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1 Preface

J. Frangois Gabriel

Henry Ford reputedly said that customers could have his automobiles in any color,
as long as that color was black. A parallel can be drawn with the shape of our rooms,
which could come in any shape but are essentially cubic. Very few rooms are perfect
cubes, it is true; most are in the shape of flattened or elongated cubes, but themajority
of our buildings are conceived as an assemblage of cubic forms, and that is what they
look Eke: piles of shoe boxes.

We use the cube as if it were the only acceptable model for our living spaces and,
in doing so, we ignore countless other forms that might lead to more efficient, more
beautiful, more economical, and certainly less worn-out environments. Why do we do
it? Mr. Ford told us wemust drive his black cars, but who told us that wemust dwell in
square or rectangular spaces, bound by four vertical walls intersecting at right angles?

Would all the painters in the world agree to throw out all their colors and limit their
palette to one color only? Would all the writers agree to limit their language to words
of three syllables? Would all the composers…? Of course they would not. Yet, like it
or not, most of us end up living in cubes, or nearcubes. This book makes a case for a
family of shapes that often makemore sense than the cube: polyhedra. Indeed, the
cube itself is a polyhedron, andmany of the forms used or described in this book have
a direct, if not always obvious, relationship with the cube. My intention is to show, with
the help of contributions from structural engineers, architects, historians, and others
whose expertise spans several fields, that polyhedra provide all the elements for a
formal language of extraordinary versatility that can satisfy the essential demands of
buildings: solidity, beauty, and convenience.
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Briefly, this book is organized as follows: We begin, logically enough, with a look at
the past. The first chapter contains a historical survey of polyhedra. Then we discuss
the attitudes of three great designers of the 20th century toward polyhedral forms.
Chapters 5 to 7 look at a more recent past and show how space frames, formed by
aggregates of polyhedra, shaped three important buildings, each using a space frame
in an original way. In the next five chapters, we focus on the theoretical aspects of
polyhedra, their formal bonds with the cube, the kinship that exists between one
polyhedron and another, their symbolic meaning, their proportional relationships,
their specific structure, and their representation. The subject of the three following
chapters is the future: tensegrity, space labyrinths, and quasicrystals, all of which
are in their experimental stage, but already suggesting architectural possibilities that
may materialize soon.
Themost important criterion of architecture is not about looks, but about the quality

of the spaces within. An architecture of space frames and polyhedra will be viable if
the spaces formed by it are at least as good (as convenient, as beautiful, etc.) as those
found within conventional, cubic frameworks. This critical question is discussed in
the last chapter of the book.
This is not the definitive book on architecture beyond the cube. Nor can it be, for the

field of space frames and polyhedra is continually changing and expanding, enriched
by the discovery of new configurations, new designmethods, and new applications.
However, a genuine effort is made to present a broad, accessible, and faithful picture
of the state of the art.
Very few polyhedra are found in the natural world. Most of them are a creation of

the mind. With experience in architecture and the history of structural design, Jos
Tomlow looks in Chapter 1 at the discovery, the perception, and the use of polyhedra,
from Pythagoras to Alexander Graham Bell. With few exceptions, polyhedra were not
seen as structural or architectural objects. It is only in this century, and particularly
in the last 50 years, that the connection was fully made. Interestingly enough, the
representation of polyhedra emerges as one of the most intriguing aspects of their
history. Everybody seriously involved with polyhedra knows the challenge of making
their forms comprehensible to the onlooker, or even to oneself. The cube is the
easiest polyhedron to draw, and I suspect this to be one of the explanations for its
extravagant popularity. Of course, the price we pay for using it indiscriminately is a
greatly impoverished spatial experience for all of us.



How did some of the most inventive minds of the first half of this century approach
problems of structure and architectural modeling? Bruce Goff’s work is characterized
by fantasy and ingenuity and he came close to a literal geometry, for he sometimes
merged polyhedra and architecture into a single entity. He did not use simple geomet-
ric solids in isolation, which is easy to do but which might not be of great significance.
He chose to shelter varied architectural functions in regular patterns of polyhedra, or
infinite structures, as they are called. He gave polyhedral shapes to his rooms, and he
also used the same polyhedra to create different room shapes in the same building,
thus proving that it could be done without monotony. He also proved something else.
Rollie Ristine, a student of Bruce Goff, shows in Chapter 2 that his teacher was not a
geometer, and it is doubtful that he even knew by their names the polyhedra he used
in his designs. However, he thought as an architect when giving order to space, and
he came intuitively to geometry, showing that geometry is as good a way to organize
space as any other. One might even wonder if there is any better way.

With Louis Kahn, in Chapter 3, we come to one of the most widely acclaimed archi-
tects of the postwar era. Unlike F. L. Wright, Le Corbusier, or Mies van der Rohe, Kahn
had a formal architectural education and earned an architectural degree. The school
he attended was traditional, even classical, since at the time architectural education
in the United States was completely dominated by the Beaux-Arts system. Far from
rebelling against his training, Kahn assimilated the fundamentals of classical archi-
tecture and reasserted its principles in his mature work. Simple geometric forms
such as the square, the circle, and the equilateral triangle, bilateral symmetry, and
clarity, which are typical of classical designs, are among the constants of Kahn’s work.
The memorable impression made by his buildings is a direct outcome of classical
principles. Geometry infuses Kahn’s designs, and it is no wonder that, under the in-
fluence of his collaborator Anne Griswold Tyng, he should have become interested in
space frames. The building that first brought him to the attention of the architectural
profession at large is the Yale University Art Gallery, where the floor structure is a
space frame. The fascinating design for an office structure using a mega-space frame,
although not built, gave him the aura of a prophet andmade him famous worldwide.
Irene Ayad shows how Kahn’s involvement with polyhedra fits in his architectural
development.



Kahn, who was also a painter, was intensely visual. Buckminster Fuller, on the other
hand, told me in the last year of his fife that he did not care how things looked. He
seemed to think that, when things are done right, they end up looking right, for our
aesthetic judgments are based on previous experience. Fuller’s geodesic domes, some
very large and some rather small, are often as beautiful as pure polyhedra can be. And
so is the space frame, which Fuller called the octettruss, and for which we owe him so
much. However, those who believe that originality and personal expression are the
first goals of architecture do not think much of structuralism. Fuller was neither an
architect nor an engineer. He was essentially self-educated, and he has been variously
called by others a poet, a philosopher, an inventor, an environmentalist, a scientist,
an engineer, a maverick, a crackpot and, by himself, a comprehensivist. In 1952 he
did receive an Award of Merit from the New York Chapter of the American Institute of
Architects, and in 1960 the Gold Medal of the Philadelphia Chapter of the American
Institute of Architects. It is fitting that Arthur Loeb, a maverick himself, should share
with us personal recollections of a fruitful collaboration in Chapter 4, Buckminster
Fuller and the Relevant Pattern.

Philip Johnson’s approach to design is radically different. Best described as a com-
plex, sectioned, prismatic form, his Crystal Cathedral is a dramatic piece of abstract
sculpture. It demonstrates in a masterful way that, far from hindering freedom of
expression, space frames can lend themselves to the implementation of any building
shape. It is not for ideological reasons that a space framewas selected by the architect,
it is because nothing else could do the job, as Mr. Johnson explained to me in January
of 1993. Familiar to millions of television worshippers who have seen it on Sunday
mornings for 16 consecutive years, the building remains, on many levels, one of the
most paradoxical of the second half of the century. In Chapter 5, Lawrence Davis gives
us a fascinating account of these paradoxes.

The Javits Convention and Exhibition Center, by Pei, Cobb, and Freed, provides
a neat contrast to the Crystal Cathedral. Other than its enormous size, the most
impressive feature of the Javits Center is its designers’ sensitive recognition and
acceptance of the geometry of a space frame. By geometry, I mean the shape of the
“building blocks” and the pattern they form: octahedra juxtaposed to tetrahedra. As
Matthys Levy, the engineer in charge of the project, shows us in Chapter 6, this pattern
controls and, to a certain extent, determines the shape of the building. One admires,



in particular, how smoothly space frames are made to “turn the corners” as well
as the expressive effect obtained at the main entrance of this civic palace. Nothing
extraneous was added to the space frame, and nothing was subtracted from it. Levy’s
no-frills writing style seems perfectly suited to the restraint of the design.

Because of its location and because of its function, a certain austerity is expected
in the facade of a building like the Javits Center. What was called for in the theme
building of the exhibition “Portopia ‘81” in Kobe, Japan, to celebrate the completion of
a large artificial island, is very different. The open and cheerful structure is achieved
solely with space frames. The airy elegance of this building, all curves and smiles,
makes its loss to demolition regrettable. Conceived to resist the effects of typhoons
and seismic forces, it would have been interesting to see how it would have fared in
the powerful 1995 earthquake. The chapter, entitled Double Curvature Space Frames,
is written by the engineer in charge, the talented Masao Saitoh.

It cannot be said too often that a cubic frame with hinged joints is unstable, and
that it requires some doctoring to be made indeformable. One treatment consists
of adding one member to each square face, placed along one of its diagonals. If
the shape one wishes to achieve is a cube, the presence of diagonal members on
its faces changes nothing of the interior volume or its bounding surfaces. Because
a tetrahedron can be the figure formed by the diagonals alone, it would have been
more direct to ignore the cubic frame and adopt a tetrahedral frame to begin with.
In other words, a cubic volume fits in a tetrahedral frame as well as it fits in a cube.
This little bit of irreverent magic introduces Arthur Loeb’s chapter, Deconstruction
of the Cube, where the coupling of tetrahedron to cube is shown to beget many other
polyhedra. Names like Stella octangula and rhombic dodecahedron may sound a bit
complicated, but they are descriptive and, once you know them, you find that they
refer to interesting and friendly personalities. And know them one must if one is
considering an expansion of design sources beyond the cube.

As indicated by the title of his chapter, ThePolyhedralWorld, PieterHuybers reaches
away from the cube and sets out to understand the geometric laws that govern these
shapes. This understanding is necessary if we are to adapt polyhedra to our architec-
tural and structural needs. Archimedean solids, prisms and antiprisms, domes, and
folded-plate structures are included along with space frames in the discussion, which
contains a minimum of mathematics.



With ReneMotro in Chapter 10, we look formeaning in space frames and polyhedra.
For as long as they have been known, polyhedra have aroused the interest of brilliant
minds who, from Plato to Buckminster Fuller, have tried to understand the world as a
synergy. The five “perfect” polyhedra are often referred to as Platonic solids, not be-
cause Plato discovered thembut because each one symbolized one of the five elements
in Pythagoras’s cosmology, in which he, Plato, was deeply interested. Thus the cube
stands for the earth, whereas the octahedron stands for the air. However, symbolic
meaning can be found in everything, and symbolism is not a science. According to
Motro, however, one rule applies, and it stipulates that a symbol cannot be defined
without suffering mutilation, distortion, or total elimination. As for proportion, it can
be more than an attempt to please the eye. Proportion is related to symbolism when
it is understood as an expression of divine harmony, that is, perfection. In reading
Motro’s chapter, we will see that he is an engineer whose thinking is as clear as it is
rigorous.
We return to earth, so to speak, with Ture Wester’s chapter, The Structural Mor-

phology of Basic Polyhedra. Wester is also a structural engineer, and an imaginative
one at that. He does not confine his thinking to post-and-beam structures stabilized
by triangulation or other means. This would not do with polyhedra, the structural
problems of which have little in common with those of their brother the cube. Three
of the five regular polyhedra make perfect rigid lattices. They are the tetrahedron, the
octahedron, and the icosahedron, which all have triangular faces. Three make perfect
plate structures, and they are the cube, the dodecahedron and, again, the tetrahe-
dron. These three have three-branched vertices. This observation forms the basis
of Wester’s elegant general theory, structural duality, which leads to the formulation
of simple rules for analyzing the rigidity of any arbitrary polyhedra, simple design
methods for geometrically complicated but highly efficient plate structures, and other
interesting possibilities. Some structures of the natural world are included in his
demonstration.
Hoshyar Nooshin has developed a mathematical tool called forniex algebra for the

processing of all kinds of configurations. The advent of the computer made the struc-
tural analysis of space frames easier and faster. In so doing it became the indirect
causeof theprofiferationof space frames from the1950son. CADnowplays an increas-
ingly useful role in visualization and formal transformations, which are routine in all
architectural and structural design, and are evenmore critical with noncubic forms,



where the use of the traditional T-squaremay be too slow or considered old-fashioned.
Nooshin’s chapter, written in collaboration with P. L. Disney and O. C. Champion, lays
down the foundations of a comprehensive approach for computer-aided processing
of polyhedral configurations.
Chapters 13 to 15 open new horizons for polyhedra in three directions. Tensegrity, a

term coined by Buckminster Fuller, represents structures with discontinued compres-
sion. All structures include parts that are under compression. In tensegrity structures,
these elements are not in direct contact with one another: They are held together by
intermediate cables. Tensegrity structures are a marvel to behold. Ariel Hanaor, in
Chapter 13, suggests that practical applicationsmay be found in combining tensegrity
with deployable, or retractable structures, which are brought on the site in bundles
and erected rapidly with a variety of mechanical devices.
Space labyrinths are structures made of a continuous surface dividing space into

two parts, one being the inside and the other one being the outside. In some cases,
inside and outside are interchangeable and some labyrinths can be constructed with
one single module. Space labyrinths are open-ended, meaning that they could theo-
retically go on forever. One can see from this rough description how space labyrinths
could revolutionize our concept of architectural space. Haresh Lalvani conceived his
chapter as a pictorial essay that could be part of a visual encyclopedia of form and
structure. Higherdimensional diagrams show space labyrinths, some already known,
others presented here for the first time, grouped in families. Included are hyperbolic
and nonperiodic, that is, quasicrystalline, space labyrinths.
Tony Robbin defines quasicrystals as three-dimensional manifestations of higher-

dimensional cubes. Essentially, quasicrystals are assemblies of two different poly-
hedra with similar topological properties, both derived from the cube, capable of
clustering in compact arrangements and capable of forming nonrepeating patterns.
This means that the pattern may duplicate itself, but not necessarily at predictable
intervals. In his realizations, Robbin aims at making works of art, but he is aware of
the structural and architectural capabilities of quasicrystals, which might be realized
at full scale in the years ahead.
I have been interested for many years in the shape of spaces generated by space

frames. I am evenmore interested in the architectural spaces that can be foundwithin
space frames. What are they like? How can they be connected with one another? How
can they be accessed? To what use do they lend themselves? How do they compare



with square rooms? How can they be built? Some of my investigations are reviewed
in the last chapter of the book. The conclusive ones are given names, such as hexmods
and star bea?ns. More are in progress, and many more remain to be discovered. I
think we are in the prehistoric phases of discovery in an immense and promising field,
which we have only begun to probe.
In general, there is a regrettable shortage of actual polyhedral buildings. This is

difficult to understand for those of uswho, having explored andexperimented for years
with these forms,marvel at their inexhaustible richness and have a vision of the poetry
that emanates from some of them. This book presents a small but significant portion
of the work done around the world by a number of architects, engineers, and others.
Some speculate, and others build. Some do both. All our efforts are experiments, and
many are successful enough to sustain our enthusiasm. Space frames and polyhedra
will change our ways of building. Eventually, they will bring about a gentle revolution
in the way we design architecture. I hope readers find pleasure in this book, as the
material presented here should stimulate their imagination and encourage them to
satisfy their curiosity.
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2 Polyhedra, from Pythagoras to
Alexander Graham Bell

Jos Tomlow

2.1 INTRODUCTION

Writing about the history of polyhedra up to the year 1900 means either lining up
repetitive quotations from some 400 editions of Euclid’s Elements or—which the author
prefers—making a voyage of exploration through historic objects and images of polyhe-
dral shapes and considering the specialists involved. Indeed, the very materialization
of polyhedral form as a two-dimensional image or a three-dimensional object turns
out to be one of the keys to the significance of polyhedra in history.

2.2 NATURAL CRYSTALS

The history of mathematics did not start with Pythagoras, who built upon the theoreti-
cal and practical knowledge of geometry that the Egyptians and the
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Figure 1.2 Quartz, rock crystal, with prismatic shape and pyramidal ends. (Source:
Private collection. Photo: Jos Tomlow, Stuttgart.)
Figure 1.1Natural crystals (Almadin) with the shape of a rhombic dodecahedron.

(Source: Private collection. Photo: Jos Tomlow, Stuttgart.)
Mesopotamians had acquired. Even older are Chinese achievements in mathe-

matics. If one wants to reconstruct the earliest human understanding of polyhedral
phenomena, one has to think rather of natural polyhedra that occur in certain crys-
tals. So, for a start, we may consider these naturally occurring manifestations that
could have urged people to look further. Certain natural crystals show semi-regular or
regular polyhedral forms like the rhombic dodecahedron, the tetrahedron, and even
the cube.1 The transparent quartz crystal shows a polygonal prism with a pyramidal
top. This may have led people to ponder on the geometric properties until someone
may have conceived that six square planes fit together in a logical way into a cube.

2.3 THE EARLIEST POLYHEDRAL OBJECTS

The next step is the man-made polyhedral object. One such ancient object is the
East African foot ring, whose polyhedral ends may be even older in origin than the
semi-regular polyhedral pyramids of Egypt or related forms in Mesopotamia. The
material is hammered and welded silver. Women wore such lightweight rings loosely



around the ankle. The open ring is hollow with two knob-like endings, shaped like
cubes with snubbed vertices. This shape, called a cuboctahedron, is a semi-regular
polyhedron with six squares and eight triangles. The craftsman took care to smooth
some edges of the polyhedra in order to avoid hurting the foot, whereas all other
surfaces are adorned with cut lines or stars. Typical °f this kind of jewelry worn by
Berber women is its cultural origin and age are difficult to trace.2

Proof that the combination of an open ring with a cuboctahedron is truly

Figure 1.3 Old East African silver foot ring with ends shaped like a semi-regular
polyhedron (cuboctahedron). (Source: Private collection. Photo: Gabriela Heim,
Stuttgart.)
old can be found in the so-called polyhedral earrings and basket earrings produced

in early medieval Europe. One pair of earrings, now in the German-isches National-
museum Niirnberg, was probably found in a grave in Romagna, Italy. The material is
silver wire with a tiny solid silver polyhedral knob attached to it.3 Another type of ear-
ring, an example of which is in the Landesmuseum in Stuttgart, was found near Basel
in an Alamannic woman’s grave (end fifth century). One end of the so-called basket
earring, made of either gold or silver, has an open cuboctahedron or similar form, in
which a precious stone (e.g., garnet) is held. Although later on these polyhedral forms
were copied by regional artists, their origin is thought to be Mediterranean, imported
by trade or war.4



2.4 THE ANCIENT GREEKS ON POLYGONS

In my hypothetical chronology, the ancient science of polygons and polyhedra began
only after craftsmen had made simple polyhedral objects like the early cuboctahedra
mentioned previously.

Pythagoras (ca. 570–510 B.C.) is attributed with developing a basic geometric theo-
rem, the graphic demonstration of the algebraic formula a2 + b2 = c2. The square and
the right-angle triangle play a major role in his proof.5–7To underline the importance
of his work, we may recall here the story of how Pythagoras sacrificed a hundred fat
oxen to the gods in gratitude for his having discovered the 90° angle.8

In Euclid’s Elementswe find a discussion of the Pythagorean theorem. An illustration
survived, dating from a time when European prints did not yet exist and can be found
in an Arabic transcription of Nasr ad-Din at-Tusi (who died in 1247). If we consider the
quality of the drawing, we see some interesting, progressive features: Letters permit
cross reference to the text and the figure is drawn in red, whereas the lettering uses
dark ink. Negative features also exist: The drawing is roughly executed with some
lines shown double; the squares do not show true right angles; and the illustration
is awkwardly squeezed between the accompanying text. The non-right angles are
especially puzzling, as they concern the very essence of the geometric construction
described. One may think that the illustration has no meaning on its own and can
only be understood in relation to the mathematics in the text. We may call this a
diagrammatic use of the drawn image.9



Figure 1.4 The five “Platonic” regular polyhedra and their symbolism—together
with concave or stellated polyhedra—as depicted by Johannes Kepler in Harmonices
Mundi (1619). (Source: J. Kepler, Die Weltharmonik, R. Oldenbourgh Verlag, Munich,
1990.)



2.5 THE ANCIENT GREEKS ON POLYHEDRA

TheGreeks started to theorize about the relationship between polygons and polyhedra
and, in this way, entered into a hermetic realm of knowledge. The observation that
only five regular and convex polyhedra can exist and the notion that these bodies were
a symbol for all and everything were formulated as a doctrine by Timaeus of Lokri:
Fire is represented by the tetrahedron, air by octahedra, 'water by icosahedra, earth by cubes
and, since a fifth arrangement is possible, God has zised the dodecahedron to serve as a contozir
of the zmiverse—cited from Timaeus by Plato (427–348/347 B.C.).5

Euclid (ca. 323–285 B.C.) described the basic geometric principles of these five
polyhedra inhisElements.10,11 Aswe shall see, it was a long timebefore the visual image
of polyhedramatched themathematical rigor of Euclid. It is only from the 18th century
onward that book illustrations can be regarded—more or less—as geometrically correct
projections.10,12

Figure 1.5 Polyhedra illustrations, showing poor standard of representation in 18th-
century mathematical handbooks. (Source: B. Lamy, Les Elemens de Geometrie ou de la
Mesure de I'etendue; qui comprennent les elemens d'Euclide;…, Paris, 1731.)



Figure 1.6 Polyhedra illustrations in a leading architectural handbook of the early
19th century. (Source: J. Rondelet, Traite theorique etpratique de I'artde batir, Paris,
1812–1817.)

Furthermore, note that it is in 320 A.D. that Pappus published the 13 semi-regular
polyhedra described by the great physicist Archimedes (ca. 287–212 B.C.).6-7

2.6 ANCIENT POLYHEDRAL MODELS

Let us return to the interesting question of polyhedra as three-dimensional objects.
Referring to their autonomous beauty, Plato himself speaks in Phile-bos of the making
of such objects “with a plane iron” and with the help of “guideline and triangle.”13

In a recent contribution Malkevitch states that polyhedral objects were being made
in late Roman times. Hementions icosahedra of steatite and faience with Greek letters
incised on their faces.

Quite significant is a bronze dodecahedron found in Carmarthen, Wales (Society
of Antiquaries of London). It is a hollow dodecahedron with 12 circular openings
in the faces. The circular openings are of six different sizes and paired together on
opposite faces. Solid spherical knobs are added on the 20 vertices. The scientific
interpretation suggests a use as an instrument with a technical function or a utensil,
like a candlestick. On the other hand, the knobs could have been added for fixing the
object to some land of pole through the openings with thread.14



2.7 MEDIEVAL APPROACH

Mature ingenuity is shown in the semi-regular polyhedra in theBarbarossa Chandelier
in the Aachen Cathedral (ca. 1270). The Barbarossa Chandelier is one of the few
remaining of this type in Germany, others being in Hildesheim and Gross-Comburg.
These chandeliers symbolize the city of Jerusalem. Individual miniature towers are
attached on a metal ring representing the city wall. The Barbarossa Chandelier is
suspended from a chain with bifurcating iron rods. Whereas the top bifurcating
point is a sphere, the four other nodes, in which three rods meet, are shaped as a
cuboctahedron (six squares, eight triangles).

The nodes are made of solid wood (approximately 12 cm in diameter) covered by
silver sheets and a sphere’s sector in copper sheet protrudes from the square faces.
The rod coming from above enters the node element in one of the square faces and
holds the two lower rods in a shared inclinedplanewith a horizontal, intermediate iron
bar. This intermediate bar crosses the nodal object between two opposite square faces.
Thus the wooden node was drilled crosswise to accommodate the iron parts. The
node serves an important structural purpose, keeping, as it does, the horizontal bar
perpendicular to the primary rod. As both secondary rods are fixed to the horizontal
part with eyelet hinges, the structural solution for the chandelier and the even heavier
chain,



Figure 1.7 The Barbarossa Chandelier in the Aachen Cathedral (1170). (Source: Die
Kunst-denkmaler dec Stadt Aachen, I. Das Munster zu Aachen, Dusseldorf, 1916.)

which together weigh 640 kg (incomplete), shows a maximum degree of freedom
within a symmetrical equilibrium.15

Polygonal geometry is a major principle in the design, not only as applied to the
node element but also in relation to the whole chandelier and even its position in
the centralized space of the Aachen Cathedral, called the Octagon. The chandelier’s
ring is divided into eight segments and carries eight three-story towers, alternating
with smaller towers. Forty-eight lamps are regularly spaced around the wall. The
bifurcation occurs in two stages: The chain carries four rods, each of which holds two
more suspension rods. This geometric scheme is related to the symbolism of the holy
city of Jerusalem, which shows similar features as an ideal city in terms of planning.



The upper bifurcation point, a sphere, symbolizes the sun, as can be seen from texts
on these chandeliers, and one may assume that the other smaller spheres and the
semi-regular polyhedra could be interpreted as planets and moons in their ordered
position in space.15,16

The inventive aspect of this application of polyhedra is that geometry is used cor-
rectly here as the basis for a spatial design. Although the angle of bifurcation of the
lower rods was a free choice and is not related to the axes of the cuboctahedron, one
may see in this application a very rare historic predecessor to contemporary space
frame nodes developed from polyhedra.

Figure1.8The structural parts of theBarbarossaChandelier in theAachenCathedral
(1170). (Source: Aachener Dom, Domkapitel. Photo: Herta Lepie, Aachen.)



Figure 1.9 Semiregular shaped knot (snub cube) of the suspension of the Barbarossa
Chandelier in the Aachen Cathedral (1170). (Source: Aachener Dom, Domkapitel.
Photo: Herta Lepie, Aachen.)

2.8 CONTRIBUTIONS FROM THE ARABICWORLD

Other medieval examples of polyhedral objects are rare and there seems to have
been little theoretical development during this period. This may be because Greek
mathematical sources were only fragmentarily known in Europe and there was only
limited communication with the Arabic world and its fruitful scientific use of Greek
sources.9,17



Although Arabic knowledge of polygons and their use in design, for instance, in
tile mosaics, was brilliant and common, no evidence could be obtained that the
Arabs took the logical next step to polyhedra-based applications in three-dimensional
space. However, Critchlow refers to Arabic cosmological speculations—similar to
Kepler’s—based on ancient polyhedra symbolism.18

Of decisive importance for the understanding of three-dimensional space will be
the understanding of the way in which the eye receives a certain image. On the basis of
Euclid’s book on optics, Arabic authors such as al-Kindi (who died in 873) and Abu Ali
al-Hasan (965–1039), known as Alhazen, contributed to the scientific understanding
of basic notions like the cone of vision, the working of the pupil of the eye as a lens, and
the necessity of light for visibility of any object. These Arabic books were translated
for use and interpretation throughout Europe. Subsequently, Arabic knowledge on
optics added to the understanding of the physical part of perspective projection in
Italy, outside the tradition of its authors. Richter defends the hypothesis that a model
by Alhazen showing the working of the eye was based on the torus shape consisting of
polygons, which will be discussed in more detail in the following section.”

2.9 PAOLO UCCELLO (ca. 1397–1475) AND THE “MAZZOCCHIO”

As Gothic gave way to the Renaissance, a Florentine painter named Uccello became
interested in the main problem of early Renaissance painting: perspective. Vasari
describes Uccello as an artist who should have given less time to geometry andmore to
painting.19 Uccello’s fascinationwith perspective and geometry led him to concentrate
on details. Overall, his paintings show a complex composition with several different
perspective vanishing points.20

Drawings from his hand show objects, often of circular shape, reduced to quasi-
polyhedral forms. His favorite is the torus shape, not as a pure abstract form but
depicted in some paintings as the cylindrical hat worn by the men of his time, the
so-called “mazzocchio.” Preparatory drawings of such faceted rings measure up to 20
cm and are extremely precise perspec-tival projections in ink. The rings, sometimes
enriched by pyramidal forms, are divided into 16 or 32 sectors and each ring’s cross
section consists of a regular hexagon or octagon. Because all points of the ring are
shown in most of these drawings, the ring appears transparent, much like today’s
CAD line



Figure 1.10 Perspective ink drawing of a faceted ring, seen from below, attributed to
Paolo Uccello (1397–1475). (Source: F. Borsi and S. Borsi, Paolo Uccello, Florenz zwischen
Gotik und Renaissance, Belser Verlag, Stuttgart, Zurich, 1993.)

drawings. The reason for the consistent use of this drawing method may be to show
up any mistake in the perspective projection of the ring through a disturbance in the
continuity of the lines. Afterwards these drawings could be copied with all hidden
lines eliminated. The drawings are in one-point perspective and they have an axis of
symmetry common to two of the sector borders. In his painting Bernardino della Ciardi
Pushed out of His Saddle (part 2 of The Battle of Sail Romano), four men with such hats are
depicted from various points of view. In order to emphasize the geometric structure,
the hats’ facets are colored like chessboards.20



Figure 1.11 Drawing of a 72-faceted irregular polyhedron with pyramid points
attributed to Paolo Uccello (ca. 1440). (Source: F. Borsi and S. Borsi, Paolo Uccello,
Florenzzwischen Gotik und Renaissance, Belser Verlag, Stuttgart, Zurich, 1993.)

The epitome of these studies is a drawing of a vase with 32 sectors and some 64
nodal points in its section. Another very interesting drawing—similar to some of the
other drawings not positively identified as Uccello’s but executed according to his
drawingmethod—is a “sphere with diamond pyramids.”13,20,21 The sphere turns out to
be a 72-faceted irregular polyhedron. Another depiction of a polyhedron—a stellated
dodecahedron surrounded by a polyhedral ring—is attributed to Uccello. It is a colorful
floor mosaic in the basilica of San Marco in Venice dating from 1429–1430.22



2.10 PDERO DELLA FRANCESCA (ca. 1420–1492) AND HIS PERSPECTIVE LESSONS

Unlike Uccello—who often placed the boldly drawn volumes of his figures in dark and
somewhat ill-defined settings in his paintings—Piero della Francesca, one of themajor
Renaissance painters, achieved an impression of perfect harmony by using lighter
colors and placing his figures in clearly defined architectural settings masterfully
rendered in central perspective.23

In his old age when almost blind, he produced a work on perspective De Prospec-
tiva Pingendi, dictating the text to a pupil, who also executed the drawings. Being a
major source of publications by Albrecht Durer and Luca Pacioli and of La Pratica
della Perspettiva (1569) by Daniele Barbaro, this work was highly influential. It was
through it and the others that many artists and architects learned about perspective
and geometry.13,24

Piero della Francesca’s didactic approach is characterized by great care in the
choice, composition, andmanner of execution of the illustrations. In the Codex Palatin
manuscript, in order to make the procedures as clear as possible, the construction
fines are drawn in red and the finished perspectives of the objects in black. The geo-
metric construction of the mazzocchio torus form (here called “torculo”) is explained
as well as that of a polyhedral cupola similar to Uccello’s 72-faceted polyhedron. How-
ever, the text is very dry and tedious, consisting of page-long listings of the points to
be connected as the construction proceeds.25

2.11 LUCA PACIOLI (ca. 1445–1517) AND THE MODEL APPROACH

The theology professor Luca Pacioli from Borgo San Sepolcro (hence who was also
known as Fra Luca di Borgo) was involved in a research project for the Duke of Urbino,
Guido Ubaldo, and Bishop Valletari, seeking to define correctly the mathematical
shapes of polyhedra, which were thought to have high symbolic significance. His
scientific publications included the first Italian translation of Euclid’s Elements.13,24

A new departure in the search for representation is the devising of different kinds
of models of polyhedra. Pacioli’s method of working essentially develops new forms
by truncation (cuboctahedron) or addition (stellated poly-hedra). His presentation
of results is unique for his time. One can distinguish no fewer than four levels of
presentation in his book De Divina Proportione (1497), which was highly influenced by



Piero della Francesca. First, there is the text, a mixture of dry descriptions of mathe-
matical relationships and witty accounts of architectural praxis. In this text a treatise
on the golden section is followed by a discussion of polyhedra and their variants.
Second, the text contains figures, which are simple line drawings of the schematic
Euclidean type, without proper perspective or perpendicular projection when they
show three-dimensional forms. Third, there are correct perspective drawings of the
more complex stellated polyhedra, drawn on Pacioli’s request by Leonardo da Vinci,
one of his many artist friends.21 These drawings were based on the fourth level of
Pacioli’s presentation, the three-dimensional models of polyhedra. Even a fifth level
of presentation is allowed for by leaving ample white space around the printed parts
on the pages, to enable the reader to add his or her own sketches or notes.8

In his book Pacioli refers to the usefulness of perspective drawings and he especially
recommends that the reader should visit the models in a sort of exhibition room or
laboratory.
He describes themodels—which were lattice structures—as being suspended and in

his perspective drawings Leonardo took care to show how they were suspended with
thin threads. The fact that the models were suspendedmay have practical reasons.
As we know from experience, lattice models are rather vulnerable to deformation. By
suspending them, one ensures that only their own weight is loading the structure.
Even when somebody touches one, it will simply swing until balance is recovered
again.
Other information provided by Pacioli in Chapter LXX of De Divina Pro-portione is

that the Latin names of the polyhedra were written on paper labels attached to the
suspension threads of the models with two pegs (of amber, which is extremely fight).
He humbly excuses himself for the poor material he had to use for his models, owing
to a lack of funds, and he remarks that the noble theme of polyhedra deserves to be
proclaimed in precious metals decorated with precious stones.8

Themonk Pacioli’s interest in polyhedra is further documented in a double portrait
painting by Jacopo de’ Barbari (1495), showing him with a young nobleman in the
role of a pupil.13,24,26 A solid wooden dodecahedron is shown on a desk with other
objects relevant to geometry and drawing. Of particular interest is themodel of a semi-
regular polyhedron—a rhombicuboctahedron, as Kepler named this shape, made of
18 squares and 8 triangles. This polyhedron of glass polygons, probably blown in one
piece, is half filled with water. A thread crossing the glass bowl in its center is fixed to



its bottom and suspends it in an unstable equilibrium from the ceiling. It should be
remarked, however, that, in an otherwise perfect painting, the polyhedron shape is
flawed with a small perspective mistake: The water level is not parallel with the top
and bottom triangles.

Thiswater-filled glass polyhedron canbe interpreted as ameasuring device,making
use of physical laws. Because the suspension is vertical and the water level horizontal,
any horizontal section of the polyhedron can be generated by varying the amount
of water and the result can be compared with drawings. This polyhedron and its
geometric construction—without referring to the model—is explained in De Divina
Proportione, Chapter LIU. Another example of Pacioli’s concern for the physical aspects
of his models is that he mentions the possibility of enlarging the form by adding
triangular or square pyramids, leading to stellated shapes that will always stand on
the tops of three pyramids “as one can verify by observation on the materialized
shape.”

The 72-faceted polyhedral sphere, already mentioned in the discussion of Uccello’s
work, is presented in Chapter LIV Pacioli points out that domes like that of the Pan-
theon in Romewith its faceted coffersmay be regarded as being derived from a similar
geometric approach.

Pacioli’s aim in his concise presentation of stereometry was to advocate the training
of good craftsmen and he indicates this by warning anecdotes. In Chapter LVII he
recounts that he, together with a painter, once convinced a client to build a pillar
capital in a polyhedral form for its aesthetic impact. The master builder—thinking it
would be an easy job—followed the proposal, but in twenty days of work many marble
blocks were spoiled and compensation had to be paid. This awkward situation was
only resolved when Pacioli offered to teach the workers about polyhedra. A modest
type of polyhedra-based decoration by Pacioli is diamond-faceted masonry, probably
developed from a dodecahedron.24

In a rather mean way—typical of the feeling of superiority of the academic toward
the common worker—Pacioli proposes in Chapter LVH to expose the ignorance of
stonemasons by asking them tomake a regular shaped blockwith 12 regular polygons,
but using no pentagons.



In Chapter XVIII of his book De Architectlira (1509), Pacioli again encourages archi-
tects to build pillar bases and capitals according to polyhedral forms. Hementions
Roman literary references to the famous sculptor Phidias from Cercio, who executed a
part of a work in icosahedron shape (the symbol of water). This icosahedron attracted
the speculative attention of philosophers, more than any other part of his outstanding
work.8

Yet only few architects of his time followed Pacioli’s optimistic vision of polyhedra.
Vasari reports about Michelangelo (1475—1564) that he “had the goldsmith Piloto
make a ball of seventy-two facets” as a decorative finial for the cupola of San Lorenzo.19

An illustration of the ball consisting of irregular triangle planes is shown inMainstone’s
book.27

2.12 LEONARDO DAVINCI (1452–1519) AND THE LATTICE STRUCTURE

Leonardo da Vinci’s illustrations for Pacioli’s De Divina Proportione were probably the
first to show polyhedra as lattice structures.21,28 Drawing the edges of a polyhedron
with more than one line allows the artist to show which edges are in front and which
are behind, which is a great help in visualizing structures in space.

Leonardo’s skill as a draftsman shines especially in his drawings of machines and
complex building designs and there is clearly a connection between his illustrations
for Pacioli of latticed polyhedra and his linear stereometric images of architectural
structures.29 Compare his drawings from the Codex Atlanticus: f. 190 r-a, f.3 v-b, and
£.335 v-e.

2.13 ALBRECHT DURER (1471–1528) AND THE CLEARING OF POLYHEDRAL IMAGES

Diirer’s interest in polyhedra iswell known fromhis copperplate engravingMelancholia
of 1514. InMelancholia an angel contemplates an oversized truncated stone block in a
puzzling setting referring to building praxis, eternal time, and religion.



Being influenced by humanist philosophy and Renaissance universalism, Diirer
was fond of any geometric problem relating to art. Around 1506 he visited Italy for the
second time and he himself tells of a master in Bologna who taught him the “secret
perspective.” This master is thought to have belonged to the circle around Pacioli.
In Venice Diirer bought a Latin copy of Euclid’s Elements in order to understand the
theoretical background of his newly acquired knowledge.13,24, 30,31

Figure 1.12 Albrecht Diirer: projective image of a dodecahedron and a cutout plan
for a papermodel, as depicted inUnderweysung derMessung (1525), fourth book, Fig. 33.
(Source: A. Diirer, Unterweisung der Messung, Verlag Dr. Alfons Uhl, Nordlingen,1983.)



In the fourth book of hisUnderweysung derMessung (1525), polyhedra are illustrated in
a newway. Here, Durer, probably themost able woodblock cutter of all time, developed
a layout of beautifully worked out lettering with ample space for the illustrations. As in
other figures, polyhedra are shown by line drawing of plan and section, representing
the body, as it were, transparent. Letters facilitate the understanding of the drawings.
Other figures show chains of polygon plans, which can be cut out to make paper
models.32

Diirer’s clear-looking images of polyhedra nevertheless often contain mistakes,
showing that he was not quite aware of the mathematical rigor of geometry. For
example, he draws the circumscribing circle of the polyhedral body as if the two-
dimensional projection in plan or section would touch it in all its vertices. Being an
artist teacher, his major aimmay have been to give a clear, methodical description
rather than to show exact geometry. Similar criticismmay be made of his description
of the conical section, the ellipse, to which he gives the name “eyerlini” (egg line) be-
cause of the asymmetrical result in his drawn construction. Later Kepler will point out
that Diirer’s “egg line” should be interpreted as a bisymmetrical form when speaking
about the ellipse.24, 33, 34



Figure 1.13Nicolas
Neufchatel: Portrait of the Calligrapher and Mathematician Johann I Neudorfer and His

Son (1561), both studying a lattice model of a dodecahedron. (Source: German-isches
Nationalmuseum, Niirnberg.)
Yet Durer’smethod of drawing polyhedra and conical sectionswas farmore accurate

than the illustrations in early manuscripts or editions of Euclid’s Elements,which often
seem to be mere diagrammatic adjuncts to the mathematical text.



2.14 JOHANN NEUDORFER (1497–1563) AND THE DDDACTBC MODEL

The founder of German calligraphy and a teacher of calligraphy as well as calculation
was Johann Neudorfer (1497–1563) from Nurnberg. He executed the text for Durer’s
print seriesApostles. Apainting (GermanischesNationalmuseumNurnberg) byNicolas
Neufchatel (1561) shows Neudorfer as a mathematician, measuring with compasses
a dodecahedral lattice model of approximately 20 cm diameter, while Neudorfer’s son
writes down the results. A cube model is seen hanging on the wall.
The dodecahedron in the painting shows a profile in L-shape for the bars?1 This

may, on the one hand, save some weight in comparison with a simple trapezoidal
profile. On the other hand, it makes it easier to close the faces with pentagon-shaped
boards for demonstration purposes.

2.15 WENZEL JAMNITZER (ca. 1508–1585) AND RENAISSANCE AESTHETICS

Durer’s hometown of Nurnberg offered the best quality in book production and art
printing. Nobody was more fond of generating new polyhedral configurations than
Wenzel Jamnitzer, a gold-and silversmith and instrument maker, who was also from
Nurnberg.
His perfectly produced book Perspectiva Corporum Regularium (1557) shows a large

quantity of variations, generated from the five regular polyhedra. Beautifully adorned
images of the Platonic symbols (fire, air, water, earth, universe) with short texts intro-
duce four pages with six polyhedral variants for each polyhedron. Each of them is
represented inside a hollow half-sphere.13 The second part of the book shows polyhe-
dral “fantasies” in architectonic arrangements: for example, a monumental grave,
diamond-like faceted cones, and a latticed dodecahedron on a richly worked base.
In Jamnitzerwe recognize an artist with a systematic approach to geometry but igno-

rant of scientific language. Jost Amman, a copperplate engraver, executed Jamnitzer’s
designs with precision.35 Jamnitzer’s method of inventing and drawing complex poly-
hedra is known, although he did not describe it himself. Using simplified models
of polyhedra, he drew a correct image based on the empirical perspective method
described by Diirer. On the basis of these drawings, he could generate variations by
connecting different nodes or surfaces.
Portraits show Jamnitzer as an elderly looking, rather heavyset man with



Figure 1.14Wentzel Jamnitzer: allegory on “Water,” Plato's symbol of the icosa-
hedron, from his Perspective Corporum Regularium (1568). (Source: Germanisches
Nationalmuseum, Niirnberg.)

Figure 1.15Wentzel Jamnitzer: dodecahedron variants (1568). (Source: Germanis-
ches Nationalmuseum, Niirn-berg.)

Figure 1.16 Jost Amman: engraving print of Wentzel Jamnitzer working on his in-
stallation to analyze perspective (ca. 1568). (Source: Germanisches Nationalmuseum,
Niirn-berg.)





a long beard. It is amazing that a person with such a physiognomy could—like some
brilliant pianists with short thick fingers—produce the most delicate work of such
natural beauty. Of his silverwork it was said that he could make trees with miniature
leaves that were of such fine workmanship that they would move when one blew on
them.

Jamnitzer’s instruments were also inventive and precise. The portrait by Jost Am-
man in a copperplate print (ca. 1568) shows Jamnitzer with his perspective apparatus.
From a given viewpoint—the top of a pole on the right—a thread is stretched to the
object to be drawn and is held by a vertical stick with a foot plate on the other side.
The thread is kept under tension by a free-hanging weight inside the pole. (Another
possible interpretation is that the weight hangs in front of the pole but is not shown
in the print.) A second vertical stick, with a small console that can move vertically,
is attached on a rail. The console’s end, fixed by a vertical stick and horizontal rail,
gives the coordinates of one of the points on the projection surface of the drawing.
By changing the direction of the thread toward other marked points of the object, all
necessary points of the drawing can be determined andmeasured. A special aid was
a plate with the drawing pinned on it, which is fixed with a horizontal hinge parallel
to the rail on the table. If one turns the drawing into a vertical position, the console
could make a small hole to mark the corresponding point on the paper. To permit
turning the paper vertically, the thread and its lower fixture would have to be turned
away temporarily.36

The polyhedral construction in the niche shows a model that Jamnitzer might have
used to draw his polyhedra variants. The model, of rather modest appearance, is
of some mathematical interest as showing the cube in three different positions of
balance—stable on a face and unstable on an edge and a vertex.

As an instrument maker, Jamnitzer would have been accustomed to improving an
existing apparatus and his perspective instrument should be regarded as a product
of his cooperation with other perspective researchers in the Niimberg circle, such
as Hans Lencker, Lorenz Stoer, and Hans Hayden. This development of perspective
instrumentswas known and illustrated by Paulus Pfinzing in Ein schoner kurtzer Extract
der Geometric und Perspectiva (1598, privately printed with handdrawings) and later
published with woodcut illustrations as Optica (1616).13,36



Both the goldsmith Jamnitzer with his work in gold and silver and the engraver Jost
Amman were famous artists who worked for the imperial family. One wonders why
such an odd book project on abstract polyhedral shapes was established. The engrav-
ings by Jost Ammanmostly depict historic events and people against a background of
architecture or landscape with decorative embellishments.

Apart from the preparatory drawings for the book illustrations, Jamnitzer’s remain-
ing working drawings only once (in the Berlin Sketchbook, page 21) show a sketchy
representation of some polyhedra.36 The isolated position of his polyhedra studies in
relation to his usual themes leads one to interpret Jamnitzer’s purpose as the creation
of a training method for drawing three-

Figure 1.17Wentzel Jamnitzer: polyhedral fantasy (1568). (Source: Germanisches
Nationalmuseum, Niirnberg.)



Figure 1.18Wentzel Jamnitzer: monumental grave as a polyhedral fantasy (1568).
(Source: Germanisches Nationalmuseum, Niirnberg.)

dimensional objects. In his design work, both as a goldsmith and as an instru-
ment maker, Jamnitzer needed a precise representation of complex bodies, includ-
ing any volume of curved or angular appearance andmultisymmetric relationships.
Apart from this, scholars characterized the book type as a pattern catalog for use by
artists.13,37,38

Jamnitzer’s symbolic interpretation is the best example of the aesthetic approach
to polyhedra typical of the 16th and 17th centuries.



&efc$2te&en/ mitepempclnavffnct fcnban
tag gegeben tvirb/ei n newer befonber turner/ bodj gcrecfjter onnb
feln leicfcter weg/roie allerlep bing/ea ffren (£oxpoxa/©ebe ro/ober



wa$mdglidj juerbemfenvnbingrunbju(egeni(i/venucftober
enuerruef t/ferner in bit Pcrfpcetpf gebxacfjt werben mag/ on eini«
ge sergeblice linie/rip vff puneten/xcbergleicften weg biffitio noefc
nit betant gewcfen/ ©urefj fianfen_£encferQ3urger
ju$?iirmberg/allenfieb(jabern guter tflnflen
Ju e(nen vnb ge fallen publieirt.

Figure 1.19Hans Lencker: front page of his Perspec-tiva (1621), depicting technical
applications of polyhedral forms like sundial, balance, wheel axis, and chain. (Source:
Germanisches Nationalmuseum, Niirnberg.)
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Figure 1.20 Lorenz Stoer: polyhedral fantasy fromhisGeometria et Perspectiva (1567).
(Source: Germanisches Nationalmuseum, Nurnberg.)

2.16 JOHANNES KEPLER (1571–1630) AND POLYHEDRAL NOMENCLATURE VERSUS
COSMOLOGY

One of the sadder chapters in the history of science is the retrograde emphasis on
polyhedra in Kepler’s cosmology. As a physicist of Newtonian stature, he made a
major contribution to astronomyby showing that the orbits of the planetswere ellipses
having the sun as one focus. However, his pursuit of the idea that the distances of
the planets from the sun were proportionate to the dimensions of the five regular



polyhedra nested inside one another was, in retrospect at least, a stultifying mistake.
Even when empirical observations did not seem to fit this idea, he defended it with
great logical ingenuity, seeing no inconsistency between doing this and indulging in
furious polemics against those astrologists who sawmetaphysical meaning in certain
number combinations.39

However, as a positive result of his otherwise fruitless battle, Kepler contributed to
the best known astronomical tabellarium of the day, that of Tycho Brahe (1546–1601),
and in his book Hormonices Mundi (1619) he discussed new concave polyhedral solu-
tions and developed a systematic Latin nomenclature, which is still in use today.39–41

BUS'

Figure 1.21 Johannes Kepler: representation in Harmonices Mundi (1619) of Kepler's
speculative theory that the planets have the same distances as regular polyhedra,
which fit exactly to each other. (Source: J. Kepler, Die Weltharmonik, R. Oldenbourgh
Verlag, Munich, 1990.)

LORENZ ZICK (1594–1666) AND POLYHEDRAL SCULPTURE AND TOYS



In the early 17th century, the mathematical story of polyhedra and the precise de-
piction of their shapes reached maturity. Craftsmen (fine wood turners), silversmiths,
and ivory workers found an interest in the possibilities they offered. The increasing
complexity of geometry in Renaissance and early baroque art and a general fasci-
nation with machinery contributed to this interest.42'44 In some European courts
turning craft had become part of the modern teaching
system and some noblemen—like August of Saxony (reign 1553–1586)—were taught
in the preparation of ivory objects on turning machines.

In Historische Nachricht von den Niirnbergischen Mathematicis und Kiinstlem (1730),
Doppelmayr published some sculptures by Lorenz Zick. The central part of one
sculpture is a body with some concentric parts inside, which can all turn separately.
Twelve circular openings are regularly located on the sphere’s surface. Hence one
could describe this form as dodecahedral. Doppelmayr refers to the making “of all
kind of polygonal bodies, which are much alike the dodecahedron and which have
inside them 8, 10, 12, 16 identical bodies…and which later often were copied.”45



Figure 1.22 Lorenz Zick (1594–1666): dodecahedron-based concentric ivory show-
piece with stellated nucleus as published by J. G. Doppelmayr, Historische Nachricht
von den Niirnbergischen Mathematicis und Kiinstlern,…,Niirnberg, 1730, Tab. 5 (Source:
Wurttem-bergische Landesbibliothek, Stuttgart. Photo: Joachim Siener.)



In spite of Doppelmayr’s statement, which suggests that these polyhedral ivories
were invented inNiirnberg, such ivory polyhedra were already beingmade in Dresden
around 1581 by the court turner Georg Wecker, who came fromMunich. Other im-
portant artists were Giovanni Ambrogio Maggiore fromMilan and Egidius Lobenigk,
probably from Cologne. Beautiful specimens were produced in Dresden until 1620,
many of which were recently restored and can be seen in the famous Grime Gewolbe
museum in Dresden. A certain contribution to the unique quality of the Dresden sam-
ples may be attributed to Niirnberg artists such as Christof Koller, who was charged in
1559with the installation of the first turning workshop in the Dresden court, andHans
Lencker, who from 1576 onward gave lessons in perspective related to the problem of
turning ivory.44

To complete such fine work, special equipment had to be developed, including
spherical curved chisels. During the manufacturing process, the spheres had to be
fixed ina concentricposition fromtheoutside through theopenings. Suchapplications
of polyhedra became important tests ofmastery infine carpentry and thus contributed
to the development of the mechanics of precision.43

Similar polyhedral objects were still produced in the 20th century and the book
Drechslerkunst—Meistertechniken alter zmdneuer Zeit byHugoKnoppe (1929) is dedicated
to the 70-year-old artist turner Saueracker from Niirnberg, who made many fine
specimens. Knoppe mentions that the polyhedral objects were derived from used
ivory billiard balls whose spherical shape was damaged.43



Figure 1.23 Hugo Knoppe: working drawing and special chisel equipment for
concentric dodecahedra (1926). (Source: H. Knoppe, Meistertechniken derDrech-
slerkunst,\/er\ag Th. Schafer, Hannover, 1986.)



Figure 1.24 Hugo Knoppe:
working drawing and special chisel equipment for concentric spheres, similar to the
Chinese examples (1926). (Source: H. Knoppe, Meistertechniken der Drechslerkunst,
Verlag Th. Schafer, Hannover, 1986.)

2.17 THE CHINESE “DEVIL’S WORK BALLS”

The ivory “devil’s work ball,” as the Chinese call it, is the most famous of all polyhedra-
based objects. As we have seen, knowledge of polyhedra was acquired only slowly
in Europe. Euclid’s Elements and the development of perspective were of decisive
importance for this development. However, in nonEuropean cultures with a proper



mathematical science—for instance, among the Arabs, the Mayas, and in cultures of
India and China—perspective analysis of comparable rigor was unknown. Therefore,
it seems important to ask how the tradition of carving these concentric balls was
established in China.

In the south of China (Canton region), concentric ivory balls have been carved since
the 14th century and direct European influence is unlikely.46 First, no European
examples are known from that age, and, second, there seems to have been little
cultural contact other than indirect trade at that time, apart from rare examples like
Marco Polo’s visit to China in the late 13th century. The most likely source for the
Chinese may have been their own earlier handicraft techniques for the carving and
turning of precious stone (jade), wood, and ivory. Ivory has been carved since very
early times, as it is a very fine-structured material and yet soft enough to be carved.

Anotherhypothesis is that the influenceof China on theEuropeanexamples resulted
from colonial trade. Some literature suggests such influence and interesting examples
of cultural contacts are cited after 1500 for comparable artistic production, such as
Chinese porcelain imitated in Portugal andHolland or themutual influence of Portugal
andWest Africa in the ivory-carving field.47

The European examples of Zick and others, however, have somemajor features dif-
fering from the 19th-century examples from China. The European examples referred
to until now are positively based on polyhedra. The exterior surface of the parts shows
the shape of a dodecahedron, with a hole in the middle of each of the 12 pentagons,
whereas the inside surface is spherical.

Chinese examples consist of true spheres, each having an exterior and interior
surface that is spherical, apart from decorative relief. Often they have 14 holes, like
the illustrated modern example. The 14 holes are conceptually organized according
to the faces of a cube and its eight corners, and on each of the cube’s six faces there
is a shallow pyramid. All 14 corner points touch a common sphere. The number of
openings and their size correspond to the



Figure 1.26 Ivory “devil's work ball” with all holes in common axes (Hong Kong,
contemporary). (Source: Institut fur leichte Flachentragwerke (IL), Stuttgart
University. Photo: Gabriela Heim, Stuttgart.) specially shaped chisels, which have to
carve a large enough spherical sector to loosen all material between two concentric
spheres.43

Figure 1.25 Sphere-in-a-sphere object with eight independent turning concentric
parts—a “devil's work ball,” as the Chinese call it—made out of one piece of ivory.
The holes are divided like the 14 vertices of a semi-regular polyhedron (Hong Kong,
contemporary). (Source: Institutfur leichte Flachentragwerke (IL), StuttgartUniversity.
Photo: Gabriela Heim, Stuttgart.)



Some speculation on the function of such objects may also be appropriate. They are
showpieces in the first place: a demonstration of handicraft virtuosity.42,46 However,
one can also regard them as puzzles. Tiny fingers or thin sticks may turn the spheres
separately through the openings. Every puzzle or play has a purpose, and in this case
the first goal may be to find a position for all spheres with one opening on a common
axis. One can reach this goal rather easily. The final goal would be to turn all spheres
into such a position that all their openings are organized in the same position as the
outer sphere’s holes. In this way the initial impression of amassive sphere will change
into an image of a ball that seems transparent through its core. In the case of the
contemporary Chinese example, the final goal is rather difficult to reach, because
its semi-regular geometric organization with 14 holes shows two different distances
between the holes.

The Chinese system is finer because interior and exterior surfaces are all really
concentric, whereas the European system shows a polyhedral outer form for each ball,
which must be able to turn freely inside the next larger ball with an inner spherical
surface. Thus, in the European example, some material waste cannot be avoided.
Consequently, the number of parts that can turn around differs: Modern examples of
the Canton region reach up to 45 spheres. A sphere that consisted of 25 concentric
pieces was exhibited at the Panama-Pacific World’s Fair in 1919.48

On the other hand, someEuropean examples are spherical like theChinese balls and
we can find no topological differences between these and the Chinese specimens.43

2.18 BROOK TAYLOR (1685–1731) ON PERSPECTIVE PROJECTION OF POLYHEDRA

One of the few English contributors to the development of perspective geometry is
Brook Taylor, a Cambridge Doctor of Law, who was also interested in polyhedra.

His Linear Perspective (1715) and Nero Principles of Linear Perspective (1719) take a
more abstract approach thanmost books, which derive an object image by parallel pro-
jection from plan and front view. Taylor’s approach integrates images as perspective
projections on a plane.49



In these rather short books Taylor prefers to take polyhedra as his examples for
demonstrating perspective projection, probably because the distorted plans of a point-
symmetrical polyhedron can be understoodmore easily than similar plans derived
from a nonsymmmetrical object, such as an architrave piece resting in an inclined
position on a stone block.
Although his geometrical work is considered difficult and his method painstaking,

Taylor became quite famous. An illustration of polyhedra in an architectural setting
in Thomas Malton’s A Compleat Treatise on Perspective (1779) reminds us of Taylor’s
interest.49

2.19 MAX BRUCKNER (1860–1934) AND HIS PAPER MODEL COLLECTION

In the preface of his book Vielecke und Vielflache—Theorie und Geschichte (1900), Max
Bruckner explains that the interest of mathematicians in poly-hedra was diminish-
ing because many known problems were solved by then, although a compendium
such as his, bringing together a historic survey and an encyclopedic classification of
polyhedral examples, still seemed worthwhile to him.5,14

A very interesting parallel to Pacioli is Bruckner’s care for visual presentation. By
means of many conventional drawings and photographs of 146 paper models, which
weremade by Bruckner over the course ofmany years, a clear overview of the possible
range of polyhedral forms is presented. The reader is kindly invited to study the actual
models at Bruckner’s work place.5

2.20 ALEXANDER GRAHAM BELL (1847–1922) AND INVENTIVE USE OF TETRAHEDRA

Better known as the inventor of the telephone, Alexander Graham Bell was creative in
quite a universal sense. An active participant in the expanding industry of the late
19th century, he had an unrestricted vision of the commercial potential of technical
improvements of the production process. He apparently did not aim at solving some
specific problem but followed the reverse procedure: He looked at a technical or
mathematical principle and sought a useful application for it. The accretion of such
simple elements as latticed tetrahedra led him to invent a major structural system:
the space frame.



Around 1900 he applied this system to enormous kites: compositions of tetrahedra
of approximately 20 cm on the side. The frames were partly covered with fabric. By
means of his tests he articulated many properties of tetrahedral form, not only in
structural, but also in technical terms.50

He recognized that the latticed tetrahedron, by virtue of its triangles, is stiff against
deformation. Actually, it requires the minimal number of bars needed to generate a
rigid frame. Because of this the structure’s weight is optimal, resulting in a lightness
that is decisive for any flying object. Part of Bell’s research into kites is that their
form should be variable in order to reach optimal flying behavior empirically. For this
reason he prefabricated the basic elements. Like cubes, tetrahedra can be added in
a closed packing, but Bell also understood the possibility of minimizing structural
weight through the omission of tetrahedra at the center of the structure.

Building on the experience gained with his tetrahedral kites, Bell found other uses
for space frames, including a complete architectural structure built in Canada in
1907: a watch tower 28 m high with a weight of only 5 tons. The edge length of the
modular elements is approximately 160 cm. They were prefabricated as complete
tetrahedral elements (six rods and four nodes) and were transported and stored on
site as a compact pile of 10 elements. For this pur-





Figure 1.27 Paper models of polyhedra variants by Max Bruckner (1900). (Source:
M. Bruckner, Vielecke und Vielflache—Theorie und Geschichte, Leipzig, 1900.)
pose details had to be such that two or three nodes met in one point. Presumably,

this problem was geometrically solved by reserving modular zones in the node area
and specifying the exact node form for each position in the system. Even the conven-
tional stairway was integrated into the tetrahedral logic by shaping it as a triangular
prismatic frame in one of the legs.50

The tower was erected in only 10 days by unskilled laborers. In order to manage it
with the least effort, two tower legs and the platform were assembled on the ground,
using the third leg—by assembling it in sections—as a jack for the whole structure.
Dining the building process, in which the legs—owing to their almost horizontal start-
ing position—behaved as beams, Bell installed an additional triangular frame as a
prop in the middle of the tetrahedral configuration.
For static purposes the three continuous border rods of each tower leg were thicker

than the normal rods.50 It is notable that, at the point where the legs met on the
hexagonal platform, Bell used rods of normal section in the borders, surely because
he expected weaker forces in the compact platform frame than in the three inclined
legs. Thus a remarkably transparent tower was obtained.

2.21 CONCLUSIONS

Polyhedra—spatial bodies of perfect geometric shape—have fascinated human beings
throughout history. Although their major laws were already recognized by the ancient
Greeks, further progress turned out to be extremely difficult and only the best mathe-
maticians, geometers, and artist-craftsmen—preferably in collaboration—achieved
substantial advances in knowledge.
A typical phenomenon of polyhedra research became the “mixed visualization”

of scientific results, combining the text with diagrams, drawings, and evenmodels.
Durer offered cutout plans for paper models, and Pacioli, Jam-nitzer, and Bruckner
relied on spatial models as empiric proof and control of drawn speculations.
Research into polyhedra has also been historically interpreted as a dangerous field

of study. Its hermetic nature expressed, for instance, by the multitude of symmetry
axes in each regular polyhedron or the finite number of



Figure 1.28 Polyhedral chandelier piece, ground from a glass sphere (Belgium, 19th
century). (Source: Institut fur leichte Flachentragwerke (IL), Stuttgart University.
Photo: Gabriela Heim, Stuttgart.)

only five regular polyhedra, made the field a source of metaphysical speculation. In
Jamnitzer, the artist, we find a positive result of this kind of metaphysics, rendered
harmless through joyful humor and presented with considerable artistry. In Kepler’s
fate we find a sadder outcome.

However, in most cases, history demonstrates the creative potential of consistent
polyhedra research. A special result is their role in the development of turning wood
and ivory. The mathematical understanding of “infinity” had its counterpart in the
manufacturing of infinitely precise or infinitely small objects. Ivory sphere-in-the-
sphere objects were made in both Chinese and European cultures. The beauty of
these—void of any substantial usefulness—made them an ideal subject for testing
precision in handicraft.



Leonardo da Vinci invented lattice structures based on polyhedral forms. Their
brief history ends around 1900 with the tetrahedron-based space frame of Alexander
Graham Bell, which shows a concise understanding and an original use of polyhedra.
Bell’s approach may be seen as the legacy of all those persons who, in the past, have
been drawn affectionately toward polyhedra.

2.22 METHODOLOGY

A remark on the methodology and the specific goal of this chapter may be appropri-
ate. In February 1993, J. Francois Gabriel wrote to the Stuttgart Institut fiir leichte
Flachentragwerke (IL), asking if somebody could work on the history of the science
of polyhedra and their applications in architecture. The author accepted such a vast
undertaking, encouraged by his experience with similar studies on the history of
geometry (ruled surface structures by Suchov, Gaudf, and Candela and late-Gothic
vault geometry). A basic research approach was discussed and it was agreed that
the study would focus on the time before 1900, as there is little scientific research
and documentation available from this time period. In order to find connections
between the use of polyhedra in science and architecture, the author was forced to
construct a hypothetical historic path, as only in a few cases are polyhedra instantly
recognizable in old architecture. Themain stress was given to the technical aspects of
the visualization of polyhedra and of the making of polyhedral models, often related
to the arts. Because of this technical viewpoint, however, decorative aspects from
the international art-nouveau style (Berlage and Gaudi) were not relevant, as was the
case with Haeckel’s interpretation of biological specimens (radiolaria) as polyhedral
shapes.51

Myresearchmethodologyhad to focuson isolatedhistoric examples that—favoredby
luck—couldbe tracedduring continuous investigations inmuseumsor literature. Thus
the result is quite fragmentary. In some cases, like the early use of the cuboctahedron
shape or the Chinese concentric ivories, the craftsmenmay not even have known they
were working with a polyhedron. To the author these examples still seem valuable
because a polyhedron is not only qualified as some geometric shape ormaterial object,
as such, but also by the structure of its axes with its specific technical implications.



Because of this research approach, giving priority to the visual aspects of the polyhe-
dron, the science of polyhedral geometry was not dealt with systematically. Although
the author tried to establish a chronology of mathematical inventions, this goal could
only be reached very superficially.
The illustrations were chosen with care but they serve different goals. Some were

chosen because they show a plentitude of beauty and can be regarded as symbols of
the equal emphasis on art and science. Others illustrate complex geometrical relation-
ships, necessary because they are still ill documented. Finally, some illustrations are
informative about the cultural setting of an artist or architect. The first results of my
studies on polyhedra history were presented at the seminar Application of Structural
Morphology to Architecture in Stuttgart.52
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2.25 INTRODUCTION

Bruce Goff (190A-1982),1 architect, painter, educator, and composer,2 created in
over six decades of architectural practice, primarily in the Midwest, an impressive
array of buildings and designs exhibiting an extraordinary profusion of geometric
forms—polyhedral, spherical, cylindrical, conical, toroidal, helicoidal.3 Much of his
work also contains less easily defined configurations.4 This chapter examines only
that family of forms in Goff’s work directly related to polyhedra.

We will first define polyhedra and discuss their geometric and nongeometric at-
tributes, including historical, psychological, and symbolic aspects. We will speculate
on why Goff used polyhedra in his work andmention some of his architectural influ-
ences. Comments are included from Herb Greene on 20th-century thinking about
geometry as related to Goff’s use of geometry. We will touch on formalism and the
difficulties of description of polyhedra. A taxonomic framework is proposed involv-
ing four stages of polyhedrality in Goff’s work. Finally, salient polyhedral aspects of
selected buildings are illustrated and discussed with observations from several who
have lived in or worked on those buildings.

Definition of Polyhedra

A polyhedron is a solid bounded by plane faces. A “regular” polyhedron is arranged
according to a system of symmetries. The boxlike spaces comprising the bulk of
the world’s architecture, from tract house to international style office building, are a
special class of polyhedra—rectangular parallelepipeds, or rectangular prisms; that is,
spaces bounded by pairs of parallel rectangles at right angles to one another. They
occur in Goff’s work as well, but are mentioned in this chapter mainly as a takeoff
point.

Regular Polyhedra

Regular polyhedra include the five well-known Platonic solids—the cube, tetrahe-
dron, octahedron, icosahedron, and dodecahedron—with their simple, powerful, and
all-encompassing symmetries, and the thirteen less familiar Archimedean solids, that
is, truncated versions of the Platonics, and others such as the cuboctahedron and
icosidodecahedron.5 Geodesic domes are an outgrowth of these family members.

Further Classes of Polyhedra



Other branches of the polyhedra family include extrusions (prisms), pyramids,
dipyramids, truncations (e.g., a frustum, or pyramid with its top cut off), skewed and
elongated volumes, and so on. Still other variations are evident in specialized fields
such as crystallography, which identifies by shape, among many other factors, the
several thousand of earth’s naturally occurring minerals, for example, quartz and
feldspar.6 “The mineral world expresses pure volumetric geometry with the greatest
clarity, but it is important to remember that these solids do not exist in nature. In their
perfect form they exist only on a metaphysical plane, as pure, creative ideation, and
can be represented, for the mind to grasp, only through geometry.”7 Pure, complete,
and intact polyhedra belong, in various conceptual garb, to the world of mathematics.
Geometric space, a rigorously well defined set of symbols and abstractions, is different
from architectural space, which is not usually so well defined or so abstract—and yet
the two are intimately related.
Why Polyhedra?
Being an architect and not a geometer, why did Goff employ polyhedra—since a

major portion of his oeuvre might be called “beyond the polyhedron”? Probably the
most compelling reason, in terms of childhood development, is that “Goff’s father
was a jeweler and gave the boy crystals to play with. Pyrites, crystalline rocks, and
semi-precious stones are to be found all over the American southwest.”8

Mental Tools
There may be a universal appeal in polyhedra that Goff felt in common with many

other architects. The abstractions, definitions, and symbols of the world of solid
geometry are among the essential mental tools required for the invention, discovery,
andmodeling of space in the real world. One of the major means of delimiting and
enclosing space and creating volumes is by the use of planes (another is through the
use of curved surfaces). Polyhedra provide a rich source for the interrelation of planes
and Goff has drawn on that stock. As Goff said, “Some people open doors and others
walk through them.”
Imperfect Polyhedra
In architecture, spaces are enclosed or defined by fragments, repetitions, distor-

tions, proliferations, and other variations of geometric solids (like the polyhedra
examined in this chapter) realized in “concrete” form. Just as in biological forms
“…the geometry” saysmathematicianH.S.M. Coxeter, “…developed to perfection by our
soap-films in the twinkling of an eye, is only roughly developed in an organic structure,



even one so delicate as elderpith; the conditions are no longer simple, for friction,
viscosity and solidification have vastly complicated the case.”9 In every example of
Goffs architecture, where simple, pure, idealized geometric form is involved—there
are functional, spatial, and circulational, that is to say, organic, elements that modify,
develop, anchor, and objectify that ideal. In spite of his respect for Wright’s “organic-
ity,” Goff suggested taking the “nature of materials” with a grain of salt. Rigorous
intellectual and philosophical purity in architectural realization can be self-defeating.
Architectural solutions require unparallel (epiped?) coordination of large arrays and
tangled hierarchies of conditions, levels, elements, and evaluations—so it is not sur-
prising that one does not often find complete and pure expression of Platonic and
Archimedean polyhedra in architecture.

Historical Position of Polyhedra

A brief glance at architectural history will find Goff, along with a number of other
19th-and 20th-century architects, for example, Antonio Gaudi, R. Buckminster Fuller,
and Frank Lloyd Wright, to mention just several, creating at the growing tip of an
evolution of ever more complex spatial “conceptioning” (to use a Fullerism).

Architecture as metaphor could probably be applied as far back as the big bang, but
we will not go quite that far. Animal architecture is free, curved, rough, organic10—ex-
amples of more or less perfectly straight lines and flat planes are rare as, say, a
spider hanging from a strand of its own silk in a still cave or the planes in a hon-
eycomb. Straight line and plane are more apt to be approximated in natural inorganic
forms—the surface of a pool of perfectly still water, a fine icicle, a patch of glare ice,
but especially in minerals, for example, an iron pyrite cube.

Geometry is a human endeavor that brings the straight line and plane to building,
whence in architecture the rectangular parallelepiped rears its ubiquitous head—the
cube, the box. To protect the box, the traditional pitched roof appears—enclosing
a triangular prism of space.11 The tent appears as a variation of pyramid, frustum,
prism, or cone. An early basic geometric solid was the Egyptian pyramid—a mass, not
spatial. The pyramid’s developmental precursor was the frustum, or mastaba. Both
are polyhedra in the general sense, but they are not regular polyhedra. Nonpolyhedral
forms were exemplified in structures from the domes (hemispheres) of the igloo



to Greco-Roman stonework, in the cones of the Plains Indians’ tepees, variations
on intersections of half-cylinders in vaulting throughout the ages, full cylinders in
masonry towers, warped surfaces and solids generated by rotation about axes in
African paraboloids, the Islamic dome on top of a cube, and so on.12

Goff’s Work in the Context of the history of Architectural Geometry
Goff’s architectural forms take their place in the historical evolution of an ever

more subtle, complex, and sophisticated knowledge and use of geometry. This is not
to say that architectural work in the past did not have its mind-boggling intricacies,
for example, Gothic masonry, Japanese joinery, Islamic ornament13 as well as the
subtleties of proportional systems such as the ancient Greek orders.
I mention architectural influences on Goff in spite of Ben Allan Park’s daunting chal-

lenge: “It is useless to consider Goff’s influences. He has a much wider appreciation
of the work of his contemporaries than might be supposed.”14

Claude Bragdon’s early-20th-century books on the generation of geometric forms
were well known to Goff. When Projective Ornament by Bragdon was published in
1915, Goff would have been 13 years old—22 when Bragdon’s The Frozen Fountain was
published in 1924.
Furness, the Vienna Secessionists, Finsterlin, Mendelsohn, and other late-19th-and

early-20th-century spatial innovators and geometers were among Goff’s interests and
exemplified the subject matter of his modern architectural history courses, which he
taught at the University of Oklahoma.
Goff was not only a dedicated “student” of Wright’s work (although never an ap-

prentice) but also a friend. Other influences, to mention just a few, were Sullivan, art
nouveau, Islamic, Balinese, Japanese—in short, the expanse of world architecture.

In Goff's own words:

I prefer Paestum to the Parthenon …it's more vigorous. I admire almost all
Hindu temples …Madras …Fatehpur-Sikri…the Japanese works, of course
…the Ise Shrines. I love the detachment of the Katsura Palace, the Imperial
Coronation Hall in Kyoto and the palaces there …the Golden Pagoda. In
China, the Temple of Heaven in Peking …the whole Peking complex. …I have
so many favorites…the Gothic at Cologne and Rheims. I like Scandinavian
wood architecture …pre-Columbian …the Monadnock building and others in



Chicago …Sullivan's banks. I admire lots of buildings that are not supposed
to be architecture: the hut houses of Samoa, African huts. …Wright, the
Heber master …and the greatest of them all, Gaudf. A completely dedicated
man.15

Goff’s complex use of geometry with its triangulated precursors to geodesics, its
paraboloidal reinterpretations of organic lines of structure and growth predates but
is unsurpassed in inspiration by 20th-century developments.
To try to show how specific Goffian formswere derived from such historical osmosis

is perhaps part of the “uselessness” that Park is implying. Goff’s output should be
regarded as an original and consistent unity, informed by and part of global architec-
ture—in spite of the apparent differences between his varied projects. Here we are
spotlighting only that fraction of Goff’s output that utilized a spectrum of polyhedral
prototypes.
Geometry—Theoretical Versus Applied
The practical application of geometric forms in architecture may lag considerably

behind the development of newmathematical concepts, but architectural composition
has its own distinct systems of organization—albeit often related to spatial configura-
tions: from circulation networks, functional hierarchies, environmental interfaces,
andmicroclimate control to configurations affected by the strength ofmaterials, safety,
security, and ease of use.
Practical Necessity of a Conceptual Framework
In order to build, such function complexes must be integrated into spatial config-

urations. This is where the intimate working sense of sohd geometric forms comes
into play—as the conceptual grid for the organizational/functional entities. Years of
experience permit a designer to coordinate, to marry the substance, skeleton, and
skin with appropriate forms through novelty and inspiration—to create.
Crystallization of an Idea
From these systems of architectural organization several functional vectors might

provide the germ of an idea, which would act as a catalyst to produce a polyhedral
concept, just as—when in a chemical bath—at a certain temperature and pressure an
initial prod produces a rapidly spreading crystallization, unique for those specific
conditions.
Goff and Computers?



Goff’s polyhedral designs, accomplished just before the advent of computers, would
have been facilitated and perhaps made more complex had he used computers. The
“human biocomputer”16 was already there—the brain; however, we will speculate that
Goff would have used the computer to further the unity of the arts with architecture. A
computer could be used, for example, to replicate metaphorically the shapes derived
from Trois Morceaux en Forme de Poire—the music of the “spheres” as embodied in a
pear by Erik Satie (another Goff favorite), who was in turn alluding to painting. We are
reminded of Philip Johnson’s designing by carving up a pear, the resultant shapes of
whichwere to have been digitized in FrankGehry’s (French developed) Catia computer
program for a joint venture.17

Computer usage, logic, and mathematics have much in common with music. Goff
had a wide-ranging interest in music, especially that of the 20th century. One of his
favorites was Claude Debussy whose L’Apres Midi dhm Faun was illustrated by Goff in
a painting for Joe Price’s Studio. (The painting is reproduced in Architectural Design
Profiles 16.) Goff felt a strong kinship between music and architecture and invited his
students to regular listening sessions from his extensive record collection. To teach
design, Goff used musical principles such as theme, variation, development, rhythm,
and counterpoint, specifying their direct analogs to visual and spatial elements in
architecture.

In any case, students and designers who utilize the computer today will be better
situated to assimilate, certainly to manipulate, complex polyhedral and other ge-
ometries. Among the problems that might be expected in using polyhedral forms,
for which computers will prove useful, are: conceiving, visualizing, grouping, draw-
ing orthographically and in perspective, linear and volumetric measuring, dealing
with nonparallel planes, marking, and aligning. In construction the computer facili-
tates stereolithography—layout, fitting, joining, and cutting. Walking tours through
computer-animation perspectives are becoming more accessible.18 However, as the
electronically aided visual representation of more and more complex forms becomes
easier—so their verbal description becomes more difficult but perhaps more impor-
tant—essential to the linkage of the visual/emotional world with the moral/historical
perspective.

HerbGreene on 20th-Century Thinking About Geometry andGoff’s Use of Geometry



Berkeley architect, painter, author, educator, and Goff student Herb Greene, dis-
cusses the mystique of geometry in architectural thinking among the European ratio-
nalists early in this century contrasted with the position that geometry occupied in
Goff’s work:

In the Nineteen Twenties when the functional, mechanical and technological
revolution in architecture was replacing historical eclecticism, the rational-
ists began to use geometry with conscious intent to create architectural
forms denoting function, machine technology and an image cleansed of
historical associations. The geometry selected by the rationalists, however,
drew heavily on a narrow range of Euclidean forms. The rationalists uncon-
sciously inherited the classical belief that value can reside in explicit forms.
The faith expressed by le Corbusier in the flat plane, cube and cylinder
characterized much of the spirit of the times. The Euclidean forms were
conceived as embodying ultimate simplifications of nature. Exceptions and
overlaps were sometimes to be found in the works of the leading rational-
ists, but the rectangular flat plane tended to become a symbol eliciting a
response to function, technology and a feeling for contemporary dynamics.
The point is that architects, then as now, tend to regard historical forms,
cubes for instance, as possessing in themselves the subjective values that
only mankind can project into forms. That familiar forms in the environment
are of vital importance to human psychological experience is not questioned;
what is questioned is the belief that certain forms, such as Euclidean forms,
possess immutable value and are to be imposed on the architectural design
situation. Mies van der Rohe was probably the apotheosis of the modem
acceptance of this belief.

BruceGoff has been cautious of using geometry, or any other ``tool'' of archi-
tecture, to express a predetermined type of perfection to be applied whole-
sale to a variety of architectural programs. Architecture, rather thanassuming
a geometry sanctified by familiarity and unconscious psychological associa-
tions, should evolve its geometry by respondingmore intimately to conditions
in the immediate design situation. For Goff, the final design form must show
evidence of being derived from a multifarious world. There are the particular
conditions of the site, climate and context, the life experiences of the client



or user, the building program, the limitations of materials and construction
techniques, and there are the notions of order and art influenced by the life
experiences of the architect. Goff does not pay lip service to these ideas. It
is his belief that a wholehearted attention to these factors is required, and
that it can only produce a unique solution to every design situation. Hemain-
tains that the architect is both obligated and free to use whatever form that
is suggested by a determinedly open-minded examination of the problem….

…the variety of new geometric forms appearing in the architecture of recent
years should be mentioned. The best of these have been derived from struc-
tural and technological sources: shells, space frames, air forms and others.
Goff, in addition to using structural determinants, has, since the early forties,
been deriving his unique shapes from cultural, social, esthetic, perceptual
and psychological determinants. There is a difference in intention as well as
in results.19

Preconscious Meaning in Polyhedra?
To overlay Greene’s “structural…perceptual and psychological determinants” with

a reconsideration of formal determinants, we ask whether the nodes of precision in
three-dimensional geometry and the symmetry in regular polyhedra resonate in our
mind with some as yet undiscovered inherent preconscious intensity? Is there a struc-
ture within our inherited neural network that corresponds to such three-dimensional
geometries? Perhaps something of this ilk will be discovered among the multidimen-
sional “point sets” that comprise the brain’s universe of synapses.
Psychological Effects and Symbolic Aspects of Polyhedra
According to the philosopher SuzanneK. Langer, “Symbolic expression is something

miles removed from provident planning or good arrangement. It does not suggest
things to do, but embodies the feeling, the rhythm, the passion or sobriety, frivolity or
fear with which any things at all are done. That is the image of life which is created in
buildings; it is the visible semblance of an ‘ethnic domain,’ the symbol of humanity
to be found in the strength and interplay of forms.”20 The affective properties of
polyhedra impart a palpable spatial feeling. This is due both to their multiple three-
dimensional symmetries and to their contrast to conventional “extruded”architectural
space, to whichmost of us have been acclimated. Goff pointed out that the acute angle,
for example, could represent anger, whereas the obtuse angle has a more relaxed



feeling and the circle is more intuitive. As visual symbols polyhedra grab and hold
attention. Polyhedra are jointed, three-dimensional, straight-line abstractions of
the structure of tree branches—the limbs within which the capabilities of human
hand and eye coordination evolved and are thus inextricably attuned. They convey a
feeling of strength, and, indeed, the triangulated geometry of many polyhedra gives
them an inherent structural rigidity. They convey a presence—a sculptural sense of
unified containment beyond the overly familiar square and rectangular world of grids.
Because of this they must be handled carefully and with knowledge and discipline.
The Goff work discussed in this chapter provides examples of such use.

Monumentality as an Effect of Polyhedral Usage

Monumentality is another ancient phenomenon on the border between illusion and
symbolism. Detailing, massing, scale, and texture can bemade to work together to
create a larger-than-life entity. Polyhedral usage appears to contribute to this effect in
Goff’s structures. The term “monumental” is related to the word mountain. There is
something symbolic of themountain in the angular and crystalline forms of polyhedra.

Golden Mean Ratio

The golden mean ratio, occurring so frequently in nature, is inherent in certain
Platonic polyhedra. Le Corbusier, for example, found the ratio and its extension into
the Fibonacci series so vital that he wrote two volumes on the subject.21 As far as I
know, however, Goff did not exploit this mathematical phenomenon in his designs
and the topic will not be pursued here. De Long and others have discussed Goff’s use
of magic square proportional systems and the like.

Parallelepiped Architectural Spaces

The ubiquity of parallelepiped architectural spaces in Western culture makes them
invisible, transparent—one is almost oblivious to such spaces. Mies van der Rohe’s
“Less Is More” with its rectangular box embodiment would seem to arise from a
hostage-like or perhaps, Machiavellian, acquiescence to this convention; however,
atop our 21st-century perch wemay lose sight of the excesses of cluttered Victoriana
from which these minimalist Miesian urges arose. Goff’s approach to spatial expe-
rience, on the other hand, is emotional and it is expressed—in other words, brought
to one’s attention; meant to be seen, felt, delighted in; made available to the senses.
Does this arise out of necessity from the lonely midwestern plains—an emotional



crescendo, up from pragmatic subsistence—in contrast to the anhedonic, rationalist
cubic formula—a decrescendo from Victoriana. Though affective and emotional, we
experience a powerful intellect at work in Goff’s architecture—always striving for an
exuberant expression of space.

Opposition to “Formalism”

Marcel Proust’s character, M. De Norpois, complains, “All those Chinese puzzles
of form, all these deliquescent mandarin subtleties seem to me to be quite futile.”
However, to reject the significance of form, its study, and its conscious application
(e.g., formalism?) is to ignore one of the primary elements of the creative process in
architecture (or any other art)—the conceptual spatial matrix.

Acquaintance with Polyhedra

Practical gain aside, world expositions and the increasing use of space structures
are familiarizing many with the rudiments of polyhedra in architecture; still, few are
practiced in the verbal and visual languages of form necessary for the description of
such spaces.

Description Difficult

Goffs geometric ingenuity makes description difficult. According to former Goff
assistant, Larry Wayne Grantham, Goff said, “There are two reasons for an element
of architectural design—the reason one gave the client and the real reason.” Still,
becoming aware of the language of solid geometry and knowing that some of these
forms yield to description and analysis might give some legitimacy to Goffs work for
those who are not practiced in the perception of architecture, or for those seeking
“rationale.” If one already appreciates his work, another layer of meaning might
be added. Grantham says further, “In my experience with Mr. Goff, when he was
from 72 to 76 years of age, I have no recollections of his describing his work using
technical descriptions of the forms…. I will concede, though, that Goff knew his work
would be analyzed thoroughly. I do not understand that some individuals need such
descriptions. The danger, as I believe Goff would have commented, is that people
might use such analysis as a means to create formulas for copying. Goff often spoke
of things growing from the problems to be solved outward to define the space. Such
forms are always unique to each design opportunity.”

Describing Complex Forms



Descriptive attempts, however, indicate why visual means are preferable to verbal.
With twinnings, abuttings, intersections, interpenetrations, truncations, and so on,
the formal descriptions of polyhedra in architecture tend to be overwhelmed by the
complexity of spaces—the nomenclature can quickly become unwieldy or superfluous.
Goff’s architecture, however, seems to teach itself, nonverbally. The rewards are
raised consciousness—greater satisfaction in architectural use—in the appreciation
of the play of light and shadow, in an awareness of space. Goff had confidence in the
inevitable power and rightness of his work.

Four Stages of Polyhedrality

Goff’s use of polyhedra can be conveniently, if somewhat arbitrarily, placed in four
stages from less tomore polyhedrality, as follows: (1) virtual polyhedra, (2) nonregular
polyhedra, (3) single-cell regular polyhedra, and (4) multicell regular polyhedra.22

These “stages” are not intended to carry an implicit value judgment of the worth
or beauty of such forms, for example, that a close-packing arrangement of Stage 4
is somehow better than, say, a simple horizontally extruded prismatic space. Each
should be considered according to its purposes and situation.

Stage 1: Virtual Polyhedra

(Pseudopolyhedra would be too negative a term.) This category sees surface effects
“striving” toward polyhedra and depth, but stymied by limits of economics or function.
It includes diagonal motifs, beveling, truncation, champfers, ornament, and related
nonrectilinear elements occurring within the confines of rectangular boxes. Two-
dimensional iterations (i.e., repetitions, rhythms) would be included. Triangular
patterns are also used frequently.

Some Goff designs have an illusory quality—what might be called “virtuality” (a
concept taken to its extreme today by the spread of computer virtual reality)—the
semblance of the third dimension upon a two-dimensional surface. If it were not eco-
nomically feasible to develop a full polyhedral theme for a client, Goff might provide,
because his thinking was spatial, a more limited, two-dimensional representation
of polyhedra—or, more generally, of “depth cues”23 through the manipulation of or-
nament, fenestration or, say, the beveling or inclining of surfaces such as railings,
walls, soffits, mullions, or struts. An impression of depth is thus enhanced in forms
and surfaces where it might not otherwise be economically obtainable. There is a
hint of art deco here with its geometric surface pattern orientation; however, this



stage is more concerned with allusions to depth. The effect is apparent in many Goff
designs, for example, the Page Warehouse, Tulsa, Oklahoma, 1927, and the Floral
Hills Memorials, Project, 1959. Still, the love of rhythm and pattern for its own sake is
obvious in Goff’s work.
“Virtuality” is also evident in Frank Lloyd Wright’s use of ornament, especially his

leaded glass—with its overlappings, repetitions, and angles—often giving a strong
sense of a third dimension not unlike the effect of an isometric drawing. The illusion
is made more complex when looking, through such a depth pattern, at the three-
dimensional world outside the window.
Among examples illustrating this stage are the Hyde and Snyder Houses and the

Floral Hills Mortuary complex. In the Blackwell Building, Project, Dallas, Texas, 1961,
two three-story-high 45° triangles side to side at a prominent corner act together to
imply a tetrahedron.
Stage 2: Nonregular Polyhedra
(Proto-polyhedrality; proto-Platonic, or proto-Archimedean geometry) This cate-

gory includes nonvertical extrusions, vertical extrusions of nonrectilinear shapes,
polygonal prisms, pyramids, and various sloping surfaces. Extrusion of triangular
forms is prevalent.
Limitations of Extrusion. Goff discussed with his students the tired limitations

of creating space via vertical (gravity generated) extrusion from the floor plan. This
concept is expressed in Goff’s work through (1) extrusions along axes other than
vertical (e.g., prisms) and (2) nonextruded spaces such as pyramids and frusta.
Prisms. Prisms are a recurring theme in Goff’s work, prisms, that is, with nonrecti-

linear bases—extrusions—but often nonvertical extrusions—very likely terminated by
other than simple planes, but if planar, usually at angles other than perpendicular to
the direction of extrusion, for example, the horizontal prisms of the Price Studio 2.

Prisms as Proto-Polyhedra. To give a polyhedral ``boost'' to a form, that is, to
enhance its three-dimensional character, one could apply similar operations
to different dimensional axes—that is, to front and side elevations as well as
plan. An extrusion could be terminated (the ends closed) with a shape similar
to its base or cross section. Take a rhombic prism, for example. Rather than
trimming or closing the ends with flat planes, those ends might be shaped
by dihedral angles, acute or obtuse, creating concavities or convexities—or



virtual tetrahedra. In the Snyder House, Project, Dewey, Oklahoma, 1958
(Figure 2.1), V-shaped terminations at the ends of the very prominent ``bay
windows'' are virtual tetrahedra, defined by two pairs of opposite edges (Fig-
ure 2.2). Variations on this idea appear frequently in Goff's work.

Examples of Stage 2 are the Nicol, Bass, and Gutman Houses and the Price
Studio (as built).

Stage 3: Single-Cell Regular Polyhedra

(Or single-volume polyhedral space) This stage is made up of Platonic
and Archimedean solids and their duals and facially subdivided variations
(geodesic domes) in single units or separatedmultiple groupings in which the
single polyhedra are still obvious units. This stagemight occur in the building
as a whole—the Crystal Chapel is a prime example—or in regions or details
of a building, for example, the Rudd House projects. Another characteristic
might be ``soft packing'' or ``unpacking'' (as opposed to ``close packing
and hard packing''). This is simply the repetition of polyhedra without
abutting; see the Rudd House discussion.

Geodesic domes fall into Stage3. Buckminster Fuller (discussed inChapter 4)
lectured at theUniversity ofOklahomaonceor twicewhenGoff held the archi-
tecture department chair in the late 1940s andearly 1950s.24 AlthoughGoff's
polyhedra were usually subordinated to a personal architectural gestalt, cu-
riously enough, in the several of Goff's designs involving patented geodesics
the domes' triangulated configurations remained dominant and essentially
unaltered, for example, the Fitzgerald Realty Office Building, Project, Tyler,
Texas, 1965; the Le Boeuf House, Project, La Grange, Texas, 1967; and the
Harry Goff House, Project, Tulsa, Oklahoma, 1962. Each used, according to
De Long, ``…a patented wood version of a geodesic structure …developed
by the Pease Company andmanufactured byGeodesic Domes Inc., Davidson,
Miss. Two diameters were offered: 26 feet and 39 feet. In 1960 these cost
$1,300 and $2,600 respectively.''25 These domes were, polyhedrally speak-
ing, based on the triacontahedron.

Stage 4: Multicell Regular Polyhedra



(Cell iteration) Stage 4 comprises clusters of Platonic andArchimedean solids
or their duals in space-filling, perhaps close-packing arrangements—the
polyhedra abutting, side to side, front to back, and/or up and down—regularly
or irregularly. Among the prominent actors seen on Stage 4 are structural
space lattices (three-dimensional matrices that owe their inherent

Figure 2.1 Russell B. Snyder House, Project, El Dorado, Kansas, 1958. Rendered
perspective. (Courtesy of the Ryerson and Burnham Libraries of the Art Institute of
Chicago.)



Figure 2.2 Snyder House. Virtual tetrahedron.

stability to unit geometry, e.g., the tetrahedral/octahedral space frame). Goff, how-
ever, did not utilize them, perhaps because of the preponderance of smaller, mostly
residential, commissions in his practice—few long-span or column-free spaces.

“Polyhedrizing” a Tessellated Floor Plan. A step after the “proto-regular-polyhe-
dra” (prisms with certain basal configurations) discussed previously is an idea con-
cerning the relationship of the two-dimensional floor plan to three-dimensional space.
One can apply an “organic” concept, that is, one in which the smaller “seed-germ” (as
Louis Sullivan called it) is recognizable on a larger scale—or, put another way, provides
the information for (as in DNA) the development of a larger organism.

This idea is symbolized by and inherent in the currently popular Mandelbrot equa-
tion graphics and other “chaos” spinoffs, for example, strange attractors, Sierpinski
figures, and other fractals. “Fractals have a curious mathematical property: they have
essentially the same structure on all scales.”16 Some of Goff’s buildings are now over
50 years old and our analysis unavoidably attempts to superimpose various latter-day
concepts such as fractals, computer graphics, deconstruction, and postmodernism.



A floor plan composed of polygonal units (tessellations), rather than simply serv-
ing as the base for a vertically extruded space, could be taken into the third dimen-
sion—into a volume—by using a similar polygon to express the elevations (side views)
of each such plan unit, thus contributing to the formation of a polyhedron. This is
a crude example that works literally with the 4-symmetry of the octahedron, cuboc-
tahedron, and rhombidodecahedron but would not be sufficient for development of
the 5-symmetry icosahedron and dodecahedron. In this way a tessellated plan could
serve as the base for a Stage 4 space-filhng polyhedral matrix of which theWilson and
Pollack/Warriner Houses are examples.27

Table 2.1 fists stages and polyhedral configurations for representative buildings
and projects.

This list is bynomeans exhaustive. Most of theseworks aredescribed and illustrated
by De Long.

Summary of Stages of Polyhedrality

Stage 1. Surface application of triangulation. Boxes striving to go beyond.
Stage 2. Vertical extrusions or pyramids from polygons other than square.
Nonvertical extrusions of triangular and other polygons. Composites from
pyramids.

Stage 3. Archimedean/Platonic polyhedral single-cell space or overall mass-
ing. Same, but in smaller detail regions, not overall.

Stage 4. Cell iteration, close-packing, ``far packing'' (e.g., the Rudd House,
discussed later). Same, but in smaller detail regions. Vertical packing.







2 Interior of balcony, looking east (Photo: J. Francois Gabriel. Reproduced with
permission.)

3 Exterior framed by eucalyptus trees. (Photo: J. Francois Gabriel. Reproduced with
permission.)

4 Exterior of northeast entry ventilation louvres and large pulpit doors in closed
position. (Photo: J. Frangois Gabriel. Reproduced with permission.)

5 Detail of space truss. (Photo: J. Francois Gabriel. Reproduced with permission.)







6 Four cells of the 16 structures of the family (434) obtained by locating a vertex
at every available position within the fundamental region (shown in exploded view).
The structures are arranged on the vertices of a four-dimensional cube and indexed
accordingly.

7 Portions of 16 periodic spacefilling structures corresponding to Color Art 6.

8 Cells of 16 structures of family (434) obtained by removing red and green faces
from the structures of Color Art 6.





9. Portions of nine labyrinths of family (434) having red and green faces removed,
corresponding to part of Color Art 8.

10. A two-dimensional lattice of continuous transformations between four different
labyrinths of family (434) shown in Color Art 9.

1011

11. Cells of nine labyrinths of family (433) having red and green faces removed
(shown in exploded view).



12. Atwo-dimensional lattice of continuous transformations between four different
labyrinths of family (433) shown in Color Art 11.

13 Cells of nine labyrinths of family (533) having red and green faces removed
(shown in exploded view).
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14 A two-dimensional lattice of continuous transformations between four different
labyrinths of family (533) shown in Color Art 13.





Summary of Stages of Polyhedrality � 49
TABLE 2.1 Polyhedrality in Goffs Work

Building Stage Polyhedra
Hyde/Lane House 1 Champfers, bevels
Floral Hills Complex 1 Virtual dual transformations
Ledbetter Cottage 1 Virtual pyramid of tension rods intersecting a

square prism
Blackwell Building 1 Virtual tetrahedron
Searing House 1,2 Hexagonal prism
Briar Cottage A 1,2 Truncated triangular prism
Black Bear Motor Lodge 1,2 Triangular prism, tetrahedron, stellated

tetrahedron
Phi Beta Delta Fraternity
House

1,2 Trapezoidal prism, virtual tetrahedron

Pi Lambda Phi Fraternity
House

1,2 Triangular prism, half-cuboctahedron

Phi Sigma Epsilon
Fraternity House

1,2 Triangularly arrayed rectangular
parallelepipeds

Snyder House 1,3 Virtual tetrahedra, window bays
Unseth House 1, Project 2,4 (Quasi) tetrahedra/octahedra space frame
Unseth House 2 2 Triangular prism
Nicol House 2 Octagonal prisms and pyramid
Bartman “Triaero”
Cottage

2 Hexagonal diprism enclosed by a truncated
octahedron

McCullough House 2 Dodecagonal prism
Hopewell Baptist Church 2 Multisloped dodecagonal pyramid
Bass House 2 Partially stellated dodecahedra (or intersecting

pentagramal pyramids)
Gutman House 2 Truncated triangular dipyramid
Miller House (porch) 2,3 (Undefined—facets somewhat like a cut gem)
Freeman House (porch) 2,3 Pyramid and inverted frustum
Price Studio 1 3 Interpenetrating square and rhombic difrusta
Price Studio 2 2 Horizontally extruded trapezoidal prisms



Jones House 2 Interpenetrating octagonal prisms and pyramids
Crystal Chapel, Norman 3 Quasistellated rhombic hexahedron, elongated

tetrahedra
Crystal Chapel, Artesia 3 Intersecting or multislope pyramids
Gerald, Boeuf, and H.
Goff Houses

3 Geodesic domes of triacontahedron base

MacBryde House 3 Flattened cuboctahedron or elongated
tetrahedron

Adams House 3 Triangular diprism or “octahedroid”
Rudd House 3 Truncated icosahedra, truncated tetrahedra
Wilson House 4 Rhombic cuboctahedra
Pollock/Warriner House 4 Rhombic dodecahedra
First National Bank 1,2,4 Octagonal pyramid, horizontal prism

Limitations of the Four Stages

The four suggested ``stages'' are rough-cut categories that overlap and in-
tertwine even though one or the other stage may predominate. Unlike the
biologist's taxonomy, they do not indicate a chronological progression or evo-
lution. I am not attempting a rigorous comparative anatomy but rather taking
snapshots of different areas of unique designs. Nor are they categories that
Goff claimed, taught, or even mentioned. He did, however, discuss the con-
cept of ``variation'' in the sense of theme and variations as in musical com-
position—emphasizing the possibilities of a gradation or range of possibilities
for any given design principle. For example, the effects of light involve trans-
parency, translucency, and opacity; the relationship of a building to its site
could be blending or contrasting or a mix.

SELECTED GOFF WORKS

The following are more detailed descriptions of salient polyhedral aspects of
selected Goff buildings:

The Lawrence Hyde/Scott Lane Mouse, Kansas City,

Missouri, 1965



The Hyde/Lane House (Figure 2.3) is an example of Stage 1—in which diag-
onal details modify and overcome primarily rectilinear volumes. The plan of
the Hyde House consists of rectangular rooms that have been extruded ver-
tically within a Greek cross perimeter, but with many 45° and other angled
details striving toward the polyhedral. Such angled details consist of comer
fenestration, storage, garageplacement, beamterminals, end-wall terminals,
door, window, and railing design, a cathedral ceiling over the living room, roof
facia, and an apron at the bottom of the exterior siding. These disparate ele-
ments are focused and epitomized in a central, open, fireplace, with pyra-

Figure2.3 Lawrence Hyde/Scott Lane House, Kansas City, Missouri, 1965. Rendered
perspective.



Figure 2.4 Floral Hills Temple of Rest, Project, Las Vegas, Nevada, 1960. Perspective
rendering. (Courtesy of the Ryerson and Burnham Libraries of the Art Institute of
Chicago.)

midal hood and large triangular mirror backdrop—approximating a virtual
octahedron. De Long discusses the “earth, air, fire and water” symbolism in this
convergence.28

The Floral Hills Temple of Rest, Project, Las Vegas, Nevada, 1960



This mortuary complex is another example of Stage 1 (Figure 2.4). Goff had taken
the square and “made it his own,” as he might have said. Variations on the theme of
one square overlapping another at 45° resulted in octagonal motifs varied by bends,
folds, uplifts, thicknesses, contrasts, diagonal placement, and the like. Comers were
stretched into tetrahedra and emphasized by bracketing lines at intervals of several
degrees either more or less than 90° (Figure 2.5).

Mr. and Mrs. James Nicol House, Kansas City, Missouri, 1965

The Nicol House, as built (Figure 2.6), is the third and simplest of three designs.29

The first two schemes involved curvilinear forms—cylinders, cones,



Figure 2.5 The Floral Hills Temple of Rest. Variations on the theme of one
square overlapping another at 45°.

beehive-like forms, warped planes, a helix, and so forth, probably beyond
budget constraints.

The third and finally built design for the Nicol House is a prototypical step
``beyond the cube,'' relying on vertical extrusion from forms other than the
square and rectangle (Stage 2), principally variations on the octagon.

Plan Octagons

The floor plan's most obvious pattern is based on an outer ring of eight
octagons, each about 12 feet wide, with sides of approximately 5 feet, linked
(or separated) by eight squares of the same edge length. Each of these outer
octagons is thus centered on one of the eight vertices of a larger imaginary
octagon (Fig. 2.1a). This outer ring of eight encircles four interior octagons,
which in turn surround a fifth, central, focal octagon ``conversation pit''
(Figure 2.1b). These comprise the largest expression, although almost com-
pletely intangible, of a square-octagonal tessellation, creating the somewhat
cruciform central living area or atrium (Fig. 2.1c). Other





Figure 2.6Mr. and Mrs. James Nicol House, Kansas City, Missouri, 1965. (a) Plan;
(b) exterior photo. (Courtesy of the Ryerson and Burnham Libraries of the Art Institute
of Chicago.)





Figure2.7Nicol House. Octagons: (a)ring of octagons; central square/octagon tessel-
lation; (c) central living commons; (d) Examples of other square/octagon tessellation
regions; (e) all 13 octagonal units; (f) all 12 square service/circulation units; (g)the
complete grid; (h) amandala of primary and secondary spaces; (i) perimeter, both
floral-like and crystalline. clusters of two and three octagons occur as fragments of a
square-octagonal tessellation (Figure 2.7d). The outer ring of 8 plus the atrium ring of
5 bring the octagon total to 13 (Figure 2.7e). These 13 functional domains alternate
with 12 squares acting as service/circulation regions (Figure 2.7/). The entire grid
system is at once simple and complex, unique yet universal (Figure 2.7g).



Both the outer group of eight octagons and the inner group of four (which abut one
another) are extruded vertically to imply eight-sided prismatic spaces (Figure 2.8).
They are implied—because walls occur at only five or six, rather than all eight, sides of
each outer octagon, creating spaces defined by portions of octagonal prisms. Similarly,
the four secondary (interior) octagons are extruded to form octagonal prisms. Each of
these interior octagonal prisms is defined by only two walls—on opposite sides—plus
the ends of two other walls that act as edges. Space “flows” in and out among these
hierarchies—blossoming in a mandala with both central and peripheral, primary and
secondary, family and private settings (Figure 2.7Zz).

On the exterior these prisms formed from the ring of eight outer octagons are clearly
defined in a perimeter that is both floral-like and crystalline (Figure 2.1 i).

The living room ceiling consists of an eight-sided pyramid, the base edges of which
intersect vertices of the four secondary octagons.

Obtuse angles (180°±45°) dominate the plan and contribute to a feeling of openness.
Bruce Nicol, who grew up in the house, says that it had the feeling of “space without
walls.”

Windows on the four exterior walls of each octagonal prism, and in two cases on
interior walls, consist of inverted 45° isosceles triangles. Their downward pointing
45° angle is the same as the angle subtended by the side of an



Figure 2.8Nicol House. Octagons extruded into octagonal prism units.
octagon. Why the triangular windows? The use of conventional rectangular double-

hung or casementwindowswouldhave ignored the octagonal schemata, squelched the
visual dynamics, and destroyed the unity (Figure 2.8). Between each pair of triangular
windows is a triangular region consisting of two walls meeting in a dihedral angle.
This fold is both more and less than a “corner” because it is at a 135° angle and is
emphasized by being at the central spine, or altitude, of a triangular motif. The ceiling
and floor lines of these prismatic rooms participate in this angular dance.
The plurality of rhythmically spaced downward-pointing triangular windows com-

plements the unity of the upward-pointing, octagonal-pyramid, central roof (and its
similar pyramidal skylight). The herringbone shingle pattern is a textural reflection
of this theme.
According to David De Long:

…The recessed, octagonal shaped area at the center focused upon an elabo-
rate construction of Goff's design: a wire sculpture linking the skylight above
with a circular pool below. Again Goff had created a central feature in which
a pool and skylight were linked, here enhanced by the addition of a third el-



ement—fire—and by the subtle motion and sound of the water as it moved
down the wires, reinforcing unities. Its dramatic amplification of changing
light added to its focal strength, transforming the room into an almost cere-
monial space as strongly evocative of family position as any Roman domus.
And like the atrium of a Roman house, or any number of similarly traditional
models, the spacewas not conceived as a container of conventional furniture,
but rather as a place of grander assembly, with more intimate, less formal ar-
eas provided elsewhere.30

In the original color scheme, on which Goff worked closely with Airs. Nicol, electric
colors in the perimeter rooms contrasted strongly with the green central carpet. Bruce
Nicol, who describes the colors as “very ‘60s,” has become a specialist in architectural
interior color design.
The Nicol House is still essentially in the realm of the (vertical) extrusion, although

ingeniously transcended on a relatively low budget. Variations on the octagonal theme
affect doors, windows, tables, counters, and cabinets. However, their subtle visual and
functional interrelations can only be understood and deeply felt through experience
of the building.
Kathy Nicol reflects on living in the house:
…is a home a composition of pieces, design motifs, or a whole…

``O chestnut tree, great rooted blossomer, Are you the leaf, the blossom or
the bole? O body swayed to music, o brightening glance, How can we know
the dancer from the dance?''

—W.B. Yeats, “Among Schoolchildren”
It is a question which needs to be raised about many of Goff’s constructions but few

traditional buildings.
…invariably one of us would drag (Goff) off to see something in the house; the way

in which a moon door framed a red bud limb or the reflection from the lily pool on a
bedroomceiling. BGalwayswaspleased that someonehadnoticed andalways claimed
credit for having anticipated just such a phenomenon…BG stayed in the house for
a month in 1969 when the entire family went away. It was the first, and I think only
time he ever lived in one of his designs. He was singularly uncommunicative about
the experience except to say that it was interesting…



The building itself inculcates a sense of possibility. It is not set squarely on the lot
with a front door facing the street. Each room is visually open to nature on all sides
and above. One need not look out a window or up through the skylight to know what
the weather is. These serve more as frames than windows or skylights. The view
from no two windows is the same. There is a sense of integration with the outside.
The house changes dramatically during the day and during the year. In the winter
when snow covers the skylights there is a sense of enclosure—not the sense of being
protected from the elements but being enclosed by them. Snow never looks as soft
and comforting on the ground as it does when one sees it from below on a skylight
with the reflected light of a fireplace. In spring, the many trees which surround the
house change from day to day. As they begin to blossom and then leaf, one is aware of
the gradual change. Branches are close to windows and skylights so once again there
is no need to look “out” a window; the “out” is brought into close proximity to the “in”
and becomes a part of the interior decoration. The relationship is not only visual…one
knows when the first rain falls and the sound of leaves falling and the wind blowing
them about on the roof makes one realize why someone living in a cube might crave a
recording of a waterfall or birds chirping. The two large moon doors also contribute
to the noise factor; open—one hears not only birds, but squirrels, frogs and even the
splashes as bats swoop at the pools drinking and eating bugs.
The sense when inhabiting the space is not of forms connected to other forms

but of flow. There are no dead ends in the building…. Those corners which would
shelter a corner chair are lined with built-in shelving at about three feet from the
floor. The shelving keeps one back about 18 inches but more importantly, as the
shelves are highly wood grained, a soft color, about fingertip level from a relaxed arm
and continuous—the sense is to move about the space rather than to stop. The more
prevalent corner—are they convex and concave?—is that which protrudes. Thesemove
the eye and even the body away from a dead end. They force movement along the line
of one surface around the comer to the next which invariably leads into the central
living area. The beds are on platforms which are continuous. If one sits in the living
room and looks into the bedroom the color and texture continues from where one is
sitting over the top of the conversation pit, across the floor and up the bed platform.
There is flow rather than stasis. (…occasionally first time visitors say they get turned
around in the house. I don’t understand but know that this would never happen in a
cube.)



BG used Pella doors throughout the house so even the actual shapes seem to change
with the closing and opening of these temporary divisions. The structure of the doors
is a simplified microcosm of the building. The rolling feel of the shape and the sense
of expansion or enclosing.

My parents have done no redecoration or modifications to the house, other than
maintenance and removing my brother’s suspended bed, since the house was built.
This is pretty weird when one considers that the house is almost thirty years old.
However, the impetus to change and redecorate is subverted by the structure itself.
The interplay with nature provides constant seasonal change. Additionally, as spaces
are not confining but rather interrelated, visually expandable areas, one’s perception
of the structure changes.

Having spent much of my formative years in the house, I must heartily agree with
Winston Churchill’s belief: “Wemake our buildings then our buildings make us.”

…The shingles on our house are grey stain and the interior carpet is green bordering
on chartreuse. The “wire” fountain was long ago replaced by BG with a string and
mirror sculpture. The lily pool is a square while the swimming pool is the elongated
hexagonwhich is the shape of the shingles. Tvo tables are circular while two low tables
are the negative space of the moon doors where the glass was inserted. These were
impromptu designs which Goff devised when he saw the quality of the grain in the
Japanese Ash which is used throughout the house. He felt the wood too beautiful not
to use. This inspired the salvaging of most of the negative spaces…These forms and
anti-forms provide a pleasant repetition and visual reversal throughout the house.
…Both staircases are standard metal spiral staircases. The treads of these have been
wrapped in carpeting but would more closely approach a triangular shape than an
octagon. The stools which Goff designed are metal reinforcing bars with balls on
one end and circular cushions on the other—the configuration repeats the crossed
reinforcing bar design above each large skylight, over the chimneys and those on
either post of the front gate.

Goff trimmedmany areas with square mirrors in various sizes and textures. In the
central skylight area there are downward pointing pyramids of these in the spaces
where shingles come together. Along the front of the carport there are little rows of
these mirrors set on edge. Although Goff used the octagon as a unifying shape, it
does not in practice feel dominant. The drawer pulls are triangles and many cabinets



and shelves are rectangles, cubes, or triangles. The doors have compressed squares
and pyramids as metal trim. In living in the house and viewing the interior one is
impressed by the interplay ofmany geometric forms rather than the dominance of one.
The polyhedrality is to mymind far more complex than the repetition of octagons.

As to the personal side of living in an unusual structure, it has been a fascinating
experience. It is hard for me to pull apart the influences and dissect what comes from
being reared by people who hired BG, spending great quantities of time with him over
a four or five year period when I was especially open to new ideas, and the influence
of growing up in one of his creations. I always enjoyed living in the house growing up
and often rated people by their reaction to it. I have been living here again recently
and have amore developed respect for the design elements and the functionality. I am
however still surprised by the fact that Kansas City or maybe the world in general has
not yet caught up with Goff. It still rather startles me when people comment on the
house. I have been dealing with realtors and potential buyers in the past fewmonths
and amflabbergasted thatmany people believe it demands some strength of character
to not five in a box. When we first moved into the house I was about 14 and thought it
very cool and wanted all my friends to comment. Gradually however, I began to feel
that those who felt compelled to comment on the house were simply displaying a very
narrowmind-set. Time has moderated my stance somewhat. It was a fabulous house
for teenagers in the sixties; a great place for slumber parties; a great place to awaken
one to the value of environment and the importance of living with beauty andmany
other very valuable lessons. . . .

P.S. I just finished this after nightfall and forgot to include how the house is never
really dark. There is always somemoonlight or even reflected city lights—it’s never
like a windowless apartment bathroom. …Also during full moons when the moon is
over my bedroom skylight I understand “lunacy.”31

William H. Bass House, Project, Tulsa, Oklahoma, 1956

Before discussing polyhedra in the Bass House (Figure 2.9), we will let others sum-
marize its formal and functional aspects:

According to Architectural Design:



The car port is screened from the road by a lowwall of translucent glass along
two sides of a lily pool. A covered walk leads through the car port across the
forecourt of white raked sand, with reflecting pools, to the main entrance at
the right. Tall louvered aluminium ``light trees'' illuminate this area at night.
The entrance door is of pale green marble, as are all closet walls and sliding
doors for same. From the entrance hall wemay go into the kitchen, at the left,
or into the ``powder room,'' coat closets and stairs up to the balcony. Slid-
ing translucent glass doors in gunmetal frames open into the marble-floored
recreation roomwith fountain. This space opens out on to the screened porch
and sliding translucent glass walls open to the carpeted parents' living-room
and the daughter's living-room.

Figure 2.9 William H. Bass House, Project, Tulsa, Oklahoma, 1956. (a) Plan; (b)
rendered aerial perspective; (c) roof plan. (Courtesy of the Ryerson and Burnham
Libraries of the Art Institute of Chicago.)





Bedrooms open off these living rooms, each with marble closet walls, dressing
areas and baths. The dining-room opens off the parents’ livingroom and has direct
service from the kitchen. A service entrance opens into this space, with servants’
stairs leading down to their rooms in the semibasement. A swimming pool adjoins the
porch and dressing rooms and showers are connected by a wisteria-covered arbor.
The entire house is built on a star-shaped grass-covered berm, with gravel strip

surrounding it for drainage. Sim bathing areas flank the swimming pool. The roof
is of Stran-steel construction, covered inside with metal lath, sprayed with white
acoustic-insulating asbestos …all furniture, including dinnerware, glasses, etc., will
be designed by the architect. All baths are sunkenmarble-lined pools screened with
translucent glass with planting beyond….32

And De Long:

…the Bass house project—resembles the Price Studio in appearance
but is composed differently, for it extends the theme of the McCullough
project…with modular shapes overlapped to form systematic variations
of interior space. The repeating unit, however, is itself more complex: a
five-pointed star. Four are overlapped to order both interior and related
exterior spaces, and within the house a regular pattern of hierarchies results,
with shared, private, and service areas given specific spatial character. These
are programatically identical to the McCullough Scheme, and reinforce Goff's
tendency to express a Ghent's desire for privacy through clearly defined
geometries. Again he had produced a geometric metaphor for interlocking
family structure [my emphasis—RR], one that stood in marked contrast to the
more conventionally open and unstructured designs of the time, almost as if
compensating for that which he had rarely experienced but perhaps sought
to honor. Typical of Goff's approach is his three-dimensional realization of
the modular unit, here achieved by angled planes that reinforce the star
image…. The house was to have been constructed of steel joists, with an
exterior cladding of pale blue anodized aluminum. Inside, pale green marble
was to be used for floor and wall surfaces and, in sheets suspended from
wheeled ceiling tracks, as movable partitions. Goff explained that while the
clients approved the design, they were discouraged from building by the
strong protests of the neighboring residents.33



The floor plan of the Bass project was based on three abutting pentagons—suggest-
ing dodecahedral development; however, the scheme developed instead toward a
stellated pentagon (pentagram, or five-pointed star, two-dimensionally speaking).
Two nonadjacent pentagon sides were extended until they intersected, creating an
isosceles triangle, the base of whichwas the included side of the pentagon. In plan, the
pentagonmodules were each stellated on fewer than all five of their sides, resulting in
partial pentagrams (Fig-

Figure 2.10 Bass House. Pentagonmodules “stellated” into pentagrams.

ure 2.10). The plan is based on a stellated pentagonal grid—a small region of a
quasicrystalline grid.

A startling expression of the pentagonal geometry was the double-star roof. Two
intersecting pentagrams covered three pentagonal cores, their ridges bisecting the
36° pointed ends of the stars in a natural outgrowth of the plan. The roofs stars inter-
penetrated like mirror-image, twinned crystals. The owner was a two-star admiral!
(Goff himself was in the Navy during World War II)—not the first Goff literal transla-
tion of a client attribute into a specific form—note Goff’s entry in the Cowboy Hall of
Fame competition for Oklahoma City, 1956, in which the buildings were shaped like
horseshoes!

Interiors consisted of free-flowing regions defined by pentagramal pyramid ceilings
whose bases were low triangular walls resting on perimeter facias or light troughs,
the soffits of which became the ceilings of the star arms. The pentagons were further
defined by screens, glass, storage walls, seating areas, and so on at key vertices. As in
the Nicol House, major spaces were virtual prisms generated by plan elements capped
by corresponding pyramids, with subsidiary outcroppings around their edges.

The roof over a typical star arm had conventional two-slope pitch; however, the
following handling of surface planes contributed to the polyhedral character (Figures
2.11 and 2.12):



Figure 2.11 Bass House. Polyhedral star arm.

1. The ridge sloped upward from the outer tips of the star arms as the roof widened.

2. The roof consisted of four planes with three folds—the eave folds are horizontal.



3. The lower roof surfaces wrapped down vertically onto the walls, in effect becom-
ing siding, their bottom edges sloped downward from the end points, circum-
venting the conventional wall/roof dichotomy. The roof predominated and walls
became secondary. Examples of other Goff designs that employ this device are
the Rudd icosahedral bedrooms, the Price Studio, and the Crystal Chapel.

4. Glazing the ends of the star arms removed the vertical wall planes and let the
roof polyhedra dominate.

5. These glass walls tilted out at the top—creating a pentagonal cross section.

6. The apparent slope of the glass was doubled where the two sloping glass planes
abut at the pointed ends of the star arms.

7. Landscape berming repeats the dihedral, pointed roof pattern, emphasizing
the pentagram fingers. Angular planters articulate vertices where the star arms
meet.

Figure 2.12 Bass House. Section through star arm.

All of this added up to quin-or pentapyramids (an extension of di-pyramid nomen-
clature); or, say, “partially-stellated-proto-icosahedra.”
Intersections of two tip ends of the star arms are prominent in the front and rear of

the house—the front intersection being articulated further into a mechanical shaft
doubling as entrance totem.



A three-story front entrance area contains a multiplicity of functions—kitchen,
powder room, closets, and utility rooms. Covering these elements are extensions of
central portions of the roof—in a complex departure from the “purity” of the twinned
pentagrams. Lateral halves of the star arms are extended straight beyond the ridge,
rather than folding there.
The star theme proliferates in skylights, pentagonal diprism glass tables, stools and

chairs, exterior planting, walkways, and sunken seating areas.
John Sergeant observes:

On a larger scale, the same problem [i.e., an ``erosion'' of the centralized ge-
ometry for an ``act of entering'' which is ``somewhat mean''] is exhibited in
the Bass project…. A two-star admiral merits a grand plan with family pen-
tangles; but ultimately there is the same clash between entrance and kitchen,
which duel for the same geometric slot. The brilliantly developed geometrical
hierarchy suffers from one of its points being a dining room while the others
are bedrooms.

It has been argued that this very abstract, ``frozen'' geometry is unworkable;
it has been called ``heraldic.'' De Long, however, feels that it represents only
an extreme development, and draws attention to the geometry as pattern.
He suggests that the complication and ambiguity of architectural experience
which result from such plans parallel the aims of Sufi architecture, where
complex overlapping pattern was used to sustain contemplation. This may
be so, but Goff's handling of symmetry must also be set in Western culture.54

As this design is unbuilt, no one can vouch for the static-ness versus the fluidity
of the interior space from direct experience. However, based on built designs with
similarly strong generating patterns, for example, the Pollock/Warriner, Wilson, Nicol,
and Price residences, the strength of the geometry and the rigor and variety with
which the Bass pentagonal theme is carried into the third dimension and into the
detailing and all the other aspects of its architecture, establish not only uniqueness,
but unity and tranquillity.
In the Bass House the sense of polyhedral, nonparallelepiped space—exciting and

different space—is strengthened with minimal resources.
The Irma Bartman (Triaero) House, Fern Creek, Kentucky, 1941



This triangular summer vacation cottage (Figure 2.13) with its steeply angled struts,
dramatic overhanging, and shadow-producing trellises heralded several features that
were later to appear in the Bass design: glass end walls, inclined wall storage units,
and wraparound, ribbed siding. Together these elements

Figure 2.13 Irma Bartman House (Triaero), Fern Creek, Kentucky, 1941.



dramatized the acutely angled corners of theplan, producing a feeling ofmore
than just a prismatic, vertically extruded volume, in short, creating the emo-
tional dynamics resulting from the use of polyhedra. The storage areas and
glass end walls are a sort of hexagonal diprism, capped and enclosed by a
triangular roof and stanchions that form a truncated octahedron.

The Emil Gutman House, Gulfport, Mississippi, 1958

Another triangular scheme, the Gutman House (Figure 2.14), built in hurri-
cane country, was raised one story off the ground on pipe columns to avoid
flooding. The house was ``wind-proofed'' by its ``airfoil'' profile of sloped
triangular underside and pitched roof.

The pipe columns supporting the house were arrayed like outspread fingers
forming three tetrahedra-like clusters or inverted triangular pyramids (which
were to have been enclosed in the first design, as were the towers of New
York's George Washington Bridge). In three tetrahedral pipe column clus-
ters, a single one-inch-diameter steel rod tensionmember tied down the can-
tilevered floor trusses. Professor Robert Faust, of Auburn University, who





Figure 2.14 Emil Gutman House, Gulfport, Mississippi, 1958. faPlan; (b) exterior
photo. (Courtesy of the Ryerson and BurnhamLibraries of the Art Institute of Chicago.)

organized and supervised the construction was worried about those rods—if any-
thing happened to one of them (e.g., a fire), presumably down would come the house.
There was a fire, but it affected other parts of the house.

Faust said construction work on the house, which went smoothly, caused a great
deal of excitement. Passers-by (many of whomwere from the local Pensacola area)
thought it was a bridge under construction, among other things.

The geometry of the scheme as a whole is based on a triangular grid hierarchy
with a unit triangle of 7 feet on a side (Figure 2.15a). The structural supporting legs
conform to this geometry—three inverted pyramids forming a tetrahedral/octahedral
space-frame-like unit (Figure 2.15#). The interior spaces were generated by vertically
extruding into prismatic volumes a plan tiling of triangles with one, two, or three
comers truncated, creating both truncated rhombi and hexagons with unequal sides
arrangedwithin a larger overall triangle. The resultant plan is essentially a tessellation
of equal-and unequal-sided hexagons with sides defined by partitions of varying
degrees of



Figure 2.15 Gutman House, fa) Geometry, triangular grid hierarchy; (b) structure,
inverted pyramids of supporting legs form a tetrahedral/octahedral space frame (with
elevation). (c) roof plan, pyramid, soffit under similar (with elevation of diagonal
structure), (d) open interior spaces—hexagonal tessellation, partition transparency
and views, (e) peripheral service elements—closets, planting, porches, utilities.

transparency and movability, for example, drywalls, sliding glass doors, fixed glass,
and folding wood doors as room dividers and closet doors (Figure 2.15d). In plan,
again the polygon variations differentiated private, family, utility, and server spaces.
In the Gutman House, however, most of the service elements—closets, planting areas,
porches, utilities, stairs—are on the periphery (Figure 2.15e). The regularity, trunca-



tion, and size gradation of opposing triangular modules is clear in the Gutman House.
Alternate triangular prisms are expressed on the exterior corners and midsides of
the larger triangle. All are sandwiched between shallow triangular dipyramids (hence
“airfoil”). In other words, the roof (Figure 2.15c) is a shallow pyramid capped by a
single-module tetrahedral skylight; the underside or soffit is a similar, but inverted,
pyramid, the bottom of which accommodates a sunken seating area, the floor framing
andmechanical equipment while portions of the upper pyramid are recessed to reveal
sloped ceilings.

Faust said one thing that did not work aswell as Goff expected for the GutmanHouse
was the use of little chips of broken plate glass added to the stucco and to the driveway
to make them sparkle. Albeit unsuccessful, these little chips of glass mirrored the
crystalline aspects in Goff’s designs—reflected on a larger scale in the chunks of glass
cullet (“culled” waste from commercial glass kilns), which Goff used from time to
time in various capacities—as ornament, masonry, and glazing. Athough crystalline,
the glass cullet exhibited complex, curvilinear fracture surfaces, both concave and
convex, producing undulant and sinuous refractions reminiscent of the shapes in
Goff’s paintings.

In the 1980s the Gutman House suffered a fire of suspicious origin. It was said that
the fire department, unfamiliar with the unusual design, was unable or unwilling to
obtain access to the house to extinguish the fire. Faust said the house was then put up
for sale for $80,000 of which $50,000 was for the site. In order to sell the property, the
owners apparently felt it was necessary to get rid of the partially burned structure and
demolished it. Grantham and his wife Bonnie visited the site on their honeymoon in
1987. The only traces remaining of the house were little rusted nubs from the cut-off
pipe-supporting legs protruding from their foundation like the stumps of tree clusters.

Other Triangular Designs

Goff designed a number of other buildings with Stage 2 triangular plans. These were
generally “tighter,” that is, more formally symmetrical, than Frank Lloyd Wright’s
triangular plans. The salient polyhedral features of several are mentioned in the
following discussion—private residences, the Briar Associates prefabricated projects,
fraternity houses, and amotel. The Bartman (Triaero) Housewas discussed previously



in conjunction with the Bass House. The Price Studio designs and the Crystal Chapel
are covered further on. The Searing House was noted in passing. Each provides a
unique example of a variation on the triangular theme—but they are by no means all
simply prismatic spaces extruded vertically from triangular plans.35

Figure2.16 JohnQuincyAdamsHouse, Project 1, Vinita, Oklahoma, 1958. Rendered
perspective. (Courtesy of the Ryerson and Burnham Libraries of the Art Institute of
Chicago.)

The John Quincy Adams House, Project 1, Vinita,

Oklahoma, 1958

The Adams House (Figure 2.16), like the Gutman House, was raised off the ground
at three points but with a garage underneath—amodified octahedron—or dipyramid
with the base enlarged (Figure 2.17). The house was partially suspended on cables
from pylons at the centers of each side—the pyra-



Figure2.17 Adams House.

(a) Octahedron, two views; f/V Adams House, side view and plan.

midal cable arrangements complementing and giving rise to its polyhedral char-
acter, since the polyhedral edges of the house followed the cable lines. Triangular
windows with Y mullions created “virtual” tetrahedra.

The Helen Unseth/Sheldon Newman House Designs

Version 1—Project, 1939

The tetrahedral-like clusters of roof trusses of the first Unseth design (an equilateral
triangle in plan) were not rigorous space frame or tetrahedral-octahedral matrices,
but rather, three-dimensional prismatic grids



Figure 2.18 Helen Unseth House, Project, 1939. Model photo. (Courtesy of the
Ryerson and Burnham Libraries of the Art Institute of Chicago.)



resulting from interlocking two-dimensional trusses—an early suggestion of the
Sierpinski arrowhead mentioned below in connection with the Crystal Chapel (Figure
2.18).
Version 2 of the Unseth House, as Built in 1940, in Park Ridge, Illinois
The plan is a square cut in half along the diagonal, forming an isosceles triangle.

The focal point of this small and modest-seeming house is a dynamic composition of
fireplace opening, sunken hearth, flue, windows, and skylight, together carrying into
the third dimension the diagonally cut-square theme. A similar functional/polyhedral
cluster surrounding a fireplace was seen in the Hyde House, discussed previously.
Triangular windows are covered with shutters that are “die cut,” as it were, from the

continuous diagonally lapped board siding. When opened, a shutter, together with its
window opening, create a virtual tetrahedron. A similar polyhedron is implied in a
corner of the bathroom by two back-to-back triangular windows.
The present owner of the house, Sheldon Newman, feels that the house is a bit small

for his present needs—but that the character of the house more than compensates.
Mr. Newman said he felt that to know a Goff house one should know about the client,
because Goff carefully tailored his designs to their needs. From neighbors he found
out that Ms. Unseth was an artist and horticulture lover who had planted most of the
site—now fully mature over half a century later. From the interiors the windows bear
a striking relationship to the trees and bushes outside—the 45° angled sloping sills
provide surprisingly harmonious frames for the spreading crowns of the yard foliage.
(The same is true of the Nicol House windows.) A tiny triangular window at the floor
level may have provided a view of a favorite plant outside.
Briar Associates Projects, Bartlesville, Oklahoma,
1963 and 1964
Goff againused triangular andhexagonal prisms (vertically extruded—Stage2) in the

several designs for the Briar Associates prefabricated structures. House A was based
on thehexagonwhereasHouseBandCabinAwere basedmore on truncated triangular
prisms. Cabin A, with its clearly expressed riveted metal shell, was supported and
raised above grade, like the Gutman House, on three steel finger-like “quadripod”
arrays—inverted pyramids. Triangular windows at the corner truncations of Cabin A
(similar to those of the Nicol House) were shaded by the sharply pointed cantilevered
prows of the roof, which extended the equilateral triangle of the plan out to its vertices.
Black Bear Motor Lodge, Project, Jackson Hole, Wyoming, 1961



The tepee-like tetrahedral “dormer” windows that enliven the roofs of the Black
Bear Lodge (Figure 2.19) connote a Native American theme—a theme that is inevitably
suggested whenever a conical (or many-sided polygon-based

Figure 2.19 Black Bear Motor Lodge, Project, Jackson Hole, Wyoming, 1961. Ren-
dered perspective. (Courtesy of the Ryerson andBurnhamLibraries of the Art Institute
of Chicago.)

pyramid) form is used, as in Goff’s Crested Butte Lodge and a number of other
projects. TheBlackBearmotel roomsare grouped into three rectangular blocks, which
in turn are arranged as a triangle. Within this triangle are three dining, communal,
and service tetrahedral spaces—all one story above grade. This frees up the ground
level for parking, circulation, landscaping, and a swimming pool at the center, which
is open above. Tapered skylights cap the ridges of the tetrahedral roof of each major
space and, together with a similar tapered spire from the peak, create a four-pronged
(tetrapodal), stellated-like crown (Figure 2.20)—three of which dominate the motel
silhouette. Zigzagmasonry walls enclose the whole and frame sharply pointed balsam
firandspruce trees,whichecho the rooftop spires—all set against andperhaps inspired
by the jagged mountainous backdrop.

Figure 2.20 Black Bear Motor Lodge. Tetrapodal crown/skylight.





Figure 2.21 Phi Sigma Epsilon Fraternity House, Project, Talequah, Oklahoma, 1962.
(Courtesy of the Ryerson and Burnham Libraries of the Art Institute of Chicago.)

Phi Sigma Epsilon Fraternity House, Project, Talequah, Oklahoma, 1962

A series of ``A-frame'' structural members created a triangular prism upon
the sloping wall/roofs of which nestled rows of complementary triangular
prism ``dormer'' windows (Figure 2.21). A similar volume, but a negative
variation on the prism, provided an inviting and protective entrance. Related
clusters of rooms occur in the fraternity houses and the motels as they are
both multiunit residences.

W.R. MacBryde House, Project, Kansas City, Kansas, 1959



The MacBryde House (Figure 2.22), like the Gutman and Adams houses, is
raised one story with the garage remaining at grade. Diagonal corner porches
are joined visually by railing walls with sloping tops that create an illusion
of the entire house resting on a flattened half-cuboctahedral base. Like the
Gutman House, interior volumes are expressed on the exterior as triangular
prisms with sloping bases, penetrating the partial cubocatahedron that de-
fines the perimeter. As in the Pollock/Warriner House, here the structural
framing runs at a 45°angle to the overall massing of the house.





Figure 2.22 MacBryde House, Project, Kansas City, Kansas, 1959. (a) Bird's-
eye perspective; fworm's-eye perspective. (Courtesy of the Ryerson and
Burnham Libraries of the Art Institute of Chicago.)



Figure 2.23Phi Beta Delta FraternityHouse, Project, Norman, Oklahoma, 1930. Ren-
dered elevation. (Courtesy of the Ryerson and Burnham Libraries of the Art Institute
of Chicago.)

Phi Beta Delta Fraternity House, Project, Norman,

Oklahoma, 1930

The Phi Beta Delta Fraternity House (Figure 2.23) was an elaborate Stage 1 project,
basically a T-shaped plan, with its member cells canted—producing a “sawtooth” plan,
which gave each room a corner window, expressed the multiplicity of rooms, and cre-
ated a dynamic, spatial exterior. Goff had designed a high school in 1930 along similar,
serrated lines. The corridor between two banks of rooms, as a result of this canting,
contained wedge-shaped volumes, which would have invited “schmoozing.” A typical
cell comer window consisted of back-to-back triangles—again, the virtual tetrahedron
(Figure 2.24). These “tet” volumes dominated the exterior of the building and the
balance of the exterior wall surfaces were diagonally and triangularly patterned and
scaled so as to unify them into an abstract composition (what todaywemight lazily call
art deco), emphasizing the vertical stacking of rooms and downplaying the horizontal.
Frank LloydWright used the wraparound window early on (e.g., the Henderson House,
1901), as did Le Corbusier (e.g., the Amedee Ozenfant Studio, 1922).

Pi Lambda Phi Fraternity House, Norman, Oklahoma, 1955



As in the Black Bear Lodge, the mostly rectangular spaces in the Pi Lambda Phi
Fraternity House—a dining room, private rooms, and offices—were contained in three
longer rectangles, which in turn defined the edges of a large, two-story, interior trian-
gular commons (Figure 2.25). At the three comers where these rectangles met, the
resulting triangular entrance and related spaces were extruded vertically into prisms.
A very flattened half-cuboctahe-

Figure 2.24 Phi Beta Delta Fraternity House. Corner windows compared: (a) Frank
Lloyd Wright's Henderson House, 1901; (b) Le Corbusier's Ozenfant Studio; (c) Goff's
Phi Beta Delta Fraternity House, virtual tetrahedron.



Figure 2.25 Pi Lambda Phi Fraternity House, Norman, Oklahoma, 1955. Plans.
(Courtesy of the Ryerson and Burnham Libraries of the Art Institute of Chicago.)

dron roof with triangular clearstory windows covered the communal area, topped
by a large, open-frame, steel pipe tetrahedron, from the apex of which hung sculptural
television antennas. A prototype for the central triangular prism defined by three
peripheral rectangular spaces is apparent in Goff’s 1924 design for a recital hall in
Tulsa, and is echoed two-dimensionally in the floor plan of the Crystal Chapel.

First NatioiniaD Bank, Project, Independence, Missouri, 1970

James Nicol (of the Nicol House discussed previously) was an officer of the First
National Bank of Independence (Figure 2.26) and was instrumental in getting Goff the
commission for a new building for the bank—the second of two projects (the first had
been a remodel).



Figure 2.26 First National Bank, Independence, Missouri, 1970. Rendered perspec-
tive. (Courtesy of the Ryerson and Burnham Libraries of the Art Institute of Chicago.)



The core of the bank was a load-bearing structural steel frame enclosing stairs,
elevators, and utilities. The structural members of the core were exposed at the top of
the building and cutaway into a crown that formed half of a virtual cuboctahedron.
From this core were cantilevered floors of graduated lengths—one could argue that
this might lend variety to rental potential—creating the most striking polyhedral ele-
ment of the building—a tower mass as a square rotated 45° to stand on its corner. The
visual device of increase in width toward the top was used occasionally by Wright, for
example, the Rogers Lacey Hotel project in Dallas, 1946,56 and, of course, the Guggen-
heimMuseum in New York. Goff’s design, however, increases in width muchmore
rapidly from the base upward to its midpoint and then decreases equally. A square
with this orientation seems less a square—more a quadrangular polygon—its corners
predominant. The edges we are used to in conventional architectural boxes are either
parallel to the ground or vertical, the comers scarcely noticed. This portion is Stage
2—a horizontally extruded, nonrectilinearly oriented, rectangular parallelepiped.

Adding to the dramatic mass of the square on its corner was a robust, deeply pat-
terned Cor-ten steel curtain wall. Although he obtained commissions for a variety
of high-rise buildings, Goff never had occasion to use modular polyhedral units in
vertical close packing—only a suggestion appeared in the First National Bank curtain
wall. Was the honeycomb-like cladding intended to allude to the beehive of the office
environment?

This polyhedral curtain wall was based on a familiar tessellation of octagons and
smaller squares with the same edge length as the octagons, turned 45°—in sync
with the office tower massing. This grid appears in the plans of the Jones, Wilson,
Pollock/Warriner, and Nicol houses discussed in this chapter and in the Innis House,
Project, Coronado, California, 1943, among others. The octagons of the First National
project acted as the bases of shallow (having a short altitude relative to the width) but
visually powerful pyramids—the octagons were large—equal to the story height. The
intermediate squares and their vertically pivoting window sashes when opened 90°
formed virtual octahedra (Figure 2.27).



The purpose of this pyramidal dimpling was the same as that of the pressed metal
patterns employed frequently for cladding of commercial buildings from the 1950s
onward, such as the aluminum curtain wall of the 666 Building in New York—to stiffen
a thin metal sheet and simultaneously provide some tex-ture/omament. Goff’s wall
had a real depth but, at the same time, imparted an even greater illusion of depth
through its pyramid symbolism.

Fitting the multipyramidal integument to the sloping ends of the 45° office block
was accomplished by a slide transformation in which the pyramids were cut so that
five segments stayed in place and three slid inward to the next story (Figure 2.28).
“Slide” surfaces resulted in an accordion pleat, strongly defining the sloping end walls.
This curtain wall is a proto-Stage 4 polyhedral tessellation.

Cor-ten steel was the rage for a while in the 1950s and 1960s—it was a preoxidized
(rusted) steel alloy that would presumably oxidize only up to a

Figure 2.27 First National Bank, Independence, Missouri. Virtual octahedron win-
dow.

Figure 2.28 First National

Bank. “Slide” surfaces result in accordion pleat.



point, retain die rusty reddish-brown color, and not require painting. Structural
steel could be expressed as steel without maintenance problems (where fireproofing
was not a consideration). Grantham believes that Cor-ten eventually lost popularity
because the rust dust would bleed onto other buildings, drip to the ground, and stain
the surroundings.

The First National’s curtain wall is reminiscent of Buckminster Fuller’s 1958
steel geodesic dome for the repair shed of the Union Tank Car Company in Baton
Rouge—each utilizes prefabricated pyramidal steel cells to form a continuous stiffened
skin. There the similarity ends. Fuller’s was another variation on his geodesic system,
involving tension and compression rods as part of the hexagonal arrangement of



sphenoidal structural cells, each cell varying in size and shape according to its location
in the spherical geodesic pattern. Goff’s design was based on a uniform, equal-celled,
essentially planar, square-octagonal tessellation, and was not structural, beyond its
self-bracing, nor was it, of course, covering a spherical surface.

The floor for customer banking transactions was a box—redefined with Goff’s per-
sonal stamp. Raised one story above grade and distinct from the office zone above,
it acted as a transition from the ground plane and as an underlying base to the 45°
angled volume above. Contrasting with the opaci -

Figure 2.29 First National Bank, (a) Secondary outline of tower cladding is reflected
in (b) banking floor rondelle windows. Transition from dodecagon to square frame is
done with “curve stitching” of beams.



ty of the textured steel mass above it, the banking floor was transparent—enclosed
by giant glass “rondelles” on one long side, on the end walls, in the ceiling as skylights,
and set in the floor as well. A variation on the tower cladding, it comprised 12-sided,
tempered-glass pyramids whose base perimeters consisted of overlapping steel beam
frames, another example of curve stitching (Figure 2.29). This “cage of steel and
crystal” hovered over the plaza, suspended on cables from the floors above. As Goff
said to Grantham (who spent a month drawing the intricate perspective), “Same old
unusual stuff.”

When First National was bought by a larger bank, the project was dropped.

The Howard Jooues House, Bartlesville, Oklahoma, 1958

The JonesHouse (Figure 2.30) has an open plan that does not readily admit to polyhe-
dral discoveries. The floor plan is based on squares and octagons in tessellation—the
same pattern as the grid of the First National Bank curtain wall discussed previously.
Had the Jones House plan tessellation been carried into the third dimension (e.g., had
the squares and octagons been orthographically projected in front and side elevation
as well as plan) to create an aggregation of polyhedral cells, it might look something
like the schematic representation of a sodalite crystal.”

Major functions such as living and dining inhabit the various octagons,



Figure 2.30Howard Jones House, Bartlesville, Oklahoma, 1958. Plans. (Courtesy of
the Ryerson and Burnham Libraries of the Art Institute of Chicago.)



Figure 2.31 Howard Jones House. Octagonal prism penetrated by octagonal dipyra-
mids—schematic view and section.

which He at different levels, whereas the square elements comprise circulation
and service modules—stairs, fireplace, and so on. A basic unit of space consists of
an octagon extruded vertically into an octagonal prism, which is in turn encircled by
portions of the frusta of octagonal dipyramids (Figure 2.31). Most of these prismatic
units are open to one another and have only minimal vertical definition through exte-
rior sidewalls—fewer than the Nicol House. The frusta—girdling bands of triangular
prisms—act as showcase window/shelf units for Airs. Jones’ pottery collection—an
important architectural determinant for this house. One senses a complex and spa-
cious openness—a sense of the monumental. Three 1892 Oak Park houses by Wright
contain the pyramid cum prism in a conventional 19th-century juxtaposition—with
steep octagonal pyramid roofs on octagonal prism spaces below—the Thomas Gale,
Emmond, and R.P. Parker Houses.

The Jones House Hes somewhere between Stages 1 and 2.

The Joe Price Studio and Residence, Bartlesville, Oklahoma, 1953–1974



If his designs sometimes proved too controversial or expensive, Goff, rather than
compromise and dilute, would create a completely new scheme, using a simplified
module or straight lines rather than curves or fewer angles. The Price Studio is an
example—stepping down a rung of the ladder to a simpler polyhedral stage—from
Stage 3 to Stage 2.

Morphologically, the Price Studio designs were (in brief): Scheme 1—lin-

ear clusters of rhombic frusta along the x, y, and z axes. This scheme was
rejected for reasons discussed later. Scheme 2a was a ``pinwheel'' theme
with vertical walls and a pitched roof. Scheme 2b had a similar plan but with
sloping walls, creating less conventionally prismatic spaces. This scheme
was built in 1956 and will be referred to in the following discussion simply
as Scheme 2. It received two additions—a gallery and a meditation room.

Scheme 1

Scheme 1 (Figure 2.32), unbuilt, consisted of variations on rhombic frusta
arranged in additive series or stacks along the x, y, and z axes. The approxi-
mately 90° opposition of each axis to the other two created a three-pronged
reference armature in space, strongly expressive of three-dimensionality.
The application of this spatial tool—individually articulated x, y, and z axiality
(Figure 2.3 3zz)—occurs not only in the multiplanar work of Frank Lloyd
Wright (e.g., the Robie House) but also in that of Le Corbusier and Mies
van der Rohe (the Barcelona Pavilion is an easily read example). In the
Price Studio 1 nonrectilinear volumes, that is, frusta and prisms, rather than
planes or boxes, are oriented along the x,y, and z axes (Figure 2.3 3£). The
slight inclination of these axes to one another parallels a common property
of crystals.

XAxis. The thematic unit volume of the Price Studio 1 was the rhombic frus-
tum (Figure 2.34zz), extending horizontally and approximately perpendicular
to the slope of the hillside site (Figure 2.34#). The cushioned, carpeted lower
inclined surfaces of these frusta were seating/lounge surfaces.



Variations on this theme abound—large and small, frustum, pyramid, and
prism, vertical, horizontal, and sloping, abutting and branching, and so on.
The main studio space was a linear series consisting of two frusta of rhombic
pyramids of different ``altitudes'' (I emphasize ``altitude'' because in this
case it is horizontal, whereas we usually think of the altitude of a pyramid
as being vertical) with their truncation faces abutting, plus two rhombic
pyramids, in a generally ABB\AX relationship, with pyramid and frustum
bases back to back (Figure 2.35a)—or two pyramids interpenetrating vertex
to vertex with a rhombic pyramid terminating each end.

At each end of the x-axis array, dormers frusta sprouted like crystal growths
or plant buds, a literal expression of organic architecture—part window, part
skylight (inspired by the unfolding spout of a milk carton?)—glazed by boring
holes in the glass and bolting it direcdy onto the gasketed opening.

Side planes of the B frusta overlapped to shield and define bands of skylights,
fighting fixtures, and ventilation grilles—at the same time emphasizing the
frustum edge and the separateness of surfaces and downplaying solidity.

Y Axis. Penetrating the x'-axis volumes at not quite a right angle in plan (in
keeping with the rhombic theme, i.e., angles other than right angles) was a
prism extruded parallel to the slope of the hill. The hill slope appears to have
been a major determinant of the rhombic theme—the hill's angle of repose
projected onto each of the x, y, and z dimensions—schematically, if





Figure 2.32 Joe Price Studio and Residence, Project (Scheme 1), Bartlesville, Okla-
homa, 1953. (a)Renderedplan; (b) rendered exterior perspective; (c) section. (Courtesy
of the Ryerson and Burnham Libraries of the Art Institute of Chicago.)

Figure 2.33 Joe Price Studio, Scheme 1 (project), (a) Generalized x, y, and z axiality;
(b)x, y, and zaxiality in the Price Studio.

Figure 2.34Price Studio, Scheme1. (a)Rhombic frusta; (b)hillside slope as generator
of the angles of the rhombus.



not strictly. The base of this inclined prism was a square tilted at 45°. (The First
National Bank was a variation on this theme.) A wood ramp within served as circula-
tion—carport, entrance, and bridge. The prism acted as tunnel and watercourse for a
stream passing through the house, terminating in a waterfall on the downhill side. In
addition to square and triangular elements, the pentagon (if somewhat modified) can
also be found in the Price Studio 1.



ZAxis. Several variations on the prism array were related to the (vertical) z axis.
One was an outdoor lounge or screened porch (Figure 2.35Z>). This was an ABBiAi
stack on a vertical axis, the bottom A acting as a stone base holding up the central
BBi porch—a dipyramid. A horizontal deck was placed within the canted sides of the
inverted pyramid. It was topped by another A1 frustum—

Figure 2.35 Price Studio, Scheme 1. (a)Main living area with horizontal ABBA ar-
rangement of units; (b) screened porch, with a vertical variation of the ABBA sequence.

lighting fixture. The z-axis array consisted of, in other words, back-to-back bent
pyramids. Another variation on the z-axis grouping was a kitchen/bath-room/dark-
room service module near the entrance.



The rhombic polyhedra of Scheme 1 hint at the illusory effect of that well-known
psychology experiment in which an object at the end of an experimental room with
diminishing dimensions seems larger than normal because of the unexpected distor-
tion in perspective. In other words, a frustummight exaggerate its own perspective, a
property we will encounter again in the Crystal Chapel.

Early in the 1920s Goff heeded Wright’s admonition to his followers not to copy his
forms but rather to find their own way. Goff was motivated to steer clear—apparent in
his propensity to create crystalline forms as spaces that could be occupied. According
to Larry Grantham, who feels that Goff’s work can be interpreted as “building-as-
ornament,” such spaces came about as the logical development of two-dimensional
ornament being made three-dimensional. Goff contrasted this concept of “building-
as-ornament” (a concept that he explored in his “273” design lab at the University of
Oklahoma)with that of applied local ornament. In teaching, Goff characteristically nei-
ther advocated nor rejected these ideas, but simply put them forward as possibilities
of which to be aware.

The Price Studio was sited directly across a shallow valley facing the Harold Price
House designed by Frank LloydWright. Wright reacted negatively to the design for
the first Price Studio. After seeing the plans, Wright wrote a scathing letter to Goff in
December of 1954, calling the design a “travesty,” an “elaborate and expensive fiasco,”
and a “manifest aberration” that “violated the concordant repose.”38 (Similar barbs
had been thrown at Wright’s work from time to time, e.g., against the Guggenheim
Museum!) According to Grantham, Goff “altered his course forever afterWright pulled
in the reins.” Scheme 1 was abandoned.

Scheme 2

Scheme 2 (Figure 2.36), built in 1956 (three years before Wright’s death), has a
cross section similar to Taliesin West’s sloping rectangle—which carries into three
dimensions the nonrectilinear angles of the plan. To this angle of cross section, Goff
compounded another angular motif—the diagonal orientation (approximately 20°-
70°) of the gold anodized aluminum roofing/siding. The effect is both dynamic and
illusionary, approaching a helix (Figure 2.37). (Nor is, incidentally, the 45°-90° grid
of Wright’s Taliesin West plan repeated in its elevation/section—it is approximately
15°—recalling the slope of the background Paradise Valley mountains.)



Figure 2.36 Joe Price Studio and Residence (Scheme 2), Addition,
Bartlesville, Oklahoma, 1956–1974. (a) Loft; (b) photo of tile bathroom
with pool above. (Courtesy of the Ryerson and Burnham Libraries of the Art
Institute of Chicago.)



Figure 2.37 Price Studio, Scheme 2 (built). Schematic roof plan, elevation, and
section.

The Price Studio is the most opulently appointed of Goff’s residences with its deep
pile carpets, its famous goose-feathered ceiling, and its built-in Goff designed murals,
sculpture, and stained glass; however, in terms of spatial concept, other designs were
more daring, for example, the studio’s first scheme, the Bavinger House, the Dewlin
Aparture project, and the first Garvey House design (the latter three are curvilinear).

Still, the Price Studio, as built with its additions, is a symphony of Stage 2 triangular
and hexagonal prisms and dipyramids, of truncations, elongations, shifting axes, twin-
ning, bi-and triaxial and rotational (pinwheel) symmetries of plan and roof structure
(Figure 2.38), finials, stretching, bending, rhythms, branching, ornamentation, and
texture.

For example, an aquarium at the center of the Japanese Painting Gallery (the first
addition to the studio—a hexagonal prismmotif) consists of an inverted hexagonal
pyramid, the faces of which are subdivided into shallow triangular (triakis) stellations
(or pyramids). The water reflects and refracts, multiplying the edges, vertices, and
planes, adding to the pool’s crystalline, polyhedral quality, giving it the feeling of a
large cut diamond.39 A similarly framed skyfight was designed for the roof directly
above.



Ameditation room (the second addition to the studio), described by some as “kalei-
doscopic,” reprises the rhombic frustum theme of Scheme 1, like Petroushka’s ghost.
Its roof is a rhombus folded into an elongated tetrahedron (in crystallographic terms
a tetragonal bisphenoid) and truncated at the ends to produce smaller, similar virtual
tetrahedra (Figure 2.39). The windows of Scheme 2 are another variation of the folded
rhombus/virtual tetrahedron.

Figure 2.38 Price Studio, Scheme 2. Schematic “pinwheel” roof framing and pyra-
midal skylight over living room.
DeLongdiscusses further symbolic andmetaphoric aspects of the crystalline nature

of Goff’s design:

Images of crystals …permeate his work, from such large-scale expressions
as the Crystal Chapel…to such small-scale applications as the windows of
the Snyder project…. In no example does such imagery seem more clearly
intended than in the Price studio, beginning with the unbuilt project of 1953,
where shapes shown in the exterior perspective closely resemble a quartz
crystal Goff had in his collection…. In the built design of 1956 the crystalline
forms of the aluminum-clad structure, reinforced by the prismatical details of
the windows, sustain the image…. The studio appears to emerge from foun-



dations of coal and encrusted glass as if it were a crystal in formation, re-
calling Expressionist postulations regarding the transformation of coal into
precious gems, a form symbolic of the highest ideals. Manipulations of glass,
mirrors, and coal within the Price

Figure 2.39 Price Studio, Scheme 2, second addition. Schematic roof configura-
tion—virtual truncated tetragonal bisphenoids.

studio augment the image, which seems appropriately symbolic, for it would
embody the essence of physical perfection and provide for an ideal retreat set
within the imagined space of a jewel itself. This seems close to a statement in
the article Goff recalled as his introduction to such concepts: ``Thick glass,
clear or colored, for roofs or walls or floors, opens up unconjectured vistas of
luminosity and crystalline splendour, causing a house to vibrate with light, to
unfold like a jewel of many forces, of dynamics and design.''40

A Note on Construction. In Goff’s working drawings 30°-60° elements such as
window mullions, facias, siding, and trim were often anchored to 90° components
such as studs, floors, and bars by means of easily shaped transition pieces such as
bentmetal plates. Multidirectional 30°-60° cuts and fillets in woodwork for walls were
generally no more complicated than those encountered in, say, conventional hipped
roof framing. Welded pipes and rods were easier to bend and join in a nonrectilinear
way. Beveling was accomplished as it is in ordinary construction. In short, the con-
struction process was not inherently different—there were just more non-90° angles.
Scheme 2 was based on a triangular grid (as were, incidentally, many Wright houses).
Joe Price said, “I didn’t want to go out and build an angular house.” That had been

Goff’s way of fulfilling his client’s needs. “One result of living in it is that I knew it.
When you have glass cullet in the wall you’re conscious of it and you never go up
against it—if it’s in your mind. Oh, I’ve had a couple of guests who were drunk and got



some scrapes—nothing serious. But nobody sober—because you’re always conscious
of it.” The Prices have since moved west and now five in a house designed by another
former Goff assistant, architect Bart Prince. Price quips, “There isn’t an angle in it.
We knew we could run into it head on and not get a bruise!”

The the former Price residence was tragically destroyed by fire in December 1996
(arson is suspected).

The Crystal Chapel, Project, Norman, Oklahoma, 1950

The Crystal Chapel project (Figure 2.40), developed for a University of Oklahoma
site in 1950, was to have been, as its name implies, a chapel that was literally and
figuratively quite crystalline—a jewel-like pyramid, faceted with roseate glass (hail-
proof—important for Oklahoma!) mounted on a 3O°-6O° angled stainless-steel grid
structure—double glazed and translucently insulated. Each glazing unit consisted of
a rhombic pyramid, intensifying the organic “self-similarity.” The petal-like corners
of the pyramid opened up to act as inviting entrances and to nestle an extended tetra-
hedral steeple. Opaque, tetrahedral, subservient spaces (choir andmeeting rooms)
terminated two corners of the main glass pyramid—contrasting with its luminosity
but harmonizing with its shape. The 300-seat chapel was the dominant form of a pair
of buildings. The other contained amultiuse student religious center with classrooms,
meeting rooms, and ancillary spaces, within a rectangular plan. Its

Figure 2.40 The Crystal Chapel, Project, Norman, Oklahoma, 1950. (a) Plan; (b)
model photo of chapel; (c) interior rendered perspective. (Courtesy of the Ryerson and
Burnham Libraries of the Art Institute of Chicago.)





sloping side walls of rhombic glass were held in a grid similar to the chapel’s—a
tessellation with roots in Goff’s 1922 hypothetical study for a cathedral.41 A variation
of the chapel’s elongated tetrahedral steeple marked its entrance.42

The Crystal Chapel nearly realized the self-fulfilling prophecy of Goff’s youthful
dream “to design a diamond palace for a maharaja.” Recall that Goff’s father had been
a jeweler.43

The polyhedral basis for the pyramidal formof the Crystal Chapel can be interpreted
in several ways—owing to the fact that certain regular polyhedra are interrelated. The
interrelationships include component counts, axial orientation, face configuration,
distribution of vertices, dihedral angles, face angles, and dual transformations. In
biology the phenomenon of similar forms arising from different functions is called
“convergence” (although here we are just concerned with geometry).

The following are several interpretations of the chapel’s geometry:

A Developed (Opened and Laid out Flat) Cuboctahedron

Schematically, the Y-shaped plan of the chapel was a central triangle bounded by
three square arms, or wings—or four faces of a developed cuboctahedron (Figure
2.41).



Figure 2.41 Crystal Chapel. Schematic plan elements of the chapel folded into a
portion of a cuboctahedron.

A Tetrahedron

The third dimension in the chapel’s development was derived not from the cubocta-
hedron but rather from the central plan triangle—and from the tetrahedron (triangular
pyramid). The triangular comers at the base of the tetra faces were folded outward
like tent flaps—three pairs in all, not unlike the wide starched wings of the coronet of
the Sisters of Charity or Japanese origami birds (Figure 2.42).



Effects of the “Tent Flaps.” On so opening, the bottom edges of the flaps were
no longer hugging the ground, a problem similar to that encountered in relating
geodesic domes and other polyhedral volumes to the ground plane—encountered in
the Pollock/Warriner, Wilson, and Rudd Houses. Transition from the sloping bottom
of the wall to the horizontal ground plane was accommodated by a series of graduated
pink granite supporting piers, each of



Figure 2.42 Crystal Chapel. Origami-like folding of a tetrahedron. Coronet.

which was an equilateral triangle in elevation and a rhombus in plan—a rhombic
pyramid—or half of an oblate octahedron (Figure 2.43). These shrinking triangles
acted as cross sections of attenuated, virtual, horizontal pyramids—matching in scale
and flanking, but at right angles to, the main steeple (Figure 2.44). Their repetition
suggested procession and their receding size would have created the perspective
illusion of a longer passage and diminishing scale as one approached the central
major space of the chapel, making the latter seem more monumental. Nave bays
and other elevation features (balconies? planters?) in Goff’s hypothetical study for a
cathedral in 1922 foreshadow the gradation of dimension and the repetition of the
isosceles triangle.44 This “forced” perspective recalls Bernini’s shrinking Scala Regia
(or expanding, depending on which way one is headed). The enabling “depth cue”45

is the “slope,” that is, a gradual change in size of a series of similar objects, or the
angular relationship of lines in a triangular motif. Two adjacent legs of a triangle
have a more pronounced convergence toward their common vertex than do, say, two
adjacent sides of a square or of other regu-



Figure 2.43 Crystal Chapel. Supporting piers—halves of an oblate octahedron.



Figure 2.44 Crystal Chapel. Piers form virtual pyramids similar to steeple.
lar polygons. The traditional ecclesiastical transition from a relatively intimate

narthex entrance space into a grand lofty central nave was thus translated into poly-
hedral geometry.
Goff’s campanile nods a bit to Wallace Harrison’s Trilon, of the 1939 New York

World’s Fair Trilon and Perisphere centerpiece. That famous duo mod-erne is a
metaphor for the yang (Trilon) and yin (Perisphere) opposite pairing of polyhedral and
curvilinear forms, not just in Goff’s work, but in architecture in general. (Incidentally,
the twain could meet hypothetically as the polygon increases in number of sides to
approach a circle or three-dimensionally as the tetrahedron develops by stages of
increasing face plane subdivision, as in geodesics, toward the sphere.)
Octahedral Stellation
The stellation-like wings at the chapel comers can be read as halves of octa-hedra,

or square-base pyramids, although the pyramid face between the inner (nave analogy)
and outer (narthex or transept analogy) polyhedra was omitted (Figure 2.45). The
opposite, outer face plane (a in Figure 2.45) was slipped inward by one rhombic grid



module so that its edges did not meet the edges of the adjacent wings, thus alluding to
an open projected window. This created a sense of hovering, beckoning enclosure
surrounding the steeple and choir and gave the glass a sense of folded, enveloping
surface—of weightlessness.

Figure 2.45 Crystal Chapel. Octahedral “stellation.” Face plane “slippage.”

The feeling of solidity and mass that is imparted by closed, opaque faces with
abutting, congruent edges was thus substantially decreased. A similar overlapping
and offsetting of planes occurred in the Price Studio 1.

Rhombic Hexahedron



These comer “flaps” surround, isolate, and emphasize threemajor central 60°-120°
rhombi of the chapel roof, defining half of a rhombic hexahedron (Figure 2.46). A
rhombic hexahedron (or oblate rhombohedron) is like a cube (hex = six, i.e., six faces)
that has been distended by pulling two diagonally opposite comers so that the cube’s
faces become diamonds (rhombi). In the PoUock/Warriner House we encounter one-
half of a related polyhedron—the rhombic dodecahedron (12 faces). The half, rather
than the whole, in each case is due to the truncating intersection of a polyhedron with
the ground plane.

In the Crystal Chapel did the conception of the tetrahedron come first, origami-
cized, as it were, with its flaps—an example of a modified Platonic solid projected
orthographically onto the ground plane, or was it one of the other polyhedra men-
tioned previously? Or does it matter? Because in the finished design square, triangle,
hexagon, rhombus, tetrahedron, octahedron, rhombic hexahedron,and so on are
orchestrated into a complex composition of variations.



Figure 2.46 Crystal Chapel. Haifa rhombic hexahedron.

The Crystal Chapel: A Historical Perspective

TheCrystal Chapel’s position inmodernarchitectural history is a fascinatingadjunct
to its geometry. It is linked by evolution and influence from the early 19th century
through the present. It is a mid-2 Oth-century focal point for noteworthy unified
major spaces enclosed bymetal and glass. Suffice it to mention here a few precedents
and antecedents—designs involving transparent or translucent pyramidal forms with
more or less triangulated or rhombi-cally faceted surfaces. These related buildings
anchor the Crystal Chapel in time like prongs securing a jewel in a setting—upholding
Goff’s design as an important statement of spatial unity, impact, and grandeur. As
composer James Heath put it in the title of a composition dedicated to fellowmusician
John Burkes Gillespie, “Without You, No Me.”

By the mid-19th century, metal-and-glass construction had come into its own—her-
alded by the budding greenhouses or “palm furnaces” erected in Europe, and later
long-span structures such as train sheds—climaxing in themammoth 1,851-foot-long
prefabricated Crystal Palace Exhibition Hall in London, 1851, designed and built by
Sir Joseph Paxton. Perhaps Goff, who taught the history of 19th-and 20th-century
architecture, intended the Crystal Chapel as a centenary homage to Paxton’s structure.

A throng of experiments arose in the early 20th century—Bruno and Max Taut’s
expressionist Glass Pavilion for the Cologne Exhibition of 1914 (actually a pointed
dome, rather than a pyramid) and their competition entry for
a House of Friendship in Istanbul, 1917, as well as the various crystalline mountain-
like forms of the designs in their publication, “Alpine Architecture,” 1919.46

Wassili andHans Luckhardt’sHouse of Culture and other projects (circa 1919–1923)
were equally utopian.47

TwoGoff religious projects of 1930 use steeply pointed triangularmotifs interacting
with shallow triangular bases: theGaudf-influencedHypothetical Study for aCathedral
and the Hillcrest Methodist-Episcopal Church, Tulsa.48

Frank Lloyd Wright’s work offers a wide range of crystalline examples:

His Steel (and glass) Cathedral project, 1926, with its staggeringly immense
atrium—a truly Boullean scale commensurate with Wright’s talent and vision—pre-
dates any John Portman hotel atrium.



At the opposite end of the scale, an early expression of the pyramidal idea inWright’s
domestic work can be seen in his Owen Young House, Chandler, Arizona, 1927—a
“textile block” project with 45° angled fenestration andmassing.

The Unitarian Meeting House, Madison, Wisconsin, 1947, with its magnificent
prow—is more of a pyramid-like ecclesiastical extension of a Usonian house. Surpris-
ingly, the interior of itsmainmeeting area is ceilinged not by pyramidal but by warped
planes—something of a rarity in Wright’s work—in this case a natural result of the
ceiling, truss, and roof configurations.

Wright’s Trinity Chapel project, 1958, designed some 10 years later for the same site
as Goff’s Crystal Chapel on the University of Oklahoma campus, was also unbuilt (Fig-
ure 2.47). Wright’s design (the barest hint of a precursor to a Sierpinski arrowhead49)
appears to be a variation onGoff’s Crystal Chapel. Although not somuch a “crystalline”
building, it is still a variation on pyramidal forms—with a gradual transition from the
completely flat and horizon-

Figure2.47TrinityChapel project byFrankLloydWright. Transition fromhorizontal
to vertical.



tai ground plane upward through four basic functional/massing elements to a verti-
cal spire at the peak: long shallow criss-crossing ramps, a trio of opaque buttress-like
tetrahedral walls, three large stained-glass rhomboid windows nestled among these
tetrahedra, topped by three long, narrow, folded, leaf-like roof forms,50 which come
together in their upper halves to terminate in a tapered spire. There are even echoes of
the top of the Chrysler Building here! The roofs are V-textured, probably standing-lock-
seammetal and reminiscent of the roofs of Wright’s Nekoma Country Club project.

Thus Goff’s chapel is echoed by Wright’s in at least four themes: the rhombus, the
tetrahedron, the “bent” theme (i.e., graduated slopes), and the triangular symmetry of
plan. Both chapels assign distinct materials for different functions; however, Wright
uses the more traditional architectural elements of individuated base, wall, window,
and roof.

Wright’s Beth Sholom Synagogue, Elkins Park, Pennsylvania, 1953–1959, bears
comparison to the Crystal Chapel. Although its two intertwining tripod structural
frames (symbolizing the intersecting triangles of a Star of David) hark back toWright’s
steel cathedral, the roof is translucent and three comers of its modified hexagonal
plan are terminated by opaque tetrahedral-like masses, and the changing slopes are
again evident.

TheWayfarer’s Chapel, Portuguese Bend, California, 1946, by Frank’s son, Lloyd
Wright, is not pyramidal (although it is dramatically sited, like a Greek temple, on a
hillside overlooking the Pacific Ocean), but it is more or less rhombically faceted and
wholly transparent.

Skidmore, Owings, and Merrill’s U.S. Air Force Academy Chapel, 1957, is neither
transparent nor pyramidal, but its rhombically faceted (“folded-plate”) structure,
rectangular plan, and serrated roofline recall the classroom wing of Goff’s Crystal
Chapel complex.

The Religious Center, Project, Artesia College, NewMexico, 1976, by Goff, once again
in an academic setting and also called “Crystal Chapel,” is a series of multisloped or
“bent” pyramids with extensive transparency—a variation on his chapel in Norman,
with “intensified angularity, less symmetrical massing of the pyramidal shapes, and
less regular glazing,” according to De Long.



The Artesia chapel was a transparent pyramid. Its decreasing mullion spacing and
the resultant wedge shapes of the glazing acted together to create gradients—depth
cues—which increased the apparent slopes and heights (Figure 2.48). Transverse
mullions spiraled gradually upward. Motion was symbolized—appropriately ascen-
dant. Dynamism, however, was only implied here, in contrast to the literal kineticism
of Goff’s Rudd House (discussed later), which had movable walls. Of course, large
moving sections of buildings, such as entire roofs (covering stadiums) or rooms, are
not uncommon, as in some works by, to name a few, Calatrava, Lautner, and Site.

The Artesiamultisloped pyramids had a family resemblance to the frustum clusters
of the first Price Studio project—notably the latter’s freestanding screened pavilion—as
well as Goff’s Ski Lodge, Crested Butte, Montana, 1965 (Figure 2.49), based on a 16-
sided pyramid (with this many sides it is

Figure 2.48 Artesia Religious Center. Multisloped pyramids.



Figure 2.49 Ski Lodge, Crested Butte, Montana, 1965. Photo. (Courtesy of the
Ryerson and Burnham Libraries of the Art Institute of Chicago.)

approaching a cone) and Goff’s Hopewell Baptist Church, Edmund, Oklahoma, 1948
(Figure 2.50).
Philip Johnson’s Crystal Cathedral, 1980, Garden Grove, California (see Chapter 5),

with its massive space truss walls and roofs, does not appear to be directly influenced
by the Crystal Chapel, other than in its “crystallinity” and in the fact that Johnson was
aware of Goff’s design.



Similar to Johnson’s Crystal Cathedral in its use of an all-encompassing space frame
with pyramidally faceted glazing is the BioSphere 2 designed by architect Phil Hawes,
bothWright apprentice andGoff student. BioSphere2utilizes a commercially available
space truss throughout, enclosing just about everything—biological habitats, offices,
andmechanical equipment—as Goff enclosed both of his major plan functions—the
Crystal Chapel and its multipurpose wing—with the same rhombic envelope. (An
example of an architectural precursor of an all-encompassing envelope is Paxton’s
prefabricated glass.) In the BioSphere 2 in the late 20th century, the transparent
structure has come full circle from the mid-19th century—back to its use as a “palm
furnace.”

R. Buckminster Fuller and Shoji Sadao’s Tetrahedron City project at Yomiuriland,
nearTokyo, 1970,wasamegadreamproposedperhapsmore for the sakeof publicizing
prototypical possibilities than for its communal perfection. The glass-clad spherical
space frame of Fuller’s U.S. Pavilion at Montreal’s Expo ‘67 could be considered a
“perisphere” to the Pyramid City “trilon.” Although Fuller’s continuous presence
hovers patently over all “three-dimensionally triangulated” structures of whatever-
hedra, it does not,



Figure 2.50 Hopewell Baptist Church, Edmund, Oklahoma, 1948. Rendered per-
spective. (Courtesy of the Ryerson and Burnham Libraries of the Art Institute of
Chicago.)
in my opinion, establish hegemony over the Crystal Chapel.
LM. Pei’s pyramidal addition to the Louvre, an ultimate in mansard roofs (as Egyp-

tian pyramid follows mastaba), and its smaller companion octahedra, are glazed with
rhombi—similar to the Crystal Chapel. His Rock-and-Roll Hall of Fame, Cleveland,
1995, contains much larger but less elegant pyramidal elements—Miesian interpreta-
tions of the pyramid.
The black pyramid of the 2,500-room Luxor Las Vegas Hotel—with its layer of rooms

hugging the exterior walls and appropriately straddling the River Styx—is a gaudy
geometrical Goliath that runs rampant over history in yet a further display of the
American (or perhaps just human) love of the buck and yet another lurch in the
mindless romantic exploitation of the pyramidal past.



Several other recent entries in the pyramid sweepstakes are Moshe Safdie’s 1988
Canadian National Gallery in Ottawa and “Pyramid City” for 100,000 byTRY2004.51

The Jones Memorial Chapel as finally built at the University of Oklahoma, over
protests frommany prominent architects praising Goff’s project, is timid, conformist,
and prosaically neo-Georgian. Philip Johnson was, incidentally, among those who
protested.52

Vernon E. Rudd House, Projects, San Mateo, California, 1959–1962

In the three unbuilt designs for the Rudd House, the prominent polyhedral features
are the bedrooms, individually attached “like melons on a vine,” as Goff put it, to an S-
curve of corridor and common living areas (Figures 2.51 to 2.53 show Schemes 1 to 3,
respectively). Their heritage includes Wright’s Usonian house concept with its linear
arrangement of bedrooms on a long corridor; however, in the Rudd House the individ-
ual chambers are completely separated—surrounded by their own open space—like
pavilions or cabins.53 If “polyhedral privacy pods” (my terminology) is too hard to take,
I would suggest “truncated tetrahedral sequestration receptacles” or “individuated
icosa-hedral enclaves.” The possibilities have yet to be explored—polyhedoir? poly-
hedranctum? icosahedriculum? tetratorium? Goff did not shrink from exploratory
terminology—he called his house for the Dewlins (a design that, incidentally, did not
include polyhedra) an “aparture.”

In the first version of the Rudd House, truncated tetrahedra (Figure 2.51 a-c)were
used as bedrooms hung from cable and mast to keep them clear of the rough, wooded
site. Scheme 2 kept the truncated tetrahedra but mounted each of them on six short
legs (Figure 2.52). Contrast this Scheme 1 polyhedra—the geometry of the truncated
tetrahedron54—with the (slightlymodified) icosahedron—one of the fivePlatonic solids,
used for the same purpose in Scheme 3 (Figure 2.53zz-e).

The “icosa-pods” of Scheme 3 rested on andwere lifted above the irregular grade on
short trunks (Figure 2.53ZJ. These raised units are a modest reminder of the late Cali-
fornia architect John Lautner’s spectacular 1960 Malin House (“Chemosphere”)—an
entire house, not just a room, octago-



Figure 2.51 Rudd House, Scheme 1. Truncated tetrahedron units. Theoretical
Vierendeel structural frame, similartothatof the Wilson House unit; (b)triangulated
panels of the hexagonal faces, one of which hinged down to create an open porch.

Figure 2.52 Rudd House. Scheme 2. Truncated tetrahedron with six legs and
triangular hinged-down porch.



Figure2.53RuddHouse. Scheme3. Icosahedronunits: (a} Icosahedron; (b)exploded
view; (c) “cat's-eye” window; M4-symmetry aspects of the icosahedron; pentagons
emphasized by paneling pattern.

nal in plan, perched on a very tall concrete stem to accommodate a steep slope in
the Hollywood hills. Each o£ the Rudd pods was connected to the house corridor with
a short prismatic passage. Bathrooms and storage were contained in the spine.

In Schemes 1 and 2 the hexagonal planes of the truncated tetrahedra served as
floor and three walls, one of which hinged down to become an open terrace in Scheme
1 (Figure 2.51£), whereas in Scheme 2 only a triangular panel hinged down to be-
come a balcony (Figure 2.52). Each of the three sloping hexagonal walls were further
subdivided into six equilateral triangular panels. The truncated-tetrahedron walls
sloped more steeply than those of the icosahedron and provided less comfortable
headroom per unit of floor area than the icosahedron. This point is somewhat moot,



however, Goff being amaster at utilizing the nooks and crannies of unusual geometric
spaces for furniture, storage, mechanical equipment, and structure. Although the
triangulation of the polyhedral faces in the Rudd House bedrooms strongly recalls
Fuller’s geodesics (Figures 2.5lb, 2.52, and 2.53*?), Goff’s principal thrust seems to be
architectural massing and function, rather than structure.
Slices in 12 different directions through the edges of an icosahedron result in

pentagons (Figure 2.53a). In Scheme 3 one of these slices became the floor
(Figure 2.53). The inverse pentagonal pyramid under this slice of floor was flattened

out—thus simplifying and expressing the floor structure and creating a sense of plat-
form. The five upper triangles of the icosahedron comprised a pentagonal pyramid
pitched roof.
Fenestration
In Schemes 1 and 2 the triangles of truncation served as windows and doors. The

fenestration for each pod of Scheme 3 consisted of a single bold lozenge (or rhombus,
composed of two of the icosahedron’s equilateral triangles). This diamond-shaped
“cat’s-eye,” half-window, half-skylight, gave the pod a personal signature beyond just
polyhedron or geodesic (Figure 2.53c). This double-triangle diamond shape was a
link, though not further utilized in the Rudd House, to the 4-symmetry aspects of the
icosahedron, that is, the symmetry that links the icosahedron to the cube/octahedron
family (Figure 2.53c).
The slightly more angular shape of the truncated tetrahedron imparted a stronger

sense of individual identity, of unit presence, than the icosahedron. On the other hand,
the icosahedron, being roundish, being perhaps a more familiar geometric solid
to some, having more equitably distributed and smaller surface facets (the smaller
triangles as opposed to the truncated tetrahedron’s hexagons), and so fitting more
closely the curved circulation areas of the house—all this gave the “icosa-pod” a sense
of repose and appropriateness.
James D. WSHsomi Mouse, Pensacola, Florida, 1950
The Wilson House (Figure 2.54) was an example of Stage 4 (multicelled regular

polyhedra). The Wilson House cells were cubelike and, in fact, conveniently called
cubes: “A cube module of 14 ft. was used, so that the space in each unit is intimate
and is easily expandable. This was the first use of a three dimensional module in this
way.”55

As stated in Progressive Architecture:



A cube 14 ft on a side is the space module of which this entire house is com-
posed. Each of the modular spaces is sufficiendy intimate for one or two
people, yet added together they provide an appropriate space for large-scale
entertaining. Each cube is framed in welded boiler tubing. Clipped to the
framing are prefabricated redwood-faced wall panels, similar in appearance
inside and out. The beveled corners have been filled in with glass jalousie
units to provide cross ventilation and a sense of spatial continuity. Corrugated
translucent plastic panels at the roof-line provide additional light.56

Theywere nevertheless “beyond the cube”—truncated cubes, to put it in the simplest
of terms. However, to see the Wilson House modules only as cubes with truncated
edges (and corners; if not for the comer truncations, the edge truncations would
produce elongated hexagons rather than rectangles—see Figure 2.55a) is to miss a
number of subtleties.



Figure 2.54 James D. Wilson House, Pensacola, Florida, 1950. fajSection; exterior
photo; (c) plan. (Courtesy of the Ryerson and Burnham Libraries of the Art Institute of
Chicago.)



c

Figure 2.55WilsonHouse, (a) Edge-truncated cube; (b) pipe framemodule; (c)Rhom-
bicuboctahedron.
The modular floor plan of the Wilson house, entrance, and carport consisted of a

dozen abutting truncated squares. In plan, the modules defined the various functions,
for example, living, dining, sleeping, and carport, whereas four truncated corners
together provided services—fenestration, column locations, a fireplace, sliding doors,
and circulation. The plan units were translated into three-dimensional modules
(“close packed”—somewhat like a tray of muffins), which define and enclose the space
within the house. L. Lines refers to closely packed polyhedra as “parallelohedra….
Congruent polyhedra that can be stacked together so as to fill space completely….”57

This definition applied only very loosely to theWilsonandPollock/Warriner houses—in
the Wilson modules there were gaps left between, and in the PoHock/Warriner the
modules overlap.
The Wilson module exemplified the creative possibilities of prefabricated pro-

duction for architecture—an idea that reappears occasionally and seems to go
nowhere—for example, during World War H and later with Operation Breakthrough in
the 1960s. Prefabrication of the Wilson modules was more in the symbolic sense, as
there was considerable on-site fabrication.
The generation of the Wilson module can be described in several ways as:



1. Truncation. An edge-and corner-truncated cube (Figure 2.55).

2. Dual transformation. Dual transformation of either a cube, an octahedron, or a
rhombicuboctahedron (Figure 2.55c).58 The face planes enclosing the Wilson
module consist of:

6 square cubic faces (Figure 2.56a)

8 triangular octahedral faces (Figure 2.56b)

12 rectangular intermediate faces (Figure 2.56c)

If the design is seen as an RCO transformation, the octahedral edges and
faces become reduced, and the intermediate faces, which would

Figure 2.56 Wilson House. Unit geometry: (a)s\x cubic faces of the module;
(b) eight octahedral faces; (c) 12 rectangular intermediate faces.

have been square in the initial RCO, become rectangles. Dihedral angles re-
main the same. Other ramifications of such a transformation can be seen in
the Wilson module.

3. Tesseract. Thedouble-edgedeffect of theWilsonmodule resemblesoneof
the possible three-dimensional projections of a tesseract—that curious four-
dimensional relative of the cube, which is illustrated and discussed at some
length by Bragdon.59



Each geometric component of the Wilson module was assigned a specific architec-
tural function, as follows:

Edges. The edges of the RCOmodule were structural, consisting of 4-inch-diameter
boiler pipe (Figure 2.55£). The joints (vertices) were welded, creating a kind of three-
dimensional Vierendeel truss. The geometry necessitated welding because RCO ge-
ometry does not have the inherent stability of triangulation (even though the corners
are triangles).

One of the RCO modules was left unclad and open, with the pipes describing the
edges of its volume. This particular unit performed a multitude of tasks: It illustrated
the module’s abstract geometry, contrasted with the enclosed bulk of the rest of the
house, supported the carport roof, and served as an entrance totem.

Cubic Faces. On the exterior, the cubic faces dominated the transformed RCO
module in size, pattern, and texture (Figure 2.56a and 2.57). Prefabricatedwood siding
“membranes” were intended originally for both walls and roofs,with the boards lapped
in a series of nested squares—both inside and out—recalling the Wright trademark
and its Chinese, Japanese, and Native American precedents. If, instead, the siding
had been applied at 90° to the pipe frames, forming a cross pattern, it would not have
emphasized the square face

Figure 2.57Wilson House. Unit paneling: (a) perpendicularto pipe frame (theoreti-
cal); (b) paneling as built; theoretical rhombidodecahedral dynamics.



and would have fought with the corner jalousie window lines (Figure 2.57 a). Nor
would the overlap of the boards have fit properly against the pipe frames. On the
interior of the house, the nested squares regulated the dimensions of doors and other
openings.

Having been designed originally for a California hillside site with an approach from
above, with an identical pattern on the roofs of the modules as well as their sides,
the house would have read clearly as a cluster of three-dimensional units. The units
would become “supercubes,” as it were, in spite of their RCO characteristics, that is,
each of the geometric elements of the cube—corner, edge, and face (i.e., point, line,
and plane—which Goff emphasized in first-year design courses) being articulated and
emphasized in its own right.60

Redwood siding was to have been used in California. When the Wilsons retired
instead to Florida, Goff changed the design to cypress—but none was available—so he
stayed with the redwood; however, on the flat Florida site because the roof surface
was not visible a conventional built-up tar-and-grav-el roof was used. As built, the
interior of the module had equivalent side and ceiling surfaces—on the exterior, only
equivalent sides.

Another interpretation of the pattern of nested squares of wood siding is that they
symbolize the stages of transformation through which a rhombicuboctahedron might
pass on its way to becoming a rhombidodecahedron, thus energizing and reinforcing
polyhedral spatial presence and implying movement and change (Figure 2.57c).

Upper Sloping Planes and Triangles. The long, narrow upper sloping interme-
diate planes of the RCO and the upper comer, triangular, octahedral faces held fixed
translucent glass fiber clearstorys (Figures 2.56c and 2.57 b).

Vertical Rectangles. These rectangles contained glass jalousie windows, which
were sandblasted for privacy in two bathrooms (Figures 2.56c and 2.57b).

Lower Sloping Planes and Triangular Faces. These components were
opaque—cement asbestos board, comprising an apron that concealed the
crawl space between the floor deck and grade (Figures 2.56b and c and
2.57ti).



RexSlack, anotherGoff student, did additional drawings on the site as needed
and supervised the construction along with fellow student Ray Cobb. Unseen
in the completed house and, in fact, not on the working drawings, according
to Slack, were short, stub pipe columns on which the larger RCO units rested
(Figure 2.55Z>), necessary for anchoring to footings and leveling—the stub
pipes being concealed by the gentle slope of the gravel grade near the house.
Someof the upper pipeswere slotted to serve as gutters. Slack said that there
had been some condensation on the interior faces of some of the pipe frames
but he knew of no roof leaks. Larry Grantham visited the site in 1982 and
observed that ``pipes were rusted through at the horizontal roof areas. Roof
leaks were subject to continual maintenance. There could have been many
years without problems, though. One of the typical problems, needless to
say, with these perfect geometric concepts is that such planes create difficult
to impossible places to fabricate without leaking problems. Something to be
considered by students….''

The occurrence of the plane of the floor inside rather than on the surface of
the RCOmodule characterizes a common concern in adapting pure geometric
solids such as polyhedra and geodesics to architecture, that is, the need for
flat circulation areas accompanied by human-scaled headroom. The plane
of the floor intersected the Wilson modules at the bottom edge of the large
square wall membranes, permitting significantly more usable floor space (by
getting the canted triangular corner pieces and their connecting framemem-
bers out from under foot) than had the floor level been at the lowest square
face (Figure 2.58). This created a crawl space, which contained floor bracing
plus the usual mechanical and electrical necessities. It caused the exterior
and interior expressions of the RCO to differ somewhat. Whereas the exte-
rior read clearly as a set of modules, the interior, although still retaining the
modules, appeared as a grove of abstract tree trunks and branches.

Other elements of the house interacted with the RCO module as inter- pene-
trations (e.g., a pool and a four-way fireplace) and as variations (light fixtures,
folding doors, and shed roof). The fireplace chimney was capped by an orna-
mental octahedral sculpture—to symbolize a free passageway for smoke?



Figure 2.58 Wilson House. Schematic section.

The Wilson House was destroyed by fire in the 1980s. The present owner, an
architect, cut up and reassembled the frames, using the original floor struc-
ture—but it is entirely different now, according to Grantham.

The Donald Pollock [House, Oklahoma City, 1957, Remodeled by Goff for
John and Laura Warriner, 1977

The Pollock/Warriner House (Figure 2.59), like the Wilson House, is based on adja-
cent, repeated polyhedra derived from a floor plan consisting of abutting truncated
squares; however, the joining of the Pollock/Warriner



a
Figure 2.59 Pollock/Warriner House, Oklahoma City, Oklahoma, 1957. (a) Plan; (b)

photo.

modules is more complicated. Like the Wilson module, the Pollock/Warriner
module can be depicted as having been generated in several ways. Of these,
incidentally, the most likely involves a design process that probably did not
start with the polyhedra that we see in the completed house.

To give an overview of the Pollock/Warriner House, we turn to others:

De Long writes, ``In plan, nine interlocking squares are arranged symmet-
rically upon a large square plinth. Nine pyramidally shaped roofs, each with
an individual skylight at the peak, give volumetric expression to the module.
In this realized design, shingles laid along angled lines further emphasize a
crystalline quality, as do the faceted panels of translucent plastic over a porch
joining house and garage. As with the McCullough and Bass projects [dis-
cussed previously], the parents' and children's areas are clearly defined along
extremities of the house, and are joined by centrally placed units. And like



theWilson house of 1950 [discussed previously], the implied grid imposed by
the strictly applied module disciplines the open interior.'' Beginning in 1980,
Goff made interior changes for later owners, Paul and Laura Warriner, who,
De Long says, ``became strong supporters of Goff. Their commissioned al-
terations included the addition of a swimming pool and cabana, as well as an
elegant interior remodeling…that reinforced the plan's clarity.''61

Architectural Design describes the Pollock house as being

based on a plan of nine interlocking squares surmounted on a battered stone
base—also in the formof a square. Eachof the smaller squares is coveredwith
a pyramidal roof, the sawtooth fascias of which echo the plan. A pyramidal
skylight is positioned at the peak of each roof. The roofs, notes De Long, are
covered with wood shingles which were originally painted dark green—the
vertical siding of the wood-framed structure is painted fight green. At each
interlocking corner of the squares are narrow full-heightwindowsoverlooking
triangular planters formed between the sawtooth plan of the walls and the
stone base. Between the garage and the house, and spanning the entrance,
is a large screened enclosure which follows the geometry of the rest of the
house, but on a slightly reduced scale, and slightly taller. This structure is
wholly glazed and finished with pyramidal formed, translucent, green plastic
roof panels. The structure of this outdoor living area encompasses part of
the garage roof which is used as a sun-deck. Inside, the house is organized
around a central kitchen (at Mrs. Pollock's request) and divided into various
spatial configurations by accordion doors. Against Goff's advice the Pollocks
commissioned landscape architects who repeated the 45° geometry of the
plan in a hard-edged pattern of planting areas.''62

The polyhedral module of the Pollock/Warriner House is the rhombidodec-
ahedron (occasionally referred to below as ``RD''), which has 12 rhombic
faces (Figure 2.60zz). It is, incidentally, the dual of the cuboctahedron—an
Archimedean solid.

The plan schemata starts with nine 13-foot truncated squares arranged in a
three-module-by-three-module grid, each square anchoring a major func-



Figure 2.60 Pollock/Warriner House. Rhombidodecahedral unit geometry:

(a) rhombidodecahedron relative to inscribed cube;

(b) typical corner unit and plantrace; fc/typical edge unit and plan; (d) interior unit
and plan; (e) schematic roof plan key.

tional area, for example, living, dining, and bedroom (Figures 2.59a and 2.61a).



Truncations of the comers of the grid squares form smaller squares (with 4-foot
diagonals) at 45° to the original larger squares (Figure 2.61b). These areas, again as
in the Wilson House, serve as circulation nodes, column locations, and window and
door frames. Other elements in the house occur in harmony with the scale of these
truncations, for example, skylights (one at the peak of each pyramid, recapitulating in
miniature the RD shape of the roof below), distance of floor level to low point of roof,
and screened porch mullions.

The truncations are extended at the exteriorwalls until theymeet, forming the edges
of yet another group of squares (about 16 feet) at 45° to the original group of squares
and overlapping one another (Figure 2.61c). These new 45° “outcroppings” expand
the original squares to provide storage, seating, dining, and bathroom space around
the perimeter of the house. This group (discounting the roof overhangs) comprises
plan sections of partial rhombidodecahedra.

The Pollock/Warriner module is related through transformation to the tetrakis
hexahedron (Figure 2.62a) and the triakis octahedron (Figure 2.62b)— stellation-like
derivatives of the cube and octahedron, respectively. They would not have played a
part in the generation of the design, although the “stellation” aspect of the “outcrop-
pings” mentioned in the preceding paragraph invites comparison.

The cluster of pitched-roof rhombi are the primary expression of these

Figure 2.61 Pollock/War-riner House. Development of plan grid: (a) square grid; (b)
corner truncations; (c) truncations extended to form another grid at 45°; (d)roof plan;
(e) rhombidodecahedral roof plan unit.



RDs, with half-and quarter-rhombi comprising exterior walls (Figures 2.61c and d
and 2.63). However, nowhere is an entire 12-faced rhombidodecahe-dron completed.
If it were, the obvious problem of how to provide a flat floor would occur. As to the
roofs, the working drawings referred to them simply as hipped roofs, and so they
are. They are similar to the “helm” roofs of Romanesque bell towers (e.g., Limburgh,
Cologne, and Speyer Cathedrals), though the rhombi of these roofs are much more
elongated than the Pol-lock/Warriner module (Figure 2.64). The central portion of the
Crystal Chapel is a triangular version of the helm roof (Figure 2.46).



b

Figure 2.62 Pollock/War-riner House. Related geometry: (a)tetrakis hexahedron; (b)
triakis octahedron.



Figure 2.63 Pollock/Warriner House. Roof plan and elevation.

The ceilings under these hipped roofs rise to 15 feet at the top of the skylights and
to just under 3 feet at their low points. The lower areas are consigned to the backs of
closets and alcove-like portions of seating areas, with the underside of the main 4x10
beams at a height to accommodate a conventional 6-foot, 8-inch wood folding door.



The axial, or orthographic, projections of an RD are square grids (Figures 2.6\d and
e and 2.63). A “4-axis” is that projection onto a plane that is perpendicular to an axis
through opposite vertices at which four edges meet. The actual face angles, however,
are 70° 32' and 109° 28'—hence the ‘rhombi’ in rhombidodecahedron.63

This square projection appears in both plan and elevation of the polyhedra and
in the design and working drawings of the house—and the actual roof slopes are 45°.
Looking at the drawings, an unsuspecting builder might not be aware of the rhombus
nature of the roof segments until construction was underway. An untoward effect
would be the fact that plywood sheathing would not fit as neatly on the rhombi as onto
90° rectangular shapes. The original

Figure 2.64 Pollock/Warriner House. Unit roof compared to medieval “helm” roof.



shingle pattern of nested V’s, which followed and emphasized the rhombi’s lower
edges (a counterpart to the nested squares of the Wilson House redwood siding) was
long ago replaced with conventional horizontal rows of shingles, eliminating one of
the strong echoes of the RD profile (Figure 2.63).

A rhythm is created by the Pollock/Warriner House modules by three identical
geometric shapes. Similar triplets occur in other Goff works, for example, the square
faces of theWilsonHouse and the dodecagons of the First National Bank, amongmany
others. The repetition of the regular faces of polyhedra or other structures symbolizes
rationality—but in Goff’s work it also creates “music”—rhythm.

The simplicity of the flat-roofed, corner-truncated, square-on-a-45°-angle garage
contrasts strongly with the sculpted cluster of rhombi of themain house and is derived
from the plan module formed by the roof ridges (Figure 2.63). The two are joined by a
translucent green corrugated glass-fiber-roofed, screened porch that is a transparent,
crystalline variation of the RD based on the module of the truncation dimension
discussed previously. The porch variation is arrived at by extending the RD along two
axes and repeating it along the third axis.

The translucent rhombi of the porch echo the diamond glazing of the Crystal Chapel.
Effective polyhedral volumes can be created relatively economically in elements
such as porches by means of inexpensive screen wire and ribs. The requirements
of structural design, detailing, construction, weatherproofing, and so on are simpler
and cheaper. Spatially dynamic screened porches are frequent in Goff’s work—other
examples include the Freeman and Miller Houses.

The Freeman House, Joplin, Missouri, 1958 (Figure 2.65), consists of an open-
plan, rectangular space roofed by a gently sloping, partially suspended single plane.
The roof expressed as a suspended carpet hovering over most of the house was
used frequently by Goff. A counterfoil to the opaque planar roof element is an ele-
vated, screened porch—an inverted, truncated pyramid topped by another pyramidal
screened “roof.”

The Miller House, Project 3, Harrison, Arkansas, 1963, was topped by a similarly
spatial screened porch, more complex than the Freeman House porch and built on a
hexagonal plan—having the faceted effect of a cut stone in a setting.



Figure 2.65 FreemanHouse, Joplin, Missouri, 1958. Photo of screened porch. (Cour-
tesy of the Ryerson and Burnham Libraries of the Art Institute of Chicago.)

Frank Lloyd Wright frequently increased the sense of space and size in his designs
with the comparatively economical use of porches and carports, which extended axes
and elongated ground-hugging planes andmasses.

The composition of the Pollock/Warriner House involved three major elements: (1)
the cluster of roof polyhedra of the main house, (2) the flat-top garage, and (3) the
polyhedral variations of the screened porch. The interaction of these three compo-
nents, along with their exterior/interior spatial complexities and the attention to color,
material, and detail, results in a grandeur, an atmosphere beyond the modest size,
material, and construction methods of the dwelling.



Dr. and Airs. Warriner were asked to describe how it felt to live in this house—with
emphasis on the polyhedral aspects. Laura Warriner, a painter, said:

I could never live in an ``ordinary'' house. The forms of light and shadow in
this house are an education. It feels like living in a giant palace. It amazes
people when I tell them it's only 1,500 square feet. It was confusing when
I first moved in—maze-like. …It's amusing to see peoples' reactions to the
house when they first come in.

The light changes during the day because each room has its own skylight.
Thunderstorms—the house puts you in tune to nature—die outside comes in
(visually, that is)—you can see completely through the house. It's like living
outside—the sense of shelter. If it's snowing it's like snowing on you. It's like
being inside a cut diamond—the faceted light.

I felt that [polished stone] surfaces would magnify the effect. The house is
angular but it does not seem to have harsh or sharp angles. There are no
problems with headroom or bumping into things.

Repairs and maintenance are no more difficult than for any house.

It is not hard to furnish. WhenBruce redesigned thehouse for us he said every
other house of mine has a pit in it, let's put a pit in this one. Most houses have
toomuch furniture. This one doesn't needmuch but I still have toomuch. But
mostly it has art…

I'm sorry that everybody in thewhole world can't live in a Bruce Goff house!64

2.26 GOFF’S LEGACY

Goff left a rich body of work both with and without polyhedrality. Some of these have
been lovingly and carefully tended and preserved. Others have suffered neglect, emas-
culating alterations, fires, and demolition, and need public attention and nurturing.
The Gutman andWilson Houses and the Phi Lambda Fraternity House were demol-
ished after damaging fires. Other Goff houses are gone—the Glen Harder House near
Mountain Lake, Minnesota, was completely destroyed by fire recently. In December
1996, Goff’s masterpiece, Shin’enkan, the former Oklahoma residence of Joe and



Etsuko Price, burned to the ground. Arson is suspected. The Frank Cole House in Park
Ridge, Illinois, an example of Stage 1 polyhedrality, was demolished several years ago.
A number of structures have undergone radical alterations, for example, the 1967
Mercedes-Benz Building in Atlanta.

“…The process of designating as landmarksmany of his best designs has just begun,
and will continue as the structures pass the 50-yearmark required for official recogni-
tion. It is our hope that the remaining body of Goff’s extant designs will be recognized
and preserved as a testament to one of America’s great architectural minds.”65

Goff’s contribution to the use of polyhedra in architecture did not originate in a spirit
of rigorous polyhedral form making. Rather, it translates the concepts of Bragdon,
Wright, et al., by creating new transcendental environments, incorporating polyhedra
in their place among the universe of architectural form/structure/space possibilities.
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2.28 NOTES

1. For a comprehensive, “rich and definitive account of the life and work of the
brilliant maverick from the western plains,” according to Helen Searing (whose
1996 Goff-designed house in Kansas City, Kansas, includes variations on ex-
truded truncated hexagonal prisms), refer to David G. De Long, Bruce Goff. Toward
Absolute Architecture,MIT Press, Cambridge, MA 1988.

2. Refer to Sidney K. Robinson, “Bruce Goff and Music,” in The Architecture of Bruce
Goff, 1904–1982, Art Institute of Chicago/Prestel, 1995.



3. Examples of Goff’s buildings utilizing forms other than polyhedra include: the
Ford/Robinson House, Aurora, Illinois, 1948 (torus, cone); the Bavinger House,
1950 (helix, cylinder); theGarveyHouse 1project, 1952 (sphere, torus, helix); Sid
Lodge, Crested Butte, Montana, 1965 (16-sided, polygonal pyramid approaching
cone); and the Struckus House, Woodland Hills, California, 1983 (cylinder). In
1978 the Bavinger House was recognized with a “Twenty-Five Year Award” from
the American Institute of Architects as an “extraordinary work of imagination
…a vivid expression of American values.”

4. For example, the undulating and ragged “free forms” of the Don Leidig House
project, 1946, and the Ledbetter House, Norman, Oklahoma, 1947. Tension
structures also occur in Goff’s output, e.g., the aforementioned Bavinger and
Lei-digHouses, the Plunkett Guest House project, the Shin’enKanMuseum in Los
Angeles, etc. Tension structures employ cables deployed in straight-line config-
urations. Both two-and three-dimensional arrays of cables occur in Goff’s work,
in the latter case resulting in subtle geometric volumes—cylindrical, conical,
pyramidal, etc. Tension arrays were often used ornamentally by Goff, frequently
as “curve stitching,” i.e., the overlapping of a group of straight lines such that
their intersections result in polygonal or curved shapes.

5. Many books illustrate and analyze these figures, e.g., Anthony Pugh, Polyhedra,
A Visual Approach, University of California Press, 1976; Magnus J. Wenninger,
Polyhedron Models, Cambridge University Press, 1971. The latter covers both reg-
ular and semi-regular polyhedra, or more generally, the 75 “uniform” polyhedra,
including stellations.

6. Crystallographers study centers, planes, and axes of symmetry and the relative
orientationofx, y, and z axes inminerals, using terminology suchas “monoclinic,”
“brachypinacoid,” and “orthorhombic.” A recent concern of crystallographers is
the hypercrystal, which is an irregularly organized, quasiperiodic structure. See
Chapter 15 for a discussion of quasicrystals.

7. Robert Lawlor, SacredGeometry, PhilosophyandPractice,CrossroadPublishing, New
York, 1982, p. 104. Here is another source on polyhedra, “gnomonic expansion,”
the spiral, the golden section, metaphor, and universal order, etc., with many
good illustrations and diagrams.



8. John Sergeant, Architectural Design Profiles 16, p. 55.

9. D’ArcyThompson,OnGrowthandForm, JohnTylerBonner, ed., CambridgeUniver-
sity Press, abridged Ed., 1966, p. 122. Bonner, a biomorphologist, is the author
ofMorphogenesis, An Essay on Development, Atheneum, 1963, which discusses three
basic determinants of form in the biological world: growth, differentiation, and
morphogenetic movement. As architectural metaphors, growth is cell (module)
iteration or duplication; differentiation represents the functional variations of
spaces such as living room, dining room, entry, and storage; andmorphogenetic
movement represents uniformcharacteristics carried throughout different parts
of the same building, e.g., structural members, mechanical lines, and materials
assemblies.

10. The startling architecture of the zoological world is revealed in Karl von Frisch,
Animal Architecture, Harcourt Brace Jovanovich, 1974. This book covers habi-
tations and devices actually built by animals, not the anatomy of the animals
themselves.

11. A steel frame sculpture objectifies this abstraction in Venturi and Rauch’s
Franklin Court, Philadelphia, 1972–1976. It is illustrated in Charles Jencks, The
Language of Post-Modern Architecture, Rizzoli, 1984, p. 89.

12. For a capsule visual history of architectural form covering 111 “styles,” including
a profusion of recent entries, in 25 pages, see Chap. 1 of Ernest Burden, Elements
of Architectural Design, A Visual Resource, Van Nostrand Reinhold, 1995. For a
capsule history of Goff’s work, see the graphic, multipage pull-out section—pp.
7–14—in I’Architecture d’Aujourd Hui,No. 227, June 1983.

13. Islamic ornamental patterns are illustrated and analyzed in Syed Jan Abas and
Amer Shaker Salman, Symmetries of Islamic Geometrical Patterns,World Science,
River Edge, NJ, 1995. The 17 unique symmetry groups are used as a basis for
this study. Another source of clear graphic analysis of intertwining Islamic
tessellation (not only in architecture, but in planning, poetry, and music!) is
Issam E. Said and Ayse Parman, Geometric Concepts in Islamic Art,World of Islam
Festival Publishing Co., London, 1976.



Grids related to the Islamic can be found in Kaiyama Kyusaburo, The Book
of Japanese Design—Bansho Shin Hinagata, Bijutsu Oyo, Crown, New York,
1969. Two-dimensional patterns attempt to rise off the paper into the third
dimension—some quite similar to Goff designs in the Price Studio. The three-
dimensional metal curtain walls of Goff's First National Bank are related to
these patterns.

14. “The Architecture of Bruce Goff,” Architectural Design,May 1957, p. 151. Author
and historian Park was the University of Oklahoma architectural school librarian
during Goff’s chairmanship. Goff, incidentally, explaining the bland conformity
throughout the profession, said, “We all read the samemagazines.”

15. Francine du Plessix and Cleve Gray, “Bruce Goff, Visionary Architect,” Art in
America,Winter 1965.

16. See John C. Lilly, Programming and Metaprogramming in the Human Bio-Computer,
Julian Press, 1972.

17. Mentioned in an interview with Johnson in Vanity Fair, June 1993, p. 157.

18. An increasing number of three-dimensional graphics programs are available
for computers, e.g., Truespace. One can start with a polygon, drag (extrude) it
to make a prism, shrink one end, see it in three dimensions, and rotate it—here
is an embryo polyhedral unit of the Price Studio. Or one could call up a pre-
formed “organic,” i.e., a single geometric volume and transform it by pulling it
through a “deformation lattice” or “energy field.” Then one can apply a surface
texture, shades, and shadows, etc. Artifice contains a “solid modeling program”
in which a three-dimensional background “space” appears with the cursor at-
tached to a “wireframe,” e.g., lines representing the x, y, and z axes, in perspective.
Typical commands are “linear duplicate,” “wallify” and the like. Not to men-
tion the ubiquitous Autocad and animation programs such as Lightwave and
Video Toaster. Information can be obtained from Computer Chronicles Newsletter,
1–800–800–9520. See Chapter 12 for a discussion of computers and polyhedra.



19. Introduction to A Portfolio of the Work of Bruce Goff, designed and compiled by
WilliamMurphy and Louis Muller, Architectural League of New York and Ameri-
can Federation of Arts, 1970. For an elaboration of these ideas, see Herb Greene,
Mind and Image, Ait Essay on Art and Architecture, University Press of Kentucky,
1976, and Building to Last, Architecture as Ongoing Art, with Nanine Hillard Greene,
Architectural Book Publishing Co., 1981. The Greenes go on to say (in the latter, p.
77), “Nature seems patient of as many systems of geometries as we can discover.
At this time who can say which warrants the highest metaphysical status.”

20. Suzanne K. Langer, Feeling and Form, A Theory of Art Developed from Philosophy in a
New Key, Scribner’s, New York, 1953, p. 99.

21. Le Corbusier’s treatises: Modulorl irll, Harvard University Press, 1980. For a
discussion of the golden mean or golden section, the ratio 4» i-e., 1:1.618…as
inherent in certain polyhedra, e.g., the icosahedron and dodecahedron, see H. E.
Hunt-ley, The Divine Proportion, A Study in Mathematical Beauty, Dover, 1970.

22. This taxonomic series could be continued with a similar grouping for curvilinear
forms—first, extrusions of two-dimensional curves, then curves beyond the
flat plane, i.e., spheres, etc., singly and in clusters—continuing further with
combinations of spherical surfaces and polyhedral forms and finally “free forms”
and beyond. A transition from the polyhedral to the curvilinear can be seen
in polygons with increasing numbers of edges—but this is for another study. A
number of Goff designs were curvilinear in the first go round and later revised
to polygonal to fit the budget. Scaling down occurs with the Price Studio designs,
but away from complex polyhedra rather than away from the curvilinear.

In his article ``Bruce Goff, The Strict Geometrist,'' in Architectural Design
Profiles 16 (a special issue on Goff), John Sergeant divides Goff's work into
crystalline (with three categories—rectangular, diagonal, and triangular) and
curvilinear (four categories—circular, radial, spiral, and processional).

23. For a discussion of depth cues, see James J. Gibson, Perception of the Visual World,
Riverside Press, Cambridge, 1950.



24. As a student of Goff in the early 1950s, I felt that Goff was neither particularly
interested in nor impressed by Fuller’s ideas, unlike a few of his students, myself
included. Goff was, rather, politely respectful and appreciative of Fuller’s work,
as he was with that of technologists such as 'Ibrroja, Candela, Nervi, andMaillart,
to name a few.

The Louis Kahn/Ann lyng high-rise space frame office tower, part of Kahn's
Plan for Central Philadelphia, was well publicized at this time (mid-1950s).
As a classroom assignment this writer attempted to design a ``High-Rise
Monastery for Downtown Houston,'' incorporating living, circulation, and ser-
vice spaces within a story-high tet-oct grid (i.e., a space frame whose struc-
tural members were composed of a ``close packing'' of alternating tetrahe-
dra and octahedra).

We also designed a Chinese restaurant using the Fuller/Kenneth Snelson
concept of discontinuous compression in the form of a sphere, or, more
accurately, a tensegrity-modulated icosidodecahedron, as a structural/en-
velope matrix. In both cases almost the entire time allotted for the projects
was taken up just trying to figure out the projective geometrical drawing of
these forms, which today would be a snap on the computer. A pentagonal
prism core/mast of concrete containing vertical circulation, kitchens, me-
chanical equipment, etc., served and supported the tensegrity bubble, which
enveloped and supported the dining platforms. Goff grasped the nature of
the beast and was most helpful in overcoming problems for the utilization of
these forms in an architectural setting.

Just as a reminder of the typically strongeffectBuckminster Fuller hadon stu-
dents across the country during the 1950s—another Goff student, New York
architect Robert Tieger, says, ``Fuller gave a talk at the O.U. Student Union.
He talked on and on. The janitor wanted to turn the lights out at 10pm but
Fuller went on `til about 12. It was the greatest thing I'd ever listened to.''

25. De Long, Bruce Goff.

26. Michael Field and Martin Golubitsky, Symmetry in Chaos, A Search for Pattern in
Mathematics, Art and Nature, Oxford University Press, 1992, p. 160.



27. The variety of space-filling polyhedral units and their manipulation via twisting,
tipping, and other metamorphoses are explored in Donald G. Wood, “Space En-
closure Systems, TheVariables of PackingCell Design,” Bulletin 205, Engineering
Experimental Station, Ohio State University, 1968.

28. De Long, Bruce Goff, p. 304.

29. Ibid.

30. Ibid., pp. 232–233.

31. Kathy Nicol, letter to author, August 25, 1995.

32. Architectural Design,May 1957, p. 173.

33. De Long, Bruce Goff, pp. 152–153.

34. John Sergeant, “Bruce Goff, The Strict Geometrist,” Architectural Design Profiles
16, Vol. 48, No. 10, 1978, p. 58.

35. Ibid. This article provides thumbnail illustrations of some two dozen floor plans
on a single page (!) for comparison. Sergeant’s “crystalline” categorization of
Goff’s work is mentioned elsewhere in this chapter.

36. The Lacey Hotel was, incidentally, a forerunner of a rhombic grid of glass
cladding—recalled by Goff’s Crystal Chapel—althoughWright’s diamonds were
arranged in an overlapping shingle-like pattern, whereas Goffs were set flush
within a supporting grid.

37. As illustrated inGeorge T. Kerr, “Synthetic Zeolites,” Scientific American, July 1989.
Zeolites are minerals composed of silicon or aluminum and oxygenmolecules,
which form truncated octahedra. A cross section through the center of a trun-
cated octahedron is an octagon. Thismayprovide a clue to the subtle yet complex
sense of space imparted in the Jones House—that complex, repeating, spatial
symmetries can be suggested by a few pieces of the grid.

38. For the full text of the letter, see De Long, Bruce Goff, p. 126.



39. This preceded by some years a scene from the sci-fi film Zardoz, in which Sean
Connery is trapped within a magic gemstone. Note Mrs. Warriner’s crystalline
comment near the end of this chapter.

40. De Long, Bruce Goff, p. 305. The quote within is fromHerman George Schef-fauer,
“Dynamic Architecture,” Dial, Vol. 70, March 1921, pp. 323–328.

41. Ibid., p.13.

42. For further descriptions of functions, see De Long, ibid., and Jeffrey Cook, The
Architecture of Bruce Goff,Harper and Row, 1978, pp. 41–45.

43. Sergeant, “Bruce Goff.”

44. De Long, Bruce Goff, p. 13.

45. James J. Gibson, Perception of the Visual World, Riverside Press, Cambridge, 1950.

46. See Dennis Sharp, Modern Architecture and Expressionism, Braziller, New York,
1966. An untoward side effect of some of these projects is the chilling recall
of the Nietszcheanmountain-climbing mystique in German films of the 1920s
such as The Blue Light by Leni Riefenstahl, who later became a propagandist for
Hitler.

47. Ibid.

48. Both illustrated in De Long, Bruce Goff.

49. The Sierpinski arrowhead, a sponge-like tetrahedral fractal, will probably be
used sooner or later as a basis for high-rise office or apartment buildings, if it
hasn’t already. The figure is illustrated in John Briggs, Fractals, The Patterns of
Chaos, Discovering a New Aesthetic of Art, Science and Nature, Simon and Schuster,
1992, p. 68.

50. Reminiscent of the roof trusses of Goffs very lowbudgetHopewell Baptist Church,
Edmund, Oklahoma, 1949. In this dodecagonal pyramid the subtlety of the basic
“tepee” is increased by using over a dozen variations of the angle of the sloping
roof—in walls, bell armature, truss chords, etc.



51. Safdie, “Pyramid City,” p. 90; Christian W. Thomsen, Visionary Architecture, From
Babylon to Virtual Reality, Prestel Verlag, Munich, New York, 1994, p. 164. Several
others in this book—BrunoTaut’s 1918 “TheCrystalMountain,” p. 81, andWassili
Luckhardt’s 1919 “Project for a Sacred Building” in concrete and colored glass,
p. 85.

52. For Johnson’s comment about Goff’s Crystal Chapel, as well as high praise from
other architects in support of the Crystal Chapel over a traditional period piece,
see De Long, Bruce Goff, p. 104.

53. This has a spherical/helical counterpart in Goff’s first Garvey House.

54. At Expo ’67 in Montreal, multistoried truncated tetrahedra were constructed
from space trusses for (appropriately) the Space Frame Exhibition Hall by archi-
tectsAffleck, Desbarats, Dimikopolous, Lebensold, andSise; structural engineers
de Stein and Associates, Eskenazi, and Barass.

55. Architectural Design, Vol. 28, May 1957, p. 163. More on the Wilson House can be
found in Sergeant, “Bruce Goff,” p. 22.

56. Progressive Architecture, Dec. 1962.

57. L. Lines, Solid Geometry, Dover, 1965. Lines illustrates close packing in polyhe-
dra such as hexagonal prisms, “rhomboidal dodecahedra,” “rhombo-hexagonal
dodecahedra,” and truncated octahedra—in order to prove properties relating to
vertices, centers, etc.

58. See Haresh Lalvani, Transpolyhedra, Dual Transformations by Explosion—Implosion,
Lalvani, New York, 1977. See also Chapter 14.

59. Claude Bragdon, Projective Ornament, Dover, New York, 1992, p. 28.

60. “Supercube” was a term used by Lester Walker, New York architect, teacher, and
author, for a cubic device, totally different from the Wilson module, which he de-
signed, patented, and built in the 1960s—a prefabricated, unfolding, expanding,
“exploding” multipurpose studio furnishing module with a miscellany of built-in
functions such as bed, desk, storage, and fighting.

61. De Long, Bruce Goff, pp. 154, 325



62. Architectural Design Profiles 16, p. 27.

63. Anthony Pugh, Polyhedra, A Visual Approach, University of California Press, 1976,
p.43.

64. Laura Warriner, telephone conversation with author, 1994.

65. Annemarie van Roessel, “Bruce Goff’s Built Works,” in The Architecture of Bruce
Goff, 1904–1982, Design for the Continuous Present, Pauline Saliga, Mary Wbolever,
and Sidney K. Robinson, eds., Art Institute of Chicago and Prestel Verlag,
1995—the catalog issued in conjunction with the 1995 exhibition of Goff’s
architecture and paintings at the Chicago Art Institute. The Institute holds Goff’s
archives.
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3 Louis Kahn and Space Frames

Irene E. Ayad

3.1 INTRODUCTION

During the 1950s, Louis I. Kahn (1901–1974) inspired by his contemporaries—Buck-
minster Fuller, Anne Griswold Tyng, and Robert Le Rico-lais—briefly experimented
with space frames. The Beaux-Arts-educated Kahn, however, was less interested in
the technological and economic advantages of three-dimensional construction than
in its spatial, structural, and formal potentials.
Kahn was particularly interested in the hollow spaces embedded within the frame,

which he first discovered while designing the celebrated tetrahedral ceiling for the
Yale University Art Gallery (1951–1953) and subsequently used to harbor the gallery’s
mechanical ducts and conduits.
Stimulated by the Yale project, Kahn joined forces with Tyng and examined in

earnest the language of space frame architecture, an endeavor that culminated in
the City Tower project, a municipal high-rise complex conceived within the context
of Philadelphia’s redevelopment efforts. The final version (1956), an immense self-
bracing concretehelix, wasa total triangulatedhabitable space frame inwhichprimary
and secondary spaces were hierarchically integrated. The building offered a visionary
alternative to the layered space frame trusses and to the modern braced post-and-
beam structures. Except for
� 127
Beyond the Cube: The Architecture of Space Frames and Polyhedra, edited by J. Francois

Gabriel ISBN 0–471–12261–0 © 1997 JohnWiley & Sons, Inc.
the Yale University Art Gallery, none of the other largely visionary schemes were

ever built.
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BEGINNINGS: THE YALE UNIVERSITY ART GALLERY (1951–1953)

In 1951, while a visiting critic at the Yale School of Architecture, Louis Kahn was
commissioned to design the addition to the Yale University Art Gallery.1 The Yale
project was to kindle his brief but decisive involvement with space frames. At the
time of the commission, Kahn was a well-respected architect and design critic. Like
many of his contemporaries, he had abandoned his Beaux-Arts roots and embraced
the tenets of modern architecture, including its concerns with social housing, urban
and community development, and technological issues. Most of his housing and com-
munity schemes were small scale in nature and located in the vicinity of Philadelphia,
his hometown.

The Yale Art Gallery was Kahn’s first truly prestigious assignment. The building was
to be a modern loft structure with extremely flexible spaces that could be subdivided
at will to accommodate a host of functions.2 Kahn first considered a conventional post-
and-beam structure with widely spaced concrete columns and concrete floor slabs.3

Suspended acoustical plaster vaults were to span the preconceived rectangular spaces
from east to west. The spaces above the vaults were to accommodate the building’s
mechanical systems. Because the vaults determined the position of the room dividers,
Kahn eventually rejected the proposal.4 Keen to find amore compelling and innovative
solution, he developed a rather ingenious multiplanar truss system that was to unite
floor and ceiling.5 In this the horizontal planes consisted of equilateral, hollow, and
open-base concrete tetrahedra. Adjacent tetrahedrons were joined at the vertices
so that the reinforcing rods located at the base of each triangle could run in three
directions without interference. The rods were to absorb the tensile stresses in the
lower horizontal plane constituting the ceiling. A continuous concrete slab, connecting
the apices, provided the floor’s base.

To satisfy the New Haven building codes, which required a beam system, and to
eliminate shear where the tetrahedrons joined, Kahn and Henry A. Phisterer, the
consulting engineer, modified the proposal while trying to preserve its original formal
and spatial qualities. The modified scheme called for inclined concrete beams braced
by V-shaped elements covered by a thick top slab spanning 40 feet.6 Though no longer
a true space frame, the ceiling maintained its tetrahedral character (Figure 3.1).7



In the hollow channels running between beams, Kahn threaded the ducts for the
electrical and ventilating systems. The mechanical equipment—which he considered
the bane of modern architect—thus became an integral part of the structure’s hollow
fabric.8 Kahn’s desire to integrate the mechanical with the structural system was a
pioneering idea, and one that modern architecture had largely ignored.9



Figure 3.1 Yale University
Art Gallery (1951–53) interiorview showing ceiling and column. (Louis I. Kahn Collec-
tion, University of Pennsylvania and Pennsylvania Historical and Museum Commis-
sion.)



The beginning of the 1950s witnessed a renewed interest in three-dimensional
construction.10 This change from “plane” to “space” construction resonated in the
work of Buckminster Fuller and Anne Tyng, who were both associated with Kahn.
Indeed, each claimed some responsibility for inspiring the Yale ceiling.11 Fuller’s
association with Kahn began during the 1930s in Philadelphia and was renewed in
1951 when he was a visiting critic at Yale.12 Fuller believed that his “exhaustive”
descriptions of the theoretical premise underlying his geodesic structures had led to
the development of the “octettruss in the Yale Art Department.”13 These marathon
lectures supposedly took place on their joint railroad trips to New Haven. Kahn first
admitted but later denied that Fuller’s work had any bearing on his scheme, noting
that it was “structurally more advanced” and not applicable to a “flat ceiling.”14

The linkbetweenFuller andKahnwas establishedbyTyng, whohad joinedKahn’s of-
fice in 1945 and later worked with him on the gallery.15 Fascinated by Fuller’s ideas,16

she had experimented with his octet truss in a proposal for an elementary school
project (1949–1951) using a multilayered truss system.17 The school consisted of
individual buildings, housing three classrooms. Each classroomwas contained within
its own frame which grew from a single triangular unit into wider layers eventually
branching horizontally to cover the classroom space. Here vertical and horizontal
elements formed an organic unit. Tyng’s work demonstrated that Fuller’s single-
layered octet truss could be adapted to both a multilayered truss system and to a
conventional building type with its traditional emphasis on facade, orientation, and
division of spaces. In the Walworth Tyng house (1951–1953) located on Maryland’s
eastern shore, she extended the triangulated frame to embrace the entire building:
roof, wall, sunshades, dormers, entrance, and balcony. Applying the octet geometry to
a rectangular house with a pitched roof demanded that she turn the “geometry so that
the squares in the octahedrons were in the horizontal plane.”18 TheWalworth Tyng
house was probably the first habitable space frame—a concept that was to intrigue
Kahn.19

Although Fuller and Tyng were the catalysts, the Yale ceiling lacked the structural
sophistication of Fuller’s work and the organic growth concept Tyng had pursued in
her projects. A lattice support, for example, would have been a more efficient system
for a noncontinuous space slab, providing a structural and visual continuity between



the gallery’s vertical and horizontal members. Nevertheless, the ceiling slab was the
art gallery’s most prominent and discussed feature.20 Its bold geometric concrete
forms not only transcended the gossamer and lightweight quality that characterized
the work of his peers, but also signaled a newmonumentality in Kahn’s work.

The development of the slab had stimulated Kahn’s interest in three-dimensional
construction. He was particularly fascinated by its hidden spatial potential, which he
examined more closely in a project that became known as City Tower.21

THE SPACE FRAME AND ITS ARCHITECTURAL IMPLICATIONS

City Tower (1952–1953)

The City Towerwas a proposal for a triangulated frame that Kahn andTyng designed
during their spare hours. The schemewas based onKahn’s 1952 Civic Center proposal
for Philadelphia, which included a tall prism-shaped triangular building. After the city
planning commission had rejected the project on the grounds that it was too abstract,
Kahn and Tyng developed the prism-shaped structure into a space frame later known
as City Tower.22

The tower was designed in several stages. The first version, whose biological em-
phasis suggests the hand of Tyng, was conceived as a total triangu

lated cantilevered structure with open and trussed spaces that could be further
subdivided into smaller levels.23Whereas the open spaces were to accommodate the
building’s honorific areas, the trussed spaces were set aside for municipal offices and
workshops.

In this early scheme, the tetrahedral floors were stacked above each other and
connected to the angled frames (Figure 3.2). The actual form was inspired by an
illustration of a diatom (Figure 3.3), a type of algae depicted in D’Arcy Wentworth
Thomson’s On Groivth and Form.™ The book was held in high esteem by progressive ar-
chitects. Kahn probably leafed through its pages studying the images, which revealed
that in nature geometry and structure were organically related.25 The undulating
floors are an iconic interpretation of the diatom whose form was derived from a skew-
ing pattern of hexagonal cells. Later Kahn was to credit Tyng for recognizing “the
aesthetic implications of the geometry inherent in biological structures bringing us
in touch with the edge between the measurable and the unmeasurable.”26



To free the center from internal supports, the angled frames were placed at the
periphery and the vertical circulation shafts for elevators and stairwells were incorpo-
rated within its hollow fabric, creating a clear distinction between what Kahn would
soon call “served” and “servant” spaces. The

Figure 3.2 City Tower, Philadelphia, Pa., structural floor plan, first version (1952/53).
(Louis I. Kahn Collection, University of Pennsylvania and Pennsylvania Historical and
Museum Commission.)



Figure 3.3 A diatom showing skewing pattern of hexagonal cells. (From D'Arcy
Wentworth Thomson, On Growth and Form, Cambridge University Press, 1948.)
building’s spatial hierarchy was echoed in the structural system. Here the small

triangles formed the horizontal planes and the large triangles established the vertical
supports, Tyng observed that it was Kahn who had insisted on seating the tower’s
structural members, an innovative idea within the context of modern space frame
architecture.27 Kahn’s interest in structural clarity was developed during his Beaux-
Arts education at the University of Pennsylvania in Philadelphia where Paul Philippe
Cret, the respectedFrencharchitect and engineer, had introducedhim to the analytical
work of Auguste Choisy and the Gothic rationalism advanced by Emmanuel Viollet-



Le-Duc.28 In his 1944 article “Monumental!ty,” Kahn first addressed the importance
of structure, observing that in all architectural “monuments” we witness a striving
for “structural perfection” manifest in a “clarity of form and logical scale.”29 These
qualities, he believed, “will continue to reappear butwith added powersmade possible
by our technology and engineering skills.”30 Kahn illustrated his ideas in a sketch for
an urban civic center, which he envisioned as a giant skeletal framemade of welded
steel tubing (Figure 3.4). The design was derived from Auguste Choisy’s esquisse of
Beauvais Cathedral. Eight years after writing the essay, Kahn continued his structural
dialogue, albeit in relation to the modem space frame.

Figure 3.4 Civic Center, perspective view, 1944, illustrating monumentality. (From
Paul Zucker, ed„ New Architecture and City Planning,New York Philosophical Library,
1944.)



In the summer of 1953, the City Towerwas published in Perspecta, the YaleUniversity
architectural journal.31 By then the schemehad evolved into a 216-foot concrete frame
covered with an angled faceted exterior (Figure 3.5).32 The struts forming the frame
and the structure’s six major floor levels came together every 36 feet. Each level
could be further subdivided into three floors measuring 12 feet from floor to ceiling.
The tower was trussed by cross-framing and the intersecting struts. Moreover, two
mezzanine levels helped to stiffen the structure.

The floors had been extended into three hexagonal areas and, following the build-
ing’s triangular geometry, shifted from level to level. The idea of rotating the horizon-
tal planes reveals the hand of Tyng who, as Buckminster Fuller later observed, “was
Kahn’s geometrical strategist.”33 As at Yale, the tetrahedral floor slabs, composed of
precast lightweight concrete, harbored the building’s mechanical duct and conduits.
The center was occupied by six cylindrical shafts, one of which accommodated a
stairwell. This central service core was to maximize floor spaces.

The design reflects the ideas of Robert Le Ricolais, the French structural engineer
with whom Kahn would later form a life-long friendship.34 Early in 1953, Kahn had
received two essays by Le Ricolais respectively entitled “Hexacore ‘Free Flow’ Indus-
trial & Public Buildings” and “ ‘Multicore’ Building Frame System.”35 In summary,
Le Ricolais argued that a hexagonal space frame improves the spatial and structural
efficiency in multistory public buildings. The optimum location for the supporting
columns, he believed, was in the center of each cell, which could be used in part as
service shafts for air conditioning and “as drain pipes for evacuating rain water.”36

After seeing



Figure 3.5 City Tower, Philadelphia, Pa., section, later version (1953), illus-
trating shifting horizontal planes. (Louis I. Kahn Collection, University of
Pennsylvania and Pennsylvania Historical and Museum Commission.)

the Perspecta publication, Le Ricolais sent a letter to Kahn congratulating him on
the project.37

In tandemwith Perspecta, Kahn offered his first and only extended discussion on
space frame architecture:



In Gothic times, architects built in solid stones. Nowwe can build with hollow
stones. The spaces defined by the members of a structure are as important
as the members. These spaces range in scale from the voids of an insulation
panel, voids for air, lighting and heat to circulate, to spaces big enough towalk
through and live in.38

Immediately following these observations Kahn proclaimed:

The desire to express voids positively in the design of structure is evidenced
by the growing interest and work in the development of space frames.39

Reflecting the growing emphasis Kahn placed on integrating the mechanical with
the structural system, Kahn is primarily interested in the interstitial
spaces that he would later examine in other structural systems including the Vieren-
deel truss. From this narrow perspective Kahn also arrived at the remarkable idea
of developing the voids into rooms for mechanical equipment and services, an idea
whose architectural consequences he could hardly have anticipated. The City Tower’s
hollow service shafts are the very first manifestation of Kahn’s suggestion to express
voids in a positive manner. The “hollow column” would soon emerge in his work as a
distinct architectural feature.
Yale Revisited (1954)
With a better understanding of the space frame’s structural possibilities, Kahn’s

thoughts invariably returned to Yale. As he noted in a letter to Walter Gropius: “My
work on the Yale Art Gallery has ledme to think about three-dimensional construction
and its implications architecturally. I failed to command the forces which could have
produced a truly significant building.”40 In 1954, about a year after the gallery was
completed, Kahn prepared two closely related sketches depicting the building as
a cantilevered structure with enormous tetrahedral columns connected to a tetra-
hedral floor slab (Figure 3.6). In this conjectural scheme, the vertical supports are
in structural sympathy with the geometry of the spanning members. After review-
ing the scheme, Kahn observed: “A tetrahedral floor asks for a column of the same
structure.”41 Kahn had considered both a rectilinear and a hexagonal plan. The latter,
of course, would have been a logical continuation of the building’s triangulated geom-
etry. In subsequent publication of the scheme, however, Kahn favored the rectilinear
plan, an obvious concession to the existing site conditions.





Figure 3.6 Yale University Art Gallery, section and plans showing reevaluation of
structural system (1954). (Louis I. Kahn Collection, University of Pennsylvania and
Pennsylvania Historical and Museum Commission.)

The dwarfed figures and artifacts occupying the gallery spaces illustrate that Kahn
envisioned a building of truly impressive scale. Indeed, if we take the figure holding a
tape as a module measuring about 5 feet 7 inches (the height of an average person)
and multiply this number by the triangles constituting the height of the columns, we
find that the ceiling height comes close to 30 feet—the actual height is approximately
10 feet. In the second sketch, the columns are placed closer together, yet the lofty
feeling of the gallery spaces is maintained. These sketches illustrate that Kahn was
more interested in creating impressive monumental spaces than addressing mere
utilitarian concerns, a quality he greatly admired in Imperial Roman architecture.42

The Baths of Caracalla was his favorite building: “Here was the will to build a vaulted
structure 100 feet high in which men could bathe. Eight feet would have sufficed.”43

Adath Jeshurun Synagogue and School Building (1954–1955)

The idealized Yale scheme inspired Kahn’s design for Adath Jeshurun, a congrega-
tion in Elkins Park, North Philadelphia. Kahn envisioned the synagogue as a two-story
tetrahedral schemewith the lower level serving as assembly hall and the upper level as
sanctuary.44 Three columnar clusters, each consisting of three triangulated columns
framing a stairwell, supported a tetrahedral slab. As at Yale, the columns call to mind
Tyng’s elementary school building, except that here the triangulated layers contract
and expand before merging with the ceiling, thus making a clear distinction between
the building’s vertical and horizontal members.

To improve the fight within the stairwells, Kahn extended the columns beyond the
roof, increased the number of columns per cluster, and pulled them further apart
(Figure 3.7). The column was not only emerging as the dominant tectonic feature
in Kahn’s work, but as he explained in a letter to Tyng: “Now the column must be
hollow like the stem of a leaf or the trunk of a tree,” an observation that, for sure, owed
much to his involvement with space frame construction.45 In this final scheme, each
columnar cluster consisted of nine columns forming a 26-foot triangle.46 Its “hollow
trunk,” to use Kahn’s biological metaphor, housed the triangulated staircase.



Kahn subsequently prepared this color sketch to emphasize the synagogue’s struc-
tural and formal characteristics (see Color Art 1). Reflecting his desire to make a clear
“distinction between things,”47 the yellow and teal effectively show the difference
between the scaled geometry of the structural members and the building’s horizontal
and vertical elements. The color



Figure 3.7 Adath Jeshurun Synagogue and School Building, Elkins Park, North
Philadelphia, Pa., plan (1954). (Louis I. Kahn Collection, University of Pennsylvania
and Pennsylvania Historical and Museum Commission.)

sketch, more than the plan, demonstrates that the servant spaces have emerged as
the building’s salient feature.

A review of the synagogue reveals Kahn’s growing desire to integrate all parts of the
building by using a consistent geometric vocabulary to resolve the conflict witnessed
at Yale where he had used different compositional models.48 In the Yale Art Gallery,
the preconceived rectilinear plan was at odds with the triangulated geometry of the
ceiling.49 For the synagogue, Kahn had originally considered a hexagonal plan before
settling on the triangular arrangement. But even then, he failed to achieve an organic
unity between structure and space, an objective he had mastered in his trabeated
projects. With Adath Jeshurun, which was never built,50 Kahn’s interest in three-
dimensional construction was beginning to wane.

Figure 3.8 Jewish Community Center-Day Camp, Trenton, N.J., section and
plan, preliminary proposal (ca. 1955).

Jewish Community Center/Day Camp (1955–1956)



In thepreliminary proposal for theDayCampof the JewishCommunityCenter
near Trenton, New Jersey (Figure 3.8), Kahn continued his quest to integrate
structure and space. The Day Campwas conceived as three tetrahedral pavil-
ions set within an open field.51 Each building was based on a 35-foot square
whose four comer posts supported a truncated pyramidal frame of half tetra-
hedral and octahedral units. The steel tubular structure, however, lacked the
sinuous and graceful quality of Kahn's 1944 civic center. With its truncated
roof, proximity to the ground, and large geometric units, the design brings to
the fore Kahn's increasing interest in mass, and his desire to wed the building
with the ground.

Indeed, the Day Camp was modeled after Kahn's Trenton Bath House (1955)
comprising four square pavilions grouped around a central atrium. The
comers of each square were occupied by a small cubicle whose concrete
block walls supported the building's truncated pyramidal roof. The cubicles
could be used for a myriad of services. The building marked a watershed
in Kahn's career: not only were structure and space unified by one com-
positional model, the square, but the hollow column had evolved into a
separate servant room. In the Trenton Bath House Kahn first fully realized
his ``served'' and ``servant'' space concept, the generative force for all his
subsequent work.52

City Tower (1956–1957)

In 1956 Kahn returned to the City Tower and, in collaboration with Tyng, de-
veloped the project into an imposing 616-foot-tall skyscraper (Figure 3.9).
This final version was prepared for the Universal Atlas Cement Company's
advertising campaign to promote and show the versatility of concrete.55 The
model was to be published in both the Architectural Record and





Architectural Fomm. Kahn and Tyng elaborated on the project’s urban significance,
its “servant spaces,” and the structural shortcomings of the earlier project.
The building was to rest on a 700-foot square platform comprising three levels:

a parking and service floor below grade, a shopping concourse at street level, and
a pedestrian plaza above ground. Cylinders placed at the periphery acted as fight
and air wells for the lower levels, which could be reached by ramps, escalators, or
staircases. The substructure served as a transitional element between the surround-
ing streets and the tower whose triangular geometry was anticipated in the plaza’s
pavement. Here two intersecting triangular systems, one facing north to south, the
other east to west, were superimposed on an orthogonal grid. The tower was a totally
triangulated precast and prestressed concrete frame whose awesome physicality bore
little resemblance to the earlier scheme. Whereas the building’s monumental scale
showed little regard for the surrounding urban domain, its basic structural unit was
an 11-foot tetrahedron, the height of an average ceiling.55 In this final version, the
shifting planes were fully coordinated with the threefold column clusters.56 The con-
crete struts forming the frame intersected with the nine structural levels at 66-foot
intervals. Kahn and Tyng prepared a host of sketches to identify the natural growth of
the triangular geometry that gave the tower its distinct bodily configuration: a helix
bracing itself diagonally against the wind. From this moment, Tyng observed, “Kahn
was able to see the tower as a form which grew itself.”57

The column clusters were crowned by “hollow capitals” measuring 11 feet, a varia-
tion on the hollow-column theme. The bell-shaped capitals harbored ancillary spaces
for toilets, mechanical services, and storage. In the section drawing of the capitals,
Kahn included a standing figure to illustrate his earlier claim that voids should be
large enough for people to walk through and live in. In the absence of any decorative
details, the servant spaces assumed an ornamental quality. Like the earlier scheme,
the hollow spaces within the tetrahedral floor slabs carried the air-conditioning ducts,
electrical wiring, and plumbing. The center was occupied by shafts for pipes, which
in turn were surrounded by three stairwells. The vertical circulation shafts, however,
were independent of the structural system.
With its natural growth form, the tower was conceived as an alternative to the

modern post-and-beam slab diagonally braced for wind loads.58 In contrast to Mies
van der Rohe’s SeagramBuilding, for example, in which the diagonal bracing is hidden
to preserve the structure’s pristine rectilinear frame—Kahn once called the building



“a beautiful bronze lady in hidden corsets”59—the tower expressed the very idea of
wind bracing.60 However, as Robert Venturi noted, it did so at the expense of public
spaces and elevators.61 In addition to its spatial shortcomings, the building would
have been expensive and difficult to build.62

Concern for natural elements gave rise to what Kahn called a higher order of con-
struction. To shade the tower from sun and wind, and to regulate its temperature, the
entire structure was covered by glass panels held in place with permanent sun louvers
made of aluminum strips resembling filigree. The panels, like the planes, shifted from
level to level, creating a texture of light and shade. As Kahn explained: “I didn’t want
to graft on a wind idea but to find an order which takes care of the wind.”63 Kahn later
compared the tower to a fairy tale, an affirmation that the geometric language, tran-
scending any aesthetic and functional concerns, had determined what the building
“wanted to be.”64

Civic Center-Foram (1957)

In 1957 Kahn included the final version of the City Tower in his Civic Center-Forum
project, one of his ongoing redevelopment proposals for Philadelphia (Figure 3.1O).65

Like its Roman predecessors, the forum was to be the city’s new civic center, housing
all of its public institutions—civic, academic, social, and commercial. The triangulated
towerwas the crowning element. Within this setting, its visionary vocabulary assumed
symbolic overtones, heralding the renewal of the city and its institutions, which Kahn
had come to regard with increasing reverence. With the City Tower, later shown at the
Museum of Modern Art’s exhibition Visionary Architecture, Kahn’s involvement with
three-dimensional construction had come to a close.66



Figure 3.10Market Street East Studies, Philadelphia, Pa., Civic Center Forum, per-
spective view (1957). (Louis I. Kahn Collection, University of Pennsylvania and Penn-
sylvania Historical and Museum Commission.)

3.2 CONCLUSION

Kahn’s experiments with space frames, which owedmuch to the collaborative effort of
Tyng, produced several memorable and rather visionary projects, as did his writings
on three-dimensional construction, leaving us with the indelible image of the “hollow
stone” and, by extension, the “hollow column.” Yet the largely experimental nature
of his work, his brief and limited engagement with the structural system paralleled
by his growing interest in orthogonal planning and mass, all suggest that Kahn never
truly felt comfortable with the triangulated vocabulary of this structural system. Kahn
was at heart a master builder and, like Frank Lloyd Wright, Le Corbusier, and Mies
van der Rohe before him,67 did not belong to the age of space frame architecture.



Nevertheless, Kahn’s foray into three-dimensional construction played a crucial
role in the development of his work. It was here that he discovered that voids could be
extended into servant spaces and that structure and form were explicitly related; and
here he also reexamined the structural ideals of his Beaux-Arts roots, dormant during
his encounter with modern architecture. These themes were to inform his mature
work,68 which established Kahn as a leading voice among 20th-century architects.
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4 Buckminster Fuller and the Relevant
Pattern

Arthur L. Loeb

4.1 INTRODUCTION

In the early sixies R. Buckminister Fuller and I discovered that we were using the
same coordinate system, based on tetrahedral-octahedral space filling, the former
for the design of architectural trusses, the latter in order to understand why minerals
have the structure they do. We both rejected the cube, Fuller because of its instability,
myself because it concealed the natural design of crystals, rather than rendering it
obvious.
This chapter explains this coordinate system, explores Fuller’s discomfort with

irrational numbers and continuous structure, and relates my role in the writing of
Synergetics. The five-fold way of dome structures and its influence on recent molecular
physics and on the metallurgy of alloys is stressed.

4.2 THE RELEVANT PATTERN

Spinel is a mineral and semiprecious stone. Its chemical formula is MNX, where M
andN represent small, positively chargedmetal ions and X stands for large, negatively
charged ions such as oxide or sulfide. The chemical formula indicates that there are
one M ion and two N ions for each pair of X ions. Over 35 years ago, it was my task1 to
investigate the mechanism by which information in the form of a magnetic flux could
be held in materials having a spinel-like configuration of oxide andmagnetic metal
ions.2 Themagnetic flux results from the interactions between the various types of
ions in the spinel, and especially from their spatial interrelations.
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The configuration of the ions in spinel is apparently complex; a ball-and-rod model
of the “cubic unit cell” was forbidding and did not reveal any mechanism explaining
why nature would have chosen to arrange these ions in such a perversely complicated
manner. This configuration was revealed experimentally by means of X-ray analysis;
X-ray crystallographers traditionally index the locations of ions in a solid like spinel
relative to a cube, creating the so-called unit cell.
I decided that the first step in developing an understanding of the interactions of the

ions in spinel was to see what sort of structure each of themetal ions would separately
form in conjunction with the oxide ions, in other words, what the structures of the
individual oxides would be. In spinel, the oxide ions occupy the vertices and the
centers of a cubic unit cell, as shown in Figure 4.1. However, a slight but useful change
in perspective results if we abandon the traditional unit cell, remembering that the
crystal is made up of stacked unit cells. If, instead of slicing out the cube of Figure 4.1,
we move over half a cube edge length, we can slice out a different cube, as shown in
Figure 4.2: Now



Figure 4.1 Face-centered cubic unit cell.

Figure 4.2 Cuboctahedron in a cubic cell.

the oxide ions occupy the centers of the new cubes as well as the centers of each of
its 12 edges. The oxide ions are now seen to occupy the vertices of a polyhedron known
as the cuboctahedron, called by R. Buckminster Fuller the “vector equilibrium.”
The cuboctahedron has six square and eight triangular faces. It can be constituted

of eight regular tetrahedra and six square pyramids, each of which is half of a regular
octahedron (cf. Figure 4.3). Accordingly, the large oxide ions, located at the center
and the vertices of the cuboctahedron, have octahedral and tetrahedral interstices in
between, which may be occupied by the smaller metal ions. Once one knows whether
these metal ions occupy tetrahedral or octahedral ions in their simple oxide crystals,
one has a clue as to where these ions would go in composite oxides containing several
different kinds of metal ions.
In Figure 4.4 four different hexagonal cross sections through a cuboctahedron

are shown. The center of the cuboctahedron is surrounded by six vertices in each
of four regular hexagonal cross sections; that is to say, of the twelve vertices of the
cuboctahedron, six form a regular hexagon around the center, three He on one side,



and the remaining three He on the opposite side of that hexagon. In the crystal each
oxide on a vertex of the cuboctahedron is in turn the center of a cuboctahedron, the
original center being one of twelve vertices of this new cuboctahedron. Thus we have
comeby a series of steps fromaunit-cellmodel to one of stacked, closely packed layers
of oxide ions having tetrahedral and octahedral interstices in which smaller metal
ionsmay be accommodated. It then turned out that themost symmetrical distribution
of the various types of metal ions over these interstices consistent with their chemical
composition produces not only the spinel structure but also the structures of many
other minerals and man-made materials

Figure 4.3 Cuboctahedron made up of regular tetra- hedra and half-octahedron.

Figure 4.4 Four hexagonal cross sections through a cuboctahedron.
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(Figure 4.5). Whereas the unit-cell model based on the cubic unit cell was obscure
and did not offer any explanation for the distribution of ions in a crystal, the octahe-
dron/tetrahedron model provided a simple geometric insight into crystal structures.
In 1960 the International Congress of Crystallography took place in Cambridge,

UK. I felt like a real iconoclast in presenting an alternative to the cubic unit cell so
sacred to the crystallographer. When I had finished my presentation, I saw Elizabeth
Wood, head of the U.S. delegation, charging toward me. Somewhat apprehensive, I
was surprised to hear her say: “All my life I have wanted to say ‘TO HELLWITH THE
UNIT CELL!’, and now you have done it.”
To implement my systematic ordering of crystal structures, I designed four types of

modules,3 two tetrahedral and two octahedral (Figure 4.6), which, in various combina-
tions and permutations, could represent amultitude of crystal structures (Moduledra).
Two of these polyhedra contained a colored sphere in the center, representing ametal
ion; the other two were empty.

CUBIC:
Fraction filled of

HEXAGONAL:
octahedra: tetrahedra:

Sodium
Chloride
BX

All None Niccolite
BX

Cadmium
Chloride
bx2

1/2 None Cadmium
Iodide BX2

2/3 None Corundum
B2X3

Spinel
AB2X4

1/2 1/8

Anticuprite
ax2

None 1/4

Sphalerite
AX

None 1/2 Wurtzite
AX

Antifluorite
A2X

None All Impossible
A2X

MIXED:



Carborundum
AX

None 1/2 Carborundum
AX

Figure 4.5 Systematic overview of common crystal structures.

Figure 4.6 Moduledra™ crystal building blocks.

Because regular tetrahedra and octahedra together can fill all of space in a ratio
of two tetrahedra per octahedron, it was possible to arrange these modules without
fasteners. The vertices of themodules represent the centers of the large ions, whereas
the spheres in the centers of the modules represent metal ions. The empty modules
represent unoccupied interstices; if for no other reason, these modules were unique
in that there was an explicit representation of an empty space. I had designed these
modules tobeattractive andpleasant tohandle, with the result that theywere exhibited
here and there.



In 1962 the Educational Network was making a television series on Richard Buck-
minster Fuller. WilliamWainwright, an associate of Fuller’s, had seen my Moduledra
on exhibit and suggested that these should be included in the films. Accordingly, the
authors of the films interviewedme and invitedme tomeet Fuller. At lunch Fuller told
me that he had hoped to find in nature, and specifically in crystals, building blocks like
tetrahedra, octahedra, cuboctahedra, and others, but not cubes, which are inherently
unstable. All the crystallographers whom he hadmet, however, referred to the cube
as the basic building block, the unit cell that was encountered previously. Fuller felt
encouraged to learn frommy work that a model based on tetrahedra and octahedra
gave a clearer understanding of crystal structure than one based on the unit cell.

Since that first meeting, I have always been impressed with Fuller’s genius in recog-
nizing the relevant pattern and rejecting the trivial one. Although known primarily for
his lightweight structures capable of spanning large areas with a minimum of matter,
he had also studied the very opposite, namely, the densest packing of spheres.4 The
cuboctahedron and its deconstruction into eight tetrahedra and six half-octahedra
were basic to his understanding of sphere packings.5 The fact that the distance be-
tween adjacent vertices of the cuboctahedron equals that of each vertex to the center
of that polyhedron caused him to call the cuboctahedron vector equilibrium: If there is
an optimal distance between the centers of two interacting objects, then the cubocta-
hedron is an optimal configuration of such objects, conserving an optimal number of
such optimal distances.

Fuller kept wrapping layers of spheres around the 12 constituting the vertices of
the inner cuboctahedron and counted the number of spheres in each successive layer.
He noted that these numbers, successively 12, 42, 92, 162…, could be written as the
squares of successive integers followed by the digit 2. I am told that the renowned
geometer H.S.M. Coxeter first greeted this observation with disbelief, but by that time I
had alreadywritten a proof for Synergetics.6 Fuller’s preoccupationwith numbers found
an outlet in Chapter 1200 of Synergetics, called Numerology. In all this work Fuller
plays with numbers, delighting in the patterns that turn up. When, in the preface
to Synergetics, I wrote: “…Fuller…discerns patterns and accepts their significance on
faith. His is not the burden of proof: the pattern is assumed significant unless proven
otherwise.” Fuller expressed surprise, because he thought that he had provided a
proof.



Some of my students similarly feel that a demonstration is actually a proof; when
mathematics is transformed into an experimental science, proofs become inductive
rather than deductive. A proof then consists of a generalization encompassing as
many diverse phenomena as possible. Very few physics theorems have withstood the
test of time: EvenNewton’s laws ofmotion eventuallywere found to be approximations
valid only at sufficiently large scales. The proof of a theorem will, however, offer an
insight into the constraints within which the theorem is valid. I offer two instances in
design science as an illustration:

William Varney was working at Fuller and Sadao’s architectural office in Cambridge
whilefinishing the requirements forhis bachelor’s degree atHarvard througha tutorial
on design science with me. I had shown him that a necessary, but not sufficient
condition for the stability of polyhedra is that

(4.1)

3I/-F<6

whereV equals thenumberof vertices andE thenumberof edgesof thepolyhedron.7

For tensegrity structures, if C is the number of compression members and T the
number of tension members8:

£= 7+ C

T=4C

V=2C

Hence

(4.2)

C<6 Varney had noted that tensegrities having more than six compression
members, although holding together on a small model scale, tended, when
constructed on a large scale, to sag more than the classical six-strut tenseg-
rity, and was delighted to see that a mathematical analysis actually proved
the fundamental stability of the six-strut tensegrity.



Some years later, Varney was teaching the design science seminar-workshop with
me. We were examining the rhombic triacontahedron, a structure related to domes,
having 30 rhombic faces.9 He related to me that Shoji Sadao, Buckminster Fuller’s
partner, was using arctan 2 as a convenient approximation for the surface angle of the
triacontahedron. Because the ratio of the lengths of the diagonals of each of the faces
of this polyhedron exactly equals the golden fraction 4>, defined by the equation

<|) = 1/(1 + <b) (4.3)

it seemed unreasonable that the surface angle of the triacontahedron should be
independent of the golden fraction. Wasma’a Chorbachi,10moreover, had discovered
medieval Islamic designmanuals giving rules of thumb for geometrical constructions,
which work well on a moderate scale, but which we could prove to be approximations.
Accordingly, I decided to calculate the tangent of the surface angle of the triacontahe-
dron, which is also the angle between the diagonals of a golden rectangle. It turned out
that the sine of that angle equals 2cf>/(2-d>), the cosine of <J>/(2-<h). Their ratio, the
tangent of the surface angle of the triacontahedron, accordingly equals exactly 2, and
Sadao’s “approximation” was, in point of fact, no approximation at all, but rigorously
correct, and thus valid at any scale! It was not until May of 1995 that I was able to give
Sadao this proof of the exactness of his “approximation,” which still surprised him.
Fuller was uncomfortable with irrational numbers11 and would have been delighted

with the elimination of the irrational golden fraction from the expression for the
surface angle of the triacontahedron. This discomfort relates to his discrete rather
than a continuous view of matter: a circle is not the locus of all points equidistant from
a given point, but rather a polygon with a great many, but a finite number, of sides,
and the number it should therefore be rational.
Following our first meeting, Fuller sent me two books about his work. Although I

had myself written two books by then, I did not think that their subject matter, the
electric double layer around spherical lyophobic colloid particles andwavemechanics,
would hold the slightest interest for Fuller. Therefore, I decided to send him a book on
the Dutch graphic artist M.C. Escher instead. At the same international congress in
Cambridge, where I had presented my Moduledra crystal building modules, Escher
had been invited to deliver an address, and our meeting there turned into a lasting
friendship. Fuller was so impressed with Escher’s art that I decided to organize a
symposium to introduce these two pivotal figures in design science to each other.



In the fall of 1964, a small number of scholars gathered at the Ledgemont Laboratory
of the Kennecott Copper Corporation in Lexington, Massachusetts, for a symposium
on structure systematics. Both Fuller and Escher were scheduled to be among the
speakers, but at the last moment Escher became ill in Canada, so that I had to read his
paper. When Fuller began his own contribution, he characteristically squirmed, com-
plained about the heat, and removed his jacket for the first fiveminutes, then launched
into a brilliant survey of design science and fascinated, charmed, and entertained his
sophisticated audience for hours.
My young colleague Eric Haughton, a psychology graduate student of behaviorist

Fred Skinner, delivered a paper on his work with programmed instruction. Instantly,
some of the scholars turned into parents, interrupting the speaker with their concerns.
Suddenly, Fuller said: “I am amazed. I thought this was an audience of scientists, yet
you keep a scholar from presenting you his quantitative data.” The parents sobered
up, and Haughton continued without further interruption.
Fuller had been with us for the entire week but had to leave early Friday afternoon

to get a flight at Logan Airport. The next Monday my phone rang. It was Buckminster
Fuller. “Where are you?” I asked. “At Logan Airport” was the answer. “Did you spend
the whole weekend there?” was my reaction. No, it turned out that he had gone home
to California over the weekend and happened to be passing through Logan again on
his way elsewhere. He graciously thanked me for including him in the symposium
and invited me to collaborate with him on the forthcoming synergetics book.
Elevenmore years were to pass before the actual publication of Synergetics. Fuller

invited Escher to contribute some illustrations to his volume, which the artist agreed
to do. Unfortunately, completion of Synergetics was delayed until well after Escher’s
passing, so nothing came of that collaboration. It was interesting to compare the
working methods of these two geniuses. Interestingly, Fuller, the architect and in-
ventor, appears to have been the more intuitive (Fuller even named one of his boats
as well as one of his books Intuition), whereas Escher, the artist, was very precise
and analytical. Both became icons of the 1960s counterculture, yet each was very
traditional in demeanor and dress.
In 1972 Buckminster Fuller invited us to his island off Camden, Maine. As I had just

joined the Department of Visual and Environmental Studies at Harvard, which was
having a faculty meeting the day following our visit to Bear Island, I decided, knowing
Fuller’s propensity for long conversations, that it would be the better part of valor to



spend the night on the mainland so that we could get an early start the next morning.
On the appointed day a boat was to meet us at the dock in Camden. I wondered how
we would recognize the boat, or be recognized, but I need not have worried, for Fuller
was navigating the Intuition himself. When we first met, Fuller quickly noted that I
had done a lot of sailing in my day. Indeed, growing up in Amsterdam, I had been a
Sea Scout; accordingly, Fuller entrusted the rudder to me.

As we neared a cruising windjammer, Fuller instructed me to pull up beside her
because there was a person aboard with whom he desired to speak. The passengers
looked rather anxious, apparently fearing piracy, but the party was found quickly and
invited to Bear Island with a promise that he would be restored to his cruise in due
time. The surprised man took a few minutes to collect his wife and some baggage
and then joined us on the Intuition. Fuller told me that he had a group of students
working on a dome on Little Bear Island who were anxious to talk with me, so after
lunchwe adjourned there, painted the floor of the newdome being built so that it could
survive the next winter before being completed, and then returned to Bear Island
itself for dinner and one of Fuller’s famous roundtable discussions about the state
of the whole earth. Fuller showed me the various islands in the distance where his
relatives and friends fromMilton, Massachusetts, had summer houses; clearly, this
world citizen still felt that his real home was right there. His grasp of the relevant
pattern clearly harks back to his roots in New England transcendentalism, notably to
his great aunt Margaret Fuller. Late at night Fuller himself was kind enough to take us
back to Camden.

Peter Pearce was to be the editor of Synergetics, and we met several times during
the next few years. Fuller’s original intention had been to have my contributions
interspaced in a different typeface as running comments between his text. This did
not appear practical, however, and so I wrote a preface and a number of chapters. I
recall a gathering at our house on a very wintry day, including Fuller, Pearce, and a
number of associates. We had had snow and frost, then a sudden thaw accompanied
by a torrential rain. Suddenly, one of our guests felt wet, and we discovered water
leaking through the living room ceiling. The bathroom upstairs was flooded with
backup from the gutters, and soon the whole house was leaking like a sieve. There



was nothing to do but to place whatever buckets we had in crucial locations and to
continue with whatever we had been doing, which was madrigal singing in the music
room, an investigation of Fuller’s A-and B-modules in the living room, and the refilling
of the buffet in the kitchen.
Fuller suggested installing electric wires on the roof tomelt the snowwhen it started

to accumulate on the roof. We thought that this Yankee architect would be the best
expert we could hope for, but after the installation, the first snow, upon being melted,
slid down the roof, taking the wires with it. Fuller had not realized that we still had a
slate roof, which was too slippery to hold on to the wires!
After Peter Pearce had spent two years on Synergetics, subsidized by a grant, Fuller

did not feel the volume was ready for publication, and the project lapsed. Some time
in the early 1970s, I received a call fromEJ. Applewhite, who introduced himself as the
editor of Buckminster Fuller’s next book. Applewhite requested fromme a reprint of
my article in the Journal of Solid State Chemistry11 ofwhich I had sent Buckminster Fuller
a copy because it dealt extensively with the vector equilibrium. I gathered during
our conversation that Applewhite had a background in security, for he asked me a
great deal of questions but was reluctant to reveal any information about the book.
I found out, however, that indeed the new book was Synergetics, and Ed Applewhite
told me later that he realized then that the few bits and pieces frommy contributions
that he had come across were but the tip of an iceberg. Fuller had apparently rather
indiscriminately distributedmy contributions, but I, being apprehensive about having
unpublished results so generally accessible, had bundled them into a copyrighted
technical report, which I could then send to Applewhite.
In the mid-1970s I was working onmy Space Structures.” Concerned about the fate

of my contributions to Synergetics, I wrote Fuller that regretfully I would need to with-
draw these contributions and instead include them inmy own forthcoming book if
Synergetics were not published by 1975. Ed Applewhite told me that the letter built a
fire under Fuller, with the result that Synergetics did appear with my contributions in
1975, followed by my Space Structures in 1976.
One of the first, and probably one of the few, people to read Synergetics from cover

to cover was Amy Edmondson, who did so as an undergraduate student at Harvard-
Radcliffe during a junior tutorial under my direction. Fuller would often state that a
bicycle wheel is actually a tensegrity structure, a statement that Amy checked out as
her senior thesis. I proposed that she construct a bicycle wheel in which the spokes



were strings instead of metal bars and test out its strength. Although it is sometimes
believed that the spokes in a bicyclewheel are compressionmembers, they are actually
tension members, with the hub suspended from the rim by the spokes. She actually
built a tensegrity cart supported by a set of tensegrity wheels, positioned her brother
in the cart, and then proceeded to cut the spokes one by one, until the inevitable
catastrophe occurred. Interestingly, none of the remaining string spokes snapped,
but the rim eventually collapsed; the function of the spokes is indeed to distribute the
load over the rim. In that sense the wheel is a tensegrity structure.
Upon graduation, Amy Edmondson went to work with Buckminster Fuller in his

Philadelphia office. Just before Harvard Commencement 1983, she called me to say
that Fuller had decided to attend and asked whether we could have dinner with him
the night before. We had a delightful evening, joined by Gyorgy and Juliette Kepes
and my father, who had come over from his home in the Netherlands to celebrate his
90th birthday with us. Fuller, Amy, my wife, and I made a date to meet in Maine for
a working session, but that dinner turned out to be the last time wemet, for early in
July we learned of the passing of both Buckminster and Anne Hewlett Fuller. After the
interment in the Fuller family lot, near great aunt Margaret, in Mount Auburn Ceme-
tery, Amy and I decided that the best tribute to Fuller would be a book explaining his
ideas in more traditional language than Fuller’s own, which I proposed to Birkhauser
for the Design Science Collection. The result was Amy’s A Fuller Explanation.
Already before Buckminster Fuller’s death, materials scientists began to recognize

the importance of fivefold rotational symmetry.14 The geometer H.S.M. Coxeter lec-
tured at Harvard on a range of virus structures having fivefold rotational symmetry; I
wrote Fuller afterwards that Coxeter had declared that the viruses most resembling
miniature Fuller domes were also the most deadly. Characteristically, Fuller replied
that he was not surprised, because those would be the most stable and hence the
most virulent viruses. Because fivefold rotational symmetry15 is incompatible with
translational symmetry, crystals, which do necessarily have translational symmetry,
cannot also be fivefold symmetrical.
Fivefold rotational symmetry occurs frequently in organic structures (plants, flow-

ers, shells, viruses), which have a single symmetry axis, but not in crystals. Crystallog-
raphers were therefore surprised to find alloys whose X-ray diffraction patterns were
fivefold symmetrical. After a characteristic period of denial, they had to abandon the
superstition that fivefold symmetry in the X-ray pattern implies fivefold symmetry



in the crystal. When the ions in a crystal diffract X-rays to generate the pattern from
which crystallographers deduce the location of these ions in the crystal, they do so
through the interaction between close neighbors in the crystal. If the immediate
vicinity of each ion appears to be fivefold symmetrical, then, regardless of the fact
that the entire crystal lacks fivefold rotational symmetry, the diffraction pattern will
have fivefold rotational symmetry. Materials having this special structure are called
quasicrystals.
With his dome structures, Buckminster Fuller introduced fivefold rotational sym-

metry into our visual culture. The U.S. Pavilion at Expo ‘67 in Montreal was a Fuller
dome; altogether, the exposition was rich in untraditional polyhedral forms. The
three-dimensional theme iconwas a truncated regular tetrahedron, andMoshe Safdi’s
Habitat abounds in space-filling poly-hedra. When Smalley and Kroto identified a
molecule consisting of 60 carbon atoms, (C60), one of them used the dome kit he had
bought for his young son to construct a possible model for this new structure.
Much successful science is amatter of pattern recognition, andone cannot recognize

that with which one is not already familiar. Buckminster Fuller familiarized us with
many unconventional structures, among them the truncated icosahedron, already
familiar as the soccer ball but less so as the Fuller dome. That Fuller selected the
relevant structure on the basis of its stability is borne out by his reaction to the Coxeter
lecture. When C60 was named Buckminsterfullerene, popularly known as Buckyball, the
attribution was a proper one because Fuller knew that the structure is stable and
because his dome kit provided the means of constructing a stable structure having 60
mutually equivalent atoms.
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5 Polyhedral Structure

Lawrence Davis

5.1 INTRODUCTION

Philip Johnson and John Burgee’s Garden Grove Community Chapel is one of the
more enigmatic buildings of its time. Better known as the “Crystal Cathedral” and con-
structed between 1978 and 1980, its curious nature has not only to dowith its purpose,
form, and treatment but includes the often puzzling intent and ultimate behavior of its
polyhedron structure. The distorted geometry of the building causes a transformation
of the tectonic system referred to ubiquitously as a “space frame.” Because there is
little consensus regarding a precise definition for the term,many structural specialists
often prefer the term “space truss.” Most architects and engineers use “space frame”
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Figure 5.1 Exterior: carillon and small chapel in base completed in 1990. (Photo:
Richard Payne, F.A.I.A. Reproduced with permission.)



as a catch-all to describe a multi-directional structural systemmade up of linear
elements that are exclusively in compression or tension. Nearly all descriptions of
the system type make no explicit reference to it in relation to a Platonic and rigor-
ous geometry. Yet it is intriguing that widely held perception suggests that “space
frames” ally themselves and represent a rigorous geometric andmathematical logic
and arrangement.

It is precisely the departure from such expectation that allows the structure of
the Crystal Cathedral to materialize physically Philip Johnson’s expressive vision
for the building. The “free form” of the building suggests that the rhetoric of the
system’s surface and the volume it creates are more compelling than the internal
control of a geometric order. (See Color Art 2.) The building delineates a paradox
common to many contemporary buildings and reflects a number of society’s present
architectural expectations. In late-20th-century America, themeaning of geometry as
a metaphysic and organic order influencing the composition of building components
and programmed space



Figure 5.2 Section toward east. (Illustration: Kristin Simonson.)
is, if not decreased, at least transformed in value. Inmany instances strict Euclidean

geometry is replaced by an architecture of easily recognizable and “consumable”
emblematic shapes and objects. The Crystal Cathedral is embedded in a common
negotiation in the built environment between a representation of rigorous geometry
and expressive form. This dialogue demands an acceptance of the often mercurial
readings that come from such work. Indistinct and frustrating indicators seem char-
acteristic of much of postwar building. At the same time the potential richness of
such inconsistent interpretations suggests a device through which to observe an era
of considerable social conversion. In addition to an architectural description of the
Crystal Cathedral and its structure, a comparison of the elements to historic influence
and evolving societal circumstance can position the building within a set of intrinsic
contemporary myths and values that sustain them.



5.2 AMERICAN EVANGELISM: IMPROVISED RITUAL AND SPACE

The Crystal Cathedral is not only the product of amix of common contemporary social
conditions, the visions of the architect and client, but a little documented history of
the evangelistic built environment in the United States. Exported fromPuritan Britain,
the informality and inventiveness of “gospel

Figure 5.3 Ground floor plan. (Illustration: Kristin Simonson.)



Figure 5.4 Balcony floor plan. (Illustration: Kristin Simonson.)

preaching” have periodically generated great popular appeal by challenging the
authority and procedures of the established and politically authorized church.1 Partly
out of necessity and in many cases due to a conscious rejection of the instituted sym-
bolism that ecclesiastical architecture contained, the growing movement threatened
the preconceived notion of religious space. Particularly in the rural South andWest,
the emotional and antiintellectual optimism of evangelical revivalism has evolved
into what is perhaps the most distinguishing quality of America’s common spiritual
heritage. The Crystal Cathedral, and its principal client, Dr. Robert Schuller, are a part
of a fertile and resourceful revivalist tradition that includes D.L. Moody, Billy Sunday,
and Billy Graham and stretches back to what many religious historians agree



Figure 5.5 Interior of pulpit and organ, looking north. (Photo: Richard Payne, F.A.I.A.
Reproduced with permission.)



was the seminal CaneRidge,Maryland, “CampMeeting” organizedbyBartonWarren
Stone in 1801.
Revivalism in the United States has always benefited from at least the appearance

of spontaneity. Inmost cases the representation of informality is highly planned. This
dexterous character allows revivalism to transform as society changes. Examples
of this include the early circuit ministries of the Methodists who were able to follow
the frontier, D.L. Moody’s use of big business money and methods to preach “old
time religion” in large 19th-century cities, the vaudevillian and ethically questionable
tactics of Billy Sunday in the early 20th-century circuit, and, after World War II, Billy
Graham’s highly organized manipulation of all forms of media within a given city
during his crusades.2 LikeGraham, Schuller’s evangelicalmessage gives a charismatic
voice to conservative Protestants frustrated with the increasingly progressive social
agenda followed by mainline Protestant churches. Although their followings are
often characterized as “nondenominational,” they do not embrace the ecumenical
movement, which is supported by established churches and is seen to broaden the
civil rights movement to include religious plurality.
Because of its often consciously peripheral political position, revivalism has histori-

cally been transient, moving from place to place. The campmeetings of the young
nation were often in rural and socially developing locations. The newness of the tents,
like the land itself, became a symbol of rebirth and salvation. As society industrial-
ized, revivals moved to the larger cities. D.L. Moody and Billy Sunday both conducted
successful urban crusades, filling to capacity large auditoriums and exhibition halls.
In the late 20th century, revivalism has continued the temporal theme by using the
ephemeral “space” of broadcast media versus the established power of a particular
location. Recalling the traveling revivals of frontier and rural America, but using the
media’s expanding influence, Billy Graham established a national reputation with his
enormously successful 1949 “tent meeting” in Los Angeles, California? Originally us-
ing the Hollywood Bowl, Grahamwould frequently utilize the large spaces of stadiums
and auditoriums.
From the start of hisministry, Dr. Schuller has been part of the non traditional spirit

of the American evangelical tradition. Unlike his counterparts, he seldom, if ever,
embarks on physically mobile campaigns. Delivered from a single location, Schuller’s
ministrynevertheless relies on the itinerant character of revivalism. Aswithphysically
mobile campaigns, Schuller uses television to diffuse questions about the relevance



of physical and established ritual that plagues traditional religion. Schuller is among
those who understood the gaining influence of broadcast media in the daily lives of
common Americans. Aware of its effect on social and intellectual change, he takes
advantage of television as an efficient means for capturing the public’s attention.

In 1970 Dr. Schuller began to televise his weekly service, “The Hour of Power.”
Through television he offered a populist spiritualism for what Peter Rowe, author of
Making a Middle Landscape, paraphrasing Robert Wood, describes as, “ . . the hardwork-
ing corporate yeoman, who while materially

consumptive wants both economic security without risking personal ambition.”4

Onemight speculate that this “inner-directed man” from the “19th century” might
be seeking spiritual security as well. The often corporate style of Schuller’s message
differentiates his sermons from those of other evangelists. He often laces his message
with a marriage of “self-help” psychology and the terminology of a motivational re-
treat for middle-and high-level managers. It is often argued that what John Pastier
described in a 1979 article as Schuller’s “I’mO.K., You’re O.K.” approach is ameans for
caressing further financial support from his strong associations with big business.5

5.3 THE REPRESENTAT8ON OF MORALITY: THE CATHEDRAL AND THE HISTORICAL
AVANT-GARDE

The Crystal Cathedral, like other recent evangelical structures, is a large arena-like
auditorium. In addition, the scale, technical spirit, and function of this relatively
new building type are oddly reminiscent of the self-promoting qualities of Tatlin’s
1919–1920 Monument to the Third International. Both are used for administration
and for the dissemination of information through a broadcast theater. In expression,
construction, and purpose, the Crystal Cathedral is part of a new breed of large-
scale churches that in themselves become enormous metaphors bepraising a new
evangelical social order. As with the difference in Schuller’s corporate preaching
style, the uniform character of the polyhedron structure distinguishes the Crystal
Cathedral from other structures in this emerging class of church architecture. The
cathedral’s space truss is indicative of the industrial power and prestige of American
corporate culture. Its homogeneous texture and transparency are similar to much of



the architecture of postwar big business: a language codified best in the later work
of Mies van der Rohe, simultaneously referring to the diaphanous and optimistic
compositions of the suprematists as well as to the stable heritage and order of Roman
classicism.6

The surface and space of the cathedral connect it to amythic and transitory religious
building tradition associated with evangelism. The white translucent scrim of the
entire space truss system recalls the light and space of revivalist tents. The naturally
fit tentfike space suggests a connection to Le Corbusier and Pierre Jeanneret’s Pavilion
de Temps Nouveaux in the Paris World Exposition of 1937: a pavilion advocating the
ethicacy of the industrialized aesthetic. More to the point, in Towards aNewArchitecture,
Le Corbusier identifies the tent as an essential temple paradigm. Although he is using
the example primarily to discuss the virtues of geometric regulation, Le Corbusier
discusses the instinctive and sophisticated act of inhabiting a location, regardless of
the modesty of the means for doing so.7 The use of structure as the prime generator
of architectonic form connects Le Corbusier’s example with a Franco-structuralist
tradition that includes Viollet le Due and originates in Gothic architecture. There is
no evidence that Johnson intended the Crystal Cathedral to recall this specific legacy.
What is more certain is that the simple nature of the building’s tentlike interior sug-
gests a compelling reference to the informal structures of American evangelism. The
structure’s ephemeral symbolism can be read to intentionally challenge established
theological authority often enclosed in the heavy, dark, and '“enduring” buildings.
The transparent polyhedron structure of the Crystal Cathedral continues to express
the improvisational and resistive nature of evangelical spirituality. As in the revivals
of early America, which offered an exhilarating social and spiritual occasion to break
from the lonely and monotonous life of the frontier, Schuller’s intention seems to
create a crystalline “tent” as an analogous inspiring experience for the deserted souls
of the grueling uniform world of postmodern America.
As well as connecting it to the history of evangelical space, the white color of the

cathedral’s interior structure bespeaks of an ethicacy found in much of the modern
movement. This is particularly true of the cubistic architecture of Le Corbusier. In The
Decorative Arts of Today, written to protest the 1925 Decorative Arts Exposition in Paris,
Le Corbusier discusses “The Law of Ripolin: A Coat of White Wash.” Finding beauty in
the functional and rational forms of the Machine Age, Le Corbusier wrote that every
citizen should be required to paint everything on the interior of their homeswith a coat



of white ripolin. This “moral act” would establish a sense of “inner cleanliness” that
would “improve conditions.”8 Le Corbusier seems to feel that the decorative nature
of most interior spaces was overly sentimental and undermined its rational beauty
as a functional object. He also considered the prevalent use of “white wash” in the
built environments of the less industrialized cultures to be an agent that bound all
segments of the society. He describes the socially objective spirit of white wash in a
metaphor: “bread, milk and water are the wealth of slave and king.”9

Although Johnson’s selection of white for the color of the structure is useful in re-
flecting natural light, it also refers to an idealized and moral side of early modem
architecture with which the architect is well acquainted. The connection between the
salvation found in themachine and that of “TheWord of God” becomes an association
that reconciles the conservative politics of Schuller’s congregation with a common
technical and corporate representation found in today’s society. As with Le Corbus-
ier’s recommendation of the use of “white wash” in preindustrial society, the vast
white field of structure in the Crystal Cathedral unifies an electronically connected
multitude of individuals, frequently of different economic and social backgrounds.
This consensus by structure strengthens the universal intentions of the nondenomina-
tional organization of Schuller’s ministry.
Philip Johnson has stated that the nave on the short axis of the deformed star shape

of the plan is inspired by Bernini’s San’ Andrea al Quirinale in Rome. This exposes
a difference in background and intention with regard to the essential geometry of
the building. Whereas Johnson, albeit randomly, appropriates from the history of
Europeanarchitecture, he seems less impressedwith this pedigree andsees aplan that
falls clearly within the evangelical spatial tradition that brings the congregation closer
to the speaker. Whereas older, more liturgical faiths emphasize the mystery of ritual
associated with the Eucharist performed from the altar, the evangelical Protestant
tradition emphasizes the spectacle of the sermon about the “Gospel” performed from
the pulpit. This influences the nature of the service and very often the shape of the
space in which it is performed. In many cases American Protestant sanctuaries have
shorter, less hierarchical naves, frequendy containing a semicircular arrangement of
pews facing a central pulpit. Along with the pulpit, the altar and choir become part
of a tabernacle-like stage that faces, and is surrounded by, the audience. This more
intimate relationship allows the sermon and service to be easily experienced by the
congregation and represents a God that is accessible to the commonman.



Perhaps because of the tradition of a less formal relationship between minister and
audience, many evangelical ministers found radio and television uncompromising
to the sacred nature of the “Gospel.” The very definition of evangelical ministry im-
plies an emphasis on the importance of preaching, as contrasted to ritual. Whereas
rejection of established ceremony was a means for challenging the authority of main-
stream churches, the evangelical movement would create its own unofficial power
base through themedia. Many found the emerging broadcast media themost efficient
means for projecting their message and influencing as many as possible.
Dr. Robert Schuller was among those who had been willing to innovate in his min-

istry and to pioneer new techniques for relating to and enlarging his congregation.
Because a traditional, or even enclosed, structure was unattainable at the time, he
began preaching to people on Sunday mornings in 1955 from the roof of the con-
cession stand of an Orange County drive-in theater.10 What he discovered was an
untapped audience in need of spiritual inspiration who felt more at home in their
automobiles than in a conventional church setting. When, in the late 1950s, Schuller
commissioned Richard Neutra to design his first chapel in Garden Grove, California,
the sanctuary was arranged to house both a congregation within the building and an
audience seated in an adjacent “amphitheater of cars.” Presumably because of his
experience with his “drive-in” ministry and the pioneering ministry of such leaders
as Billy Graham, Schuller recognized and embraced the power of television, too. Like
the car, it presented a comfortable and familiar setting to experience the service. The
eventual broadcast of the service allowed him to reach an increasingly larger audience.
Today the services are televised to an estimated audience of two million viewers each
week across North America and Australia.11 The success of the televised ministry
meant that Schuller could not only spread his message to more people but appeal to a
much larger audience for the funding of his growing organization and its projects. Ad-
ditionally, television allowed the Crystal Cathedral to become an important focal point
in Orange County. Schuller’s cathedral is an additional stop on the constellation of
Southern California tourist destinations as well as a contemporary pilgrimage church
attracting religious travelers from across the United States, Canada, and Australia.
Different from the evangelical movements of the 19th and early 20th centuries,

many of which were located in destitute urban areas and had strong social service
components to their missions, Schuller’s broadcast ministry is based in the relatively
affluent suburb of Garden Grove. Many criticized Dr. Schuller’s organization for



channeling the bulk of its fund raising toward ever more extravagant and expensive
broadcasts. The flexibility and openness of the structure and volume support trans-
forming spectacles that match the circus-like “theater of action” proposed in Walter
Gropius’s unrealized Total Theater project of 1927.12 Although arguably these produc-
tions create a new consciousness in the congregation, critics of Schuller contend that
the economic energies of the organizationmight focus more on the disadvantaged.
The theatrical broadcast format has the net effect of cultivating a rather passive con-
gregation, one that is not physically active in the day-to-day pursuits of the church.
Questions arise regarding the intentions of the message, means, andmission of the
cathedral. The facile manipulation of perceived purpose is arguably a distinctive trait
of the evangelical movement in particular and postmodern society in general.

The appeal of experiencing what had traditionally been a physically public event,
namely, the church service, from, at first, one’s automobile and later from one’s televi-
sion transforms the idea of “space” through which “public” dialogue is maintained.
The allure of this spatial type represents a perceived anxiety toward an increasingly
uncontrollable and misunderstood public realm. Schuller seems to understand that
the automobile and television are tools that allow people to experience culture without
having to contend with many of the daily problems of society. The car and the televi-
sion have become controllable capsules fromwhich to observe the volatile production
of culture and a selective portrait of society.

One suspects that Schuller also recognizes that the television and automobile are
artifacts that are part of what David Harvey has identified as basic changes in contem-
porary human psychology, emerging in large part from the volatility and ephemeral
nature of culture and contributing to the swift change of values and a breakdown of
consensus.13 Schuller might propose a contrary argument: that television and the
auto instead of eroding society actually assist in coping with disorienting contempo-
rary conditions. Both “spaces” allow people to be selective about what they experience
and at what distance they choose to experience it. Because of their limitations, the
automobile and, in particular, television contribute to culture’s oversimplification. As
suggested previously, Schuller and the Crystal Cathedral take advantage of this. On
the other hand,many think, as DavidHarvey, that the television and the auto appear to
reinforce a sense of denial of problems that exist outside one’s immediate experience.
This significantly contributes to a general blase attitude in society at large.14



Schuller, at least intuitively, understands both the negative and the positive effects
of the television and car. Regarding the design of the Crystal Cathedral, he knows
how they influence the character of contemporary built environments. As with the
television and car, a sense of security, contentment, and choice is the principal goal of
most contemporary common commercial

spaces. Schuller has claimed that the Crystal Cathedral is a “22 acre shopping center
for Jesus Christ.” Shopping malls and privately owned urban atria are prosaic spatial
paradigms that block out uncontrollable stimuli, simplify the meaning of the message
in order to appeal to a larger audience, and often restrict access to marginalized
segments of the population. This last quality, in particular, contributes to what Harvey
has described as a “collective sense of denial” toward the unpleasant aspects of society.
The refusal to respond to the full range of circumstances, including those that are
lamentable, changes the nature of public space.15

5.4 THE GLASS CHAIN BORN AGAIN

Schuller’s attempt to connect with the common built environment may begin to ex-
plain why he rejected the first scheme proposed by Philip Johnson. Dr. Schuller felt
the initial proposal was too dark and introverted. The second scheme was inspired,
according to Johnson’s own account, by the early expressionist work of BrunoTaut and
the glass office tower projects of the early 1920s proposed by Mies van der Rohe.16 In
particular, Johnson was intrigued by the free form plan of the Friedrichstrasse, Berlin
Project of 1921 and the instinctive and emotional character of Taut’s “Stadtkrone,” or
City Crown.17 Taut’s crystalline universal paradigm for religious buildings simulta-
neously connected the building to the tradition of cathedral making as an urban and
cultural centerpiece (see Color Art 3). Taut’s commitment to a new architecture of
glass allowed the tectonic vision to respond to and exaggerate the potential of contem-
porary transparent constructionmaterials. For Taut this position is epitomized by his
1914Werkbund Exhibition Pavilion. Has articulation of the idea additionally influ-
enced a broader audience of emerging designers who were beginning to experiment
with transparent construction of skin and frame, among themMies van der Rohe.



In a recent interview Johnson claims that he has always been an “expressionist” and
not a “structuralist” architect.18 It is not clear if this assertion is made retroactively. It
does seem to connect this particular work with the instinctive factions of the earfy-
20th-century avant-garde. It can also be argued that such an expressive streak is
consistent with some of Johnson’s earlier work and explains Kenneth Frampton’s
observation that his work is many times “determined to obscure structure through
surface manipulation.”1’ There was, in fact, an additional motivation for referring to
Taut’s Stadtkrone. The promotion by Taut and “The Glass Chain” of an architecture of
individually asserted and expressive “will to form,” or “Kunstwollen,” offers a further
ideological justification for Johnson’s historically conscious architecture. The terse
and optimistic text Glasarchitektiir of 1914 by Paul Scheerbart, a member of Taut’s
expressionist group “The Glass Chain,” advocates a new crystalline architecture that
has the potential of “restructuring society.”20 It is unknown whether Johnson referred
to Scheerbart’s position when presenting the second scheme to his client. However,
one can imagine that the connec-





tion between the inspirational qualities of “TheGlass Chain” and Schuller’sministry
is more than coincidental. It is also intriguing to note that the Stadtkrone character
appears to have migrated into the design of a number of glass office towers that were
erected around the time of the Crystal Cathedral, placing the church in a larger body
of corporate work executed by Johnson and Burgee in the 1970s and 1980s: among
them the PPG Headquarters in Pittsburgh and the Transco Tower in Oak Park near
Houston.
More to the point of this chapter, understandingjohnson’s position is critical in

evaluating the architect’s means for realizing the Crystal Cathedral’s idea. The free-
form interpretation of the polyhedral structure of the building allows the architect to
disregard the collective expectation of the normative and Euclidean configuration of
the “space frame.” Johnson’s expressionist position no longer obliges him to represent
the scientifically andmathematically driven spatial agenda begun in the Enlighten-
ment. The architect is able to engage in a new and dexterous organization of form and
meaning that not only recalls the beginnings of the modern movement but, because
of its varied and simultaneous readings, positions the building as representative of
the postmodern condition. The intuitive crystalline form permits the work to become
both historically grounded and, at the same time, a volatile and ephemeral piece of
“fashion en masse” that scholars such as David Harvey and Jean-Frangois Lyotard
describe as essential to the palette of characteristics ascribed to postmodernism.
It was Johnson’s initial intention to use a space frame to accommodate the crys-

talline form without “posts or beams.”21 The scenographic program is enclosed in a
vast interior landscape that includes a large tabernacle stage with space for the altar,
pulpit, choir, and organ. These iconographic elements are set against the suburban
Southern California landscape viewed through the lattice of the polyhedron structure
and the transparent skin that clads it. Because of the distorted geometry of the build-
ing volume, Johnson was forced to abandon the use of a common multidirectional
polyhedral system.22 The varying spans caused by the shape of the building in plan
and section demanded that increasingly greater depths be generated toward the cen-
ter of the building’s longer dimension.23 Johnson and his structural engineer, John
Muller of Severud—Perrone-Szegezdy-Strum, designed a system of parallel “space
trusses.” These were intended to be a series of parallel and coincident one-way struc-
tural systems.24 Because of the structure’s height and relative thickness, stiffness is
achieved through a diaphragm action created by the parallel trusses acting together



as a shear wall. This wall of combined space trusses, when tied to the independent
balcony structures at the lateral comers, creates a stiff homogeneous “beam-like”
unit.25 Each 5-foot-wide space truss was assembled off site, driven on flatbed trucks,
and erected in prefabricated segments of two and three space trusses each. Two rows
of shoring were used to stabilize the structure during construction.26

The compositional emphasis on the vertical dimension of the interior suggests a
similar emphasis found in Gothic interiors. The outside surface of the assembled
structure comprises horizontal and vertical members. The inside



Figure 5.7 Detail of space truss. (Photo: J. Frangois Gabriel. Reproduced with
permission.)
surface has no primary horizontal or diagonal members.27 Like the Gothic interior,

the vertical members express structure as a series of one-way systems. The compo-
sitional difference between the inside and the outside also separates the building’s
structure from a common plate-like structural system, typically a means for trans-
mitting loads on both interior and exterior surfaces. It is a fortuitous irony that the



combination of many one-way space trusses in the Crystal Cathedral results in what
structural engineers often refer to as “space effect”: The shedding of the loads laterally
creates a two-way behavior that shares the essential characteristics of a normal “space
frame.”28

Ideally, to have each element and node support the loads equally, a space frame
should be a flat plate of a geometrically pure shape and have supports on all sides at
each node.29When support conditions are not consistent, as is usually the case, all
loads on all members are different. Support conditions are more important than the
overall shape of the surface or volume when sizing individual elements and designing
connections. In most cases the rhetoric of a continuous and uniform system requires
that the system’s members be sized to carry the largest load. This means that many of
themembers are often oversized and redundant. In some cases, in order to achieve an
apparently uniform diameter of all members, their actual wall thickness is varied to
address different loading conditions. In extreme casesmembers are solid where loads
are highest. This technique is relatively expensive because of the retooling required
to create the different casts for the various wall thicknesses necessary to maintain
consistent diameters.
More thanmost polyhedral structures, the unusual shape of the Crystal Cathedral

generates a number of different loading conditions. This problem is addressed by
varying the depth of the space trusses to accommodate the various moments created
by the increasingly larger spans toward the center of the plan. This solution produces
a large number of diameter types for the individual pipe sections. This also demands
a complex and idiosyncratic set of joints.30 This strategy is opposite to the techniques
thatmanipulate thewall thickness ofmembers to retain uniformdiameters. The diam-
eters of themembers of the Crystal Cathedral vary from 2 to 5 inches to accommodate
inconsistent loading conditions throughout the structural network.31 One suspects
the relatively modest project cost, $10 million, required that the space truss system
comprise amodified “off the shelf’ system, in this case, tubular sections from preexist-
ing stock. This frugal strategy eliminates the option of varied tube wall thickness as a
technique for accommodating dissimilar loads. The irregularity of the member sizes
and the complex geometry produced a widely varied set of joint conditions. Johnson
and Muller’s solution contrasts greatly with the typical space frame, which attempts
to minimize the number of joint conditions as a method for achieving a consistent
or uniform surface treatment. The architect and engineer devised an arrangement



of connections that call for the pipe members to be welded at their slotted ends onto
gusset plates.32 Owing to the distorted geometry, these are often complicated because
as many as 11 members come into one joint. Where the roof meets the wall, castings
are added to the gusset plates.33 The castings themselves were so complex that George
Kent, a steel detailer and consultant to the structural engineer, had to model them
with rubber balls and cardboard tubes in order to understand their configuration.34

Although somewhat compromised with regard to a typical space frame, there is
an effort by the architect to minimize the heavy visual impact of gusset plates, ser-
vice ladders, catwalks, and fighting fixtures by burying them deep within the truss
system.35 In addition, ventilation is achieved through natural means. The glass itself
is tinted to allow only 8 percent of the daylight and heat into the interior. A series of
glass panels on the exterior skin are mechanically operable and comfortably modify
air movement and the interior temperature.36 By using the depth of the space truss
as a service zone, Johnson produces a discrete version of Kahn’s “served and servant”
space idea. The structure becomes a tectonic and rhetorical object containing me-
chanical and electrical systems whose regularized surface dominates the character of
the interior. Simultaneously, the frame supports a singular exterior glass wall whose
smooth, reflective, and atectonic surface comes from a world of contemporary in-
dustrial production and the glossy veneers of many modern consumer goods.37 The
atectonic exterior recalls the nearby Los Angeles Pacific Design Center built in 1971
by Cesar Pelli. The dialectic between the glazed exterior and the skeletal interior is
part of a rhetorically industrialized tradition that includes buildings such as John
Paxton’s Crystal Pavilion of 1851 and Norman Foster’s Sainsbury Centre of 1978.
Each of these examples is informed by industrial lofts. Kenneth Frampton has

labeled such restatement of the uninterrupted volume typology as “productivism.”
Specifically, the term is used to describe a class of innovative commercial and office
structures built since the mid-1960s. It is closely allied to the original modernist idea
of the building as “an elegant act of engineering.”38 The Crystal Cathedral is repre-
sentative of the American branch of productivism that demonstrates little concern
for the elegantly detailed and revealing tectonic language of its British counterpart,
led by such figures as Sir Norman Foster and Sir Richard Rodgers.39 Because of its
reductive form and deemphasized detail, Johnson’s cathedral can also be placed at
the end of a line of postwar American minimalists who include Eero Saarinen, Kevin
Roche, Gunnar Birkerts, and Cesar Pelli. Often monumental in scale and institutional



or corporate in purpose, the work of this group frequently places an emphasis on
the making of a refined abstract shape: The taut quality of the building’s language
makes it difficult to manipulate in a manner that signifies such familiar architectural
moments as building entry and individual window.

The transparent skin as well as its romantic framing of the sky and landscape
connect the Crystal Cathedral to a second species of modernism specific to Southern
California. Predominantly domestic in function and thus vastly smaller in scale than
the cathedral, work by Richard Neutra and Charles and Ray Eames and the buildings
of the Case StudyHouseMovement share some tectonic characteristics and existential
themes. The lightweight cladding and steel frame construction of this group derive
inherent tectonic qualities from a concern for an improved programmatic and spatial
relationship with natural elements. The California architects felt that the building
should take advantage of the psychological and physiological benefits of the mild
arid climate of the region.40 In particular, Frampton has characterized the works of
Eames and the Case Study Movement as possessing a concern for standardization and
mass production. This suggests a connection with the work of the later, albeit more
heroic, productivist agenda. Using a more lyrical and personal formal vocabulary, the
work of the Los Angeles architect Rudolf Schindler offers a vocabulary more intuitive
and far less committed to standardization than other California modernists of the
era. Johnson has never claimed to be influenced by Schindler’s work in the design
of the Crystal Cathedral. In fact, Johnson has been accused of being indifferent to
Schindler, a criticism that has its roots in the California architect’s absence from the
1932 Museum of Modem Art’s exhibition on the International style. What is striking is
that many of the California projects by Schindler and the Crystal Cathe-

dral share an instinctive character that modifies normally standardized systems of
construction to create expressive form.

The Crystal Cathedral corresponds to a set of larger attitudes that reveal values
and conditions peculiar to postindustrial America: one of a technological monument
emblematic of a productivist postwar economy and another of a building that engages
in the changing American mythology of nature. In addition, the Crystal Cathedral
can be connected with the previously described American tradition of temporary and
makeshift environments in which religious revivals were staged.



5.5 FROM BOULLEE TO OLDENBURG: THE STRUCTURE IN A POSTMODERN CONTEXT

Philip Johnson claims that the enormous geometric volume of the cathedral alludes to
an expressionist utopia. Others have found the Crystal Cathedral to be similar to the
architecture of the Enlightenment and more recently much of pop art. The building’s
boldness and heroic scale recalls the projects by Boullee and Ledoux. This courageous
yet eccentric architecture from the Enlightenment, among other things, spoke in
confident terms of the power of reason and a comprehension of natural laws of the
universe. American society has been a principal descendant of this legacy because
of (1) the society’s commitment to capitalistic production, (2) its historically strong
individualwork ethic, and (3) its view that the natural environment is a resourcemeant
to be transformed through the laws of nature for the good of society. In particular, the
Anglo-American Enlightenment was the parent of a number of evangelical and reform
movements. These two sets of offspring have often radically alternated between
being mutually supportive of or distincdy at odds with each other. Albeit for vastly
different reasons, they both currendy participate in a broader contemporary critique
of America’s philosophical commitment to science and technology.

A departure from the “reasoned” spirit of the Enlightenment appears to contradict
a primary reading of Johnson’s polyhedral structure: a group of evangelical Chris-
tians being housed in a system that symbolizes a secular heritage. This apparent
discrepancy makes sense when one considers that Dr. Schuller’s ministry is unique
in that it is not part of the “creationist” branch of the modern evangelical movement.
The rhetoric of technology is compatible with Schuller’s rejection of the common
evangelical belief of “original sin.” Schuller contends that “sin” is the primary source
of “guilt,” a principal inhibitor of human potential. For Schuller, technology becomes
a symbol of the material, psychological, and spiritual maximization of human nature.
This positions him on the edge of more familiar reactionary strains of evangelism,
placing him closer to moderate contemporary American belief.

In addition to its compatibility with a secular society, the building is also part of a
19th-and 20th-century tradition that embraces the revelatory nature of technology.
This mystic optimism is epitomized in the exhibition structures





Figure 5.8 Interior toward east across nave. (Photo: Gordon H. Schenck, Jr. Repro-
duced with permission.)

of the19th century, the reconsiderationof architectural languageof the20th century,
and the built artifacts of the space program of the 1960s and 1970s. Ironically, it is the
social upheaval of this last period that most recendy called into question the credence
of this shared faith in science.

The overt representation of technology in the Crystal Cathedral can be interpreted
as nostalgia for America’s historic leadership and prestige in the first two-thirds of
the century in science, technology, economics, and politics. Many have interpreted
the structure’s white tubular members and the intricate shadows they produce as
connoting the assembly building and launch towers of Cape Canaveral. According to
the architect, the cathedral’s large 70-foot-high doors, which, when open, connect
the pulpit to the audience in their cars in the parking lot, were inspired by the po-
etics of the structures at NASA’s Florida rocket-launching facility.41 The large doors
require a motor the size of that needed to operate a washing machine to open; ironic
because their motion alludes to the incomprehensible nature of a powerful cybernetic
apparatus (Color Art 4).

On first inspection, the inspirational reading of the structure and doors seems con-
sistent with what Manfredo Tafuri describes as the “mystic transparency” pursued
by the “Glasarchitektur” of the early modemmovement in Germany.42 Conversely,
Tafuri has also suggested that the building’s lack of technical development, manifest
in the crudeness of its detail, keeps it from truly achieving its revelational potential.
The large scale and the undiscriminating character of the structural connections deny
a specific identity that reduces both the interior and the exterior surface to an indif-
ferent quotation free from a profound reading of the relationship betweenmaterial,
craftsmanship, and gravity. The lack of differentiating inflection of the building’s
structure to its external context, which includes Richard Neutra’s most recognized
works, or the internal context of specific programmatic or technical requirements
implies that the building is emblematic of the passive, casual, and overly inclusive
nature of the contemporary built environment: a set of qualities shared with much of
current culture and the media in particular.



It is tempting to read Johnson’s design as an intentional and subtle critique of com-
mon life, a highly considered piece of “culture en masse,” that is, at the same time,
as Schuller claims, a “22 acre shopping Center for Jesus Christ” to be inhabited by
the commonman. Its bluntly assembled off-the-shelf building system has the ability
to be a powerful icon of contemporary times. The generic nature of the structure
recalls themechanical and serial formmaking of pop art (Color Art 5). As with pop art,
the nondiscriminating nature of Johnson’s work, particularly the Crystal Cathedral,
has attracted both a critical and a popular following. The boldness of the imagery
and candor of the overall statement can be considered more consequential than a
classically inspired elaboration of a glass-and-steel construction. It is often argued
that such technical bluntness distinguishes American art and architecture from that
of Europe.43 This rejection of the seriousness of “high culture” and its art has been
described as characteristically “American” as well.44 These contentions become diffi-
cult to defend when one considers that the “anti-art” segments of dadaism began in
Europe. On the other hand, its descendant, American pop art, simultaneously em-
braces and critiques the popular culture of postwar America as well as both historical
and contemporary avant-garde. For the inhabitant and viewer the Crystal Cathedral,
like much of pop art, can be impersonal, monotonous, banal, lonely, disturbing, and
oddly at the same time, glorifying.

Ultimately, comparing the Crystal Cathedral to pop art becomes problematic. Miss-
ing from the Garden Grove Chapel is the intentional wit or derision of Warhol, Licht-
enstein, Oldenburg, and others of the movement. One senses that Johnson is not
consciously iconoclastic in the design of the church. In fact, Johnson’s stated refer-
ence to the architecture of expressionism and the optimistic reading of technology
suggest that the building is very traditional in that it is conspicuously heroic. It is
precisely the underarticulated character of the building systems that undermines
this reading, reinforcing instead the mechanical and potentially “senseless” ritual of
viewing a televised service.



5.6 THE STRUCTURE AND AMERICAN MYTHOLOGIES OF NATURE

The nation’s transforming relationship to nature and spirituality is arguably of greater
metaphysical significance to American society and culture, and the Crystal Cathedral
in particular, than the pragmatics of pop. The American connection to nature and God
gives the building its serious dimension. Understanding changes in the American
mythology of nature is useful in comprehending the relationship of the cathedral to
the contemporary natural environment.
Leo Marx’s paradigm and the title of his influential text published in 1964, The

Machine in the Garden, describes a set of important models for grasping the historic
relationships of American society and the landscape. Initially, the New World was
understood by Europeans through a set of conflicting views of the vast unsettled
continent: one as a terribly untamed and savage realm; the other a pure unspoiled
opportunity to recast and reform European civilization. This perception would signif-
icantly change with the rise of industrialism. In no small part due to the 19th-century
romantic movement in Britain, the philosophical debate about nature in America
centered around a pair of attitudes that saw the natural environment, on the one hand,
as an endless resource in service to the accumulation of commercial wealth and, on
the other, as a finite and diminishing realm, aiding individual initiative and prosperity.
In his book The Machine in the Garden, Leo Marx describes this conflicting set of 19th-

century views about the utility of nature as “pastoralism.” InMaking aMiddle Landscape,
Peter Rowe contends that, “Pastoralism,” as defined by Marx, is “a cornerstone of
American intellectual and artistic experience….”4S In the 19th century the politics and
culture of the pastoral ideal evolved to serve simultaneously the symbolic interests of
the individual and the collective interests of industry. Small property owners and big
business both saw the natural environment as an energetic and inspiringmythology

coming from wilderness and a means to exchange and generate wealth. The 19th-
century landscape painter Thomas Cole, in particular, depicts the unique relation-
ship Americans have with nature.4* His work often juxtaposes cultivated landscapes
with wild landscapes. Cole’s somewhat didactic paintings frequently imply a Biblical
narrative that propounds the transformation of a raw and sublime wilderness to a
productive garden because of the persistent and virtuous progress of civilization.
These portrayals place American naturemyths with the future, or at least the here and
now. This is in contrast to the conventional European mythology about nature, which



often cultivates cultural relationships with the past.47 It is interesting to compare
Cole’s work with the views of nature portrayed by European, and classically romantic,
painters such as William Turner. Turner’s atmospheric work depicts a less optimistic
image, indicating that nature and culture are both cast as a sublime, terrifying, and
ultimately incompatible dichotomy. Thismelancholic view is often described as being
nostalgic toward a perceived “semiprimitive” time before industrialization. Selected
works of George Inness represent an important shift in the 19th-century American
pastoral metaphor. His painting The Lackawanna Valley creates an idyllic pastoral
setting but moderates the scene by introducing the dialectical promise of technology:
a railway locomotive pulling a train of freight cars in themiddle ground. In contrast to
the dominant British view of technology, later placed in architectural terms by John
Ruskin, WilliamMorris, and others, that enslaves the individual, Inness portrays the
machine as something that can free the individual and tap into a new constructive
potential for the benefit of society. This is consistent with the American proclivity to
place industry in a visionary light. Peter Rowe describes this as an accommodation in
American pastoralism that allows the coexistence of nature and technology.48 This
historically has allowed society the material advantages of industry and the moral
benefits of honest social values associated with a Virgilian rural existence.49 Over the
course of the nation’s life, this contention becomes an important element of the com-
plex imprecise environment of the American suburb, a cultural and social condition
critical to understanding the character of the Crystal Cathedral.

5.7 THE CONTEMPORARY PASTURE: A CATHEDRAL IN A PARK

In coming to terms with the contemporary state of pastoralism in the city and sub-
urb, Peter Rowe describes a fundamental difference between the pastoral ideal and
society’s technical alignment: the former prescribing a state of being and the latter, a
means for doing things. He submits that contemporary society awkwardly attempts
to quantify the pastoral condition. This occurs in such practices as describing the
qualitative social benefits of open space and parks in empirical terminology.50 Rowe
suspects that the tendency tomeasure conventionally qualitative criteria has to do pri-
marily with the modem and universal means of production, the technocratic method



of managing things, and the scientific manner of interpreting the world. He also de-
scribes how a technocratic orientation has the unfortunate characteristic of bypassing
the “symbolic realm of human experience,” favoring instead limited but empirical
modes of measurement.51

In the postindustrial context, although transformed, the pastoral ideal still has
much to do with explaining the character of the suburb, particularly in the domestic
setting. Rowe describes the current state of the natural myth as becoming a nos-
talgic presentation of a bucolic landscape framing “kitsch” period-style structures.
The image of moral superiority of the 19th-century pastoral ideal over the tainted
traditions of European society is transferred to the 20th-century American suburb.
The lower-density parldike setting of suburbia represents the perception of a more
virtuous environment compared to the decay of the inner city.52 Corporate and com-
mercial suburban environments are often just as committed to a dialogue with nature.
These nonresi-dential types usually have an architectonic vocabulary and site strategy
that are less nostalgic toward historic styles and are often more overtly expressively
“rational” and “functional” in nature.55

More than most buildings that are open to a large segment of the public, the Crystal
Cathedral engages in the two themes of modern pastoralism. First, its sheer trans-
parency, informed by the expressive architectural language of the early-20th-century
avant-garde, connects the interior with the suburban landscape, one that, through
decentralization, portrays a socially natural and ideal terrain. Recalling the work
of Thomas Cole, the view of the contemporary pastoral setting suggests a Biblical
reference to the “Garden of Eden” and American mythology, which romanticizes the
cultivation of the frightening wilderness. In the case of Orange County, California, a
prototypical suburban version of a “New Jerusalem,” one suspects that the definition
of “wilderness” includes not only the historic vision of undeveloped land but, more
importantly, the chaotic and threatening nature of “Babylon” in the form of America’s
contemporary urban and threatening inner-city “wilderness.”54

Second, the use and reading of nature and the garden as a recreational diversion
is now significantly different from what it was in the 19th century. Today, nature
and God are seen to be therapeutic resources. In an age of overstimulation and a
proliferation of morally undifferentiated choice, the white structure and transparent
skin of the cathedral open to the sky and to an idealized landscape suggest a sooth-
ing, if not semiconscious, state separate from the profane nature of the everyday



environment. The diversion of idyllic nature becomes a remedy for dealing with the
estrangement caused by the fragmentation of daily rituals, necessary where interna-
tional and regional affiliations have becomemore important than local relationships.
As the traditional separation between city and country becomes blurred, nature be-
comes a more exceptional experience. Green space becomes a distinct realm, readily
available to be manipulated by those who control their environments.
In the Crystal Cathedral nature is highly controlled and is used to represent the

rehabilitative effects of Christian spiritual salvation. In addition to the panorama of
suburban Garden Grove, the resplendent interior houses a row of gentle fountains
lined in a pool that is on axis with the altar, itself overgrown with tropical ferns and
flowers. Between services, a bath of religious Muzak further acoustically tranquilizes
the interior. As well as recalling the integrated environment of a shopping mall,
these attributes further strengthen the perception of the cathedral as a suburban
“Garden of Eden.” The Crystal Cathedral becomes a condensed and collective version
of the ideal Southern California backyard comprised of house, pool, and lawn. David
Hockney portrays this emblematic personal space in his 1967 painting?! Lawn Being
Sprinkled. Peter Rowe describes the work as representing a paradigmatic space of the
postmodern condition, a realm supporting the “blank good life…loadedwith intriguing
cliches that are simultaneously surreal, energetic, alienating and filled with a deep
sense of ennui.” ” The contemporary view of nature is distinct from the traditional
separate character of city, suburb, and countryside of the past. It is now part of the
synchronic ubiquitous matrix of the urban/suburbanmetropolis.
The coincident usage of the contemporary city structure suggests an alternate

reading of the Crystal Cathedral’s polyhedral structure. The articulated and non-
rectangular frames refer to the uniform texture of the endless metropolitan environ-
ment. Like Jennifer Bartlett’s famed Rhapsody,which uses the grid as a symbol and
means for creating semiautonomous image fragments from a larger image, Johnson’s
white lattice structure creates a pictorial quilt of the exterior landscape’s segregated
and diverse functions stitched together by a relentless system of high-speed road-
ways. Unlike in the 19th century, nature is no longer a civilized and separate pastoral
ground. Today, nature is a set of figures woven into an uneven context with an indis-
tinct purpose. At the scale of an individual plot, nature’s figural function takes the
shape of the autonomous suburban backyard. At the scale of the metropolis, nature is
formed in city, regional, or national parks; the latter being a paraurban destination



intended psychologically and physiologically to separate people from their customary
environment, thereby refreshing the mind from its fatigued condition. It is easy to
contend that nature’s commodified and isolated image is itself compromised and itself
“un-natural.” At its best nature is rewoven into the placeless space of the metropoli-
tan terrain. At its worst it becomes a nebulous decoration used as a green skirt for
industry, recreational facilities, residential districts, and commercial zones.

In addition to engaging with a transformed pastoral ideal found in the contempo-
rary decentralized city, the Crystal Cathedral is participating in a traditional, though
no less converted, relationship between technology and a natural context. To many
architects and urban designers, most suburban residential architecture presents a
discrepancy between its practical purposes, which are often arranged in a highly
functional manner by accommodating the most sophisticated consumer technology,
and its use of decorative styles, which are firmly entrenched in the often quasihistoric
or pseudorustic pretensions of the architecture that society desires. Along with a body
of his smaller-scale work in the 1950s and 1960s, Johnson’s Crystal Cathedral through
its transparent glazing and its polyhedral shape begins to imply a 20th-century pas-
toralism for contemporary suburban culture. Particularly given the historicist nature
of the work he and John Burgee designed and built shortly after the Garden Grove
Chapel, it would be inaccurate to portray Johnson as a utopian committed to reshaping
the nature of the American pastoral tradition. Although smaller and more private
in function, the Glass House in New Canaan, the Roofless Church in New Harmony,
and the Underground House in suburban Cincinnati offer a body of conceptually
imaginative work in parklike settings. More thanmost works of this century, these are
very close to Leo Marx’s “machine in the garden” paradigm. In all three buildings and
the cathedral, the visual and often spatial movement between a modem building and
the landscape is uninterrupted, highly contemplative, and ultimately intensely poetic.

What separates the Crystal Cathedral from Johnson’s earlier body of work is its
somewhat more frightening and indifferent relationship to the landscape. Whereas
its transparency connects the inside with the outside world, its large scale, reflective
treatment, and prismatic form seem to render a sense of imposition and disengage-
ment with the scale of its surroundings. This may have much to do with the fact that



Reverend Robert Schuller did not retain Johnson and Burgee to plan or coordinate
the landscape immediately surrounding the building. It may also have to do with an
intention, or at the very least a reading, that links the building to the pandemonium
of signs and visual stimuli of the local suburban environment.
The directness of the building creates an ironic contrast to the bucolic character

of its suburban setting. The chapel’s graphic vitality recalls a suburban “Babylon,” a
“city of vice” found in the “architecture of the strip” that Robert Venturi and Denise
Scott Brown describe in their studies of highway iconography. In the case of the
Crystal Cathedral, the form and treatment together recall the figurative, though no
less symbolic, quality of the surrounding suburban office parks and the mysterious
tinted glass of limousines slipping by on the nearby Santa Ana and Garden Grove
highways. Like other buildings in the suburban realm, the client priorities often
reduce the design of such landscape elements as parking lots to their most basic
level to keep the cost of the entire project down. This places most of the emphasis
on the more efficient symbolic reading of the building’s form andmateriality. Such
subtraction denies the possibility of developing an architecture that is sensitive to
many scales. By spatially modulating the building’s surroundings, a more concentric
and intimate set of scales could have been introduced. By not adequately dealing
with the leftover spaces, namely, the parking lots, the Crystal Cathedral contributes
to the unfortunate perception that most modem architecture is indifferent to the
scale of human occupation and that the rhetoric of the frame and massing dominates
the conceptualization of the project, precluding any attempt to foster an intimate
relationship between humans and architecture.
SOME

5.8 CONCLUSION

S
The paradoxical structure and space of the Crystal Cathedral represent the religious

organization that uses the building and are emblematic of many rich inconsistencies
found in American society. Through monumental form and mannered geometry,
the expressive and unorthodox character of Johnson’s design addresses not only a
desire for informality but the need for validation of a historically controversial and
spiritually conservative segment of the nation’s population. The cathedral’s glass skin



and structure both frame the idealized suburban Southern California context: a part of
the United States that, more than most, romanticizes the benefits of civil fiberties and
unlimited choice. The building’s overt embrace of the television and the automobile,
two of the most important postwar technological influences of contemporary culture,
adds ammunition to the project’s ability to accommodate an additional and, one
suspects, an increasingly authentic set of myths. Its transparency and polyhedron
construction connect the Crystal Cathedral to the familiar atria of malls and shopping
centers to reinforce: (1) the reading of the American terrain as a cultivated palimpsest
of public and private gardens dedicated increasingly to diversionary activities; and
(2) the nation’s historic and characteristic attachment to standardized technology,
which appears to encourage corporate capitalism as long as it serves the concept of
unlimited consumer choice.

The geometric distortion of Philip Johnson’s polyhedron structure is both intriguing
and banal because it is the result of, and at the same time exemplifies, contemporary
circumstances. Johnson and Burgee’s structure was never intended to position itself
in the long line of geometrically precise structuralist designs that historically and
intellectually owe much of their existence to the philosophical traditions of Europe. It
is easy to contend that, although Johnson has been strongly influenced by European
architecture, his appropriations have favored an, at times, random and expressionist
set of architectural projects and movements. If there is a consistency in Johnson’s
work it is that Euclidean geometric order, particularly with regard to structure, is
of little metaphorical concern. This indifference toward intellectual precision and
cosmologic arrangement, while troubling to many of the profession’s theoreticians, is
of no small importance because it seems that the American public does not often care
either. What this chapter attempts to suggest is that such apathy to external order
is part of the American cultural and social legacy and goes a long way to explain the
dearth of representational geometric space in the Crystal Cathedral, Johnson’s work,
and in the current built environment.
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6 Tetrahedral Purity: The Javits Cen-
ter

Matthys Levy

6.1 INTRODUCTION

New York’s Javits Center, one of the world’s largest exhibition spaces contained in
a single building, sits on Manhattan’s waterfront on a 9-hectare site. Its distinctive
architectural profile is identified by a unique space frame that both encloses and
defines interior spaces. Because the center is a major public facility, the building’s
architect, James Ingo Freed of Pei Cobb Freed, sought to create a design that welcomes
the public while creating a dynamic interplay between the purely commercial and the
public uses of the project. To achieve this result, Freed took advantage of the special
features of the site: the views toward the river, the changes in ground elevation over
the site, and the difference in relative importance of the surrounding streets.

6.2 ARCHITECTURE AND POLITICS

The building is oriented along 11th Avenue, which slopes down from the southern to
the northern end of the site, permitting the development of a two-level entry system.
A ceremonial entrance at the highest point leads directly to a great entrance hall on
the level of the upper exhibit hall. A roadway entered from the northern end provides
access to a 300-m-long bus and taxi dropoff that is directly outside the concourse,
which is at midheight between the two exhibit floors. The lower exhibit floor, with a
6-m ceiling height, contains about 60,000m2 of space, including restaurants, meeting
rooms, and a specialevents hall. The upper exhibit hall, with a ceiling height of 10 m
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and an area of 50,000 m2, is over 300 m long. A galleria floats above this hall in an
east-west direction, providing access from the entrance hall to a future restaurant
and bar overlooking the Hudson River. At the back of the exhibit halls, along 12 th
Avenue, truck bays are provided on both levels with direct access to each exhibit floor.

The exhibit hall, the galleria, the concourse, and the entrance hall are all covered
with a continuous space structure with a plan area of over 53,000m2 supported on
a grid of columns spaced 27 m on center. This roof structure climbs in giant steps
from the general roof line over the exhibit hall to a point 47 m above the entrance hall.
The multilevel cubes give the appearance of a crystalline structure reminiscent of the
1851 Crystal Palace.

NewYork had long sought to build a new convention center tomeet the ever-growing
demand of the public and trade show sectors that were inadequately served by the
small (30,000 m2) coliseum. After a failed attempt in 1972, the needed legislation for
a new center was passed in the spring of 1979 and married the state’s Urban Develop-
ment Corporation, which had construction and planning expertise, to the Triborough
Bridge and Tunnel Authority to provide the necessary financing. To further compli-
cate matters, separate development and operating corporations were established to
build andmanage the new facility. This proved to be an awkward arrangement that
was finally changed, centralizing all responsibility in one agency, but only after the
building was completed.

GEOMETRY AND STRUCTURAL FORM

The two most challenging problems in the overall design were first to devise a
structural system to unite the building’s diverse functions in a coherent pattern of
visual and spatial rhythm, and, second, to articulate this structure in away that visually
reduced the scale of so large a building. The center’s form represents a synthesis
between these related objectives (Figure 6.1).

Derived from the 27-m spans used within the exhibition halls, the basic structural
unit of the exhibition center is a 27-m bay covered with a space frame roof supported
at each 8.725-m-high column at four comers of an inverted pyramidal column capital
on 400-mm-diameter circular base plates 3m apart. At each of these points, the space
frame is either fixed, free, or permitted to slide in either the N-S or E-W directions,



depending on the location of expansion joints in the roof and the requirement for
restraint to support lateral loads. Below the inverted pyramidal top are four 400-mm
shafts centered on the four comers of a 1.5-m square that are welded to a base plate
bolted to the concrete floor of the upper exhibition level. The sculptured

38th STREET

Figure 6.1 Axonometric view of the Javits Center.
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shape of these columns somewhat resembles delicate, multistemmed champagne
glasses rather than gross single-legged piers (Figure 6.2).



The 27-m repetitive bays, visible throughout the building, unify the structural
rhythm of the entire exhibition center: The concourse and galleria are the width of
one bay, whereas the exhibition halls are formed by the repetition of many such bays.
Through the variety of heights defined by the space frames and the sculptural quality
of the frames themselves, the design achieves a reduction of scale in the formation of
the building itself.

Along the building’s exterior, the form of the space frames and columns is mirrored
in the building’s facade. The skin of the building is modulated by the metal of the
frames and a range of reflective glasses. Transparent glass forms the lower facade of
the entrance hall and the concourse, as well as that of the galleria and restaurants; the
remaining facades are translucent or opaque glass. The skin articulates the functions
of the building and expresses the form of the structural unit. The result is a single,
unified rhythm, integral to the structure, patterned to reduce scale (Figure 6.3).

The interior illumination of the building differs significantly frommost



Figure 6.2 Column elevation.



glass architecture in realizing the possibility of using natural light as a means of
visually defining interior spaces. The public spaces are articulated, not bywalls, but by
a soft, evanescent fight filtering in from outside the building through the tinted glass
that reduces the light entering the building and permits views outside the building.

The center’s design presents a rare opportunity, in the tradition of the great ex-
position palaces of the 19th century, to demonstrate the innovative use of modem
technology. It is perhaps closest in concept to the Crystal Palace built for the 1851
London Exhibition, although images are also present of the Galerie des Machines built
for the 1889 Paris Exhibition.

Figure 6.3 Juxtaposition of column and space frame.

The Crystal Palace, a 72,000-m2 structure, 555 m long (which is 1,851 feet long,
matching the year of its construction), was a prefabricated iron structure based on
a 1.2-mmodule corresponding to the maximum glass size that was produced at the
time. Those who saw it before its destruction by fire in 1937 spoke of its romantic



beauty and said, “it is a Midsummer Night’s Dream seen in the clear light of midday.”
It is this same image that the Javits Center tries to evoke. Clearly, it is the structure of
the building, more than any other element, that contributes to the crystalline quality
of the design.
What is interesting is the process leading to the solution. From the beginning, an

organic approach was sought that would tie together the various forms. The space
frame, which covers the horizontal planes, turns comers, climbs in steps to the top
of the great hall, and descends to the ground, does so without violating the “pure
tetrahedral geometry” of its smallest unit. Specified as an assembly of steel pipes and
spherical steel nodes, the space frame geometry is themaster to which the designer is
the servant. The deft and elegant maimer in which the elements are handled demon-
strates how imaginatively prefabricated elements can be handled by a competent
designer.
Based on a 3 X3-m horizontal module, 1.5 m deep, the space frame is stiffened

along the column lines by diamond trusses formed by a second layer of the standard
tetrahedral geometry. The whole assembly behaves much like a flat plate with re-
inforced column strips. At the columns, a third layer of space frame creates a drop
panel completing the analogy. The column itself contains the capital, an inverted pyra-
mid, sitting on four stiffened shafts of steel-clad reinforced concrete (for fireproofing)
(Figure 6.2). The column capital member sizes use 400-mm tubes, 40 mm thick for
diagonals and 13 mm thick for horizontals. Material for these tubes is ASTM A618 Gr
2 (F7 = 345MPa). The crossed base of the inverted pyramid consists of butt-welded 38-
mm-thick gusset plates of ASTM A3 6 steel (F? = 248 MPa). These are, in turn, welded
to bearing plates at the top of the four vertical 400-mm-diameter concrete-filled steel
shafts.

6.3

JOINTING
Because of its size, it was necessary to divide the roof area into eight units, each of

which would respond independently to movements and deformation resulting from
temperature variations (Figure 6.4). Two conditions were considered:

1. Maximum temperature variations during construction: 3 5 °C with large permis-
sible deformations and stresses.



2. Maximum ambient temperature variation during operation, after the building is
closed in: 15°C with small deformations and stresses.

Figure 6.4 Layout of roof regions.
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Figure 6.5 Unidirectional sliding bearing.

Figure 6.6 Expansion joint
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Figure 6.7Wall/roof expansion joint.



Consistent with these principles, three types of supports were designed for the
space frame at the top of the columns: fixed, free, and one-way sliding (in one of the two
orthogonal directions). In general, the center of a unit between expansion joints was
fixed and the unit was permitted to expand outward from this center. As a result, no
more than two bays, or 54m, of the continuous space frame is fixed against expansion
and the resulting bar forces are no more than 10 percent of the total design forces.

Most of the roof units are required to resist lateral wind forces, because they are
either continuous with exterior walls or support mullions from entrances or curtain
walls. These wind forces are resisted at fixed supports as well as sliding supports that
are perpendicular to the wind direction (Figure 6.5).



In plan, the repetitive grid of column locations is carried out without regard to
the location of expansion joints. As a result, the pure geometry of the space frame is
distorted at these locations to accommodate the expansion joints. Two such conditions
exist in the building. In the flat roof area, the diamond-shaped beam is split into two
triangular edge beams spaced 450mm apart, each of which is continuous with the
space frame on either side of the joint (Figure 6.6). Where the flat roof intersects
with a vertical wall, a more complicated division is provided (Figure 6.7) with one
triangular beam hanging from the wall. For stability, the triangular trussed beams
have diagonals in the vertical plane, completing the truss configuration.

In general, the roof is supported on the columns, even where the wall continues down
to the ground along the 11th Avenue facade. At these locations, the space frame wall
is laterally supported at the base with a detail connection that permits vertical sliding
(Figure 6.8). The walls of the three bays on 12 th Avenue, however, are bearing and
supported on the floor slab. This condition, which is normally not allowed by fire
regulations, was permitted on the condition that an automatic sprinkler system be
provided covering the full area of the walls.

ASSEMBLY

Apart from its size, this space frame is unusual because of the loads imposed on
the roof. The entrance hall and restaurant area are both covered with a skylight.
The balance of the roof area is opaque and is structured with a 75-mm-deep metal
deck resting directly on the upper chords of the space frame. Over the exhibit area,
packaged air-conditioning units sit on concrete pads provided on the roof. Each of
these units weighs up to 10,000 kg and as many as three are placed in one bay. In
order to service these units, pathways have been provided, constructed with precast-
concrete pavers. The sum of these loads, in addition to the normal snow loads, are
substantially higher than the loading required for a conventional space frame roof.

The space frame consists of hollow steel nodes, tubes, and threaded rods used to
bolt two nodes and a tube together. This patented system, which is known as the PG
System, operates as follows: The tubes carry all compressive
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Figure 6.9 Typical member-hub connection detail.
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Figure 6.10 Top chord roof deck support.

forces, and rods, all tensile forces. The rods, which run from node to node,
provide a level of prestress to the system, which varies depending on the rod
size (Figure 6.9). The diameter of the rods varies from 13 to 83 mm and they
are made of high-strength steel with an ultimate strength of 1,035 MPa and
a yield strength of 863 MPa. A total of 75,000 rods are used in the project.



Tubes, which vary in diameter from 75 to 215 mm, are 365-MPa-yield-
strength material. The actual tube strength varies by ± 13 percent, depend-
ing on the tube diameter. Larger tubes are swaged (tapered down at the
ends) to avoid interference with adjacent tubes at nodes. Where tubes are
required to support transverse loads, such as at the top chord of the roof,
they are reinforced with a tee or channel. This reinforcing extends onto the
node to provide a positive load transfer device (Figure 6.10). For light lateral
loads, a bearing washer between the tube and the rod placed within 20 mm
of the end of the tube provides the load transfer mechanism. Tubes are cut
square at the ends and therefore bear on the spherical node along a line.
Local yielding is assumed to take place along this line bearing due to the
Hertz contact pressure.

Hollow nodes used on this project have an outside diameter of 215 and 240
mm and vary in thickness from 19 to 38 mm. These nodes, with a strength
of 863 MP a/1,03 5 MPa (yield/ultimate), were originally conceived as cast
steel. In order to provide the required 19,000 nodes in time, it was necessary
to seek more than one supplier. A Japanese manufacturer (who eventually
supplied one-third of the total required) was found who was able to forge the
nodes rather than casting them.

ANALYSIS

The analysis of the structure was performed using the NASTRAN program,
modeling the space frame as a truss system. Each region defined by expan-
sion joints or free edges was analyzed separately.

The largest region, with over 20,000 bars and 5,100 nodes, is the central hall
area. It is also the most complex with both vertical and horizontal surfaces
aswell as columnsmade up of space frame elements. The second-largest re-
gion, a portion of the exhibit hall roof, has almost 15,000 bars, and the small-
est region is a single bay with 1,500 bars (on average, there are four bars per
node). Each region was analyzed for five loads, dead loads, wind and tem-
perature effects as well as snow loads in a checkerboard pattern. Various



combinations of these loads were considered and the most critical combina-
tion was determined for each member in the roof. An iterative approach was
used to size members with corrections introduced in each subsequent run. A
maximum of three iterations was used to produce a final list of members.

In addition to the design analysis, a progressive collapse analysis was per-
formed to determine the sensitivity of the structure to local failure. As a start-
ing point for this analysis, it was assumed that a critical member failed for
whatever reason. For this purpose a critical member was defined as the bot-
tom chord of the diamond beam at the center of the span, or a diagonal just
above the support column. Nonlinear member properties were defined for
the bars: Tension barsweremodeled as elastoplasticmembers; compression
bars were modeled as nonlinear elastic bars approximating the buckling be-
havior obtained from actual tests of a range of tube diameters (Figure 6.11).
An additional criterion was imposed stating that if a node became unstable
due to failure of all but two bars connected to the node, the load applied at
that point was removed. From a physical viewpoint, this implies that the load
falls to the ground if the node fails. A stepwise solution of the problem using
the MARC programwas performed with four load increments. In order to ob-
tain preliminary indications of the extent of a potential collapse, static runs
were performed with critical bars removed at various locations. The inher-
ent strength of the continuous indeterminate space frame is apparent from
these preliminary analyses. Removing members anywhere within the fabric
of the structure was shown to be not critical and redistribution of forces eas-
ily accommodated the loss of the member. Only on the perimeter bays was
any significant collapse shown to occur due to removal of a critical member.
Even here, the extent of the potential collapse was shown to be limited to the
affected bay.
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Figure 6.11 Stress-strain diagram for tension rod and compression tube.

FABRICATION AND CONSTRUCTION

For ease of fabrication, the roof was assumed to be built without any camber.
As a result, the natural deflection of the roof under load results in a low point
at the center of a bay. For redundancy against possible ponding, two drains
were provided in the vicinity of this point. In addition, a minimum deflection
was specified to assume adequate slope for drainage of the roof. The bays



covered by skylights, on the other hand, drain to channels that were incorpo-
rated into the skylight construction along a square 3 m from the edge of the
roof. In this case, the skylight channel is posted up from the space frame and
sloped to these drains. This imposed a stiffness requirement on the space
frame as maximum deflections were specified.

On the facade and at entrances, the design of the space frame is controlled
by stiffness rather than strength requirements. The limitation on the defor-
mation of glass panels and entrance doors, both of which are attached to the
space frame, limits the permissible deflection of the space frame. This re-
quirement resulted in oversizing members and, in the case of the concourse
facade, in adding a stiffened edge to the space frame wall. Two criteria were
the determinants for this condition: First, the racking of a 3-m square facade
panel is limited to 6 mm and, second, the out-of-plane twist is limited to 6
mm.

The sculptural columns supporting the space framewere required to conform
to a building code ordinance that the columns be fireproofed to a point 7.5 m
above the floor. This requirement was met by filling the four steel shafts with
reinforced concrete. Under symmetrical loads, the pyramidal capital acts es-
sentially like a truss with tension in the horizontal tie members and compres-
sion in the diagonals. Under nonsymmetrical loads, significant bending is in-
troduced in the diagonals, which tend to act as cantilevered branches from
the vertical trunk of the column. The details at the four comers of the capital
were developed without external gussets to provide an elegant solution. The
400-mm-diameter space frame base plate is supported by a 250-mm verti-
cal pipe, which is, in turn, welded to an inclined 38-mm-thick plate welded
to the diagonal arms of the capital. The horizontal tubes are then welded to
each other and the 250-mmvertical pipe at themitered comer. Afterwelding,
a reinforced epoxy fillerwas used at themitered comer to forma clean curved
fine after welding, a solution that proved to be more economical than filling
with weldmetal and grinding (Figure 6.3). The comers themselves were orig-
inally conceived as three-dimensional cast-steel elements, but because the
same visual and structural result could be obtained by a weldment at sub-
stantially lower cost, the welded solution described here was chosen.



The four 400-mm-diameter columns below the capital are filledwith 40-MPa
concrete as are the midlength cross braces. This concrete was pumped in
from the bottom prior to the attachment of the capital. At the base of the
columns, both the shell and the reinforcing bars are welded to the base plate,
achieving the required tensile resistance against overturning moments.

Stringent vertical and horizontal tolerances had to be maintained in the as-
sembly and fabrication of the capital. The four bearing points have a center-
to-center tolerance of 2 mm in 3 m and were required to be in plane within 3
mm. In order to meet these tolerances, a sequence of welding and assembly
was developed to minimize thermal distortion due to welding and a jig was
used for both the subassemblies and the final assembly. Welding procedures
required both preheat for all heavy plates and tubes and the use of E70XX
electrodes. In the final assembly, a boxed cover enclosed the crossed plates
below the capital to match the dimensions of the cross-stiffeners of the ver-
tical shafts of the column. Apart from this concession to visual architectural
requirements, the structure of the column assembly is totally exposed, pro-
tected by a thin film of epoxy paint.

CONSTRUCTION
Stringent tolerancesweremaintained throughout the fabricationanderectionof this

structure. These tolerances started with the column location, which was controlled to
within 8 mm in the two orthogonal directions. For the space frame itself, individual
tubes are within 1mmof specified length and the overall assembly is within 8mmper
27-m bay. These strict tolerances were required to ensure proper fit of the elements
without forcing and inducing built-in stresses into the assembly. In order to obtain
these tolerances, extraordinary controls were established for the fabrication and
assembly process. Jigs were used to check each tube length and subassemblies were
prepared in highly accurate frames.
The erection process was devised taking into account the required final tolerances.

The flat roof of the exhibit hall was divided into subassemblies, each of which was
transportable. A typical bay consisted of four beam elements, two of which sat on the
columns, and a central 18-m square divided into three 6X18-m strips. These three
strips were joined together by stitching on the ground prior to lifting (Figure 6.12).



Erection started with the four beam elements. When these were stitched together to
form a ring, the center sectionwas lifted in one piece and temporarily suspended from
four corners at anelevation slightly below that of theadjacentbeamswhile the stitching
process took place. Stitching members were first loosely installed. Torquing of nuts
at the end of the rods pulled the central section into alignment with the previously
placed beams.

Erection of the cubes over the central hall presented a further complication. Each
cube, except the one at the center, is supported by four walls, one of which belongs to
the cube at the next-higher level. This required a sequence whereby the supporting
walls had to be erected first before placing the central sections, which, in turn, entailed
temporary cable bracing particularly for the four space frame columns in the central
hall.

The schedule for erection required completion of a minimum of two bays per week.
As there are a total of 71 bays, a total erection time of nine months was anticipated
andmet!





Figure 6.12 Layout of subassembly units.
Stringent controls were established for every step of the fabrication and erection

process. The cast-steel nodes were subject to visual, magnetic particle, and radio-
graphic inspection. Flaws in the castings such as cracks or voids, which were not
repairable by welding, were cause for rejection. Particular attention was focused
around the open mouth of the casting where high stresses were shown to exist by
analysis. The high-strength rods with upset rolled threads were inspected for defects.
Rolled threads were called for, instead of cut threads, to avoid notch sensitivity. The
material for the rods has

a high Charpy notch toughness, which alleviates sensitivity to stress corro-
sion, a concern for the extended life span of the structure.

COMPONENT TESTS

A series of load tests of the elastic and inelastic behavior of the rods and tubes
were conducted to confirm properties used in the space frame analysis. The
resulting force-deformation relationships for both rods in tension and tubes in
compression (including postbuckling behavior) were used to define themate-
rial properties in the progressive collapse analysis described previously. Ver-
ification of the designwas provided by a full-scale load test of a 14-bay region
of the roof. In order to further probe the safety of the structure, the response
of the structure to a series of improbable events was explored, culminating in
a progressive collapse analysis.

RISK MODELS

Five events that might cause failure of a space frame component were iden-
tified:

1. Defective Member: Critical defects in a member are likely to be detected during
construction. The probability of failing to detect a defective member should be
very low. Theprobability of a small 13-mm-diameter tension rodhaving a signifi-
cant defect is greater than that of a large 83-mm rod, because the smaller tension
rods are more susceptible to discontinuities and notches introduced during the
manufacturing and fabricating process and possibly because of less stringent



inspection during erection. In addition, the majority of the large tension mem-
bers greater than 36 mm in diameter were proof-tested before installation. The
probability of a significant defect in a tube is also low, because compression
members are less sensitive to loss of strength due to defects.

2. Abnormal Loading: Loading exceeding the design load is considered abnormal.
A 1.9 kN/m2 overload above the design five load over at least one bay, owing to
an accumulation of slushy snow, for example, would be a very rare occurrence.
Even application of the full design five load of 1.9 kN/m2 , with no overload, over
at least one bay would be an uncommon occurrence, happening perhaps only a
few times during the lifetime of the roof.

3. Human-Induced Accident: The probability of failure as a result of an event
such as a crane hitting a critical member or uncontrolled welding on a sensitive,
highly stressed member is very low. Fire was not included in this analysis.

4. Catastrophic Event: Events such as an airplane or a large wind-driven missile
crashing into the structure are also extremely rare. Even with the high level of
air traffic in the area, the annual probability of such a catastrophic event is on
the order of 1 in 1,000,000.

5. Unknown Deterioration: Corrosion inside tubular members, or inside
joints, could be missed by normal maintenance procedures. This deterio-
ration is possible, although very unlikely, in an inside environment over a
normal service life.

Approximate probability valueswere assigned to each of the five initiating events for
three different types of members (13-mm-diameter tension rods, 76-mm-diameter
tubes, and 83-mm-diameter tension rods). These values are summarized in Table
6.1, where
P(A) is the annual probability that an initiating event

will occur;

P(M/A) is the probability of a critical member failing and

becoming unavailable for loading given that the initiating event has occurred;
and



P(M)=P(A) X P(M/A) is the overall probability of member failure.
It should be pointed out that the estimates of probabilities in Table 6.1 are subjective;

the available data are limited and the probabilities should be considered in terms
of their orders of magnitude rather than exact numerical values. Even with these
limitations, the analysis shows that the risk of failure is several times greater for the
13-mm-diameter tension rod than for the tube or larger rod. It is recognized that the
risk of failure during a catastrophic event is the same for all members. However, the
analysis suggests that the probability of failure for all of the other events may be 10
times higher in the small 13-mm tension rods (approximately 2 X 10-6) than in the
compression tubes (approximately 2 X 10'7) or 50 times higher than in the large rods
(approximately 10*). More importantly, the analysis also indicates that, in absolute
terms, the annual probability of failure is low even for the small rods: on the order of
1 in 500,000.
TABLE 6.1 Annual Probabilities of Critical Members Becoming Unavailable for

Loading Given the Occurrence of an Initiating Event and Probabilities of Initiating
Events

Initiating Event
13-mmTension
Rod

76-mm-Diameter
Tube

83-mm Tension Rod

P(M/A) P(A) m P(M/A) P(A)
P(M)
P(M/A) P(A) P(M)

1. Defective
member

10* 10* 10* 10* 10* 10* 10* 10* 10*

2. Abnormal
loading

10* 106 10* 10” 10* 10* 10* 10* 10*

3.
Human-induced
accident

1 10* 10* 102 10* 10* 10* 10* 10*

4. Catastrophic
event

1 10* 10* 1 10* 10* 1 10* 10*

5. Unknown
deterioration

10” 10* 10* 10” 10* 10* 10* 10* 10*

Summation
YP(M/A) P(A)

= 3x10* =10* =10*



ULTIMATE LOAD CAPACITY

Based on the results of the risk analysis, four cases were explored to deter-
mine the ultimate capacity of the roof structure. The region of the roof that
was analyzed consisted of the 14 bays on the north end, with a uniform live
load of 1.9 kN/m2, in addition to the dead load applied over the entire roof.
The corner bay (Figure 6.13) was then loaded until a large number of mem-
bers had failed as defined by fracture of tension members and postbuckling
of compression members. The four cases that were studied and the results
are as follows:

Ultimate Load Capacity
as a Multiple of Design

Case Condition Live Load (1.9 kN/m2)

1. Roof as built 3

2. Smallest tension member: 3

13-mm rod removed from

bottom chord of diamond truss

3. Small compression member: 3

76-mm tube removed from

bottom chord of diamond truss

4. Largest tension member: 0.75

83-mm rod removed from

bottom chord of diamond truss

The analysis on which these results are based considered nonlinear member
properties and assumed a 3 percent sliding friction coefficient at the Teflon
support bearings. Intermediate cases were also studied with results similar
to those shown previously.



COLLAPSE ANALYSIS

A nonlinear model of the structure includes separate force-deformation re-
lationships for tubes and rods. For tubes, the postbuckling behavior is mod-
eled based on earlier tests. For tension rods, yielding and fracture are simi-
larly based on tests with the tensile area at the thread used to definemember
strength. Because of different steel quality, the ductility of rods below 18mm
in diameter was less than that of large bars (Figures 6.14 to 6.16).

Using a nonlinear version of the SAP IV program run on a CDC 7600 main-
frame, loads were applied incrementally to the roof, making multiple runs to
obtain convergence of the solution. Initial load increments were large (0.9
kN/m2) and were decreased to 0.2 kN/m2 as the capacity of the structure
was approached. Loading was continued until a load level was reached for
which no stable solution was achieved. The following table summarizes the
results obtained for the five cases studied:



Figure 6.13 Loading condition for ultimate load capacity.

1. As built—uniform dead load plus 3+

0.9 kN/m2 over entire roof. Loaded

in the southwest corner incrementally.



2. 13-mm tension rod removed from 3+

bottom chord of diamond truss. Same loading as case 1.

3. As built—incrementally applied load over 3.5+

entire roof.

4. 8 3-mm tension rod removed from 0.25+

bottom chord of diamond truss.

Incrementally applied load over entire roof.

5. Catastrophic event: diamond truss and 0.10+ portion of adjacent space frame
removed. Incrementally applied load over

remaining roof.
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Figure 6.14 Force-deformation relationship for 13-and 16-mm tension rods.
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Figure 6.15 Force-deformation relationship for 18-mm and largertension rods.

Figure 6.16 Force-deformation relationship for typical compression tube.
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These results must be evaluated in the context of conditions that would tend to
make the results either conservative or nonconservative. Such factors are:
Conservative
Nonconservative

• Dynamic effects ignored

• Secondary effects owing to large deflections (geometric nonlinearity) neglected

• Contribution of the metal deck to stiffness is neglected

• Secondary moments resulting from end restraint of tubes owing to friction at
the joint are neglected

• Stiffness resulting from prestressing of rods is neglected

• Actual test results on tubes and rods higher than assumed capacity

• Conservative interaction equation used to define flexural members



6.4 CONCLUSION

The analyses indicate that a space frame has a large reserve load-carrying capacity.
Even with the condition imposed by a catastrophic event, progressive collapse is
initiated only by the presence of sufficient live load. The particular structure used
for the Javits Center was highly optimalized, and, as a result, has small members in
the neighborhood of lines of contraflexure. A more generalized design, although less
economical, would be more highly resistant to progressive collapse.
The design and construction of the space frame for New York’s Javits Center pre-

sented unique and complex problems. The solutions to these problems demonstrate
the adaptability of the space frame concept to specialized applications. Starting with
a defined geometric configuration, modifications to a standard-component prefabri-
cated system are shown to be readilymade. The flexibility of the system extends to the
originality of the construction solution. Although few structures of such a large scope
may be built, lightweight, steel, space frame construction should find application
to more modest enclosure problems and should be an integral part of the design
repertoire of architects and engineers.
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7 Double Curvature Space Frames
Supported on Four Points: Design
and Construction of the Interna-
tional Plaza of Portopia ‘81

Masao Saitoh

7.1 INTRODUCTION

Port Island, which is off the coast of Kobe, is the first large-scale man-mademarine
city in the world. It has an area of 436 ha in which a hundred baseball stadiums could
entirely be laid out. Fifteen years after the reclamation work began, major urban
facilities such as hotels, hospitals, residences, and parks, as well as a fully automated
mass-transit system, were completed in 1981.

The exhibition, called PORTOPIA’81, to commemorate the completion of Port Island
was held during a 180-day period beginning March 20, 1981, in an area of about 65
ha in the south of Port Island (Figures 7.1 and 7.2). The
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Figure 7.1 Aerial view of P0RT0PIA'81.

main theme of the exhibition was ``Creation of a New Marine City of High
Culture'' with the aim of presenting an ideal future-oriented marine city as
well as promoting international friendship andpeace. The International Plaza
was plarmed as the main facility for the exhibition.

The International Plaza is an open space for events in which an octagonal
space shelter covers the spectators' seats. In this plaza such international
events as dances, choral concerts, and dramatic presentations were held ev-
ery day during the entire period of the exhibition. Sixteen hundred spectators'



Figure 7.2 Aerial view of International Plaza.



Figure 7.3 Interior view of space frame.
seats and a stage with a width of 18 m and a depth of 8 m were installed around an

open space with an area of 700m1 2. The plaza had a seating capacity of 2,600 with
the addition of movable seats from the adjacent vacant lot.
The shelter that covered the International Plaza was in the shape of four triangular

eaves connected to a central elliptical paraboloid shell, giving the appearance of open
flower petals. The plan of the shelter was a square with sides of about 51m and was
supported by hinges at the center of each side.
The spectators’ seats and the stage were designed to be enclosed under one roof. At

the same time, the external shape was designed so that many people would be inter-
ested in entering the plaza. The shape chosen for the International Plaza was arrived
at after a survey of shapes having either a static and closed image of an internal space
or a dynamic and expansive image of an external atmosphere (see Figure 7.3). Both
the shelter and the International Plaza were removed after the end of the exhibition.
OUTLINE OF THE STRUCTURE

1 It has a high degree of applicability to a shape with a free-form curved surface.
2 Stiffness and stress can be controlled by regulating the depth between the upper and lower layers.



In order to realize a column-free large-scale roof with an area of about 2,600 m2,
which possesses the shape of such a unique doubly covered surface, a double-layer
space truss structure composed of a system truss was employed (Figure 7.4). This
structure was chosen for the following four reasons:

3. Manufacturing accuracy of members is high owing to the fact that they are made
in a factory with a dimensionally controlled production system.



4. A short construction period is possible.

The roof truss consists of upper and lower layers with a two-way square grid
of about 2 m and a depth between layers that varies from 1 to 2 m. The TM
(Taiyo-Mero) systemadopted for this roof has 5,600 steel tubes for the chords
and web members and 1,560 steel nodes for its joints. The self-weight of
the roof truss is about 85 tons corresponding to 33 kg/m2 and the long-term
design load is estimated at 50 kg/m2, including the weight of the roof fabric.

In general, the structural design followed the flow diagram shown in Figure
7.5. It is important to note that there are two phases, a preliminary design
to decide the structural system and a final design to examine the structural
behavior.
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Figure 7.5 Structural design flow of space frame.
STRUCTURAL PLANNING
During the design of the space frame, attention was paid to three basic factors:

1. Form

2. Arrangement

3. Connections “Form” is the shape of the overall space frame, “arrangement” in the
internal structuremeans the arrangement of the individual members consisting
of several elements, and “connections” refers to the joint system of the space
frame. When the support conditions and the perimeter conditions of the space
frame are predetermined, its structural properties are determined by the factors
mentioned previously. In this chapter we shall discuss form and arrangement.

Finding the Form
Finding the form of the roof surface is the starting point in the preliminary design

of a shell structure. It is also the approach used in the design of a space frame and
starts with a general form—a surface curved in space—which is then replaced with a
similar structure composed of discrete elements.



Therefore, the technique for the form design of space frames is the same as the
technique in the design of shell, tension, or pneumatic structures. Three methods of
design can be distinguished: geometrical, mathematical, and experimental.

In this case, from the architectural point of view, the form was desired not only to
provide the enclosed space for the audience but also to be attractive as monumental
architecture. One can imagine a number of curved surfaces with four supporting
points. Here, the author proposed three forms of shells, characterized by the curved
edge line as shown in Figure 7.6.

Type A has four wing shells spread from a central dome, type B is obtained by the
combination of four hyperbolic paraboloid surfaces, and type C is the continuous
surface as a whole having both properties of types A and B. Types A and B are pure
geometrical surfaces and type C is a free form that can be determinedmathematically
or by experimental methods such as by hanging a weighted net.

To compare the structural behavior of the proposed form of types A and B (Figures
7.7 and 7.8), stress and displacement analyses were carried out for the case of self-
weight, which is dominant in large-span space frames. Using the finite-element
method of numerical analysis, units are replaced with equivalent beam sections.
Consequently, the effective stiffness in tension and



Figure 7.6 Proposed form of the roof.



Figure 7.7Model of Type A.

bending and shearing of two kinds are measured in the unit and are put into the
equivalent beam that makes up the grid surface of the shell roof.

Figure 7.9 shows the results of calculations using the equivalent-grid model. Both
the deflection and the bending moments of type B shells are smaller than those of
type A. On the other hand, the axial force along OC is larger in type B than in type A.
From these results, type B behaves more like a membrane than type A.

After considering the architectural requirements, especially the creation of
a theater-like space, type A (composed of transitional surfaces of an elliptical
paraboloid) was adopted for the actual shell roof.



Figure 7.8Model of Type B.



Transition to the Curved Surface

Figure 7.9 Comparison of Types A and B.

In order to comprehend the structural effect obtained by the curvature in the type
A shell, the models that demonstrate the stages of development, starting with a plate
to arriving at a final structure, are presented in Figure 7.10.



Each stage of the models was subject to uniform loads (50 kg/m3 4) and the structural
behavior was calculated by the equivalent-grid method. The following

7.2 CONCLUSION

s are drawn from the deflection and bending-moment distribution (Figure 7.11):

Figure 7.10 Five stages in the development of the shell.

3 The bending moment is larger in stage 1 than in stage 3 and the deflec
4 tion in stage 1 is smaller than in stage 3.



Figure 7.11 Transition of the structural behavior.

2. The apparent effects of the curvature in shell structures can be seen in the
deflection of stages 2 and 4.

3. Because the change in deflection is only slighdy different between stages 4 and
5, the structural rationality of stage 5 to cover a larger area is evident.

Member Arrangement
The fundamental patterns of double-layer space frames can be obtained geometri-

cally by various combinations or arrangements of the upper and lower layers and web
elements, as shown in Figure 7.12. Unit HI, which is the most popular square unit
type, the so-called offset grid, was adopted for this structure.
Because this unit has no twisting rigidity and is not internally stable, sufficient

external supports have to be provided to compensate for the lack of internal stability.
It should be noted that with internal stability (such as is provided by triangular grids)
additional stresses during construction or due to differential settlements may be
avoided.
Member arrangement and the constituent frequency (the scale ratio of the element

dimension to the overall dimension) determine the stiffness and the load-carrying
capacity of a space frame.



For the purpose of studying the influence of depth and frequency on structural
behavior, a numerical analysis was carried out for the unit models as shown in Table
7.1. In this table the frequency ratio and the depth ratio for the basic unit used in
the realized structure are presented as a (the ratio of unit frequency) and Ji (the ratio
of unit depth) respectively. The numbers in parentheses represent the ratio of total
volume of truss members used in the whole structure.

The analytical method used was the one mentioned earlier and only the effective
rigidities are changed for the beams of the grids of the shell. Figure 7.13 shows the
deflection at points A and 0 in nondimensional units with a=y?=1.0.

(a) Square units

(b) Triangular units

upper layer

web layer

lower layer

Unit

Unit n

Figure 7.12 Fundamental pattern of units.

Table 7.1 Analytical Models of Different Units.
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point A | point O
So: the deflection of the basic unit at point 0
Figure 7.13 Comparison of the deflection.



In this figure two numbers are shown: the deflections for each case divided by the
deflection of the basic unit at point 0 and the actual values of deflection.

As the depth ratio / becomes large, the deflection decreases considerably and the
point of maximum deflection moves from point A to 0, corresponding to increasing
bending rigidities.

The economical efficiency concerning the depth and frequency is difficult to es-
timate. Although the deflections have a tendency to decrease as a and Ji increase,
care should be taken to ensure that the tolerable force due to buckling decreases
simultaneously.

NUMERICAL ANALYSIS OF THE SPACE TRUSS SHELL

Static Analysis

The structure was analyzed as a grid framework in the preliminary design to select
the form andmember arrangement of the structural system. A final calculation was
made using the displacement method, assuming a hinged connection at every inter-
section of the truss elements. Axial forces on truss members and the deflection of all
points were numerically obtained under dead load (50 kg/m2), horizontal earthquake
force (seismic coefficient = 0.3) and wind force (v = 35m/sec). Wind tunnel tests were
performed on a 1/100 scale model to obtain the design loads.

Because the roof is fight and an open-air type, the wind force has considerable in-
fluence on its structural behavior. The maximum tensile axial force of truss members
due to wind forces was 4.6 times as large as that due to dead loads.

Furthermore, for the case of temperature forces, the elongation of the tie beam and
differential settlement of the supports were examined.

Dynamic Analysis of the Roof

The dynamic analysis for seismic forces was carried out using a model composed
of 85 nodal points and 168 equivalent beams. A lumpedmass system was adopted for
this analysis, and the damping factor and the maximum acceleration were assumed
to be h = 0.02 and 200 gal respectively .

For a comparison of the vertical displacement of the influence coefficients given by
eachmethod, the RMS (root mean square) method of analysis was used based on a
response spectrum. Themaximummagnification of acceleration response is 8.43 (EL
CENTRO UD 1940) and the maximum deflection is 14.2 mm (MIYAGIOKI UD 1978).



The distribution of bending moments was obtained from the above response dis-
placement bymeans of the replacementmethodwith equivalent beam. It is important
to emphasize that the axial forces in this case are very large. That is, the maximum
force of 15.6 ton corresponds to a magnification of 10.9 of the one due to horizontal
earthquake forces (seismic coefficient = 0.3) and 0.96 of the one due to wind forces
(q= 148 kg/m2; return period = 30 years).
STRUCTURAL DESIGN
The member size of the steel tubes used in the roof are of eight kinds, 114.34>X6.0

to 48.6<J>X3.2, with slenderness ratios of about 50–100, 80–120, and 60–130 for
upper chords, lower chords, and diagonal members, respectively. The ball joints used
for the intersections have five different diameters ranging from 150c|> to 85<j>.
The roof has eight supporting pin joints at the lower chords sitting on the four

reinforced concrete supports. To resist the rotation due to the horizontal thrust of
wind or earthquake, these supporting columns are fixed to a complex foundation and
are also connected to each other by an underground tie beam (Figures 7.14 and 7.15).

Figure 7.14 Supporting point.

Figure 7.15 View of supporting point.



The catwalks for maintenance were provided in the space frame by utilizing the
space within the roof depth. From the viewpoint of statics, the depth of the wing shell
changes from 2 to 1m. Therefore, the upper and lower surfaces of the roof are defined
by two kinds of elliptical paraboloid.
The lower surface of the whole roof and the upper surface of the central shell are

given by Zo and the upper surface of the wing shell is given by 7,\ as follows:

Zo = -—(x
2 + y2) + 2f

iy

u f2

Z1=(f1 + f``+h1)--(x
2 + y2)-z lyz

'1 A-J lx2ly2

Using the geometrical nature of transitional surfaces, all chords of the lower surface
and the upper chords of the central shell have the same length, equally dividing the
parabola (Figure 7.16).
CONSTRUCTION



The assemblage and the erection of the roof truss were completed on the ground.
After the central shell was set on supporting columns, four wing shells were attached
to it one by one (Figures 7.17 and 7.18). It took about 30 days to construct the truss
shell, including checking the torque in the joints.

Although the TM (Taiyo-Mero) system, in which a tolerable error in member length
is 1 mm, has no error-absorbing capacity, the construction was achieved without
scaffolding or adjusting of the support position. The reason





Figure 7.16 Surface of the shell.

Figure 7.17 Process of the construction.

for adopting this construction method was because this structure is not too
large and the unit of space frame used has no twisting rigidity. In the con-
struction of a large-span space frame, particular attention must be paid to
member deformation due to temperature change and self-weight.

7.3 CONCLUSION

At present, many double-layer space truss structures of the type described
in this chapter are being constructed. However, we often forget that this type
of structure has low applicability to shapes formed by such permanent fin-
ishing materials as glass and membranes, although it can be freely formed
as a structure. As for the roof finish, a membrane material was adopted and
attached to each upper joint of the space frame. Sometimes the existence of
secondary members to support finishing roof material seems to prevent the
rationalization of a space frame in which all members are attached with pin
joints.



We live in an age when ``any kind of shape can be formed'' because of the
remarkable development in computer and analytical technologies. It is now
true that the degree of freedom for conceiving any design and shape seems
to have become unlimited.



Figure 7.18 View of space frame during construction.



Consequently, a firm concept concerning the “integration of structure and design”
must be established. As this chapter shows, a sound and attractive structure with a
double-layer space truss can be developed based on this concept.
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8 Deconstruction of the Cube

Arthur L. Loeb

8.1 INTRODUCTION

The arbitrary assumption that a cube having unit edge length has unit volume has
given the cube an undeserved fundamental significance. This notion is a superstition
in the sense that it has been handed down for many generations without ever having
been subjected to experimental verification: It is, in point of fact, an assumption that
cannot be experimentally proven or disproven. The cube is a space filler but, then, so
are other forms such as the rhombic dodecahedron and the truncated cube, each of
which is more fundamental to an understanding of crystal structure than is the cube.1

Although it is true that the edges of a cube define a forward-backward/up-down/left-
right system of reference in which we move, Rudolf von Laban in his time-motion
and dance notation actually preferred the icosahedron to the cube as a frame of
reference. Unfortunately, he found that dancers are culturally conditioned to the cube
as a reference frame, whereas von Laban’s choreography stressed diagonal motions.2

The cube has six square faces, twelve edges, and eight vertices. It is unstable, that
is to say, when eight flexible joints at the vertices of a cube are joined by twelve struts
along that cube’s edges, this structure will collapse, because it has six degrees of
freedom.3,4 It will be stabilized by joining the vertices by six additional struts. There
are many ways of accomplishing such stabilization,
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Figure 8.1 Tetrahedron inside a cube.

one being the creation of a tetrahedron inscribed inside the cube in such a manner
that the six edges of the tetrahedron constitute the face diagonals of the cube (Figure
8.1). The inscribed tetrahedron occupies exactly one-third of the volume of the cube.5

8.2 THE REGULAR TETRAHEDRON AND OCTAHEDRON

A regular tetrahedronmay thus be considered as a truncation of the cube: Four comers
of the cube are completely removed. These four corners may be juxtaposed to form a
square pyramid whose four lateral faces are equilateral triangles (Figure 8.2). This
pyramid constitutes one-half of a regular octahedron: Its volume equals exactly two-
thirds of that of the original cube. Accordingly, this regular octahedron has a volume
exactly four-thirds of that of the cube. Wemay therefore conclude that the volume of
a regular octahedron equals exactly four times that of a regular tetrahedron having
the same edge length. The portions truncated from the cube to produce a regular



tetrahedron are called octants of an octahedron: Eight of them constitute a regular
octahedron. The regular tetrahedron is the polyhedron with the smallest number
of vertices and the only one in three-dimensional space in which all vertices are
equidistant from each other. It is also the most resistant to compression.

The cube does not occur much in nature,6 nor does the right angle occur in the art
and architecture of peoples much in touch with nature. It is, however, a convenient
reference solid; as we have just noted, it may be deconstructed into an inscribed
tetrahedron and half of a regular octahedon. I shall

Figure 8.2 Cube deconstructed into a tetrahedron and half an octahedron.

call this tetrahedron the reference tetrahedron and assign it a unit volume; then the
cube circumscribed around it (the reference cube} has volume 3, and the octahedron
having the same edge length as the tetrahedron (the reference octahedron) has volume
4. (For a discussion of units of volume, see Chapter 4.) The cube is a space filler;
that is, it and its clones may fill all of a space without gaps or overlaps. Therefore, its
components, the regular tetrahedron and half-octahedron, which individually are
not space fillers, may together fill a space in the ratio of one tetrahedron per half-
octahedron, which amounts to two tetrahe-dra per octahedron. Structures that have



the same symmetry as the cube, and that includes all polyhedra considered here (with
the possible exception of the regular tetrahedron whose symmetry is a subsymmetry
of the cube), may be built out of octahedra sharing faces with tetrahedra only and of
tetrahedra sharing faces with octahedra only.

8.3 THE CUBOCTAHEDRON

The cube may also be truncated as far as the midpoints of its edges (Figure 8.3); eight
octants of an octahedron are removed, leaving a polyhedron having eight triangular
and six square faces, called the cuboctahedron. The octahedron thus removed from
the cube has half the edge length of the reference tetrahedron; its volume therefore
equals one-eighth the volume 4 of the reference octahedron, that is, 1/2. Because the
reference cube has a volume equal to 3, the volume of the cuboctahedron that remains
after the truncation equals one-half less, that is, 5/2.

In Figure 8.4 we note that the cuboctahedron has four hexagonal cross

Figure 8.3 Truncation of a cube to form a cuboctahedron.



sections: Each vertex of the cuboctahedron functions as a vertex of two of these
regular hexagons. Accordingly, the cuboctahedron has 12 vertices, each at the center
of one of the edges of the reference cube. The distance between the center of the
cuboctahedron and each of its 12 vertices equals exacdy the edge length of the cuboc-
tahedron, a characteristic that led R. Buckminster Fuller to name the cuboctahedron
vector eqtiilibrium.

The cuboctahedron may itself be constructed out of regular octahedra and tetrahe-
dra. As neither of these constituent forms has square faces and the cuboctahedron
has six of these, the regular octahedra need to be bisected, so that their equatorial
cross sections may supply the square faces for the cuboctahedron. The tetrahedra
and octahedra constituting the cuboctahedron all

have half the edge length of the reference tetrahedron; hence their volumes are,
respectively, 1/8 and 1/2. If we call the number of tetrahedra constituting the cubocta-
hedron x and that of the octahedra y, then the volumes of the cuboctahedron and its
constituent polyhedra are related by the following equation:

Figure 8.4 Four hexagonal cross sections of a cuboctahedron.

(1/8) x+(1/2) y= 5/2 or x+4/=20 (8.1)



Furthermore, since the cuboctahedron results from the subtraction of eight octants
of the octahedron from the cube, it is one octahedron short of being a space filler.
Hence
x=2(y+1) (8.2)
From Equations (8.1) and (8.2) it follows thatjy = 3, x = 8: The cuboctahedronmay

be built from six half-octahedra, that is, three regular octahedra and eight regular
tetrahedra (Figure 8.5).

8.4 THE STELLA OCTANGULA

A tetrahedron inscribed in a cube shares four of its vertices with the cube. The remain-
ing four cube vertices could be shared by a second tetrahedron (Figure 8.6), whose
six edges are each perpendicular to one of the edges of the first tetrahedron. The two
tetrahedra overlap: The space shared by them is occupied by a regular octahedron.
The space not shared by the two overlapping tetrahedra is constituted of eight tetra-
hedra having an edge length half that of the reference tetrahedron; their volumes are
therefore 1/8 each. The central octahedron has four times that volume, that is, 1/2.
Together, this octahedron and its eight satellite tetrahedra form a Stella octangula, or
eight-pointed star, having a volume equal to 3/2 (Figure 8.6/z).
Accordingly, the Stella octangula occupies one-half of the cube in which it is in-

scribed. Nevertheless, it is not a space filler, because it is constituted of one regular
octahedron and eight tetrahedra, six tetrahedra in excess of the ones required for
space filling. For the purpose of filling space, these six excess tetrahedrawould require
three additional octahedra; indeed, 12 quarter-octa-hedra at the edges of the cube
will exactly fill the space between the inner walls of the cube and the external faces of
the Stella octangula.
THE TRUNCATED OCTAHEDRON
A Riddle: Imagine a hollow cube partially filled with water up to a level where the

water surface is a regular hexagon. What fraction of the cube volume is filled with
water? (Do not turn the page until you have at least considered the question.)

8.5 CUBOCTAHEDRONWITH CONSTITUENT TETRAHEDRA AND OCTAHEDRA

Figure 8.5 Exploding cuboctahedron.



Figure 8.6 Two tetrahedra inscribed in a cube.





The answer is one-half: The cube was placed with one vertex on a table and its body
diagonal vertical, or, as our editor asserts, hanging by a thread attached to one of
its vertices. The cube can thus be bisected into two halves (Figure 8.7) having one
hexagonal, three triangular, and three irregularly pentagonal faces, which, of course,
are space fillers as well. These half-cubes are themselves octants of a truncated
octahedron (Figure 8.8), that is, a regular octahedron with its six vertices amputated.
If we consider the truncated octahedron inscribed in the reference cube, the volume
of the cube will be 3. Hence the volume of the truncated octahedron equals 3/2,
exactly the same as that of the Stella octangula inscribed in the cube. The truncated
octahedron may itself be constructed out of tetrahedra and (half) octahedra; at least
six half-octahedra are needed to provide the six square faces. These octahedra and
tetrahedra have an edge length one-quarter that of the reference octahedron and
tetrahedron, so that their respective volumes are 1/16 and 1/64. Once again, if x is the
number of tetrahedra and y the number of octahedra in the truncated octahedra:



(1/64) x + (1/16) y= 3/2 or x+4/=96 (8.3)

and

x=2y (8.4)

Therefore, x= 32 andy= 16: The truncated octahedron maybe built from 32 tetrahe-
dra and 16 octahedra. Of the latter, three need to be halved. Because

Figure 8.7 Bisection of the cube.



Figure 8.8 Truncated octahedron.

the number of remaining octahedra, 13, is odd, it follows that one of these 13 octa-
hedra will go in the center of the truncated octahedron. The latter polyhedron has
36 edges, of which 24 bound the square faces. Twenty-four tetrahedra are config-
ured adjacent to the six square faces. The 12 octahedra all have the same dihedral
angles as the angles between the hexagonal faces of the truncated octahedron, for



these hexagons and their adjoining edges are what is left of the faces of the original
truncated octahedra. Accordingly, the 12 remaining octahedra will be situated at the
intersections between hexagonal faces, of which there are just 12, namely, the edges
of the large octahedron from which the truncated octahedron was generated.

This leaves eight tetrahedra unaccounted for. These are attached to the faces of
the central octahedron; each of these tetrahedra has a vertex in the middle of one of
the hexagonal faces of the truncated octahedron. Together, the central octahedron
and the eight tetrahedra attached to it constitute a small Stella octangula inside the
truncated octahedron. The truncated octahedronmay therefore be constituted of a
Stella octangula, 12 octahedra between the “horns” of the Stella, 6 half-octahedra to
provide the square faces of the truncated octahedron, and 24 tetrahedra, three for
each hexagonal face.

8.6 THE RHOMBIC DODECAHEDRON

We shall shownow that this formmay be considered as a special stellation of either the
cube or the regular octahedron. There are [?z(?z-l)]/2 connections between n points.
There are, accordingly, 28 connections between the eight vertices of a cube. Of these,
12 are edges of the cube. Another 12 are the diagonals of the six faces of the cube,
constituting the edges of the two tetrahedra inscribed in the cube. The remaining four
connections pass through the center of the cube; they are the four body diagonals of
the cube.

These body diagonals intersect at the center of the cube, at angles arc- cos±(l/3) to
each other. The cubemay be subdivided into sixmutually congruent square pyramids
whose lateral edges run along the body diagonals of the cube. Two of these pyramids
may be joined along their square faces to form an octahedron; because the triangular
faces of the pyramids are not equilateral, this octahedron is not regular. However,
because the cube is a space filler, this octahedron will also fill space by itself: Three
of such octahedra may be bisected into six square pyramids, which may then be
reassembled into a cube and thus fill space.



When the six constituent square pyramids of the cube are each positioned with a
square face contiguous with one of the faces of a second cube, the result (Figure 8.9) is
a rhombic dodecahedron,7 which, accordingly, may be considered a special stellation
of the cube. Of the 12 rhombic faces the 12 short diagonals are the 12 edges of the
reference cube from which it was generated. Because the volume of the reference
cube is 3 and the dodecahedron was generated from two such cubes, the volume of
the rhombic dodecahedron equals

Figure 8.9 Rhombic dodecahedron in an array of cubes.

6. The edges of the dodecahedron correspond to the body diagonals of the cube;
the surface angles of the rhombic dodecahedron are therefore arc-cos±(l/3).



The 12 long diagonals of the faces of the rhombic dodecahedron constitute the
edges of a regular octahedron, which is equal in size to the reference octahedron:
Its volume equals 4. The space between this octahedron and the outer shell of the
rhombic dodecahedron has a volume equal to 2; this space will just accommodate
eight quarter-tetrahedra, of which one is shown in Fig-

Figure 8.10 Quarter-Tetrahedron.

ure 8.10, supplying just the two needed volume units. The rhombic dodecahedron
may therefore be considered as well as a regular octahedron stellated by eight quarter-
tetrahedra.

DUALS

The valency of a vertex of a polyhedron is defined as the number of edges meeting
at that vertex. The valency of a face equals the number of edges around that face. Two
polyhedra are each other’s duals if to each face of one there corresponds a vertex of
the other, and vice versa. A cube has eight trivalent vertices and six quadrivalent faces,
whereas an octahedra has eight trivalent faces and six quadrivalent vertices: Cube and
octahedron are a pair of duals. The rhombic dodecahedron has twelve quadrivalent
faces and eight trivalent and six quadrivalent vertices. Its dual should have twelve
quadrivalent vertices and eight trivalent and six quadrivalent faces: We have seen
that this is the cuboctahedron. The tetrahedron has four trivalent faces as well as four
trivalent vertices; it is self-dual. Duals always have the same number of edges.



8.7 CONCLUSIONS

The term deconstruction,which is being used by historians of art and architecture in
a figurative sense, has been applied here in its original literal sense of taking apart.
The cube can be deconstructed in many different ways, but stronger, more stable, and
more fundamental building blocks to be retrieved from it are the regular tetrahedron
and octahedron. These fill space in a ratio of two tetrahedra per octahedron. In turn,
the regular tetrahedron and octahedron may be combined in a diversity of ways to
construct semi-regular solids: truncatedoctahedron, cuboctahedron, Stella octangula,
rhombic dodecahedron, and others. Conversely, the cube may be constructed out of its
component parts; these component solids may be combined in various ways to fill
space.
When these various forms are juxtaposed so that their three fourfold axes of rota-

tional symmetry are aligned, their volumes are found to be related by simple rational
numbers. Such “nesting” is possible because the numbers of vertices, edges, and
faces of these polyhedra are all products of their rotational symmetry values 2, 3, and
4, as shown in Table 8.1.
In Table 8.1 all volumes are normalized with reference to their circumscribed or

inscribed cube. When the vertices, edges, or faces are of two different kinds, their
numbers are shown as a sum, for instance, the truncated octahedron has 6 square
and 8 hexagonal faces, and the Stella octangula has 12 edges corresponding to its
internal octahedron and 24 edges corresponding to the 8 corner tetrahedra.
In three-dimensional design it is useful to know how diverse numbers may be

represented spatially bymeans of polyhedra. These numbers are obtained from Table
8.1 and listed in Table 8.2.
TABLE 8.1 Parameters of Diverse Polyhedra Having Cubic Symmetry

Polyhedron Number of Number of Number of
Vertices Edges Faces Volume



Cube
Tetrahedron
Octahedron
Truncated Octahedron
Cuboctahedron
Stella octangula
Rhombic dodecahedron

8 12 . 6 3
4 6 4 1
6 12 8 4
24 12+24 6+8 3/2
12 24 6+8 5/2
6+8 12+24 24 3/2
6+8 24 12 6

Note that for each of these forms Euler’s relation holds: The sum of the number of
faces and vertices is two units greater than the number of edges.
In summary, then, in spite of the cube’s use as a space filler and because its faces

may be aligned parallel and perpendicular to gravitational forces, the tetrahedron
and octahedron and their symmetrical subdivisions are stable and offer an expanded
view of the possibilities of three-dimensional forms, their interrelationships and
transformations, and their ability to fill space in an attractive diversity of permutations
and combinations.

TABLE 8.2 Polyhedral Representation of Numbers

Number Equals the Number Of
4 Vertices of a tetrahedron

Faces of a tetrahedron
6 Vertices of an octahedron Edges of a

tetrahedron Faces of a cube
8 Vertices of a cube

Faces of an octahedron
12 Vertices of a cuboctahedron

Edges of a cube
Edges of an octahedron
Faces of a rhombic dodecahedron



14 (8+6) Vertices of a Stella octangula

Vertices of a rhombic dodecahedron Faces of a
truncated octahedron

Faces of a cuboctahedron
24 Vertices of a truncated octahedron

Edges of a cuboctahedron
Edges of a rhombic dodecahedron
Faces of a Stella octangula

36 Edges of a truncated octahedron Edges of a
Stella octangula
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9 The Polyhedral World

Pieter Huybers

9.1 INTRODUCTION

It seems that the cube and the prism are at present themost common building shapes.
As these two belong to the family of the so-called Platonic andArchimedean polyhedra,
or, in other words, that of the regular and the semi-regular solids, this preference
means a very limited choice out of a much greater source of available forms. Most
of these solids have a form that is so perfect that they exert a great attraction to
artists, scientists, and engineers. We findmany examples in nature the shape of which
is based on one of these forms, like some of the monocellular beings and crystals.
However, they are also of great aesthetic as well as of practical importance. When we
look more closely at the building structures around us, it appears that the polyhedral
solids are actually used as a form-giving principle in building to amuch greater extent
than we would at first sight realize (Figure 9.1). The tetrahedron and the octahedron,
for instance, have often been used in building for the composition of space structures,
and the icosahedron usually serves as the starting point for a further subdivision of
spherical surfaces. However, there aremanymore possibilities for the use of the other
polyhedra, and of the forms that are derived from them, in building applications. It is
therefore necessary to know in what form they occur and what their characteristics
are.

Beyond the Cube: The Architecture of Space Frames and Polyhedra, edited by J. Francois
Gabriel ISBN 0–471–12261–0 © 1997 JohnWiley & Sons, Inc.

� 243

367





Figure 9.1 Houses in the shape of tilted cubes by Pieter Blom in Rotterdam,
the Netherlands.

9.2 WHICH POLYHEDRA DOWE KNOW?

Definition of a Polyhedron
First of all wemust agree on aworkable definition ofwhatwe consider in this context

to be a polyhedron.1We assume that:

1. They are coveredwith a closedpattern of plane, regular polygons. At this pointwe
shall only look at the so-called Platonic solids, which are composed of identical
polygons, and at the Archimedean solids, which consist of two or three different
polygons. Both groups are named after the ancient scientists to which their
discovery is usually ascribed.2,3 The different polygons that occur in these solids
have either 3, 4, 5, 6, 8, or 10 edges.

2. All vertices of a polyhedron lie on one circumscribed sphere.

3. All the vertices are identical. This is so because around each vertex of a particular
polyhedron the polygons are grouped in the same number, kind, and order of
sequence.

4. The polygons meet in pairs at a common edge.

5. Thedihedral angle at suchanedge is always convex. Thismeans that thedihedral
angle between two adjacent polygons is less than 180°, if seen from the interior,
or, in other words, the sum of the polygon face angles that meet at a vertex is
always smaller than 360° (see Table 9.1).

The Various Kinds of Polyhedra
It is easy to understand that under these conditions the minimum total number

of polygons around a vertex is three, the maximum number five, and it is also sim-
ple to prove that not more than five totally regular polyhedra can exist (Figure 9.2).
These are the regular or Platonic solids and they are each composed of one kind of
face. Polyhedra are called semi-regular, or Archimedean, if more than one kind of



polygon is used for their construction. According to the first condition of the previous
definition—namely, that the polygon has no more than 3, 4, 5, 6, 8, or 10 edges—a
group of 15 principally different semi-regular polyhedra is found (see Figures 9.3 to
9.5).
The polyhedron numbers in Table 9.1 were introduced by the author and they are

merely used here and in the following discussion in an “administrative sense.”4 They
indicate an order of sequence, based on the numbers of their faces. The Euler formula
is applicable, which means that: V -E + F =2.
The names of the semi-regular solids show that they are generally considered to be

derived from the regular solids by truncation. If this truncation is done through the
vertices, so that the original faces convert to polygons with double the number of sides
(i.e., triangle becomes hexagon, square becomes octagon, and pentagon becomes
decagon), five new polyhedra are found: the truncated versions of the regular solids
(Figure 9.4: Nos. 6, 8, 9, 13, and 14). The original face edges are divided into three
parts. The truncation procedure can be carried out a little bit further so that the
original edges are exactly



Figure 9.2 Derivation of the five possible Platonic polyhedra, composed of one kind
of polygon, with three, four, or five sides.

Figure 9.3 Sketch of the 5 Platonic and the 15 Archimedean polyhedra, including
two left-handed versions.



Figure 9.4 Photograph of the Archimedean solids.
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Figure 9.5 The different polygons in the regular and semi-regular polyhedra.
TABLE 9.1 Some Characteristic Aspects of the Platonic and Archimedean Polyhedra

p
Num-
ber

Code Name F E IT Total
An-
gle

Defi-
cient
Angle

Radius

1 3–3-3 Tetrahedron 4 6 4 180 180 0.61237244
2 4–4-4 Cube 6 12 8 270 90 0.86602540
3 3–3-

3–3
Octahedron 8 12 6 240 120 0.70710678

4 5–5-5 Dodecahedron 12 30 20 324 36 1.40125854
5 3–3-

3–3-3
Icosahedron 20 30 12 300 60 0.95105652

6 3–6-6 Truncated
tetrahedron

8 18 12 300 60 1.17260394

7 3–4-
3–4

Cuboctahedron 14 24 12 300 60 1.00000000



8 4–6-6 Truncated
octahedron

14 36 24 330 30 1.58113883

9 3–8-8 Truncated cube 14 36 24 330 30 1.77882365
10 3–4-

4–4
Rhombicuboctahe-
dron

26 48 24 330 30 1.39896633

11 4–6-8 Truncated
cuboctahedron

26 72 48 345 15 2.31761091

12 3–5-
3–5

Icosidodecahe-
dron

32 60 30 336 24 1.61803399

13 5–6-6 Truncated
icosahedron

32 90 60 348 12 2.47801866

14 3–10–10Truncated
dodecahedron

32 90 60 348 12 2.96944902

15 3–3-
3–3-4

Snub cube 38 60 24 330 30 1.34371337

16 3–4-
5–4

Rhombicosidodec-
ahedron

62 120 60 348 12 2.23295051

17 4–6-
10

Truncated icosido-
decahedron

62 180 120 354 6 3.80239450

18 3–3-
3–3-5

Snub
dodecahedron

92 150 60 348 12 2.15583738

P = polyhedron index. Code = side numbers of respective polygons that meet in a vertex. V,
E, and F = number of vertices, edges, and faces. Total angle = summation of face angles that
meet in a vertex. Deficient angle = 360° (or flat situation) -Total angle. Radius = radius of
circumscribed sphere.

bisected. This gives two new solids, the cuboctahedron (No. 7) and the icosi-
dodecahedron (No. 12). These two are peculiar ones and they are called
quasiregular, because they are, as their names already suggest, compounds
of two pairs of regular solids. P7, the cuboctahedron, is composed of six
squares (like the cube P2) and eight triangles (like the octahedron P3). Pl2,
the icosido-decahedron, is composed of 20 triangles (like the icosahedron
P5) and 12 pentagons (like the dodecahedron P4).



Truncation can also take place along the edges. This generally produces
square extra faces and it yields four new semi-regular solids (Nos. 10, 11,
16, and 17).

Finally, there are two other solids that are found by truncation of the cor-
ners and a double truncation of the edges. There are, in fact, four of them,
as they occur in a right-handed as well as in a left-handed (enantiomorphic)
version. These are the snub cube (No. 15) and the snub dodecahedron (No.
18). These two are called after their circumscribed figures. The snub cube
has six squares, each completely surrounded by triangles, whereas the snub
dodecahedron has 12 pentagons in a corresponding location. They have the
common characteristic that they all are based on a polygon or p-gon with a
variable number/; of edges, and that these p-gons come together in a ver-
tex with four triangles. As this variable p can have any value—with six as a
maximum (one



Figure 9.6 (a) The row of hypothetical “snub” solids. (b)The snub solids P18, P15,
and P5.

hexagon and four triangles form a plane grid)—a row of figures with common
characteristics is found havingp-gons with a successively increasing number
of sides: six at one end and three at the other end (icosahedron). One can
even go further and also take into consideration the combination of a 2-gon,
which is, in fact, a line of unit edge length with four triangles. This would pro-
duce an octahedron. Thus the complete row of ``snub figures'' consists of:
octahedron, icosahedron, snub cube, snub dodecahedron, plane tessellation
of triangles, and hexagon.5 (See Figure 9.6a.)

It is alsopossible toobtain the snubcubeand the snubdodecahedronby trun-
cation from the octahedron and from the icosahedron, respectively. These
are two Platonic solids that are composed of triangles only and they differ by
the fact that a variable number of triangles meet on each vertex: four in the
octahedron and five in the icosahedron. There are indications that the latter
derivation—from the triangular regular solids—is even more logical than the
first. This would mean that the two snubs could as well be called ``snub oc-
tahedron'' and ``snub icosahedron.'' Correspondingly, the snub tetrahedron
is identical to the icosahedron. (See Figure 9.6b.)

Vertex Situations

If one connects the outer ends of the edges that meet in a vertex of any of
the convex polyhedra, one obtains a—sometimes irregular—polygon, which is
called a vertex figure. This polygon is regular for the Platonic solids, but it can
have a more or less irregular shape in the case of the Archimedean solids. It
has as many sides as the number of polygons that meet in such a vertex and
it forms the basis of a pyramid with the original vertex as its apex. This cap is
called ``Eckenpyramide'' by M. Bruckner or vertex pyramid.6

This pyramid contains all data that are relevant for the geometry of the poly-
hedron, that is:

• edge length



• face angles of the meeting polygons

• curvature of the circumscribed sphere, which is defined by the fact that the
vertex as well as all its neighbors are situated on it

• all possible dihedral angles between the faces

Avertex pyramid is characteristic for a specific polyhedron and it canbeeither
three, four, or five sided, depending on the number of polygons that meet on
each vertex of a particular polyhedron.

The Reciprocals

The reciprocal or dual figure of a polyhedron is found by interconnecting the
midpoints of all edges that meet in a vertex. The plane thus obtained can be
expanded until it meets similar adjacent planes. The section lines between
these planes bisect the original edges of the polyhedron perpendicularly and
are also perpendicular to the line that connects the midedge with the center
of the polyhedron.7,8 (See Figures 9.7 and 9.8.)

The reciprocals of the semi-regular or Archimedean solids have the following
characteristics (see also Table 9.2):

• All faces are identical and have as many edges as the number of the polygons,
meeting on the vertices of the original polyhedron.

• The number of faces is equal to the original number of vertices.

• The number of vertices is equal to the original number of faces.

• The number of edges remains the same.

• Theedgesbisect the original edgesperpendicularly and tangent to themidsphere
(Figure 9.10).

• All dihedral angles in a reciprocal solid are equal and specific for each of them.

The Reciprocal Faces

The face of a reciprocal figure can have either three, four, or five edges, de-
pending on the number of w-gons in the original solid that occur on each ver-
tex (Figure 9.9).



The five regular polyhedra appear to be self-reciprocal, for example,
tetrahedron-tetrahedron, octahedron-cube, and dodecahedron-icosahedron
(Figure

deficient angle

Figure 9.7 faThe vertex pyramid of a polyhedron (in this case P13). 6WThe Dorman-
Luke construction method of the reciprocal solids.





Figure 9.8 The Dorman-Luke construction demonstrated on the polyhedron
P7.

9.10). The reciprocals have in this case regular polygon faces. The recip-
rocal faces of the semi-regular polyhedra, however, are more or less sca-
lene. They can be constructed by drawing tangent lines around the circle
through the midpoints of the edges (Figure 9.11). This construction is known
as the Dorman-Luke construction (see Figure 9.7).9 Two famous representa-
tives of this group are the rhombic dodecahedron (honeycomb cell) and the
triacontahe-dron (Nos. 7 and 12) (Figure 9.12zz and V).

TABLE 9.2. Names and Numerical Data of the Reciprocal Figures

R
Number

Name V E F Dihedral Angles

1 Tetrahedron (edge = 1) 4 6 4 70° 31'43.61”
2 Octahedron (edge = /T) 6 12 8 109° 28' 16.39”
3 Cube (edge = 1/2 /T) 8 12 6 90° 00' 00.00”
4 Icosahedron (edge = t) 12 30 20 138° 11'22.87”
5 Dodecahedron (edge =

1/t)
20 30 12 116° 33' 54.18”

6 Triakis tetrahedron 8 18 12 129° 31' 16.31”
7 Rhombic dodecahedron 14 24 12 120° 00' 00.00”
8 Tetrakis hexahedron 14 36 24 143° 07' 48.37”



9 Triakis octahedron 14 36 24 147° 21'00.36”
10 Trapezoidal

icositetrahedron
26 48 24 138° 07' 04.65”

11 Hexakis octahedron 26 72 48 155° 04' 55.85”
12 Rhombic

triacontahedron
32 60 30 144° 00' 00.00”

13 Pentakis dodecahedron 32 90 60 156° 43' 06.79”
14 Triakis icosahedron 32 90 60 160° 36' 45.19”
15 Pentagonal

icositetrahedron
38 60 24 136° 18' 33.24”

16 Trapezoidal
hexecontahedron

62 120 60 154° 07' 16.9”

17 Hexakis icosahedron 62 180 120 164° 53' 16.41”
18 Pentagonal

hexecontahedron
90 150 60 153° 10'43.44”

Thenames in this table give an indication of the number of faces. The suffix
``-kis'' means: number of subdivision. Furthermore, r = 11 + J 5 ):2 or the
golden section. The numbers in the first column of this table refer directly to
that of their related polyhedra in Table 9.1.



Figure 9.9 Sketch of the reciprocal faces.



Figure 9.10 The mutual reciprocity of the regular polyhedra.

Figure 9.11 The derivation of the rhombic triaconta- hedron (P12).





Figure 9.12 (a) Sketch of the reciprocal figures. The numbers refer to those of the
solids from which they are derived (see also Figure 9.3). (6/The reciprocal figures of
the semi-regular solids.

b

Prisms and Antiprisms

Prisms have two identical, parallel polygonal faces that are kept apart by a closed
ring of squares, like the top and bottom of a box with square side faces. Antiprisms
are similar to prisms, but they have one polygonal face rotated with respect to the
other, so that the square side faces turn into triangles (Figures 9.13 and 9.14). The
two polygons and the square or triangular faces of the mantle enclose a portion of
space that is completely surrounded by regular polygons. In addition, they satisfy
all of the previously mentioned criteria of the Archimedean polyhedra. Specimens
of both groups can be called p- gonal after the number of sides p of the parallel poly-
gons.They have vertex pyramids with a basis of the form 4–4-x for prisms (triangular)
and 3–3-3-x (trapezoidal) for the antiprisms. They too have reciprocal forms; these



are called polygonal (or /i-gonal, again with p for the number of sides) dipyramids
and trapezohedra (Figure 9.15). They differ from the other polyhedra in one respect:
The two parallel polygons can have any number of sides. Therefore, the two groups of
prisms and antiprisms form endless rows.

In this context the name of Johannes Kepler must be mentioned.10 He lived from
1571–1630 and in hisHarmonices Mundi he gave a complete survey of the 5 regular and
the 13 semi-regular solids. As explained before, twomembers of the second group,
the snub solids (Nos. 15 and 18 in Figure 9.3) have a lefthanded and a right-handed
version. Kepler mentioned explicidy for the first



Figure 9.14 Regular antiprisms.

time in history the prisms and antiprisms and showed them in sketch form.
He introduced the principle of duality and he gave all these figures the Latin
names by which they are still known. There are a few overlaps with the other
solids: The square prism is identical to the cube and the triangular antiprism
is identical to the octahedron. It is sometimes interesting to include also
the 2-gonal antiprism, as it is identical to the tetrahedron (Figures 9.14 and
9.18&).

The Stellated or Kepler-Poinsot Polyhedra



Kepler alsomentioned two stellated figures, the small and the great stellated
dodecahedra (Figure 9.16). The small stellated dodecahedron (No. 3) can be
constructed by placing on the faces of a dodecahedron pentagonal pyramids
of such a height that they are in extension with some of the adjacent faces of
the basic polyhedron. The result is that they have the appearance of 12 in-
terpenetrating, pentagonal star polygrams, or pentagrams (Figure 9.17). The
great stellated dodecahedron (No. 4) is derived similarly by the placement
of triangular pyramids on an icosahedron. This also results in a compound of
12 pentagrams. Poinsot in 1809 discovered two more stellated regular poly-
hedra: the great dodecahedron (No. 2) and the great icosahedron (No. 1),
which, respectively, can be considered as an intersection of 12 pentagons or
of 20 triangles.11 The star polyhedra, in fact, do not satisfy the fifth condition
of the definition that was given for polyhedra, as they are not convex at all
places.





Figure 9.15 (a) A number of compounds of polyhedra and their reciprocal figures.
6W Antiprisms and their reciprocals.

Figure 9.16 The four regular star polyhedra.



Both prisms and antiprisms also have star-shaped versions (Figure 9.18). The two
parallel polygonal faces can be replaced by regular stars or polygrams. This produces
two new families: star prisms and star antiprisms. In the first group amutual distance,
equal to the unit edge length, can be chosen, as in the normal prism. The resulting
figure has a mantle, consisting of rectangles. The star antiprisms have a somewhat
unexpected appearance. On closer examination the formswith even numbers of sides
seem to be composed of two antiprisms with half the number of faces, but with a
greater edge length. Among these the square version is a peculiar one. The four-sided
polygram, or tetragram, is identical to a set of crossing lines and it therefore leads
to a figure, which can be considered as a pair of intersecting tetrahedra. This figure
was also discovered by Kepler and he called it the Stella octangula (No. FS-4 in Figure
9.18).

Figure 9.17 A row of successive pentagrams, with t = (1 + /5~):2.
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Figure 9.18 Star prisms and antiprisms.

POLYHEDRA IN BUILDING

The form-givingpossibilities that polyhedra canbring to buildings is very important,
and their applications are manifold although this fact is not always fully recognized.

All Trivial Uses of Cubic and Prismatic Shapes

As stated in the introduction, most of our present-day architectural forms are
prismatic (with the cube as the most commonmember). Prisms are used in a vertical
or in a horizontal position, in pure form or in distorted versions. This family of figures
is therefore of utmost importance for building.

Solitary Applications of Regular or Semiregulair Polyhedra

Architecture can become more versatile and interesting with macro forms, de-
rived from one of the more complex polyhedra or of their reciprocal (dual) forms.
Unfortunately, this has not often been done (Figures 9.19 to 9.22).

Close Packings of One or More Kinds of Solids in Conglomerates or in Space Struc-
tures

Some of the polyhedra lend themselves to being put together in tight packing for-
mations (Figure 9.23). In this way quite complex building forms can be realized. Such
packings are also suitable as the basic configuration for space frames, because of their
great uniformity: identical mem-



Figure 9.19 Full-scale cardboard house based on P8.



Figure 9.20 Scale model of a polyhedron house.

Figure 9.21 Office building in Bamako, Mali, based on P10.

Figure 9.22 P16model, made of GRP sandwich panels.



Figure 9.23 Packing of polyhedra (P11).

bers meeting at specific angles. These members usually meet at joints having a
polyhedral form. The rhombianboctahedron (PIO) is well known in this respect, as
it is the node of the famous MERO system. The struts meet the joint on the square
faces. The joint has 18 such faces that have mutual positions and angles allowing the
formation of various frame shapes (Figures 9.24 to 9.27).

Prismatic and Antiprismatic Forms

The simplest structural forms are the prismatic shapes. They usually fit well to-
gether and they allow the formation of many variations of close packings. Figure 9.28
shows examples of such applications: Matrices can be formed with regular or de-
formed prisms, parts can be linked up in rows to make cylinders, or elongated prisms
can serve as the struts of space frames. If a number of antiprisms is put together
according to their polygonal faces, a geometry is



Figure 9.24 Possible space frame configurations.

Figure 9.27 Triple-layer space grids, based on P7.





Figure 9.28 Prismatic forms.





obtained that is often used as the basis for structural applications. The outermantle
has the appearance of a cylindrical, concertina-like folded plane. These forms can
be described with the help of only a few parameters. Tononmentions methods that
modify the general shape of antiprismatically folded planes.12 This has been worked
out by the author for circular transformations, so that toroidal and spherical overall
forms are found on the basis of polygonal or star-formed prisms and antiprisms.13

Parts of these can be combined into larger compounds (Figure 9.29).
Hemispherical Structures
Compactness of Polyhedra
A polyhedron can be composed of polygons that have either 3,4, 5, 6, 8, or 10 edges.

These polygons are facets of the circumscribed sphere, which can be thought of as
going through the vertices. The volume of this sphere is therefore larger than that of
the corresponding polyhedron. This is also the case for the area of their envelopes.
The closer these two values are, the better is the approximation of the sphere that
is reached by a particular polyhedron. The closeness of this approximation can be
expressed in a value called the compactness of a polyhedron (Table 9.3).
The compactness Cp is equal to the quotient of the area of a sphere with
TABLE 9.3 Compactness of Polyhedra

p
Number of Polygon Sides

Volume Area
Compact-
ness CP3 4 5 6 8 10

1 4 — — — — — 0.117851131.732050800.67113929
2 — 6 — — — — 1.000000006.000000000.80599597
3 8 — — — — — 0.471404523.464101610.84558252
4 — — 12 — — — 7.6631189620.645728810.91045318
5 20 — — — — — 2.181694998.660254030.93932565
6 4 — — 4 — — 2.7105759912.124355650.77541318
7 8 6 — — — — 2.357022609.464101610.90499718
8 — 6 — 8 — — 11.3137085026.784609690.90991772
9 8 — — — 6 — 13.5996632932.434664360.84949368
10 8 18 — — — — 8.7140452121.464101610.95407961
11 — 12 — 8 6 — 41.7989898761.755172430.94316565
12 20 — 12 — — — 13.8355259429.305982840.95102430
13 — — 12 20 — 55.2877307672.607253030.96662189



14 20 — — — — 12 85.03966456100.990760150.92601248
15 32 6 — — — — 7.8894774019.856406460.96519625
16 20 30 12 — — — 41.6153237859.305982840.97923697
17 — 30 — 20 — 12 206.80339887174.292030340.97031268
18 80 — 12 — — — 37.6166499655.286744950.98201136

The values of Volume, Area, and Compactness are expressed in unit edge
length.

the same volume as the polyhedron with index p, divided by the surface area
of this polyhedron. This value is given by the following equation:

Vse-ir* Volume,2Cp =
Area,

Pyramided or Polar Versions of Solids

Pyramidization or ``sphere point raising'' is a technique whereby the center
of a polygonal face of a polyhedron is raised until it lies on the circumscribed
sphere. If these new polar points are connected to the polygon corners with
inclined lines, a further subdivision is obtained that has a better approxima-
tion to the sphere. The technique is often applied in order to reduce the size
of larger polygons. It can therefore be considered as the first grade of subdi-
vision of the circumscribed sphere, which can be done with any of the known
poly- hedra. It is clear that the 8-and 10-gon are not very useful in this re-
spect, as we would get long inclined edges and narrow triangular faces. We
know, however, of a number of applications where polyhedra consisting of
polygons with smaller numbers of edges have been used. Many radomes
have been built of hexagonal and pentagonal pyramids, usually made of GRP
(glass-fiber-rein-forced polyester) (Figures 9.30, 9.31, and 9.43).14

Polyhedral Sphere Subdivisions

Triangular Subdivision Methods. For the further subdivision of spherical sur-
faces in most cases the icosahedron is used as a starting point, because it
consists of



Figure 9.30 Scale model of pyramidized P8 compound.

Figure 9.31 Octagon House by K. Critchlow, based on a compound of truncated and
pyramidized reciprocal solid R7. (Source: R. Sheppard et al., Paper Houses, Survival
Scrapbook 4, Unicorn Bookshop, Caerffydin, USA, 1974.)



20 equilateral triangles that can be easily covered with a suitable pattern that is
subsequently projected upon a sphere. This leads to economical kinds of subdivi-
sions up to high frequencies and with relatively small numbers of different member
lengths. There are two other triangular regular solids that can be used similarly: the
tetrahedron and the octahedron.15”20

The original polyhedron triangle has to be subdivided up to a suitable frequency, so
that elements are produced of the required maximum or minimum length. This can
be done using several methods, each of which has its own advantages.

Generally, two main methods are considered:

1. Subdivision of the polyhedron edge in equal parts and successive interconnec-
tion of corresponding points on opposite edges of the triangular face, so that a
pattern of regular small triangles is found. This pattern is then projected from
the center onto the surface of the sphere.



2. Subdivision of the polyhedron edge in equal parts of the spherical angle under
which this edge is seen from the center, so that, in the case of the sphere, equal
chords are found. Theparts intowhich the edge is subdivided are no longer equal
and, if opposite points are interconnected, the connection lines therefore do not
intersect in points but form small triangular “windows,” as Clinton calls them.21

The centers of these windows are successively projected onto the envelope.

Polygonal Subdivisions. Similar kinds of subdivisions can be made on any of the
other regular and semi-regular solids. Even their reciprocals as well as regular prisms
and antiprisms can be used this way, as long as they are properly subdivided.19,22,23

Subdivision patterns are written on the faces of these figures and the coordinates of
the intersection points can be converted from Cartesian into polar coordinates. If all
distances are then taken equal to the radius of the circumscribed circle, the originally
polyhedric form is turned into a sphere. The spherical coordinates can also be written
in a general form, so that the shape of the sphere can be modified.

It was previously mentioned that the polyhedra considered here are composed of
polygons with 3, 4, 5, 6, 8, or 10 sides. In the literature one discerns mainly three
so-called classes of subdivision of the triangular faces; see, for example, Ki trick.18

Class I is the basic subdivision type for triangles and is generally used in combination
with icosahedra (only rarelywith octahedra); Class II is, in fact, reciprocal (the rhombic
triacontahedron); and Class III is the snub dodecahedron type (P18 in Figure 9.3).

The subdivision of the polygons can be worked out more or less analogously to the
general concept used by Kitrick et al. (Figures 9.32 to 9.36).

Class I: Radial Type. The triangle is taken as the starting point. This can be subdi-
vided into smaller triangles. Two basically different methods are in use: edge based
and arch based. The polygon is first subdivided into its own plane and each inter-
section is projected radially onto the sphere (Figure 9.37). In the next part, byway of
example, triangular patterns with frequencies of 3 or 6 are used and also a particular
hexagonal pattern. This equilateral triangle can be



Figure 9.32 Three kinds of subdivision of polygons.

Figure 9.33 Further breakdown of the polygons.

Figure 9.34 P7 with hexagonal pattern, pumped up to spherical form.





Figure 9.35 Examples of polyhedral breakdowns of spherical surfaces, based on the
Platonic solids.



shifted, transformed, and subsequently reproduced by rotation around the axis
perpendicular to its plane in order to fill the radial patterns of the polygons with more
than three sides.

Class II: Parallel Type. The square can be subdivided rectangularly, for instance
into smaller squares. These can be provided with diagonals. A further subdivision of
the polygon is found by placing another polygon with half the number of sides in the
middle and connecting this to alternate edges by rectangles. The remaining parts are
triangular. The triangular and the rectangu-



Figure 9.36 Further examples of breakdowns, based on some of the
Archimedean solids.



lar parts can be filled in with transformations of the regular versions. The basic
polygon must have an even number of sides. The square is trivial and this leaves only
the polygons with 6, 8, and 10 sides having a triangle, a square, or a pentagon in the
center.

Class III: Chiral Type. This is comparable to Class II but with the cen-
tral—smaller—polygon slightly rotated over the angle ir/n (n is the number of
the sides). The remaining part can be made up of smaller triangles, which can again
be subdivided. If seen from above, this type recalls very



Figure 9.37 Projection of pattern on sphere.

much the snub polyhedra. The term chiralmeans that the mirror image is unlike
the original pattern. This is only true in one direction. Polygons with 4, 6, 8, or 10
sides are suitable for this type, but the square leads to a somewhat trivial solution.

Reciprocal Sphere Subdivisions

The dual or reciprocal versions of the polyhedra can also be further subdivided
(Figures 9.38 and 9.39). This is easily understandable for those that have a triangular
composition, such as those with the numbers Rl, 2, 4, 6, 8, 9, 11, 13,14, and 17. These
do not particularly throw a new light on the subject, but there are two others that are
muchmore interesting in this respect: R7 and R12, or the rhombic dodecahedron and
triacontahedron. R3 (cube), which can be considered as the dual of the octahedron,
also belongs to the category of rhombic polyhedra by analogy. So there are three
reciprocals that act as the counterparts of the three triangular regular polyhedra. The
subdivision of the spherical surface is accomplished in this group in a way similar to
the Class H triangle.



Figure 9.38 Reciprocal subdivisions.



Figure 9.39 Hexagonal geodesic, based on R12.

Modifications of the Sphere
The shape of the sphere can be altered in many ways.4,16,l7,27 The equation of the

sphere canbe transformed into a set of two expressions, describing it in amore general
way:
/?, = EJ sin”'4> + cos”,(p),/n'
/?2 = /?,£/ (£?* sin

n20 + Rf2 cos”2'”2

wherenx andn2 are the exponents of thehorizontal andvertical ellipses, respectively,
and E1 and E2 are the ratios of their axes (see also Figure 9.40).
The curvature is a normal ellipse for m=2, but if n is raised, a form is found that

approximates the circumscribed rectangle. If n is decreased, the curvature flattens
until 72=1 and the ellipse then has the form of a pure rhombus with straight sides,
connecting the maxima on the coordinate axes. For n<\ the curvature becomes con-
cave and obtains a shape reminiscent of a hyperbola. For ?z=0 the figure coincides
completely with the X and Y axes.



By changing the value of both the horizontal and the vertical exponents, the visual
appearance of a hemispherical shape can be altered considerably. The pure sphere
forms, in fact, only one specific representation out of a great number of possible
shapes that canbe formedbya combinationof different horizontal andvertical ellipses.
Some of these do not even resemble the original convex ellipsoidal shape, yet are very
familiar, such as the pyramid, the cone, the cylinder, the cube, and so on.

If for both ellipses an exponent nx = n2 = 2 is chosen and if the ratio of the axes is
kept equal to = E2 = 1, the pure sphere is found. The subdivision of the surface of such
an ellipsoidal shape may be based on the samemethods described previously. The
resulting pattern is projected onto the surface of the ellipsoid from the inside, using
the origin as the projection center.

Truncation



For practical purposes, parts of the sphere have often been cut off in order to make
it fit on horizontal or against vertical planes. This can be done as demonstrated in
Figure 9.41. A certain value for the angle of the desired truncation plane has to be
chosen and an area around it where all occurring nodes have to be transferred to this
plane in order to obtain a properly closed lower boundary. The pattern itself can be
rotated or translated before the projection upon the sphere takes place.

Augmentation

Upon the regular faces of the polyhedra other figures can be placed that have the
same basis as the respective polygon. In this way polyhedra can—so to speak—be
“pyramidized,” as already mentioned earlier. This means that shal-

Figure 9.41 Truncation and adaptation to horizontal plane.



Figure 9.42 Augmented polyhedra.

low pyramids are put on top of the polyhedral faces, having their apices on the
circumscribed sphere of thewhole figure. This canbe considered as thefirst frequency
subdivision of spheres.

In 1582 Simon Stevin introduced the notion of “augmentation” by adding pyramids,
consisting of triangles and having a triangle, a square, or a pentagon as a base, to the
five regular polyhedra.3 In 1990, the late D.G. Emmerich extended this idea to the semi-
regular polyhedra (Figure 9.42). He suggested using pyramids, with 6-, 8-, or 10-sided
bases, that are composed of regular polygons. There are seven such pyramids, that
are suitable for this purpose and that are, in fact, parts of other polyhedra. Emmerich
found out that they can be combined to form 102 different combinations, which he
calls composite polyhedral



Figure 9.43 Structure of pyramidized pentagonal and hexagonal GRP panels.



Figure 9.44 Model of augmented P9 and P11.
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10 Proportion and Symbolism in Poly-
hedra

Rene Motro

10.1 INTRODUCTION

The task of understanding the “architecture” of polyhedra can be made easier by the
study of proportion and symbolism in polyhedra, which gives access to some funda-
mental meanings. Since ancient times, polyhedra and their associated symbolism
were a matter of thinking and contemplation: Readers can refer to the major works of
Plato1 and Fra Luca Pacioli.2 Papers concerning the symbolic approach have been re-
cendy published by Critchlow,3,4 Meu-rant,5–7 and Lawlor8 among others. Concerning
proportion and specifically the golden one, amajor contribution wasmade by Ghyka.9

Coxeter and Hilbert are the authors of comprehensive studies that give the necessary
mathematical basis.10,11 As far as the golden proportion is concerned in relation to
architecture, Le Corbusier’s work The Modular plays a major role.12 Moreover, Lal-vani
paid attention to hyperspaces based on polyhedra.13

In such a context, we only present here themain features of proportion and symbol-
ism in polyhedra, and focus on the five so-called Platonic or regular polyhedra, which
can be related to one another in geometric and symbolic terms.

Beyond the Cube: The Architecture of Space Frames and Polyhedra, edited by J. Francois
Gabriel ISBN 0–471–12261–0 © 1997 JohnWiley & Sons, Inc.
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It may be necessary to recall some elementary definitions regarding polyhedra
before we proceed. Most of these developments are included in the previously cited
references with more details, but they are given in this chapter in order to allow an
easier reading for people who are not familiar with this topic.

A polyhedron is a closed surface composed of plane polygons assembled by their
edges in such away that each edge is common to two of them. It is convex if it is entirely
positioned on one side of the planes that form the faces. Only the first three regular
polygons, the equilateral triangle, the square, and the pentagon, can be assembled
to make a regular polyhedron, which is characterized by the fact that all of its faces,
edges, and apices are identical. While the geometrical construction of the first two
polygons can be achieved simply with a ruler and a compass, knowledge of the golden
proportion is necessary for the pentagon. This proportion also plays a major role in
the geometrical construction of regular polyhedra and their relative inscription. We
introduce it now in relation to the pentagon.

The Golden Proportion and the Pentagon

The Golden Proportion

Mathematically speaking, a proportion is the equality of two ratios and can be
understood as a comparison and, furthermore, as an analogy. It is not surprising
to learn that Jamblique used the Greek word “avaXo'yia” (analogy) for the golden
proportion that establishes a specific relation between three numbers or, if extended
to a symbolic approach, between three concepts. The value of the ratio in this specific
case was called the “golden number” and was designated by the letter 4>; in reference
to the architect Phidias who used it in his architectural works.

According to historical evidence, the “golden number” was related to the observa-
tions made by the Greek astronomer Meton: Every 19 years, the moon’s cycles were
identical at the same dates (related to the motion of the earth around the sun). This
discovery allowed for improvement of the calendar. This 19-year period, known as
“Meton’s cycle,” was adopted in 453 B.C. and inscribed in golden letters on the columns
of Minerva’s temple; the rank of any year of the cycle was its golden number. Later on,
a golden number designation was conferred on the whole cycle. The relation between
this historical explanation and the mathematical value of the golden number is not
obvious. Perhaps it could be found in the proportions of Minerva’s temple.



Only three terms, a, b, and c, arenecessary to establish aproportion. Oneof them, say
b, will be considered as the “middle term” (|xe8i6Te in Greek) between the two others.
In the same way, one idea can relate the two others, allowing a better understanding
of their relationship.
From the algebraic point of view, three main kinds of proportions are known. In the

case of the arithmetic proportion, the three terms are related by the equality
a-b= b-c
where b is the arithmetic mean between a and c:
a+ c
2
The harmonic proportion is governed by

a-b _a

b-c~ c

A specific case of this proportion occurs when
c= a+ b
which leads to

b=a-/2

The golden proportion is a special case of the geometric proportion characterized by

c_ b

b~ a

or
b = yj a-c
where

c= a + b

If we write
the governing equation becomes
<|>2 + 4> -1 = 0
This equation has two roots



The approximate absolute root values are 1.618 and 0.618 and they are both known
as “golden numbers.” Many mathematical developments have beenmade based on
the golden number and specifically in terms of the Fibonacci series. However, if we are
interested in the symbolic approach, then it can be noted that, c being the result of the
combination of a and b, “b is to c as a is to b.” Establishing in such a way a continuous
relationship between the whole and its parts, the division in mean and extreme ratio
for a segment is such that the ratio of the smaller segment to the larger is the same
as that of the latter to the whole. It is of great importance when c is considered as
the “principle,” the “primal unity,” the “one”; and it is interesting to notice, as did
Ghyka, that this irrational number can be reached with calculations made only with
the number 1. It can be demonstrated that

1

= lim ;

and

In symbolic studies, the number 1 has a great importance; it is the principle from
which all things are derived, and expressions of <±> based on this value attest to its
direct filiation with unity, known as the key to harmony in many fields, particularly in
architecture.

Besides the algebraic approach, the geometrical approach can also be used and two
geometrical constructions are traditionally described. Wegive these twoconstructions
next.

For a given segment AB (Figure 10.1), the division must be done in such a way that
“the smaller part be to the greaterwhat this last one is to the initial segment,” achieving
by geometrical means the specific case of geometric proportion.

On the straight line perpendicular to AB at B,we transfer a segment BC =



Figure 10.1 First geometrical construction of the golden proportion.

Figure 10.2 Geometrical construction of the golden proportion based on a square.

AB / 2. On CAwe plot point E defined by CE = CB and on AB a point F such that AF =
AE. This point produces the required division and it can be verified, by calculation of
the different lengths, that

1.618

rD

The other geometrical construction commonly used is as follows: A square with
unity-length edge AB is first divided into two equal rectangles (Figure 10.2). M being
the middle point of AB, pointFis taken on the line AB and its position is defined byMF
= MT (MT being the diagonal of either one of the two rectangles).



These two constructions are based on the division of the initial segment AB into
two equal parts and the drawing of a square angle, which can be done with a compass.
They can be grouped together in a single diagram (Figure 10.3). When it is repeated
again and again, the first construction leads to the

Figure 10.3 Geometrical construction of the golden proportion: synthesis.
infinitely small, the second one to the infinitely large, thus creating a sequence of

lengths in accordance with the definition of the Fibonacci series for which
un=un_1+un_2
The Pentagon
The equilateral triangle, the square, and the pentagon are the constitutive faces of

regular polyhedra. Several constructions of the pentagon are used, based either on
the circumscribed circle or on an edge as initial data.
When considering the first kind, based on the circumscribed circle (Figure 10.4),

the construction begins by plotting F in the same way as in Figure 10.3, AB being
the circle radius. It can be verified that TF is the required edge of the pentagon. The
resulting value is
7F = Vl + 0.6182 =1.176
which is in accordance with the algebraic value calculated with trigonometry, that

is,
7F=2-sin (tt/5) = 1.176
It is interesting to notice that the pentagon apex angle is equal to 108°, and that sin

(54°) = 0.809 = <j> / 2



Figure 10.4 Pentagon inscribed in a circle.

which allows the calculation of the ratio between the edge TG and the diagonal GH
in the pentagon (Figure 10.4):

GH = 2-IG = 2-TG -sin (54°) = c|>-TG

This ratio is equal to <f> and this is one of the pentagon’s significant properties.
Two constructions based on the edge as initial datum are described next. The first
construction using the edge as basis rests on this property (Figure 10.5). AB is the
edge of unit value, and Fis defined as in Figure 10.2. Then AF = <b and a first pentagon
apex E is found at the intersection of two circles: one of center A and radius AB = 1,
the second of center B and radius BE = c{). Other apices are simply obtained from a
similar construction.

A second construction using the edge as basis can also be employed (Figure 10.6).
We draw two circles Cl and C2 (centers A and B, radius equal to AB) that intersect at J
and J'. A third circle (center J, radius equal to AB) intersects Cl and C2, respectively, at
points G and H, and straight line at point I. Apex E is given by the intersection between



Cl and the line HI. Apex C is given by the intersection between C2 and the line GL The
last apex D Res on line JJ’ and on a circle of center f and radius equal to 1. (This last
construction is graphically sufficient but resulting apex angles are not strictly equal
to 108°.)

Polyhedra

Five Regular Polyhedra

There are five regular polyhedra and only five. For each of them, faces, edges, and
apices are identical. The faces are regular polygons characterized by their

Figure 10.5 Pentagon of a given edge, exact construction.



Figure 10.6 Pentagon of a given edge, approximate construction.

edge number (let p be this number) and the number of edges related to one apex
(let q be this number). Apart from Coxeter’s demonstration,10 based on the apex angle
values, another one can be established on the basis of topological properties dealing
with the number of edges E, faces F, and apices A. It is derived from the application
of Descartes’s relationship (often referred to as Euler’s rule), which, in the case of a
convex polyhedron, is of the form:
A-E+F=2
Each edge is related to two apices, such that
A-q=2-E



Similarly, when considering faces and edges, we can write

F-p = 2-E

Descartes’s relationship can be expressed only in terms of E, p, and q in the following
form:

Figure 10.7 The five regular polyhedra: (C) cube, (0) octahedron, (T) tetrahedron, (I)
icosahedron, (D) dodecahedron.

Taking into account that p and q,which are integers, must satisfy

p>3, q>3

because faces are at least equilateral triangles, there are only five admissible values
for the couple {p, q}. Denomination and topological characteristics of these five regular
polyhedra (Figure 10.7) are fisted in Table 10.1.

Geometrical Properties of Regular Polyhedra



Relative Inscriptions of Regular Polyhedra. In his famous book Timaeus, Plato
establishes a correspondence between the four elements with four of the five regular
polyhedra (Table10.2). This correspondence is completedby the specific role assigned
to the last polyhedron, the dodecahedron, which represents what is called “ether” and
which contains all the other elements. Symbolic derivations can be made by analogy
on this basis and many authors agreed with this correspondence. Fra Luca Pacioli
devoted a large part of his book on
TABLE 10.1 Regular Polyhedra: Topological Properties

Regular Polyhedron 9 P E A F
Tetrahedron (T) 3 3 6 4 4
Hexahedron (cube) (C) 3 4 12 8 6
Octahedron (0) 4 3 12 6 8
Dodecahedron (D) 3 5 30 20 12
Icosahedron (1) 5 3 30 12 20

TABLE 10.2 Correspondence between Polyhedra

and the Four Elements
Earth Cube
Water Icosahedron
Fire Tetrahedron
Air Octahedron

the “golden proportion” to the geometrical interpretation of this proposal. In the
following discussion, we give a comprehensive study of the relative inscriptions of
regular polyhedra within one another. The word inscription is here defined by the fact
that all apices, edges, or faces of one polyhedron are coincidental, or in contactwith the
apices, edges, or faces of another polyhedron. This study can be achieved on the basis
of topological and symmetry properties of the polyhedra, taking into account that the
possible coincidences and contacts are classified as follows (condensed notations are
given in parentheses with two letters for each kind of inscription):

• an apex with an apex (AA)



• an edge with an apex (EA)

• a face with either an apex (FA) or an edge (FE)

From the systematic study of mutual correspondence between one polyhedron
and the other four, the inscriptions given in Table 10.3 can be estab-fished. Table
10.3 shows that only the dodecahedron can “receive” the other four polyhedra in
accordance with the geometrical interpretation given by Plato. Simultaneously, the
tetrahedron is inscribable in the other four. These geometrical properties will be
subsequently exploited at the symbolic level. The relative inscriptions of the four
polyhedra in the dodecahedron will first be described in detail. No calculations are
given here in terms of angles and length ratios: They have been carried out on the
basis of spherical and Cartesian coordinates in order to obtain the appropriate size
required for display.14

Dodecahedron and Cube.The cube’s construction is very well known and is not
presented here. Proceeding “Beyond the Cube,” we begin with a description of the
drawing procedures for the dodecahedron.
Each of the dodecahedron’s 12 faces is related to corresponding cube’s

TABLE 10.3 Relative inscriptions of regular polyhedra

Tetrahe-
dron

Cube Octahe-
dron

Icosahe-
dron

Dodecahe-
dron

Tetrahedron — — EA — —
Cube EA or FE — FE — —
Octahedron EA EA — — —
Icosahedron FA FA — — FA
Dodecahe-
dron

AA AA or FE EA FE —

edges: The latter become the diagonals of the pentagonal faces. As has been estab-
lished previously, the ratio between the cube’s edge and that of the dodecahedron is
equal to the golden number <£>.



Let ABCD be a cube’s face. Then AB and BC are the diagonals of two of the dodecahe-
dron’s faces. AB is divided according to the golden proportion (Figure 10.8/z). AF is the
length of the dodecahedron’s edge and is plotted on the middle of ABCD as A'F' (Figure
10.Sb). The final step to define the apex G requires the determination of the distance
F'G; BF' is known, and also BG, as the dodecahedron’s edge. Therefore, G is at the
intersection between the perpendicular to BF' and the circle of center B and of radius
equal to AF (Figure 10.8c). The 12 faces of the dodecahedron are then drawn on the
basis of this procedure (Figure 10.8d) in order to inscribe the cube in a dodecahedron
(Figure 10.8c). Five cubes can thus be placed inside the dodecahedron.



Figure 10.8 Dodecahedron and cube: (a) determination of dodecahedron's edge
length; (b) plotting A' F', projection of dodecahedron's edge on ABCD; (c) determination
of F'G; (d) two dodecahedrons' faces on the cube; (e) cube inside a dodecahedron.

Figure 10.10 Dodecahedron and octahedron.



Dodecahedron and Tetrahedron. As the tetrahedron is inscribed in the cube by
coincidence between its four apices with four of those of the cube, one position is
immediately determined (five positions can be found according to the relative number
of apices between the dodecahedron and the tetrahedron) (Figure 10.9).
Dodecahedron and Octahedron. Identical orthogonal symmetries exist for both of

these polyhedra; inscription is obtained from contact between the six apices of the
octahedron and six of the thirty edges of the dodecahedron at their middle (Figure
10.10). Five octahedra can be placed inside a dodecahedron.
Dodecahedron and Icosahedron. Correspondence between these two polyhedra is

dual in terms of apices and faces: Icosahedron apices are situated at the centers of
dodecahedron faces (Figure 10.11).
Polyhedra and Spheres.Three spheres are associated with each regular polyhe-

dron: The insphere is tangent to the faces, the intersphere is tangent to the

Figure 10.11 Dodecahedron and icosahedron.

TABLE 10.4 Radii of Associated Spheres

Polyhedron Circumsphere
Radius

Intersphere
Radius

Insphere
Radius

Tetrahedron 1.732 1 0.577
Octahedron 1.618 1.144 0.934
Cube 1.732 1.414 1



Icosahedron 1.376 1.171 1.094
Dodecahedron 1.732 1.618 1.376

edges, and the circumsphere contains all the apices of a regular polyhedron. This a
geometrical characteristic of regular polyhedra.

Corresponding radii have been calculated (Table 10.4) for the inscription situation
of all polyhedra inside a dodecahedron. As a basis, we chose an edge cube equal to 2.
It can be seen that there are 10 distinct spheres because some of them are common to
two or three polyhedra (Figure 10.12). Table 10.4 corresponds to the inscription of the
four polyhedra in the dodecahedron (Figure 10.13). In symbolic terms, the number
10 is important; it recalls the famous Pythagorean tetraktis and is, of course, closely
associated with the number 5 and also the golden number. It can also be related to
the 10 sephiroth of the cabala.

10.2 CONCLUSION

From the preceding discussion we want to underline, among the important properties
that have been described, the inscription of regular polyhedra in



Figure 10.12 Ten spheres.
the fifth one, the dodecahedron (Figure 10.13), and the number of associated

spheres.

10.3 SYMBOLISM AND POLYHEDRA

Introduction
Because this book is concerned with architecture, in the following discussion we

will give some landmarks that relate geometrical properties and symbolic meanings
for polyhedra which are inherent in architecture.
The purpose of this section is necessarily humble because of the very subject under

discussion: We only hope to indicate a pathway or two for research in the visible and
the invisible. The guide to these pathways can be the symbolism of polyhedra, which
is as present in polyhedral architecture as it was in Plato’s cosmogony in his Timaeus.
On Symbolism
The symbolic approach is rare enough in these days to justify a few reminders

concerning this procedure. The essence of the “symbol” is that it cannot be



Figure 10.13 Inscription of the four elements inside a dodecahedron

definedwithout beingmutilated, limited, deformed, or even eliminated. Indeed, the
question is not to define “a” specific symbol but to determine what is found under the
heading “symbol.” “The” symbol is a collective singular—simply indicating symbolism
that must be investigated from amultiplicity of angles. It is usually accepted that the
origin of the word is the Greek symbolon,which was a sign of recognition formed by
two halves of a broken object; joining two members of the same brotherhood. The
verb symballein also implies the idea of togetherness through the prefix “sym” but
includes the idea of throwing or projection. A symbol is an image presenting an
analogical representation of its object. It consists of three elements: the outward, that



is, the visible, perceptible, concrete, and rational representation, the word; what is
represented, that is to say, the invisible, the irrational, the idea represented by the
symbol; and, finally, the relation between the outward and the idea. The symbol moves
from the visible and rational to the hidden and irrational. The symbol requires both
comprehension from analysis of each of its components and intuitive perception.
However, although the symbol expresses an idea—or enables it to be expressed—it
does not provide an explanation because the visual image given by the symbol is only
the reflection of what is not known. It awakens, suggests, and provokes.

The symbol underlines the connections between the various parts of the cosmos. It
reveals the harmony of the world and the bonds that join what is separated, or that
which seems to be separated. It gives homogeneity of meaning to what is represented.
It reveals by veiling and achieves while destroying. As a prism between body and
spirit, the symbol returns light and image in a different manner depending on the
illumination that it is given and depending on the direction from which it is regarded.
In this, it is a living, perpetually changing, andmoving image, which remains constant
in its metaphysical span.

A simple illustration of this is what Vieux15 called “le Pavilion des Can-tonniers”
(the roadmenders’ hut), consisting of a cube topped by a squarebased pyramid of four
faces with identical slopes (Figure 10.14).14We are here at the heart of an elementary
polyhedral construction. The layout of the four slopes is obtained from a pentagon
whose side is equal to that of the square; only four sectors of the pentagon are used.
The symbol associated with this form recalls the need to divide the pentagon. This
construction, consisting of a cube topped by a pyramid, symbolizes a call for spiritual
elevation from the visible world (the cube corresponds to the quaternary of the visible
and material, e.g., to Plato’s four elements: earth, air, fire, and water). The notion
of ascension is suggested by the slopes of the pyramid, whose summit is the final
point. The outline of this pyramid contains the symbolism of the golden number. It
requires the construction of a pentagon, which cannot be obtained, as we previously
remarked, without tracing with a compass the proportion of the golden number. As
such, this structure contains the elements required to awaken consciousness and acts
as a catalyst on the imagination. It acts as any symbol in leading from the concrete to
the idea.



Elevation

Figure 10.14 Roadmenders' hut: geometrical construction.

Plato’s Cosmogony in Timaeus

The Four Elements



The symbolic role of polyhedra reaches its full dimensions in Plato’s cosmogony.1

Plato’s writings are not analyzed here—interested readers can profitably consult
Critchlow’s work.4 In brief, three ideas should be stressed: harmony, duality, and
ternary. The first idea is that of harmony in the Greek sense of the term, the idea being
that any and all manifestations of the principle must preserve a harmonious relation-
ship between the elements created andmust be complete. This idea is discussed in
the following quotation:

The Platonic Cosmos, then, in the words of Timaeus, was created by a “maker” who,
wishing to make this world most nearly like that intelligent thing which is best and in
every way complete, fashioned it as a single visible creature, containing within space
itself all living things, whose nature is of the same order space. (Timaeus 30d)

Now that which comes to bemust be bodily, and so visible and tangible; and nothing
can be visible without fire, or tangible without something solid, and nothing is solid
without earth. Hence the god, when he began to put together the body of the universe,
set about making it of fire and earth. (Timaeus 31b)

These two elements cannot be satisfactorily united without a third; for there must
be some bond between them drawing them together. And of all the bonds the best
is that which makes itself and the terms it connects a unity in the fullest sense; and
it is of the nature of a continued geometric proportion to effect this most perfectly.
(Timaeus 31c)

…The “maker” set water and air between fire and earth, andmade them so far as
was possible, proportional to one another, so that as fire is to air, so is air to water, and
as air is to water, so is water to earth, and thus he bound together the frame of a world
visible and tangible. (Timaeus 32b)

The world is then a living being, whole and complete, of complete parts …and
he turned its shape round and spherical, equidistant every way from center to ex-
tremity—a figure the most perfect and uniform of all; for he judged uniformity to be
immeasurably better than its opposite. (Timaeus 33b)1



10.4 The Constitution of Polyhedra and Their Interrelations

Recall that the regular polyhedra that symbolize the four tangible elements are: the
tetrahedron for fire, the octahedron for air, the cube or hexahedron for earth, and the
icosahedron for water. A fifth and last regular polyhedron, the dodecahedron, is taken
to represent the ether—the quintessence of which the heavenly bodies are made and
in which the four other elements are impregnated.

…To the tetrahedron they ascribed the fire, for that it is ascendeth upward
according to the figure of the Pyramis. To the ayre, they ascribed the Octohe-
dron for that through the subtle moisture which it hath, it extendeth it selfe
everyway to the one side, and to the other, accordyng as the figure doth. Unto
thewater, they assigned the Ikosahedron, for that it is continually flowing and
moving, and as it were makyng angles on every side according to that figure.
And to earth they attributed a Cube, as to a thing stable, firme and sure as
the figure signifieth. Last of all a Dodecahedron, for that it is made of Pen-
tagons, whose angles are more ample and large than the angles of the other
bodies, and by that meanes draw more to roundnes, & to the forme and na-
ture of a sphere, they assigned to sphere, namely, to heaven. Who sowill read
Plato in his Timeaus, shall read of these figures and of their mutual propor-
tion, straunge matters, which here are not to be entreated of, this which is
sayd, shall be sufficient for the knowledge of them and for the declaration of
their definitions. …16

The geometrical inscriptions of the four elements in the dodecahedron, described
in the previous section, are in total agreement with the symbolic approach described
by Plato.

We know that there cannot be other polyhedra satisfying the definition of regu-
larity. It is fundamental to note that these five polyhedra, together with the thirteen
Archimedean polyhedra and all those subsequently studied by scholars, form part of
a continuum, which makes it possible to return to the source by simple geometrical
transformations of truncation, duality, similitude, and so forth. Numerous authors
have discussed this question using different approaches but displaying a common



desire to return to the principle. Noteworthy research includes that of Pacioli,2 with
the collaboration of Leonardo da Vinci, and more recently the works of Critchlow,4

Lalvani,13 and Pearce.171 beg to be forgiven for only mentioning a few bibliographical
landmarks, knowing that, as with symbols, one idea leads to another.
The symbolism of polyhedra cannot be dissociated from the symbolism of numbers.

This relationship is illustrated, for example, by distinguishing three classes among the
regular and semi-regular polyhedra. One class consists only of the tetrahedron and
the truncated tetrahedron; the second comprises the cube, the octahedron, and their
Archimedeanderivatives; and the third consists of the icosahedron, the dodecahedron,
and their Archimedean derivatives. This classification reveals a symbolic analogy.
Through rotational symmetries, the first class can be linked with the number 3; the
second with the number 4, the outwardness number, and the third with the number
5, representing the quintessence and the proportion between mean and extreme
ratio characterized by the golden number. This series 3, 4, 5 is reminiscent of the
Isiac triangle dear to the Egyptians, and at the same time shows which geometrical
procedure can be used to move from one of these classes to another. It is known, for
example, that obtaining the volumes of the icosahedron class requires the truncation
of a polyhedron edge with a ratio of 4>.

10.5 CONCLUSION

Many architects design their projects in accordancewith the proportions of the human
figure, which are close to the golden proportion. Ancient temples were built on the
basis of man’s measurements; it was sufficient to use a 13-node rope to trace a double
square and the Isiac triangle. Builders knew the golden proportion, which is present
in numerous constructions. With hisModular Le Corbusier tried to put together the
double square and the golden proportion and generated a human scale of measure-
ments. Symbolism gavemeaning to architecture by using suitable proportions, which
are inherent in polyhedra. Today, proportion and symbolism in polyhedra are a way,
among others, to give sense to architecture “beyond the cube.”
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11 The Structural Morphology of Basic
Polyhedra

Tore Wester

11.1 INTRODUCTION

The fascinating world of polyhedra has a long and diverse history. These archetypical
geometrical configurations have influenced numerous aspects of art and science.
When introduced in a theme or subject, polyhedra seem to be the carriers of a strange
and satisfying basic order to the subject, for example, Plato’s pythagorean cosmology,
Kepler’s planet shells, the crystal symmetry groups, and so forth. Different fields,
such as crystallography, engineering, mathematics, astronomy, architecture, art,
cosmology, astrology, and religious and divine orders, have all been affected by the
scientific and philosophical conceptual content of polyhedra.

Polyhedra almost always play a role in architecture as architects think in terms
of plane facets such as walls, roofs, ceilings, facades, and so on, combined to form
spatial configurations, making up what are basically nothing other than clusters of
polyhedra! Unfortunately, the connection with polyhedra is often unperceived and
unreflected, and the cube seems to be the absolute favorite. This book is a serious
and qualified attempt to challenge this
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unfortunate situation. Moreover, the lattice structure, based on bars and
nodes in the simple rigid triangular configuration, has been considered as
the only structural archetype. This defines the triangulated members of the
regular polyhedra—the tetrahedron, octahedron, and icosahedron—as the
only inherently rigid ones, leaving the nontriangulated—the cube and the
dodecahedron—as incomplete and inferior structural configurations.

This chapter will try to bring a satisfactory order to the concept of basic

Figure 11.1

Figure 11.2

BOX 1: Expressions and Definitions

A simple polyhedron is a one-connected polyhedron where all facets are
planar and one connected. Connectivity is the maximum number of closed
chains required to divide the polyhedron into two separate parts; that is,
a ball is one connected, whereas a torus is two connected (Figure 11.1).
A facet that has a boundary consisting of only one loop is one connected,
whereas a facet with a single hole (i.e., two loops) is two connected (Figure
11.2). A simple polyhedron may be convex or nonconvex.

Basic polyhedra, in the present context, mean polyhedra that might be fixed
to the ground, and perhaps with some elements or links removed or added,
but geometrically based on one or more simple polyhedra.

Elements are plates (facets) or nodes (points), whereas links (lines) are their
connectors (shear lines or bars). Linking is a list of information concerning
which elements are finked together. The linking of a node is the informa-
tion concerning which other nodes the node is connected to (by bars). In the



case of plates, linking is the information concerning which of the neighboring
plates the plate is connected to (by shear lines). In order to define a plate
based on the plane of the plate and its linking, the links must be listed in the
required order as when walking around the boundary of the plate.

The valency (Figure 11.3) of an element (plate or node) is its number of links
(shear lines or bars). Valency, linking, and connectivity are all topological
information. Topological information is information about geometric values
that are counted but not measured. Metric

geometry is, on the other hand, infor-
mation about positions given by coordinates, lengths, angles, and so on, that
is, all characteristics that can be measured. Mathematically, topology is de-
scribed by integers (e.g., 1, 5, 112, etc.) andmetric geometry by real numbers
(e.g., 4.37, 5.00001, 199.998, etc.).

structures in terms of their relationship to the Platonic polyhedra. In order to
understand why this structural order in space has not been described a long time ago,
it is necessary to take a brief look at the history of the theory of structures.
Brief History of Polyhedra as Structures
The history of the theory of basic structures related to polyhedra and topology is

short and uncomplicated.
The French bridge and road engineer, but primarilymathematician, Augustin-Louis

Cauchy (1789–1833) described in 1813* the rigidity of arbitrary convex polyhedra
from a purely geometrical viewpoint. This means that he did not consider the equilib-
rium and the type of forces inherent in their geometry.
A few years later, in 1837, the German professor of astronomy August Ferdinand

Mobius (1790–1868), inventor of the famous nonorientable Mobius strip in 1858,
made what is probably the first statical description of polyhedra as structural objects.
In his textbook on statics,2 Mobius states, probably for the first time ever, the minimal
number of bars (BA) required to



BOX 2: Expressions and Definitions

A polyhedral lattice structure is composed of nodes (polyhedral vertices) that
are linked by bars (polyhedral edges). The bars are hinged to the nodes; that
is, it is not possible to transfer bending moments between bars. The nodes
distribute axial forces—tension or compression—between bars (Figure 11.4).

A polyhedral plate structure is composed of flat, rigid-in-plane plates (poly-
hedral facets) that are hinged together along shear lines (polyhedral edges)
as lines of intersection between plates. The plates distribute the forces be-
tween the shear lines. In plate action only shear forces are transferred across
the shear lines. A shear force is a pair of oppositely directed parallel forces
of equal magnitude and with zero distance between them, acting between
two plates that are interconnected by a shear line (Figure 11.5). The plates
distribute the forces as shear forces among the shear lines.

In solving the static equilibrium, each of the elements (a node or a plate) rep-
resents three equations, whereas every link (a bar or a shear line) represents
one unknown.

BOX 3: Expressions and Definitions

Two objects are dual if they are based on the same information, but this in-
formation is interpreted in a different way. A dttal transformation implies
a switch between the interpretation of data. Further, a dual transformation
must preserve all data, and the dual of the dual must be the original. It may
be described as a kind of mirror image, two sides of the same thing, and so
forth.



Whereas duality is a technical expression, dualism is a philosophical term
often used as a contradiction to monism and related to two opposites
(good/bad, yin/yang, closed/open, feminine/masculine, day/night, etc.).
In the actual context, duality in many ways appears to approach dualism.
In three-dimensional geometry dualism is related to the substitution of
vertices with planes. After a dual transformation the valency, linking, and
connectivity remain the same, but the element type has changed, as nodes
and plates are exchanged.

Gaussian curvature: The two principal curvatures at a point on a surface may
have either equal signs if the centers of curvature are located on the same
side of the surface (Figure 11.6) or opposite signs if the centers of curvature
are on different sides of the surface (Figure 11.7). If the signs are equal, then
theGaussian curvature is positive because +(+) = + and -(-) = + and negative if
they are different because -(+) = -. Positive Gaussian curvature is also called
synclastic, elliptic, or dome shaped, whereas negative Gaussian curvature is
called anticlastic, hyperbolic, or saddle shaped. If one or both of the principal
curvatures are 0, then the Gaussian curvature is 0 because 0 times anything
is 0.

Figure 11.6 Figure 11.7
(Figures courtesy of Ola Wedebrunn.)
stabilize a certain number of nodes (NO)' BA = 3NO -6 (this should therefore rightly

be called Mobius’ theorem of rigidity). By combining the important theorem of Euler
(1707–1783) for polyhedra consisting of vertices, facets, and edges (V+ F = E + 2),
Mobius also proved that the number of equations and the number of unknowns are
equal (neutral configuration) for any triangulated simple polyhedron regarded as a
pure lattice structure. The same neutrality holds for an arbitrary simple polyhedron
regarded as a lattice structure supplied with rigid-in-plane plates filling out all facets



with more than three edges. In this case rigidity is achieved by means of the transfer
of forces parallel to the bars between the plates and the lattice structure. However,
it is remarkable and quite surprising that he did not describe the bar-and-node free
system: pure plate action and its theorem of rigidity.

Mobius wrote a whole chapter,3 Von der unendlich kleinen Beweglichkeit

BOX 4: Expressions and Definitions

Neutrality (or kinematical neutrality): A structure is neutral if it is just rigid;
that is, it has no redundancy. It becomes movable if a single link (bar or
shear line) is removed from the structure. A neutral structure is statically
and geometrically determinate; that is, it is in equilibrium by static consider-
ations alone and complies with the theorems on the minimum requirements
for rigidity—and it may be built and determined geometrically with no con-
straints on the metrical values.

Rigidity, stability: A structure is rigid or stable if it has enough links (bars
or shear lines) to fix all elements (nodes or plates) and they are arranged
geometrically and topologically in such a way that static equilibrium can be
achieved; that is, the static equations can be solved. A rigid or stable struc-
turemay be sensitive (see below). In the case of a critical situation, it is called
flexible. Stability is used here as a kinematic—not an elastic—property.

Movability, flexibility: If a structure has too few links (bars or shear lines) to fix
the elements (nodes or plates), it is movable or unstable. If the links in a rigid
structure change length or position, the structure may become movable. If
the geometry of a rigid structure is changed, it may go into a critical (flexible)
or a near-critical (sensitive) form. In these cases the static equations give no
solutions or give unreliable solutions.

Sensitivity: If a structure is in a near-critical state, a number of internal forces
become very large even for moderate external loadings. Hence the deflec-
tions will be large and the structure feels movable. This will often happen
under very particular external load combinations, whereas it is perfectly rigid
for other loading cases.



Redundancy: If a structure has more links (bars or shear lines) than are
needed for rigidity, it is redundant. If a redundant structure has a special ge-
ometry and/or a special linking, it may be movable, flexible, or sensitive. The
redundancy number indicates the number of links—but not which specific
ones—that may be removed without changing the stability situation.

(On the Infinitesimal Movability), where he explains that there are special crit-
ical cases where a plane neutral lattice structure (the equation for the plane two-
dimensional lattice, BA = 2NO -3, was also first stated by Mobius) is not absolutely
rigid. The statical characteristic is that the determinant of the equilibrium equations
approaches 0; hence the magnitude of the forces approaches 00. Furthermore, he
describes methods to create these critical configurations as follows:

• Make a plane neutral lattice structure movable by removing one bar.

• Choose two nodes that can be moved relative to each other.

• The distance between these two nodes has a maximum and a minimum.

• Place the previously removed bar (with its new appropriate length) in one of
these two extreme positions and the system becomes flexible.

This method also works sometimes for creating flexible three-dimensional struc-
tures.
Unfortunately, Mobius’ work on statics has been dormant for many years and he

rarely gets credit for his important work. A notable exception is in the classical work
by Stephen P. Timoshenko.4 Although Mobius’ theorems were rediscovered several
years later by a number of prominent engineers, it appears that, for many years, very
few discoveries regarding polyhedral structures were made.
In thefield of flexibility, R. Bricard5 constructed, in1897, flexible but selfintersecting

octahedra, and in recent years Robert Connelly6 has, on a purely geometrical basis,
found true non-self-intersecting andflexible polyhedra—also based on the octahedron.
A very interesting paper by Jorgen Nielsen7 shows unexpected instability, argued on
the basis of static equilibrium, for some combined plate and lattice structures that
are shaped as step pyramids.



The historical work on polyhedral structures by Mobius has three of the four neces-
sary ingredients for the full description of the basic structural morphology of polyhe-
dra, namely, bars, nodes, and plates, but it lacks shear fines as a unique structural
member. Probably because Mobius did not consider plate action as being just as basic
as lattice action, the inherent structural activity of polyhedra has ever since been
based on bars and nodes only. Accordingly, only three of the five Platonic solids ap-
pear inherently rigid—namely, all the triangulated ones—the tetrahedron, octahedron,
and icosahedron, whereas the two remaining, the cube and the dodecahedron, are
basically movable, that is, incomplete as rigid structures (Figure 11.8). In order to
make them rigid, one can either add extra bars or plates or introduce bending stiffness
in the bars and nodes.

This cosmology of structural action has been common knowledge and supported
very actively by, for instance, R. Buckminster Fuller and many others. Of course, this
situation is unsatisfactory, as the five Platonic polyhedra in so many other aspects
form an archetypical entirety. This entirety can easily be achieved by using Mobius’
considerations about rigid-in-plane plates by intersecting them directly along what
become the shear lines and arranging them as polyhedral structures and—impor-
tantly—avoiding bar-and-node action similarly to the way that pure lattice polyhedra
avoid plate action when

Figure 11.8 The three rigid and the two movable regular polyhedra as pure
lattice structures. (Courtesy of Ola Wedebrunn.)



Figure 11.9 The three rigid and the two movable regular polyhedra as pure plate
structures. Note that vertices are removed in order to avoid nodal (i.e., lattice) action.
(Courtesy of Ola Wedebrunn.)

triangulated. The way of avoiding lattice action, hence isolating plate action in a
simple polyhedron, is to require that all vertices are trivalent, which is the dual of
the pattern for triangles, equal to trivalent facets. The trivalent vertex is topologically
significant for the cube, the dodecahedron, and the tetrahedron but not for the oc-
tahedron and the icosahedron, which are unstable as plate structures (Figure 11.9).
Note that all vertices are removed in order to avoid lattice action, hence isolating plate
action. The stabilizing forces are shear forces transferred along the shear lines.

As Mobius’ theorem for pure lattice structures, when using geometrical symbols, is
E = 3 V -6, the corresponding theorem for pure plate action can easily be found8 to
be E = 3F -6, which, combined with Euler’s theorem for polyhedra, results in 2E = 3
the geometrical requirement of trivalent vertices for structurally neutral pure plate
action for simple polyhedra. It is seen that if V and F are exchanged we shift between
the two theorems of rigidity—whichmeans a shift between geometrical duals, because
V and F are interchangeable, whereas E remains unchanged in Euler’s theorem V + F



= E + 2. With structural symbols the theorem of rigidity for plate action will therefore
be SL = 3 x PL -6, where SL and PL are, respectively, the number of shear fines and
plates. This is seen to be the dual to Mobius’ theorem of rigidity for lattice structures:
BA = ?>NO - 6.

Now the five Platonic polyhedra are all equally basic as structural objects. They
are divided into two groups of three (Figure 11.10), where the tetrahedron is present
in both groups, following exacdy the pattern for geometrical duality. The trivalent
facet has the same structural impact for lattice action as the trivalent vertex has for
plate action. This leads to the principle that topology and rigidity (with reservation
for the previously mentioned critical situations) for simple polyhedra are the geomet-
rical and structural expressions of the same thing and, at the same time, they are
complementary.

Even though these considerations put statics in a satisfactory connection with poly-
hedra, their importance would have been very limited if the previously mentioned
principles were restricted to the five Platonic solids. Fortunately, these static/geo-
metric principles, based on the replacement of lattice nodes with plates and node-
connecting bars with plate-intersecting shear fines, are valid, in general, for any
arbitrary polyhedron—and any cluster of



Figure 11.10 The basic structural behavior of the regular polyhedra follows exactly
the geometrical duality: One of the dual versions is rigid by plate action, whereas the
other is rigid by lattice action. (Courtesy of Ola Wedebrunn.)

polyhedra—independent of connectivity, linking, convexity, and so forth. For any
given three-dimensional pure lattice structure, there always exists a dual pure plate
structure, and vice versa, but, of course, it may not be suitable as a structure for
architecture—or anything else.



The trivalent vertex and trivalent facet are geometrical extremes (Figure 11.11) as
no plane facet can have fewer edges than three and no vertex in three-dimensional
space can have fewer than three adjacent edges. Between these two extremes there are
countless possibilities for polyhedra with facets and vertices with different valencies.
These not fully trivalent, simple polyhedra aremovable either as pure plate structures
or as pure lattice structures. They may be regarded as lattice structures stabilized by
fill-in plates as considered by Mobius, or they may be regarded as two independent
movable structural types (Figure 11.12) stabilized by the transfer of forces between
the equally positioned bars and shear fines. I have suggested that these forces that

Figure 11.11 The triva I ent vertex and the equivalent facet are both geometrical
extremes and form the geometric pattern synonymous with pure plate and lattice
action. (Courtesy of Ola Wedebrunn.)

are working in between the two pure structural types are called buffer forces.9 These
considerations give rise to the general theorem for the necessary requirement for
rigid, simple polyhedra10

B4+S£+BL/ = 3x(/V0+W)-6

where BA, SL, BU, NO, and PL refer to the number of bars, shear lines, buffer forces,
nodes, and plates, respectively. As all three variables on the left-hand side of the
equation refer to edges, the equivalence of the general requirement as being identical
to Euler’s theorem for polyhedra, E = E+ F -2, is easily rec-



Figure11.12The rhombic triacontahedron (left) and its dual, the icosidodecahedron
(right), are both unstable as pure lattice and pure plate structures. However, if they
are constructed so that both structural actions are possible at the same time and if
buffer forces can be transferred between equally positioned bars and shear lines, they
then become rigid. Note that trivalent nodes and equivalent plates may be removed
without affecting the rigidity. (Courtesy of Ola Wedebrunn.)

ognized. It is also easily seen that the previously stated theorems for pure lattice and
plate action will appear if the relevant parameters in the general theorem are required
to be 0 (if NO = 0, then BA = 0 and BU = 0, and if PL = 0, then SL = 0 and 517= 0). This
interpretation, which equates the level of plate and lattice action, has the advantage of
following the concept of geometrical duality. The close topology-rigidity connection
between the duals forms a promising basis of a “form-and-force language.” This is
because it is possible to set up a number of surprisingly simple and unique rules for
the description of the structural action of any three-dimensional configuration that is
a combination of planes, vertices, and edges, as explained below.



The duality as described so far works on the level of topology and rigidity. This
level of understanding is themost important for the architectural, morphological, and
conceptual aspects: choice of structural types, choice of faceting, where to open up
the building and where to close it, choice of structural material, and so forth. It does
not, however, condition the exact shape, size, and form of facets and so on. However,
the dual transformation concept may be extended to the level of metric geometry and
statics.

This transformation is based on simple but essential and fundamental considera-
tions:

• Let the upper left of Figure 11.13 be an w-valent node in a three-dimensional lat-
tice structure. Then Figure 11.13, upper center, shows the force vectors acting on
this node and Figure 11.13, right, is the corresponding three-dimensional force
vector polygon, which means that the force vectors are arranged unidirected
and one after another in correct direction andmagnitude. If the vector polygon
forms a closed loop, then this is the necessary and sufficient requirement for
this node to be in static equilibrium. If all nodes in the lattice structure are in
equilibrium, then the whole structure is in equilibrium.

• Now, let Figure 11.13, lower left, be an n-valent plate in a three-dimensional
plate structure, and let a point (the origin) be positioned outside the plane of the
plate. In this case Figure 11.13, upper center, represents the moment vectors
acting on the origin.11 Figure 11.13, right, shows the three-dimensionalmoment
vector polygon derived from the moment vectors acting on the origin. If this is
unidirected and forms a closed loop, as before, then this is the necessary and
sufficient requirement for this plate to be in static equilibrium. If this is the
case for all plates in the plate structure, then the whole structure is in static
equilibrium.



• If a force vector polygon for a node in a lattice structure (Figure 11.13, right) and
amoment vector polygon for a plate in a plate structure (also Figure 11.13, right)
are identical, then the system of force vectors (Figure 11.13, upper center) is
identical to the system of moment vectors (also Figure 11.13, upper center). It
is significant that it is not possible to judge from the system of vectors and its
polygon if it represents the equilibrium of a plate or a node—this is up to you.
This means that if

Figure 11.13 The equilibrium offerees on a node and the equilibrium of moments
created by forces on a plane plate around a reference point (the origin) can be required
to be equal. This forms the basic static requirement for structural duality. (Courtesy
of Ola Wedebrunn.)

you do statical calculations on a three-dimensional lattice structure, you cal-
culate a plate structure, of which form you have absolutely no idea, at the
same time—quite an interesting thought. It is also evident that the two sys-
tems cannot be mixed as the equilibrium requires the vector polygon to con-
sist entirely of either force vectors or moment vectors.



• If there is a transformationmethod that assures that the force vector andmoment
vector systems are identical, then we can switch between the two systems.

• The force vector and moment vector systems can be made identical if the trans-
formation of a node creates a plane plate, if a bar creates a line of intersection
between plates (shear line), and if the force vector and the corresponding mo-
ment vector are always parallel. These simple requirements are fulfilled if the
structures are transformed by the geometrical relation called polar reciprocation
as described by Cundy and Rollet.12 A thorough explanation of the particular
geometry inherent in polar reciprocation is given byWenninger, based on his
correspondence with Cundy.13

Polar reciprocation relates the location of a vertex and its dual plane simply as
follows (Figure 11.14):

• The method requires a reference point, chosen as the origin for simplicity.

• The vertex is located on the line from the origin perpendicular to the plane.

• The distance from the origin to the vertex multiplied by the distance from the
origin to the plane is a chosen constant. If this constant is chosen as 1, the two
distances are reciprocal.



Figure 11.14 Dual transformation by polar reciprocation. (Courtesy of Ola Wede-
brunn.)

Figure 11.15 Direct dual transformation. (Courtesy of Ola Wedebrunn.)

This transforms the metric geometrical information between planes and vertices,
whereas the topological information, that is, the linking of the vertices and the planes,
respectively, remains unchanged.

A similar transformation, called direct transformation (Figure 11.15), simply changes
the interpretation of the geometrical data between nodes and plates, and vice versa.
This means that it is identical to polar reciprocation except that the distance between
the elements is not reciprocated. Direct transformation maintains the valency of the
elements, as does polar reciprocation, but not the statics. Polar reciprocation and
direct transformation may be executed repeatedly one after the other, eventually in
combination with changes in the position of the origin between the transformations.
This combinationmakes a powerful tool for computerizedmethods for form finding of
structures, not least because they relate architecturally very significant and different
geometries—without changing the topology.



The polar reciprocation method proves to be as valid as the transformation method
for structural duality for the following reasons:

• It satisfies the requirements of the topological duality as shown in Figure 11.10.

• There exists a line through the origin that intersects both the line that includes
the bar and the line that includes the dual shear line. Furthermore, these three
lines are perpendicular to each other (Figure 11.16). This quality implies that
the moment vector will always be parallel to the corresponding force vector of
the dual structure.

Figure 11.16 The perpendicular dual nature of geometry and forces: The line
through the origin intersects both the action line for the axial force (which includes
the bar) and the action line for the dual shear force (which includes the edge be-
tween the plates). These three lines are perpendicularto each other. (Courtesy of Ola
Wedebrunn.)
The transformation factor between the magnitude of the bar force and the corre-

sponding plate force in the dual structure is simply the actual distance d from the
origin to the shear tine, because the bar force is required to be equal to the force
in the shear line times its distance to the origin. The elastic properties are dually
transformed14 by the factor dr. These transformations are very suitable for computers.
The preceding explanation is the extremely simple verification of the existence of

structural duality. The static and elastic equations for dual structures are outside the
scope of this chapter, but can be studied in the author’s paper.15



The procedure for the creation of dual structures will then be as follows:

• Move your structure in space so you have the origin where you want it.

• Perform a polar reciprocation. If the initial structure is a lattice structure, then
the definition of which part of the plane should be materialized as a plate is a
free choice and does not affect the statics, except that part of all the shear lines
connected to this plate must be part of the materialized plate. Of course, the
chosen geometry for the plate must enable the plate to be rigid in plane. Often it
is practical that the shear lines define the boundaries of the plates.

• All forces are transformed as explained previously.

A static calculation of a statically determinate plate structure can be executed as
follows:

• Transform the initial plate structure to its dual lattice structure. Any point of
origin is possible, so you do not need to move the structure, unless the origin is
very close to the plane of one of the plates. If the origin is too close to the plane
of the plate, this will result in a computation that includes very small and very
large numbers, which may create inaccuracy in the results.

• Transfer all external loadings to act along the shear lines. For example, loads
acting perpendicular to the plates can be transferred to the vertices by bending
as in slabs, and these vertex forces can be resolved in the directions of the shear
lines.

• The dual external loads acting along the bars are determined by multiplying the
external loads acting along the shear lines by the distance d from the origin to
the actual shear line.

• Compute the internal equilibriumof forces in all bars by a conventional computer
program for three-dimensional structural design.

• Transform the bar forces back to the plate structure as shear forces by dividing
the bar forces by the same d used previously.



GEOMETRICAL QUALITIES OF DUAL STRUCTURES
Using the polar reciprocation method, the following qualities of dual structures can

be identified:

• The dual of an w-valent node is an 72-valent plate, and vice versa; see Figure
11.3.

• There exists a line through the origin that is perpendicular to both a bar and
its dual shear line and this bar and shear line are perpendicular to each other
(Figure 11.16).

• There is a certain distance from the origin where a node is part of the dual plane.

• The origin can never be positioned in between a node and the dual plane.

• Polar reciprocation cannot be executed if the origin coincides with a node, as
the dual plane will be infinitely far away in any direction.

• Polar reciprocation cannot be executed if the origin is part of the plane of a plate,
as the dual node will be infinitely far away in the direction of the axis through
the origin and perpendicular to the plane.

• Polar reciprocation cannot be executed if the origin is part of a bar, as the dual
shear line will be infinitely far away and the plates it should connect would be
parallel, hence never intersecting.

• A node close to the origin will, after polar reciprocation, produce a plate far from
the origin, and vice versa, as the product of the two distances is a constant; that
is, if the initial is very near to the origin, then the dual will be very far from the
origin. The near to the for is an inherent dual quality.

• The sign of Gaussian curvature remains unchanged during polar reciprocation.
A saddle shape remains a saddle shape and a dome shape remains a dome shape.

• Although the facets of a triangulated surface give no information about the sign
of the Gaussian curvature for the main shape, the dual facets



Figure 11.17 Each individual plate in a trivalent polyhedral structure is convex
if the Gaussian curvature of the main shape is positive—and nonconvex if the
curvature is negative. A triangular mesh in a lattice structure does not reveal
the sign of the Gaussian curvature. (Courtesy of Ola Wedebrunn.)

turn out to be convex for positive Gaussian curvature and nonconvex for neg-
ative curvature; see Figure 11.17. A plate in a pure plate polyhedron may
reveal the curvature of the main shape of which it is a part.

STRUCTURAL QUALITIES OF DUALS

• The bar in a lattice structure connects hinged nodes and transmits axial forces,
whereas the dual plate structure transmits shear forces across the hinged inter-
sections between plates.



• Bars, shear lines, nodes, and plates are basically bending moment free; that
is, they are surface-active membrane structures. Bending moments in bars
(e.g., beams) and plates (e.g., slabs) are secondary to the lattice and plate action.
Bending may be used in transferring and resolving the external loads into the
plate-active or lattice-active surface.

• The statical determinacy (i.e., redundancy) does not change during a dual trans-
formation.

• All static and elastic information is preserved after a dual transformation.

• An axial force is perpendicular to the dual shear force (Figure 11.16).

• Anyplate structure including loadings andelastic propertiesmaybe transformed
into its dual lattice structure, which could be analyzed by any three-dimensional
lattice design software. The computed axial forces may then be transferred back
to the dual plate structure as shear forces along the shear lines.

• As a lattice structure concentrates forces in nodes and bars only, it will appear
open if it is materialized according to the forces only. Nothing is hidden behind
theoretical points and lines. Its openness is total. On the other hand, a plate
structure distributes the internal forces to the full area of the plates and transfers
forces along the full length of the shear lines. A plate structure will therefore
appear totally closed and everything behind it will be hidden. The duality will
therefore relate the following qualities: the concentrated to the distributed, the
open to the closed, the opaque to the transparent. It is interesting to observe
that, when pure geometry obtains a structural content, duality approaches the
concept of dualism.

• According to the previously mentioned statical considerations, it turns out that
there is a dual relationship between forces andmoments, translation and rota-
tion.

THE STRUCTURAL MORPHOLOGY OF POLYHEDRA AS ARCHITECTURAL OBJECTS
Visually Based Structural Analysis and Design



One of the most fascinating qualities of plate-lattice duality is that it brings a unity
to the concept of basic structures. The structural action of polyhedra is so closely and
uniquely related to the geometry of polyhedra that they are as one. We have seen that
the structural issue of rigidity may be solved either in a purely geometrical or in a
statical way, which appear to be complementary. Plate and lattice action seems in
this context to be as two sides of the same coin. They form two structural archetypes,
which, in an antagonistic way, do not need each other, but together give a full and
complementaryunderstandingof basic structures and their interactionwith geometry.
They indicate that nodes and plates have equal status as main elements in structures,
defined in exactly the same metric geometrical way. Bars and shear lines are the
connecting links, defined by the topological information of their linking. Just as the
geometry of the five Platonic polyhedra can be regarded as two groups with three in
each, related by duality, statics fits exactly into the same pattern.

Traditionally, we consider zero-dimensional points as basic geometrical entities
and then define the one-dimensional line as a direct connection between any two of
them (which do not coincide), while a two-dimensional plane is defined by any three
points (which are not collinear). However, in three-dimensional space we may use
an alternative definition: Wemay introduce the two-dimensional plane as the basic
geometrical element (a plane may



Figure 11.18 The dual perception of basic geometry (from top to bottom and left to
right): One point, two points define a line, and three points define a plane; one plane,
two intersecting planes define a line, and three intersecting planes define a point. A
set of three coordinates gives the free choice of defining either the position of a point
or the position of a plane, by defining the normal to the plane through the origin of
the coordinate system. (Courtesy of Ola Wedebrunn.)
be defined, like the point, by three coordinates) and then define a one-dimensional

line as an intersecting line between any two of them (which are not parallel) and a
one-dimensional point as the intersection between any three planes (which do not
have a common line).
For lattice structures the point (node) is the basic element (Figure 11.18, left), and

two linked points define a line (bar) whereas three points define a plane, which is
a nonactive open mesh. For plate structures the plane (plate) is the basic element
(Figure 11.18, right), two linked planes define a line (shear line), and three planes
define a vertex, which, if regarded as a node, is nonactive because any trivalent node
may be removed from a structure without changing the redundancy of the structure.
A given set of geometrical and topological data can be interpreted in these two

different ways, often resulting in very different looking configurations but uniquely
tied together by geometrical and structural duality. It appears that all computer
software with three-dimensional applications is based on the first interpretation and
is therefore not suitable for handling geometrical and structural duality.
Modeling Polyhedral Structures
Physical models seem to be without peer in the study of faceted structures. Pin-

jointed bars as connectors between nodes will indicate not only the
architectural appearance of a proposed lattice structure but will often also reveal
the structural characteristics of rigidity and sensitivity. Note that the pure lattice
structure only uses two of the basic components, the vertex (node) and the edge (bar),
not the facet. In a similar way a rigid-in-plane material such as cardboard, which is



hinged by bending or gluing along the edges, will be relevant as a simple model for
pure plate structures. This type uses two components, the facet (plate) and the edge
(shear line), but not the vertex, and as it is important to prevent nodal, that is, lattice
action, the vertices should be cut away.

A very good exercise to get a feeling for the characteristics of lattice-and plate-based
rigidity is to build models of the five Platonic polyhedra in the two versions and then
try to flex them (Figure 11.9). It is indeed important to get a fingertip feeling for
the difference between rigidity-movability and strength-failure. The latter quality is
connected to the strength and elasticity of the material and connectors and hence
irrelevant when investigating the kinematic qualities of such structures. Three of the
models turn out to be rigid as pure plate structures, namely, those that have trivalent
vertices: the tetrahedron, hexahedron, and dodecahedron; and three are rigid as pure
lattice structures, namely, those with trivalent facets: the tetrahedron, octahedron,
and icosahedron. It is remarkable that the tetrahedron, with trivalent vertices as
well as trivalent facets, is rigid as a pure plate as well as a pure lattice structure.
This polyhedron is, in fact, so simple that acting and reacting forces directed along
the edges are balancing each other directly and no internal force distribution in the
structure is needed.



Figure 11.19 Methods of opening up plates without compromising the rigidity.
(Courtesy of Ola Wedebrunn.)

Another interesting quality of these rigid structural archetypes is that they are
neutral (i.e., statically and geometrically determinate or having zero redundancy),
that is, on the edge of rigidity. This may easily be checked by removing one connector:
a bar or a shear line.

The unstable versions of the regular polyhedra, for example, the octahedron and
icosahedron as plate structures or the cube and dodecahedron as lattice structures,
can all be stabilized by adding either bars to the lattice types or shear lines to the plate
types.



Physicalmodels are superior to computermodels for testing structural qualities, not
least because they give answers to muchmore than what is being asked; for instance,
the flexibility or structural sensitivity of any combination of particular loading cases
can be determined by physical models, whereas the computer only gives an answer to
already specified loading cases. Perhaps virtual-reality technology will be developed
in the future that will resolve this issue. Physical models are not often appropriate
in the preliminary stages of the creative design process as it is time consuming to
build goodmodels. In the process of investigating different geometries, interactive
computer modeling is obviously superior to physical models, whereas the latter are
superior in investigating structural behavior.

Most of the computer graphics software works with wire frame models that are
geometrically similar to lattice structures. These programs are often interactive and
the geometry can be easily manipulated. Advanced structural analysis and com-
puter design programs have also implemented interactive and user-friendly shaping
features.

Computer modeling is a good deal more complicated for plate structures, but some
of the advanced graphics software packages can facilitate the cutting of solids, which
canbeutilized for shapingplate structures, but the present software is still not efficient
enough for this purpose. An adequate program shouldwork like its lattice counterpart,
with the difference that the coordinates, instead of defining nodes, should be regarded
as the geometrical information for defining planes,16 and the information for linking
the plates should be fisted in the correct order as if walking, either way, around the
perimeter of the plate. With this information the intersections between a plate and
its neighbors can be calculated and the defined plate can be isolated from the rest
of the infinite plane of which it is a part. Such software is unfortunately not yet com-
mercially available.17 Plate structures are probably not developed to the same level of
complexity and sophistication as lattice structures because of their more complicated
and computer-dependent geometry. If plate structures are to be used to their full
potential, it is absolutely necessary to add dual transformation and the previously
mentioned alternative geometrical interpretation of data to existing software.

Opening Up a Plate



One of the evident advantages of plate action compared to lattice action is that, when
the enclosure of a building is designed to resist external load such as wind, snow, and
dead load, it usually has an excess of bearing capacity in its own plane so that its utility
for plate action is often possible. As the covering material must be there anyway, why
not use it to transfer forces in its own plane by plate action? A transformation of a
covered lattice structure into a plate structure often makes it possible to eliminate
the bars and nodes. The cladding could then be the structure itself. The only extra
property that has to be introduced is shear force resistance between adjacent plates.

The dual quality of lattice action, which is concentrating forces in nodes and bars,
and plate action, which is distributing forces over the surface, has the effect that
lattice structures tend to be constructed from strong material like metal, whereas
plate structures may utilize weaker material like wood panels, plywood, plastics,
reinforced concrete, and even glass!

That plates are essentially closed elementsmight be seen as a problem, as buildings
usually need openings like windows, doors, and so forth. However, plates may be
opened, as long as the essential requirement that they remain rigid in plane and
sufficiently strong and stiff to transfer the design forces is maintained. There are
essentially two different ways to open up plate structures: either by making holes
inside the plates or by removing vertices (Figure 11.19). In both cases the plates
develop into frameswith bending rigidity in the plane of the plates. The plates become
geometrically open but remain structurally closed. Plates with large openings will, of
course, need more or stronger material than if they were made without holes. The
larger the openings, the more plate structures will approach lattice structures from
the point of view of the type of material employed.

PLATE AND LATTICE STRUCTURES IN NATURE

Structure is a major issue in our earthly environment of gravity and other loadings
andmany living organisms have developed highly sophisticated structural systems
over millions of years. Nature’s strategy for improving solutions to structural and
other vital challenges, andwhich has proved to be very creative and efficient, is known
as “survival of the fittest.” A major difference from man-made structures is that
organisms need to grow. It is vastly more complex to maintain strength and rigidity
during a growth process than to erect a safe and rigid building. Just think of the



difficulties of many beetles and crabs that have to throw away their external chitin
skeleton and become very vulnerable until their new armor has solidified. Other
organisms, like the sea urchin, have developed more sophisticated solutions to a
similar problem.

It appears that many structures in nature, which can be typified as plate or
lattice structures, are very close to being structurally neutral. The shell (also
called the test in biological terms) of the sea urchin is one instance (Figure
11.25). Many other echinodermata, the skeleton and armored skin of many
vertebrates, the Venus's-flower-basket (Figure 11.24), the spongy trabec-
ula inside bones (Figure 11.23), different types of spider webs, microscopic
plankton such as radiolaria (Figure 11.20), foraminifera (Figure 11.21), coc-
colithophores (Figure 11.22), and many others are further examples. One of
the obvious advantages is that a structure with low redundancy requires less
material, which means less dead load, and uses less energy for its construc-
tion than a structure with high redundancy. Another advantage is that a neu-
tral or slightly redundant structure develops lower internal stresses during
growth and other structural rearrangements than a highly redundant struc-
ture. Rearrangements of the structure may therefore be achieved more eas-
ily and with less adjusted growth of the total system. Of course, kinematic
neutrality is also an obvious disadvantage as the structure tends to become
movable if local failure occurs, but often it seems possible to use an alter-
native structural action if needed. To prevent collapse, the structural action
often changes into one that is less stiff than the plate or lattice action, for ex-
ample, bending. For this softer type of action, the structure is redundant—this
is an expansion of our normal conception of theword redundancy in the sense
that a failure of themore rigid structuremust occur to activate the alternative
softer structural type of action. This system can be exemplified by a house
in which the main structure has been badly damaged, for example, by an ex-
plosion, but has not collapsed because the forces have found alternative re-
arrangements, (e.g., bending).



The sea urchinmay transfer bendingmoments over the shear lines during the
``repair period'' of a plate. The trabecula inside our bones and the Venus's-
flower-basket do not have hinged nodes and must therefore also carry loads
by the transfer of bending moments between bars if necessary. It is signif-
icant that these auxiliary ways of stabilizing are secondary as they produce
larger elastic deformations than the very stiff plate and lattice action.

In order to understand the appearance of pure plate structures in nature, it
shouldbenoted that a randomsingle-layer configuration of planeswill always
intersect in trivalent vertices,18 which is the required geometrical pattern for
pure plate action in single-layer structures. The same geometry is seen on
randomly organized close-packed organic cells or soap bubbles, either on its
surface or in cross section. Onemight conclude that the ``creator'' has been
dealt an incredibly strong handof cards, when the lowest geometrical order of
all—the random—produces the ideal configuration for pure plate action! The
rest is ``just'' to create rigid-in-plane plates and shear resistant connections
in order to introduce plate action to nature. The plate type of structure is
very appropriate for faceted structures as the covering surface is at the same
time the main structural element, while the more complicated bar-and-node
action, which requires higher-strength materials, can be avoided.



Figure 11.20 Radiolaria: Aulosphaera dendrophora (x80) (upper left) and Aulonia
hexagonia (x30) (upper right) compared with geodesic polyhedra as a pure lattice
structure (lower left) and its dual as a pure plate structure (lower right). (Source:
Upper drawings: Ernst Hackel, Challenger Monograph, 1987.)



Figure 11.21 Foraminifera (x450), a multichambered living unit of calcium carbon-
ate polyhedral shells. (Source: Geological Institute, University of Copenhagen.)

Planktonic Organisms

Microscopic plankton floating around in the oceans are subjected to equal loading
from all directions. Plankton do not develop up-and-down orientation as many or-
ganisms subjected to gravity do. Instead, they often develop nonoriented spherical or
polyhedral geometry. The biologist Ernst Hackel19 has been extremely productive in
describing comprehensively the siliceous plankton called radiolaria (Figure 11.20),
many of which are beautiful images of polyhedral structures. The external skeleton,
even when not studied in detail, often shows either a lattice (triangular facets) or
a plate (trivalent vertices) configuration—or both. Foraminifera (Figure 11.21) are
calcitic organisms with similar polyhedral configurations to radiolaria. They often
form clusters of polyhedral skeletons with holes producing trivalent vertices. The
foraminifer starts out by forming a single chamber with one opening. When the soft
organs inside grow too large to fit into the chamber, it bubbles out of the hole and
creates a larger chamber, which also has one hole, and so it continues and becomes a
cluster of ever-larger polyhedral cells. Coccoliths are another calcitic plankton but
with the habit of collaborating to estabfish colonies forming polyhedral shapes called
coccolithophores (Figure 11.22). There are several types of connections between the
single coccoliths, some of them with a wedge-and-cleft connection and some where
the coccoliths are just touching and held close by soft tissue, forming configurations
reminiscent of plate structures.

Bone Structures



The classic example of lattice structures in nature is the trabecula inside the en-
larged extremities of our tubular bones (Figure 11.23), such as are found in our thigh20

and heel bones. The calcitic trabecular structure is oriented in the optimal structural
direction, which is that of the main tension and compres-

Figure 11.22 Coccolithophores: Braarudosphaera bigelowii (x5000), a perfect dodeca-
hedral configuration (left). Pontosphaera discopora (x4000), forming polyhedra from
packed ellipses in a trivalent vertex pattern, which indicates rigidity by plate action
(right). (Source: Coccolithophores, AmosWinter andWilliam G. Siesser, eds. Courtesy
of Cambridge University Press. Photos: S. Nishida.)



Figure 11.23 The spongious trabecula in the femur follow the stress trajectories for
the body weight. The trajectories follow the direction of the principal stresses (shown
as a pattern of white lines) in a similar solid structure at any point of the cross section.
(Courtesy of Ola Wedebrunn.)

sion forces, the so-called stress trajectories. The trabecula are connected to the
compacta, which is the compact bony layer forming the outer surface of the bone.
The trajectories, forming a cubic lattice of six-valent nodes, will, together with the
compacta, form an ideally shaped three-dimensional structure which, if regarded as
a lattice structure, turns out to be close to neutrality, only slightly redundant. Clinical
observations of the trabecular pattern of the femur (the upper extended part of the
thigh bone) of astronauts and other individuals who have been subjected to unusual



loading of these structural parts, show rearrangements of the pattern consistent
with the quality of being almost neutral. Hence a configuration of minimum energy
consumption andminimum risk of unwanted internal stresses, which might lead to
failures during the rearrangement process.
Some of these spongious bone structures are configured as cubic cells with thin cell

walls and are therefore more probably stabilized by plate action than by lattice action.
It is interesting that if pure plate action is considered for plates forming a cubicmatrix
configuration, it will have the same kinematically neutral status as the cubic lattice.
Venus’s-Flower-Basket
The Venus’s-flower-basket Euplectella (Figure 11.24) is a deep-sea siliceous glass

sponge, consisting of a cylindrical chimney-like structure topped by a

Figure 11.24 Venus's-flower-basket(Z. = 30 cm, D = 3 cm). Total structure and detail.



dome and rooted in the sea bottomwith long shiny siliceous fibers. The soft organic
tissue is located on the surface of the cylinder. It feeds by filtering small organisms
from the sea water sucked through the meshes in the cylinder, pushing the filtered
water up and out through the chimney. The meshes of the cylinder are basically
squares. Every second mesh, in a chessboard pattern, is cross-braced and forms
spiral lines. Half-octahedra are positioned on top of the cross-braced meshes and
their upper vertices are interconnected, forming spiral ridges on the outside of the
cylinder. If considered as a pure lattice structure, the configuration turns out to be
neutral. The nodes are able to resist bending, which means that any local damage
does not necessarily lead to total failure. The structure would also be stable if all
meshes were braced, but this would interfere with the flow of nutritious water through
the surface of the cylinder. Hence, the solution with the ridges appears to be very
appropriate.

The Shell of the Sea Urchin

The hard shell of the so-called regular1 sea urchin (Figure 11.25) complies with all
the requirements of a perfect plate polyhedron with great functionality in the design
of shape, joining, and necessary geometrical openings. In addition to its ability to
resist external loading, the polyhedral structure of the



Figure 11.25 Regular sea urchin. Seen from above (upper left) and below (upper
right). Note the trivalent vertices on the inside of the shell. Scanning electron mi-
croscopy (SEM) (x600) of the toothed link between two plates (middle left) and a
drawing showing that the direction of growth and the direction of stabilizing forces
are perpendicular, hence uncorrelated (middle right). Lower left and lower right are
images of a computer-generated sea urchin subjected to loadings perpendicular to
the surface, resembling the action and the appearance of the spines. (Courtesy of Dr.
Margit Jensen, Zoological Museum, University of Copenhagen.)

sea urchin must, at the same time, be able to grow. This problem has been
solved in a theoretically elegant way.



The regular sea urchin surrounds its soft organs with a protective polyhedral
shell of calcite. It consists of an upper almost hemispherical part and a some-
what flattened bottom part. On the outside of this hollow calcite skeleton, a
great number ofmovable sharply pointedor club-shapedspines are arranged,
providing efficient protection against attacks from enemies or rough sea. It
is probably the spines that transfer the major external forces to the shell.

The shell is basically composed of two types of plates, dividing the surface
into five areas and converging at the two poles. Each area consists of two
rowsof plates, whichmaybe regarded as plane plates, arranged in such away
that all vertices are trivalent. The individual plates are normally connected to
between five and seven other plates.

The larger of the two openings appears at the bottom pole where the plates
meet a strong and stiff pentagonal frame, on which the highly developed
chewing apparatus ``Aristotle's lantern'' is mounted. This frame is therefore
structurally closed even if it is geometrically open.

The joins between the plates, the shear lines, are distinctly toothed (Figure
11.25). This type of connection is extremely efficient in transferring shear
forces, which strongly supports the assumption of plate action. The collagen
fibers almost lacing the plates help to keep the plates close together, which
will enable the transfer of bending moments from plate to plate. The lacing
is important for maintaining sufficient strength and stability during ``repair''
after a fracture of one or more plates. It is obvious that the plates combined
with the collagen fibers enable structural actions other than plate action, for
example, bending. The shell may, for example, function as a continuous shell
structure. Shell action is very close to plate action because a finely faceted
plate polyhedron is nothing but a slightly discontinuous shell, stabilized only
by shear forces, acting across the edges.

The sea urchin grows by increasing the number of plates and increasing the
size of the single plates as a simple two-dimensional geometrical expansion.
By expanding the size of the plate, the direction of growth will be perpen-
dicular to the shear lines (Figure 11.25), hence perpendicular to the direc-



tion of the stabilizing shear forces. Growth and transfer of stabilizing forces
can therefore be managed concurrently without any interference. Seen as
an engineering problem, the combination of growth andmaintained rigidity is
solved by the sea urchin in a structurally elegant way.

The analysis of the sea urchin as a pure plate structure leads to speculation
on the structural nature of other similar configurations. Such configurations
are found in the armored skin of reptiles, the shell of the tortoise, the bone
structure of the skull, and many other places in nature. Scientists often find
it difficult to explain the function of this significant pattern of sutures—maybe
a part of the answer is given by ``rigidity during growth''!

EXAMPLES OF MAN-MADE STRUCTURES

Polyhedral lattice structures appear to be increasingly popular, especially for
large spans where the high efficiency of metal lattice structures forms slen-
der, elegant, and extremely lightweight structures. The recent demand for
large sports arenas has produced a great number of sophisticated and bril-
liant lattice structures. There seems to be some chance that these large cov-
erings will influence smaller-scaled buildings such as houses.

Today's use of plate action is mostly limited to the stabilizing of buildings
against horizontal loads suchaswindandearthquakesbyactivating floors, fa-
cades, gables, internal walls, walls around staircases, elevators, and so forth.
This is a very limited use compared to the vast possibilities of complex spatial
plate structures.

As mentioned earlier, most buildings can be characterized as polyhedra or
clusters of polyhedra. On the other hand, common buildings are not charac-
terized or analyzed as polyhedra, andpolyhedra are usually not on themind of
the architect during the creative process of organizing the building geometry,
or on themind of the structural engineer whenmaking decisions about struc-
tural action and design. In fact, almost an entire generation of building de-
signers, such as architects and engineers, are generally unaware of polyhedra



and their morphological qualities. I am sure that our architectural landscape,
in terms of the shape and structure of our buildings, would become increas-
ingly interesting if architects and engineers were better trained in using the
geometrical, topological, and structural archetypes for their buildings.

A very simple example of implementing plate action in buildings is the tra-
ditional gable or pitched-roofed house. A view of such a roofscape (Figure
11.26) confirms the frequency of trivalent vertices. This is therefore a con-
figuration where the plate action of facades, gables, roofs, attics, bays, and
oriels is obviously a potential that is not realized. Of course, it is necessary
that the plates be rigid in plane and that the connections be shear resistant.
However, these extra requirements would often be simple additions to the
existing construction tradition. An obvious advantage of utilizing the latent
plate action would be to increase the structural activity of the building's sur-
face, hence the possibility to open up the attic space by reducing frames and
trusses—partially or totally. Another advantagewould be that the roofswould
tend to be shaped in an appropriate way for efficient plate action or for com-
bined lattice and plate action. Making proper use of this structural potential
would lead tomore diverse and interesting shapes and structures for roofs as
well as for enclosures and interior partitioning.

The Rigidity of Polyhedral Buildings

Amajor structural difference between a polyhedron and a polyhedral building
is that thebuilding is supportedbya connection to the ground. To forman idea
of the rigidity situation of a supported polyhedron, an unsupported rigid



Figure 11.26 A common roofscape shows many trivalent vertices, indicating poten-
tial—but not utilized—plate action. (Courtesy of Ola Wedebrunn.)
polyhedron is first considered. Such a rigid body has six degrees of freedom22

within which to move and therefore, under the necessary general requirement for the
rigidity of unsupported polyhedra, mentioned earlier, the number 6 will be replaced
by the number of support conditions (SU):

BA + SL+ BU + SU =3x{N0 + PL)

Note that SU is equivalent to either a bar, a shear line, or a buffer force.
Imagine now any arbitrary closed and rigid simple polyhedron. Make a single cut

according to the proposed foundation boundary, which does not necessarily have
to be plane but in such a way that the initial polyhedral surface is still triangulated
(Figure 11.27). The new polyhedron is nowmovable because the free edge is an n-gon
(for n > 3). The number of extra bars needed to triangulate the hole will be (n -3), which
are added. Now the structure has become a simple closed triangulated polyhedron
and will therefore again comply with the equation

BA+ SL+ BU = 3x(N0+ PL)-G



whichmeans that the number of support conditions only needs to be 6. As every
one of the added bars is equivalent to a support, all the extra bars are equivalent to
(n -3) supports. The total number of supports required to stabilize the polyhedron
with the free cut edge and no extra bars is therefore 6 + (t2–3) = 72 + 3. The number of
vertices on the formerly free boundary is n. If all these n points are provided with one
support condition (e.g., vertical) and three of the boundary edges are provided with
one support condition each (e.g., horizontal), the necessary requirement for rigidity
is met. If more (e.g., horizontal) support conditions are added, the structure becomes
redundant. Thismeans that if all n free comers and all n free edges along the boundary
are supported, the structure will have a redundancy of 72 -3. If this is the case, it leads
to the

11.2 CONCLUSION

that a maximum of (72 -3) bars, shear lines, buffers, or support conditions may be re-
moved from the rest of the structure—enabling, for example, larger openings—without
affecting the rigidity. Fol-
Figure 11.27 Stabilizing a part of a polyhedron by adding bars or supports along its

periphery. Shown rotated from below. (Courtesy of Ola Wedebrunn.)

lowing this procedure for removing structural parts, it is very important to in-
vestigate for local movability and critical and sensitive situations. The preceding
considerations are based on a pure lattice polyhedron, but the same result concerning
support requirements is achieved if it is applied to any polyhedron based on plate or
combined plate and lattice action.
Pure Lattice Structures



Steel lattice structures were developed by the early pioneering work of engineers
during the industrial revolution, mainly in the 18th century. Progressive architects
andengineersbegan to cultivate a significant form-and-force language for thenew iron
material, basedonengineeringqualities suchas reliability, high strength, andstiffness,
coincidental with the architectural qualities of airy delicacy and feathery lightness.
We see the results in railway stations, exhibition halls, palm houses, libraries, and so
forth.
Structures based on simple spherical polyhedra23 were developed by European

engineerswith the “father of dome structures,” theGerman, J.W. Schwedler in the lead.
Later in theUnited States, R. Buckminster Fuller became a legend for developing—with
an exceptional energy and originality—his thoughts and ideas24 on what he called
the geodesic dome. The system had, in fact, already been developed and used by the
German engineerWalter Baursfeld for the steel reinforcement of the Jena Planetarium
in1923. Fuller, however, becameakind of guru of the 1960s counterculture, andwhole
villages25 were built according to Fuller’s thinking, not only on building structures
but on his total cosmology. At the other end of the spectrum, Fuller developed, in
collaboration with other skilled engineers and architects, larger and fighter dome
structures than had ever been erected before.
Polyhedral lattice buildings range from the small “homemade” one-family dwelling

to high-tech retractable roofs for large arenas but seem to attract interest, regardless
of the scale of the building. They belong to a field where engineers, because of the
comprehensive structural content, must put at least as much energy into the creative
process of organizing and shaping the building as the architect.
The lattice structure is today so commonly used, so well known, and so well docu-

mented that it will not be further dealt with here.
Pure Plate Structures
Introduction
As already mentioned, plate action in today’s buildings is more or less limited to

the resisting of horizontal forces, but it would be interesting to consider some of the
possibilities for plate structures designed with the degree of sophistication typical of
lattice structures.
Regular Geodesics
Because pure plate domes can be created by the simple dual transformation of pure

lattice domes (Figure 11.28), it seems obvious to consider the possibili-



Figure 11.28 Dual configurations are sometimes very easy to match as in this
geodesic polyhedral structure with the reference point in the center. (All art on this
page courtesy of Ola Wedebrunn.)

Figure 11.29 The dual (right) of the Schwedlertype of dome (left) is very reminiscent
of the sea urchin type of faceting.



Figure 11.30 Dual configurations for a geodesic polyhedron. The reference point is
located at one of the focal points of the ellipsoidal plate structure.

ties for these configurations. The pure lattice dome of the Schwedler type (Figure
11.29) will, after a dual transformation, give an almost perfect model of the shell of a
regular sea urchin.

The duality implies that for any arbitrary pure lattice structure a dual plate structure
can be found. In fact, countless numbers can be found as each position of the chosen
origin produces a geometrically different plate structure (Figure 11.30). Whether the
result of such a transformation creates a realistic and constructable form can often
only be evaluated after the transformation.

A geodesic dome, according to Fuller, is produced by further triangulation (break-
down) of the triangulated regular polyhedra (the tetrahedron, octahedron, and icosa-
hedron). Dual transformation of this kind of Fuller dome produces structural configu-
rations for a family of interesting geodesic plate domes. As the typical nonsignificant
node26 in a geodesic Fuller dome is six-valent, the dual plate becomes hexagonal.

There is a major difference in the visual perception of the lattice and plate dome
pattern. Even with small frequencies of breakdown, the lattice dome gives a diffuse
and spherical appearance, whereas the dual plate pattern appears as amore obviously
faceted form. This is especially pronounced in the



Figure11.31 Ideas for smaller domes aspure plate structures. Thepossibility
for requiring vertical plates along the perimeter in contact with the ground is
latent, and the very simple geometry involved in adding unitsmakes the plate
dome in many ways superior to lattice domes. (Courtesy of Ola Wedebrunn.)

lower breakdowns for tetrahedron-and cube-based geodesics. In addition, these
strong, almost sculptural plate forms carry a number of possibilities for direct combi-
nation with other units or as the basis for further shaping (Figure 11.31). One shaping
possibility is zooming, obtained by stretching a sequence of plates with parallel inter-
section lines. Another possibility is stretching of the dome by applying factors to one
or more of the axes, which changes, for example, a spherical shape into an ellipsoidal
shape.



A third method for elongation of the shape I have called dual manipulation: Like
stretching, this changes the inscribed sphere into an ellipsoid, but whereas stretching
maintains the origin at the geometrical center, in dual manipulation the origin is
situated at one of the focal points of the inscribed ellipsoid. This transformation
changes the size of the plates in an interestingway, in fact so suggestive that the correct
construction of a perspective view can be obtained using the following sequence
(Figure 11.32):
° Consider the origin in the center of the plate polyhedron.
° Execute a polar reciprocation. This produces a lattice polyhedron.
° Move the origin.

° Execute a polar reciprocation again. This produces a plate polyhedron that
is different from the initial one.

° If the new plate polyhedron is projected onto a plane that is perpendicular
to the direction in which the origin was moved, this projection shows a per-
spective image of the initial polyhedron, as will be explained later.



Figure 11.32 A dual manipulation creates not only a family of interesting geometric
configurations but also a perfect perspective image of the original: The upper right
appears to be a perspective view of the upper left The same configurations are shown
lower left and lower right and both are viewed from above from the left (Courtesy of
Ola Wedebrunn.)

Figure 11.33 Next to the traditional Danish farmhouse is a pure plate dome
with extremely open plates constructed as wooden frames with plywood
knees. The open framed plates are bolted together. (The structure was
designed by the author in collaboration with the architect Torkild Ebert in
1981.)

Observe now that the size of the plates has changed in such a way that those closer
to the origin become smaller and plates farther from the origin become larger. The
plates are circumscribing an ellipsoid as mentioned, but because of the different
shapes of the plates it gives an illusion of an egg shape. Figure 11.32 shows that if the
dual-manipulated polyhedron is projected onto a plane perpendicular to the direction
in which the origin was moved, it creates a perfect perspective view of the original
polyhedron, where the location of the eye is dual (reciprocal) to the point where the
origin wasmoved. If the origin ismoved a little compared to the size of the polyhedron,
the location of the eye is far away, hence the perspective distortion is small, and vice
versa.



Figure 11.33 shows a polyhedral plate dome of the cube family with a diameter of
12 m. The plates are open rigid wooden frames that are bolted together. Instead of all
framemembers or holes in the plates being of equal size, they could be adjusted to
reflect the magnitude of the internal stresses. This method could be chosen to save
material or to open up the roof for daylight, and not least to tell a story of the structural
action: A heavily stressed plate would be completely closed, whereas a lightly stressed
plate would be wide open. Figure 11.34 illustrates this method when applied to a
dome of the cube family with a dominant dead load.

Plate structures, in their basic form, are appropriately made of two- dimensional
sheet materials of limited strength. The internal stresses are distributed all over the
plate surfaces and smoothly transferred along the connections, hence avoiding the
concentration of forces at lines and points. A material that would fit this role perfectly
is plane glass sheets. Because of the particular properties of glass—if it is used as
part of the main structure of a building, it should be used as structural plates. A
pure glass plate dome is one answer to the ultimate vision for modern glass design
in buildings. Like a “reversed” Emperor’s New Clothes, it is not seen but it really is
there—it is only perceived by means of the surroundings, as a reflector of the clouds,
skies, neighboring buildings, and so forth.



Figure 11.34 A shallow plate-faceted shell where the openings in the plates are
adjusted to the magnitude of the internal forces for self-weight. Perspective view and
plan. (Courtesy of Ola Wedebrunn.)

Other Polyhedral Shapes

A 3-m-high parabolic sculpture, called Pentagonia (Figure 11.35), was built as a
pure plate structure, not from glass but from glazed ceramic tiles, which are basically
similar to glass from a structural point of view. Its name is derived from the fact that
both the top tile and the ground plan are regular pentagons. The 10–15-mm thickness
of the tiles is greater than is needed from a structural point of view, but it is necessary
in order to prevent warping of the tiles during their firing in the kiln. Clay slabs of
the required thickness were cut directly from the “fold-out” net generated on the
computer by CADual and, after firing and glazing, a sand/cement mortar was used
to link the ceramic tile plates. The actual dead load is close to the ideal load for the
parabolic shape. This means that the efficiency of the structural shape will be high for
the dead load, and as it is the dominant load, the structure and its shape fit perfectly
together. In other words, the magnitude of the shear forces to be transferred at the
shear fines is minimized.



Figure 11.35 The domeshaped ceramic sculpture, called Pentagonia, circumscribes
a paraboloid of revolution, which is a structurally very efficient shape for the
dominant selfweight. It forms a 2.5-m-high ceramic pure plate dome. To ensure the
transfer of shear forces, the plates are linked with ordinary mortar. The horizontal
projection shows a very regular pattern consisting of one pentagon and just two
types of hexagons. (Ceramic artists Esben Madsen and Gudrun Rud-jord designed
and produced the sculpture in collaboration with the author. It is on display at the
Silkeborg Museum in Denmark.)
Polyhedral Clusters
Introducing plate action into traditional cubic building design should be very easy,

not only with respect to the roofing, as mentioned earlier, but also for the traditional
concrete element building technique. Increasing the strength of the connections
between the traditional precast elements might easily enable extensive plate action
and increase the architectural and functional possibilities of this building type. Figure
11.36 shows a typical example for a two-level building opened up at the lower level
and carrying the loads by activating all horizontal and vertical plates and shear lines.
In the same way, it is possible in



Figure 11.36 A simple two-story building structure based on cubic geometry and
extensive use of plate action in order to open up the lower level. The building is
stabilized for horizontal and vertical loadings by the transfer of shear forces between
plates—and not by bending. (Courtesy of Ola Wedebrunn.)

amultilevel building to have alternate floors free of internal vertical structural walls.
This indicates that it is possible to increase the structural efficiency and architectural
possibilities by adding plate action to the conventional precast concrete building
system. This is quite similar to the previous considerations for roofs.

Other types of polyhedral clusters are those proposed by J. F. Gabriel.27 These
structures are combinations of different simple polyhedra andmay be regarded as
structures composed of either rigid cells, pure plates, or a combination of plates and
lattices.

Combined Lattice and Plate Structures

The pure structures, plate and lattice, have their respective significant qualities, ad-
vantageous or disadvantageous, which have been outlined in the previous sections of
this chapter. They form opposite poles of the structural world. They may be regarded
as geometrical and structural extremes, hence the majority of their possibilities prob-
ably fie in between. The statics for the combined plate and lattice action has already
been described, and the most interesting architectural potential probably lies in the
area of expressing all the basic structural actions such as tension, compression, and
shear.



An examination project investigated by engineering students considered a palm
house (Figure 11.37), which is a combination of a coarse-meshed steel lattice and a
fine-meshed glass plate structure. Both the steel and the glass structure adhere to the
same theoretical paraboloid of revolution with the glass plates as tangential planes,
whereas the steel nodes touch the same surface at the connection points with the
glass plates. The rather complicated geometry, where the horizontal projection of the
configuration patterns shows regular triangles (lattice structure), regularly arranged
with the regular hexagons (plate structure), is easily generatedbydual transformations
using CADual.

A common problem when combining faceted spherical forms is the diffi-



Figure 11.37 Palm house project. Physical model and horizontal projection of the
steel and glass structure. (The illustration is of a model that was produced as part of
a B.S. examination project by P. Ohannessian and N. Grunnet The project, entitled
Design of a Glass Plate Dome,\Nas submitted to the Danish Technical University in 1991.)

culty of matching boundaries geometrically but, as the projection of the structural
configuration onto the horizontal ground plane has such a strict regularity, the combi-
nation of equal types of paraboloids fits perfectly together, as shown in Figure 11.37.
Because the fragile glass is part of the structure, it is important that the shape be
ideal for the dead load in order to reduce the internal stresses as much as possible.
The glass is self-supporting for all loading cases, but, in the case of local fracture, the
redundant steel structure will prevent collapse and ensure stability until the broken
glass plate is replaced.

Another way of combining lattice and plate action is, as with the non- trivalent
simple polyhedra, to achieve strength and rigidity by transferring buffer forces along
their common edges. This is exemplified (Figure 11.38) by another student project.
The general shape of the highly efficient parabolic structure is the same, but all the
facets are now quadrilateral and project into perfect squares on the ground plane.
This time the glass is almost unaffected by dead load but plays a structural role for
wind loads—similar to that of many



Figure 11.38 Project for a fruit market covering. Elevation, horizontal projection,
and internal view. (The illustration is of a model that was produced as part of an
M.S. examination project by P. Ohan-nessian and N. Grunnet The project, entitled
Interaction Between Plate and Lattice Structure,was submitted to the Danish Technical
University in 1993.)

old palmhouses. Both projects prove that the structural performance of glassmakes
it very suitable for quite large structures and that the problem of brittleness could be
dealt with by ensuring sufficient redundancy. The general shape and the faceting are
created in a very simple way by dual transformations. At the same time, the surface
turns out to be a translation surface.28 As one of the characteristics of these shapes
is that the facets are plane parallelograms, which are very simple to produce, they
belong to a family of structures appropriate for combined lattice and plate action.



Another example of the combined action is a quite interesting structure (Figure
11.39), where square plates are arranged in a chessboard pattern and hinged at the
corners. This structure forms, of course, a highly movable mechanism. One can now
crumple it into the desired spatial configuration and brace the openmeshes in both
directions. If the elements of this double brace do not intersect, then they form edges
on a tetrahedron together with the

Figure 11.39 A chessboard pattern plate system, folded in space and braced over
both the diagonals of all openmeshes, becomes a rigid structure, combining plate and
lattice action. The shape is defined by the actual lengths of the bracing bars. (This
architectural students' project was developed by S. Krohn-Hansen andM. S. Skadborg
of the Royal Danish Academy of Fine Arts.)



plate edges. In this case the bracing will not only stabilize the shape, but it will also
enable the boundary to be free from stiffening elements, hence producing a slender
and beam-free edge. If the configuration is too small or too narrow, it cannot become
rigid, but above a certain size it becomes rigid and then more and more redundant as
the size increases. To check this, the simplest method is to use the rigidity equations
for pure lattice structures and regard the plates as braced lattice squares.

11.3 CONCLUSION

It seemsquite surprising that these simple relationships between lattice andplate (and
combined) structures have been—even though Mobius came very close—so recently
described. They finally have brought a perfect polyhedral order to the concept of basic
structural action. On the other hand, it is strikingly difficult to change the firm opinion
of many professionals that the lattice is the one and only basic static principle and the
triangulated polyhedra are the only inherently rigid configurations.

This chapter introduces the concept that plate and lattice action are equivalent and
dual in our “normal” three-dimensional space. This is important, as the static and
geometrical rules for pure plate structures or combined lattice and plate structures
produce a new and different syntax and vocabulary for shaping spatial structures—a
structural morphology based on simple algebra and equally simple considerations.
This basic concept for what can be called the foundation of a form-and-force language
has an impact at several levels: from considerations of the dualistic qualities of basic
structures to simple rules for configurational design and analysis of structures, in-
cludingmany biological structures, to operational tools for numerical statical analysis.
As can be seen, the theory has not only led to the solution of a number of interesting
structural morphological problems but also produced a tool for the design of efficient
structures with the possibility of great visual and architectural qualities.
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12 Computer-Aided Processing of
Polyhedric Configurations

Hoshyar Nooshin, P. L. Disney, and O. G. Champion

12.1 INTRODUCTION

The objective of this chapter is to establish a methodology on which computer-aided
techniques for the processing of polyhedric configurations may be based. The term
polyhedric configuration is used to refer to any geometric arrangement that is based on
polyhedra. In particular, the focus of attention is on polyhedric configurations that
are of importance in the architectural and structural engineering fields.
The natural medium for the processing of polyhedric configurations is a program-

ming language that incorporates the concepts of formex algebra. Formian is such a
programming language in which the processing of polyhedric configurations can
be carried out using the standard elements of the language.1 The term processing of
polyhedric configurations in the present context
Beyond the Cube: The Architecture of Space Frames and Polyhedra, edited by J. Francois

Gabriel ISBN 0–471–12261–0 © 1997 JohnWiley & Sons, Inc.
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simply means the creation andmanipulation of polyhedric configurations.
The actual usage of the ideas presented in this chapter is envisaged to be through

a programming language such as Formian. However, the main body of the material
presented is independent of anyparticularmathematical systemor computer software.
The emphasis is on the primary concepts that are fundamental for the processing of
polyhedric configurations in any medium.
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The approach used in presenting the material is to begin by exploring the basic
classes of polyhedric configurations. This is followed by a review of the properties
of two families of polyhedra that are of central importance in relation to polyhedric
configurations. The rest of the chapter is devoted to describing the basic procedures
for processing of polyhedric configurations.
SOME BASIC POLYHEDRA
Polyhedra have been the subject of fascination and interest since ancient times.

They have been studied throughout the ages by mathematicians, philosophers, and
artists and they play an important role in a number of branches of science and tech-
nology.
The interest in polyhedra in this chapter stems from the fact that they provide a

basis for the generation of a number of important classes of structural forms. Exam-
ples of polyhedra that are of particular interest in the present chapter are shown in
Figure 12.1. These are the tetrahedron, octahedron, dodecahedron, icosahedron, and
cuboctahedron, where

• the tetrahedron has four triangular faces,

• the octahedron has eight triangular faces,

• the dodecahedron has 12 pentagonal faces,

• the icosahedron has 20 triangular faces, and

• the cuboctahedron has eight triangular faces and six square faces.

(a) Tetrahedron (b) Octahedron (c) Dodecahedron



(d) Icosahedron (e) Cuboctahedron
Figure 12.1 Some basic polyhedra.

vavavavA.
�avavavaWj
3TAVaVaWaVa<.
»kVAVATAVAVAW< 1
�avavatavavavavAs?

jAVAVAVAVAWAVAVAVA

WavavavaWavavava, ;

�avavavavavavavavavavJ

(b)
Figure 12.2Mapping onto faces of an icosahedron.
MAPPING ONTO FACES OF POLYHEDRA



The first class of polyhedric configurations to be considered is obtained by placing
objects onto the faces of polyhedra. For example, the configuration shown in Figure
12.24? is a polyhedric configuration that is obtained by placing a triangulated pattern
on five faces of an icosahedron. A configuration that is used for mapping onto the
faces of a polyhedron is referred to as a face-object. The face-object in the example
under consideration is shown in Figure 12.2a. Also, the faces of the icosahedron that
are to be mapped onto are shown in Figure 12.2b. These faces are shown again in
Figure 12.2c, with one of them having the face-object placed onto it. The complete
arrangement with the face-object mapped onto all five faces is shown in Figure 12.24?.
In the preceding description of the procedure for obtaining a polyhedric configuration,
the termsmapping and placing have been used interchangeably. This is appro-



Figure 12.3 Mapping with different face-objects.

priate because mapping in the present context simply means placing.



Another example of a polyhedric configuration is shown in Figure 12.2/ This config-
uration is obtained using the same procedure as described previously. However, in
this case, a different face-object is used for mapping. The new face-object is shown in
Figure 12.2e and the boundaries of one of the faces of the icosahedron on which the
face-object is mapped are shown by dotted lines in Figure 12.2/

Further examples of polyhedric configurations that are obtained by face mapping
are shown in Figure 12.3. The configurations shown in Figures 12.3/z—d are obtained
by mapping different face-objects onto five faces of an icosahedron. The point illus-
trated by these configurations is that face-objects are not limited to simple primary
patterns and one is free to choose any required pattern for mapping. The polyhedric
configuration shown in Figure

12.3c illustrates the fact that a face-object need not necessarily “match” the bound-
aries of the faces onto which it is mapped. Indeed, in general, a faceobject may only
partially “fill” a face or may extend beyond a face. The point illustrated by Figure 12.3
d is that a polyhedric configuration may involve more than one type of face-object.
In the configuration of Figure 12.3d, three faces have a face-object with a uniform
pattern and two faces have a faceobject with openings that create a “daisy window”
effect.

Figure 12.3e shows a polyhedric configuration that is obtained by mapping a face-
object onto three neighboring faces of a dodecahedron. These faces are shownby thick
lines on a small sketch at the top left comer of the figure. The face-object has a pentag-
onal boundary with internal hexagonal subdivisions. The polyhedric configuration of
Figure 12.3/ is obtained by mapping face-objects onto five faces of a cuboctahedron.
These faces are shown by thick lines on a small sketch at the top left comer of the
figure. A new situation is encountered here in that the faces are of different types.
Namely, there are four triangular faces and one square face. This, however, does not
create any problem because one can use different face-objects for different types of
faces, as required. The face-objects used for the polyhedric configuration of Figure
12.3/are a square-shaped face-object for the top face and a triangular face-object for
the four side faces. It is to be noted, however, that the triangular face-object used does
not fill the side faces. This fact is indicated in Figure 12.3/ where the actual boundaries
of the side faces are shown by dotted lines.



The polyhedric configurations shown in Figures 12.2 and 12.3 are samples of a wide
variety of configurations that may be created by mapping different face-objects onto
the faces of polyhedra. These polyhedric configurations constitute an important class
of structural forms. In addition, they provide the bases for the creation of geodesic
forms, as will be discussed later.

MAPPING ON EDGES OF POLYHEDRA

The constitution of a polyhedronmay be perceived in different ways. A tetrahedron,
for example, may be regarded as a solid body with four faces, six edges, and four
vertices. Alternatively, it may be regarded as a “stick arrangement” consisting of six
line segments (sticks) that meet at the vertices. With this new way of visualizing a
tetrahedron, one can again recognize four faces, six edges, and four vertices. Another
way of perceiving a tetrahedron is to think of it as a basis for mapping. Thus the
tetrahedron is regarded as a “geometric jig” that has four faces, six edges, and four
vertices and is used for the positioning of mapping objects. This way of perceiving a
polyhedron is helpful in visualizing the process of mapping face-objects as described
in the previous section. This point of view is also useful for visualizing the mapping of
objects on the edges of polyhedra. Mapping on the edges of polyhedra is theproduction
mechanism for a major class of polyhedric configurations. Examples of this kind of
configuration are shown in Figure 12.4.



Figure 12.4Mapping on edges of polyhedra.

Figure 12.4c shows a polyhedric configuration that is obtained bymapping (placing)
a space truss configuration on the edges of a tetrahedron. A configuration that is used
for mapping on the edges of a polyhedron is referred to as an edge-object. The edge-
object in the example under consideration is shown in Figure 12.4/z. Also, the edges of
the tetrahedronwith the edge-objectmappedononeof them is shown inFigure12.4Z>.
In this example the ends of the edgeobject are shaped such that when it is mapped on
the edges of the tetrahedron the ends match with one another at the vertices. Figure
12.4// shows a polyhedric configuration that is obtained by mapping a space truss
configuration on the edges of an octahedron. The ends of the edge-object are again
suitably shaped such that they match with one another after mapping. Figure 12.4e
illustrates the fact that the mapping of an edge-object need not necessarily involve
all the edges of a polyhedron. In the case of the polyhedric configuration of Figure



12.4e, the edge-object is mapped on eight edges of an octahedron. In Figure 12 Af
an icosahedron has been used as the basis for mapping. The edgeobject is again a
space truss with its ends suitably shaped. The same edge-object is used to produce
the polyhedric configuration of Figure 12.4g. In this case a group of 10 edges of an
icosahedron is used for the operation.

The pioneering work of Gabriel involves a number of examples of polyhedric con-
figurations of the type described above.2,3

MAPPING ON VERTICES OF POLYHEDRA

The idea of mapping objects on the vertices of polyhedra is a natural extension of
the processes of mapping objects on the faces and edges of polyhedra. Examples of
polyhedric configurations that are obtained by mapping objects on the vertices of
polyhedra are shown in Figure 12.5.

Figure 12.5a shows apolyhedric configuration that is producedbymapping (placing)
a star-like object on the vertices of a tetrahedron. In this figure the dotted lines indicate
the positions of the edges of the tetrahedron. A configuration that is used for mapping
on the vertices of a polyhedron is referred to as a vertex-object. The vertex-object used
for the creation of the polyhedric configuration of Figure 12 .Sa is shown in Figure
12.5&. A similar operation is performed to produce the configuration of Figure 12.5 J
using an icosahedron as the basis. The vertex-object is shown in Figure 12.5c.

Figure 12.5e shows a polyhedric configuration that is obtained by mapping the
vertex-object of Figure 12.5/on the vertices of a tetrahedron. This vertexobject has an
interesting effect. Namely, it creates end bases for the edges of the tetrahedron. The
facets of the vertex-object that create the end bases are shown shaded in Figure 12.5f
and the significance of these end bases becomes clear in relation to the polyhedric
configuration of Figure 12.5g. This configuration is obtained by a combination of
vertex mapping and edge mapping. To elaborate, a smaller version of the vertex-
object of Figure 12.5/is mapped on the vertices of a tetrahedron. This is followed by
mapping the space truss configuration of Figure 12.5h on the edges of the tetrahedron.
The scale and position of this edge-object are chosen such that the ends of the space
trusses fit the triangular bases created by the vertex-object. A similar procedure is
followed in producing the polyhedric configuration of Figures 12.Si xn&j. In this case
an octahedron has been used as the basis for the operation.



The technique employed to create the polyhedric configurations of Figures 12.5g
and/ can be of value in some practical applications. The technique provides an alter-
native way of dealing with the “end matching” problem. Thus, instead of shaping the
ends of the edge-object for matching at the vertices, the vertex-object is designed to
act as a connecting medium. This will result in a simpler edge-object because it only
requires straightforward ends.



Figure 12.5 Mapping on vertices of polyhedra.

Another point that is illustrated byFigures 12.5g andy isworth highlighting. Namely,
a polyhedric configuration may involve a combination of edge and vertex mappings.
Indeed, in general, there is no restriction regarding the mixing of different types
of mappings and any combination of face, edge, and vertex mappings may be used
without any problem.

GEODESIC CONFIGURATIONS

The configuration shown in Figure 12.6a is obtained by projecting the configura-
tion of Figure 12.2 onto the surface of a sphere. The sphere is concentric with the
icosahedron on which the configuration of Figure 12.2d is based.



Figure 12.6 Some geodesic forms.



This common center of the sphere and icosahedron is also chosen as the center of
projection. A polyhedric configuration of the type shown in Figure 12.6a is referred to
as a geodesic form or geodesic configuration. The same procedure is used to produce the
geodesic configurations shown in Figures 12.6b-d. These configurations are obtained
using the polyhedric configurations of Figures 12.2f and 12.3£ and c as the bases for
projection.

The surface onwhich a geodesic form is produced need not necessarily be spherical.
Indeed, a variety of different surfaces such as ellipsoids and paraboloids may be used
for the creation of geodesic forms. Also, the type of projection need not necessarily
be central and other kinds of projections, such as parallel projection, may be used
instead.

Figure 12.6e shows a geodesic form that is obtained by projecting the poly-



Figure 12.7 Some double-layer polyhedric configurations.

hedric configuration of Figure 12.2/ onto an ellipsoidal surface. A different process
is involved in producing the configuration shown in Figure 12.6/ This is obtained by
stretching the configuration of Figure 12.6b in one direction.

The configuration shown in Figure 12.6/illustrates a point of general importance.
Namely, any polyhedric configuration may be subjected to modifications and alter-
ations to suit a particular application. In other words, there is no “inherent” final stage
in the processing of a polyhedric configuration. Like a lump of steel in the hands of a
blacksmith, a polyhedric configurationmay be worked, in as many stages as required,
to turn it into a desired shape.

A geodesic formmay involve two or more layers. For example, the geodesic con-
figuration shown in Figure 12 .lb has two layers of elements that are interconnected
together by intermediate web elements. This double-layer geodesic form is based on
the configuration shown in Figure 12.7/z. This is a polyhedric configuration that is
obtained by mapping (placing) a double-layer face-object onto five faces of an icosa-
hedron. The geodesic form of Figure 12.1 b is obtained by projecting the two layers of
the configuration of Figure 12.7/z onto two concentric spheres. A similar procedure
is used in obtaining the double-layer geodesic forms of Figures 12.Id and/from the
configurations shown in Figures 12.7c and e, respectively.



The projection stage in the creation of a geodesic form involves a relatively simple
operation. This is true for projection on a single surface as well as projection on two
or more surfaces. The reason for the simplicity of operation is that projection is a
straightforward concept and can easily be dealt with through a standard computer-
based routine.4

An abundance of structures have been constructed all over the world using var-
ious forms of geodesic configurations. These begin with the pioneering work of R.
Buckminster Fuller and include many impressive examples.5,6

PROCESSING OF POLYHEDRIC CONFIGURATIONS

The processing of polyhedric configurations in precomputer days was an extremely
difficult task. In spite of this, a number of gifted designers managed to deal with the
problem and create many beautiful structures based on polyhedric configurations.
The constraint of the processing difficulties, however, did not allow the designers to
take full advantage of the whole spectrum of possibilities and their scope remained
rather limited. Even today, the processing of polyhedric configurations is mainly
carried out using computer programs that lack generality and have many limitations
and shortcomings.

In contrast, the conceptual methodology that will be presented in this chapter,
combined with suitable computer software such as Formian, provides a means for
dealing with the processing of any kind of polyhedric configuration with relative ease.

One key factor in dealing with the processing of polyhedric configurations is the
ability to generate face-objects, edge-objects, and vertex-objects in a convenient man-
ner. The creation of these objects in Formian can be carried out using the concepts of
formex algebra. The algebra works through concepts that effect movement, propaga-
tion, deformation, and curtailment of forms (Figure 12.8).1,7

PLATONIC AND ARCHIMEDEAN POLYHEDRA

In this chapter the use of polyhedra in the creation of structural forms is discussed
in terms of Platonic and Archimedean polyhedra. There are five Platonic polyhedra,
whose views are shown in Figure 12.9. These five polyhedra

Formex algebra includes:



concepts that allowmovement of forms

G=verad(0,0) | E

concepts that allow propagation of forms

G=lamid(5,5/2)|E

concepts that allow deformation of forms G=bb(l,3/2)|bp(l,9)[E \

Figure 12.8 Basic concepts of formex algebra.

were known to the ancient world before Plato and the designation “Platonic” is
due to the fact that Plato paid special attention to these polyhedra.8 Each one of the
Platonic polyhedra is a convex body with faces that are congruent regular polygons of
the same type.

An Archimedean polyhedron is also a convex body with faces that are regular poly-
gons. However, unlike thePlatonic polyhedra, the faces of anArchimedeanpolyhedron
are not all of the same type. There are 15 Archimedean polyhedra, whose views are
shown in Figure 12.9. Each of these polyhedra has either two or three different types of
faces. Archimedean polyhedra were discovered in ancient Greece and were described
by Archimedes. However, the writings of Archimedes in this regard together with the
knowledge of these polyhedra were lost and it was not until the Renaissance that they
were gradually rediscovered.8

The Platonic and Archimedean polyhedra are closely related and a family tree
indicating the relationships between them is shown in Figure 12.10. This



PLATONIC POLYHEDRA
Pl: Tetrahedron P2: Cube P3: Octahedron P4: Dodeca
PS: Icosa
hedron hedron

ARCHIMEDEAN POLYHEDRA
P6: Truncated P7: Cubocta-
Tetrahedron
hedron
P8: Truncated P9: Truncated
Cube Octahedron
PIO: Small Rhombicub-octahedron
Pl 1: Great Rhombicub-octahedron
P12: Icosido-decahedron
P13: Truncated
Dodecahedron
P14: Truncated
Icosahedron
P15: Left
Snub Cube



P16: Right

Snub Cube

P17: Small Rhombicosi-dodecahedron

P18: Great Rhombicosi-dodecahedron

P19:Left Snub Dodecahedron

P20: Right Snub Dodecahedron

Figure 12.9 Platonic and Archimedean polyhedra.

is a modified version of a family tree produced by Motro.5 It is seen from Figure
12.10 that the tetrahedron is the “mother polyhedron” and all the other Platonic and
Archimedean polyhedra may be derived from it. This may be done through five basic
transformations, which are briefly described in Figure 12.11. These transformations
are referred to as truncation, canting, snubbing, duality, and planing. Detailed general
descriptions of Platonic and Archimedean polyhedra may be found in many excellent
publications.8'10

POLYHEDRON CODES AND P-NAMES

A numeric code is required for identification of the Platonic and Archimedean poly-
hedra in computer-based procedures for the processing of polyhedric configurations.
This numeric code is chosen to consist of the integer numbers 1 to 20, associated with
the Platonic and Archimedean polyhedra in the order



Figure 12.10 Family tree of Platonic and Archimedean polyhedra.
Snub Cubes
Snub Dodecahedra
Cuboctahedron
Icosidodecahedron



Great
CANTING + PLANING
TRUNCATION + PLANING
Small
Rhombicuboctahedron
Great
CANTING + PLANING
TRUNCATION + PLANING
Small
Rhombicosidodecahedron
they appear in Figure 12.9. These identity numbers are referred to as polyhedron

codes. For instance, the polyhedron codes for the tetrahedron, cuboctahedron, and
icosidodecahedron are 1, 7, and 12, respectively. A polyhedron code, preceded by
the letter P, is used as an alternative name for the polyhedron. A name of this form
is referred to as a P-name. The P-names of the Platonic and Archimedean polyhedra
are shown in Figure 12.9 together with the traditional names of the polyhedra. In the
following material the P-names are sometimes used by themselves or together with
the traditional names to identify polyhedra.



Canting of Cube
Truncation: Each edge is divided into a central segment and two end segments

and the vertex pieces obtained by connecting the division points are cut off, as shown.
Canting: Each edge is divided into two equal segments and the vertex pieces ob-

tained by connecting the division points are cut off, as shown.
Snubbing of Cube
Dual of Cube
Snubbing: A smaller rotated version of each face is placed centrally on the face

(shown shaded) and the regions between the edges of the new faces are trimmed off
by faceting.
Duality: The center of each face is regarded as the vertex of another polyhedron (or

each vertex is regarded as the center of a face of a polyhedron).
Planing of Canted Cuboctahedron
Planing: The term ‘planing’ implies ‘planing down’ (scraping off) the surface of a

polyhedron. For instance, in producing the small rhombicuboctahedron, a cuboctahe-
dron is subjected to canting, as shown above. This will give rise to a polyhedron that
is similar to the small rhombicuboctahedron but in which the faces that are shown
shaded are rectangular rather than square. To overcome the problem, the shaded
rectangular faces together with the triangular faces are planed down to a depth that
equalizes all the edges.
Figure 12.11 Truncation, canting, snubbing, duality, and planing.
PROPERTIES OF PLATONIC AND ARCHIMEDEAN POLYHEDRA

The basic particulars of the Platonic and Archimedean polyhedra are given in
Table 12.1. The first column of this table gives the names of the polyhedra
together with their P-names. The second column of Table 12.1 fists the num-
bers of faces, edges, and vertices. For instance, these items for a tetrahedron
are given as

F3:4
F:6

I/: 4



Here, the letter F stands for face and the digit that follows F indicates the
number of sides of the face. Also, the letter E stands for edge and the letter
V stands for vertex. The items given in the second column of Table 12.1 for
a tetrahedron indicate that it has four triangular faces, six edges, and four
vertices. Also, the information given in the second column of the table for P7
(cuboctahedron) indicates that it has 8 triangular faces, 6 square faces, 24
edges, and 12 vertices.

The third column of Table 12.1 lists the radii of inspheres of the Platonic and
Archimedean polyhedra. An insphere is a sphere that is tangent to all the
faces of the same type of a polyhedron. A Platonic polyhedron has only one
insphere. An Archimedean polyhedron, on the other hand, has either two or
three inspheres, depending on whether it has two or three different types of
faces. The radius of insphere for an Archimedean polyhedron given in the
third column of Table 12.1 corresponds to the smallest insphere, that is, the
insphere that is tangent to the largest faces. Also included at the end of Ta-
ble 12.1 are two general formulas for evaluation of the radii of inspheres for
Platonic and Archimedean polyhedra. Each value in the third column of Table
12.1 is given in terms of a parameter L that represents the edge length of the
polyhedron.

The parameter L, representing the edge length, also appears in columns 4
and 5 of Table 12.1. Columns 4 and 5 list the radii of interspheres and cir-
cumspheres of the Platonic and Archimedean polyhedra. An intersphere is a
sphere that is tangent to all the edges of a polyhedron and a circumsphere is
a sphere that passes through all the vertices of a polyhedron. Each Platonic
or Archimedean polyhedron has one intersphere and one circumsphere.

The last column of Table 12.1 lists the dihedral angles of the Platonic and
Archimedean polyhedra. A dihedral angle is the angle between two faces of
a polyhedron that share an edge. For any Platonic polyhedron, all the dihe-
dral angles are equal. In contrast, an Archimedean polyhedron may have up
to three different dihedral angles, as shown in the last column of Table 12.1.
For an Archimedean polyhedron that has more than one dihedral angle, the
faces that correspond to each dihedral angle are specified by the numbers of
their sides given in square brackets. For example, in the case of P6 (truncated



tetrahedron), the first dihedral angle is preceded by [6—6] indicating that the
angle is between two hexagonal faces and the second dihedral angle is pre-
ceded by [6–3] indicating that the angle is between a hexagonal face and a
triangular face.

The properties of the Platonic and Archimedean polyhedra, as given in Table
12.1, are incorporated into the part of Formian that deals with the processing
of polyhedric configurations. The information is built into Formian in terms
of the formulas given in Table 12.1. The use of formulas will allow the full
available accuracy of the computer to be utilized. High accuracy of the basic
polyhedral data is essential in many situations. This is the case, for instance,
when dealing with complex polyhedric configurations that consist of many
thousands of elements, in particular, when the generated geometric details
are to be used as a basis for other operations, such as structural analysis.

In regard to the accuracy of the entries in Table 12.1, it should be noted that
for the snub polyhedra (P15, P16, P19, and P20), the accuracy of the entries
for radii of insphere, intersphere, and circumsphere depends on the accuracy
of a parameter k. The value of this parameter in Table 12.1 is given accurate to
nine decimal places. The values of the dihedral angles for the snub polyhedra
in Table 12.1 are also given accurate to nine decimal places.

POLYHEDRAL COORDINATE SYSTEMS

A view of a polyhedric configuration is shown in Figure 12.12/z. The con-
figuration is obtained by mapping a triangulated pattern onto the faces of a
tetrahedron. When a computer-aided approach is used in processing such a
configuration, the internal computer representation of the configuration will
be a numerical model that describes the configuration in terms of the coordi-
nates of its nodal points. It is therefore necessary to have a coordinate system
with respect to which the nodal coordinates are specified. The most conve-
nient approach in this regard is to establish a standard coordinate system for
the tetrahedron and to use it for all polyhedric configurations that are based
on a tetrahedron.



The chosen standard coordinate system for the tetrahedron is the right-
handed Cartesian coordinate system that is shown as X—Y—Z in Figure
12.12a. Figure 12.12# illustrates the conventions used in specifying this
standard coordinate system. The origin of the coordinate system is at the
center of the polyhedron. This point is indicated by a large dot. The points
where the X, Y, and Z axes intersect the body of the polyhedron are referred
to as the X-point, Y- point, and Z-point, respectively. The X-point is at the
center of the circle with an X inside it. The T-point is indicated by a little circle
and the Y axis is shown as an arrow emanating from the K-point. Similarly,
the Z-point is indicated by a tittle circle and the Z axis is shown as an arrow
emanating from the Z-point.

The standard coordinate system for the tetrahedron is shown again in Figure
12.13 togetherwith the standard coordinate systems for all the other Platonic
and Archimedean polyhedra. Some of the polyhedra in this figure have addi-
tional sketches shown near them. The tetrahedron, for example, has such
a sketch. These sketches provide information about the precise positions of
the X-points and are included whenever the positions of the X-points are not
obvious from the main figures.

A view of a set of cardboard models of Platonic and Archimedean polyhe-
TABLE 12.1 Properties of Platonic and Archimedean Polyhedra

Polyhedron Faces,
Edges,
Ver-
tices

Radius of
Insphere

Radius of
Intersphere

Radius of Cir-
cumsphere

Dihedral Angle

Pl: Tetrahe-
dron

F3:4
E: 6
V:4

12
(0.204124145

Z)

4
(0.353553390

Z)

4
(0.612372435
Z)

/ 1 X acos(y)
(70.5287794°)

P2: Cube F4: 6
E: 12
V: 8

L 2 Z
�Ji

(0.707106781
Z)

—Z 2
(0.866025403

Z)

90°



P3:
Octahedron

F3: 8
E: 12
V: 6

_L_
JU

(0.408248290
L)

L 2 Z
�Ji

(0.707106781
Z)

/-lx acos(—)
(109.471221°)

P4: Dodeca-
hedron

F5:
12
E: 30
V: 20

725+1175
2710

(1.11351636
Z)

3 + 75 T la 4
(1.30901699

Z)

718 + 65/5 r

4
(1.40125854
Z)

acos(-)
(116.565051°)

P5: Icosahe-
dron

F3:20
E: 30
V: 12

3+ 473
(0.755761314

Z)

l + 75z 4
(0.809016994

Z)
710
+
25/5

r
``"la

4
(0.951056516
Z)

/-75 k acos(—)
(138.189685°)

P6:
Truncated
Tetrahe-
dron

F3:4
F6:4
E: 18
V: 12

Z 4
(0.612372435

Z)

372 _ 4
(1.06066017

Z)

722z 4
(1.17260394

Z)

[6–6] acos( 1/3)
(70.5287794°)
[6–3] acos(-l/3)
(109.471221°)

P7: Cuboc-
tahedron

F3: 8
F4: 6
E:24
V: 12

L
�Ji

(0.707106781
Z)

2
(0.866025403
Z)

Z acos(-y)
(125.264390°)

PS:
Truncated
Cube

F3: 8
F8: 6
E: 36
V:24

l+£ 2
(1.20710678

Z)

2+-J2 r
—JL
2

(1.70710678
Z)

77 + 472 T la
2

(1.77882365
Z)

[8–8] 90°
[8–3] acos(-1/5/3)
(125.264390°)



P9:
Truncated
Octahedron

F4: 6
F6: 8
E: 36
V: 24

Z 2
(1.22474487

Z)

3-l 2 TiOz 2
(1.58113883

Z)

[6–6] acos(-l/3)
(109.471221°)

[6–4] acos(-1/5/3)
(125.264390°)

PIO: Small

Rhombicub-
octahedron

F3: 8
F4:
18
E: 48
V: 24

i+z 2
(1.20710678

Z)

J1 + 2-J2 r
…. � 2z
2

(1.30656297
Z)

75 + 25/2 r

2
(1.39896633
Z)

[4–4] 135°
[4–3] acos(-5/6/3)
(144.735610°)

PH: Great
Rhombicub-
octahedron

F4:
12
F6: 8
F8: 6
E: 72
V: 48

1+2–72 r
jlz 2

(1.91421356
Z)

J12 + &J2 r '
la 2

(2.26303344
Z)

713 + 65/2 T

2
(2.31761091
Z)

[8–6] acos(-l/x/J)
(125.264390°)
[8–4] 135°

[6–4] acos(-5/6/3)
(144.735610°)

Pll: Icosido-
decahedron

F3:
20
F5:
12
E: 60
V: 30

J5+245 t �Js
(1.37638192

Z)

75+2–75 T 2
(1.53884177

Z)

1 + 5Z 2
(1.61803399

Z)

(-75 +
275 \
acosl
,——I
k 5/15
'
(142.622632°)

P13:
Truncated
Dodecahe-
dron

F3:
20
F10:12
E: 90
V: 60

J50 + 22J5

T la 4
(2.48989829

Z)

5 + 35/5 _

4
(2.92705098
Z)

774 + 305/5

T

4
(2.96944902
Z)

[10–10]
acos(-1/5/5)
(116.565051°)
[10–3] acos( )
(142.622632°)

TABLE 12.1 Properties of Platonic and Archimedean Polyhedra (continued)



Polyhedron Faces,
Edges,
Ver-
tices

Radius of
Insphere

Radius of
Intersphere

Radius of
Circum-
sphere

Dihedral Angle

F5:
12
F6:
20
E: 90
V: 60

[6–6] acos(-75/3)
P14:
Truncated
Icosahedron

742 + 1875
4
(2.26728394
Z)

3 + 3£ 758+1875 r (138.189685°)
4

(2.42705098
Z)

4
(2.47801866
Z)

rrcl (-75+275 \
[6–5] acos( )
(142.622632°)

F3:32
F4: 6
E: 60
V: 24

P15: Left
Snub
Cube
P16: Right
Snub

Z 2k
(1.14261351

Z)

71 +A:2 T
2k

(1.24722317
Z)

71 + 2A:2 T
2k

(1.34371337
Z)

[4–3]
142.983430°
[3–3]
153.234588°

Cube k is equal to 0.437593286 and represents the ratio of the edge length
of a snub cube and that of its parent cube. The angle of rotation of a
square face of a snub cube with respect to the corresponding face of
its parent cube is equal to 16.4675604°.
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P19: Left
Snub
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P20: Right
Snub
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k is equal to 0.562121965 and represents the ratio of the edge length
of a snub dodecahedron and that of its parent dodecahedron. The
angle of rotation of a pentagonal face of a snub dodecahedron with
respect to the corresponding face of its parent dodecahedron is equal
to 13.1064034°.

Some General Relations

(l)Rc=7/?t2+Z2/4 (2)Ri=Rc2-L2/4 Q)Rip=Rc2 -rp2 (4) Rip = yj R12

-bp2 (5) L = 2'Jrc2-Ri2 (6) a - 2 asin(Z/2Rc) (7) a = 2 acos(A//7?c) (8) a = 2 atan(Z/2Rt)
The above relations are applicable to every Platonic and Archimedean polyhedron,
where: � Z is the edge length � a is the angle subtended by an edge at the center of the
polyhedron � Rc is the radius of the circumsphere � Rt is the radius of the intersphere
� Rip is the radius of an insphere, that is, a sphere which is tangent to all the faces of
type p � rp is the distance between the center and a comer of a face of type p � bp is
the distance between the center and the midpoint of a side of a face of type p � The
radius of insphere for an Archimedean polyhedron given in the third column of the
table corresponds to the smallest insphere, that is, the insphere which is tangent to
the largest faces.



(a) (b)

Figure 12.12 A coordinate system for tetrahedron.

dra is shown in Figure 12.14. The models of the Platonic polyhedra are placed in
the front row and those of the Archimedean polyhedra are arranged in the three back
rows. The X-point and Z-point for eachmodel are situated at the centers of the circular
spots on the model. The darker spot that appears in front of the model indicates
the position of the X-point and the lighter spot that appears on the top indicates the
position of the Z-point.

From the point of view of compatibility of the coordinate systems, as given in Figure
12.13, the Platonic and Archimedean polyhedra may be divided into three groups.
First, there is a group consisting of two polyhedra, namely, the tetrahedron and trun-
cated tetrahedron. These two polyhedra occupy the central part of the family tree
in Figure 12.10. The coordinate systems for these polyhedra are compatible with
each other. By the term compatible, in this context, it is meant that when a truncated
tetrahedron is produced by cutting off the comers of a tetrahedron, then the origi-
nal coordinate system of the tetrahedron will become the coordinate system for the
truncated tetrahedron without any change.

The second family of polyhedrawith compatible coordinate systems consists of nine
polyhedra. These are the polyhedra that can be derived from the cube or octahedron
and appear to the left of the center in the family tree of Figure 12.10. The third family
of polyhedra with compatible coordinate systems again has nine members. These are
the polyhedra that can be derived from the dodecahedron or icosahedron and appear
to the right of the center in the family tree of Figure 12.10.



The standard coordinate systems shown in Figure 12.13 are used in Formian as the
basis for formulation of the transformations necessary for the creation of numerical
models representing polyhedric configurations.

IDENTITY NUMBERS AND BASELINES FOR FACES OF POLYHEDRA

Figure 12.15e shows a polyhedric configuration that is obtained by mapping the
face-object of Figure 12.15a onto the top five faces of an icosahedron. If the face-object
for mapping onto the faces is chosen to be that of Figure 12.15b, then the result will
be the polyhedric configuration shown in Figure 12.15/ In the case of the polyhedric
configuration of Figure 12.15g, the faceobject of Figure 12.15/7 is mapped onto one of
the top faces of an icosahedron and the face-object of Figure 12.15c is mapped onto
the remaining four faces. The polyhedric configuration of Figure 12.15b is obtained by
a similar procedure using the face-objects shown in Figures 12.15b and d.

The point that is meant to be illustrated by the above examples is that in most
practical cases a face-object is mapped onto a selected number of the faces rather
than all the faces of a polyhedron. In the examples of Figures 12.15 e-h, the top
five faces of an icosahedron have been selected for mapping. Furthermore, in the
examples of Figures 12.15g and b, one of the faces has been selected for mapping of
a face-object and the other four faces have been selected for mapping of a different
face-object. In order to select faces, it is necessary to have a means of identifying the
faces of a polyhedron. This is achieved by associating an identity number with each
face of a polyhedron, as will be described later.

Another problem that has to be addressed is illustrated in terms of the polyhedric
configurations shown in Figures 12.15/ and/. Figure 12.15/ shows a polyhedric con-
figuration that is obtained by mapping the face-object of Figure 12.15c onto the top
five faces of an icosahedron. However, the orientation of the face-object as mapped
onto the faces in Figure 12.15/ is different from the orientation of the face-object as it
appears in Figure 12.15c. The polyhedric configuration shown in Figure 12.15/ has
the face-object of Figure 12.15/7 mapped onto three of the faces and the face-object
of Figure 12.15c mapped onto two of the faces with different orientations. These
examples show that, in addition to the requirement of an identity number for each
face of a polyhedron, it is also necessary to associate a frame of reference with the
face. This would then allow the required position of a face-object for mapping onto
the face to be specified unambiguously.



A frame of reference for a face of a polyhedron is established by assigning the status
of baseline to one of the sides of the face and by associating the letters A and B to the end
points of this baseline, as shown in Figures 12.16a and b. The end of the baseline that
is associated with the letter A is referred to as the 4-end and the end that is associated
with the letter B is referred to as the 2?-end. The baseline of a face is indicated by a
vector. The vector is placed near the baselinewith its arrowhead showing the direction
from the A-end to the 5-end. In addition, the identity number of each face is placed
near the baseline vector.

Thebaseline vectors and the face identity numbers for the toppart of an icosahedron
are shown in Figure 12.16a. The allocation of identity numbers and the selection of
baselines for the faces of polyhedra are governed by a number of rules, which are
described in the Appendix. Also, the face identity numbers together with the baselines
for a group of six polyhedra are shown in Figure 12.17. This group contains all the
Platonic polyhedra and one Archimedean polyhedron, namely, the cuboctahedron.



P4: Dodecahedron
P5:Icosahedron
P6: Truncated
Tetrahedron
P8: Truncated Cube
P9: Truncated
Octahedron
PIO: Small Rhombi-cuboctahedron
Pl 1: Great Rhombi-cuboctahedron
Figure 12.13 (part 1) Coordinate systems of Platonic and Archimedean polyhedra.



P12: Icosido-Pl3: Truncated Pl4: Truncated
decahedron Dodecahedron Icosahedron
Pl5: Left Snub Cube
Pl6: Right Snub Cube
Pl7: Small Rhomb-
icosidodecahedron

Pl8: Great Rhomb-icosidodecahedron
Pl9: Left Snub Dodecahedron
P20: Right Snub Dodecahedron



e is parallel to the Y

axis and f is parallel to the Z axis.

e = 0.192893711 L f= 0.144866867 L

Position of X-pointforP19

Position of X-point for P20

Figure 12.13 (part 2) Coordinate systems of Platonic and Archimedean polyhedra.

Figure 12.14Models of Platonic and Archimedean polyhedra with the darker front
spots indicating the X-points and the lighter top spots indicating the Z-points.



Figure 12.15 Examples of face mapping.
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Figure 12.16 Face-mapping process.
MAPPING OF FACE-OBJECTS

The process of mapping a face-object onto a face of a polyhedron involves the
following steps:

1. A face-object is specified by a formex relative to the standard X-Y-Z coordinate
system of the polyhedron.

2. Two points of the face-object are specified by their X-Y-Z coordinates. These
points are referred to as the A -point and B-point. The role of the /(-point and
B-point is to provide information regarding the required





Figure12.17 Identity numbers andbaselines for the faces of a selection of polyhedra.

position, orientation, and size of the face-object in its final mapped position
on the face of the polyhedron, as exemplified in Figures 12.16c-f.

3. The face-object is scaled such that the distance between the A-point and 5-point
is equal to the edge length of the polyhedron. In this scaling process, the same
scale factor is used in the X, Y, and Z directions.

4. Themapping plane is determined. This is the plane of the face-object that is to
coincide with the face of the polyhedron. If the line containing the A-point and
B-point of the face-object is parallel to (or coincident with) the X axis, then the
mapping plane is the plane that contains the A-point and 5-point and is parallel
to (or coincident with) the X-Y plane. This simple case is applicable in most
practical situations and is the only case considered here.

5. The face-object is subjected to a sequence of rigid-bodymovements (translations
and rotations) such that the following conditions are satisfied:

• The //-point of the face-object is coincident with the ?/-end of the baseline of the
face.

• The B-point of the face-object is coincident with the B-end of the baseline of the
face.

• The mapping plane is coincident with the face.

° The direction that was initially the positive Z direction of the faceobject is
pointing to the outside of the polyhedron.

Two examples of the face-mapping process are shown in Figure 12.16. Figure
12.16c shows the top part of an icosahedron with a face-object mapped onto five faces.
The boundaries of these faces are shown by dotted lines. The face-object is shown in
Figure 12.16d with the line that passes through the-point and B-point being parallel
to the X axis. The mapping is achieved by suitably scaling the face-object and then
placing it on each face in a position where the /(-point coincides with the /(-end of the
basefine of the face and the B-point coincides with the B-end of the baseline of the
face.



It is important to note that the //-point and B-point of the face-object need not
necessarily be actual points of the face-object. For example, in the case of the face-
object in Figure 12.16d, the //-point and B-point are outside the face-object altogether.
The dotted lines here are included to indicate the positions of the y4-point and B-point.
These dotted lines are not supposed to be part of the face-object.

A second example of face mapping is shown in Figures 12.16e and/ The face-object
in this example is the same as that of the previous one. The only difference is in the
positions of the //-point and B-point. To be specific, the positions of the /(-point and
B-point have crossed over as well as being shifted. Consequently, the face-object has
been turned around for mapping.

IDENTITY NUMBERS AND DIRECTIONS FOR EDGES OF POLYHEDRA

The upper part of Figure 12.18/z shows a polyhedric configuration that is obtained
by mapping a truss configuration on the edges of an octahedron. The edge-object is
shown in the lower part of Figure 12.18a with the //-point and B-point being assumed
to be on the X axis. The mapping is carried out by placing a suitably scaled version
of the edge-object on the edges of the octahedron. For each edge, the edge-object is
positioned such that the end points of the top chord of the truss coincide with the
end points of the edge and the plane of the truss passes through the center of the
octahedron. The angle of the inclined sides of the truss is chosen such that, after
mapping on the edges of the octahedron, the ends of the bottom chords of the trusses
meet without any gaps. The termmiter angle is used to refer to the angle that will allow
the ends of the trusses to match after mapping. Figure 12.18b shows the result of



where L is the edge length of the polyhedron and Rc is
the radius of its circumsphere.

* The ‘mitre angle’ is given by: asin(L/2Rc)

Edge-object

Miter Angle

(c)

Figure 12.18 Examples of edge mapping.

mapping a Vierendeel-girder-type configuration on the edges of a dodecahedron.
Also, the result of mapping a truss-like configuration on the upper half of a cuboctahe-
dron is shown in Figure 12.18c.

If the edge-object consists of a plane configuration and if this is to bemapped on the
edges of a Platonic or Archimedean polyhedron, then themiter anglemay be obtained
from the general formula given at the right bottom corner of Figure 12.18.



In order to carry out the mapping of an object on an edge of a polyhedron, it is
necessary to identify the edge on which the object is to be mapped and to estabfish a
way of specifying the position, orientation, and size of the object at its final mapped
form. The identification of the edges of a polyhedron is achieved by allocating an
identity number to each edge, as exemplified in Figure 12.18d for the upper half of a
cuboctahedron. Also, each end of an edge is



P4: Dodecahedron

P5:Icosahedron

Figure 12.19 Identity numbers, directions, and handles for edges and vertices of a
selection of polyhedra.



P7: Cuboctahedron

associated with a letter. One end is associated with the letter A and is referred to as
the /4-end and the other end is associated with the letter B and is referred to as the
5-end. The /Tends and 5-ends for two of the edges of a cuboctahedron are shown in
Figure 12.18d. The convention is adopted that the positions of the /Tend and 5-end of
an edge are indicated by placing an arrowhead on the edge pointing from the /Tend to
the 2?-end, as shown in Figure 12.18*7. Thus the /Tend and 5-end effectively establish
a “direction” for the edge.

The identity numbers of the edges together with the arrowheads indicating the
/Tends and 5-ends for the Platonic polyhedra and a sample of an Archimedean polyhe-
dron (namely, a cuboctahedron) are shown in Figure 12.19. This figure also includes
some information relating to the vertices of the polyhedra, as will be discussed later.
The allocation of identity numbers to the edges as well as the choices of the/(-ends
and 5-ends, as shown in Figure 12.19, are governed by a number of rules, which are
described in the Appendix.

MAPPING OF EDGE-OBJECTS

The process of mapping an edge-object on an edge of a polyhedron involves the
following steps:

1. An edge-object is specified by a formex relative to the standard X-Y-Z coordinate
system of the polyhedron.

2. Two points of the edge-object are specified by their X-Y-Z coordinates. These
points are referred to as the A -point and 5-point. The role of the /(-point and
5-point is to provide information regarding the required position, orientation,
and size of the edge-object in its final mapped position, as illustrated in Figure
12.18.

3. The edge-object is scaled such that the distance between the 24-point and 5-
point is equal to the edge length of the polyhedron. In this scaling process, the
same scale factor is used in the X, Y, and Z directions.



4. The mapping plane is determined. This is the plane of the edge-object that is to
coincide with the plane that contains the edge and passes through the center of
the polyhedron. If the fine containing the A- point and B-point is parallel to (or
coincident with) the X axis, then the mapping plane is the plane that contains
the /(-point and 5-point and is parallel to (or coincident with) the X-Z plane.
This simple case is applicable in most practical situations and is the only case
considered here.

5. The edge-object is subjected to a sequence of rigid-bodymovements (transla-
tions and rotations) such that the following conditions are satisfied:

• The /(-point of the edge-object is coincident with the /(-end of the edge.

• The 5-point of the edge-object is coincident with the 5-end of the edge.

• Themappingplane is coincidentwith the plane that contains the edge andpasses
through the center of the polyhedron.

• The direction that was initially the positive Z direction of the edgeobject is point-
ing to the outside of the polyhedron.

IDENTITY NUMBERS AND HANDLES FOR VERTICES

OF POLYHEDRA

Examples of mapping of objects on the vertices of polyhedra are shown in Figure
12.20. lb begin with, as for the faces and edges, it is necessary to allocate an identity
number and a frame of reference to each vertex of a polyhedron.



B-point -—(To be placed at the B-end of the handle)

Vertex-object

A-point (To be placed at the A-end of the handle)

(b)
Vertex-object

(To be placed at the B-end of the handle)

A-point (To be placed at the A-end of the handle)

(c)

Figure 12.20 Examples of vertex mapping.

Identity numbers for vertices in the upper half of a cuboctahedron are shown in
Figure 12.20a. The convention is adopted that a vertex identity number is shown in a
circle placed at the vertex. The frame of reference for a vertex is provided by selecting
one of its edges to become a base with respect to which vertex-objectsmay bemapped



on the vertex. This edge is referred to as the handle of the vertex. Also, the vertex end
of the handle is referred to as the A- end and the other end is referred to as the 5-end.
The convention is adopted that the handle of a vertex is indicated by placing a dot
(referred to as a handle dot) at its Af-end, as shown in Figure 12.20#.
The vertex identity numbers andhandles for all the Platonic polyhedra and a sample

of an Archimedean polyhedron (cuboctahedron) are shown in Figure 12.19. The rules
governing the choices of identity numbers and handles for vertices are given in the
Appendix.
MAPPING OF VERTEX-OBJECTS
Figure 12.20£ shows the result of mapping a vertex-object on the vertices of the

upper half of a cuboctahedron. Another example of vertexmapping is shown in Figure
12.20c, where a vertex-object is mapped on the vertices of a dodecahedron.
With one important difference, which will be discussed below, the process of map-

ping a vertex-object is identical to the procedure for mapping an edgeobject. To
elaborate, if a vertex-object is to be mapped on a vertex of a polyhedron, then the
procedure followed will be as though the vertex-object is an edge-object that is to be
mapped on the edge which is the handle of the vertex.
The important difference between vertexmapping as compared with edgemapping

(and facemapping) is that, in somecases, a vertex-object is to be subjected to reflection
in the mapping process. To elaborate, the mapping of a face-object or an edge-object
is always carried out through a sequence of rigid-body movements (translations and
rotations) and simple scaling. This fact remains true for a vertex-object in most cases.
However, for two Archimedean polyhedra the process of mapping a vertex-object
may require an additional operation of reflection. These two polyhedra are Pll (great
rhombicuboctahedron) and P18 (great rhombicosidodecahedron) and the reason for
the need for reflection in these cases is discussed in the Appendix.
POLYMATION FUNCTION
The processes involved in mapping objects on the faces, edges, and vertices of

polyhedra are discussed in the previous sections. In Formian, these processes are
carried out through the polymation function. For example, a Formian instruction that
creates a formex representing the polyhedric configuration of Figure 12.20c may be
written as
G = pol(3, 4, '[all]', 1, [0,0; 1,01)1 E
where



• E is a formex representing the vertex-object.

• G is a formex representing the polyhedric configuration of Figure 12.20c.

• pol is an abbreviation for the name of the function, that is, polymation.

• The first item in parentheses is the operation code specifying the type of mapping
to be performed, where the integer 3 indicates mapping on vertices.

• The second item in parentheses is the polyhedron code specifying the
'Operation code' specifies the type of operation to be performed, namely, map-
ping on faces, mapping on edges or mapping on vertices. The operation code
is an integer expression whose value is 1, 2 or 3 specifying mapping on faces,
edges or vertices, respectively. In the example shown, the integer 2 specifies
mapping on edges.

'Polyhedron code' specifies the type of polyhedron to be used as the basis for
the operation. The polyhedron code is an integer expression whose value is
in the range 1 to 20 specifying one of the Platonic or Archimedean polyhedra.
In the example shown, the integer 7 indicates cuboctahedron.

'Radius specifier1 determines the size of the polyhedron by specifying the ra-
dius of its circumsphere. The radius specifier is a numeric expression whose
value is a nonzero positive number. In the example shown, the radius is given
as 10. It is possible to specify different radii for different layers of the ob-
ject to be used for mapping. In this case, the radii are specified in terms of a
formex expression.

T

'Entity list' gives the list of face, edge or vertex numbers on which mapping is
to be performed. The entity list is a string expression whose value is a list of
items separatedby commas. The items in the example shownare1–7, 11and
12, where 1–7 is equivalent to 1, 2, 3,4, 5, 6 and 7. It is possible to use 'all' as
an item implying all the faces, edges or vertices, as appropriate, listed in the
ascending order. An itemmay also be a negative integer, like -8, or a negative
parenthesised list, like -(6,12–15,9). A negative item has a cancelling effect



'Locator1 is a formex expression whose value specifies the coordinates of the
A-point and B-point of the object to be used for mapping. In the example
shown, 0,0 and 1,0 are the coordinates of the A-point and B-point of the ob-
ject respectively.

Figure 1221 Polymation function.
polyhedron to be used as the basis for mapping. The polyhedron code is the integer

that follows the letter P in the P-name of a polyhedron. The integer 4 in the example
implies a dodecahedron.
The third item in parentheses is the entity list specifying the vertices on which

mapping is to be performed. The entity list as given in the example indicates all the
vertices.
The fourth item in parentheses is the radius specifier,which determines the size of

the polyhedron by specifying the radius of the circumsphere of the polyhedron.
The last item in parentheses is the locator specifying the yl-point and B- point of

the vertex-object. In general, the /{-point and 5-point are to be specified by giving
their X, Y, and Z coordinates. However, if the third coordinates are not given, then it
will be assumed that the Z coordinates are equal to 0. In the example, the X and Y
coordinates of the /4-point are given as 0,0 and those of the B-point are given as 1,0.
The Z coordinates will then be assumed to be equal to 0.
The items within parentheses provide information about the manner in which

the mapping is required to be carried out. Further details about these items are
given in Figure 12.21. Information about the locations of all the faces, edges, and
vertices of Platonic and Archimedean polyhedra, in terms of their identity numbers,
is incorporated into Formian. This information is used by the polymation function
for determining the locations of the faces, edges, or vertices specified by the entity
list (third item in parentheses in Figure 12.21). Also, Formian incorporates complete
informationabout thebaselinesof faces, directionsof edges, andhandles of vertices for
the Platonic and Archimedean polyhedra. This information is used by the polymation
function for the correct positioning of the objects to be mapped.
The argument of the polymation function in Figure 12.21 is represented by E and

is separated from the function by the symbol I. Normally, this argument is a formex
variable that represents the object to be used for mapping. Examples of formex
formulations for the creation of formex variables representing the mapping objects



are shown in Figure 12.22. Figure 12.22a shows a face-object together with its formex
formulation, which is shown in a box. This formex formulation gives rise to a formex
variable F that represents the face-object. The face-object has a pattern similar to the
one used for the poly-
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F=bb(l,sqrt 13) | lux(genid(4,M,2,2,-l) | [15,5]) | genid(21,21,2,1,1,-!) | {[0,0;2,0],[2,0;l,l],[l,l;0,0]}
(a)
E=pan(2,0) | (rin(l,20,l) | [0,0;l,0]#rin(l,10,2) | lam(l,l) | [0,0;l,-2]#rin(l,18,l) | [l,-2;2z-

2]#rin(l,19,l) | [l,0;l,-2]) s /
(b)

a=-0.15; b=0.25; c=-a*tan | asin | (0.5/1.40125854) 'V=iosax(0,0,0:,0,a,'12D)
| {[0,0,0;b,0,0],[0,0,0;c,0,a],[c,0,a;

Figure 12.22 Formex formulations for a face-object, an edge-object, and a vertex-
object.



b,0,a/2],[c,0,a;b/2,0,0j,[b/2,0,0;b,0,a/2],[b,0,0;b,0,a/2])

(c)
hedric configuration of Figure 12.3zz. A truss-like edge-object together with its

formex formulation is shown in Figure 12.22k Also, a vertex-object with its formex
formulation is shown in Figure 12.22r. This is the vertex-object used for the polyhedric
configuration of Figure 12.20c.
A reader who is familiar with the concepts of formex algebra will be able to follow

the formex formulations of Figure 12.22. However, a reader who is unfamiliar with
formex algebra should not worry about the details of the formulations at this point. In
the present discussion the main aim is to describe the basics of the processes that
are involved in the creation of polyhedric configurations. The formex formulations
in this context may then be seen as “boxes of instructions” that imply the given
configurations.
SHAPING AND COMPOSING POLYHEDRA
The polymation function may be employed to create a variety of different kinds of

polyhedric configurations, some of which are outside the categories of configurations
discussed so far. Two such classes of polyhedric configurations are discussed next.
The configurations shown in Figure 12.23 are obtained by cutting away

G=pex | pol(l,l,'[all]',l,[0A0;l,0,0]) | rosad(l/2,sqrt 13/6,
3,120) | {[0.4,0,0;0.6,0,0],[0.4,0,0;0.2,sqrt 13/5,0])

GoKl/faUJMJO.OAlAOJJIAOltfpol/ig-lMlO,)]', l,[0,0,0;l,0,0D | dil(3,05) |
tranix(05,0.5,0.5) | poipA'11–8]', sqrt 13/2,[0,0,0;!,0,0]) | [0,0,0;l,0,0]



G=pol(l,2,'[l]',l,[0,0,0;2,0,0]) | rosad(l,l) | [0,l,0;l,0,0]#rosad(0,0) |
pol(l,2,'[2]',l,[0,0,0;2,0,0]) |{[0,0,0;2,0,0],[2,0,0;1,2,0],[1,2,0;0,0,0]}
k. /

(b)

G=rosad(0,0) | pex | lam(3,0) | pol(lA'[ir/l,[0,0,0;4,0,0]) |
{[0,0,0;4,0,0],[0,0,0;l,tan 160,0],[l,tan 160,05, tan 160,0]}

G=pol(25,'[aU]',1/sqrt 12,[0,0,0;l,0,0]) | [0,0,0;l,0,0]#pol(l ,3,,[1,7]', 1/sqrt
12,[0,0,0;l,0,0]) | ver(2,1,0,0) | tranix(-cos 130/3,0.5, 1/sqrt 124) | pol(2,l,'[l-3]',sqrt
16/4,[0,0,0;l,0,0J) | [0,0,0;l,0,0]

G=pex | lam(3xos | (2*asin | (05/0.951056516))) |
pol(25,'[l-10]',l,[0,0,0;l,0,0]) | [0,0,0;1,0,0]
(c)
(c)
Figure 12.23 Examples of polyhedron shaping.
Figure 12.24 Examples of polyhedral compositions.
parts of three polyhedra, where the original polyhedra are shown by thin lines and

the resulting configurations are shown by thick lines. All three configurations are
obtained using the polymation function and the formex formulation for each case is
given enclosed in a box.



The configuration shown by thick lines in Figure 12.23# is similar to a P6 (truncated
tetrahedron), but its proportions are different from those of a P6. The configuration
shown by thick lines in Figure 12.23£ is a decahedron (a polyhedron with 10 faces),
which is obtained by cutting away parts of a cube, and the configuration shown in
Figure 12.23c is again a decahedron, which is obtained by cutting away the top and
bottom corners of an octahedron.

Examples of another class of polyhedric configuration are shown in Figure 12.24.
Here, the polymation function has been used to create polyhedric configurations
involving a combination of polyhedra or their parts. The formex formulations for
these configurations are shown enclosed in boxes.

Figure 12.24/z shows a configuration that is obtained by placing half-cubes on four
faces of a cuboctahedron. Figure 12.24Z* shows a configuration that is obtained by
placing two tetrahedra on two opposite faces of an octahedron. Figure 12.24c shows a
configuration that is obtained by taking the top part of an icosahedron and combining
it with its own reflection.

PROCESSING OF MULTILAYER POLYHEDRIC CONFIGURATIONS

An example of a double-layer polyhedric configuration is shown in Figure 12.25#.
Here, a Vierendeel-girder-type edge-object is mapped on a number of edges of a
dodecahedron and a formex formulation for the operation is shown enclosed in a box.
The approach employed in handling the process is the same as that described for the
example of Figure 12.18A

Figure 12.25b shows a different approach in dealing with the problem. Here, the
mapping of both the top layer and bottom layer of the edge-object is controlled by the
polymation function. Thus there are two /l-points and two B-points with additional
fourth coordinates for layer identification. A formex formulation for the operation is
shown in a box in Figure 12.25 b. Also, the setup of the polymation function for the
problem is given in Figure 12.26. The procedure followed in this approach is more
elaborate than that used in relation to Figure 12.25#. The main advantage in the
second approach is that the problem of mitering is sorted out automatically.

The approach employed in creating the polyhedric configuration of Figure 12.25b
may also be applied in cases when there are more than two layers and in cases involv-
ing multilayer face or vertex mapping.



It should be noted that the polyhedric configurations of Figures 12.25# and b are
not completely identical. The difference is in the orientations of the web elements.
To be specific, the web elements in Figure 12.25# remain perpendicular to the top
and bottom chords, whereas the web elements in Figure 12.25b are along radial lines
emanating from the center, as indicated by the dotted lines in the figure. However,
this particular feature of the configuration of Figure 12.25b should not be considered
as a necessary consequence of the second

rc=1.40125854; a=-0.15; b=l/9; c=-a*tan | asin | (0.5/rc) E=lam(l,0.5) | {[0z0z0;cz0za],[cz0za;bz0za]}#lux([lz0za])
| rin(lz9zb) | {[0z0z0;bz0z0]z[bz0z0;bz0za]z[bz0za;2*bz0za]}
G=poI(2z4z'[l-13z-8z18–26z-(23–24)z30]'zrcz[0z0z0;lz0z0]) | E
(a)
rc=l .40125854; a=-0.15; b=l/9; d=-a/cos | asin | (0.5/rc)

E=rin(l,9zb) | [0z0z0zl;bz0z0zl]#rin(lz9zb) | [0z0zaz0;bz0zaz0]#rin(lz10,b) |
[0z0z0zl;0z0,az0]

G=poI(2z4z'[l-13z-8z18–26z-(23–24)z30]
,
z[2z4;lzrc;0zrc-d]z [0z0z0;lz0z0]z[0z0,a;lz0za])

| E

(b)
Figure 12.25 Double-layer mapping.

Number of Layers Operation Code Entity List
Polyhedron Code

Position of Layer Identification Coordinate



G=pol(2,4,’[1–13,-8,18–26,-(23–24),30]',
X-Y-Z Coordinates X-Y-Z Coordinates
Locator for
Locator for
Bottom Layer
Radius Specifier
[2,4;l,rc;0,rc-d]

Value of Layer Identification Coordinate and the

Corresponding Circumradius Top Layer
Figure 12.26 Polymation function for double-layer mapping. mapping approach.

The situation, in general, may be described as follows.
In the first mapping strategy, as exemplified by Figure 12.25#, the geometric pro-

portions of the face-object, edge-object, or vertex-object remain unchanged in the
process of mapping. Here, the term geometric proportions is used to mean those as-
pects of a configuration that remain unchanged under photographic enlargement
or reduction. In the secondmapping strategy, as exemplified by Figure 12.2 Sb, the
geometric proportions of the face-object, edge-object, or vertexobject may change in
the process of mapping. However, there are no general rules regarding the manner in
which the proportions may change. These changes are governed by the choices of the
H-points and 5-points.
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APPENDIX
Ordering Rules
This appendix contains a collection of rules for ordering the faces, edges, and

vertices of a Platonic or Archimedean polyhedron, where the term ordering is
used to mean putting in a sequence. The sequencing would then allow identity

numbers to be assigned to the faces, edges, and vertices of a polyhedron. This is
done by taking the serial position number of an entity in the sequence as its identity
number. Included in the appendix are also rules that govern the choices of baselines
for faces, /4-ends and E-ends for edges, and handles for vertices. The rules are as
follows:



1. If all the faces of a polyhedron have the same number of sides, then the faces are
orderedwith respect to the ascending values of the angular spherical coordinates
r and t of the centers of the faces, where the value of t is considered first and the
value of s is considered only if the centers of the faces compared have the same
value of t. The disposition of the r and t spherical coordinates together with the
X-Y-Z global coordinate system in relation to a polyhedron (cuboctahedron) is
shown in Figure Al2.1.

If the faces of a polyhedron have different numbers of sides, then all the faces
that have the same number of sides are considered together for ordering,
starting with the faces that have the least number of sides and proceeding
in the order of increasing number of sides.

2. For each face of a polyhedron, one of its sides is designated as the baseline. The
baseline of a face is chosen in the following manner:

a. If only one of the sides of the face is parallel to the r=90° plane (i.e., the X-Y plane),
then this side is chosen as the baseline of the face. The ?=90° plane is referred
to as the equatorial plane or the E-plane (Figure A12.1).

b. If only two of the sides of the face are parallel to the E-plane, then, of these two
sides, the one that is nearer to the E-plane is chosen as the baseline, and if the
sides are equidistant from the E-plane, then the “southern” side is chosen as the
baseline.

c. If the face is parallel to the E-plane and one of its sides intersects the r=0° semi-
plane, then this side is chosen as the baseline of the face. The r=0° semiplane is
referred to as the Greenwich plane or the G-



Figure A12.1 Cartesian and spherical coordinate systems for a polyhedron.

plane. This is the part of the X-Z plane for which X > 0 (Figure A12.1).

d. If the face is parallel to the E-plane and the G-plane passes through a corner of
the face, then, of the two sides that are connected to this comer, the one whose
midpoint has the smaller r coordinate is chosen as the baseline of the face.

e. If the face does not have a side that is parallel to the E-plane, then the face is
imagined to be subjected to a rotation in the “right-handed screw direction” and,
as the angle of rotation increases, the first side that assumes a position satisfying
either condition (a) or (b) is chosen as the baseline of the face. To describe the
term right-handed screw direction, imagine a right-handed screw whose head is
at the center of the polyhedron and is pointing toward the center of a face. The
direction of rotation that causes the screw to move toward the face is referred to
as the right-handed screw direction or the RS-direction.

3. Each end of the baseline of a face of a polyhedron has an associated letter. To
elaborate, one end is associated with the letter A and is referred to as the /Tend
and the other end is associated with the letter B and is referred to as the 5-end.
The allocation of the letters A and B to the ends is made such that movement
from A to B is in the .RS-direction.



4. The edges of a polyhedron are ordered with respect to the ascending values of
the angular spherical coordinates r and t of their midpoints, where the value of t
is considered first and the value of r is considered only if the midpoints of the
edges compared have the same value of t.

5. Each end of an edge of a polyhedron has an associated letter. To elaborate, one
end is associated with the letter A and is referred to as the A- end and the other
end is associated with the letter B and is referred to as the 5-end. The allocation
of the letters A and B to the ends is made in the following manner:

a. If the edge is parallel to the E-plane, then the /1-end and 5-end of the edge are
chosen such that movement from A to B is in the positive r direction (Figure
A12.1).

b. If the edge is not parallel to the E-plane, then the /1-end and 5-end of the edge
are chosen such that

• if the midpoint of the edge is in the E-plane or if its midpoint is in the northern
hemisphere, then movement from A to B is southward and

• if the midpoint of the edge is in the southern hemisphere, then movement from
A to B is northward.

6. The vertices of a polyhedron are ordered with respect to the ascending values of
their angular spherical coordinates r and t, where the value of t is considered
first and the value of r is considered only if the vertices compared have the same
value of t.

7. For each vertex one of the edges that is connected to it is designated as the
handle. The handle of the first vertex of a polyhedron (i.e., vertex no. 1) is the
edge that connects it to vertex no. 2. The handle of any other vertex is obtained
by mapping the configuration of the first vertex onto the configuration of that
vertex and selecting the edge that corresponds to the handle of the first vertex.
The configuration of a vertex of a polyhedron can, in most cases, be mapped
onto the configuration of any other vertex of the same polyhedron by simple
rigid motion (by translation and rotation). However, in some cases, the mapping
of the configuration of a vertex onto that of another vertex cannot be achieved



unless an additional reflectional operation is performed. To elaborate, with two
exceptions, for every Platonic or Archimedean polyhedron, all the vertices of the
polyhedron are directly congruent. That is, the configuration of each vertex of the
polyhedron may be mapped onto that of every other vertex of the polyhedron by
simple rigid motion of the configuration. The exceptions are Pl 1 (great rhom-
bicuboctahedron) and Pl8 (great rhombicosidodecahedron). For each of these
two polyhedra, some vertices are directly congruent to the first vertex of the
polyhedron and the other vertices are oppositely congruent to the first vertex.
The term oppositely congruent is used to refer to two configurations that cannot
bemapped onto one another without reflection (in addition to rigidmotion). The
need for reflection in vertex mapping for Pl 1 and Pl8 arises as a consequence
of the shapes of their vertex figures, as shown in Table Al 2.1 (a vertex figure is a
poly-

TABLE A12.1 Vertex Figures of Platonic and Archimedean Polyhedra



gon obtained by connecting themidpoints of the edges thatmeet at a vertex).
From Table Al2.1 it may be seen that every Platonic or Archimedean polyhe-
dron, other than Pl 1 and Pl8, has only one vertex figure. On the other hand,
in the case of Pl 1 or Pl 8, there are two vertex figures that cannot bemapped
onto one another without reflection.

The vertex-mapping procedure described above will allow the handles to be
``uniquely'' determined for all the vertices in all the cases except for P12
(icosidodecahedron), P7 (cuboctahedron), and the Platonic polyhedra. For
each of these seven polyhedra, the mapping of the configuration of the first
vertex onto that of another vertex can be done in more than one way. This is



a consequence of the shapes of the vertex figures of these seven polyhedra.
To elaborate, it may be seen from Table Al2.1 that the vertex figure of each
of these polyhedra can map onto itself in more than one way. In the case of
these polyhedra, the handles of vertices are chosen using the following rules:

a. For a “ring” of vertices, that is, for a circularly disposed set of vertices that lie in
a plane parallel to the E-plane, the handles are chosen such that they constitute
a cyclically symmetric configuration.

b. The disposition of the handles for a southern ring of vertices is obtained by
“turning over” the corresponding northern ring (and rotating it, if necessary).

c. If there is a vertex whose handle is not uniquely determined by the above rules,
then, among different possible handles, the one that has the smallest vertex
number at the other end is chosen.

8. Each end of the handle of a vertex of a polyhedron has an associated letter. To
elaborate, the end that is at the vertex is associated with the letter A and is
referred to as the/l-end and the other end is associated with the letter 5 and is
referred to as the S-end.

13
� 385



13 Tensegrity: Theory and Application

Ariel Hanaor

13.1 INTRODUCTION

Characterization

The terms tensegrity and tensegrity structures are not well defined, and have been used
to designate widely differing types of structures in different contexts. The vagueness
of the term, which was coined by R. Buckminster Fuller, stems from Fuller’s lack of
clear definition in either the geometrical or the structural context:1–3

The word tensegrity is an invention: it is a contraction of tensional integrity.
Tensegrity describes a structural-relationship principle in which structural
shape is guaranteed by the finitely closed, comprehensively continuous, ten-
sional behaviors of the system and not by the discontinuous and exclusively
local compressional member behaviors. Tensegrity provides the ability to
yield increasingly without ultimately breaking or coming asunder.4

Fuller’s definition implies a network consisting of tension members (cables) and
compression members (bars), in which the cable network is continuous (hence “ten-
sional integrity”), and the bar system presumably is not (“exclusively local,” see the
following figures). He endows the concept with mystical qual-
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ities: “All structures, properly understood, from the solar system to the atom, are
tensegrity structures. Universe is omnitensional integrity.” Such a sweeping general-
ization renders the definition useless. Fuller goes on to equate tensegrity and pneu-
matic structures (“Tensegrity structures are pure pneumatic structures…”), when, in
fact, these are totally different structural systems. Following are some of the more
precise definitions used in the literature.

The widest definition of tensegrity structures, from the geometric point of view, is
sometimes used by mathematicians in the field of discrete geometry. They define
tensegrity structure as a pin-jointed network consisting of any combination of bars,
struts, and tendons. Bars are straight members of fixed length and can sustain either
compression or tension. Struts are straight members with a lower bound on length.
They cannot contract but they can extend indefinitely in a “telescoping” fashion and
therefore cannot support tension. Tendons are straight “cables”—members with an
upper bound on length. They cannot extend but can contract freely and therefore
cannot sustain compression.

This definition covers the whole range of pin-jointed structures, including trusses
and cable networks. The narrowest definition of tensegrity structures, in the geometri-
cal context, is: a network consisting of tendons and bars (or struts), such that any one
bar is connected only to cables but to no other bar (except, perhaps, at the boundary).
Thus the bar system, under this narrow definition, is completely disjointed. Such a
system can be called “pure tensegrity.”

A more general definition, in the structural context, is: an internally prestressed cable
network. The “tensile integrity” aspect is covered by the well-defined term cable net-
work, whereas the presence of bars is implied by the term intent ally prestressed, which
indicates that the network does not require an external anchoring system, like conven-
tional cable networks, but is prestressed internally by means of compression mem-
bers (bars), which form part of the network. Emmerich5 calls them “self-tensioned
structures,” but because any prestressed structure is “self-tensioned,” this is not ap-
propriate. The concept of internal prestress is the key concept in tensegrity, because it
is precisely this feature that distinguishes this type of structure from conventional
cable networks and from pneumatic structures. This definition is generally adopted
in the present work, but most of the discussion is limited to the more restricted class
of “pure” tensegrity networks, in which bars are not mutually in contact.



One type of structure encountered in the literature under the “tensegrity” caption
is a certain class of dome (e.g., the Georgia Dome in Atlanta), consisting of cables
prestressed against a disjointed system of bars, but requiring a compression ring in
the perimeter. This type of dome is clearly excluded from the preceding definition of
tensegrity networks, because it is externally prestressed, incorporating an external
anchorage system (the compression ring). Cable dome would be a more appropriate
term for this type of structure.
Background
Few, if any, engineered structures of substantial scale exist that can fit the preceding

definition of tensegrity structures. The London Zoo aviary (Figure 13.1) contains
elements of tensegrity in the form of disjointed tetrahedra used

Figure 13.1 The London Zoo aviary.

in prestressing the cable network, but it also involves external anchoring (to
the ground). A number of tensegrity sculptures exist, most notably by the
artist Kenneth Snelson (Figure 13.2). These are ornamental objects of quite
striking appearance located in various public places, mostly in the United



States (Figures 13.3 and 13.4). The simplest object that can be perceived
as a tensegrity structure, under the definition in force, is the kite. It probably
served as the inspiration and starting point for more complex objects such as
Snelson's ``sculptures.''

The first to conceive of tensegrity as a building structure was probably Fuller,
arguably as a result of his collaboration with Snelson. His first patent for
``Tensile-Integrity Structures'' was filed in 1959.6 It is a dome of spheri-
cal surface consisting of struts and tendons such that struts are connected
only to tendons at their ends and at the midpoints (Figure 13.5a and £)• In
the patent application Fuller claims that the invention ``has special appli-
cation to structures of vast proportions such as free-span domes capable of
roofing a stadium or housing an entire village or city,.. .''7 This vastly exagger-
ated claim is based on the misconception that in very large domes the struts
themselves can be constructed as tensegrity structures (Figure 13.5c), thus
progressively reducing the relative length (or volume) of struts and generating
an almost purely tensile structure, like a balloon. In the words of Fuller:

Every time we can see a separate strut and can devise means for making
a tensegrity strut of that overall size, we can substitute it for a previously
``solid'' strut. By such a process of progressive substitutions in diminish-
ing order of sizes, leading eventually via sub-sub-sub-miniaturizing tensegri-
ties to …aminimum ``solid state'' strut diameter, which corresponds exactly
with two diameters of the atoms of which it is constructed…. The atom is a
tensegrity, and there are no ``solids'' left in the entire structural system….
''8



Figure 13.2 Kenneth Snelson in his studio in lower Manhattan (1990).



Figure 13.3 Snelson's sculpture in front of the Maryland Science Museum,
Baltimore.



Figure 13.4 Snelson's ``Needle Tower'' at the Hirshhorn Museum of Modern
Art, Washington, DC: (a) general view, (b) view from below.

Since the miracle of a purely tensile, freestanding structure has been achieved
(“no solids”), there is practically no limit to achievable spans. The basic theoretical
principle involved in this reasoning is that ofmaterial dilution. This principle, which
applies to all structures, involves increasing structural depth without adding material
(and therefore weight) in order to achieve larger spans. In tensegrity structures, as in
all structures, the application of the principle is limited by practical constraints. The
concept of tensegrity in general, and Fuller’s version of it in particular, suffers from
other drawbacks, which will be discussed later.



Nevertheless, the credit goes to Fuller for opening the field of tensegrity structures
for research and invention. Several other patents have followed over the years, includ-
ing Fuller’s,9 but these appear to have produced no actual structures. The sections
that follow review some of the main research topics and results. The research falls
into two general areas. Most of the work is concerned with geometric configuration.
Some limited research has been carried out into the actual load response of this type
of structure, but a lot more is needed. The last section is a critical evaluation of the
concept and its prospects for implementation.



Figure 13.5 Fuller's tensegrity dome of his 1962 patent (a) plan, (b) detail, fc) tenseg-
rity strut (Source: R. B. Fuller, “Tensile-Integrity Structures,” U.S. Patent 3,053,521,
Nov. 13, 1962.)

Not. 13, 1962 r. b. fuller 3,063,521

GEOMETRY

Polyhedra

The simplest three-dimensional tensegrity object is the tensegrtty prism (T prism),
the simplest of which is the triangular prism, sometimes termed simplex. A tensegrity
prism is a skew prism formed by cables along the edges of the prisms, with bars along
the diagonals of the side faces in a consistent sense. Figure 13.6 shows a number of
these prisms. The two bases of the prism are rotated relative to each other by an angle
that is dictated by the requirement for stability of the shape.10 For regular prisms
(i.e., having regular base polygons), this angle is half the base polygon angle (30°
for a triangular prism, 45° for a square prism, etc.). Right-handed and left-handed
configurations canbedistinguished, in accordancewith the sense of rotation of the two
bases. It is possible to add cables along diagonals of skew prism faces—the diagonals
not occupied by bars—to obtain a reinforced prism. Figure 13.6e shows a triangular
rein-



Figure 13.6Tensegrity prisms: (a) triangular, 6Wsquare, (c) pentagonal,
(d)hexagonal, (e) triangular, reinforced.

forced prism, which has the property of geometric rigidity (see the following discus-
sion under Load Response). The relative base rotation of reinforced prisms is no
longer predetermined but can be varied in a range between the simple prism value,
as a lower bound, and double that value, as an upper bound (at the upper bound the
bars intersect at the centroid of the prism).

Higher polyhedra can be constructed. Figure 13.7 shows some relatively simple
polyhedra, but any polyhedron can be constructed as a tensegrity.11,12 Emmerich
shows a systematic way of deriving tensegrities from a range of Platonic and
Archimedean polyhedra.13 Some of these polyhedra are shown in Figure 13.8. Fuller’s
dome (Figure 13.5) is, in effect, a high-order tensegrity polyhedron obtained by
geodesic subdivision of the sphere. It can be termed a geodesic tensegrity dome and is
closely related to Fuller’s geodesic dome. It is



Figure 13.8 Some of Emmerich's Archimedean polyhedra: /a/truncated dodeca-
hedron, /”truncated icosahedron, (c) great rhombicosidodeca-hedron, (d) small
rhombi-cosidodecahedron. (Source: D. G. Emmerich, “Self-Tensioning Spherical
Structures: Single and Double Layer Spheroids,” International Journal of Space



Structures (Special Issue on Geodesic Forms), T. Tarnai, ed., Vol. 5, No. 3/4, 1990, pp.
353–374. Courtesy of Multi-Science Publishing.)
interesting to note that although the geodesic dome concept found widespread
application, the tensegrity concept has so far found none.

Figure 13.7 Tensegrity polyhedra: (a) truncated tetrahedron, (b) octahedron, (c)
cuboctahedron.

Networks

Whereas tensegrity polyhedra enclose a finite space, networks consist of repetitive
patterns of bar-cable connections covering surfaces or filling space. Vilnay conceived
single-layer infinite networks, a sample of which is shown in Figure 13.9.14 As a
planar surface, these networks are not stable. They require curvature to produce shell-
like surfaces. Double-layer networks can be produced by joining together tensegrity
prisms. Some ways of joining such prisms to generate double-layer tensegrity grids
(DLTGs) are shown in Figure 13.10.15 Figure 13.11 shows grids generated by these
methods (only prism top and bottom bases are shown, for clarity). While the patterns
are quite intricate, the lines joining the centroids of individual prisms form quite
regular grids, termed the arch-grids. Figure 13.12 shows some simple models. A
different way of joining T prisms to generate DLTGs is due to Motro and is shown in
Figure 13.13.16 It differs from other networks in that it contains bar-bar connections
at the joints, but it has certain advantages, such as continuity of cables and simplicity
of geometry.

More complex network geometries can be generated by joining polyhedra of higher
order. Emmerich produced some rather complex surface-covering and

Figure 13.9 Some of Vil-nay's single-layer tensegrity networks.







Figure 13.10Methods of forming double-layer tensegrity networks from tenseg-
rity prisms. (Source: A. Hanaor, “Double Layer Tensegrity Grids,” in Studies in Space
Structures,H. Nooshin, ed., Multi-Science Publishing, Brentwood, 1991.)

Figure 13.11 Double-layer tensegrity grids formed by the method of Figure 13.10.
Top and bottom cable layers only are shown. Dash-dot line indicates arch-grid.

Figure 13.12 Models of double-layer tensegrity grids: (a) triangular type la,
/d) square type II, (c) triangular type II.

space-filling configurations.17 Fuller and Grip developed a different type of space-
filling network, a sample of which is shown in Figure 13.14.18,19

Structural Forms
Single-layer domes or domical surfaces can be formed on the basis of tensegrity

polyhedra and geodesic spherical subdivision, such as Fuller’s dome (Figure 13.5).
The use of polyhedra without face subdivision is limited to relatively small spans, as
faces become impractically large with increasing spans. Single-



Figure 13.13Metro's double-layer tensegrity grid using square prisms or truncated
pyramids connected at vertices. (Source: R. Motro, “Tensegrity Systems and Geodesic
Domes,” International Journal of Space Structures (Special Issue on Geodesic Forms), T.
Tarnai, ed.. Vol. 5, No. 3/4,1990, pp. 341–351. Courtesy of Multi-Science Publishing.)



Figure 13.14 Some of Grip's multilayer and space-filling tensegrity grids. (Source:
R. Grip, “The Correspondence Between Convex Polyhedra and Tensegrity Systems:
A Classification System,” International Journal of Space Structures (Special Issue on
Tensegrity Systems), R. Motro, ed., Vol. 7, No. 2,1992, pp. 3115–3125. Courtesy of
Multi-Science



Publishing.)

layer curved surfaces of any shape can be generated fromsingle-layer networks. Fig-
ure 13.15 shows a dome based on Vilnay’s network.20 This dome differs significantly
from Fuller’s dome. In Fuller’s dome, as spans increase and curvature decreases, bars
quickly come into contact with one another if module size is to be kept to a reasonable
value. This is avoided in Vilnay’s concept but at the cost of increased bar lengths.

Emmerich developed double-layer domes based on hyper-polyhedra, in which the
polyhedron face is replacedwith a tensegrity truncated pyramid (T pyramid).21 This is, in
fact, a T prismwith base polygons of similar geometry but different sizes. Figure 13.16
shows one such hyper-polyhedron. The comment on the span limitation of domes
based on polyhedra also applies to this concept, but the concept can be extended to
include geodesic subdivision and to avoid both bar contact and excessive bar lengths.
Bars are laced between two parallel cable surfaces and these surfaces can be kept
wide enough apart to prevent bar contact.



Figure 13.15Vilnay's tensegrity domebased on single-layer tensegrity grid. (Source:
0. Vil-nay, Cable Nets and Tensegric Shells, Analysis and Design Applications, Ellis Norwood,
New York, 1990.)

Figure 13.16 Emmerich's double-layer hyper-polyhedron and its derivation (from
truncated icosahedron). (Source: D. G. Emmerich, “Self-Tensioning Spherical Struc-
tures: Single and Double Layer Spheroids,” International Journal of Space Structures
(Special Issue on Geodesic Forms), T. Tanai, ed., Vol. 5, No. 3/4,1990, pp. 353–374.
Courtesy of Multi-Science Publishing.)



Figure 13.17 Double-layer tensegrity dome constructed using type la connection
triangular truncated pyramids (only top and bottomcable layers shown). The dash-dot
line represents the arch-grid, which is a geodesic subdivision of a hexagonal pyramid.
(Source: A. Hanaor, “Geometrically Rigid Double-Layer Tensegrity Grids,” International
Journal of Space Structures,\lo\. 9, No. 4,1994, pp. 227–238.)

Double-layer surfaces of any shape, including flat surfaces, can be generated
from double-layer networks based on T prisms or pyramids, as shown in Fig-
ures13.10 to13.13. Figure13.17 showsaDLTGdomebasedon the triangular
grid type la of Figure 13.11 (only top and bottom cable layers are shown).22

Although the pattern appears complex, the arch-grid forms a simple geodesic
subdivision of a hexagonal pyramid. The arch-grid nodes indicate the loca-
tions of the centroids of the T pyramids constituting the dome. Figure 13.18
shows a model of part of a dome constructed on this basis.



Figure 13.18 Scale model of double-layer tensegrity dome segment using triangular
truncated pyramids in type la connection.

LOAD RESPONSE

Geometric Rigidity

Referring back to the definition of tensegrity structures, tensegrity structures are
prestressed cable networks, from the structural point of view. This implies that they
are in most cases geometrically deformable. The terms geometric deformability and
geometric rigidity require some explanation, as there is considerable confusion in
terminology concerning this topic. The essence of the concepts is best explained by
the simple prestressed cable structures shown in Figure 13.19. Figure 13.19/z shows
a geometrically deformable prestressed cable. The deformability is expressed by the
fact that the system cannot maintain equilibrium with the applied load in its original
geometry. It must deform and change its shape in order to develop internal force
components to balance the external load. The magnitude of the deformation depends
primarily on the load and on the level of prestress—the tension force in the cable. It can
be quite large, even for small load values. By comparison, the planar cable “network”
of Figure 13.19£ (the cables are loaded in their plane) can maintain equilibrium in its
original geometry, and its deformation is a result of elastic deformations (elongation
and shortening) of the cables alone. These deformations are small in comparison to
the geometric deformations of the cable of Figure 13.19a.



Some sources refer to geometrically deformable structures as “unstable,” but this
is clearly a misnomer, because they are perfecdy capable of sustaining load, albeit
at large deflections, compared with geometrically rigid structures such as trusses.
Other sources refer to them as kinematically indeterminate, referring to the fact that the
geometry changes depend on the load. A more rigorous discussion of this topic can
be found in Pellegrino and Calladine.23

Most cable networks are geometrically deformable, including all tensegrity

Figure 13.19 Illustration of geometric rigidity: (a) geometrically deformable pre-
stressed cable, (b) geometrically rigid cable configuration.
configurations discussed up to this point, with the exception of the reinforced

prism of Figure 13.6e. Geometrically rigid structures do not require prestress to
maintain a reasonable stiffness. Some degree of prestress is nonetheless applied
in cable networks, in order to ensure the tautness of cables. A geometrically rigid
DLTG is described and discussed later (Figure 13.20#). Geometrically deformable
networks are insensitive to inaccuracies in cable lengths. Tension in all cables is easy
to maintain either by the shortening of a relatively small number of cables or by the
elongation of bars. The inaccuracies in member lengths translate into deviations in
the overall geometry. Geometrically rigid structures, on the other hand, are statically
indeterminate. They can maintain equilibrium with the prestress force in the original
geometry and do not adapt their geometry to compensate for changes in member
lengths. Consequently, inaccuracy in bar or cable lengths may result in some slack
cables. This tolerance sensitivity is a price that has to be paid for enhanced stiffness.
Features of Structural Analysis



A detailed discussion of structural analysis techniques for cable networks is beyond
the scope of this chapter, but some general comments are warranted on the problems
involved in analysis and design. Owing to the large deflections associatedwith geomet-
rically deformable structures, nonlinear computational methods are needed, which
are considerably more complex than the analysis of stiff, geometrically rigid struc-
tures such as trusses. Typically, the analysis of cable networks requires two phases.
Phase I is a shape-finding procedure aimed at determining the equilibrium geometry
of the network under prestress. Except in some special cases (such as tensegrity
prisms and simple polyhedra), the initial geometry is not known, as it depends on the
prestress. An initial geometry is assumed close to the desired final shape, prestress is
then applied, and the newgeometry is found in an iterative procedure. If this geometry
is not satisfactory, the prestress has to be modified, and the process resumed. Once
the prestressed geometry is known, the external load is applied and the forces in the
members and the displacements of nodes are computed. This constitutes phase H of
the analysis.
Several techniques exist for the analysis of cable networks. Levy and Spillers give a

concise yet rigorous presentation of the stiffness method for geometrically nonlinear
structures, including cable networks (computer programs implementing the algo-
rithms are also presented).24 Barnes presents the principles of the dynamic relax-
ation method, developed specifically for tension structures (cable and membrane
structures).25 This method is more powerful in dealing with highly nonlinear prob-
lems than the stiffness method, which may have convergence problems when the
assumed initial geometry is greatly in error.
Characteristics of Load Response
Asmentioned previously, very few studies—analytical and experimental—have been

carried out on real-scale prototypes. Such studies are essential for the assessment
of the concept of tensegrity structures and of the range of its feasible or practical
applications. Two such studies are presented in the following sections, illustrating
both the strengths and the weaknesses inherent in the concept of tensegrity.
Analytical Study
The study by Hanaor involves the full design, including nonlinear analysis (using

the stiffness method), of several types of DLTGs of the triangular type la geometry
(Figures 13.10 and 13.11).26 To facilitate the assessment of tensegrity structures in
comparison with “conventional” space structures, a space truss of similar dimensions



is also designed. The truss is a square-on-square offset double-layer grid (DLG). Figure
13.20/z shows the dimensions and layout of the DLTGs. Only the arch-grids are shown
for clarity. Figure 13.20bdepicts the layout of theDLG. Both types cover an area roughly
circular in plan, with a diameter of approximately 27 m.

The four configurations of DLTGs included in the study are: planar (flat), geometri-
cally deformable; planar, geometrically rigid; geometrically deformable dome; and
geometrically rigid dome. It should be noted that in order to obtain a geometrically
rigid DLTG, it is not sufficient to join together reinforced T prisms (Figure 13.6e); the
units have to be laced together by the diagonal cables forming the prism side edges. A
detail of the lacing is shown in Figure 13.20/z. Full details of the study are given in
Hanaor.27

Results of the study are given in Figure 13.21 as normalized load (uniformly dis-
tributed) versus deflection of the central node. The abbreviations used in Figure 13.21
to denote the four DLTG configurations consist of two letters. The first letter denotes
the geometry: P—planar (flat); D—dome. The second letter denotes the geometric
rigidity: R—rigid; F—deformable (flexible). The curves represent the stiffness of the
structure. The stiffness of deformable DLTGs depends on the level of prestress. The
average level of prestress in bars was assumed as approximately half the capacity of
the bar (initially assuming constant bar cross section).

Table 13.1 presents the relative unit weight (weight per unit surface area) of the
structure, without the covering, with the DLG serving as control. This value may
represent the structural efficiency of the system (the lower the value, the higher the
efficiency).

It can be observed from Figure 13.21 and Table 13.1 that all DLTG configurations
are considerably less stiff than the truss, and that all but the configuration marked
with an asterisk have lower structural efficiency. The reason for the low structural
efficiency is the length of the bars, as compared to the length of the bars in the truss
(maximum forces are of the same order). The configuration marked with an asterisk
relates to the rigid dome, with bars restrained against buckling at theirmidlength (e.g.,
by joining them together at this point). It can be seen that this has dramatic influence
on structural efficiency.



Relatively long bars (compared with the length of cables) is a feature of all tensegrity
structures encountered in the literature—refer to all figures. Unless this problem is
addressed, it appears that structural inefficiency’ is inherent in tensegrity structures,
at least those with no bar-bar connections. It is not a trivial matter, for instance, to
restrain midpoints of bars in the DR*

CROSS-SECTION OUTLINES DETAIL OF

RIGID CONNECTION

Figure 13.20 Grids for analysis/design study: (a) double-layer tensegrity grid config-
urations, (b) double-layer grid space truss.(Source: A. Hanaor, “Geometrically Rigid
Double-Layer Tensegrity Grids,” International Journal of Space Structures, Vol. 9, No. 4,
1994, pp. 227–238.)

b





Figure 13.21 Normalized load-deflection curves of grids in design study. (Source:
A. Hanaor, “Geometrically Rigid Double-Layer Tensegrity Grids,” International Journal
of Space Structures, Vol. 9, No. 4,1994, pp. 227–238.)
configuration, without actually joining the bars. In all fairness it should be noted,

however, that the comparison between space truss and tensegrity structures may be
somewhat misleading. For a start, it does not include the roofing weight, which in
tensegrity structures is expected to be a fight membrane, nor does it include the walls
and other nonstructural elements absent in the dome configuration. In addition, the
range of overlapping applications for the two types of structures (where a selection
has to be made) is expected to be narrow. A more appropriate comparison might be
with “conventional” cable and membrane structures, where the weight of anchoring
systems has to be included. A discussion of the merits, limitations, and range of
applications of tensegrity structures forms the substance of the last section.
Experimental Study
No load tests of large-scale tensegrity structures have been performed to date. Tests

on some small-scale models are presented in Figures 13.22 and 13.23.28

TABLE 13.1 Relative Unit Weights of Grids



Grid Type Unit Weight (%)
Space truss (DLG) 100
Flat deformable DLTG (PF) 221
Flat rigid DLTG (PR) 185
Deformable dome (DF) 125
Rigid dome (DR) 119
Rigid dome* (DR*) 77

* Bars restrained at midlength.

Figure 13.22 presents the test models and Figure 13.23 presents the results as load-
deflection curves. Full details of the tests can be found in Hanaor.29 One geometrically
deformable and one geometrically rigid model were tested to failure. Failure in both
cases was by rupture of a cable. The curves of Figure 13.23 present analytical curves
(dash-dot lines) and actual behavior (solid lines). Although failure by cable rupture is
undesirable (failure by bar buckling would bemore ductile), it helps to illustrate some
important features of the behavior, which are probably characteristic of tensegrity
structures:

• The geometrically deformable model failed to reach the predicted load capacity,
whereas the geometrically rigid model exceeded it. This is probably due to lack
of member redundancy in the deformable configuration, with cable rupturing
at a point of stress concentration in the connection. The statically redundant
geometrically rigid configuration, on the other hand, allowed for some load
redistribution as some bars buckled elastically.

• Both configurations, but particularly the deformable one, regained a substantial
portion of their load-bearing capacity following cable rupture, even though this
rupture amounted to the loss of a whole unit, representing one-seventh of the
members in the structure. This feature is due to the way in which the structure is
constructed of individual tensegrity units, with the rupture of one not affecting
the integrity of others. In the geometrically rigid structure, this unit separation
is somewhat compromised by the interlacing of units. This characteristic is an
expression of



� Support O Load point * Critical member

Figure 13.Z2 Double-layer tensegrity grids for load testing. (Source: A. Hanaor,
“Geometrically Rigid Double-Layer Tensegrity Grids,” International Journal of Space
Structures, Vol. 9, No. 4, 1994, pp. 227–238.)



Figure 13.23 Load-deflection curves of tested tensegrity grids. (Source: A. Hanaor,
“Geometrically Rigid Double-Layer Tensegrity Grids,” International Journal of Space
Structures, Vol. 9, No. 4,1994, pp. 227–238.)

structural redundancy (as distinct from static redundancy or indeterminacy),
which is a major factor in avoiding progressive collapse.

ASSESSMENT
Evaluation
Table 13.2 presents an evaluation of tensegrity structures, in terms of positive

and negative features, based on current knowledge and understanding. There is no
attempt at assigning weight or significance to these features. The negative features
probably constitute a major factor in the nonimplementation of the concept to date,
but psychological and other nontechnical factors probably play a role as well.
Applications
In view of their peculiar features, both positive and negative, it is not expected that

tensegrity structures will find widespread application, replacing more familiar struc-
tural systems. Implementation of the concept is expected to be limited to applications
of unusual or exotic nature. Following are some applications where it is thought that
tensegrity structures could provide a viable and effective solution:

• Large open spaces with light or translucent coverings, such as swimming pools,
conservatories, covered “outdoor” cafes, and other public spaces.

• Temporary, dismountable structures, suchas exhibitionhalls, temporary storage
facilities, and hangars.

• Deployable (i.e., folding/unfolding) structures, such as mobile reusable

TABLE 13.2 Evaluation of Tensegrity Structures
Positive Features Negative Features



Geometric variety and intricacy
Light, intriguing appearance
Absence of massive anchorage systems
Simple (bar-cable) connections
High structural redundancy
Low tolerance sensitivity (connections
in tension)
Convenient deployability

Geometric and conceptual complexity
Large deflections
Long buckling-prone bars
Low structural efficiency
Incomplete understanding of behavior

Unresolved questions:
attachment of covering, member
stabilization, connections, and
deployment technology

exhibition and display spaces; temporary shelters for various functions
(celebrations, festivals, etc.); shelters in inaccessible places; and deployable
structures in space.

• Additional, emergency support for air-supported structures to allow for unusual
loading, such as asymmetrical snow loads, loss of pressure, and rupture.

• Exotic architectural features where dramatic visual effects are sought.

Implementation
Two of the negative features of tensegrity structures mentioned in Table 13.2 are

a lack of complete understanding and some unresolved questions. Some of these
questions have to be resolved and practical solutions provided for implementation in
actual, functional structures. Following are a few of themore immediate requirements
that come to mind:

• There has been very little work done on the roofing/surfacing material for the
structures. It is recognized that in most cases the surfacing has to be fabric
or other flexible material, yet most of the surfaces of structures proposed to
date consist of planar facets. Such facets are unsuitable for fabric covering,
which requires surfaces of negative Gaussian curvature (saddle shaped). How such
surfaces are to be achieved is a question that requires thorough investigation
andmay fundamentally affect the geometric design of these structures.



• The incorporation of surfacing material affects other topics such as loading and
structural analysis. It also offers the challenge of trying to use the fabric in a
system to stabilize bars against buckling. Bar buckling is anothermajor problem
requiring a solution that will not detract from any of the concept’s main assets,
such as its eerie “floating bars” appearance.

• Deployability is another topic that has received little attention. It may yet prove
to be one of the main, if not the principal, assets of the concept, yet very little
thorough research has been done into its theory and technology. Figure 13.24
presents a small deployable model.30 The

Figure 13.24 Deployable tensegrity dome model: (ajfolded, (b)deployed.

model was constructed under primitive conditions, yet it proved to be quite
efficient. It consists of telescoping barswithO-ring seals. Whenbars are con-
tracted, all cables are slack and the structure collapses into a bundle (Figure
13.24/?). Deployment is bymeans of air pressure (supplied by a bicycle pump
in this case) applied into the bars' outer tubes by means of thin flexible tubes
laced between them. Deployment was quite smooth with the flexible bars
easily compensating for any inaccuracies in construction.

• Although such simple models demonstrate the inherent deployability of the
concept, there are many technical problems to be overcome. The effect of
scale is of critical importance in mechanical devices in general. A major ad-
vantageof thepresent device is that it is self-adjusting and freeof theproblem



of accumulating ``free-play,'' which plagues bar-folding structures. Never-
theless, means of adjusting the final geometry and providing adequate pre-
stress are needed. The possibility of cable entanglement and its prevention
also needs investigation. Another scale problem is the effect of cable stiff-
ness and joint dimensions. Incorporation of roof covering adds another level
of complexity to the deployment problem.

With these and other questions in mind, it can be said that the concept is long over-
due for its first full-scale implementation in a highly visible prestigious architectural
project.
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14 VisualMorphologyofSpaceLabyrinths:
A Source for Architecture and De-
sign

Haresh Lalvani

14.1 INTRODUCTION

The spatial and visual appeal of morphological images is inescapable for architects,
designers, and engineers willing to explore new geometries and structures for ar-
chitectural space making and the fundamental order of space underlying structures
across the disciplines. Such an order imposes itself upon every architect who experi-
ments with geometry as a device for shaping and structuring space, and upon every
engineer who searches for a morphologic basis of improved structural performance.
Basic morphological principles are embodied at varying levels of complexity in archi-
tecture and in the design process itself. The knowledge of such principles is essential
for architects willing to “create” lasting works that integrate the art with the science
of architecture.
Beyond the Cube: The Architecture of Space Frames and Polyhedra, edited by J. Francois

Gabriel ISBN 0–471–12261–0 © 1997 JohnWiley & Sons, Inc.
� 409

This pictorial essay is put together to showa small fragment of the vast design
resources offered by the study of morphology and design science. The ex-
amples shown here demonstrate the limitless scope of this new design field,
which is in need of a comprehensive visual encyclopedia of morphology. An
atlas of form and structure, noticeably absent in the field of architecture and
design, can serve as a standard reference for architects, artists, designers,
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engineers, scientists, and mathematicians. Morphology provides the under-
pinnings of a taxonomy for such an atlas. Our work in the development of a
unifiedmorphological systemof space structures provides a candidatemodel
for such a taxonomy.

In this chapter we illustrate excerpts from our morphological system by fo-
cusing on an interesting class of structures called space labyrinths, based on
the author's ongoing research on these particular structures.

SPACE LABYRINTHS

Reminiscent of the Cretan legend where the labyrinth designed by Daedalus
was a single ``sequential'' linear space, the space labyrinths described here
are ``distributed'' spaces in three or more dimensions. These labyrinths are
spatial structures composed of a continuous surface (called a manifold) that
divides space into twoparts, one on the ``inside'' and the other on the ``out-
side.'' Seen as surfaces, these configurations are not unlike the commonly
used boxshaped rooms in architecture or the familiar donut shape, with the
essential difference that these space labyrinths are surfaces that are``open''
and can be extended finitely as well as infinitely, whereas the box is a finite
``closed'' region of space. Three such structures were known to mathe-
maticians in 193 71 and the concept was extended independently by Burt
et al.,2 Pearce,3 and Schoen,4 and additional examples were developed by
Lalvani.5 This catalog shows someof these and several interesting cases from
new classes of labyrinths already mentioned in the author's previous works.
These include nonperiodic space labyrinths,6 -dimensional space labyrinths
termed hyperlabyrinths) •'' and hyperbolic labyrinths.9

Space labyrinths are inherently interesting for architecture because of their
continuously winding three-dimensional space. The first example of a built
space labyrinth with curved surfaces is provided by Pearce's structure for the
Brooklyn Children's Museum. Burt has suggested novel applications for very
large span building structures.10 Our new periodic, nonperiodic, and higher-
dimensional labyrinths provide alternative geometries for such large struc-
tural spans. In aquatic environments, the ``outside'' space of the labyrinth



can accommodate the water displaced by the ``inside'' space, thereby pro-
viding a natural marriage of geometry with Archimedes' buoyancy principle.
Transformational labyrinths provide candidates for deployable and adaptable
architecture, which changes its size and shape with changing needs.

The study of space labyrinths is an active area in the sciences, especially in
certain classes of biological structures, and it also provides new directions
in crystallography. In macroscopic biological structures, the trabeculae of
bones are among the common examples of irregular curved-faced labyrinths.
The use of labyrinths at amicro level in nature is found in the structure of zeo-
lites, which act asmolecular sieves. Such sieves are filters that removeor trap
undesirable substances. Recent applications to car filters, and spin-off ap-
plications to surfaces and ``openings'' of smart buildings that ``breathe'' or
otherwise maintain homeostasis through a labyrinth membrane, are promis-
ing applications of micro space labyrinths to architecture.

SYSTEMATIC METAMORPHOLOGY
We have adopted Anne Tyng’s termmetamorphology to define our approach to the

systematic morphological classification and generation of form. We use the concept
of higher-dimensional (72-dimensional) periodic tables, or hypertables. Our method
permits an exhaustive classification, indexing, generation, as well as transformation,
of a wide variety of space structures.11 Here, we show the use of this technique for
the generation of labyrinths, both known and new. The chapter is, in most part,
restricted to labyrinths that have a single type of vertex only. All vertices of such
structures are identical, with each vertex having the same number of polygons and
edges meeting at it in the same sequence. This restriction offers a convenient starting
point for exploring the fundamental order of space and is, in addition, significant for
modular building systems where identical components translate into economy in
construction. For the purposes of illustration, we show structures composed of plane
regular polygons, but themethod extends to all of its topologic variants: curved-space
labyrinths composed of curved polygons, nonperiodic labyrinths, labyrinths projected
from higher dimensions, and labyrinths in non-Euclidean space. Some examples of
these different types of labyrinths, most of them new, are shown toward the end of the
chapter.
Regular Structures



The concept of hypertables is briefly recapitulated from our previous work and is
followed by its application to space labyrinths. For 72-dimensional regular structures,
characterized by the Schlafli symbol \p,q,r,s,…,u,v,ru)}, the hypertable is a hypercubic
lattice of dimension 72-I, where each distinct regular structure occupies a different
vertex of this lattice; for details, see Lalvam.12 In this space the structures are indexed
by corresponding higher-dimensional Cartesian coordinates (p,q,r,s,…;u,v,'u)'). Three-
dimensional structures {p,q}, comprisingpolyhedra, planeandhyperbolic tessellations,
and characterized by/2-sided polygonal faces, q of which meet at every vertex, are
indexed (p,q) and are arranged in a two-dimensional lattice with the integer p varying
along one axis and the integer q along the other. Four-dimensional structures [p,q,r},
comprising four-dimensional polytopes, which are composed of cells {p,q} and vertex
figures {q,r}, are indexed (p,q,r) and are arranged in a three-

{3,3,5}
600-cell

{4,3,5} {5,3,5}

{3,3,4}
16-cell

{4,3,4}*

3-cubic honeycomb

{5,3,4}

{3,3,3} {4,3,3} {5,3,3}
5-cell 8-cell 120-cell

Figure 14.1 A portion of a three-dimensional lattice of four-dimensional polytopes
designated by the Schlafli symbol {p, q, /}.

dimensional cubic lattice defined by the integer variables p, q, and r. And so
on for higher-dimensional structures.

Figure 14.1 shows a portion of a square lattice extracted from the three-
dimensional cubic lattice of polytopes. This figure includes nine four-
dimensional polytopes, which are indicated by their Schlafli symbol. Of
these nine, five are finite structures in Euclidean space and include the
simplex {3,3,3} (or 5-cell), the four-dimensional cube {4,3,3} (or 8-cell) and
its dual {3,3,4} (or 16-cell), and the 120-cell {5,3,3} and its dual {3,3,5} (or
600-cell). The structure {4,3,4} is the simple cubic lattice, a degenerate four-
dimensional structure, and the remaining three are structures in hyperbolic



space. The computer-animated film Not Knot by Charles Gunn and Delle
Maxwell and based on William Thurston's work,13 shows the transformation
of the structures in the last column on the right. Clearly, our hypertable sys-
tem provides a basis for a multitude of such intertransformations between
these and other structures within the hypertable.

Semiregular Structures

Semiregular structures, composed of more than one type of regular polygon
meeting identically at each vertex of the structure, can be mapped in an ex-
tended hypertable. Each vertex of the hypertable of regular structures splits
into n additional directions to accommodate 2'' semi-regular structures; for
details, see Lalvani.12 The extended hypertable is composed of regular and
semi-regular structures and provides a starting point for generating space
labyrinths. The structures in this space are indexed in binary combinations
of 0's and l's or 0's and X's, where X is any integer for the number of stages
(frames in an animation) in the transformation process between labyrinths.
The index gives the location of each structure within the hypercubic lattice.

Figure 14.2 shows the tetrahedral fundamental region PQRO of a fourdimen-
sional polytope {p,q,r}. It is composed of six edges, which join the centers of
a cell, a face, an edge, and a vertex to each other. The fines radiating from the
cell center 0, the ``radial'' edges, are coded in three primary colors,

Figure 14.2 The tetrahedral fundamental region of a fourdimensional polytope in
six edge colors orthree pairs of complementary colors.

Figure 14.3 Six planes meeting at one vertex within the fundamental region; each
plane is perpendicular to one of the six edges of Figure 14.2 and colored correspond-
ingly.



and the “circumferential” edges are coded in three secondary colors with the com-
plementary colors coding the opposite edges.

Figure 14.3 shows portions of six dual planes (faces) meeting at a vertex within the
fundamental region. The faces are defined by four different edges, each perpendicular
to the face of the fundamental region. Each face plane is perpendicular to one of
the six axes and colored accordingly; that is, a red plane is perpendicular to the
red axis, and so on. Alternatively, a pair of complementary colors could be used to
illustrate the line-plane duality. The six planes define the faces of a semi-regular
polytope 1111 composed of four different cells. This is one of a family of 16 four-
dimensional polytopes obtained by different combinations of the four different edges,
with each edge corresponding to a different dimension of the hypertable. Within the
fundamental region of each structure, the vertex occupies a distinct position different
from the others. In fact, only 16 distinct positions are possible andhence 16 structures.
Details of this organization have been described elsewhere for one family of structures
corresponding to the simple cubic lattice {4,3,4} and referred to as family (43 4).7

The left-handed and right-handed “snub” structures require the introduction of two
additional dimensions to the hypertable, one for left-handedness and the other for
right-handedness.

The six planes defining the structure corresponding to Figure 14.3, and belonging
to the cubic family (434), are shown in Figure 14.4. Its associated



Figure 14.4 Six planes at a vertex located within the fundamental region of the
simple cubic lattice {4,3, 4}, a degenerate fourdimensional polytope. The structure
obtained this way is indexed 1111.

Figure 14.5 Four cells corresponding to the six planes of Figure 14.4, shown here in
an exploded view.



four cells are shown in an exploded view in Figure 14.5. The entire set of regular
and semi-regular structures of this family comprises a total of 16 structures and is
illustrated in Color Art 6 in a four-dimensional hypertable; only four cells associated
with a fundamental region are shown in an exploded view. This fundamental region,
when repeated by symmetry operations, generates the complete structure which, in
the example shown, is space filling. A portion of this space filling for each of the 16
structures is shown in Color Art 7. In

q=3

Figure 14.6 Structures 1111 of four families of polytopes corresponding to Fig-
ure 14.1 and arranged in a corresponding three-dimensional lattice; only a two-
dimensional portion of this lattice is shown.

continually transforming structures the four edges “implode” and “explode” grad-
ually in all combinations along the four directions of the hypertable generating all
“intermediates” between these 16 structures. The intermediates are themselves in-
teresting space structures as shown later with a few examples.



In Figure 14.6 the four cells of the semi-regular polytopes 1111 of four different
families, families (333), (433), (533), and (434), are shown in a square lattice corre-
sponding to Figure 14.1. The cells are shown in exploded views in each case and are
analogous with one another. The corresponding faces of the corresponding cells have
the same color and in each case the same six colors are needed. Color Art 7 and Figure
14.6 combined are part of a larger sevendimensional table that maps all the regular
and semi-regular four-dimensional structures in one space.

LABYRINTH GENERATION

Families of space labyrinths, which divide space into two parts, can be derived from
the families of regular and semi-regular structures by removing all faces in comple-
mentary colors. In fact, the removal of complementary colors is a convenient selection
because any single color, or any combination of colors, could be removed to provide
space structures composed of cells with different types of openings. This aspect
of systematic face removal by color was addressed by Lalvani.11 Clearly, labyrinths,
where only two complementary-colored faces are removed, are special cases in such
an extended family of space structures produced from each source family.

Cells of one family of labyrinths belonging to the cubic family (434) are shown in
Color Art 8 in an exploded view. Here, red and green faces are removed from the cells
of structures in Color Art 6. Several “degenerate” labyrinths, composed of isolated
closed cells, are produced in the process. Of the 16 structures generated this way, 9
are “legitimate” labyrinths having a continuous interior space. The cells of these are
shown in Figure 14.7 in a portion of the hypertable. The same nine structures are
shown as cubic portions of a space-filling array in Color Art 9; in this illustration the
continuous surfaces of the labyrinths can be better appreciated.

One of the four two-dimensional tables, each defined by a different face of the
hypertable and embedded in Color Art 9, is shown in Color Art 10. In addition to the
structures lying at the vertex positions of the table, intermediate structures are added
to show the continuous transformations between the labyrinths. The intermediates
preserve angles but have more than one different edge length. They also provide
visually and spatially interesting variants of the ones with regular faces only. Close-up
views of three labyrinths located at the vertex positions in Color Art 10 are shown in
exploded views in Figures 14.8 to 14.10.



Labyrinths from other families of polytopes can be derived in a similar way. Cells of
labyrinths for families (433) and (533) are shown in Color Art 11 and 13, respectively,
in analogous tables. Continuous transformations within

Figure 14.7 Basic cells of labyrinths of family (434) in exploded view.

each table are suggested by the structures shown in Color Art 12 and 14. Compared
with the cubic family (434), these labyrinths are more legitimate four-dimensional
labyrinths and can be built in three-dimensional space as “projections.” The cells, as
well as the labyrinths composed of these cells, are completely analogous to one an-



other between all the families. These structures are part of a larger table of labyrinths
obtained by interconnecting the families. The complete larger table includes all four-
dimensional labyrinths, finite as well as infinite, and Euclidean as well as hyperbolic,
-dimensional labyrinths (w>4) are similarly included in a larger, more inclusive hy-
pertable.

Additional labyrinths for each family are obtained by removing the remaining pairs
of complementary-colored faces, namely, blue and orange and yellow and violet. The
legitimate labyrinths in these cases are much fewer. Cells of such labyrinths having
blue and orange faces removed are shown in Figure 14.11 in a portion of an extended
table for four families (333), (433), (533), and (434). In Figure 14.12, cells of labyrinths
having yellow and violet faces removed from the structures 1111 of the same families
are shown; compare this illustration with Figure 14.6.

Figure 14.8 A detailed view of the labyrinth 1111 in an exploded view (compare
with Color Art 9).





Figure 14.10 A detailed view of the labyrinth 1101 in an exploded view (compare
with Color Art 9).

Figure 14.9 A detailed view of the labyrinth 1011 in an exploded view (compare
with Color Art 9).

Figure 14.11 Cells of labyrinths of families (333), (433), (533), and (434) having blue
and orange faces removed.





Figure 14.12 Cells of labyrinths 1111 of families (333), (433), (533), and (434) having
yellow and violet faces removed.

CURVED VARIANTS AND OTHER DERIVATIVES

A large variety of labyrinths and related structures can be derived from the regular
and semi-regular labyrinths described in the previous sections. Nonperiodic space
labyrinths related to the new class of quasicrystals, curved labyrinths having curved
edges and faces, and periodic as well as nonperiodic labyrinths in non-Euclidean
space are interesting examples. Other possibilities include “curved space” labyrinths,
which are in non-Euclidean space, as opposed to “curved surface” labyrinths like
Pearce’s and Burt’s, which are in Euclidean space.

An assortment of examples is shown in the illustrations that follow. Figures 14.13
to 14.20 show examples of a variety of nonperiodic labyrinths projected from higher
dimensions. These are embedded in spaces defined by hypercubes and hypercubic
lattices and are analogs of the ones derived from the simple cubic lattice shown
in the earlier sections. They can be built as three-dimensional projections of the
hyperlabyrinths.



Figure 14.13 shows a portion of a nonperiodic space labyrinth embedded in an
array of six-dimensional cubes. The cells (in their three-dimensional states) are
tilted rhombicuboctahedra and the labyrinth is the higher-dimensional analog of the
structure 0011 in the simple cubic family of Color Art 9. Similar structures can be built
for other dimensions. Figure 14.14 shows another example of a nonperiodic labyrinth
composed of tilted truncated octa-hedra and analogous to the cubic labyrinth 0110
of Color Art 9 and Figure 14.7 and belonging to the six-dimensional cubic family.
Similarly, the nonpe-

Figure 14.13 Portion of the nonperiodic labyrinth having tilted rhombicuboctahe-
dral cells and embedded in a six-cubic lattice (compare with labyrinth 0011 of Color
Art 9).

Figure 14.14 Portion of the nonperiodic labyrinth having tilted truncated octahedral
cells and embedded in a six-cubic lattice (compare with labyrinth 0110 of Color Art 9).



Figure 14.16 Portion of the nonperiodic curved surface labyrinth having tilted
truncated octahedral cells andembedded in a six-cubic lattice (comparewith labyrinth
0110 of Color Art 9).

Figure 14.15 Portion of the nonperiodic labyrinth having tilted truncated octahedral
cells connected by parallelepipeds and embedded in a six-cubic lattice (compare with
labyrinth 1110 of Color Art 9).

Figure 14.17 A variant of the nonperiodic curved labyrinth of Figure 14.16.

Figure 14.18 Another variant of the nonperiodic curved labyrinth of Figure 14.16.

Figure 14.19 Schwarz-type cells of dimensions 3,4, and 5 for periodic and nonperi-
odic labyrinths based on zonohedra.



Figure 14.20 Alternative geometries for cells of dimensions 3,4, and 5 for labyrinths.

riodic labyrinth in Figure 14.15, which is similar to the one in Figure 14.14 but
has, in addition, parallelepipeds that connect the truncated octahedra, is a higher-
dimensional version of the structure 1110 of Color Art 9.



Figures 14.16 to 14.18 show curved variants of the hyperlabyrinth of Figure 14.14;
the edges are curved inwards or outwards along the plane of the rhombic faces of the
hidden hypercubic lattice. These three examples are embedded in the curved variants
of the hyper-Schwarz surface. The Schwarz surface is the three-dimensional case first
described by Schwarz over 100 years ago,14 and the first example of a hyper-Schwarz
surface was developed by Brisson.15 The nonperiodic labyrinth embedded in the
hyper-Schwarz surface was first described by Lalvani.6

Figure 14.19 shows Schwarz-type cells based on zonohedra (outer shells of hyper-
cubes or zonotopes) of dimensions 3,4, and 5. These cells can be used in various
combinations to generate periodic and nonperiodic labyrinths. Figure 14.20 shows
variations of the cells in Figure 14.19.

Figure 14.21 shows a single layer (on the left) from a nonperiodic curved-surface
labyrinth based on the upright or tilted prism version of the Penrose tiling. The prisms
can be visualized from the illustration in the middle. The space-filling cells of this
labyrinth are shown on the right.

Figure 14.22 shows three types of cells based on the rhombic dodecahedron for
periodic and nonperiodic labyrinths; the openings can lie on any combination of the
vertex, midedge, or midface of the rhombic dodecahedron. The illustration on the
left is a cell of the hyper-Neovius surface, the higherdimensional analog of the one
described by Neovius over 100 years ago. Figure 14.23 shows two versions of another
cell, illustrated with connectors, and

Figure 14.21 A single-layered portion of the nonperiodic curved labyrinth corre-
sponding to the prism version of the Penrose tiling. The two small illustrations on the
right show cells of multilayered versions of the labyrinth shown on the left



Figure 14.22 Cells of labyrinths based on rhombic dodecahedra. The cell on the left
is a higherdimensional version of the cells in the labyrinth discovered by Neovius.



Figure 14.25 A cell based on a rhombic dodecahedron and composed of
parallelogram-shaped openings (shaded).

Figure 14.23 Two variations of a cell of a labyrinth based on the rhombic dodecahe-
dron shown here with connector prisms.

Figure 14.24 A periodic array of curved labyrinth composed of cells based on the
rhombic dodecahedron.



Figure 1426A variety of cells for periodic and nonperiodic labyrinths having digonal
openings.

also based on the rhombic dodecahedron. Figure 14.24 shows a periodic array of
a curved-surface labyrinth composed of cells based on the rhombic dodecahedron.
Figure 14.25 shows a cell with parallelogram-shaped openings and also based on the
rhombic dodecahedron.



Figure 14.26 shows a variety of cells for periodic and nonperiodic labyrinths with
digons (two-sided and two-vertexed polygons) as openings. Architecturally, digons
(as well asmonogons) provide natural shapes of openings for tensilemembranes. Frei
Otto termed the monogons as “eyes” in his tensile net for the German Pavilion at the
Montreal Expo held in 1967. Figure 14.27 shows three examples of labyrinths with
digons; the one on the top is periodic, the one on the bottom left is nonperiodic, and the
remaining could be either periodic or nonperiodic. Figure 14.28 shows two different
cells with digonal openings (on the left), each based on the truncated tetrahedron
fromwhich tetrahedral connectors protrude. A periodic array using the cell on the
top left is shown alongside. A large variety of other structures composed of digonal
openings are similarly possible.
Additional labyrinths can be derived from other layered and nonlayered periodic

plane and space fillings, and having plane or curved faces, following the labyrinth-
generation method described previously. Interesting cases are

Figure 14.27 Portions of periodic and nonperiodic curved labyrinths composed of
cells with digonal openings.
Figure 14.28 Two types of truncated tetrahedral cells with digonal openings and

curved tetrahedral connectors with digonal ends; a periodic labyrinth based on one
of the cells (on top left) is also shown.
themultilayered labyrinths composed of hyperbolic prisms inmultilayered versions

of Poincare’s hyperbolic disk space. This concept was mentioned by Lalvani9 and
one example is shown in Figure 14.29. Other hyperbolic space labyrinths follow and
are arranged in families in analogous hypertables. Spherical, ellipsoidal, cylindrical,



saddle-shaped, toroidal, and other curved-space labyrinths in non-Euclidean curved
space are similarly possible. The spherical and cylindrical cases, based on periodic
subdivisions of the sphere and the cylinder, were first mentioned by Burt.10 A portion
of a nonperiodic spherical labyrinth is shown in Figure 14.30. Several possibilities are
suggested in different parts of the illustration, and the concept extends to all hyper-
geodesic surfaces developed by the author.16 Interesting cases are fractal labyrinths
where the surface of the labyrinth is itself a labyrinth, a process that can be used
recursively as well as self-similarly or randomly. One example is shown in Figure
14.31, where a saddle face of a Schwarz-type surface is composed of Schwarz-type
modules.

Space labyrinths expand the repertoire of spaces and structures available to the
architect. Many of the labyrinths presented here, and elsewhere in the author’s work,
are mathematically new and await imaginative use as architectural space enclosures
and alternatives to building systems. These are presented here to display the ex-
ploratory and open-ended nature of morphology, which can continually provide new
possibilities for design.

Author’s Note

Last year (summer of 1995), while curating the Buckminster Fuller Centennial
Exhibit, the author received two models of four-dimensional space labyrinths related
to the 120-cell from Koji Miyazaki. These models were displayed in the exhibition.
In the same exhibition we also displayed the author’s independent work on four-
dimensional labyrinths.5,7,8 These hyperlabyrinths, including those derived from the
120-cell, were included in the computer drawing of our higher-dimensional periodic
table of space structures, also shown in the exhibition.

Figure 1429 One example from a large family of single-, double-, and multilayered
hyperbolic labyrinths composed of hyperbolic prisms.





Figure 14.30 A portion of a nonperiodic spherical labyrinth; several alternatives
are shown.
Figure 14.31 A saddle face of a fractal labyrinth where the face is itself a labyrinth

surface.
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15 Quasicrystal Architecture: The
Space of Experience

Tony Robbin

15.1 INTRODUCTION

Whatever else architecture is, it is also geometry. If the geometrical concepts of a
designer are old-fashioned, then no matter how elegant a building is in its details, it
cannot help but look a bit recycled. We live in an era of marvelous new geometries,
and it is the purpose of this chapter to demonstrate to architects and engineers the
value of considering these modem geometries as the basis of new architecture.
GEOMETRY AND ARCHITECTURAL SPACE
It is a human capability to see the fourth dimension; exotic geometries such as three-

dimensional hyperbolic manifolds and quasicrystals can become natural, effortless
models of experience. Indeed, they must become so because
Beyond the Cube: The Architecture of Space Frames and Polyhedra, edited by J. Francois

Gabriel ISBN 0–471–12261–0 © 1997 JohnWiley & Sons, Inc.
human experience at the turn of the 21st century is far too complex and omni-

attentive to fit comfortably in an old-fashioned model of three-dimensional recti-
linear space. We designers of spaces that people inhabit—artists, architects, and
engineers—owe it to our audience to make spaces that enhance our capability to visu-
alize the four-dimensional, hyperbolic, fractal, and quasicrystalline world that we are
really living in.
Consider engineers first. Most engineers would reject such a directive; their duty

is not to makemathematical spaces visible and comprehensible but primarily to be
efficient and only secondarily to be artistic, a goal considered to have nothing to do
with esoteric geometries. (It goes without saying that public safety is the foremost duty
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of engineers and architects.) However, do engineers really act as though efficiency
is more important than aesthetics? As Ariel Hanaor has pointed out, space frames,
tensegrity systems, and other popular engineering concepts are not necessarily the
most efficient solutions in either labor or materials.1–3 Membrane combinations can
easily cost more than $100 a square foot of installed coverage; some nodes of the
tensegrity roof in Atlanta weigh two tons; and free-form shells require troublesome
single-use formwork. Is it possible that engineers select options on the basis of aes-
thetics first and efficiency second? From my experience talking with many of the
world’s great engineers at engineering conferences in Copenhagen, Surrey, and At-
lanta, I am convinced that tastes drive engineering as surely as the science of new
materials and new engineering systems drive architecture. Therefore, it is important
for engineers to understand that a great source of new aesthetics, I believe it is the
only true source, is the idea of space found in contemporary mathematics (including
morphology studies) and physics. Designers should feel permitted to explore the
aesthetics of mathematical space, how the subjective space of experience and the
objective space of contemporary physics andmathematics mutually reinforce each
other, and substitute this sophisticated understanding for the knee-jerk minimalist
aesthetic still popular among engineers but abandoned by almost everyone else.
Architects and artists also resist such a directive. They fear that to explore the

intellectual world of mathematics and physics is to submerge sensibility; or (they
might say) that to submit to the rigors of geometry is to resign one’s creations to a
boring repetitive simplicity that is totally out of character with the self-referential,
ironic, and mock-heroic styles now in fashion. These assumptions are false. The new
geometries are not repetitive, nor rectilinear, nor simplistically grasped by the mind.
Instead, they promote a sensual involvement, an intriguing, intuitive relationship
with space. Furthermore, the mock-heroic may be fun at first, but a building is an
expensive way to tell a joke and most jokes do not bear revisiting. Architects love
theory; they should perceive new geometries as the liberating theories they are, rather
than the constraining rectilinear boxes they most certainly are not.
Two examples fromhistorymaydemonstrate that space in art, space in architecture,

and coeval space in mathematics are alike. Alberti’s St. Andrea in Mantua, built in
1470, was an astoundingly original building, capturing the imagination of patrons
and architects for centuries, and becoming the model for such divergent buildings as
St. Peter’s in Rome and Grand Central Station



Figure 15.1With St Andrea in Mantua, Alberti revolutionized architecture by using
the conception of space created by the mathematics and science of his time.

in New York. The concept that so excited onlookers was that both mass and void
could be sculpted: Both building and air had substance, both were plastic elements
that could be manipulated, interlocked. This was very different from the planar and
linear Gothic architecturewhere tracery planes prop each other up. In bothGothic and
Renaissance architecture, the detailing of the walls and facade reinforce the concept
of space; the flat patterns of the stained glass or colored marble of the Gothic contrast
with the blocks and hollows of the Renaissance. Alberti formed his new building space
when ideas of space, in general, were changing. Masaccio’s paintings put humans in
space, in the same space as gods, and Leonardo (a few years later) first studied air



as material capable of filtering light. Space was no longer the zero-density symbol
and body of a god, but earth-bound stuff under human control, defined by the very
new, human-oriented, instantaneously fixed projective geometry, also pioneered by
Alberti.
The Eiffel 'lower (1889), too, was a work of mathematical space as much as a work

of iron. Eiffel depended on new calculation techniques to sum over the forces of so
manymembers in somany directions in three-dimensional space, butmore than that,
mathematics and physics presented Eiffel with a concept of space as a force field that
he could use in amore conceptual way. Maxwell’s field equations of 1864,made part of
popular culture in the famous 11th edition of the Encyclopedia Britannica (1875–1889),
demonstrated how small local forces could aggregate to effect action at a distance,
like metal filings on a sheet of paper over a magnet. Indeed, it was suggested that all
the space of the world was filled with field: an active multidirectional ether capable of
inducing powerful forces on test particles: “…that there is an ethereal medium filling
space and permeating bodies, capable of being set in motion and of transmitting that
motion….”4 To build his tower to the sky, Eiffel had only to select and stack elements
of this force-field space, confident that a solid core to the top of the tower would not
be necessary.
In his paintings of the period, van Gogh abandoned the delicate atmospheric per-

spective of the French naturalists and even the more robust atmospherics of the
impressionists to construct instead a space packed with texture, color, and brush
strokes freed from their role of describing objects, free to act on their own and in-
fluence one another. His Night Cafe (1888) presents space as a pressure chamber
with tilted-up floor and pressed-in walls, thick with radiation powerful enough to
overwhelm the inhabitants. Thus the space-as-field that was created by science at the
end of the 19th century became the space of both architecture and painting.
The “two cultures” hypothesis is incorrect: Even if art and science no longer study

each other directly, reciprocal influences and the sharing of basic paradigms are
inevitable. Practitioners often think they are in a private tradition: Mathematics comes
out of mathematics; architects work from the example of other architects. However,
mathematicians and architects are both in culture, liberated and constrained by the
same cultural constructs; it never happens that Gothic architecture is developed in a
culture also working on the physics of relativity.
THE FOURTH DIMENSION



To begin the study of space in our culture, we must first realize that the fourth
dimension is not time; it is another dimension just like the other ones. On a pool table
the third dimension is time. On amap the second dimension is north. Wemust not
confuse the applications of geometrywith the geometry itself. Think not of space-time,
but of four mutually perpendicular fines intersecting at a point, the axes of a grid on
which space and time dimensions could be plotted, or on which any other four scalar
variables could be plotted. Points in the four-dimensional grid can be connected to
make regular geometric figures, analogous to the Platonic solids: As the square begets
the cube, the cube begets the hypercube; as the triangle begets the tetrahedron, the
tetrahedron begets the four-simplex. For over a hundred years, mathematicians have
studied these four-dimensional figures, the four-dimensional polytopes, and have
been stimulated by efforts to visualize them.

Now the effort is far more manageable. Computers can show us the projections, the
shadows, of the four-dimensional polytopes and show us how the projections deform
when the polytopes are rotated in four-dimensional space. Henri Poincare repeat-
edly suggested that successive models of the projections of four-dimensional figures
when seen in sequence could lead to a vision of the fourth dimension, a geometry
nomore or less true or sacrosanct than any other “convenient” geometry. Since the
late 1960s, numerous researchers have written computer graphics programs that
carry out Poincare’s suggestion, some in real-time motion and with binocular vision
(including one such useful program written by the author). As a result, this once
arcane branch of



Figure 152 Eight hypercubes
are stacked around a central hypercube and drawn in perspective. All the cells of all
the hypercubes are the same size and shape; those farthest away are shown to be

smaller.

mathematics is accessible to all. Often misunderstood and filled with romance
and mysticism, the idea of the fourth dimension has inspired artists, writers, and
philosophers since the early part of this century. Now that nonmathematicians can
know the real—the geometric—fourth dimension, muchmore profound inspirations
await us.

It is important to realize how pervasive four-dimensional geometry is in contem-
porary mathematics and physics. Relativity, cosmology, and quantum physics take
place in varieties of four-dimensional space. Few problems in modern geometry,
such as linear programming or three-dimensional topology, can avoid reference to a
higher-dimensional space. Like calculus, higherdimensional geometry is part of the
basic conceptual tools of mathematics, part of the furniture. I suppose individuals



differ in the degree to which they take these higher-dimensional spaces to be literal
spaces as opposed to abstract bookkeeping devices, but to be efficient, to gain an
intuitive and insightful mastery, some sense of the reality, the objecthood, of these
higher-dimensional structures and spaces is necessary and inevitable.
SEEING THE FOURTH DIMENSION
For the last 25 years,my painting and sculpture have been dedicated to the principle

that four-dimensional geometry can be and should be the operating model of the
space of our experience. In Fourfield, a 27-foot wall relief completed in 1981,1 used
two-dimensional and three-dimensional elements working together to provide the
visual information of four spatial dimensions, the space defined by four mutually
perpendicular lines.
It is true that we possess no biological organ capable of seeing the fourth dimension

directly; however, that is not such a limitation as one might imagine, considering that
we have no organ capable of seeing the third dimension directly either. By the time that
a three-dimensional object reaches our eyes, it is a flat wavefront of light, a changing
two-dimensional pattern that we nevertheless experience as three dimensional, an
experience primarily due to cultural conditioning. Two-dimensional projections of
three-dimensional structures, say a lattice cube, are full of paradox. As the cube is
rotated, the shadows swim through each other; lines we know to be perpendicular to
two other lines instead bisect them; lines of constant length grow and shrink; lines
hidewhole faces. It is precisely these paradoxes that give us the visual information that
we are seeing a three-dimensional object and not just an intricate two-dimensional
pattern.
Changing characteristic projections from four-dimensional space are as effectively

communicative of four-space as are projections of three-space. However, only planar
rotations are characteristic in this way: A plane can rotate around a point; a three-
dimensional cell can rotate around a line; only an object in four-dimensional space
can rotate around a plane, a particular action best revealed to us by Thomas Banchoff
in his pioneering film The Hypercube, Projections and Slicings (1979). It is precisely this
planar rotation that I have capturedwith the simple formal device of usingwelded steel
rods the same color and dimension as painted lines that are made with half round
skeins of thick paint. As one passes by Fourfield, the three-dimensional elements
parallax, but the painted lines do not, yet both are perceived to be part of the same
rigid object. All the paradoxes of planar projection and rotation are present in Fourfield.



Parts of rigid three-dimensional objectsmove relative to one another andpass through
each other without interference (two objects are in the same place at the same time);
cells grow, shrink, and disappear altogether, hidden behind lines. It is precisely these
paradoxes that prove that we are witnessing a four-dimensional experience and not
merely an intricate three-dimensional one. With practice, that four-dimensional
visual experience

Figure 15.3 Fourfield, based on four-dimensional geometry, replicates the ex-
perienceof a four-dimensional planar rotation as the viewerwalks by. (Acrylic
on canvas with welded rods, 8.5x27x1.5 feet. Collection: The General Elec-
tric Company, Fairfield.)



Figure 15.4 A detail of Fourfield shows that the image is composed of three-
dimensional elements, welded steel rods, and two-dimensional elements, painted
lines, that work in concert

can become as natural, as automatic, as the seeing of three-dimensional space.5 In
my light pieces of the late 1980s, I have pushed the same formal strategy a step further.
Because both the three-dimensional elements and the two-dimensional elements of
the rod/canvas pieces are shadows from the fourth dimension, it is elegant to have
the two-dimensional elements be the actual cast shadows of the three-dimensional
elements. We still walk around the three-dimensional welded steel rods, and still
the two-dimensional elements are unaffected by our movement, being a function
of the fixed fights and the fixed rods. However, now, two lights, one red and one
blue, illuminate the piece, and where they shine together they make white light, and
where a rod blocks the red light, a blue line is created, and vice versa. The different
colored lights are each filtered separately by assorted Plexiglas plates. The simple
piece is filled with various colored planes and colored lines, two-thirds of which are



only light—a painting of light. Three-dimensional glasses can be worn, and the two-
dimensional elements of red-and-blue shadows fuse to become a three-dimensional
structure more present and closer to the viewer than the welded steel boxes; the
paradoxes of planar rotation are dramatically and unmistakably created.6

A QUASICRYSTAL FOR DENMARK’S COAST

As Haresh Lalvani and Koji Miyazaki have separately pointed out, quasicrystals are
the three-dimensional projections of higher-dimensional objects. In fact, they are
regular and rational in their original space andonly take onquasicrystalline properties
as a result of their projection to three-dimensional

Figure 15.5 In the light pieces the two-dimensional components of the image are the
colored cast shadows of the three-dimensional elements. The shadows are colored
because the work is lit by strongly colored blue and red lights. (Untitled #1,1986,
welded steel, acrylic, and colored light, 35 inch diameter.)



space.7–9 All the visual richness of four-dimensional geometry is here: mul-
tiple objects in the same place at the same time, objects appearing and dis-
appearing by rotation, objects passing through one another without interfer-
ence. Thus quasicrystals can be seen as an application of four-dimensional
geometry, and, for us three-dimensional beings, a way to experience and
communicate a greater awareness of four-dimensional space.

In 1993 Imade a large sculpture based on quasicrystal geometry for the Cen-
ter of Art Science and Technology at Denmark's Technical University. This
new geometry is only 15 years old and has four interesting properties that
make it fundamentally different from all previous patternings. First, a qua-
sicrystal is nonrepeating; although it fills space with standard elements, it
confounds our expectations by repeating elements only at irregular intervals.
Second, it has simultaneous fivefold, threefold, and twofold symmetry, which
means that sometimes it appears to be made up of right angles, other times
of triangles, and from still other vantage points it appears to be made up of
star pentagons. This multiplicity of image results, in part, from using dodeca-
hedra for nodes, as Steve Baer first did in the early 1970s, followed soon after
by Miyazaki. Third, a quasicrystal is assembled from intermediate groupings;
the four golden zonohedra (a skewed cube, a rhombic dodecahedron, a rhom-
bic icosahedron, and a rhombic triacontahedron, all with faces whose diago-
nals are in the golden ratio). These geometric solids float in the quasicrystal.
Finally, the components of a quasicrystal subdivide into smaller self-similar
elements, something like a fractal foliation. There are two such deflations in
the sculpture: one with the golden ratio, 1:t, and another l:r3.

The three-story atrium of the Danish Technical University is an ideal set
ting for such a quasicrystal sculpture. Open stairs and two bridges allow
the viewer to pass under, over, around, and through the work, and to hap-
pen upon the many and unexpected occurrences of fivefold, threefold, and
twofold symmetry. In winter, sunlight is caught by mirrored plates and re-
flected down into the room and into the sculpture. Half mirrors on the bot-
tomof thework reflect crispmoving colored light paintings onto thewalls and



the ceiling of the space. In summer, direct sunlight passes over the sculpture,
casting direct shadows onto the floor that transform fromfivefold to threefold
to twofold images as the sun passes overhead. Finally, on cloudy days, six
strong artificial lights illuminate the morning, noon, and afternoon patterns.

The sculpture is in four parts, each of which illuminates one of the special qualities
of the quasicrystal. First is the dome: From above the fivefold symmetry of this
structure is apparent, but from below we see the near chaos that is inside. A large
pinwheel shape is opposite the dome. There are 15ways that a rhombic dodecahedron
can be oriented in a quasiciystal, and this spiral pinwheel is composed of those 15
dodecahedra. The snake is a curvaceous, linear section that connects the dome and
the pinwheel. It is based on three five-petal flower shapes, and from above it presents
a perfect Penrose pattern.10 Finally, there is the large-scale section, based on the 1:t5

deflation discovered by the Japanese physicist T. Ogawa. Like a fugue, the geometry
breaks apart and appears to run wild, only to converge again at key nodes.
Imagine a quasicrystal architecture. When approaching the structure from the

east, squares and cubes are seen; when the car passes by to the north, the structure
has the fivefold symmetry of a Penrose pattern with star pentagons; moments later
looking back from the northwest, the structure is not only a different overall shape but
appears to be made up of triangles, hexagons, and 60° parallelograms. The structure
as kaleidoscope is never more apparent than when the sun casts shadows through the
structure; truss systemsmake triangular nets that slide across the floors and walls,
while quasicrystals transmute to an astounding variety of shapes all through the day.
This kaleidoscope is the protean space of our experience of the world, suggested to us
by our understanding of the objective world, reinforced in us by the multiplicity of
images and media imploding on us. Why insist on a mechanistic, repetitive structur-



Figure 15.6 A computer drawing of a quasicrystal dome shows the patterns
of the dome on the floor as they change frommorning, to noon, to afternoon.

Figure 15.7 Shadows at noon from amodel of a quasicrystal space framemake a
two-dimensional quasicrystalline pattern—sometimes called a Penrose pattern.

al pattern? Why nudge toward this vision with little, ironic architectural gambits
when the tools are at hand to master such a vision.11,12

Because engineers make design decisions on the basis of their aesthetics, they owe
it to us all to becomemore conscious of their aesthetic choices. Because architects live
in culture, they owe it to us all to help us experience the spaces wementally inhabit.
Problems arise when the idea of beauty is anachronistic; if the public feels that its built
environment is less vital than its conceptual environment, then buildings become a
drag on consciousness. It is as if the engineers of France were to present the people of
the United States with a full-scale replica of the Statue of Liberty, only one made with
inflated



Figure 15.8 The plans for the two cells that make up all three-dimensional qua-
sicrystals. By photocopying, cutting, and folding the patterns to the right, the reader
can begin to build quasicrystals.

Figure 15.9 Quasicrystal at COAST. A view of the dome and snake from the first
floor. (Aluminum and acrylic, 17 x 10 x 8m, 1993. Collection: COAST at the Danish
Technical University. Photo: Poul lb Henriksen.)

Figure 15.10 View from the back of the large-scale section of the COAST sculpture.
(Photo:



Poul lb Henriksen.)

plastic sheeting. A technological marvel perhaps, but one that mocks history and
mocks the current audience. Such a joke would not be funny for long; but what
would linger is a sense of the abdication of designers to make culture new. Three-
dimensional geometric space frames of the Eiffel Tower variety are a similar abdica-
tion; they come from another time and were fresh in a context long past. We have our
own discoveries of space to make, based on the mathematics and physics of our own
time.

Figure 15.11Adetail of the dodecahedral nodes and standard-length rods thatmake
up the nonrepeating patterns in quasicrystal space frames.



Figure 15.12 The first proposal for COAST was an exterior structure, a canopy that
appeared to change its shape as one passed by.
northwest

15.2 NOTES

1. Ariel Hanaor, “Engineering Properties of Double-Layer Tensegrity Grids,” Pro-
ceedings of the IASS, Copenhagen, 1991.

2. Ariel Hanaor, “Aspect of Design of Double Layer 'Tensegrity Domes,” Journal of
Space Structures, Vol. 7, No. 2, 1992.

3. Ariel Hanaor, private communication.

4. James Clerk Maxwell, “A Dynamical Theory of the Electromagnetic Field,” Philo-
sophical Transactions, Vol. 155, 1865, p. 459.



5. Tony Robbin, Fou?field: Computer, Art and the Fourth Dimension, Bulfinch/Little
Brown, Boston, 1992, Chap. 1.

6. Ibid., Chap. 3.

7. Haresh Lalvani, “Non Periodic Space Structures,” Space Structures, Vol. 2, No. 2,
1986–1987.

8. Haresh Lalvani, “Hyper-Geodesic Structures: Excerpts from a Visual Catalog,”
Proceedings of the IASS, Atlanta, 1994.

9. Koji Miyazaki, An Adventure in Multidimensional Space,Wiley, New York, 1986.

10. Roger Penrose, The Emperor’s New Mind, Oxford University Press, New York, 1989.

11. Tony Robbin, “A Quasicrystal for Denmark’s COAST,” Proceedings of the IASS, At-
lanta, 1994.

12. Tony Robbin, Engineering, New Architecture, Yale University Press, New Haven;
1996, Chap. 7. See also Architectural Body having a Quasicrystal Structure, U.S.
Patent 5.,603,188, Feb. 18, 1997.





16 Are Space Frames Habitable?

J. Francois Gabriel

16.1 INTRODUCTION

The preceding chapters offer good arguments in favor of an architecture of polyhedra.
The purpose of this chapter is to look at the spaces within, the spaces we would be
living in. Are theypractical, comfortable, pleasant? Are they varied aswell as versatile?
Can they be floodedwith sunlight? Can they accommodate our furniture, our tools, the
equipment on which we depend? In other words, are they as good as our conventional
rooms?
Most of us live and work in rooms whose shape approximates a cube. Since we

spend a lifetime in variations on the cubic theme, we have come to take it for granted
that a cube, or a near-cube, is the best shape for a room, in fact the only possible
shape for it. We know that generations of other cultures have dwelt successfully in
yurts, tepees, and igloos, but few of us would seriously entertain the possibility of
living our present lifestyle in one of these. Is it possible to take a rational look at our
conventional, “square” dwellings and learn to distinguish between the features that
respond to our real needs, practical or emotional, and what is around us thoughtlessly,
simply by force of habit?
As you can probably see by looking around you fromwhere you are sitting right now,

a conventional room is characterized by a horizontal floor and a number of vertical
planes: walls, partitions, doors, and windows. There is a logic to that, as gravitymakes
us stand vertically for balance, and it is easier for the average person to evolve on
a horizontal floor than on a slanting one. It also feels good to be surrounded by a
modicum of vertical surfaces, for reference or for reassurance. What is not necessary
at all is a horizontal ceiling. In fact, the best architecture is more often than not
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distinguished by shapely roofs or vaults. And what is even more unnecessary is that
all the wallsmeet one another at right angles. We need to orient ourselves easily and to
know where we are, and therefore we need an orderly environment, but many orderly
environments can, and have been, designed that do not rely on rectangular plans.

It is true that we, the people (for whom architecture is made), have a front, a back,
and two sides. When life used to be structured around the sun cycles andwhen religion
was unquestioned, to build a room on a square planwas ameaningful, indeed a sacred
act. For better or for worse, neither the sun nor religion controls modern life today.
The survival of rectangular rooms and buildings is just that: a survival. This is not to
say that rectangular spaces are fundamentally wrong. Superb architecture has been
generated on a rectangular basis and will undoubtedly continue to be. The points I am
trying to make are simply that there are many other avenues to explore in the making
of architectural space, and that we deprive ourselves of rewarding experiences when
we fail to explore and experiment. Furthermore, many aggregates of polyhedra, in
particular, all those discussed in this chapter, do fit in an orthogonal axial system and
accept bilateral symmetry as naturally as any buildings conceived on rectangular
plans.

An important issue to consider when discussing the essential aspects of a room is
its height. Ideally, the height of a room should not be considered independently from
the shape of its roof. However, most buildings consist of several stories piled up on
top of one another and, for reasons of economy, the floor of a room will often be the
ceiling of the room underneath. The minimal height is determined by the necessity
for even tall individuals to stand up, move about, and wave their arms around without
hitting the enclosures. Eight feet in America and 2.5 m in Europe are the standard
heights, although some architects are unhappy with such rigid constraints. Frank
Lloyd Wright, for instance, ordered a ceiling height of 6 feet, 4 inches in the vestibule
of his marvelous design for the famous house Fallingwater.

However, there is no upper limit to the height of a room, not only because some of
themmust contain large objects, but because others might be tall to express an ideal:
Have you ever heard anybody complain that the 40-m-high nave of a Gothic cathedral
is too high? Probably not. Indeed, the art of architecture does not consist in packing
the most in the smallest possible amount of space. It is rather the art of wasting space
wisely.



16.2 INSIDE POLYHEDRA

In this chapter polyhedrawill be discussed fromanarchitectural standpoint, an impor-
tant part of which concerns, naturally, their habitability. There are somany polyhedra
and combinations of polyhedra with architectural possibilities that a selection had to
be made for our case study. Only two polyhedra were retained: the tetrahedron and
the octahedron. In fact, a further restriction proved necessary: Our two polyhedra
will be examined with their position remaining constant with regard to the ground.
What we learn from these two will increase our understanding of any other polyhedral
combination.

There are several reasons for selecting the tetrahedron and the octahedron. One is
that they are the simplest of all polyhedra. Another is that they can together organize
space, something that neither one can do individually. If a tetrahedron is placed on
each face of an octahedron, clones of the octahedron will fit perfectly against the
exposed faces of the tetrahedra. The process can be repeated indefinitely, producing
what is called an infinite structure (Figure 16.1).

What may appear to be a digression will be useful here. The names given to poly-
hedra indicate the number of their faces. Thus we know from their names that a
tetrahedron has four faces and an octahedron has eight. However, if all the faces were
removed and only their edges remained, the three-dimensional configuration would
be essentially the same. Only our perception changes. What we understood as an
aggregate of solids is now a space lattice.



Figure 16.1 Octahedra and tetrahedra can organize space without gaps or overlap
when the faces of the octahedra are in contact with the faces of the tetrahedra. In this
top view, polyhedra are pulled apart to show that an octahedron (0) is surrounded by
six tetrahedra, three of them straight side up and the others (T) upside down.



Both are infinite structures; in fact, they are the same. (The reader who is not
familiar with this space lattice will probably experience difficulties at this point. Alan
Holden would recommend the making of a model. As he says: “The best way to learn
about these objects is to make them, next best to handle them.”11 would recommend
the use of wooden toothpicks, the round sort that are tapered at both ends. Assemble
them with a good glue and keep in mind that accuracy is important.)

We are interested in the spaces found within our tetrahedron-octahedron space
lattice. They are our “rooms.” What shapes are they? The answer depends on the
position of the space lattice with regard to the ground. When the struts found in
horizontal planes meet at right angles, the space lattice is called a two-way space
frame, and all the rooms are in the shape of cubes.2When the horizontal struts form
triangles, the space lattice is called a three-way space frame, and all the rooms are in
the shape of hexagonal prisms (Figure 16.2).

Most people are already familiar with the cube, and the object of this book



Figure 16.2 A three-story aggregate of octahedra and tetrahedra with faces deleted.
Only edges remain, in the form of struts, to form a space lattice, or space frame.
Because the horizontal struts are arranged in triangles, this is called a three-way
space frame. A honeycomb pattern of hexagonal rooms is obtained by the addition of
vertical planes against the diagonals, which are the struts connecting one floor to the
next. (Source: J. F. Gabriel, “Three-Dimensional Suburbs,” Proceedings of the IASSWorld
Congress on Space Enclosures, P. Fazio, G. Haider, and A. Biron, eds., 1976, pp. 89–99, Fig.
3. Reprinted with permission of the Centre for Building Studies, Concordia University,
Montreal.)
is to present other, lesser known spaces, waiting for discovery inside polyhedra.

We will therefore abandon the two-way space frame and its cubic spaces to focus our
attention exclusively on the three-way space frame. How exactly are the hexagonal
spaces seen in Figure 16.2 obtained? Simply by applying a vertical surface (wall panel



or cladding) to the struts that connect one floor to the next. These struts are called
diagonals, and the floor structures they connect are referred to as chords. Spatially, we
have gone from an aggregate of octahedra and tetrahedra to a honeycomb pattern:
Each octahedron has increased in size and volume by absorbing, as it were, a third of
the volume of six adjacent tetrahedra.

The natural place for doorways is where diagonals form “A-frames,” that is, where
three diagonals are joined by their upper extremities. Three doorways can be found
in each hexagonal room, in alternate comers, and each doorway gives access to two
other rooms (Figures 16.2 and 16.3).

For my studies I have usually adopted a regular octahedron with an edge length of 4
m. A standard octahedral frame of that size would provide a rather small but adequate
room within. The corresponding floor-to-floor height will be 3,266 m. Headroom will
be ample regardless of the depth of the floor structure itself, which depends on many
factors such as building materials, building program, size and shape of the overall
structure, climate, and so forth. The width of the room, measured between parallel
walls, is 4 m and, measured diagonally, 4.62 m.

In many cases it will be possible to give hexagonal rooms what might be a more
pleasant height-to-width ratio by decreasing their height. The angle between a diag-
onal and the floor plane is 54° 44' 8”. Reducing this angle to 45° might improve the
proportions of the space within and have the advantage of squaring off the vertical
faces of hexagonal prisms.

With this said, it should be clear that a space frame of appropriate depth meets the
basic requirements for habitability. Horizontal floors, headroom,



Figure 16.3 Three diagonalsmeeting overhead provide the space for doorways. This
occurs in alternate corners of each hexagonal room, that is, three times per room.
Thus each room can have access to six others.

vertical walls, accessibility are necessary in buildings, but are these conditions
enough? Can a space frame accommodate vertical shafts, or wells, of varied cross
section wherever they are needed? We will address the problem of fitting stairs,
elevators, and flues, without which buildings are not viable, in the next section of this
chapter.

At this point, aword of clarification is in order. This chapter iswritten by an architect
and is about architecture, not structure. Of course, structural considerations should
never be ignored altogether, especially since they are an important argument for the
increased use of space frames, but here they are looked at in their broadest general
aspects. Space frames are attractive to me, as an architect, because their geometry
makes them essentially indeformable. They are lightweight structural frameworks
made versatile by their structural redundancy. They lend themselves to the design
of large buildings, the form of which could not be obtained otherwise, and they can
provide the answer tomany difficult urban problems. They aremodular and therefore
orderly. They can be produced industrially, and they can be designed for reuse.



16.3

CUMBERSOME CHORDS

Unlike the conventional post-and-beam system, which is three directional, our
space lattice is a six-directional system. Seen from above, a multistory, three-way
space frame presents an intricate mesh. The introduction of vertical shafts would
be very difficult, for it would require the elimination of considerable portions of the
space frame. It would also lead to a breakdown of the system because chords and
diagonals would not be lined up (Figure 16.4).

Figure 16.4 Top view of a multilayer, three-way space frame. Although the chords
are all made of the same triangular pattern, they shift with the diagonals from floor
to floor with the end result a complicated, obtrusive mesh. The insertion of vertical
shafts is difficult. Many structural members would have to be removed, opening up
irregular spaces that do not coincide with the vertical surfaces of shafts.



With the reader’s permission, I would like tomake a recommendation. Visualization
of the six-directional space lattice is not easy to achieve for one who is not thoroughly
familiar with the morphology of noncubic configurations. It requires patience. To
avoid fatigue anddiscouragement, I would suggest that the reader go over the drawings
with color pencils and tracing paper until the spatial relationships described in this
chapter become clear and familiar.

The next drawing represents the same configuration as Figure 16.4, also seen from
above, but with the chords deleted. Only diagonals are shown, up



Figure 16.5 Top view of the same configuration as in Figure 16.4, with the chords
deleted. Diagonals are shown up to two-thirds of their height and attached to a joint at
their lower extremity. Instead of identifying consecutive floors with numbers such as
1,2, and 3,1 prefer to use the letters L, M, and U, referring to lower, median, and upper
levels. One sees that the L-M-U sequence is complete and will repeat itself again and
again as the structure goes up. The honeycomb pattern formed by the diagonals on
every floor can be clearly seen. The triangular pattern resulting from the horizontal
projection of the diagonals indicates that vertical shafts could be found anywhere,
as long as the chords are not allowed to interfere. Chords can indeed be modified in
order to superimpose exactly with the diagonals. As long as the floor joints continue to
be connected by a triangular grid, no weakening of the structure will ensue. (Source: J.
F. Gabriel, “Three-Dimensional Suburbs,” Proceedings of the IASSWorld Congress on Space
Enclosures, P. Fazio, R Haider, and G. Biron, eds., 1976, pp. 89–99, Fig. 11. Reprinted
with permission of the Centre for Building Studies, Concordia University, Montreal.)



Figure 16.6 Vertical shafts can be inserted anywhere in a three-way, multi-
story space frame without interfering with either chords or diagonals when
the chord pattern is made to conform with the horizontal projection of the di-
agonals. A larger shaft, such as is shown on the right, would only require the
elimination of one diagonal on every third story. The profile of the chord ele-
ments is modified in response to the different loading conditions that affect
inhabited space frames, as opposed to space frames simply used to cover or
enclose large, open spaces. (Source: J. F. Gabriel, ``Habitabilite des struc-
tures tridimensionelles a I'echelle urbaine,'' Techniques et Architecture, No.
309, Paris, 1976, pp. 110–112, Fig. 6. Reprinted with permission.).

to two-thirds of their height, and attached to a joint at their lower extremity (Figure
16.5). A triangular pattern is formed by the horizontal projection of the diagonals.
If the chord pattern could be made to conform with that of the diagonals, triangular
wells could be introduced anywhere in a three-way space frame and this without
interference from either chord members or diagonals. It so happens that this can be
achieved quite easily: Chords -will superimpose precisely 'with the diagonals when they are
rotated 30° in their own plane,which is, of course, the horizontal plane (Figure 16.6).

Triangular shafts obtained from this simple operation measure 2.31 m on the
side. A large elevator could fit comfortably in a shaft of this size, and any number
of shafts can be created anywhere, either in bundles or scattered throughout the
structure. It should be underlined that triangular elevator cabins are more efficient
than rectangular cabins, for they fill up and empty faster.

For stairs, larger wells can be made by opening up several triangular shafts onto
each other. This requires the elimination of some diagonals, but remaining chords
and diagonals will always coincide with the “walls” of the shafts, whether their shape
is a triangle, a hexagon, or a parallelogram.

We are interested in lived-in space frames and polyhedra, where loading conditions
are quite different from those in single-or double-layer space frames used to cover
large, column-free spaces, such as sports arenas or convention centers. Our new floor
structure reflects this difference in a new, tapered profile. The floor structure itself is
fully triangulated in all directions. Its configuration is of the space frame type, and
the elimination of certain portions of it would not compromise its geometric rigidity.



The tapering of the floor structural elements, added to the minor modification per-
formed on the chords, open up a number of architectural and structural possibilities,
some of which are described in the following sections.

16.4 THE HEXMOD: ITS MORPHOLOGY

This chapter began with a description of the space frame considered as an aggregate
of octahedra and tetrahedra. These shapes are also called geometric solids and, for that
reason, they are unfortunately perceived not as spaces but as solid masses. Because
we are interested in them as voids, it will be useful to

Figure 16.7 Originally, the diagonals represented the edges of octahedra and tetra-
hedra, but that reading has been replaced by a new one. When vertical planes are
placed along the diagonals, a honeycomb pattern is created. Doorways find their
place where diagonals meet on an upper joint. Each doorway gives access to two
other hexagonal rooms. Because there are three doorways in each room, each room



has access to the six rooms that surround it. (Source: J. E Gabriel, ”Space Frames:
The Space Within-A Guided Tour,” International Journal of Space Structures, Vol. 1, No.
1, 1985, pp. 3–12, Fig. 3. Reprinted with permission of Elsevier Science Ltd, The
Boulevard, Langford Lane, Kidlington 0X5 1GB, UK.)

think of a space frame as an infinite structure of hollow “geometric solids.” I have
already dispelled the myth that the spaces within must of necessity be in the shape of
either a tetrahedron or an octahedron. This was done by showing that a space frame
can form a honeycomb (Figure 16.7).

Now, a honeycombmay satisfy the crudest needs for shelter, but it can hardly be
expected that a honeycomb will have the malleability required by the complexity and
the variety of our building programs. All the rooms cannot be the same shape and the
same size.3

Is it possible to “open up,” as it were, the honeycomb pattern and not lose the
structural strength of the space frame, which is one of themain reasons for our interest
in them? One of the major differences between the post-and-beam structural system
and the three-way space frame is this: Whereas there can only be one vertical column
in one place in the former, there are normally three diagonals in the latter. This may
be redundant under certain conditions, but it must be remembered that diagonals
do more than carry loads; they ensure the rigidity of the structural framework. It is
conceptually possible to eliminate in a systematic way some of the diagonals from the
framework without compromising its geometric rigidity.

Once again, this chapter is concerned with concepts and speculation, and one
should, of course, never forget that the safety of structures depends precisely on their
redundancy. Changing winds and seismic effects create load reversals that must be
met somehow.

What if we assumed that the standard cell of our honeycomb is a building block? It
is, after all, basically an octahedron, which is indeformable. From the antiprism that
it was, it has been transformed into a hollow, hexagonal prism.



Figure 16.8 The framework of a hexagonal room can be considered as a building
block called a hexmod. Instead of remaining tightly packed, the building blocks are
here separated by a distance equal to their width, that is, 4 m. This redistribution lets
architectural space flow around freestanding hex-mods. The lower left area of the
drawing shows where the eliminated diagonals used to be. The new, open pattern
uses only one-half of the original number of diagonals.

However, it is still a geometrically rigid frame. We call it a hexmod because it is a
module and it has a hexagonal plan. What if we distributed hexmods on a horizontal
base, 4 m apart (which is also their width) and on a repeating pattern of hexagons and
triangles? The spatial transformation is radical and can be appreciated by imagining
ourselves standing between “building blocks” and looking around: We can see be-
tween building blocks and our line of vision is uninterrupted in six directions (Figure
16.8). An axonometric drawing of one story will help us to better understand the
relationship between all the elements of the structure. Three joints of the upper floor,
out of four, are still supported, but instead of each joint being supported by three



diagonals, it is now supported by two. This means that half the diagonals can be
eliminated. A hexmod sits on three others, situated on the floor below, and shares one
of its three lower joints with each. Likewise, a hexmod shares its three upper joints
with three hexmods situated on the floor above, helping to support them (Figure 16.9).

A hexmod consists of six diagonals connecting two very similar hexagonal frames,
one forming the floor of the hexmod and the other forming its roof. These frames
are called, respectively, the lower cap and the upper cap of the hex-mod, or LC and UC
(Figure 16.10).

Figure 16.9 The six diagonals of a hexmod connect three lower joints to three
upper joints. In a regular, multilayer space frame, a joint would receive six diagonals,
three underneath and three above the joint In the new pattern, a joint receives only
two diagonals from above and two from below. For greater visual clarity, the tops
of the hexmods are deleted on both upper and lower floors. (Source: J. F. Gabriel
and J. Mandel, “A Space Frame Building System for Housing,” Proceedings of the Third
International Conference on Space Structures,H. Nooshin, ed., Elsevier, London, 1984, p.
1054, Fig. 5. Reprinted with permission of Chapman and Hall, Cheriton House, North
Way, Andover, HANTS, SP10 5BE, UK.)



Figure 16.10 A building system based on the hexmod building block requires an
inventory of only two components, the hexmod itself and a hexagonal subassembly,
called a complementary cap, that is used to connect hexmods with one another. It is
called CC, while the upper and lower caps of the hexmod itself are called DC and LC,
respectively. The drawing also shows a stairs component. Although not structural, it
is an indispensable element of the building system. It fits within a hexmod and does
not require the elimination of any diagonals to be functional. (Source: J. F. Gabriel and
J. Mandel, “The Application of Lightweight Modular Structures to Housing,” inHousing,
the Impact of Economy and Technology, 0. Ural and R. Krapfenbauer, eds., Pergamon
Press, 1981, p. 65, Fig. 1.)

Another subassembly contributes to the building system. It is also hexagonal and it
is called the complementary cap, or CC. It is an essential component for two reasons. It
makes floors continuous by filling the gaps between hex-mods. Its three-dimensional
design makes it a geometrically rigid unit and, theoretically at least, this renders a
number of diagonals structurally redundant. In the original space frame, six diagonals
would havemet at the joint that is nowat the center of a CC. Because of its geometrically



rigid shape, the CC should no longer require support at its center. Presumably, the
six diagonals that would have met at the center of the CC—three above and three
below—can be deleted. Spanning, vertical load transfer, and resistance to lateral
stresses can all be theoretically handled by hexmods and CCs.

Whereas these two modules constitute the complete inventory of parts, another
component must be added to make the building system complete and viable: a stair
module. The proposed helicoidal design fits comfortably within a hexmod and can
also be used between hexmods. The clear space between handrails is 1 m or even
wider.

Returning to Figure 16.8 for a moment, we see that LCs and UCs form two out of
three hexagons of the floor structure, on this and any other story.

The hexagonsmarked CC, for complementary cap, complete the pattern of hexagons
of the floor structure. Each CC is connected with six caps by its corners; three of them
are UCs and the others are LCs. This relationship can also be seen in Figure 16.13.

To finish our description of the spatial relationships that exist between hexmods
and between hexmods andCCs, onemore remarkwill be useful: In a vertical sequence,
a hexmod is always found on an intermediate floor, between two superimposed CCs
(Figure 16.11). The next drawing shows the structural connection between subassem-
blies: Six diagonals carrying a CC belong to three distinct hexmods. Likewise, six
diagonals belonging to another set of three hexmods carry the hexmod directly above
a CC (Figure 16.12).

The trade-off caused by the eventual elimination of half of the diagonals would be
total structural interdependency between the hexmod and CC com-

Figure 16.11Hexmods and CCs always alternate in a vertical sequence of several
stories. The joint at the center of the CC is not connected with diagonals, as it would
be in the original space frame. (Source: J. F. Gabriel and J. Mandel, “The Application
of Lightweight Modular Structures to Housing,” in Housing, the Impact of Economy and
Technology, 0. Ural and R. Krapfenbauer, eds., Perg- amon Press, 1981, pp. 64–65, Fig.
2© J. F. Gabriel and J. Mandel.).

Figure 16.12 This figure shows the same relationship as Figure 16.11 does, but
here all the diagonals are shown. A hexmod is carried by three hexmods underneath.
Vertical planes placed against the diagonals make the location of these hexmods
explicit A CC is also carried by three hexmods.





Figure 16.13 A six-story structure may be too ambitious for a building system that
relies on structural members, presumably made of steel, the cross sections of which
should be as small as possible. The intent of this drawing is merely to confirm the
three-dimensional relationships described in the text Although not representing a
finished building, the drawing gives an idea of how such a building might appear.
Except for the six hexmods on the upper floor, all the others play a structural part in a
configuration like this. (Source: J. F. Gabriel, “Dwelling in Space Structures,” in Studies
in Space Structures,H. Nooshin, ed., Multi-Science Publishing, Brentwood, UK, 1991,
pp. 69–86, Fig. 7. Reprinted with permission.)



ponents. Structural interdependency exists to a point in any building tech-
nology, and it cannot be regarded as a serious hindrance to design. As with
any language, be it verbal or visual, the discipline of a syntax is only an ob-
stacle to expression when it is not mastered. Without a language, complete
with rules and limitations, nothing can be expressed, nothing can be commu-
nicated. However, there is no single building technology capable of satisfying
all the building requirements of our time. Like all systems, the hexmod has
its limitations, but it also has its special merits (Figure 16.13).

If I described in some detail the interrelationships of all the components, it is
because they are essential to an understanding of the structural concept as a
whole and to an overview of the architectural horizons it opens. A good part
of the rest of this chapter will discuss formal variations on the same theme.
We will see designs that the hexmod system cannot handle alone but which
can be built with other combinations of the same parts.

THE HEXMOD: A BUILDING SYSTEM

My fascination with space frames stems in part from the multiplicity of stable
configurations that can be obtained from the six-directional space lattice. For this
reason, it would be of questionable interest to choose a space frame as the matrix for
a low, ground-hugging building. On the other hand, fire safety imposes limitations on
the height of a structure relying on thin structural members. Hexmods are adequate
for buildings three or four stories high.4

It is obvious that stairs are vital in walk-up buildings. The hexmod system can
accept a great number of different stair designs. One approach is to confine stairs
to an enclosed vertical shaft, and certain building codes do indeed require such a
solution for emergencies. This conventional design can be accommodated within a
hexmod framework because, as we have seen, vertical shafts of varied size and shape
can be inserted anywhere (Figure 16.6).

Instead of being confined into a sort of rigid, vertical “tube,” the stair modules could
overlap and, in doing so, engage the user in a spatial experience that calls to mind
Le Corbusier’s architectural promenade. Perhaps this point should be elaborated. It
is true that the shortest distance between two points is a straight line, but it is not



necessarily true that a straight path will always feel shorter. A boring walk will seem
longer to the user, or at least to the user who is aware of his/her environment, whereas
an interesting or pleasant walk will seem shorter. An architect must know how to
make the distinction. By

Figure 16.14 In a three-way, mul-
tilayer space frame, octahedra overlap by one-third, as do the bee cells of a honeycomb.
Amodular stair, 1mwide, can fit in a hex-mod (see Figure 16.10). Hexmods containing
stairs must be rotated by 120° when they are superimposed, in order to achieve these
objectives: No diagonals need be removed to create headroom in the stairs. Landings
will consist of two-thirds of the floor of a hexmod. Two doorways on every landing will
give access to the rest of the floor. The configuration of hexmods will approximate a
helix, completing a revolution in three stories. (Source: J. F. Gabriel, La Poutre-etoile,”



Techniques et Architecture, No. 320, Paris, 1978, pp. 70–71. Reprinted with permission.
J. F. Gabriel, “Dwelling in Space Structures,” in Studies in Space Structures,H. Nooshin,
ed., Multi-Science Publishing, Brentwood, UK, 1991, pp. 69–86, Fig. 22. Reprinted
with permission.)

Figure16.15Planandelevationof the con-
figuration shown in Figure 16.14. (Source: J. F. Gabriel, “Dwelling in Space Structures,”
in Studies in Space Structures,H. Nooshin, ed., Multi-Science Publishing, Brentwood,
UK, 1991, pp. 69–86, Fig. 20. Reprinted with permission.)

engaging users in the stories through which they travel, stairs can enhance the
quality of life in certain types of buildings.

Interesting designs like these canmake use of modular stairs that actually fit within
hexmods (Figure 16.10). These can even be inserted in a “saturated” space frame,
which is one from which no diagonal has been deleted (Figures 16.14 and 16.15). The
same helicoidal module can be oriented in one of three directions. If the modules
were rotated 120° from floor to floor, they would generate a helicoidal path that would
repeat every three stories. Another pattern can be obtained from assembling the same
stair modules in a straight line parallel to one set of diagonals (Figure 16.16).



For the helicoidal module to fit inside a hexmod, the width of the stairs can barely
exceed 1m. Domestic programs do not normally require wider stairs than that. Wher-
ever wider stairs are needed, however, they too can be accommodated within the
hexmod system. Of course, more space must be cleared for them. Stairs as wide as 2
m, or even 4m—the equivalent of a hex-mod’s width—should satisfy the circulation
requirements of any building (Figure 16.17). The drawings actually suggest several
design solutions for varying widths, all of them fitting in a vertical shaft 2 or 4 m wide.

This brief survey of possible stair designs is not exhaustive, and the hex-



Figure 16.16 In-
stead of being rotated on every floor, the orientation of the stairs can remain constant
Instead of a helix, the new pattern will move in the direction of one set of diagonals.
(Source: J. E Gabriel, “Dwelling in Space Structures,” in Studies in Space Structures,H.
Nooshin, ed., Multi-Science Publishing, Brentwood, UK, 1991, pp. 69–86, Fig. 19.
Reprinted with permission.)

mod system can accept many others. Indeed, this structural framework is not
restrictive at all.



To illustrate the architectural possibilities of the hexmod building system, I would
like to present a design for a small building: a two-bedroom residence (Figure 16.18).
The main rooms are all on the second level. A central living space with openings in
three directions is extended by two outdoor decks. The kitchen and dining zone is
at one end of the living space, the sitting area at the other end. There is a private
study and, opposite to it, the two bedrooms, sharing a bathroom. The study and the
bedrooms, which are in greater need of privacy, occupy three of the hexmods on the
main floor. The fourth hex-mod houses the stairs. As for the single hexmod on the
roof, it does nothing more than enhance the dynamics of the space. Its lower cap has
been removed, and the opening in the plane of the roof stretches the verticality of the
enclosed space for the viewer. As one prepares to ascend the stairs and looks up, one
is silently invited to move upwards.

Entering the house is done under the shelter of themain floor, which is cantilevered.
One end of the hall can be closed off to serve as a utility room, a workshop, a garden
room, a powder room, or storage. Access to the main floor is gained by a stair of a
design we have not yet seen. The steps form a 30° angle with the stringers, to be
consistent with the hexagonal/triangular
plan. I have walked on similar stairs, in Frank Lloyd Wright’s Hanna House among
others, and I found the experience both safe and pleasant.

Two intentions were at the origin of the design. One was to show that a convenient
and attractive residential space can be obtained from hexmods. The other was to
demonstrate as many of the structural capabilities of the system as possible, using
the smallest number of modules. There are eight hexmods altogether. Three rest
on the ground and support the entire structure. Four are on the main floor, and the
last one is above them, not for any structural or practical purpose but for a poetic or
architectural reason (Figure 16.19).

The large joints express their structural importance. Perhaps more to the point,
they are easy tomake. All they require is bent steel plates and straightforwardwelding.
The diagonals are bolted to the joints and so are all the struts of the floor structure.
Commercial mass-produced joints compatible with square tubes are available and
would result in a more polished appearance. Either way, two unskilled workers could
put the house together without



Figure 16.17 Although they demand much more space, stairs up to 4 m in width
only require the deletion of a few diagonals on every floor. Nowhere must a complete
hexmod be removed to accommodate the stairs. (Source: J. F. Gabriel, “Dwelling
in Space Structures,” in Studies in Space Structures, H. Nooshin, ed., Multi-Science
Publishing, Brentwood, UK, 1991, pp. 69–86, Fig. 23. Reprinted with permission.).





Figure 16.18 Plans of the ground level and of the main floor of a two-bedroom
house. Three hex-mods are in contact with the ground and carry the entire structure.
(Source: J. F. Gabriel and J. A. Mandel, “A Space Frame Building System for Housing,”
Proceedings of the Third International Conference on Space Structures, H. Nooshin, ed.,
Elsevier, London, 1984, p. 1052, Fig. 8. Reprinted with permission of Chapman and
Hall, Cheriton House, North Way, Andover, HANTS, AP10 5BE, UK.)

Figure 16.19 Scale model of the house shown in Figure 16.18. Only the hex-mods
are shown with enclosures.



Figure 16.20 Quarter-scale model of several hexmods. Partial view. (Source: J. F.
Gabriel and J. A. Mandel, “A Space Frame Building System for Housing,” Proceedings of
the Third International Conference on Space Structures,H. Nooshin, ed., Elsevier, London,
1984, p. 1057, Fig. 11. Reprinted with permission of Chapman and Hall, Cheriton
House, North Way, Andover, HANTS, AP10 5BE, UK.)

mechanical help. Alternatively, hexmods and CCs could be preassembled on the
ground and lifted in place with the help of a crane. A third possibility would consist of
finishing hexmods as individual rooms off site (Figures 16.20 and 16.21).

The hexmod system as described here uses diagonals of small cross section to
limit the wall thickness, especially if cladding is added on both sides of the diagonals,
interior and exterior. This restriction to the size of diagonals makes the



Figure 16.21 Simplified drawing of a large assemblage of hexmods. Most CCs are
deleted to show the points of contact between hexmods. This is only a diagram, not
a realistic design. A building of this size would have to rely on a complementary
structural framework.

hexmod system practical only for buildings of limited height We will see later on
that there are other ways to use its space-making potential in very tall buildings.

THE star beam

Although the hexmod building systemmakes possible the conception and the con-
struction of many building forms, it has limitations. All building systems do. We
could retain the same floor structure, with all its advantages, and select a different
set of diagonals between floors. The building blocks could be dispensed with but
would the structural framework remain stable? Could we create different, more open
architectural spaces? Might these possibly lend themselves to architectural programs
that hexmods could not accommodate?



In a hexmod framework, the floor structure is made of hexagonal subassemblies in-
terconnected by their comers. The triangles formed in the intervals between hexagons
can give each CC, UC, or LC the shape of a six-pointed star (Figures 16.8 and 16.9). We
could describe the floor structure as entirely made of star shapes centered on CCs
and connected laterally to one another by their points.

Consider one of these stars and the corresponding one on the floor above. They are
not at the vertical of one another. Indeed, they are shifted. Connect the points of one
star to the points of the other with diagonals and you will have a three-dimensional
module, a geometrically rigid configuration that will be our new “building block.”
We call this a star module because of the shape of the chords. There are eight faces
altogether to what amounts to a convex polyhedron. What opposes its collapse is
the fact that the ten diagonals form eight triangular frames situated in four different
planes (Figure 16.22).

The star module is interesting in spatial terms. The diagonals divide themselves
into two groups of five, symmetrically distributed on either side of the long axis. They
frame a single space between them, 8 m wide. This space

Figure 16.22A star is a CC extended by six triangles. The starmodule consists of two
star shapes located on consecutive floors and connected to each other. Ten diagonals
connect the points of one star to the points of the other. The triangular frames formed
by the diagonals and the different planes in which these triangles are found add up
to an inde-formable configuration. (Source: J. F. Gabriel and J. A. Mandel, “The Star
Beam,” in Shell and Spatial Structures Engineering, F.L.LB. Carneiro, A. J. Ferrante, R. C.
Batista, and R.

L. Palanco, eds., Pentech Press, London, 1984, p. 14, Fig. 2.)



can be entered from both ends through rectangular bays that measure 4 m across.
The space within then widens from 4m at one end, to 8 m in the middle, and narrows
down again to 4 m at the other end.

Let us see how this module combines with others, first vertically, then horizontally,
then in all directions. It is a directional shape, in the sense that the stars that form its
floor and its roof are shifted in the direction of the six diagonals that are parallel to
one another. Matching points of the two stars are found at the top and at the bottom
of a diagonal. Because there are three sets of diagonals, each leaning in a different
direction, star modules can be rotated 120° one at a time, as they are piled up on top
of one another. The result is an elegant configuration approximating a helicoid and as
close to the vertical as can be obtained from star modules (Figure 16.23).

Amajordifferencebetween thehexmodsystemand the star system is this: Hexmods
enclose portions of space and they mold the spaces between them into other shapes.
The star module creates only one space. It is a “space filler” by itself, meaning that it
can organize all space without gaps or overlaps. Therefore, minimal towers like the
one just described can be juxtaposed to



Figure 16.23 This minimal tower is made of star modules, each one rotated by 120°
in relation to the one immediately below. Because the imaginary line connecting the
centers of the stars is parallel to one set of diagonals, there are only three orientations
possible for a star module. Consequently, the fourth module has the same orientation



as the first one and the two share precisely the same vertical projection. (Source: J. F.
Gabriel, “Dwelling in Space Structures,” in Studies in Space Structures,H. Nooshin, ed.,
Multi-Science Publishing, Brentwood, UK, 1991, pp. 69–86, Fig. 6. Reprinted with
permission.).

one another, as many times and in any direction as desired, if what the designer
wants is a structural matrix approaching the vertical. The following configurations
that are derived from the star module are mostly space fillers (an unfortunate term,
because the modules organize space but do not fill it).

Superimposing star modules without changing their orientation results in leaning
towers, or pods. This suggests that they should, perhaps, lean against one another
and form pyramidal/tetrahedral constructions (Figures 16.24 and 16.33).

There are several possible ways to assemble star modules horizontally. The most
obvious is to line up their larger openings in order to form a throzigh-truss (Figures
16.25 and 16.26). The space within is entered at one end through a 4-m-wide bay,
then the space swells to 8 m, to return to 4 m, and so on, until the user reaches the
other end and leaves through a last 4-m-wide bay.

As with hexmods, space is defined laterally by vertical planes applied against the
diagonals. And, as in hexmods, natural passageways are also found wherever two
diagonals form an A bymeeting overhead. Needless to say, windows could be installed
where doors are not wanted (Figures 16.27 and 16.28).

We have seen that star modules can be superimposed in two different



Figure 16.24Here, the star modules all face the same direction. They are superim-
posed to form a rectilinear tower that leans at an angle of 54° 6', which is the angle
formed between a diagonal and the ground. (Source: J. F. Gabriel, “Space Frames:
The Space Within—A Guided Tour,” International Journal of Space Structures, Vol. 1,
No. 1,1985, p. 9, Fig. 10. Reprinted with permission of Elsevier Science Ltd, The
Boulevard, Langford Lane, Kidlington 0X5 1GB, UK.)



Figure 16.27 This figure shows the space within a five-unit star beam. The roof has
been deleted, but the stars are clearly visible on the floor. Vertical cladding coincides
with diagonals and lateral openings are found where diagonals form A-frames.
Depending on the location of a star beam within a larger structural context, these
openings would frame doors or windows. The floor structure has been expanded
laterally. Otherwise, this structure is identical to that shown in Figure 16.25. (Source:
J. F. Gabriel, “La Poutre-Etoile,” Techniques et Architecture,No. 320, Paris, 1978, p. 70,
Fig.



Figure 16.25 The star beam is, in fact, a hollow, or “through,” truss. The width of
the open space within alternates between 4 and 8 m. There are five star modules
here, connected in such a way that their large openings coincide. This configuration is
geometrically rigid (Source: J. F. Gabriel, “From Space Lattice to Architecture,” Bulletin
of the International Association for Shell and Spatial Structures, Vol. 20, No. 2,1979, pp.
19–23, Fig. 12. Reprinted with permission.)

Figure 16.26 Schematic model of a star beam. The only portions of the floor planes
to be shown are the CCs. (Source: J. F. Gabriel, “La Poutre-Etoile,” Techniques et Archi-
tecture,No. 320, Paris, 1978, p. 70, Fig. 4. Reprinted with permission.)

3. Reprinted with permission.)



Figure 16.28 Top: Simplified plan of a five-unit star beam. Diagonals and chords
coincide, as described in the first part of the chapter. Bottom: A similar configuration
based on the conventional three-way space frame. Chords and diagonals do not
coincide. (Source: J. F. Gabriel and J. A. Mandel, “The Star Beam,” in Shell and Spatial
Structures Engineering, F. L. L. B. Carneiro, A. J. Ferrante, R. C. Batista, and R. Palanco,
eds., Pentech Press, London, 1984, p. 16, Fig. 4.)

ways: They can be joined horizontally to form through-trusses, and they can also be
juxtaposed laterally to partition all space. In all these formal arrangements, interior
spaces are identical, and onemight think that the only difference betweenonebuilding
and anotherwould come from their overall shape. This impressionwould be true if the
spanning capabilities of the star beam were overlooked. Indeed, combinations of star
modules are endless and so is the variety of spaces generated by these combinations.
There is an especially interesting one because it is simplicity itself, and I find the yield
spectacular. It consists of using one star beam to cover the space between two others.
This results in 8-m-wide open spaces, alternating with 12-m-wide spaces as onewalks
in and through (Figures 16.29 to 16.32).

Many building programs require galleries lined up with rooms wider or narrower
than the galleries. Schools, museums, shopping centers, offices, and hotels come to
mind. Furthermore, applications of star modules need not be limited to the design of
stiff rectilinear buildings. Hexagonal and Y-shaped plans and combinations of these
can be made (Figures 16.33 and 16.34). Finally, star beams can also overlap in such a
way as to form large pyramidal structures (Figure 16.35).



Figure 16.29 The width of the space within a star beam varies from 4 to 8 m. When
a star beam is used to span the interval between twomore star beams, the width of
the space between these reaches 12 m, with a minimum of 8 m at its narrowest.

Figure 16.30 The purpose of this diagram is to show how star beams can create
wider spaces than the spaces they contain. (Source: J. F. Gabriel and J. A. Mandel, “The
Star Beam,” in Shell and Spatial Structures Engineering, F. L. L B. Carneiro, A. J. Ferrante,
R.

C. Batista, and R. L. Palanco, eds., Pentech Press, London, 1984, p. 18, Fig. 7.)



Figure 16.31Detail of the configuration shown in Figure 16.29. The roof of the lower
star beam is deleted so that the space within can be seen. (Source: J. F. Gabriel and J. A.
Mandel, “The Star Beam,” in Shell and Spatial Structures Engineering, F. L. L. B. Carneiro,
A. J. Ferrante, R. C. Batista, and R. L. Palanco, eds., Pentech Press, London, 1984, p. 20,
Fig. 11.)

Figure 16.32 If star beams are used to cover the interval between other star beams,
this is how the spaces on the lower level will be, within the star beams and between
them. (Source: J. E Gabriel and J. A. Mandel, “The Star Beam,” in Shell and Spatial
Structures Engineering, F. L. L. B. Carneiro, A. J. Ferrante, R. C. Batista, and R. L Palanco,
eds., Pentech Press, London, 1984, p. 19, Fig. 9.)

Figure 16.33 Schematic model of a star beam supported by a leaning tower of the
type shown in Figure 16.24. It is worth observing that the space molded by the star
beam is not interrupted, or even modified, by the presence of the tower. It continues
right through it, totally unaffected in its shape. (Source: J. F. Gabriel, “La Poutre-
Etoile,” Techniques et Architecture,No. 320, Paris, 1978, p. 70, Fig. 5. Reprinted with
permission.)



Figure 16.34 Although essentially rectilinear, star beams can generate rich and
varied building forms, as this diagram shows. The dotted line indicates the outline of
the floor above. (Source: J. F. Gabriel and J. A. Mandel, “The Star Beam,” in Shell and
Spatial Structures Engineering, F. L. L. B. Carneiro, A. J. Ferrante, R. C. Batista, and R. L
Palanco, eds., Pentech Press, London, 1984, p. 21, Fig. 12.)

Figure 16.35 Another relationship between star beams, where one of them would
cover most of the one immediately below. Although there is little difference in struc-
tural continuity between this configuration and the one shown in Figure 16.31, the
architectural results are fundamentally dissimilar. This drawing does not represent a
finished building; it only shows different construction stages of a building. (Source: J.
F. Gabriel, “From Space Lattice to Architecture,” Bulletin of the International Association
for Shell and Spatial Structures, Vol. 20, No. 2,1979, p. 23, Fig. 14.)

SPACE TRUSSES ANDMEGAPOLYHEDRA

Should space frames also be used for very tall buildings? Yes, of course, for the taller
the building, the more critical the stresses. A triangulated structure is not necessary
for small buildings such as houses, where stresses are minimal. Square frames will
do. However, when in 1889 Gustave Eiffel conceived and built “la tour de 300 metres,”



he designed a triangulated structure. So did the engineer Fazlur Khan in 1967 for
the John Hancock Tower in Chicago, which, at the time, was the tallest building in the
world. And so did I. M. Pei and Partners at the Bank of China building in Hong Kong
more recently.5

It ismalicious to say that architects dreamupabuilding formand turn to a structural
engineer to do whatever is necessary to make it stand up. This is a caricature of the
architect. It is also a myth to give credit to engineers for always thinking rationally.
However, why is it that so many architects and engineers conceive tall structures as
aggregates of cubes? A cubic frame is not a sound structural unit until cross-bracing
is added to it, as an afterthought. And a cubic volume does not necessarily make a
good room. Would it not make more sense to approach the design of tall buildings
from a structural frame with integrated triangulation in mind? One suspects that
reluctance to do so is based on the widespread myth of the uninhabitable triangular
form.

Buildings with sharp comers can indeed be unfriendly. A room with a triangular
plan is likely to be unfriendly, too, but six triangles can form a hexagon, with 120°
angles, which are friendlier than right angles. Frank Lloyd Wright remarked on that
in the following words: “…I am convinced that a cross section of honeycomb has
more fertility and flexibility where humanmovement is concerned than the square.
The obtuse angle (120 degrees) is more suited to human “to and fro” than the right
angle.”6 A room shaped Eke a pyramid is also likely to make an uncomfortable space,
especially if it comes with a triangular base, as tetrahedra do. However, a hexmod,
which is amodified octahedron,makes as friendly a roomas any cubic or shoebox-like
room. Probably a friendlier one. And hexmods are found in space frames, not in cubic
frameworks.

Another reason for the puzzling ubiquity of the rectangular framework in tall build-
ings may be found in another widespread myth: the belief that columns must be
vertical to do their job. Paradoxically perhaps, columns can be replaced by diagonals,
whereas columns, in and of themselves, cannot ensure thewind-bracing of a structure.
Even at the scale of furniture, it is easy to see that four sticks under a board do not
make a table, unless the connections are made rigid. However, rigid connections have
their price, which is excess material and inelegant structural workings.



What, then, if we conceived very large space frames? What sort of buildings would
we be able to create? Would they be beautiful, practical, and lasting? Would they
possibly have a potential not found in conventional buildings? Might they open up
possibilities we do not dare to dream of because we do not know we have the means
to realize them?7

The concept of gigantic space frames is not new. Louis Kahn (with Anne Tyng),
Buckminster Fuller, Yona Friedman, and Peter Cook are among the best known to
have explored the idea.8What is new here is the systematic use °f a 4-m octahedron
as a conceptual building block containing enough space for a small room. Eight
such octahedra, joined in a straight line to one another by a shared edge—here a
strut—constitute our next module, which we will call the space truss. Tetrahedral
shapes fit in the interstices between the octahedra and make the space truss rigid.
Each one of our modular space trusses, 32 m long, comprises eight octahedra and
14 tetrahedra. Why eight octahedra? Because this is the number of 4-m octahedra
that will make possible the erection of regular megapolyhedra with a standard space
truss. It is also the largest preassembled module that can be moved to a construction
site and raised without too much difficulty. Finally, shorter space trusses would be
redundant and cumbersome (Figures 16.36 and 16.40).

The terms space truss and space frame are often given the samemeaning. As there is
no consensus among architects, engineers, morphologists, and historians, I hope the
reader will bear with me and, for now, understand them in the sense I have intended
them.

Eight-story octahedra and tetrahedra can be erected with the modular space truss,
which is to say thatmega-space frames canbe erectedwith it. Whatever the orientation
of a space truss in space—and six of them are possible as well as necessary—the
orientation of all the 4-m octahedra remains the same, wherever their location in
the structure. Although this is generally true in space frames, it cannot be repeated
too often. Whether they belong to the three horizontal space trusses or to the three
oblique ones, all the 4-m octahedra retain the same orientation in space.

In addition to the tetrahedron and the octahedron, three possible megapolyhedra
are illustrated here: a cuboctahedron, a (so-called) truncated tetrahedron, and a (so-
called) truncated octahedron. The cuboctahedron is fortunate in having a descriptive
name, for it has the four square faces of a cube and the eight triangular faces of an



octahedron (Figure 16.37). The same cannot be said of the other two polyhedra. They
could, it is true, be obtained by a process of truncation, but they can also be the result
of an additive process instead. Four octahedra can be seen in the drawing as entering
into the for-

Figure 16.36Top view, elevation, and side view of a space truss. Eight 4-moctahedra
are joined together edge to edge. Interstitial spaces are filled by tetrahedra. (Source: J.
F. Gabriel, “Multi-Layer Space Frames and Architecture,” Proceedings of the International
Conference on Lightweight Structures in Architecture, Sydney, 1986, V. Sedlak, ed., Vol. 1,
1986, pp. 104–111, Fig. 2. Reprinted with permission).

Figure 16.37 Top view of a cuboctahedronmade of 36 interconnected space trusses.
Six horizontal and six oblique space trusses meet at the center, which can be clearly
seen. This is a 19-story structure. In addition to the 16 stories corresponding to two
superimposed sets of oblique space trusses, there are three sets of horizontal space
trusses, each a story high. In this and the following drawings, the physical connections



between space trusses are not shown in their entirety. They would only obscure the
picture. The shape of the connections is worth describing, even if it is difficult to
describe clearly. In the case of 12 converging space trusses, a gap appears, the shape of
which is a stellated octahedron, or Stella octangula. Each space truss is in contact with
four others, but none can touch the space truss opposite. Converging space trusses
generate an additional octahedron between them, each space truss contributing one of
the 12 edges. Eight tetrahedra fill the interstices between the butts of the space trusses
and the additional octahedron. (Source: J. F. Gabriel, “Megapolyhedra,” Proceedings of
the IASS Symposium on Spatial Structures at the Turn of the Millennium, Copenhagen, 1991,
T. Wester, S. J. Medwadowski, and I. Mogensen, eds., 1991, pp. 35–44, Fig. 7A.)

mation of the truncated tetrahedron. They are nestled among seven tetrahe-
dra (Figure 16.38).

As for the truncated octahedron, it includes half-octahedra in addition to
complete octahedra and tetrahedra. The cuboctahedron has eight tetrahedra
but comprises no complete octahedra, only six halves (Figure 16.39).

The cuboctahedron shown here has 19 stories; the truncated tetrahedron
also. The truncated octahedronwould have 28 stories. Included in this count
are the stories contributed by the horizontal space trusses.

I am not recommending that buildings should adopt the shape of these
megapolyhedra. I am showing them in the hope that theymight open up new
horizons in architecture and urban design. We are accustomed to buildings
sitting squarely on the ground. We also expect buildings to fill up the totality
of the space occupied by their structure. I am suggesting that, if we take
advantage of themost efficient structural configuration available to us, which



Figure 16.38 Top view of a trun-
cated tetrahedron obtained by the aggregation of fourmegaoctahedra and seven
megatetrahedra.This also is a 19-story structure. (Source: J. F. Gabriel, “Megapolyhe-
dra,” Proceedings of the IASS Symposium on Spatial Structures at the Turn of the Millennium,
Copenhagen, 1991,T.Wester, S. J.Medwadowski, and I.Mogensen, eds., 1991, pp. 35–44,
Fig. 8.)

is that of the space frame, we could conceive structural frameworks at the urban
scale rather than at the scale of individual buildings, and buildings could be hovering
over the ground where necessary.

I would like to point out that our three polyhedra can be combined to form varied
infinite structures. One pattern can be formed by using them all. Another pattern
can be obtained from the exclusive use of truncated octahedra, and a third pattern
is possible with octahedra and cuboctahedra. This is in addition to the octahedron-
tetrahedron pattern. These infinite structures are compatible with one another and,
naturally, with the underlying six-directional space lattice that originated them all. If
I add that large open spaces can alternate with enclosed spaces without a breakdown
in geometric continuity, it becomes clear



Figure 16.39 Top view of a trun-
cated octahedron. Four of the eight hexagonal faces and three of the six square faces
can be recognized. This structure has 28 stories. Three sets of oblique space trusses
correspond to 24 stories and four sets of horizontal space trusses correspond to four
stories. (Source: J. F. Gabriel, “Megapolyhedra,'’ Proceedings of the IASS Symposium on
Spatial Structures at the Turn of the Millennium, Copenhagen, 1991, T. Wester, S. J. Med-
wadowski, and I. Mogensen, eds., 1991, pp. 35–44, Fig. 9.)

that we have a mind-boggling number of design options at our disposal for a
truly spatial urbanism. All these possibilities depend on the prefabrication of
a noncombustible space truss that can be securely attached to others.9

So far, so good. We have a three-dimensional urban framework that can ac-
commodate buildings. The next question is: What sort of buildings? Consider
one of the simplest forms within the urban space frame: an octahedron. It is
an eight-story space defined by space trusses (Figure 16.40). What struc-
tural system should be used to organize that space in architectural terms?
Obviously, the answer is a system based on the same geometry as the space
trusses; more precisely, a six-directional network of thin members attached
to the space trusses. This network reintroduces the hexmod system with a
fanfare: The thin members, stretched from one space truss to another, can



now work more efficiently because they are put in tension. The structural
capabilities of the hexmod system, limited to three or four stories, can be ex-
tended to eight stories within a framework of space trusses (Figures 16.41
and 16.42).

The hexmod system does not use all the diagonals of the space lattice, but
the diagonals it uses are continuous from one end of the building to the other.
Somewill be attached to space trusses and others will not, but nonewill have
to be in compression for more than three consecutive stories.

igure 16.40 Twelve space trusses frame an eight-story Dctahedron. Next to it,
on the ground, is a 4-m octahedron. It is the basic, conceptual ”building block” of
space truss and hexmod alike. (Source: J. F. Gabriel, “Skyscrapers or Space Towns,”
in Developments in Structural Engineering, Proceedings of the Forth Rail Bridge Centenary
Conference, He riot-Watt University, Edinburgh, 1990, B. H. V. Topping, ed., 1990, pp.
657–666, fig. 3. Reprinted with permission of Chapman and Hall, Cheriton House,
North Way, Andover, HANTS SP10 5BE, UK.)

Figure 16.41 The hexmod system is used to implement the eight-story building
shown here. (Source: J. F. Gabriel, “Skyscrapers or Space Towns,” in Developments in
Structural Engineering, Proceedings of the ForthRail BridgeCentenaryConference, Heriot-Watt
University, Edinburgh, 1990, B. H. V. Topping, ed., 1990, pp. 657–666, Fig. 3. Reprinted
with permission of Chapman and Hall, Cheriton House, North Way, Andover, HANTS
SP10 5BE, UK.)



Figure 16.42Model of the megaoctahedron with the lower two stories partially built
with hexmods. (Source: J. F. Gabriel, “Space Frames: The Space Within—A Guided
Tour,” International Journal of Space Structures, Vol. 6, No. 4,1991, pp. 287–295, Fig.
15. Reprinted with permission of Multi-Science Publishing, Brentwood, UK. Model by
John Tanzi.)



Figure 16.43 The bottom three stories of
the building shown in Figure 16.41 are represented sequentially here, from the bottom
up. The drawings convey an airiness that is not apparent in Figure 16.41. Careful
experimentation showed that the elimination of certain hexmods is possible. Three
hexmods on the first floor, three on the second floor, and one on the third floor were
deleted, opening up large, column-free spaces. Upper caps show part of the floor
structure. Attentive examination of the drawings will allow the reader to verify the
continuity of diagonals from one floor to the next Hexagons shown on the floor of the
upper two stories indicate the location of the hexmods underneath. The presence
of space trusses interferes with six hexmods on the first floor. These hex-mods are
deleted in Figure 16.41. (Source: J. F. Gabriel, “Megapolyhedra,” Proceedings of the IASS
Symposium on Spatial Structures at the Turn of the Millennium, Copenhagen, 1991, T. Wester,
S. J. Medwadowski, and I. Mogensen, eds., 1991, pp. 35–44, Fig. 5A. Reprinted with
permission of T. Robbin, Engineering a New Architecture, Yale University Press, 1996, p.
94, fig. 7.17.)



Figure 16.43 shows the hexmod structure of the first, second, and third stories,
with the lower story at the bottom. Figure 16.44 provides more information on the
relationships between the same hexmods by showing them as enclosed rooms.

However, an eight-story building like this is only a small part of the sort of urban
ensembles that are feasible. Space trusses arranged in megaoctahedra andmegate-
trahedra create powerful frameworks that should find their applications in vast struc-
tures. As an example, I would like to discuss briefly a study for a 135-story structure.
It is a relatively conservative design, in the sense that it resembles a skyscraper in
some ways. The reason for this choice is that elevators that run in vertical shafts are
more acceptable to a conservative public. Also, vertical shafts occupy less space than
oblique shafts. Settlements nor-



Figure 16.44Whereas the hexmods were drawn as structural elements in Figure
16.43, they are shown here as rooms, with enclosures. (Source: J. F. Gabriel, “Space
Frames: The Space Within—A Guided Tour,” International Journal of Space Structures,
Vol. 6, No. 4,1991, pp. 287–295, Fig. 14. Reprinted with permission of Multi-Science
Publishing, Brentwood, UK.)

Figure 16.45 Space trusses can be assembled in multilayer frameworks of vast di-
mensions. Here is 3135-story structure composed of megaoctahedra and megatetra-
hedra arranged vertically in three identical helicoids. (Source: J. F. Gabriel, “Dwelling
in Space Structures,” in Studies in Space Structures, H. Nooshin, ed., Multi-Science
Publishing, Brentwood, UK, 1991, pp. 69–86, Fig. 18. Reprinted with permission.)



mally occur along roads, and elevators aremodem roads. They determine the
shape of vertical configurations (Figures 16.45 and 16.50).

The similarities with a skyscraper end here. The greatest difference after the
adoption of oblique, rather than vertical, supports is the division of the build-
ing bulk into nearly independent units. Each unit is an eight-story module,
already familiar to us (Figure 16.41), fitted into an octahedral frame of space
trusses. Because of the morphology of a space frame, which makes it im-
possible for an octahedron to share a face with another, each unit is practi-
cally freestanding. No unit is ever found directly above or below another; it
is always offset. For this and other reasons, the concept is not so much of a
building as of a space town.10

To bring the configuration closer to the vertical, megaoctahedra are arranged
in a helicoidal pattern. They are connected to one another by megatetrahe-
dra, which render the whole rigid. The description of an unfamiliar pattern
often sounds complicated but, more often than not, the pattern itself is sim-
ple: In the present case, it consists of one tetrahedron above and one under
the octahedron. Together, the three polyhedra add up to a simple, six-sided
geometric solid (called an oblate rhombohedron) resembling an elongated
cube (Figure 16.46).

The entire structure is made of three helicoids attached to one another for
stability, surrounding an open space for elevators. Every ninth floor, a plat-
form
Figure 16.46 A detail of one of the helicoids. There is a tetrahedron above,
and another one under each octahedron. The resulting form, which has six
rhombic faces, is an oblate rhombohedron. The drawing shows four of these,
connected by their faces. The uppermost oblate rhombohedron is in contact,
tip to tip, with the one at the very bottom. (Source: J. F. Gabriel, ``Dwelling
in Space Structures,'' in Studies in Space Structures, H. Nooshin, ed., Multi-
Science Publishing, Brentwood, UK, 1991, pp. 69–86, Fig. 17. Reprinted
with permission.)



connects the helicoids. This is where
the main elevators discharge their passengers, who will find other, smaller
elevators within the eight-story unit where they five, work, or do other busi-
ness. The platform functions as a fire barrier: The horizontal space trusses
are linked by two reinforced concrete slabs that would prevent an eventual
fire from spreading. People escaping from the building will reach safety by
moving on to the next helicoid (Figure 16.47).



Aspace townhas certain advantagesover a conventional building. Depending
on functional needs and/or climatic conditions, the large tetrahedral space
adjacent to each eight-story unit can be made into a garden or an ``atrinm.''
This space can also be used for expansion of the eight-story unit if it becomes
too small (Figures 16.48 to 16.50).

Figure 16.47 Top view of three helicoids forming a space town. Hexmods are used
in the building units, which occupy the octahedral spaces framed by space trusses.
Glass walls enclose building units. The hexagon at the center outlines the elevators
and stairs zone.



Figure 16.48 In the helicoids a tetrahedron is adjacent to every octahedron. The
building unit housed in the octahedron can expand in the tetrahedral space if neces-
sary. An alternative use for that space is an open garden or an enclosed greenhouse.

Figure 16.49 Two stages of the construction of a building unit. From the bottom up,
construction of the fourth, fifth, and sixth stories. Hexmods push out the glass enclo-
sure where it interferes with their formal integrity. (Source. J. E Gabriel, “Megapolyhe-
dra,” Proceedings of the IASS Symposium on Spatial Structures at the Turn of the Millennium,
Copenhagen, 1991, T. Wester, S. J. Medwad-owski, and I. Mogensen, eds., 1991, PP-
35–44, Fig. 4A, B, C. Reprinted with permission.)

Figure 16.50Model of the three helicoids forming the bare bones of the space town.
The structure shown here has 89 stories. A few eight-story buildings are already
inserted in the upper part. The central space reserved for the elevators can be better
seen in the top view (see Figure 16.47). Figure 16.45 shows a similar configuration at a
more advanced design stage, with the special needs of the base and the top taken into



consideration. (Source: J. F. Gabriel, “Skyscrapers or Space Towns,” in Developments in
Structural Engineering, Proceedings of the Forth Rail Bridge Centenary Conference, Edinburgh,
1990, B. H. V. Topping, ed„ 1990, pp. 657–666, Fig. 1. Reprinted with permission of
Chapman and Hall, Cheriton House, North Way, Andover, HANTS SP10 5BE, UK.)





SPACE FRAMES AND POLYHEDRA

This chapter begins with a study of the space within two polyhedra that are closely
related to the cube: the octahedron and the tetrahedron. These are the modules that
form space frames. They are most habitable when their faces are deleted and only
their edges remain as the integral part of a space lattice structure. Vertical enclosures
and partitions can then be introduced to create a rather conservative architectural
environment.

Although the process yields simple, honeycomb-like clusters of rooms, further
investigation reveals that richer patterns are also possible. Hexmods, star beams,
and megapolyhedra describe some of these patterns. They are variations on a single
theme, which is the transformation of an octahedron into a hexagonal, prismatic
space.

Although intimately related, the hexmod and the octahedron bear little resemblance
to one another. From an architectural point of view, the most distinctive feature
of polyhedra is their oblique walls. To some critics, this appears to be their most
disturbing attribute. Regardless of whether one likes or dislikes oblique walls, it could
be argued that the substitution of vertical planes for oblique ones is a betrayal of the
fundamental nature of polyhedra. But what of livability? What of the mental and
physical comfort of the dweller? Do oblique walls make a space impossible to live in?
Certainly not. But how serious an impediment are they to livability? The question
must be examined closely.

From studies conducted over several years with students from various universities,
including Syracuse, Harvard, and MIT, I learned that many polyhedra are not only
habitable but they also have a rich architectural potential when used as the modules
of infinite structures. They all cannot be dealt with here, but the following list may be
a starting point for readers interested in doing research on their own. This is certainly
not an exhaustive list, and it is not presented in any particular order, but it includes
useful clues concerning viable positions of polyhedra in space. By “viable,” Imean that
the orientation of the polyhedra relative to the ground is such that the interior spaces
meet essential architectural requirements. For ease of visualization, orientation is
indicated by the words “resting” or “poised” and should not be taken literally.11

• Cubes, resting on a face or poised on an edge or a node.



• Truncated octahedra, resting on a square face, a hexagonal face, or an edge
shared by hexagons.

• Truncated octahedra in combination with cubes and great rhom- bicuboctahe-
dra, resting on an octahedral face or on a square one.

• Truncated cubes in combination with great rhombicuboctahedra and truncated
tetrahedra, resting on a hexagonal or an octagonal face.

• Truncated octahedra in combination with cuboctahedra and truncated tetrahe-
dra, resting on a square face or on a hexagonal one.

• Octahedra in combination with truncated cubes, resting on an octahedral or a
triangular face.

• Octahedra in combination with cuboctahedra, resting on a square face or on a
triangular one.

• Octahedra and tetrahedra, resting on a face (three-way space frame) or poised
on a node (two-way space frame) or poised on an edge.

• Small rhombicuboctahedra in combination with cubes and tetrahedra, resting
on a square face or poised on a node.

• Small rhombicuboctahedra in combinationwith cubes and cuboctahedra, poised
on a node or resting on a square or a triangular face.

• Rhombic dodecahedra resting on a face or poised on a node (nodes are either at
the intersection of three or four faces).

What system of polyhedra shall we choose to investigate? Although spatially and
formally different from one another, most polyhedra have common characteristics,
and one of them is oblique walls. Because we normally stand upright and are accus-
tomed to having vertical walls around us, these provide a useful reference. It can be
argued, however, that not all the walls surrounding us need be vertical. Only a few
are useful for reference. Most habits dull the senses, and the vertical-wall habit is no
exception: In many cases vertical walls fail to interest us because they are all around



us. If, on the other hand, the actual enclosure of a space is made of oblique walls, our
awareness of being sheltered will be enhanced. And so will be our sense of being in a
specific place, with all its implications, including an increased sense of identity for
ourselves. Knowing where we are goes a long way toward telling us who we are.12

One of themost commonly heard arguments against oblique walls is that they waste
space. If a wall leans inward, it will be said to interfere with headroom. If a wall leans
outward, it will be presumed to be unusable in itself and to generate an unusable
space in front of it. Yet a look at traditional building plans shows that a considerable
amount of floor space is taken up by closets and other storage spaces. This is wasteful,
and it is a consequence of the exclusive use of vertical walls: In conventional buildings,
that is, “cubic” buildings, closets must occupy floor space because there is no other
place for them. On the contrary, walls that lean out make room for storage without
taking up any floor space. A vertical plane, placed in front of the oblique wall, supplies
both the space for storage and the wanted vertical surface for reference. Many other
ingenious uses have been proposed for spaces found near oblique walls.13

Almost any single polyhedral form can be used to explore the advantages or disad-
vantages of oblique walls—but only to a certain point. A better, more comprehensive
picture is obtained from polyhedra in clusters. Because I have looked more closely at
combinations of truncated octahedra, cuboctahedra, and truncated tetrahedra than
at any other infinite structure, I propose this system for our case study (Figures 16.51
and 16.52).

As already mentioned, the names of both the truncated octahedron and the trun-
cated tetrahedron are somewhat misleading. Although it is true that these forms
could result from a subtractive process of truncation, it is more significant for us
to consider them as compound forms, obtained from the addition of tetrahedra to
octahedra. That their names are misleading cannot be helped, but that the same
names are cumbersome can be remedied: From



Figure 16.51 Design study for a kindergarten by Hans Graf. The formal components
are the truncated tetrahedron, the cuboctahedron, and the truncated octahedron (TT,
CO, and TO). The implicit layering of these polyhedra made it possible to introduce
two simultaneous scales: Rooms are successfully planned for little human beings
whose height is approximately half that of the others. (Source: J. E Gabriel, “The
Architectural Potential of Polyhedra,” in Space Structures, G. A. R. Parke and C. M.
Howard, eds., Thomas Telford, London, 1993, pp. 2025–2032, Fig. 6. Reprinted with
permission. Photo: J. F. Gabriel.)

here on, we will call the truncated octahedron TO, the cuboctahedron, CO, and the
truncated tetrahedron, TT.

If the octahedra used to form TOs, COs, and TTs are the size of hexmods, the TO will
be a three-story unit, whereas both the CO and the TT will be two-story units (Figure
16.53).

Ideally, a building matrix should accommodate both large and small habitable
spaces. The TO, the CO, and the TT can contain and determine the shape of large
rooms, which will be as wide as they themselves are. As for their height, it can be
one to three stories. For the space within these rooms to be entirely free of structural
elements, the octahedra and tetrahedra that were originally used to shape it would
have to remain purely conceptual (Figures 16.54 to 16.57).



If the structural system used in the building is a multilayer space frame, it will
have to be external to the larger rooms. For this to be possible, a choice must be
made between TOs, COs, and TTs. Where will the large, open spaces be created? The
structural space frame cannot be eliminated from all polyhedral spaces at the same
time. Many options are available. For instance, TOs can be “hollowed out,” leaving
COs and TTs to carry the structural framework or, conversely, the TOs will consist of
three stories of space frames and the open spaces will be in COs and TTs. The choice
will be made on the basis of programmatic and functional needs. As to the smaller
rooms, they can be found within the space frame itself, most likely in the shape of
hexmods. Visually as well as spatially, the result of this conceptual approach will
be buildings combining the form language of the hexmod system—an aggregate of
hexagonal prisms—and that of polyhedra retaining their oblique faces.14

Figure 16.52 The six layers of this configuration, clearly visible, suggest a six-story
structure. This is the scale adopted for the rest of this discussion. A TO divides itself
spontaneously into three layers, whereas a CO and a TT divide themselves into two.
COs always share their triangular faces with TTs in this pattern. The large space at the
core is a TO. Each of its six square faces is shared with a CO. Its eight hexagonal faces
can only be shared with TTs. There are four TTs in the model, all straight side up.
(Source: J. F. Gabriel, “Space Frames and Polyhe-dra,” in Spatial, Lattice and Tension
Structures, Proceedings of the IASS-ASCE International Symposium, J. Abel, J. Leonard, and
C. Penalba, eds., 1994, pp. 1037–1044, Fig. 1. Reprinted with permission of the ASCE.)

Figure 16.53The relationship between the polyhedra of an infinite structure is fixed.
A vertical sequence reveals this relationship: From the bottom up, four elements com-
plete the inventory: a CO, a TT, a TO, and a TT again. On top of that, another CO signals
the beginning of a new cycle. The TT appears twice, in upright position above and
inverted below. In this drawing proportions were changed for experimental purposes,
but the topology of the system is not affected. (Source: J. F. Gabriel, “Polyhedra: Skin
and Structure,” Application of Structural Morphology to Architecture, Proceedings of the Sec-
ond International Seminar on Structural Morphology, R. Holler, J. Hennicke, and F. Klenk,
eds., 1994, pp. 37–46, Fig. 2. Reprinted with permission of Institute for Lightweight
Structures, University of Stuttgart)



Figure 16.54 Horizontal sections
engage all the polyhedra of the system and reveal their relationships. Here, a CO, at
the center is connectedwith three TTs by their triangular faces. These TTs are “upside
down,” and the level involved is the upper one. The TTs, in turn, are connected with
six CO|S, and so on. There is a total of seven COs and six TTs in the configuration
represented. There are also three TOs, with their interiors free of structural members:



Their outer form is defined by the continuous space frame found in adjacent TTs and
COs. The larger rooms required in most building programs would be accommodated
in the TOs. The space frame would accommodate the smaller rooms and also assume
a structural function. Structural members that indicate the outline of polyhedral
fragments are shown in black. The space frame is completedwith structuralmembers
shown white. On this story, passing directly from a CO to a TT is impossible. To solve
this problem, hexmods should replace the octahedra of the space frame. (Source: J. F.
Gabriel, “Polyhedra in Architecture,” International Journal of Space Structures (Special
Issue on Morphology and Architecture), H. Lalvani, ed., 1996, Fig. 8. Reprinted with
permission of Multi-Science Publishing, Brentwood, UK.)

Figure 16.55 This horizontal section shows the story directly above that of Figure
16.54. The upper half of a CO can be recognized at the center. It is connected with
three other TTs, but these are “straight side up,” and they are located above TOs.
There are also three TOs, located above the “upside-down” TTs. (Source: J. F. Gabriel,
“Polyhedra in Architecture,” International Journal of Space Structures (Special Issue on
Morphology andArchitecture), H. Lalvani, ed., 1996, Fig. 5. Reprintedwith permission
of Multi-Science Publishing, Brentwood, UK.)



Figure 16.56 On this plan, located directly above that of Figure 16.55, we find the
median story of three TOs. No structural member is allowed inside. The space frame
surrounding the TOs belongs to the upper level of three “straight-side-up” TTs and to
the lower level of three “upside-down” TTs. This story does not carry any COs. (Source:
J. F. Gabriel, “Polyhedra inArchitecture,” International Journal of Space Structures (Special
Issue on Morphology and Architecture), H. Lalvani, ed., 1996, Fig. 2. Reprinted with
permission of Multi-Science Publishing, Brentwood, UK.)



Figure 16.57 This story, directly above that of Figure 16.56, repeats the pattern
shown in Figure 16.54, three stories below, and would appear again three stories
above. Although identical, repeating patterns such as these are not superimposed: It
is only every ninth story that identical patterns share vertical projections.
UNADULTERATED POLYHEDRA
The problem is different if the structural system used to build the TO-CO-TTmatrix

is not a space frame. Consider a monolithic structure of the shell or folded-plate type,
such as shown in Figure 16.52. There, presumably, the space within all the TOs, all
the COs, and all the TTs could theoretically be wide open, that is, not cluttered with
posts or braces. As in any building, smaller rooms will also be necessary, and the
most coherent means to make small spaces out of large ones is probably to use, once
again, octahe-dra and tetrahedra, and to use them in their modified, hexmod version.
Some modifications will always be necessary to make polyhedra habitable but my
main effort, here as always, aims at reducing changes to a minimum. Thus the choice
of the word unadulterated in the subtitle of this section (Figure 16.58).
Large rooms can be found in the TO-CO-TT matrix whenever they are required

by the functional program of the building. Their height will normally be limited to
three stories, which is the height of the TO. Observe that bays permitting passage from
one polyhedron to another have the shape of a triangle, a square, or a half-hexagon.



Triangular bays present an occasional obstacle where they are “upside-down,” that is,
where an apex is at the floor level and the opposite base of the triangle is at the ceiling
level. This situation is only found on the story where the lower level of COs and the
upper level of upside-down TTs are adjacent (Figure 16.58£).

Because the conditions of habitability within unadulterated polyhedra cannot all be
reviewed together, we will look at all basic spaces separately. We already know that
the TO is a three-story volume and the TT and the CO are two-story volumes. In the
infinite structure of which these polyhedra are the modules, only the TT is found in
two different positions, that is, either resting on a hexagon or resting on a triangle.
Depending on their relative position, the
four spaces within are totally dissimilar. Consequently, it is a series of nine spaces
altogether, each with its own distinct shape, that we must examine.

The three-dimensional relationship between the polyhedra obeys rigorous rules.
Hexagonal faces always separate—and also unite, for that matter—TOs and TTs. Trian-
gles are always shared by COs and TTs. Finally, squares connect COs to TOs. A vertical
sequence will then always consist of a CO, a



Figure16.58Thenatureof the spaceswithin is shown ina selectionof fourhorizontal
sections, one above the other. Beginningwith the first of the four stories, the lower level
of a TO occupies the center of the cluster (d). Surrounding it are two sets of alternating
spaces: the lower level of a TT and the upper level of a CO, each repeated three times.
On the story directly above, the central space is themedian level of the TO, surrounded
by the upper level of aTT, repeated three times (c). The spaces that would be found



above the COs of the story below are deleted. The reader is invited to identify them
and, in the process, become familiar with the complete three-dimensional pattern.
The third story, with the upper level of the TO at the center, is surrounded by the lower
level of another set of COs (b). Here again, three peripheral spaces are missing: What
are they? On the fourth story, last of the sequence, the lower level of aTT is at the center
of the cluster (a). The upper level of three COs is shown around it What are the spaces
that would nestle in the interstices? As a reminder that spaces can be higher than
one story, floors are deleted from all the drawings. In (a)the upper level of the TT is
shown as well as the lower level. (Source: J. F. Gabriel, “The Architectural Potential of
Polyhedra,” in Space Structures, G. A. R. Parke and C. M. Howard, eds., Thomas Telford,
London, 1993, pp. 2025–2032, Figs. 2,3. Reprinted with permission.)

TT, a TO, and another TT, after which this order is repeated again. Only the
TT appears twice in the sequence, because of its inverted position in space
(Figure 16.53).

As stated previously, there are nine basic spaces in the matrix. Before we set
out to visit them, I would like to clarify my point of view once again: It is that
of an architect in search of the essential conditions of habitability. What are
these conditions? They consist of enclosures, horizontal floors, doors, and
windows. Do our polyhedra meet these conditions? What adjustments must
be made? How will these adjustments affect the formal integrity of the poly-
hedra? Will they deform the polyhedra beyond tolerable limits? Ultimately,
is the use of polyhedra in architecture capable of enriching our environment?
Those are some of the questions we will pursue.

Beginning our exploration—arbitrarily—with the upper level of the TO (TOU),
we find a space sandwiched between two hexagons corresponding to hori-
zontal sections of the TO (Figure 16.59). The smaller hexagon occupies the
top position, and glazed, vertical enclosures are placed on three sides. They
illuminate the room and they give it a shape. Decks materialize on the pe-
riphery, accessible through conventional door openings in the vertical glass
enclosures.

In this diagram and in the others of the series, oblique walls are deleted to
facilitate comprehension of the space behind them, but a little imagination
will reconstitute them for the reader.



Looking now at the floor directly above, given by the lower level of a TT (TTi),
we find again a hexagonal floor plan, but a triangular ceiling. Vertical glazing
takes the shape of pairs of triangles, in which doors are placed to give access
to triangular, outside decks. The corners of the room are complex, shaped as
they are by three adjacent triangular planes, two of which lean inside and the
other of which leans out.

The third story (TTU) has a triangular floor—an awkward shape to begin
with—and a smaller, triangular ceiling, making the space even more awk-
ward. It would be a useless room in isolation, but it is improved by the
insertion of vertical, glazed planes, which create a hexagonal space. Here
again, the shape of the glazedwalls is triangular, but their position is inverted.
They provide the third design of the series and carry the last module of the
window inventory. The reader, proceeding with the tour without a guide, will
see how the three window modules are used to different effects in various
contexts on all nine stories (Figures 16.59 and 16.60). The shape of the next
story (COi) appears to be even more awkward and wasteful than the third
one, but in context, it plays an important role as a space connecting others
(Figure 16.61a).

What led me to this particular design of glazed walls? In part, the necessity
to draw something: If I am tomake a case for architectural polyhedra, I must
be able to represent them. To do so, a basic formal vocabulary must be cho-
sen. In addition to the needs alreadymentioned for enclosures and openings,
doors and windows, two considerations influenced the design of the glazed
walls. One was the desire to accommodate conventional doors, which can
only be done with vertical walls. The other was a wish to respect the for-

mal integrity of polyhedral forms, and this led to glazed walls, which, except in one
case, do not project outside the faces of polyhedra. If this rule had not been observed,
the polyhedra would have been transformed into monsters. After all, polyhedra do
not exist simply for the enjoyment of architects. If they are to become building forms,
the process of adaptation should be handled with sensitivity. In other words, my goals
were truthfulness, simplicity, and consistency. The search for a personal style was
not a consideration.



coo
CO!
Figures 16.59 and 16.60 There are three stories in a TO and therefore three distinct

spaces. There are two in a CO, two in a TT, and another two in an “upside-down”
TT. Going down, for instance, from the upper level of a CO (Figure 16.59, top), we
can examine all nine different spaces in a sequential order that never varies. After
reaching TO„ at the bottom of Figure 16.59, we continue the visit with T0ra, at the
top of Figure 16.60. The last space of the complete series is TT, (reversed), at the
bottom of Figure 16.60, but the sequence can be repeated, starting with C0u, which
would be found directly under TTt (reversed) already seen at the top of Figure 16.59.



It is unlikely that any of these spaces would be freestanding, but looking at them
in isolation is a good preliminary to understanding them when grouped in clusters.
Vertical glazing replaces certain faces of the polyhedra, and conventional doors can
be installed. The complete inventory of glazed, modular parts consists of a total of
three designs. (Source: J. F. Gabriel, “Polyhedra: Skin and Structure,” Application of
Structural Morphology to Architecture, Proceedings of the Second International Seminar on
Structural Morphology, R. Holler, J. Hennicke, and F. Klenk, eds., 1994, pp. 37–46, Figs.
3,4. Reprinted with permission of Institute for Lightweight Structures, University of
Stuttgart.)

The formal vocabulary used here is not the only possible one. Far from it. The
imaginative reader will quickly discover many other design possibilities and
derive a great deal of satisfaction from trying them out. A wealth of design
possibilities is one important aspect of the field and perhaps the least under-
stood of all.

Having looked individually at the nine basic spaces found in a vertical se-
quence, we are now ready to look at them in context (Figure 16.61). As a con-
sequence of the threefold symmetry that rules the pattern, each basic space
is surrounded by six others, divided into two sets of three. For instance, the
upper level of a CO is adjacent to the lower level of three TTs, alternating with
the lower level of three TOs (Figure 16.61a). The TTs are shown, but



Figure
16.61 Instead of being isolated, some basic spaces are now shown in clusters. We see
here four of the nine stories that form a complete cycle. In (a)the upper level of a CO
(COJ is surrounded by the lower level of a TT (TT|) repeated three times. The lower
level of three TOs would nestle in the intervals. On the story directly below /&),the
lower level of the CO (CO,) is surrounded by the upper level of three TOs (TOJ. The
intervals would receive the upper level of three upside-down TTs (TT„, reversed).
Below the CO at the core, we find the upper level of a TT (TTJ in (c). The reader is
invited to identify the three adjacent spaces that are drawn, as well as the three
that would fit in between. Finally, in (d),the reader should be able to identify all the
spaces found on this level, whether they are entirely drawn or implied. The faces
that would affect the legibility of the interior spaces are deleted in these drawings.



All the “edges,” however, are retained. (Source: J. F. Gabriel, “Habitability Studies of
Certain Polyhedra,” Spatial Structures: Heritage, Present and Future, Proceedings of the
IASS International Symposium, Milan, 1995, G. C. Giuliani, ed„ Vol. 1, 1995, pp. 165–170,
Figs. 2,3, 4,5. Reprinted with permission of SGEditoriali, Padova, Italy.) the TOs are
not. For a more thorough representation of our spaces, a rotation of 60° has been
implemented between the series shown in Figures 16.59 and 16.60 and the series
shown in Figure 16.61.

Polyhedral spaces are fundamentally changed when placed at the core of
a cluster and opening onto adjacent polyhedra. The differences can be
observed when comparing, for instance, the TT, at the center of Figure
16.61J with the same space shown by itself in Figure 16.59. Portions of
the faces that have been replaced with glazing in one case are kept solid
in the other. Rectangular bays now appear where a complex assemblage
of triangular planes existed. Beyond observations like these, an adequate
description of the spaces and of the transformations that occur is difficult
and probably pointless.

The reader should keep in mind that these are only diagrams, not complete
designs. It might not be necessary to eliminate an entire face to create a
passage between adjacent polyhedra. It will be observed that all edges are
retained on all floors. What edge refers to here is a structural member placed
where two or three polyhedral faces would intersect. Also note that in Figure
16.61 additional vertical planes close the gaps between vertical and oblique
enclosures.

Of the nine stories forming a complete sequence, four are shown in Figure
16.61. These four stories include seven of the nine basic spaces. As I already
mentioned, one of them appears in relation to two sets of polyhedra: It is TTb
shown once surrounded by three TOs (Figure 16.61d) and again when its turn
comes to cluster around a CO (Figure 16.61a).

The next two series of diagrams include all the polyhedra that can be clus-
tered around another one at the core (Figures 16.62 and 16.63). The three
stories, represented once in axonometric views and once in plan views, are
those that would have had a TO on center, but for which stairs and elevators



have been substituted. Elevator shafts take over the structural role that the
TOwould have played. Stairs and elevator shafts belong to the public zone, at
the core of the building, whereas themore private spaces are found in the pe-
ripheral polyhedra. They are distributed as follows: On the lower story, that
is, at the first level of the truncated octahedron (TOi), a TTj alternates with
a COU. On the next story, which corresponds with the median level of the TO
(TOm), the upper level of the TT (TTU) alternates with the lower level of an up-
sidedown TT (TTi, reversed). On the third story (TOU), the upper level of the
upside-down TT (TTU, reversed) alternates with the lower level of a CO (COi).

Further horizontal subdivisionmay be necessary, depending on the program-
matic needs of the building. This can be done by means of vertical planes
disposed on a hexagonal grid. The reader will recognize the hexmod system
in this approach, for the form and the location of the dividers are consistent
with the octahedra that implicitly ``fill'' the larger polyhedra. The vertical
elements may also contribute added rigidity and support to the whole struc-
ture.

Readers who still question the title of this section, Unadulterated Polyhedra,
are begged to remember that polyhedra must be modified to some degree
whenwe use them in the design of buildings. Nor should this be regretted be-
cause polyhedra are pure abstractions—concepts of the mind—whereas con-
struction is a physical reality. Polyhedra should be modified and lose some



Figure 16.62 Three more stories of the cycle, with a TO at the core. All six polyhedra,
or portions thereof, surrounding its three levels are shown. In (a) the lower level
of a CO alternates with the upper level of an upsidedown TT. Stairs and elevator
shafts are fitted in the space conceptually occupied by the TO, whose form is no
longer recognizable. The shafts can accommodate up to six elevators or they can
house services; they are drawn shorter than they are so as not to interfere with our



perception of the main spaces. On the story immediately below (b)which corresponds
to the median level of the TO, the lower level of three upsidedown TTs alternates with
the upper level of three straight-side-up TTs. The reader who makes the effort to
identify the spaces shown on the next story (c)will be rewarded with an understanding
of a three-dimensional pattern rich in architectural possibilities. Whatever the use of
the building, its functional organization will probably require further subdivision of
the space within. In (a)the triangular faces shared by COs and TTs suggest a possible
means of subdivision. Another method, shown in (b) and (c), consists of using vertical
dividers derived from the hexmod pattern. In either case, the dividing elements can
also contribute to the structural framework, if necessary.



Figure 16.63 These three floor
plans match the diagrams of Figure 16.62. The only variations between the two sets
of drawings concern some of the dividers.



of their geometric perfection in the process of becoming architecture. I chose
that title simply because, in the last section of this chapter, my intention was
to keep polyhedra and infinite structures as close to their ideal states as pos-
sible (Figures 16.64 to 16.66).

Wehave seen, on the contrary, thatwhen a three-way,multilayer space frame
is transformed into the hexmod system, it undergoes such changes that an
observer might find it difficult to recognize the kinship of one with the other.

Figure 16.64 This is how the elevation of an eight-story building based on
the three poly-hedra discussed in this chapter might appear. {Source: J. F.
Gabriel, ``Habitability Studies of Certain Polyhedra,'' Spatial Structures:
Heritage, Present and Future, Proceedings of the IASS International Sym-
posium, Milan, 1995, G. C. Giuliani, ed., Vol. 1,1995, pp. 165–170, Fig. 6.
Reprinted with permission of SGEditoriali, Padova, Italy.)



Figure 16.65 Shown here in elevation is the complete cycle of all nine possible
spatial patterns discussed in this chapter. The three basic polyhedra are arranged in
superimposed rings of six, with a seventh one at the core. Although the relationship
between the polyhedra is always the same, all nine floor plans are different, as are
their spatial characteristics.



Figure 16.66Models give an idea of the possible appearance of buildings based on
an infinite pattern of truncated octahedra, cuboctahedra, and truncated tetrahedra.
As in Figure 16.65, the nine stories of the cycle are included.

16.5 CONCLUSION

I hope this last chapter makes a substantial contribution to the argument that the
space within space frames and polyhedra is habitable, versatile, and pleasant.

This chapter is placed at the end of the book because in it we take a look inside
polyhedra. It is inside, in the shapeswegive our rooms, that the essence of architecture
is always found: Ultimately, it is by the quality of its spaces that an architecture of
space frames and polyhedra will be judged.

Is this truly a new form of architecture? The major structural innovations of the
second half of the 20th century occurred in the decade following World War II. New
ways were then devised to span larger spaces with less material, giving birth to a
new family of structural systems called space structures, or lightweight structures.
Although economy was certainly a motivating force behind this revolution, a loftier
way of looking at it is as one more effort to ensure the supremacy of the mind over
matter.



Among the varied types of space structures, the space frame is still the only one
applicable in multistory buildings. At the origin of my interest in space frames, there
was indeed the recognition that a tetrahedron made a rigid structural framework,
whereas a cube did not. Because I am an architect, what inevitably followed was the
search for architectural space within space frames. What I discovered over the years
were countless architectural possibilities. Because the space within space frames
yields all sorts of perfectly habitable shapes, it seems to me that space frames should
be more commonly employed in multistory buildings than conventional post-and-
beam, or post-and-slab, systems.

Octahedra and tetrahedra, being the basic structural units of a space frame, can be
used as “building blocks.” They can also be used at the conceptual level to generate
other, larger, polyhedral forms and spaces, the construction of which would rely not
on steel but on different materials—reinforced concrete most likely—and different
structural principles, such as shells or folded plates.

Polyhedra that have more faces than the cube have a better ratio between the area
of their envelope and their volume than the cube. These polyhedra would presumably
use less material to build and suffer less heat loss than a cubic box. Motivations
like these are valid, but there are others, just as legitimate. The intrinsic beauty of
polyhedra is one. The visual and spatial order of infinite structures is another. The
necessity to simply explore new avenues is yet another.

While I was engaged in my voyage of discovery among polyhedra, fashion in archi-
tecture tendedmore andmore to turn its back on logic, clarity, and order. Imagination,
is of course, crucial in architectural design and fantasy is by nomeans unwelcome,
but, in the last few decades, arbitrary new building forms have been sprouting at an
alarming rate. The license to do anything that fancy suggests can result in aberrations
and, eventually, chaos. I hope the time has come for a turnaround. Design is the search
for order, not irresponsible self-expression. A structuralist approach, combined with
the discipline of geometry, would provide a renewed logic and a sound philosophical
basis for architectural design. The application of a consistent formal language, with its
many rules and restrictions, has never inhibited creativity. On the contrary, it always
liberates it.



In this chapter I have tried to show the architectural potential of a limited number
of configurations derived from the 12-connected network. There are many more
configurations, waiting to be discovered by the curious mind, that could be applied in
the design of buildings by imaginative architects and engineers. I believe that infinite
structures—space frames and polyhedra—could be the means toward a sensible and
dynamic architecture, one that could contribute to the visual and spatial expression
of an organized and democratic society. As one would drive or walk around one
of these structures, its appearance would slowly change, but always return to the
reassurance of symmetry. Inside, one would experience a variety of spaces, some of
them unexpected, but all devoid of the unbearable boredom of the modern bare box
effect.
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