = gu (du1)2 + g22 (du2)2 

can be simplified by changing the notation so that / g1 du1 is called u1. Then 
gu = 1, g = g22, and 

20.24 

The effect of this change of notation is to make u1 measure the arc of each 
geodesic u2 = constant. The differential equations are now 

20.25 

20.26 

ui - -½(gh (u2)2 = o, 

t (gu2) - ½(gh (u2)2 = o. 

In particular, we obtain geodesic polar coordinates (analogous to ordinary 
polar coordinates in the plane) by measuring u1 from A along all the geo
desics through A, and defining u2 to be the angle that such a geodesic u2 = 
constant makes with an "initial" geodesic u2 = 0. 

The length of any curve from A to a point B (of general position) is ob
tained by integrating ds along the curve. The equation 20.24 shows that 
Ids ;> J du1, with equality only when du2 = 0. Hence the geodesic A B  is 
the shortest path from A to B. In fact, it is the curve along which a tightly 
stretched string would lie on the smooth convex side of a material surface. 
Since the only forces acting on an "element" of the string are the tensions 
at its two ends and the reaction of the surface along the normal n, these 
three forces must be in equilibrium. Hence n must lie in the plane of the 
two tensions, which is the osculating plane of the curve. These considera
tions provide a statical explanation for the equation p = n which started 
this investigation. 

The curves u1 = constant (which, of course, are not geodesics) are called 
"geodesic circles." The circumference of such a "circle" is obtained by in
tegrating ds (given by 20.24 with du1 = 0); thus it is 

(2" 
Jo ygdu2. 

When the radius u; is small, this circumference is approximated by both 
2'1Ty g and 2'1Tu1. Hence the first term in the Maclaurin series for y g is 
simply ul, that is, 
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GEODESIC POLAR COORDINATES 

If u1 = 0, then (yg)i = I. 
371 

Since geodesics are curves of shortest length, the geodesics on a sphere 
are the great circles, and the geodesics in a plane are the straight lines. We 
can adapt Figure 8.5b to geodesic polar coordinates by writing u1 and u2 

for r and 8, so that 20.24 expresses Pythagoras's theorem for the infinitesi
mal triangle PP' N, and the angle cf, between the geodesics OP' and PP' is 
given by 

cos ,1, = lim NP' = iP or sin cf, =  lim NP = •'gu2. 'I' PP' PP' V 
Differentiating cos cf, and using 20.25, we obtain 

Thus 
20.28 

-sin 4> 4> = a1 = ½(gh ( u2)2 = (gh ( V g u2)u2 2yg 
= (y'g)1(sin cf,)u2. 

EXERCISES 

1. In the case of the general surface of revolution 

r = (u1 cos u2, u1 sin u2, z), 

where z is a function of ui alone, the differential equation 20.23 for geodesics reduces to 

! [<u1)2 uz] =0. 

One solution is du2 = 0, showing that the meridians are geodesics. In all other cases 
the constant value of (u1)2 u2 may be denoted by 1/h, so that 

ds = h (u1)2 du2• 

Comparing this with 19.16, obtain the complete integral 

[Weatherburn 2, p. 102]. 
2. The geodesics on a cylinder are helices. 
3. The geodesics on the cone 

r = (ul cos u2, ul sin u2, u1 cos a) 

are given by 
aul = sec(ft + 112 sin a), 

where a and /3 are constants. Aie these curves concho-spirals? 
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20.3 THE INTEGRAL CURVATURE OF A GEODESIC TRIANGLE 

The integral curvature of a region on the surface is equal lo the area 
of its spherical image. . . . This properly of the integral curvature 
was already known lo the French school of Monge before Gauss 
pointed out its significance for the intrinsic geometry of a surface. 

D. J. Struik [ 1 ,  p. 1 56] 

Formulas 6.92 and 16.53, for the areas of spherical and hyperbolic triangles, are special cases of a beautiful formula which Gauss discovered for the integral curvature of a triangle formed by arcs of three geodesics on any smooth surface. We proceed to establish this formula 
20.31 lr ( K dS = A + B + C - 'TT. 

}ABC 

Setting g1 = 1 and g2 = V g in 20.17, we see that, when geodesic polar coordinates are used, the formula for K is simply 
20.32 yg K = -(yg)u. 

C 

_,,.-;1-
---

Ao=.;.....;�---------.--b 

Figure 20.3a 

Consider a geodesic triangle ABC with its side AB along the initial geodesic u2 = 0, as in Figure 20.3a. Integrating K over the area of this triangle with the help of 19.24, we obtain 
fjK dS = fjK yg du1 du2 = -ff(yg)11 du1 du2 

= - f (yg)1 1 �
1 du2. 

By 20.27, (yg)i = 1 when u1 = O; and by 20.28, -(yg)1 du2 = def, for any point on the geodesic BC. Hence 
f'( KdS = ( A ( I - (yg)i } du2 = (

A 

du2 + le def, 
}ABC Jo Jo rr-B 

= A + C - (.,, - B) = A + B + C - .,, 
[W eatherburn 2, p. 117). 
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EXERCISES 

1. Obtain 20.32 directly from 19.49 with t = r1. 
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2. On the unit sphere, colatitude and longitude serve as geodesic polar coordinates 
with g = sin2 u1. What happens to 20.32 in this case? For convenience, write ,, 8 
for u1, u2. The differential equation 20.26 (with (g)z = 0) has, as a first integral, 

(sin2 r)O = 1/h 
(an arbitrary constant). Combining this formula for O = d8/ds with 

ds2 = dr2 + sin2 r d82, 

deduce dr = sin , Jh2 sin2 , - 1 d8, 

8 = I csc2 r dr = Bo + arccos (k cot r) 
yh2 - csc2 r 

where k = ll�, and 

k cot r = cos(8 - 80). 

Expressing this solution in terms of the Cartesian coordinates 
x = sin , cos 8, y = sin r sin 8, z = cos r, 

verify that the geodesics on a sphere are the great circles (lying in planes through the 
origin). 

20.4 THE EULER-POINCARt CHARACTERISTIC 

As we saw on page 281, any polyhedron inscribed in a sphere can be pro
jected from the center onto the surface of the sphere so as to form a map. 
In fact, the V vertices are joined in pairs by E geodesic arcs (which we still 
call edges), decomposing the spherical surface into F polygonal regions 
(which we still call faces). More generally, a map may be obtained by draw
ing a sufficient number of geodesic arcs on any closed surface. We can 
insist that the points ("vertices") be so placed and so joined that every face 
is simply connected, that is, that the boundary of the face can be continu
ously shrunk to a single point without leaving the surface. 

In § I 0.3 we used a Schlegel diagram to prove Euler's formula. We could 
just as well have used the corresponding map on a sphere. The same argu
ment, applied to a map on the general surface, shows that the Euler-Poin
care characteristic 

x = V - E + F  
is essentially a property of the surface, that is, that it has the same value 
for all maps drawn on the given surface. It is a remarkable fact that this 
property of the surface can be expressed very simply in terms of the integral 
curvature (which is obtained by integrating Kover the whole surface). 
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Consider first a sphere, on which a map (with V = E = 3 and F = 2) is 
obtained by taking, as vertices, three points on a great circle. Each hemi
sphere is bounded by three arcs of the great circle, forming a spherical "tri
angle" whose three angles are ,,,, 7T, 7T. By 20.3 1, each hemisphere has in
tegral curvature 

'IT + 7T + 'IT - 7T = 27T. 
Hence the integral curvature of the whole sphere is 4,,, (as it obviously must 
be, since the "spherical image" of any sphere is a unit sphere, whose sur
face area is 4'1T). The general formula, of which this is a very special case, is 
20.41 ff K dS = 2x,,,, 
where the integration is taken over the whole of any given surface of charac
teristic X· 

To establish 20.41, we consider a map formed by E geodesic arcs on the 
given surface, choosing the V vertices in such positions that no face has a 
re-entrant angle (i.e., an angle greater than 'IT). The map can then be "tri
angulated" by selecting a new vertex inside each face and joining it by new 
geodesic arcs to all the vertices of that face. This procedure yields a new 
map having V + F vertices and 2E triangular faces. Since the sum of all 
the angles of all these 2E triangles amounts to 2,,, for each of the V + F 
vertices, the integral curvature of the whole surface is 

ff K dS = � (A + B + C - 7r) 
= 27r(V + F) - 2E7r = 2'1T(V + F - E) 
= 2wx. 

It follows that the integral curvature of a closed surface is not altered by 
topological transformation. For instance, the value 4,,, is maintained when 
a sphere is deformed into an ellipsoid or any other oval surface. The de
formation may even be continued so as to bring in anticlastic regions. 

EXERCISES 1. The torus 8.88 (where a > b) is constructed by revolving a circle of radius b about a line (in its plane) distant a from the center. On this surface we can draw two circles, of radii b and a + b, which are geodesics having just one common point. These form a map in which V = F = l, E = 2. Hence the integral curvature is zero. (The positive integral curvature of the "outer" synclastic part of the torus is exactly balanced by the negative integral curvature of the "inner" anticlastic part.) 2. Describe two further geodesics on the torus so that the four geodesics make a map in which V = F = 4, E = 8. 
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20.5 SURFACES OF CONSTANT CURVATURE 
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When Gauss was nineteen his mother asked his mathematical friend 
Wolfgang Bolyai whether Gauss would ever amount to anything. 
When Bolyai exclaimed, "The greatest mathematician in Europe/" she 
burst into tears. 

E. T. Bell [1 , p. 252] 

When we study a surface by means of the fundamental magnitudes of 
the first order and the consequent Christoffel symbols, we are treating it 
"intrinsically," exploring it like the hypothetical two-dimensional creature 
who could not imagine any direction outside the surface itself. Such a crea
ture could measure distances by means of the formula 19.16, distinguish 
geodesics as the shortest paths from place to place, and measure the Gaus
sian curvature K at any point. 

One of the most elegant approaches to non-Euclidean geometry is to re
gard the elliptic or hyperbolic plane as a nondevelopable surface which is 
homogeneous (all positions alike) and isotropic (all directions alike). Since 
the surface is homogeneous, its Gaussian curvature is constant. By using 
a suitable unit of distance, we may take the constant value of K to be l or 
- I according as it is positive or negative. We shall find it convenient to 
use geodesic polar coordinates. Since the surface is homogeneous and iso
tropic, the expression 20.24 will be the same wherever we place the pole 
u1 = 0 and the initial geodesic u2 = 0, and g will be a function of u1 alone, 
independent of u2. The "straight lines" of the geometry are the geodesics 
on the surface, and it is not necessary to regard the surface as being embedded 
in a 3-space. 

Setting K = + l in 20.32, we obtain the differential equation 

(yg)11 = + yg, 
which yields 

y g = A sin ut + B cos ul or A sinh u1 + B cosh u1• 

At the pole, ds ( = dul) is independent of u2; therefore g = 0 when u1 = 0; 
that is, B = 0. Also, by 20.27, A = l. Hence 

yg = sin u1 or sinh u1 

and 

ds2 = (du1)2 + sin2 ut (du2)2 or (dul)2 + sinh2 u1 (du2)2. 
EXERCISE Compute the circumference of the geodesic circle u1 = r (i) in the elliptic plane, 

(ii) in the hyperbolic plane. 

1 

l 
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20.6 THE ANGLE OF PARALLELISM 

In the elliptic case, we can identify u1 and u2 with colatitude and longi
tude on the unit sphere (as in Ex. 2 at the end of § 20.3). Accordingly, we 
now restrict consideration to the hyperbolic case, in which 

g = sinh2 u1• 

For convenience, let us write r, B for u1, u2, so that* 

ds2 = dr2 + sinh2 r dB2. 

To determine the straight lines of the hyperbolic plane, we use the differ
ential equation 20.26 with g = sinh2 r, namely, 

! (sinh2 r 0) = 0. 

For a first integral we obtain sinh2 r d  = h-1 (a constant), whence 

dr2 + sinh2 r dB2 = ds2 = (h sinh2 r dB)2, 

so that dr2 = sinh2 r (h2 sinh2 r - I)dB2 and 

B = J dr = J csch 2 r dr 
sinh r -.jh2 sinh2 r - I -.jh2 - csch2 r 

I dcoth r = - , 1h2 1 h2 = Bo + arccos (k coth r), v + - cot r 

where k = ll-.,/h2 + 1 .  Hence, finally, the lines are given by 

k coth r = cos(B - B0). 

When h tends to infinity, so that k tends to zero, we have the radial lines, for 
which B is constant. The line through (a, 0) perpendicular to the initial line 
B = 0 (being a geodesic which is unchanged when B is replaced by -0), is 

tanh a coth r = cos 0. 

We can use these results to find relations between the sides and angles of 
a right-angled triangle ABC with its right angle at C and its side BC along 
the initial line, as in Figure 2O.6a. Since the equations for the lines BC, 
AB, and CA are 

B = 0, 0 = B, and tanh a = tanh r cosB, 

the lengths of the sides BC = a and AB = c are related by the equation 

tanh a = tanh c cos B 
[Carslaw 1 ,  p. 109; Coxeter 3, pp. 238, 282]. (Another formula of the same 
kind can be obtained by changing a and B into b and A.) 

• E. Beltrami, Giorna/e di Matematiche, 6 (1868), p. 298 (12). 
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A 

8=B 

B 8=0 C B 
Il(a) 

a C 

Figure 20.6a 

The angle of parallelism Il(a) is the value of B that makes c infinite; that is, 

II(a) = B, 
where cos B = tanh a, 

csc B = cosh a, 
cscB - cotB 

tan½B 

sin B = sech a, 
cot B = sinh a, 

= cosh a - sinh a, 
e-a. 

We have thus established Lobachevsky's formula 

II(a) = 2 arctan e-a 
[ Cox et er 3, p. 208]. This is a precise expression for the function that we 
studied tentatively in § 16.3. 

EXERCISE 

Compute II(a) for a few suitably chosen values of a, and sketch the curve y = II(x). Where does Il(u) occur in Figure 17.4b? 

20.7 THE PSEUDOSPHERE 

Having obtained the hyperbolic plane as a surface of constant negative 
curvature, it is natural for us to ask whether such a surface can be embedded 
in Euclidean space. In other words, can the hyperbolic plane, or a finite 
part of it, be represented isometrically by a surface in ordinary space, in 
some such manner as the elliptic plane is represented (twice over) by a 
sphere? The answer is No and Yes: there is no such representation of the 
whole hyperbolic plane* but there are certain surfaces that will serve for a 
portion of finite area [Klein 4, p. 286]. The simplest instance, which Liou
ville named the pseudosphere, is one half of the "tractroid" formed by re
volving the tractrix 17 .51 about its asymptote. 

Writing z for x, x for y, and setting a = I, we obtain the tractrix 

x = sech u1, z = u1 - tanh u1 

• G. Liltkemeyer, Ueber den analytischen Charakter der lntegrale von partiellen Differentialglei
chungen (GOttingen, 1902). 
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in the plane y = 0. Revolution about the z-ax.is yields the tractroid 

x = sech u1 cos u2, y = sech u1 sin u2, z = u1 - tanh ul, 

which has a cuspidal edge where u1 = 0. The pseudosphere is the horn
shaped surface given by u1 > 0. Differentiating the position vector r = 
(x, y, z), we obtain 

g22 = sech2 u1. 

Setting g1 = tanh u1, g2 = sech u1 in 20.17, we deduce 
-tanh u1 sech u1K = (-sech ul)i = sech u1 tanh u1, 

whence K =  - 1. 

Since the pseudosphere has the same Gaussian curvature as the hyperbolic 
plane, the geodesics on the former represent lines in the latter isometri
cally. Among these geodesics are the meridians (for which u2 is constant), 
representing a pencil of parallels. Orthogonal to them, we find the circles 
for which u1 = constant, representing arcs of concentric horocycles (§ 16.6). 
The longest of these horocyclic arcs is of length 2'1T, since it is represented 
by the circle 

X = COS u2, y = sin u2 

in the plane u1 = 0. Thus the whole pseudospbere represents the horocyclic 
sector bounded by this arc of length 2'1T and the diameters at its two ends. 
The horocyclic sector is wrapped round the pseudosphere so that the two 
diameters are brought together to form a single meridian. 

This limitation to a horocyclic sector renders the pseudosphere utterly 
useless as a means for drawing significant hyperbolic figures. Every geo
desic that is not merely a meridian winds itself round the "horn" as it pro
ceeds in one direction, whereas in the opposite direction it is abruptly cut 
off by the cuspidal edge. Thus we cannot even draw such a simple arrange
ment of lines as Figure 16.3a! These remarks are needed to counteract the 
widespread but mistaken idea that hyperbolic geometry can be identified 
with the intrinsic geometry of the pseudosphere. 

EXERCISE 

Use 20.23 to obtain an equation for the geodesics on the pseudosphere. 



21 
T apology of surfaces 

In Chapter 4 we considered various tessellations of the Euclidean plane 
(including, in § 4.6, regular tessellations). These may be regarded as infinite 
"maps." In § 15. 7 we considered the analogous tessellations of a sphere, 
which are finite maps. In § 10.3 we proved Euler's formula 

V - E + F =  2, 

which connects the numbers of vertices, edges (or arcs), and faces (or regions) 
of any map drawn on a sphere. In § 20.4 we extended this to 

V - E + F = x < 2  

for a map on any closed surface, the Euler-Poincare characteristic x being 
the same for all maps on the given surface. In § 6.9 we identified antipodal 
points of a sphere so as to obtain the real projective plane; for a centrally 
symmetrical map on the sphere, this identification naturally halves V, E, 
and F, thus reducing x from 2 to I. In Figure IO.Sa we considered recip
rocal polyhedra which, when regarded as spherical tessellations, are a spe
cial case of dual maps. In § IO.I we defined the Schlafli symbol {p, q}, 
which is appropriate for a map of p-gons, q at each vertex; and in 10.31 we 
obtained the equations qV = 2E = pF. In § 15.4 we discussed groups of 
permutations of the faces of a map. In § 15.3 we found that the theory of 
translations and glide reflections belongs to absolute geometry; that is, that 
it belongs not only to Euclidean geometry but also to hyperbolic geometry. 

The present chapter applies all these ideas to a discussion of the topolog
ical properties of surfaces, including the conjecture of P. J. Heawood that, 
for the coloring of any map on a surf ace of characteristic X, 

[t + t v 49 - 24x 1 
colors suffice. What makes this conjecture remarkable is that, although in 
1890 he established its truth for every x < 2, it still remains an open ques
tion for maps on the ordinary sphere or plane. Another conjecture is that 
Heawood's formula is "best possible" in the sense that, for each X, a map 
requiring the full number of colors can be drawn. 

379 
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2 1 . 1  ORIENTABLE SURFACES 

The group of tronsformotions of greotest importonce in present-day 
mathematics, nomely, the group of topological transformations, is for 
wider than the proiective group. Here we ore dealing with a topo
logical space; that is, with a sef of elements, coll them points, for which 
the concept of a neighborhood is defined. . . . Any tronsformotion 
preserving neighborhoods is called topological. 

Topology may be visualized as rubber-sheet geometry, since o topo
logical fronsformotion permits any amount of stretching or compress
ing (without fearing). 

S. H. Gould ( 1 ,  p. 304) 

In Chapter 5 we mentioned Klein's famous classification of geometries 
according to the groups of transformations under which their theorems re
main true. In this sense, projective geometry is characterized by the group 
of collineations and correlations, and hyperbolic geometry by the subgroup 
of collineations leaving invariant a conic (the locus of points at infinity). 
Topology, sometimes described as "the most general of all geometries," is 
characterized by the group of continuous transformations. For instance, 
since a polyhedron can be continuously transformed into the correspond
ing spherical tessellation, topology does not recognize any distinction be
tween the polyhedron and the tessellation. Again, in § 20.4 we defined the 
characteristic 

2 1 . 1 1  x =  V - E + F  
in terms of a map formed by geodesic arcs on the given surface, but the 
value of x will not change if we replace the geodesic arcs by any continu
ous arcs which join the same pairs of points without crossing one another. 
In other words, the edges of the map are not necessarily geodesics like the 
boundary between Colorado and Utah; they can just as well be "wild" like 
the boundary between Indiana and Kentucky. 

In the same spirit, the torus 8.88 is topologically equivalent to a sphere 
with a handle (like the handle of a teacup), and we can derive more compli-

Figure 21.1 a 

-
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cated surfaces by adding any number of further handles. The operation of 
adding a handle to a given surface reduces the value of x by 2. For, since 
the handle may be chosen in the form of a bent triangular prism joining 
two triangular faces of a suitable map, as in Figure 21. la, its insertion leaves 
V unchanged, increases E by 3, and increases F by 3 - 2. Knowing that a 
a sphere has x = 2, we deduce that a sphere with p handles has 
2 1 . 1 2  X = 2 - 2p. 
This is called a surface of genus p. In particular, a sphere is a surface of 
genus O and a torus is a surface of genus I. 

From a rectangular rubber sheet, we can make a model of a torus by iden
tifying, or bringing together, each pair of opposite sides. The fust identifi
cation produces a tube, and the second an "inner tube." Conversely, by 
cutting a torus along two circles that have only one common point, we can 
unfold it (after some distortion) to make a rectangle whose pairs of oppo
site sides arise from the two cuts. More generally, given a surface of genus 
p, a suitable set of 2p cuts, all beginning and ending at a single point, en
ables us to unfold the surface into a 4p-gon whose pairs of opposite sides 
arise from the 2p cuts [Coxeter and Moser 1 ,  p. 25], as in Figure 21.lb. 

(p= 1) {p=2) 

Figure 21.1 b 

If we regard the 2p cuts on the surface as the 2p edges of a map, we find 
that this map has one face and one vertex, in agreement with the formula 

X = V - E + F = I - 2p + I = 2 - 2p. 
When p = I, the rectangle is conveniently taken to be a square, and this 

square may be regarded as one of the infinitely many faces of the regular tes
sellation { 4, 4} (Figure 4.6a) or as the unit cell of a lattice generated by two 
translations in perpendicular directions. The identification of opposite sides 
may be achieved by identifying points in corresponding positions in all the 
squares, that is, by pretending that the translations have no effect. In tech
nical language, the Euclidean plane is the universal covering surface of the 
torus. Similarly, when p > I, the 4p-gon is conveniently taken to be a regu
lar 4p-gon of angle '1T /2p in the hyperbolic plane, and this { 4p} may be re
garded as a face of a regular hyperbolic tessellation { 4p, 4p }.  Opposite 
sides of the { 4p} are related by 2p translations, which generate a group hav-
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ing the { 4p} for a fundamental region. The infinite hyperbolic plane (which 
is the universal covering surface) is reduced to the given finite surface by 
identifying each point in one { 4p} with the corresponding points in all the 
other { 4p }'s. The group of translations is called the fundamental group of 
the surface [Coxeter and Moser 1 ,  pp. 24-27, 58-60). 

EXERCISE 

A graph is a set of points (called vertices), certain pairs of which are joined by arcs 
(called edges). In particular, the vertices and edges of a map form a graph. Conversely, 
any connected graph can be drawn on a surface so as to form a map covering the sur
face.* A graph is said to be planar if it can be drawn on a sphere without any edges 
crossing one another, in which case it can just as easily be drawn in the (inversive) 
plane, provided we allow one face of the consequent map to be infinite. A vertex is 
said to have valency (or "degree") q if it belongs to q edges. A graph is said to be triva
lent if every vertex belongs to three edges. In this case 3 V = 2E; therefore V is even. 
The Thomsen grapht has six vertices P1, . . .  , P6 and nine edges P1P;, where i + j is 
odd. This is the simpest nonplanar trivalent graph. Can it be drawn on a torus? 

21 .2 NONORIENTABLE SURFACES 

A surface is non-orientable if and only if there exists on the surface 
some closed curve . . .  such that a small oriented circle whose center 
traverses the curve continuously will arrive al its starting point with 
its orientation reversed. 

Hilbert and Cohn-Vossen 
[ 1,  p. 306] 

Each of the surfaces discussed in § 21 . 1  is orientable, that is, a positive 
sense of rotation can be defined consistently everywhere. More precisely, 
the faces of any map on the surface can be regarded as directed polygons 
in such a way that the two directions thus assigned to each edge disagree, 
or cancel out. A surface is said to be nonorientable if it admits one map 
which cannot be oriented in this manner. The most famous instance is the 
Mobius strip, which can be illustrated by taking a strip of paper A BAB, sev
eral times longer than it is wide, and sticking the two ends together after 
twisting one of them by a half-turn. Its nonorientability can be checked 
by means of a map consisting of a single row of squares. It is one-sided in 
the sense that an ant could crawl along the whole length of the strip, with
out crossing the bounding edge, and find himself at the starting point on 
the "other side." If two wheels in a machine are connected by a belt of 
such a shape (e.g., for the purpose of conveying hot or abrasive materials), 
the substance of the belt will wear out equally on both sides. A patent for 

• J. H. Lindsay, Jr., Elementary treatment of the imbedding of a graph in a surface, American 
Mathematical Monthly, 66 (1959), pp. 117-118. 

t W. Blaschke and G. Bal, Geometrie der Gewebe (Berlin, 1938), p. 35. 
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this practical application of the Mobius strip has been acquired by the Good
rich Company.* 

Unlike the closed surfaces considered in § 21.1, the Mobius strip is 
bounded. The boundary, being a simple closed curve, is topologically a cir
cle; but in a physical model it cannot be shrunk away because it is knotted. 
This practical difficulty arises because the model is embedded in Euclidean 
space. Theoretically, no such embedding is needed. When the boundary 
has been shrunk away, the resulting closed surface is topologically a real 
projective plane! In other words, the Mobius strip is the real projective plane 
with a hole cut out of it. For we may regard the projective plane (§ 6.9) as 
a sphere with antipodal points identified. When cutting out a circular hole 
round the north pole we must, of course, also cut out an equal hole round 
the south pole. What remains of the sphere is a zone bounded by two paral
lels of latitude such as the Tropics of Cancer and Capricorn. But the iden
tification of antipodes has the effect that only half the zone is needed, say 
the "visible" half (Figure 21.2a). This half-zone, with its ends AB identi
fied, is evidently a Mobius strip. 

Figure 21.2a 

Instead of a whole sphere with every pair of antipodal points identified, 
we may regard the projective plane as a hemisphere (say the "southern" 
hemisphere) with identification of diametrically opposite points on the pe
ripheral equator. In the spirit of topology, the hemispherical surface can 
be stretched until it covers almost the whole sphere, and the periphery (with 
opposite points identified) is reduced to a very small circle round the north 
pole. In other words, the projective plane is topologically equivalent to a 
sphere with a cross-cap, which may be described as a small circular hole hav
ing the magic property that, as soon as the crawling ant reaches it, he finds 
himself leaving the same hole from its diametrically opposite point (inside, 
instead of outside, the sphere). • U.S. Patents 1,442,632 (1923), 2,479,929 (1949), 2,784.834 (1957). 
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Figure 21 ,2b 

We can derive more complicated surfaces by adding any number of cross
caps, each of which reduces the value of x by 1 .  For, if a map on a given 
surface has a vertex A belonging to three faces, we can replace A by a cross
cap ABCABC as in Figure 21 .2b. Since this requires the formation of two 
new vertices B, C, and three new edges BC, CA, AB, the insertion of the 
cross-cap increases V by 2, E by 3, and leaves F unchanged. (The faces on 
the left and right now meet twice: along the original edge through A and 
again along the new edge BC.) Knowing that a sphere has x = 2, we de
duce that a sphere with q cross-caps has 
21.21 X = 2 - q. 

When q = I this is, as we have seen, the real projective plane. When q = 2 
it is the Klein bottle (or "nonorientable torus") [Hilbert and Cohn-Vossen 
1 ,  p. 308). 

A suitable set of q cuts, all beginning and ending at a single point and 
each passing through a different cross-cap, enables us to unfold the surface 
into a 2q-gon such that q pairs of adjacent sides arise from the q cuts [ Coxe
ter and Moser 1 ,  pp. 25-28, 56-58) as in Figure 21.2c. These cuts are the 
q edges of a map having one face and one vertex, in agreement with the 
formula 

(q = 1) (q = 2) (q = 3) 

Figure 21 .2c 

When q = 1, the 2q-gon is a digon which may be  regarded as one of the 
two faces of the spherical tessellation {2, 2} (see Ex. I at the end of § 15.7). 
In fact, the universal covering surface of the projective plane is the sphere, 
and its fundamental group is of order 2, generated by the central inversion. 

When q = 2, the 2q-gon may be regarded as a face of the Euclidean tes-
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sellation { 4, 4}, so that the universal covering surface is the Euclidean plane. 
Unlike the torus, whose fundamental group pl is generated by two trans
lations, the Klein bottle has the fundamental group pg, generated by two 
glide reflections (see § 4.3 and Plate I). Similarly, when q > 2, so that the 
universal covering surface is the hyperbolic plane, the 2q-gon is a face of 
the hyperbolic tessellation {2q, 2q}, and the fundamental group is gener
ated by q glide reflections (Coxeter and Moser 1 ,  pp. 56-58]. 

EXERCISES 

1. The projective plane is topologically equivalent to a disk* with diametrically opposite points identified. 2. How can the Thomsen graph (see the end of§ 21. l) be drawn on a sphere with a cross-cap ( or a disk with opposite points identified)? 3. What happens to the vertices and edges of a regular hexagonal prism when we project it centrally onto its circumsphere and then identify antipodes? 4. Is a sphere with p handles and q cross-caps topologically equivalent to a sphere with 2p + q cross-caps? 

2 1 .3 REGULAR MAPS 

We first give a method of reducing any two-dimensional manifold to 
one of the known polygonal normal forms. The method used is one 
by which a polygon on which the manifold is represented is subieded 
lo a series of transformations by cutting it apart in a simple manner 
and then ioining it together again so as to obtain a new polygon rep
resenting the some manifold. 

H. R. Brahana (1895-
(Annals of Mathematics, 23 (1921 ), p. 14-4) 

It can be provedt that every closed stuface is topologically equivalent 
either to a sphere with p (� 0) handles (if the surface is orientable) or to a 
sphere with q (> 0) cross-caps. In virtue of 2l . 12 and 21.21, this D?-eans 
that, from the standpoint of topology, there is just one orientable closed 
surface for each of the values 

X = 2, 0, -2, -4, . . .  , 

namely a sphere with 1 - tx handles, and there is just one nonorientable 
closed surface for each of the values 

X = 1 ,  0, - 1, -2, . . .  , 

• A disk is a circle plus its interior. For other topological properties of the disk and sphere, 
see A. W. Tucker, Proceedings of the First Canadian Mathematical Congress (University of Toronto Press, 1946). 

t Brahana's original proof has been simplified by Lefschetz [1 , pp. 72-85) and others. One of 
the best expositions is by R. C. James, Combinatorial topology of surfaces, Mathematics Maga
zine, 29 (1955), pp. 1-39. 
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namely, a sphere with 2 - x cross-caps. We have already described, on 
such a surface, a very simple map having one vertex, 2 - x edges, and one 
face. In the orientable case, this map is "regular" in the following sense. 

The vertices, edges, and faces of a map ( on any closed surface, orientable 
or nonorientable) may conveniently be called the elements of the map. Those 
permutations of the <!lements which preserve all the relations of incidence 
are called automorphisms of the map. The automorphisms form a group 
(of order 1 or more) called the group of the map. This is a natural general
ization of the symmetry group of a polyhedron or tessellation (§ 15.7), but 
metrical ideas are no longer used. A map is said to be regular if its auto
morphisms include the cyclic permutation of the edges (and vertices) be
longing to any one face and also the cyclic permutation of the edges (and 
faces) that meet at any one vertex of this face. Such a map is "of type 
{p, q}" ifp edges belong to a face, and q to a vertex. The dual map, whose 
edges cross those of the original map, is of type { q, p}. (The letters p and q 
used here have no connection with our previous use of p and q for the num
bers of handles and cross-caps.) 

The equations 10.31 remain valid. Combining them with 21 . 1 1, we ob
tain a generalization of 10.32: 
21 .31 

where, if x =/= 0, 

21 .32 

V = 2pr, E = pqr, F = 2qr, 

2p + 2q - pq ' r X 

Ifx = 0, so that 2p + 2q = pq as in § 4.6, there are infinitely many possible 
values for r, as we shall soon see. 

If x = 1 or 2, the possible values for p and q are given by 10.33 without 
the restrictions p > 2, q > 2. Thus the regular maps on a sphere (x = 2) 
are just the spherical tessellations 

21 .33 {p, 2}, {2,p}, {3, 3), 
{4, 3}, {3,4}, {5,3}, {3,5}, 

namely: the dihedron whose p vertices are evenly spaced along the equa
tor, the hosohedron* whose edges and faces are p meridians and p lunes, and 
"blown-up" variants of the five Platonic solids. All these are centrally sym
metrical, except the dihedron and its dual withp odd, and the tetrahedron 
{3, 3}.  In the centrally symmetrical cases we can identify antipodes to ob
tain the regular tessellations of the elliptic plane (x = 1): 

21 .34 {p, 2)/2 and {2,p}/2 (p even), 
{4, 3}/2, {3, 4}/2, {5, 3}/2, {3, 5}/2 

[Coxeter and Moser 1, p. 1 11]. For instance, identifying opposite elements • This term (literally "any number of faces") was coined by Vito Caravelli (1724-1 800), whose 
Traite des hosoUres was published in Paris (1959) by the Librairie Scientifique et Technique. 
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of the cube (Figure IO.Sb), we see that { 4, 3}/2 is a partition of the elliptic 
plane (or of the real projective plane) into three "squares," say ABCD, 
ACDB, ADBC. (These squares are just the three handkerchiefs which Lady 
Muriel began to sew together in her attempt to make the Purse of Fortuna
tus [Dodgson 4, pp. 100-104). The first two, joined along their common 
side CD, form a Mobius strip whose boundary is AD BC.) Likewise, {5, 3}/2 
is a partition of the elliptic plane into six pentagons, each of which is sur
rounded by the remaining five. 

The regular maps on the torus are derived from infinite regular maps on 
its universal covering surface, which is the Euclidean plane. As we saw in 
§ 4.6, these infinite maps are the regular tessellations 
2 1 .35 {6,3}, {4,4}, {3,6}. 
The necessary identifications are determined by subgroups of the translation 
groups of these tessellations. 

The vertices of { 4, 4} may be taken to be the lattice of points whose Car
tesian coordinates (x, y) are integers. The torus is derived by identifying op
posite sides of a square, one of whose sides goes from (0, 0) to (b, c), where 
b and c are positive integers or zero (but not both zero). Since the area of 
this square is b2 + c2, the part of the original { 4, 4} that lies inside it con
sists of b2 + c2 unit squares. We thus find, on the torus, a map 

{4, 4h,c 
in which 

E = 2 V, 
[Coxeter and Moser 1 ,  p. 103). In particular, { 4, 4}t.o is the map (having 
one vertex and one face) which we used in§ 21.1 when we unfolded the torus 
after cutting it along the two edges of the map. (If it seems paradoxical for 
a map of type { 4, 4} to have only one vertex, we must recognize that the 
face is still quadrangular even though its four vertices all coincide with the 
single vertex of the map.) The map { 4, 4 }2,1, whose five faces are each sur
rounded by the remaining four, is shown in Figure 21.3a. 

A 

A 

A A 
Figure 21,3a ffguN 21.3b 
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Similarly, the vertices of {3, 6} may be taken to be the lattice of points 
whose oblique coordinates, with axes inclined at 60° , are integers. The torus 
is derived by identifying opposite sides of a rhombus of angle 60° , one of 
whose sides goes from (0, 0) to (b, e). Since the area of this rhombus is 
b2 + be + e2 times that of the unit cell of the lattice ( consisting of two ad
jacent faces of {3, 6}), the part of { 3, 6} that lies inside it consists of 
2(b2 + be + e2) equilateral triangles. We thus find, on the torus, a map 

p, 6h.c 
in which 

V = b2 + be + c2, E = 3V, F =  2 V  

[Coxeter and Moser 1 , p. 107). (For an affine variant of one-half of {3, 6}2.1, 
see Figure 13.Se.) The dual map 

{6, 3}b,c 
has b2 + be + e2 hexagonal faces. In particular, {6, 3}2,1 (Figure 21 .3b)* 
is Heawood's partition of the torus into seven hexagons, each of which is 
surrounded by the remaining six. 

Thus we see that the torus admits infinitely many regular maps of each 
of the three types 21.35. On the other hand, there are no regular maps on 
the Klein bottle [Coxeter and Moser 1 , p. 1 16]. 

If a regular map has more than one vertex and more than one face, every 
edge joins two vertices and separates two faces. Ifthere is an automorphism 
which interchanges these two vertices without interchanging the two faces 
(in which case there is another automorphism which does vice versa), the 
map is said to be re.flexible [Ball 1 , p. 129; Coxeter and Moser 1 , p. 101]. 
Clearly, all the regular maps on the sphere and all those on any nonorien
table surface are reflexible, but those on the torus are refiex.ible only if 
be(b - e) = 0. It was suggested by Coxeter and Moser [ 1 , p. 102] that 
possibly all regular maps on more complicated surfaces (i.e., on surfaces of 
negative characteristic) are reflexible. However, this conjecture is refuted 
by J. R. Edmonds' discovery of a nonreflexible regular mapt of type {7, 7} 
and genus 7, having 8 vertices, 28 edges, and 8 heptagonal faces 

FDCGBEH, GEDACFH, AFEBDGH, BGFCEAH, CAGDFBH, 
DBAEGCH, ECBFADH, ABCDEFG. 

EXERCISES 

1. Describe the maps {2, 1 }  and { 1, 2} on the sphere. (The former has one face, a digon {2}; the latter has two faces which are monogons { 1}.) 2. The elliptic tessellation {2q, 2}/2 has q vertices and q edges, all on one line, 
• For other ways of drawing Heawood's map, see Coxeter, Map-coloring problems, Scripta 

Mathematica, 23 (1957), pp. 19-21, and The four-color map problem, 1840 -1890, Mathematics 
Teacher, 52 (1959), pp. 288-289. 

t Compare Robert Frucht, Canadian Journal of Mathematics, 4 (1952), p. 247. 



A NONREFLEXIBLE MAP OF GENUS SEVEN 389 

and one face. Its dual, {2, 2q}/2, has one vertex, q complete lines for its edges, and q 
angular regions for its faces. Describe the remaining regular tessellations of the elliptic 
plane. 

3. As we have seen, the standard decomposition of the torus provides a one-faced 
map { 4, 4 h.o. The standard decomposition of the Klein bottle (as in the second part 
of Figure 21 .2c) provides another one-faced map of type {4,4}, but this is not regular. 
In both cases, the one vertex and the two edges form a very simple graph, which may 
be described roughly as a figure of eight. The same graph can be drawn on the pro

jective plane to form {2, 4}/2, or on the sphere to form an irregular map whose faces 
consist of a digon and two monogons. 

4. The standard decomposition of a sphere with three cross-caps (as in the third 
part of Figure 21.2c) provides an irregular one-faced map of type (6, 6}. Its one ver
tex and three edges form a "clover-leaf" having three loops. The same graph can be 
drawn on the Klein bottle as an irregular map of type {3, 6}, on the torus as (3, 6}i.0, 
on the projective plane as (2, 6}/2, and on the sphere as an irregular map whose faces 
consist of a triangle and t.hree monogons. 

5. Describe the reflexible maps 

{4, 4}1.1, {4,4}2.o, {3,6}1.1, (6,3}i,1, (6,3)2.o. 
6. The vertices and edges of { 6, 3 }i,1 form the Thomsen graph (see the end of 

§ 21.1 ). Those of { 4, 4 )2.2 form an analogous graph having eight vertices instead of six. 
7. A graph is called a complete V-point if every two of its V vertices are joined by 

an edge. The vertices and edges of the following maps form complete V-points (for 
which values of V?): 

{3, 2}, {3, 3}, { 4, 3}/2, {4, 4}2,1, {3, 5}/2, {3, 6}2,1, 
8. The vertices and edges of Edmonds' map form a complete 8-point. 
9. There is no map of type { l ,  I} .  (Hint: Setp = q = l in 21.31 and 21.32.) 

21.4 THE FOUR-COLOR PROBLEM 

"/ doubt it," said the Carpenter, 
And shed a bitter tear. 

Lewis Carroll 
[Dodgson 2, Chop. 4) 

The theory of maps on surfaces may be said to have begun in 1840, when 
Mobius puzzled his students with the problem of dividing a country into five 
districts in such a way that every two would have a common boundary line 
(not merely a common point). The impossibility of such a partition led nat
urally to the question whether four colors always suffice for coloring a map 
when we stipulate that different colors are needed wherever two districts 
share a boundary line or, in mathematical terms, wherever two faces share 
an edge. It must be emphasized that each face is simply connected (i.e .. 



390 TOPOLOGY OF SURFACES 

topologically a disk). Thus the geographical problem applies to a single 
island or continent: the ocean and all the other islands and continents are 
to be taken together as forming one more face, and if this is a blue face the 
same color must be allowed for some of the other faces. For instance, in 
a map of Europe, we need three different colors (say green, red, and yellow) 
for Belgium, France, and Germany; Holland may have the same color as 
France, but Luxembourg must be blue, like the sea. 

Figures 15.4a, b, c illustrate the use of four colors for the tetrahedron and 
octahedron, and five for the icosahedron. For the tetrahedron, four is the 
only possible number, since each face meets all the others. Apart from this 
simplest case, any map whose faces a re triangles can be colored in three colors.* 
Moreover, any map having an even number of faces at each vertex (such 
as the octahedron) can be colored in two colors, like a chessboard. 

The problem of deciding whether four colors suffice for coloring any map 
on a plane or a sphere is sometimes called Guthrie's problem, after Francis 
Guthrie, who took his B.A. in London in 1850 and his LLD. in 1852. Be
tween these dates the problem occurred to him while he was coloring a map 
of England. He tried in vain to prove that four colors are always sufficient. 
On October 23, 1852, his younger brother Frederick communicated the con
jecture to Augustus De Morgan (author of A Budget of Paradoxes). In 1878, 
Cayley revived interest in the problem at a meeting of the London Mathe
matical Society by asking whether anyone had proved the conjecture. In 
1880, Cayley's challenge was answered by A. B. Kempe and P. G. Tait, who 
published plausible arguments, which were accepted for ten years (even by 
Klein himself), as proving that four colors will always suffice. In 1890, Hea
wood drew attention to the fallacy in Kempe's argument, using for a coun
terexample a particular map having 1 8  faces. The number of faces can 
actually be reduced to 9, so as to reveal the fallacy more quickly.t - In §§ 21.5-21.7 we shall describe the valid part of Kempe's work and also 
Heawood's extension to maps on the torus and other multiply connected 
surfaces. 

EXERCISES 1. In how many essentially different ways can a cube be colored with three given colors, a dodecahedron with four? 2. In Figure 15.4c, the icosahedron is colored with five colors so that each face and its three neighbors have four different colors. Replace each "e" by the one remaining color, thus reducing the number of colors to four. Starting afresh, color the icosahedron with three colors [Ball 1 ,  pp. 238-241]. 3. Try to draw a map that is difficult to color with four colors. 

• R. L. Brooks, On coloring the nodes of a network, Proceedings of the Cambridge Philosophical 
Society, 37 (1941), pp. 194-197. 

t Coxctcr, Mathematics Teacher, 52 (1959), pp. 283-286. For the fallacy in Tait's argument, 
see Ball (1, pp. 224-226). 
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Even the moonlit /rock oheod of him foded from his consciousness, for 
into his heod hod come o theorem which might be true or might be 
false, ond his mind dorted hither ond thither seeking proofs to estob
lish its truth ond counter-exomples to show /hot it could not possibly 
be true. 

J. L. Synge (2, p. 165) 

The equations 10.3 1, which apply to a regular map of type {p, q}, remain 
valid for a general map having various kinds of face and various numbers of 
faces at a vertex, provided we interpret p as the average number of vertices 
(or edges) of a face, and q as the average number of faces (or edges) at a 
vertex. Since a vertex belonging to only two edges can be omitted by com
bining the two edges, there is no real loss of generality in assuming that every 
vertex belongs to at least three edges. Thus q > 3 and 

2E = qV > 3V, 

whence, by 21 . 1 1, E < 3(E - V) = 3(F - x) and 

21.51 p =
2ff < 6 ( 1 - � ) -

This proves that p < 6 whenever x > 0, that is, for the sphere (x = 2) or 
the projective plane (x = 1). Hence 

21.52 Every map on the sphere or the projective plane has at least one face 
whose number of edges is less than 6. 

We can now prove, by induction over the number of faces, 
THE SIX-COLOR THEOREM. To color any map on the sphere or the projec

tive plane requires at most six colors. 
We take "any map" to mean "any map having F faces," for each particu

lar value of F. When F < 6 there is no problem: we can assign distinct 

Figure 21 ,5a Figure 21.5b 
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colors to all the faces. The theorem will be proved if we can deduce the 
case of 7 faces from the case of 6, and then 8 from 7, and so on. Accord
ingly, we make the inductive assumption that the theorem holds for every 
map of F - 1 faces, and then proceed to investigate a given F-faced map, 
paying particular attention to the face (or one of the faces) having 5 or fewer 
edges (see 21.52). For definiteness, we assume this face to be a pentagon, 
like the shaded face in Figure 21.Sa. (The same arguments can be carried 
through with trivial changes if it is a quadrangle, triangle, or digon.) Fig
ure 21.5b shows a modified map in which this pentagonal face has shrunk 
to a point, that is, in which its territory has been ceded to its five neigh
bors. By the inductive assumption, the modified map, having only F - I 
faces, can be colored with six colors. Let this be done, and let the same 
coloring be applied to the original map. Then, even if the five neighbors 
need five distinct colors, there is still a sixth color left for the pentagonal 
face itself. 

Since this argument can be applied with F = 7, then with F = 8, and so 
on, the six-color theorem holds for all values of F. 

Can the number 6 be replaced by 5? For the projective plane it cannot, 
as we shall soon see. For the sphere it can, by a subtler argument depend
ing on the topological theorem that a circle on the sphere decomposes it 
into two separate regions [Ball 1 ,  p. 229]. But the gap between the five colors 
that are always sufficient and the four that are usually necessary has never 
been bridged. Heawood himself continued to investigate the problem for 
the rest of his life, reducing it to pure algebra. Other authors have gradu
ally increased the lower bound of the number of faces for a map that might 
possibly require five colors. 

It is al.most certainly a mere coincidence that the numbers 4 and 5 play an analogous role in 
arithmetic. According to Mordell [1,  p. 19], it is "very easy to prove that every integer is the 
sum of at most five integer cubes, positive or negative, and there is an unproved conjecture that 
four cu bes suffice." 

For the projective plane, on the other hand, there is no gap to be bridged: 
six colors are both necessary and sufficient. The simplest map that needs 

Figure 21 .Sc 
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all six is { 5, 3}  /2 (see p. 387), which is drawn in Figure 21.Sc as a disk with 
diametrically opposite points identified. By cutting out a hole round the 
vertex A ,  we obtain H. Tietze's six-color map on the Mobius strip (Figure 
2 l .Sd ). Here, as on the whole projective plane, six colors are both neces
sary and sufficient. 

----------------------- ------ ------ --- -----� 
C 6 D 3 l B�-----;>--------�----<>-----o-----4 

: 5 1 E 2 F 5 t------<>-----o-----0--------6-----6B 
: G 3  H I 4 J 
L _____________ _ 

Figure 21.5d 

EXERCISE 

Make a model of the Mobius strip and color it as indicated in Figure 21.5d. (Since 
this is a "one-sided" surface, the paper must everywhere have the same color on both 
sides.) 

21.6 A SUFFICIENT NUMBER OF COLORS FOR ANY SURFACE 

( Huck Finn to Tom Sawyer in their flying boat:] "We 're right over Illi
nois yet. And you can see for yourself that Indiana oin 't in sight . . . .  • 
Illinois is green, Indiana is pink. You show me any pink down here, 
if you con. No, sir; it's green." 
"Indiana pink? Why, what a lie/" 
"It ain't no lie; I've seen it on the map, and ifs pink." 

Mark Twain (=S. L. Clemens, 1835-1910) 
(Tom Sawyer Abroad, Harper, New York, 1896, Chap. 3) 

The problem of coloring maps on a more complicated surface is not dif
ficult, as on the sphere, but easy, as on the projective plane. In fact, we 
can now prove 

HEAWOOD'S THEOREM. To color any map on a surface of characteristic 
x < 2 requires at most [ N] colors, where 

N _ 7 + v�49---2-4x-
2 

• 

Since the case x = I has already been proved in § 21.5, we shall suppose 
that 

X � 0. 

Since the theorem is obviously true when F � N (which implies F � [.N]), we 
shall suppose also that 
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and use induction over the number of faces, assuming that [ N ]  colors suffice for any map having F - I faces. Since N satisfies the quadratic equation 
N2 - 7N + 6x = 0 

or 6 ( I - � ) = N - I, 
the inequality 21.51 yields 

Hence then� is at least one face having [N]  - 1 or fewer edges (cf. 2 1 .52). We continue as in § 21.5, using [N] instead of 6, and conclude that [N] colors suffice for the given map. 
Although this proof would break down if x were positive, we note that Heawood's expression for N not only yields the correct value 6 when x = I but also yields the conjectured value 4 when x = 2. 

EXERCISE Tabulate [NJ for values ofx from 2 down to -9. 
21.7 SURFACES THAT NEED THE FULL NUMBER OF COLORS 

"Suppose there's o brown coif and a big brown dog, and on artist is 
making o picture of them . . . .  He has got to point them so you con 
tel/ them apart the minute you look at them, hain 't he? Of course. 
Wei/, then, do you wont him to go and paint both of them brown? 
Certainly you don't. He points one of them blue, and then you con 't 
make no mistake. It's ;ust the some with maps. That's why they make 
every state a different color . . . .  " 

Mork Twain (ibid.) 

Heawood's theorem (with x = 0) tells us that every map on the torus can be colored with seven colors. His regular map { 6, 3 }2,1, whose seven faces all meet one another, shows that at least one map on the torus really needs seven colors. Since Heawood's expression for N depends only on X, it yields the same number 7 for the Klein bottle. However, Philip Franklin has proved a six-color theorem for the Klein bottle.* Ringel [1, p. 124] has proved that the Klein bottle is the only nonorientable surface not needing as many as [ N ]  colors. For instance, inserting a cross-cap at one vertex of Heawood's seven-faced map on the torus, as in Figure 21.2b, we obtain a seven-faced map on the surface of characteristic - 1. This map still needs seven colors, since all its faces meet one another. 
(In fact, some pairs of faces meet twice.) 

• Coxctcr, Scripta Mathematica, 23 (1957), pp. 21-23. 
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In the case of an orientable surface of genus p = I - t X, Heawood's 
number [N] is given by 

7 + y'48p + I 
N = 2 ' 

and it is appropriate to give the name "The Heawood conjecture" to the 
statement that, for every p, the orientable surface of genus p carries a map 
of [N] faces, all meeting one another. Such maps have been found for every 
p < 9 and for infinitely many other values [Ringel I, pp. 64-78, 102]. The 
number of colors needed can never differ from [N] by more than two. Re
cent work by W. Gustin and J. W. T. Youngs* shows that "two" can be 
replaced by "one." Moreover, if n is the number of orientable surfaces of 
genus p < P for which the Heawood conjecture is false (so that n = 0 for 
all P if the conjecture is true), then n/ P tends to zero as P increases. In 
other words, among all orientable surfaces, the cases of failure (if any) are 
a set of density zero. 

EXERCISES 1. Replacing the "hole" in Figure 21.5c by a cross-cap, obtain a six-color map (of3 pentagons and 3 heptagons) on the Klein bottle. 2. Draw an eight-color map 90 the surface of genus two [Ball 1, p. 237]. 
• W. Gustin, Bulletin of the American Mathematical Society, 69 (1963), pp. 272-27S. 
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Four-dimensional geometry 

The idea of four-dimensional space has long been surrounded by an attrac
tive aura of mystery. The axiomatic approach (12.44) dispels the mystery 
without reducing the fascination. Having become accustomed to non
Euclidean geometries, we are no longer disconcerted by the possibility that 
two planes may have a common point without having a common line. More 
simply, we may regard the points of Euclidean 4-space as having four Car
tesian coordinates instead of the usual two or three. Any two distinct points 
determine a line, the three vertices of a triangle determine a plane, and the 
four vertices of a tetrahedron determine a hyperplane, which is given. by a sin
gle linear equation connecting the four coordinates. 

In §§ 22.1-22.3 we describe the four-dimensional analogues of the Platonic 
solids. We shall see that there are six of these regular polytopes. Each con
sists of a finite number of solid cells in distinct hyperplanes, so arranged that 
every face of each cell belongs also to another cell. All these regular poly
topes were discovered by Schlafli before 1855. 

Just as we can make flat pictures of solids by projecting them orthogo
nally onto a plane, so we can make flat or solid "pictures" of hypersolids by 
projecting them either onto a plane or onto a hyperplane. Instances of the 
former procedure are shown in Figures 22. la, b and 22.3b; for an example 
of the latter, see Plate III on page 404. 

In § 22.4 we consider certain honeycombs (or "solid tessellations," or "de
generate polytopes") consisting of infinitely many solid cells in the same 3-
space. In § 22.5 we see how these ideas help to explain some experimental 
results on the packing of equal spheres. 

The geometry of this chapter is Euclidean. But all the other kinds of ge
ometry can similarly be extended to spaces of any number of dimensions. 
As L. Fejes T6th remarks in one of his books, we are able "to create an 
infinite set of new universes, the laws of which are within our reach, though 
we can never set foot in them." 

396 



THE REGULAR SIMPLEX {3, 3, 3} 

22. 1 THE SIMPLEST FOUR-DIMENSIONAL FIGURES 
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That ye . . .  may be able to comprehend with all saints what is the 
breadth, and length, and deplh, and height. 

Ephesians Ill, 17 -18 

Spirits hove four dimensions. 

Henry More (1614-1687) 

If on inhabitant of flatland was able lo move in three dimensions, he 
would be credited with supernatural powers by those who were unable 
so lo move; far he could appear or disappear ol will, could (so for as 
they could tell) creole molter or destroy it. . . . We may go one step 
lower, and conceive of o world of one dimension-like a long tube

in which the inhabitants could move only forwards and backwards . . . .  
Life in line•lond would seem samewhol dull . . . .  An inhabitant could 
know only-two other individuals; namely, his neighbours, one on each 
side. 

W. W. Rouse Boll 
(Mothemoticol Recreations and Essays, 9th edition, 1920, p. 426) 

When trying to apprecia.te the idea of Euclidean 4-space, we are helped by 
imagining the efforts of a hypothetical two-dimensional being to visualize a 
three-dimensional world.* In solid geometry we can find a line ("the third 
dimension") which is perpendicular to both of two intersecting lines and con
sequently perpendicular to every line in their plane. Analogously, in 4-space 
we can find a line ("the fourth dimension") which is perpendicular to all three 
edges of a trihedral solid angle, such as a corner of a cube, and consequently 
perpendicular to every line in the 3-space that contains the solid angle. It 
follows that two 3-spaces that have a common point have a common plane, 
and the product of reflections in them is a rotation about this plane, analo
gous to the familiar rotation about a line in three dimensions or about a point 
in two dimensions. 

After accepting the idea of a fourth dimension, we can soon imagine a 
pyramid or a prism whose "base" is a solid. For instance, a regular tetra
hedron ABCD may serve as the base of a pyramid ABCDE (Figure 22. la) 
whose apex E is along the fourth dimension through the center of ABCD. 
If E is so chosen that its distances from A, ,B, C, D are all equal to the edge 
AB, we have a regular simplex, which may be regarded in five ways as a 
pyramid, each vertex in turn serving as the apex while the remaining four 
form the base. 

Figure 22. l b  is merely an octagon with a square drawn inwards on each 
• Flatland: A Romance of Many Dimensions, by A Square (E. A. Abbott), Boston, 188S and 1928. 
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E 

Figure 22, 1 a Figure 22.1 b 

side, or an octagon and an octagram with corresponding sides joined by 
squares. It may be regarded as a picture of a hype,:cube ( or "8-cell," or "tes
saract," or "measure polytope") which is a prism whose base is a cube, the 
"height" of the prism being equal to the edge of the base. Just as a cube 
can be traced out by moving a square along the third dimension, so a hyper
cube can be traced out by moving a cube along the fourth dimension. In 
Figure 22.lb the initial and final positions of the moving cube have been 
drawn in heavy lines. There are altogether eight cubes: these two, and six 
others traced out by the six faces. Each of the 24 squares (which appear in 
the figure as either squares or rhombi) belongs to two of the cubes, not lying 
in the same 3-space but rotated about the plane of the square until the two 3-
spaces are at right angles. 

The regular simplex and the hypercube are the two simplest instances 

{3, 3, 3}, { 4, 3, 3} 

ofa regular polytope {p, q, r}, which is a configuration of equal Platonic solids 
{p, q}, called cells, fitting together in such a way that each face {p} belongs to 
two cells, and each edge to r cells. It follows that the arrangement of the 
cells at a vertex corresponds to the arrangement of the faces of a { q, r}, in 
the sense that each face of the { q, r} is a vertex figure of the corresponding 
cell. This { q, r }, whose vertices are the midpoints of the edges at one ver
tex of {p, q, r }, is naturally called the vertex figure of the polytope. In fact, 
the three-digit Schlafli symbol {p, q, r} is derived by "telescoping" the two
digit symbols {p, q} and {q, r} which denote the cell and the vertex figure. 

We can now complete the first two rows of Table IV (on p. 414), in which 
the numbers of vertices, edges, faces, and cells are denoted by No, N1, N2, Na. 
Although there is no easy formula for any of these numerical properties as a 
function ofp, q, r, we can readily find their mutual ratios by arguments anal
ogous to those that led to 10. 31. In fact, if V, E, F refer to the cell {p, q}, and 
V', E', P to the vertex figure { q, r}, we have 

FN3 = 2N2, VNs = F'No, V'No = 2N1, ENa = rN1 = pN2 = E'No. 
For instance, the first equation comes from the observation that the F faces 



THE HYPERCUBE { 4, 3, 3} 399 

of the Na cells are just the N2 faces, counted twice because each belongs to 
two cells. 

EXERCISES 
1. The numbers N0 : N1 : N2 : N3 are proportional to 

.!. + .!. _ .!.  : .!. : .!. : .!. + .!. _ l_ 
q r 2  r p p q 2 

Thus {p, q, r} satisfies Schlafli's four-dimensional analogue of Euler's theorem: 

No - N1 + N2 - N3 = 0. 
2. A hypercube of edge I, with one vertex at the origin and 4 edges along the Car

tesian axes, has the 16 vertices (x1, x2, x3, x4), where each of the four x's is either O or 
I, independently. 

3. A hypercube of edge 2, with its center at the origin and its edges parallel to the 
Cartesian axes, has the 16 vertices 

(±1, ±1, ±1, ±1). 
4. Where is the center of the dilatation that relates the hypercubes described in the 

two preceding exercises? 

22.2 A NECESSARY CONDITION FOR THE EXISTENCE OF {P, q, r} 
" . . .  Space . . .  is spoken of as having three dimensions, which one may 
coll Length, Breadth, and Thickness. . . . But some philosophicol peo
ple hove been asking why three dimensions particularly-why not on• 
other direction at right angles to the other three? . . . I do not mind 
telling you I hove been at work upon this geometry of Four Dimen
sions for some time . . . .  " 

H. G. Wells 
(The Time Machine, 1895, p. 5) 

It was apparently Kepler who first thought of the regular tessellations 
( §  4.6) as infinite polyhedra. Analogously, the three-dimensional honey
comb of cubes (whose vertices may be taken to be all the points (x, y, z) 
for which x, y, z are integers) is the infinite polytope {4, 3, 4}: its cell is the 
cube { 4, 3}, and its vertex figure is the octahedron {3, 4} whose eight faces 
are the vertex figures of the eight cubes that surround a vertex, one in each 
"octant." The final 4 in the symbol { 4, 3, 4} means that there are four cells 
surrounding an edge. These four cubes fit together without any interstices 
because the dihedral angle of the cube is exactly a right angle. On the other 
hand, the hypercube { 4, 3, 3} is a finite polytope because the total angle at 
an edge is only three right angles, allowing the cells to be rotated out of 
the 3-space the way one derives a polyhedron by folding up its net (only now 
the angular deficiency is not related in any simple way to the number of 
vertices). 
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Similarly, since the dihedral angle of the tetrahedron { 3, 3} is slightly less 
than 71 ° (see Table II), we may place three, four, or five (but no more) tet
rahedra together at a common edge, so as to begin the construction of 
{3, 3, 3 }, {3, 3, 4 }, or {3, 3, 5} .  Again, since the dihedral angles of the octa
hedron and dodecahedron are between 90° and 120° , we may place just three 
of either together at an edge to obtain {3, 4, 3} and {5, 3, 3} .  But the icosa
hedron cannot be used in this manner, as its dihedral angle is greater than 
120° . We have thus proved that the only possible finite regular polytopes 
in four dimensions are 

{3, 3, 3}, {3, 3, 4}, {3, 3, 5}, {4, 3, 3}, {3, 4, 3} ,  {5, 3, 3}.  

The condition for {p, q, r} to be a finite polytope may be expressed in 
general terms by recalling (from 10.43) that the dihedral angle of the Pla
tonic solid {p, q} is 

2 arcsin \ cos � / sin ji ) 

If r such angles together make less than 2'77', each must be less than 2'77'/r. 
Hence 

that is, 

22.21 cos 7r. < sin 2r. sin 2r. . q p r 
Similarly, the condition for {p, q, r} to be an infinite honeycomb filling three
dimensional space is 

22.22 cos '!!.. = sin 2r. sm· 2r. • q p r . 

an equation for which the only solution in integers gre�er than 2 is { 4, 3, 4). 
EXERCISES 

I. The condition 22.21 implies both 10.33 and the analogous inequality with p re
placed by r. Hint: 

sin � sin� < sin� . 
p r p 

2. Obtain the Schllifli symbol for the regular polytope whose eight vertices are 
(+ I, 0, 0, 0), (0, ±1, 0, 0), (0, 0, + I, 0), (0, 0, 0, + I), 

that is, for the polytope 
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22.3 CONSTRUCTIONS FOR REGULAR POLYTOPES 

401 

Though analogy is often misleading, it is the least misleading thing 
we hove. 

Samuel Butler (1835 -1902) 
(Music, Pictures, and Books) 

We have seen that the inequality 22.21 is a necessary condition for the 
existence of a finite polytope {p, q, r}. The sufficiency of the condition re
quires an actual construction for each of the six figures. We know that r 
cells can fit together at an edge, but it is not obvious that the addition of 
further cells will ultimately yield a closed configuration in which every face 
of every cell belongs also to another cell. 

As the complete story of such constructions is very long [Coxeter 1, pp. 
145-153], we must be content with a brief sketch, aided by analogy with 
what happens in three dimensions. 

We recall that alternate vertices of a cube { 4, 3} belong to an inscribed 
tetrahedron {3, 3} whose four faces correspond in an obvious manner to 
the four omitted vertices of the cube, whereas its six edges are diagonals of 
the six faces of the cube (one diagonal of each face). Moreover, the mid
points of these six edges, being the centers of the faces of the cube, are the 
vertices of an octahedron {3, 4}. 

Figure 22.3a 

Analogously, by selecting alternate vertices of the hypercube { 4, 3, 3} we 
obtain a polytope which has 8 vertices (the black points in Figure 22.3a) 
and 16 cells: one tetrahedron (such as BCPQ) corresponding to each of the 
8 omitted vertices, and another (such as ABPQ) inscribed in each of the 8 
cubic cells. This "16-cell" has 24 edges, which are diagonals of the 24 square 
faces of the hypercube (one diagonal of each face). Each of these 24 edges 
belongs to 4 tetrahedra (2 of each type, occurring alternately); for example, 
the edge PQ belongs to the 4 tetrahedra 

ABPQ, BCPQ, CDPQ, DAPQ, 
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the first and third of which are inscribed in two adjacent cubes whose common face has PQ for one of its diagonals. We have thus proved that the 
16-cell is {3, 3, 4 }. Completing the third line of Table IV, we observe that the numerical properties of { 3, 3, 4} are just those of { 4, 3, 3} in the reverse order. In fact, instead of obtaining the vertices of the 16-cell as alternate vertices of the hypercube, we could have obtained the vertices of another (similar) 16-cell as the centers of the cells of the hypercube. In other words, the hypercube and the 16-cell are reciprocal polytopes [Coxeter 1 ,  p. 127], like the cube and the octahedron. More generally, the reciprocal of {p, q, r} is {r, q, p}. 

The midpoints of the 24 edges of (3, 3, 4} are the 24 vertices of a polytope whose cells are 24 octahedra: the vertex figures at the 8 vertices of {3, 3, 4} , and 16 inscribed in the 16 tetrahedra. Since all its cells are octahedra {3, 4} , this "24-cell" is (3, 4, 3} [Hilbert and Cohn-Vossen 1 ,  p. 152, Fig. 172]. By suitably dividing the 12 edges of an octahedron in the ratio -r : 1, we obtain the 12 vertices of an icosahedron (see § 11.2). By dividing the 96 edges of the 24-cell (3, 4, 3} in this same ratio, we obtain the 96 vertices of a semiregular polytope s{3, 4, 3} (the "snub 24-cell"), whose cells consist of 24 icosahedra and 120 tetrahedra: namely, at each vertex of the 24-cell, a set of 5 tetrahedra consisting of I surrounded by 4 others (like a partially folded "net" for the regular simplex (3, 3, 3 }). When each icosahedral cell of s{3, 4, 3} is capped by an icosahedral pyramid (the way an icosahedron is derived from a pentagonal antiprism by adding two pentagonal pyramids), we obtain a new polytope having a cluster of 20 tetrahedra to replace each of the 24 icosahedra, making a total of 
24 • 20 + 120 = 600 

tetrahedra. The 120 vertices of this polytope consist of the 96 vertices of s{3, 4, 3} and the 24 apices of the 24 icosahedral pyramids. (These 24 points, corresponding to the cells of the original {3, 4, 3} , are the vertices of a reciprocal {3, 4, 3} .) By careful examination [Coxeter 1 ,  pp. 152-153] we find that every edge belongs to 5 of the 600 tetrahedra. Hence the 600-cell is {3, 3, 5} [Coxeter 1 ,  frontispiece]. Finally, the 120-cell {5, 3, 3} (Figure 22.3b and Plate III) can be constructed as the reciprocal of {3, 3, 5} : its 600 vertices are the centers of the 600 tetrahedra. This information enables us to complete Table IV. 
It is interesting to record that the snub 24-cell s{3, 4, 3 } , which plays such a useful role in the above construction for {3, 3, 5} , was discovered by Thorold Gosset in 1897. * Figure 22.3b w�s drawn by B. L. Chilton. Plate III is a photograph of a wire model made by P. S. Donchian. • Gosset was born in 1869 and died in 1962 [see Coxeter 1, pp. 162-164]. 
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Figure 22.3b 

Hartley [ 1, Nos. 56, 60] has given instructions for making models of a 
tetrahedron with an icosahedron placed on each face and of a dodecahedron with a dodecahedron placed on each face. When completed, these 
models show how we might begin to make solid nets for s{3, 4, 3} and {5, 3, 3}, respectively. 

EXERCISES 
1. Locate the centers of the 8 cubic cells of the hypercube (± I, ± I ,+ I. ± I). 
2. Locate the midpoints of the 24 edges of the 16-cell 

(-+2, 0, 0, 0), (0, ±2, 0, 0), (0, 0, ±2. 0), (0, 0, 0, ±2). 
3. Verify that the 96 vertices ofs{3, 4, 3}, which are 

(±T, ± l, ±r-1, 0), 
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evenly permuted, divide the 96 edges of the 24-cell (+-r, +-r, 0, 0) (permuted) in the ratio -r : I. 4. The 120 vertices of the 600-cell {3, 3, 5} are the 96 vertices of the above polytope s{3, 4, 3}, along with the 24 extra points (±2, 0, 0, 0) (permuted) and (±1, + l, ±1 ,  +I). 
S. The 600 vertices of the 120-cell {5, 3, 3} are the permutations of 

(+2, ±2,0, 0), (+y5, +I, +l,  +I), (+-r, +'T, +'T, ±'T-2), (+'T2, +'T-1, +'T-1, ±'T-1) along with the even permutations of 
(±-r2, ±T-2, ±1, 0), (±y5, +'T-1, -+-7, 0), (±2, ±1, +'T, +'T-1). (This corrects an error in Coxeter 1, p. 157). 

PLATE Ill 
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22.4 CLOSE PACKING OF EQUAL SPHERES 
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Figure 22.4a 

As the foot presses upon /he sand when the falling tide leaves it firm, 
that portion of it immediately surrounding the foot becomes momen
tarily dry. . . . The pressure of the foot causes dilatation of the sand, 
and so more water is [drawn] through the interstices of the surround
ing sand . . .  , leaving it dry until a sufficient supply has been obtained 
from below, when it again becomes wet. On raising the foot we gen
erally see that the sand under and around it becomes wet for a little 
time. This is because the sand contracts when the distorting forces 
are removed, and the excess of water escapes at the surface. 

Osborne Reynolds (1842 -1913) 
(British Association Report, Aberdeen, 1 BBS, p. B97). 

Of all the two hundred thousand million men, women, and children 
who, from the beginning of the world, hove ever walked on wet sand, 
how many, prior to the British Association Meeting at Aberdeen in 
1 BBS, if asked, "Is the sand compressed under your foot?" would have 
answered otherwise than "Yes/"? (Contrast with this /he case of walk
ing over a bed of wet sea-weed/) 

Lord Kelvin (1 B24 -1907) 
(Baltimore Lectures, 1904, p. 625} 

Figure 22.4b 

Figures 22.4a and b show two possible ways of packing equal circles in a 
plane: the incircles of the faces of the regular tessellations { 4, 4} and { 6, 3} 
(§ 4.6). It is intuitively obvious that the latter is the more "economical" 
packing. To make this idea precise, we consider the incircles of the faces 
of the general regular tessellation {p, q}, and define the density of the pack
ing to be  the ratio of the area of a circle to the area of the {p} in which it 
is inscribed. The density so defined is evidently less than 1, and the closest 
packing will have the greatest density, that is, the density nearest to 1. If 
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PLATE IV 

the face is a p-gon of side 2/, its inradius is r = l cot 77/p and its area is plr 
(see 2.91, 2.92); therefore, the density is 

;�: = i T = i cot i = i /tan; · 

This is an increasing function of p, and tends to 1 when p tends to infinity. 
But since the p-gon is a face of a regular tessellation, the only relevant val
ues of p are 3, 4, 6. Therefore the "best" value of p is 6, and the closest 
regular packing consists of the incircles of the faces of {6, 3},  the density 
being 

'!I. cot '!L. = '!L. y 3  = ....:!L.. = 0.9069 . . .  
6 6 6 2y3 

[Hilbert and Cohn-Vossen 1 ,  p. 47). 
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It can easily be proved that this is still the closest packing when we aban
don the requirement of regularity but insist instead that the centers of the 
circles form a lattice [Hilbert and Cohn-Vossen 1 , pp. 33-35). Actually, 
even this restriction can be abandoned [Darwin 1 ,  p. 345; Fejes T6th 1, p. 
58), as the bees discovered millions of years ago (Plate IV). 

An analogous packing of spheres in three-dimensional space may be ob
tained by taking the inspheres of the cells of a honeycomb of equal poly
hedra. The density is naturally defined as the ratio of the volume of a sphere 
to the volume of the cell in which it is inscribed. In the case of { 4, 3, 4 }, 
the honeycomb of cubes of edge 2/, this is 

[2�; = I = o.s236 • • • • 

A greater density can be obtained by using the midspheres (§ 10.4) of alter
nate cells, as we shall soon see. 

Figure 22.4c 

If we imagine the cells of the cubic honeycomb to be colored alternately 
black and white, like a three-dimensional chessboard, we may dissect each 
white cube into six square pyramids (by planes joining pairs of opposite 
edges) and attach each pyramid to the neighboring black cube. Each black 
cube is now covered with six white pyramids, one on each face, to form a 
rhombic dodecahedron (Figure 22.4c), whose twelve rhombic faces have the 
twelve edges of the black cube for their shorter diagonals [Steinhaus 2, p. 
152). Thus the insphere of the rhombic dodecahedron is the midsphere of 
the cube, of radius y2 /, and the volume of the rhombic dodecahedron is 
twice that of the cube, namely, 2(2/)3 = 1613. In the honeycomb of such 
larger cells, each insphere is the midsphere of a black cube, and such spheres 
touch one another at the centers of the rhombic faces, that is, at the mid
points of the edges of the original honeycomb of cubes. Thus each sphere 
touches twelve others, the points of contact being the midpoints of the twelve 
edges of a cube. The density of this -cubic close packing is evidently 
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f'1T(Y21)3 
= ....:!!...._ = 0.74048 . . .  

16[3 3y2 

[Hilbert and Cohn-Vossen 1, p. 47]. 
The rhombic dodecahedron occurs in nature as a crystal of garnet, and the 

three-dimensional chessboard occurs as the arrangement of atoms in a crys
tal of common salt, with a sodium atom in each black cube and a chlorine 
atom in each white cube (or vice versa). The centers of the black cubes, 
which are the centers of the spheres in cubic close packing, are easily seen 
to form the face-centered cubic lattice. It follows from § 18.4 that this is 
the densest possible packing of spheres whose centers form a lattice. 

In old war memorials we often see a pyramidal pile of cannon balls: one 
at the apex resting on four others which, in tum, rest on nine, and so on. 
Each interior ball touches 12 others: 4 in its own layer, 4 above, and 4 be
low. In fact, these cannon balls are arranged in cubic close packing [Kep
ler 1,  pp. 268-269]. The base of the square pyramid consists of (say) n2 

balls arranged like the circles in Figure 22.4a. When n is large, the shape 
of the whole pyramid is essentially the "top" half of a regular octahedron 
(regarded as a square dipyramid); each sloping face is an equilateral tri
angle formed by I + 2 . . . + n balls. 

By turning the pyramid over so that such a sloping face becomes hori
zontal, we obtain a different aspect of the same packing. In this aspect we 
begin with a horizontal layer of spheres whose "equators" are the incircles 
of the hexagons of { 6, 3 } ,  as in Figure 22.4b. The next higher layer is just 
like this but shifted slightly to the right (say), so that each sphere rests on 
three, its center being vertically above a vertex of { 6, 3}  from which an edge 
goes off to the right. Since all the centers form a three-dimensional lattice, 
the spheres in the third layer (resting on the second) are shifted again to 
the right, so that each center is vertically above a vertex of { 6, 3 }  from which 
an edge goes off to the left. The fourth layer is vertically above the first, 
and thereafter the sequence recurs. 

In 1883, the crystallographer Barlow described an equally dense packing 
in which the centers do not form a lattice. This can be derived by taking 
the same horizontal layers in a different order. More precisely, we discard 
the "third layer" just described and substitute a new third layer vertically 
above the first. Then we add a fourth layer vertically over the second, and 
so on; the shifting from one layer to the next is alternately to the right and 
left, like a zigzag. This nonlattice packing is called hexagonal close packing 
[Ball 1 , p. 150 ; Hilbert and Cohn-Vossen 1 , p . 46; Steinhaus 2, p. 170; 
Fejes T6th 1 , pp. 172-173). 

Helpful models to illustrate these ideas are provided by fourteen golf balls and two shallow 
trays of dimensions 5 in. x 5 in. and 4.6 in. X 5.8 in., respectively. Either tray will hold nine 
balls in three rows of three. In the square tray, a pyramidal "cannon ball" arrangement can be 
completed by adding four more above and the remaining one at the top. In the oblong tray, 
the four balls in the second layer should have their centers at the vertices of a rhombus, not a 



CLOSEST SYMMETRICAL PACKING OF SPHERES 409 rectangle. The third layer is again represented by just one ball, but now there are two possible positions for it: one belongs to cubic close packing and the other to hexagonal close packing. Since hexagonal close packing has the same density as cubic close packing, namely 0.74048 . . .  , it is natural to ask whether some still less systematic packing (without any straight rows of spheres) may have a greater density. This remains an open question. The best theoretical approach to an answer is the proof by Rogers* that, if such a packing exists, its density must be less than 0. 7797 . . . .  Experiments in this direction began as long ago as 1727, when Stephen Hales stated, in his Vegetable Staticks, 

l compressed several fresh parcels of Pease in the same Pot, with a force equal to 1600, 
800, and 400 pounds; in which Experiments, tho' the Pease dilated, yet they did not 
raise the lever, because what they increased in bulk was, by the great incumbent weight, 
pressed into the interstices of the Pease, which they adequately filled up, being thereby 
formed into pretty regular Dodecahedrons. 

Hales presumably reached his conclusion by observing some pentagonal faces on his dilated peas. They could not all have been regular dodecahedra. For, since the dihedral angle of the regular dodecahedron is less than 120° (see Table II on p. 413), three such solids with a common edge will leave an angular gap of about 10° 19'. In fact, dodecahedra {5, 3} are the cells of the configuration {5, 3, 3}, which is not an in.finite three-dimensional honeycomb but a finite four-dimensional polytope. In 1939, the botanists J. W. Marvin and E. B. Matzke repeated Hales's experiment, replacing his peas by lead shot, "carefully selected under a microscope for uniformity of size and shape," in a steel cylinder, compressed with a steel plunger at a sufficient pressure (40,000 pounds) to eliminate all interstices.t When the shot were stacked in cannon-ball fashion and compressed, they became nearly perfect rhombic dodecahedra. But "if the shot were just poured into the cylinder the way Hales presumably put his peas into the iron pot, irregular 14-faced bodies were formed." Almost all the faces were either quadrangles, pentagons, or hexagons, with pentagons predominating. Another botanist examined cells in undifferentiated vegetable tissues, and concluded that the internal cells have an average of approximately 14 faces, though the most prevalent shape ( occurring 32 times among the 650 cells examined) had 13 faces: 3 quadrangles, 6 pentagons, and 4 hexagons. The few cells that had only 12 faces were neither rhombic dodecahedra nor regular dodecahedra. Matzke also made a microscopic examination of a froth of 1900 measured bubbles. "For 600 central bubbles examined, the average number of contacts was 13.7." The commonest shape had again 13 faces: 1 quadrangle, 10 pentagons, and 2 hexagons. • C. A. Rogers, The packing of equal spheres, Proceedings of the London Mathematical Society (3), 8 (1958), pp. 609-620. 
t E. B. Matzke, In the twinkling of an eye, Bulletin of the Torrey Botanical Club, 77 ( 1950), pp. 222-227. 
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In 1959, Professor Bernal* confirmed the prevalence of pentagonal faces 
by a remarkably simple experiment in which equal balls of"Plasticene" (oily 
modeling clay) were rolled in powdered chalk, packed together irregularly, 
and pressed into one solid lump. The resulting polyhedra were found to 
have an average of 13.3 faces. 

To test the possibility that a random packing of equal spheres might attain 
a density between 0.7405 and 0.7797, G. D. Scott poured thousands of ball 
bearings into spherical flasks of various sizes, gently shaking each flask as 
it was being filled. Assuming that the exceptional situation at the surface 
of the container will make the density 

p _ eN-113 

for N balls, where p and e are constants, he found from these experiments a 
closest random packing with 

p = 0.64, e = 0.33. 
By careful filling of the flasks without shaking, a loosest incompressible ran
dom packing was found with 

p = 0.60, e = 0.37. 

Since, for the closest random packing, p falls far short of 0.7405, it seems 
unlikely that any greater density can be maintained throughout a region 
that extends indefinitely in all directions. 

If we could fill a spherical flask with N ball bearings in cubic close pack
ing, we would expect the density to be expressible as a series beginning with 
the two terms 

0.7405 - eN-113. 
But this experiment does not seem to be feasible. A scholarly book has 
been written on the theory of lattice points in spherest without throwing 
any light on the value of e in this 3-dimensional case, although consider
able progress has been made on the analogous problem in spaces of other 
numbers of dimensions, such as 2 or 4. 

Whatever the closest random packing may be, it is clear from Osborne 
Reynolds's experiment on the seashore that any small disturbance increases 
the size of the interstices. The same principle may explain a Hindu fakir's 
magic trick, which was mentioned by Martin Gardner. A cylindrical jar 
with a rather narrow opening at the top is filled with uncooked rice, gently 
shaken down so as to be well packed. A table knife is plunged repeatedly 
into the jar, to a greater depth each time. After about a dozen plunges, 
the knife will suddenly bind so that, when raised by the handle, it will sup
port the whole jar of rice. 

• J. D. Bemal, A geometrical approach to the structure of liquids, Nature, 183 (1959), pp. 141-
147. 

t Amold Walfisz, Gitterpunkte in mehrdimensionalen Kugeln, Warsaw, 1957. 
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EXERCISES 

4 1 1  

l. Is the arrangement of incircles of all the faces of the tessellation { 4, 4} (Figure 22.4a) any less dense than that of the circumcircles of alternate faces, i.e., the circumcircles of the black squares of a chessboard? 2. Is it possible to arrange seven equal non-overlapping spheres in such a way that two of them touch each other and both touch all the remaining five, while these five (a) form a ring in which each touches two others? (b) do not touch one another at all? 3. Is it possible to arrange thirteen equal non-overlapping spheres in such a way that one of them touches all the remaining twelve while these twelve do not touch one another at all? 4. A pyramidal pile with II layers contains n(n + 1)(2n + 1)/6 cannon balls [Ball 
1 ,  p. 59); a tetrahedral pile contains n(n + 1)(n + 2)/6. In both cases the arrangement is cubic close packing. 
22.5 A STATISTICAL HONEYCOMB 

The fluidity of a liquid is a consequence of its molecular irregularity. J. D. Bernal (1901 -

Three equal circles in a plane are packed as closely as possible when they 
all touch one another. The two-dimensional problem of close packing is 
easy because any number of further circles can be added in such a way as 
to continue the pattern systematically over the whole plane. This is, as we 
have seen, the pattern formed by the incircles of the faces of the regular tes
sellation of hexagons, { 6, 3} (Figure 22.4b). 

Analogously in space, four equal spheres are packed as closely as possible 
when they all touch one another, and some further spheres canbe added so 
as to form the beginning of a pattern apparently consisting of the inspheres 
of the cells of a regular honeycomb {p, 3, 3 }. Although the equation 22.22 
has no integral solution when q = r = 3, we naturally conclude that a com
pressed random packing of equal lead shot, a nearly homogeneous aggregate 
of vegetable cells, and a froth of equal bubbles, are all somehow trying to ap
proximate to a honeycomb {p, 3, 3} in which p lies between 5 and 6. The 
fractional value ofp means that this "honeycomb" can exist only in a statisti
cal sense, but the agreement with experiment is striking. 

When q = r = 3, the equation 22.22 actually becomes 

22.51 sini = cotj = � ½ · 
This shows that the angle 180° Ip is 35° 15' 52", which is half the dihedral 
angle of the regular tetrahedron {3, 3} (see Table II). (In fact, we may re
gard p as the number of regular tetrahedra {3, 3} that can be placed together 
around a common edge, as if we were beginning to construct the dual honey
comb (3, 3,p} whose vertices are the centers of the spheres.) Thus 
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180 p = 35.264 . . .  = 5-1044 • • •  ' 
in agreement with Matzke's observation that pentagons are prevalent (especially in a froth) whereas hexagons are more frequent than quadrangles. The cell {p, 3} has an average of Ffaces and Vvertices where, by 10.32 with q = 3, 

12 F = -6 - = 13.398 . . .  , 
- p  

4 V = (6/p) _ I = 22.796 • • •  , 
in reasonably close agreement with Matzke's 13.7, with Bernal's 13.3, and with one of the two theoretical models proposed by Meijering, * who used intricate statistical methods to obtain V = 22.56. . . . A fourth theoretical model [Coxeter 4, p. 756] yields 

F = ½ (23 + y313) = 13.564 . . .  , V = f (17 + y313) = 23.128 . . . .  
EXERCISE 

In the "twisted prism" formed by 28 regular tetrahedra 
AoA1AzAa, A1AzAaA4, . . . .  , A21Aw42!0ao, 

the broken line AoAaAsA.9 . . .  A30 consists of IO equal chords of a circular helix. Taking the axis of this helix to be vertical, do we find the vertex A30 exactly above Ao? (A model can be conveniently made by fastening together 87 equal sticks from the "Dstix Pre-engineering Kit 701," manufactured in Yardley, Wash.) For the whole story, we regard the tetrahedra as being 28 cells of the "honeycomb" (3, 3 ,  p},  where p is given by 22.51. (AoA1A2 . . .  is a "Petrie polygon" of this honeycomb.) Setting 
7T 2 cos2 - = -p 3 

and q = r = 3 in the equation 12.35 of Coxeter (1,  p. 221], we obtain {1 = 0 and cos {2 = -j. The angle between the planes joining the axis to Ao and A3o is 
30(!2 - 120°) = 354° 20'. 

(This !2, being nearly 131  ° 49', is remarkably close to the corresponding property of , the four-dimensional polytope (3, 3, 5}, which is exactly 132 ° (Coxeter 1 ,  p. 247].) 

• J. L. Mcijcring, Philips Research Reports, a (1953), p. 282. The value V = 22.79 . . . was 
fiist obtained by C. S. Smith, Acta Mctallurgica, 1 (1953), p. 299. Sec also E. N. Gilbert, Annals 
of Mathematical Statistics, 33 (1962), pp. 958-972. 



Symbol 

pl 
p2 

pm 
pg 
cm 

pmm 
pmg 
pgg 

cmm 
p4 

p4m 
p4g 

p3 
p3m1 

p31 m 
p6 

p6m 

Name 

Tetrahedron 
Cube 
Octahedron 
Dodecahedron 
Icosahedron 

TABLES 

Table I 
The 1 7 Space Groups of Two-Dimensional 

Crystallography (§ 4.3) 

Two translations 
Three half-turns 

Generators 

Two reflections and a translation 
Two parallel glide reflections 
A reflection and a parallel glide reflection 
Reflections in the four sides of a rectangle 
A reflection and two half-turns 
Two perpendicular glide reflections 
Two perpendicular reflections and a half-tum 
A half-tum and a quarter-turn 
Reflections in the three sides of a ( 45 °, 45 °, 90°) triangle 
A reflection and a quarter-tum 
Two rotations through 120° 

A reflection and a rotation through 120° 

Reflections in the three sides of an equilateral triangle 
A half-tum and a rotation through 120° 

Reflections in the three sides of a (30°, 60°, 90°) triangle 

Table II 
The Five Platonic Solids (§ 10.3) 

413 

Schlafli Symbol V E F Dihedral Angle 

{3, 3} 4 6 4 70° 32' -
{4, 3} 8 12 6 90° 

{3, 4} 6 12 8 109° 28' + 
{5, 3} 20 30 12 l l 6° 34' -
{3, 5} 12 30 20 138° 11' + 

Table Ill 
The Finite Groups of lsometries (§ 15.5) 

Rotation Groups Direct Products Mixed Groups 

Name Symbol Order Symbol Order Symbol Order 

Cyclic Cn n Cn X {I} 2n C2nC,. 2n 
Dihedral Dn 2n D,. X {I} 4n DnCn 2n 
Tetrahedral A4 12 A4 X {I} 24 Dz,.D,. 4n 
Octahedral S4 24 S4 X {I} 48 S�4 24 
Icosahedral A 5  60 A5 X {I} 120 

-
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Table IV 
The Regular Polytopes { p, q, r} (§  22.2) 

Name Schlafli Symbol No N1 N2 N3 

Regular simplex {3, 3, 3} 5 IO IO 5 Hypercube { 4, 3, 3} 16 32 24 8 16-cell {3, 3, 4} 8 24 32 16 24-cell {3, 4, 3} 24 96 96 24 120-cell {5, 3, 3} 600 1200 720 120 600-cell {3, 3, 5} 120 720 1200 600 Cubic honeycomb { 4, 3, 4} 00 00 00 00 
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Answers to Exercises 

§ 1 .3 1 .  The reflection in the line x = y interchanges x and y. 2. If the line BA meets the circle in P (beyond A) and P' (between A and B), we have 
BC2 = BP X BP' = (BA + AC)(BA -AC). 3. The triangle CDF is equilateral; so is ABC. 
§ 1 .4 1. Apply Euclid 1.5 to the isosceles triangle GBC and then I.4 to the two triangles 
B'BC, C'CB. 
§ 1 .5 1 .  The circle through P with center 0. 2. Use 1.52. Use 1.58 or 1.59. s. By Euclid III.20, if the angle at the circumference is greater than 90", the angle at the center is greater than 180° . 6. At the midpoint of the hypotenuse. 8. x = s + u, in the notation of 1.59. 1 o. Using 1.52, 1.53, 1.55, reduce the given equation to (-a2 + b2 + c2)(a2 _ b2 + c2)(a2 + b2 _ c2) = O. 12. L C3Ba,4_3 = L CaBaP + LPB:0a 

= L CBP + LPBA = LCBA. 

§ 1 .6 1. The circumcenter of the new triangle is the orthocenter of ABC. 4. Because sin B = sin C. 6. It is b sin C, and b = 2R sin B. 7. One-third of the altitude. 9. R cosA = tR sin B sinC. 
§ 1 .7 2. If A > B > C, the order is EA"FC'B''DA'C''B'. 4. The internal and external bisectors of an angle are perpendicular. 6. Each circumradius is twice the radius of the nine-point circle. 
§ 1 .8 1 .  U'V, which passes through W, is the image of UVby reflection in AC. 3. The lines joining pairs of centers, being perpendicular to the common chords AP, 419 

-
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BP, CP, make angles of60° with one another, and thus form an equilateral triangle. 
5. They join pairs of villages to the ends of a short road in the middle. 7. P is the incenter of P'BC. 

§ 1.9 
1 . These lines are the medians of the equilateral triangle PQR. 
2. (i) a = /3 = y = 40° ; (ii) a = 30°, /3 = y = 45 ° . 

§2.1 

2. � - .!. = ..!.... 

§2.2 

17 3 51  
Ifs is odd, xs + 1 is divisible by x + I, and therefore 2" + I by 2' + I .  

§2.4 
2. (a) (i) (x, y) --+ ( -x, -y); (b) (i) (x, y) --+ (-y, x); 

§2.6 

(ii) (r, 8) --+ (r, 8 + 180°). (ii) (r, 8) --+ (r, 8 + 90°). 
2. P is transformed into A by a quarter-turn about C, and thence into S by a quarter-turn about B. 

§2.7 2. RTT-1 = STT-1. 4. The periods of the elements of Cn are divisors of n. 
§2.8 

3. 108°' 36° , 140° , 100°, 20° . 5. (1, 2k1r 1 . n 
§3. 1 1 .  Rotation, translation. 

2. Reflection. Yes. 4. Rotate the first two mirrors until the second (in its new position) coincides with the third. 
§3.2 1 .  T-1. 3. A translation. 4. Translate the first two mirrors till the second (in its new position) coincides with the third. 
§3.3 1. (i) Half-turn about B, or reflection in the perpendicular line through B. (ii) Translation from A to B, or a glide reflection. 3. Reflection in the perpendicular line through 0. 5. An opposite transformation. 7. G2 = TR1R1T = T2. 

§3.5 1 .  S is a glide reflection. 
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§3.7 
1. (i), (ii), (iii), (iv), (v). 

§4.2 
1 .  Because two opposite vertices of each quadrangle are related by a translation. 

§4.4 
Yes. 

§4.5 
1 .  Rotation through the same angle about P'. 

§4.6 
3. No. To complete the lattice we would also need the centers of the hexagons. 

§4.7 
1 .  If Q were not between P2 and Pa, we could obtain another pair having a smaller 

distance than P1Q. 
3. A complete quadrangle with its diagonal points. 

§5.1 
1. 0(µ- 1). 
3. (a) (r, 8) - (µr, 8), 

(b) (x, y) - (µx, µy). 
5. By taking O between A and A'. 

§5.2 
3. It divides 001 in the ratio (µ.1 - I) : (I - µ.). 

§5.3 
1 .  0, -2, -3, -6. 

§5.5 
1 .  A spiral similarity, or possibly a translation. 

§5.6 
1 .  This is the invariant point of a similarity. 
3. The square of a dilative reflection. 
5. (a) A spiral similarity. (b) A dilative reflection. 

§6.1 
2. Draw two circles with centers 0, A and radius OA, meeting in C, C. The circle 

with center C and radius CC' determines B on the circle OCC. 
5. To divide OA into n equal parts, transform A by the dilatation O(n), and invert 

with respect to the circle with center O and radius OA. 

§6.3 
2. Let Q denote the center of the rhombus APBP'. Then 

OP X OP' = (OQ - PQ)(OQ + PQ) = OQ2 - PQ2 
= OQ2 + AQ2 - (AQ2 + PQ2) 
= OA2 - PA2• 

§6.5 
2. The two limiting points are the common points of any two members of the or

thogonal pencil. 
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4. One is the center and the other is the point at infinity. 
§6.6 1. Each circle of Apollonius is orthogonal to all the circles through A and A'. 

3. µ/(1 - µ2). 4. The line AE', like A'E and A1P, is perpendicular to PAz. 

§6.7 hS = S • S-lhS = SJ' k, where J\ is the inversion in the circle with center o� and radius k. The two inversions are the same if and only if the isometry S leaves O invariant, that is, if and only if T interchanges O and 0'. 

§6.8 1 .  OA X OA' = OB X OB' and LAOB = LA'OB'. 2. The ratio of magnification is 
OA' OA X OA' k2 = - -- - = 
OB OA X OB ab 4. Spheres through O invert into planes. Two spheres that touch each other at 0 have no other common point. Two planes that have no common point are parallel. 

§6.9 2. Prove thls first for a triangle and then dissect the p-gon into triangles. 
§7.2 The identity. 
§7.4 1 .  The reflection in another plane through the same line. 
§7.5 1. (a) a reflection, (d) a screw displacement, 
§7.6 2. Axis x = y = z. Angle 120°. 
§8.2 

(b) a quarter-turn, (e) a glide reflection, 

1.  r12 + r22 - 2r1r2 cos (B2 - B1). 3. () = a. 
§8.3 2. x2 + y2 = k2. 3. (x2 + y2)2 = 2a2(x2 _ y2), r2 = 2a2 cos 2B. 
§8.4 1 .  A parabola. 2. A hyperbola. 4. e = yl + b2/a2, y2. 

(c) a translation, (f) a rotatory inversion. 

6. By the theory of quadratic equations, F is the product of two linear forll!.S if it is indefinite, and a perfect square if it is semidefinite. 7. 2xy = az. 9. Both branches are included. 



ANSWERS TO EXERCISES 

§8.5 
2. The secant of the ellipse x = a cos t, y = b sin tis 

I a cos(: + {J) b sin (a + {J) : = O. 
a cos (a - {J) bsin (a - {J) I 

For the hyperbola, the tangent is 

§8.6 
2. {tab. 

§8.7 

X h y . 
acos t - iisinht = I .  

423 

2. (i) The point where 8 = mr on the former coincides with the point where 8 = -mr 
on the latter (for every integer n). 

(ii) None. 

§8.8 
5. The condition for the radii to any common point (x, y, z) of the two spheres to 

be perpendicular is 
(x + u)(x + ti) + (y + v)(y + v') + (z + w)(z + w') = 0. 

The desired condition is obtained by doubling this and subtracting the equations of the 
spheres. 

§9.3 
1 .  z = 2 + i. 
2. u + vi = 0 means that the point (u, v) coincides with the origin (0, 0). 
4. (i) The spiral similarity reduces to a dilatation, and the two shaded triangles are 

homothetic. 
(ii) The spiral similarity reduces to a rotation, and the two shaded triangles are con

gruent. 

§9.5 
1 .  e'""1 = cos trr + i sin f'IT = i. Yes. 

§9.7 
1 . The angle is am a. 

§ 1 0.1  
1 . The octahedron is  a square dipyramid with equilateral side faces. 
3. (i) A square, (ii) a hexagon, (iii) a decagon. 

§ 1 0.2 
1 .  The bases appear as two pentagons: a large one with a small one oppositely placed 

inside. 
3. Eight. 

§1 0.3 
1 .  Use 10.32. 
3. The only possibility is a tessellation of rhombi whose vertices form a lattice. 

§ 10.5 
2. One vertex in each "octant." 
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4. From the cube in ex. l we derive the tetrahedron (0, 0, 0)(0, l, 1)(1, 0, 1)(1, I, 0), with face planes x + y + z = 2, x = y + z, y = z + x, z = x + y. To normalize these equations we divide by y 3. The cosine of the internal angle between two of the planes is t-6. Points between the parallel planes x + y + z = + I satisfy x + y + z < l and 
-x - y - z < l ;  similarly for the other pairs. 
§ 1 1 .1 

1 • w • 2w 2 w • w . ,,. sm 5 = sm 5 = cos 5 sm 5 . 
§1 1 .2 1 .  The four points ( +,,., + 1, 0) evidently form a golden rectangle in the plane z = 0. 2·. The segment (0, 0, -r2)(0, -r2, 0) is divided in the ratio ,,. : I by the point (0, 'T, 1). 
§1 1 .4 1 ,  /n+2 - 1. 3. Working modulo 10, we have 5 + 8 = 3, 8 + 3 = 1, and so on. 5. l .010203050813213455 . . . .  
§1 1 .5 When k = 1, 11.51 yields h = ,,--a12 = 0.48587 . . . . .  
§12.1 1. Both. 3. Affine geometry. 
§12.2 2. Theorem 12.271. 4. Any line not belonging to the set contains an infinite number of points, among which only a finite number can lie on lines of the set (at most one on each). 6. Take A' on Al B, B' on BIC, and apply Axiom 12.27 to the triangle A' B'B with 
[B'BCJ and [BAA']. 7. For any such A' and B', the line A'B' meetsAIC; therefore it does not meet Cl A.  

§1 2.3 The n - l points P, (i > 1) are joined in pairs by at most (n21) lines, some or all of which may meet P1Q. In Figure 12.3b, the six joins P2P4, P4P1, P1P2, PsPG, PGP1, P1Pa all make the same contribution as P1P5. 
§12.4 4. The first two lines, BC and CA, decompose the plane into four angular regions. The line AB has no intersection with the region bounded by Cl A and Cl B, but it decomposes each of the remaining three angular regions into two parts. The region bounded by the triangle is the only finite part, since at least one side of each of the others is a ray. 6. The first m - 1 planes decompose the mth into /(2, m - 1) plane regions, lying respectively in /(2, m - 1) of the /(3, m - I) solid regions. These /(2, m - I) solid regions are each decomposed into two, whereas the rest are unaffected. Hence /(3, m) = /(3, m - 1) + /(2,m - l) 

= /(3, m - 2) + /(2, m - 2) + /(2, m - 1) 
= /(3, 0) + /(2, 0) + /(2, 1) + . . .  + /(2, m - 1) 
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§ 1 2.6 1 .  The relation [prs] tells us that the three lines do not meet one another and that they contain points A, C, B (respectively) such that [ACB]. Suppose thatp1 is parallel to 
s. Then any ray from A within the angle between AB and p1 meets s, and therefore also ,. Hence p1 is parallel to ,. 2. The two rays through a given point parallel to a given line appear as the segments joining the point to the ends of the chord. 
§ 13.1 2. Yes, provided the three lines are coplanar. 
§ 1 3.2 3. This is the half-tum about C. 4. Any two opposite sides are interchanged by the half-tum about the common midpoint of the diagonals. 6. Dissect the quadrangle into two triangles by a diagonal, and use 13.26. 
§ 1 3.3 1 . x' = µ,x, y' = µ,y. 3. x' = x + by, y' = y. (0, -I) ➔ (-b, -1). 
§ 1 3.4 1 .  This follows fro.m the remark after 13.41. 3. Every point on OR (the line through O parallel to PP') is invariant. For any X not on OR or on PP', let PX meet OR in Y (which is invariant); then YP' meets the line through X parallel to PP' in the corresponding point X'. Finally, any point on 
PP' is transformed as by the translation P ➔ P'. 6. Both shears leave invariant every line parallel to PP', and their product transforms PQ into P'Q'. 9. (i) The shear [ O; P ➔ P'], where O is (0, 0), Pis (0, I), and P' is (p., I). (ii) The affine reflection [A; B +-+ CJ,' where A is (0, I) while B and C arc (+: I, 0). 
§ 1 3.5 2. By 13.52, XoY - YoX = I = xy1 - yx1, and therefore (xo + x1)Y = (Yo + Y1)x. 5. The parallelogram (0, 0)(2, - 1)(3, 1)(1, 2) has area � + 4 - I = 5, whereas the small parallelogram in the middle has area I. The parallelogram (+6, +6) has area 144, whereas the small octagon in the middle, namely (+3, 0)(+2, +2)(0, ±3), with 21 interior points, has area 24. 

6. _I _ _  µ,_ + _l ___ v_ + _l ___ X_ X + I µ, + l  µ, + I v + I  v + I A + I  µ,(v + l)+v(X + l)+X(µ, + I) (X + I)(µ, + l)(v + I) 
= I - X,-u, + I  (X + I)(µ, + IXv + I) 
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§1 3.6 
1 .  (i), (ii), and (iv) lack the additive identity (zero); (iii) contains l and i but not l + i. 

The remaining four sets include zero, which has no multiplicative inverse. 
4. Cutting the quadrangle along either diagonal, we obtain two triangles whose cen

troids are the midpoints of two of the broken line segments in Figure 13.6b. 

§ 13.7 
1 .  Inside the triangle A 1A zA 3 we have + + + ; beyond the side A2A 3, - + + 

and beyond the vertex A 1, + - - . 
➔ ➔ ➔ ➔ 

3. ½(OS + 01) = ½(Ls1 OA, + }:11 OA,) 
➔ = }:t(s1 + 11) OA1. 

5. In this formulation it is no longer necessary to assume LS; = Lt;. 
7. When the line is entirely outside the triangle, the signs are all alike (say all plus). 

When the line penetrates the sides AzA3 and AaA1, T3 differs in sign from Ti and T2. 

§ 13.8 
1. Any common point of a and b would be a common point of a and a. Apply 

13.82 to b, c, and a. 
3. Our proof of 13.81 shows that all the lines through A in the plane q'r' are parallel 

to lines in the plane qr. 
5. (11, 12, l3, l4) is the centroid of masses t1 at A1 (i = l, 2, 3, 4). 

§13.9 
2. An affine reflection interchanges pairs of points, P and P', in such a way that all 

the joining lines PP' are parallel and all the segments PP' are bisected by the mirror 
(which, in the three-dimensional case, is a plane). 

4. If(x, y, z) is a lattice point lying in a first rational plane Xx + Yy + Zz = + 1 ,  
any common divisor of x, y, z would have to divide + 1 . 

6. When x = 1, we have 2y + 3z = - 1 . Two obvious solutions arey = 1 , z = - 1, 
andy = -2, z = 1 . When x = -4, we have 2y + 3z = 5, with the obvious solu
tiony = z = I .  We thus obtain the triangle (1, 1 , - 1)(1, -2, 1)(-4, 1 , 1). 

8. The given equation implies x2 + 2 y2 xy + 2y2 = 3z2. Since \/Tis irrational, 
any solution in integers would require xy = 0 and x2 + 2y2 = 3z2, which is impos
sible by the usual argument for establishing the irrationality of y'J. 
§14.1 

1. By 14. I I the four points described in 14.13 are joined in pairs by six lines which, 
by 14.12, meet any other line in at least three points. Also each of the six lines meets 
the others in three points. 

3. Here is the table: 
12 1 1  IO 9 8 7 6 5 4 3 2 1 0 

I 2 3 4 5 6 7 8 9 IO 1 1  12 0 
2 3 4 5 6 7 8 9 10 1 1  12 0 1 
4 5 6 7 8 9 10 1 1 12 0 1 2 3 

10 1 1  12 0 1 2 3 4 5 6 7 8 9 
The last column indicates that the points onp0 are Po, Pi, P3, P9, and that the lines 
through Po are p0, p1, p3, p9. The other columns have an analogous interpretation. 
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The columns of the table 
Po Pio Ps Ps Ps P2 P8 P3 
¾ h h h h h -� h 
Ps Ps P2 Ps P3 Po P1o P9 

indicate the eight lines of the configuration 83 formed by the cycle of eight points 
PoP10P9PsPsP2PsP3. The two mutually inscribed quadrangles are obtained by taking 
alternate points of this cycle. 

5. The whole finite geometry provides a counterexample to refute Sylvester's the
orem. Every line joining two of the points belongs to the geometry and thus contains 
not only two but p + I of the points. 
§ 14.2 

1 .  Let A, B, C, D be the points 14.23, and continue as follows: 
E = AD • BC = (0, 1, 1), F =BD • CA = (I, 0, 1), 
G = AB • EF = ( -1,  1, 0), H =BC · DG = (0, 2, I), 
I = AD • FH = (I, 2, 2), J =EF • CI = (I, 2, 3). 

3. Ps = P2Ps • P4P1, Ps = P1P1 • PaP4. The collinearity of P0P5P6 makes 
x2 + x + I = 0. 

5. The points P0P1P2P3P4P5P6 may be taken to be 
(I, 0, 0) (0, l ,  0) (0, 0, l) (l, l ,  0) (0, l ,  l) (l, l, l) (l, 0, l). 

§ 14.3 
1 .  The points { l ,  0, 0), { l ,  l, l), (p, I, 1) all lie on the line x2 = x3. We obtain 

(0, q - I, I - r) by subtracting (1, 1, r) from (1, q, I). 
§14.4 

1. The definition for a harmonic set involves A and B symmetrically, also C and F 
in the same way. 

3. Taking RAB as triangle of reference, let C and S be (0, I, A) and (1, 1, A). Then 
Q is (1, 1, 0), P is (1, 0, A), and Fis (1, l, 0) - (I, 0, A) = (0, l, -A). 

5. The same harmonic set is determined projectively by the quadrangle, and affinely 
by dividing the segment AA' internally at A1 and externally at A2, in the same ratio. 

§ 14.5 
2. Any section of a harmonic set of lines is a harmonic set of points, and any har

monic set of points is projected by a harmonic set of lines. 
8. (i) (en - c22)2 + 4c12C21 = 0. 

(ii) C11 + C22 = 0. 
§14.6 

2. In the notation of Figure 14.3a, consider the perspective collineation with center 
0 and axis DE that transforms P into P'. When the construction in ex. 1 is applied 
to Q it yields Q', and when it is applied to R it yields R'. 

4. In the notation of ex. 3, let 01 be the harmonic conjugate of O with respect to 
A and A'. Then the harmonic homologies with centers A and 01 will have the desired 
effect, since the former leaves A invariant and the latter takes A to A'. 

6. (i) A homology with center (0, 0, l) and axis x3 = 0. (ii) An elation \\ith center 
(c1, c2, 0) and axis x3 = 0. 

8. The condition for the two points (0, 1, ±1) to be conjugate is c2:i -·c33 = O: for 
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(+ 1,  0, 1), c33 - c11 = 0. These two conditions imply c11 - C22 = 0, which is the conjugacy condition for (1, ± 1 ,  0). 
§ 1 4.7 3. See Coxeter 2, pp. 88-89. 8. The sides of this hexagon are Xi = 0, Xi = X2 + X3, X2 = 0, Xi + X3 = 2x2, Xi + X2 = fx3, tx, + X2 = X3. Opposite sides meet in the three points (0, 1, 2), (6, 1, 5), (2, 0, 1), which all lie on the line x1 + 4x2 = 2xa. 
§14.8 2. Let a, b, c be three skew generators. Let an arbitrary plane through a meet c in R. This plane contains also the generator Ra • Rb. 4. Calling the centers of perspective C1, C2, C3, C4, we see that C1 C2CsC.1 is perspective with B2B3B4B1 from A1, with BiB4BaB2 from A2, with B4B1B2Ba from Aa, with B3B2BiB4 from A4, with AiAaA,i.Ai from Bi, and so on (with A's and B's consistently interchanged). 
§14.9 1. Because Euclidean geometry does not admit self-perpendicular lines. 
§ 1 5.1 2. Any triangle has an incircle, and the lengths of the tangents to it from A, B,  C are s - a, s - b, s - c, as in § 1.5, ex. 3. We have to abandon all the formulas involving trigonometrical functions, but ex. 1 remains valid, and so does ex. 4 (with the proof indicated in the hint). Even an acute-angled triangle may fail to have a circumcircle. 
§ 1 5.2 1 .  See Coxeter 3, p. 189. 
§ 1 5.3 1 .  The plane through I perpendicular to the plane ABC meets the latter in a line m which may intersect I or be parallel or ultraparallel to 1. In the first case, all the planes Al, Bl, Cl pass through the point of intersection. In the second case, they pass through the common end of I and m. In the third case, by 15.26, 1 and m have a common perpendicular EF, and the planes A 1, Bl, Cl are all perpendicular to the plane through EF perpendicular to /. 
§1 5.4 1.  A tetragonal rotation about the front vertex on the left, a trigonal rotation about the center of the face d, the half-turn about the line joining the midpoints of two opposite edges, and the half-turn about the line joining two opposite vertices: (a b)(c d) 
= (a c b d)2. Not counting the identity, we have 6 + 8 + 6 + 3 = 23. 
§ 1 5.5 1 .  (a) C2. (b) D2nDn (n even), Dn X {I} (n odd). 

§1 5.6 (a) D2 X {I). (b) Ds X {I}. (c) A4 X {I}. 
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§ 1 5.7 2. The tetrahedron has six planes of symmetry, each joining an edge to the midpoint of the opposite edge. The cube and octahedron have nine, one parallel to each pair of opposite faces of the cube and one joining each pair of opposite edges. The dodecahedron and icosahedron have fifteen, one joining each pair of opposite edges. 
§ 1 5.8 3. Using the abbreviation 

k2 = cos2 2!.. - sin 2 2!.. = cos2 '.!!.... - sin 2 -.r Pl P2 P2 Pl (cf. 10.42), we find that the radius and distance are 
!sin'.!!... and L eos!!_. 
k Pi k p2 

§1 6.2 1 .  In the projective model, points and lines are represented by points and lines. Therefore isometrics are represented by collineations. Since parallel lines are transformed into parallel lines, these collineations must transform "' into itself. Since a reflection leaves invariant every point on the mirror, the corresponding collineation must be an elation or a homology (§ 14.6). Since it is of period 2, it can only be a harmonic homology. Since it preserves w, its center is the pole of the mirror (i.e., the point of intersection of the tangents at the ends of the chord). When the mirror is represented by one of the vertical circles, the reflection appears as the inversion in the sphere, through thls circle, orthogonal to Klein's sphere. 
§ 1 6.3 1 .  In the projective model, the common perpendicular to two ultra parallel lines joins their poles with respect to w, and the common parallel to two rays joins their ends. 3. By considering congruent right-angled triangles, we see that AD = CF = BE. Since the angle C of the triangle ABC is equal to L CAD + L EBC, the sum of all three angles of the triangle is 

LBAD + LEBA, that is, the sum of two (equal) acute angles. 
5. Either a translation or a glide reflection, according as the triangles are, or are not, on the same side of their common side. 

§ 1 6.5 3. Consider how successive translations along CA, AB, BC will affect the side CA of the triangle ABC. The first translation slides this segment CA along itself to a position AX. The second (along AB) takes thls to BY, where LABY = A. The third (along BC) takes thls to CZ, where LZCB = .,,  - L CBY = r. - (A + B) so that 
L ZCA = 1T - A - B - C. (Thls result can evidently be extended from triangles to higher polygons.) 5. At any vertex we find one specimen of each angle of the polygon, in natural order. The cycle may be repeated any number of times (if the polygon bas a sufficiently large area). 
§ 1 6.6 2. The external bisectors of two angles of the triangle may be either intersecting or parallel or ultraparallel. 4. Two. Their centers are the two ends of the perpendicular bisector of the segment joining the two points. 
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7. Use § 16.3, ex. 2. 

§16.8 

ANSWERS TO EXERCISES 

By all the circles through one point (the point of contact). 
§1 7. 1 

2. (a X b) X (c X d) = [acd] b  - [b c d] a  = [abd] c - [abc]d 

§ 1 7.2 The-velocity is in the direction of the tangent. The acceleration is directed towards the center along the radius. 
§ 1 7.3 2. x = cos u + u sin u, y = sin u - u cos u. This is a kind of spiral (but, of course, not an equiangular spiral). 
§ 17.4 

4. (a) s = 4 sin 1/,. (b) s = ½/(csc l/, cot l/, + log tan ½t). 
§ 17.5 p = a sinh u. At the cusp it is zero: the curvature is infinite. 
§1 7.6 

2. Because t • .!!.. (r + pp) = 0. ds 
§1 7.7 

3. £ = I. a 
§1 7.9 

1 . x = aµ." cos u, y = aµ." sin u, z = cµ.". 
5. The cylinder based on an equiangular spiral. 

§ 1 8.2 
5. det ga.s = G-1. 

§18 .5 3. � x,,2 = I ,  �Y..Za = 0. 5. gu = (u3)2, g22 = (u3 sin u1)2, g33 = I, gap = 0 (a=:/= /3). 
§ 18.6 

1 ,  �� £".BY y pZy, 

§1 9.1 
3. rl = r1/(l + z12), r2 = r2/(ul)2. 

§1 9.2 2. tan 4> = v g I g12-
5. g1a1 = gza2. 
7. S = 1"' lzor. sin u1 dul du2. 



ANSWERS TO EXERCISES 

§ 1 9.3 2. b11 = - 1, b22 = -sin2 u1, bu =  0 (i =I= j). § 1 9.4 
1 .  H = 0. 3. ul = ½1r, ul = f1r. 

§ 1 9.5 3. u1 -+- u2 = k. 

§ 1 9.6 1 .  At an umbilic, 19.52 is an identity. 3. At an umbilic, K = K2 > O. 
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5. No. When there is a curve ofumbilics, this curve is itself a line of curvature, and the only lines of curvature that cross it do so at right angles. 
§ 1 9.7 3. The lines of curvature are the intersections of the ellipsoid with the other quadrics of the system. 
§ 1 9.8 1 .  8 = ¼1r, ¾1r. 
§20.1 2. fii,i = ½(g;;);, fiiJ = - !(gil);, f;;,i = ½(Eu);, fh = I'i;,klgu. 5. By the equations just before 19.33, yg r1 = I ehin X rA. 
Hence y g I rf, = y g Ir• • r,; = II ehl [nrAr11] 

§20.3 2. (yg)11 = -yg. 
§20.5 

= n • II ehl rh X r11 = n • ('1 X r2)J 
= n ·(ygn); = (yg),. 

(i) 2 1r sin r, (ii) 21r sinb r. 

§21 .1 Yes; it  forms a map of three hexagons on the torus. 
§21.2 3. They form the Thomsen graph. 
§21.3 2. {3, 5}/2 has 6 vertices, each joined to every other. The vertices and edges of {5, 3}/2 form the Petersen graph [Ball 1 ,  p. 225). 7. V = 3, 4, 4, 5, 6, 7. 9. The positive integersp and q are not quite arbitrary. Ifone of them is I. the other can only be 2. For instance, q = l implies E = pr, F = 2r, whence 

E + F = (p + 2)r = (2p + 2q - pq)r = X <; 2, E = F = l, p = 2. 
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§21.4 1.  The cube in only one way; the dodecahedron two ways. 
§22.1 1 .  rN1 = E' No, where, by ex. l at the end of§ 10.3, 
Similarly, pN2 = ENa. 

l l l 
E' = q + , - ½ • 

2. This is derived from the analogous cube in the space x4 = 0 by translating it through distance l along the fourth dimension. 4. (1, l, 1 ,  1). 
§22.2 2. {3, 3, 4}. 
§22.3 1 .  (+ 1, 0, 0, 0), (0, + l, 0, 0), (0, 0, ± l, 0), (0, 0, 0, + l). 3. (-r, l , -r-1, 0) = -r-2(-r, 0, -r, 0) + -r-1(-r, -r, 0, 0). 
§22.4 1 .  No. 3. Yes. The twelve can have their centers at the vertices of a regular icosahedron. 
§22.5 No. 
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About the book . . .  

In the last thirty or forty years the 
prevalent emphasis on analytic and clif
f erential geometry has led to the wide
spread but mistaken impression that 
geometry is merely a part of algebra 
or of analysis. This impression causes 
many students to overlook the fact that 
geometrical ideas are often essential 
tools in the development of other 
brand1es of mathematics, including 
both algebra and analysis. More im
portant, it obscures the fascination and 
beauty of geometry itself. 

b1/rod11ctio11 lo Geometry provides 
the student and general reader with a 
lively, yet rigorous exposition of the 
subject. Written by an internationally 
known geometer, this book not only 
reveals the inherent interest of geometry 
itself but also shows its usefulness in 
U1e study of kinematics, crystallography, 
statistics, and botany as well as in the 
study of other branches of mathematics. 
The unifying thread that runs through 
the whole work is the idea of a group 
of transformations or, in a single word, 
S)lllllletry. 

The .first eleven chapters of the book 
are devoted to Euclidean geometry. In 
the next five d1apters, the author turns 
to the development of several different 
kinds of geometry, giving particular 
attention to Affine and Absolute geom
etry. The next four chapters deal with 
differential geometry, and discussion 
of the subject is extended far enough 
lo include applications to non-Euclidean 
geometry and the topology of surfaces. 
There are exercises at the end of almost 
every section, and hints are given for 
the solution of the more difficult. Some 
answers are given at the end of the 
book, and an answer booklet is avail
able for the remainder. 

H.G . .J.V. 

• 1 
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