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1  Preface

J. Frangois Gabriel

 
  Henry Ford reputedly said that customers could have his automobiles in any color, as long as
that color was black. A parallel can be drawn with the shape of our rooms, which could come in
any shape but are essentially cubic. Very few rooms are perfect cubes, it is true; most are
in the shape of flattened or elongated cubes, but the majority of our buildings are
conceived as an assemblage of cubic forms, and that is what they look Eke: piles of shoe
boxes.

 
  We use the cube as if it were the only acceptable model for our living spaces and,
in doing so, we ignore countless other forms that might lead to more efficient, more
beautiful, more economical, and certainly less worn-out environments. Why do we
do it? Mr. Ford told us we must drive his black cars, but who told us that we must
dwell in square or rectangular spaces, bound by four vertical walls intersecting at right
angles?

 
  Would all the painters in the world agree to throw out all their colors and limit their palette to
one color only? Would all the writers agree to limit their language to words of three syllables?
Would all the composers…? Of course they would not. Yet, like it or not, most of us end up living
in cubes, or nearcubes. This book makes a case for a family of shapes that often make
more sense than the cube: polyhedra. Indeed, the cube itself is a polyhedron, and
many of the forms used or described in this book have a direct, if not always obvious,
relationship with the cube. My intention is to show, with the help of contributions from
structural engineers, architects, historians, and others whose expertise spans several
fields, that polyhedra provide all the elements for a formal language of extraordinary
versatility that can satisfy the essential demands of buildings: solidity, beauty, and
convenience.

 
  Briefly, this book is organized as follows: We begin, logically enough, with a look at the past.
The first chapter contains a historical survey of polyhedra. Then we discuss the attitudes of three
great designers of the 20th century toward polyhedral forms. Chapters 5 to 7 look at a more
recent past and show how space frames, formed by aggregates of polyhedra, shaped three
important buildings, each using a space frame in an original way. In the next five chapters, we
focus on the theoretical aspects of polyhedra, their formal bonds with the cube, the kinship that

exists between one polyhedron and another, their symbolic meaning, their proportional
relationships, their specific structure, and their representation. The subject of the three following
chapters is the future: tensegrity, space labyrinths, and quasicrystals, all of which are in their
experimental stage, but already suggesting architectural possibilities that may materialize
soon.

 
  The most important criterion of architecture is not about looks, but about the quality of the
spaces within. An architecture of space frames and polyhedra will be viable if the spaces formed
by it are at least as good (as convenient, as beautiful, etc.) as those found within
conventional, cubic frameworks. This critical question is discussed in the last chapter of the
book.

 
  This is not the definitive book on architecture beyond the cube. Nor can it be, for the field of
space frames and polyhedra is continually changing and expanding, enriched by the discovery of
new configurations, new design methods, and new applications. However, a genuine
effort is made to present a broad, accessible, and faithful picture of the state of the
art.

 
  Very few polyhedra are found in the natural world. Most of them are a creation of the mind.
With experience in architecture and the history of structural design, Jos Tomlow looks in
Chapter 1 at the discovery, the perception, and the use of polyhedra, from Pythagoras to
Alexander Graham Bell. With few exceptions, polyhedra were not seen as structural or
architectural objects. It is only in this century, and particularly in the last 50 years, that the
connection was fully made. Interestingly enough, the representation of polyhedra emerges as
one of the most intriguing aspects of their history. Everybody seriously involved with
polyhedra knows the challenge of making their forms comprehensible to the onlooker, or
even to oneself. The cube is the easiest polyhedron to draw, and I suspect this to be
one of the explanations for its extravagant popularity. Of course, the price we pay
for using it indiscriminately is a greatly impoverished spatial experience for all of
us.

 
  How did some of the most inventive minds of the first half of this century approach problems of
structure and architectural modeling? Bruce Goff’s work is characterized by fantasy and
ingenuity and he came close to a literal geometry, for he sometimes merged polyhedra and
architecture into a single entity. He did not use simple geometric solids in isolation, which is easy
to do but which might not be of great significance. He chose to shelter varied architectural
functions in regular patterns of polyhedra, or infinite structures, as they are called. He gave
polyhedral shapes to his rooms, and he also used the same polyhedra to create different room

shapes in the same building, thus proving that it could be done without monotony. He also
proved something else. Rollie Ristine, a student of Bruce Goff, shows in Chapter 2 that his
teacher was not a geometer, and it is doubtful that he even knew by their names the
polyhedra he used in his designs. However, he thought as an architect when giving order
to space, and he came intuitively to geometry, showing that geometry is as good a
way to organize space as any other. One might even wonder if there is any better
way.

 
  With Louis Kahn, in Chapter 3, we come to one of the most widely acclaimed architects of the
postwar era. Unlike F. L. Wright, Le Corbusier, or Mies van der Rohe, Kahn had a formal
architectural education and earned an architectural degree. The school he attended was
traditional, even classical, since at the time architectural education in the United States was
completely dominated by the Beaux-Arts system. Far from rebelling against his training, Kahn
assimilated the fundamentals of classical architecture and reasserted its principles in his mature
work. Simple geometric forms such as the square, the circle, and the equilateral triangle, bilateral
symmetry, and clarity, which are typical of classical designs, are among the constants of
Kahn’s work. The memorable impression made by his buildings is a direct outcome of
classical principles. Geometry infuses Kahn’s designs, and it is no wonder that, under the
influence of his collaborator Anne Griswold Tyng, he should have become interested in
space frames. The building that first brought him to the attention of the architectural
profession at large is the Yale University Art Gallery, where the floor structure is a
space frame. The fascinating design for an office structure using a mega-space frame,
although not built, gave him the aura of a prophet and made him famous worldwide.
Irene Ayad shows how Kahn’s involvement with polyhedra fits in his architectural
development.

 
  Kahn, who was also a painter, was intensely visual. Buckminster Fuller, on the other hand, told
me in the last year of his fife that he did not care how things looked. He seemed to
think that, when things are done right, they end up looking right, for our aesthetic
judgments are based on previous experience. Fuller’s geodesic domes, some very large and
some rather small, are often as beautiful as pure polyhedra can be. And so is the
space frame, which Fuller called the octettruss, and for which we owe him so much.
However, those who believe that originality and personal expression are the first goals of
architecture do not think much of structuralism. Fuller was neither an architect nor an
engineer. He was essentially self-educated, and he has been variously called by others
a poet, a philosopher, an inventor, an environmentalist, a scientist, an engineer, a

maverick, a crackpot and, by himself, a comprehensivist. In 1952 he did receive an Award
of Merit from the New York Chapter of the American Institute of Architects, and
in 1960 the Gold Medal of the Philadelphia Chapter of the American Institute of
Architects. It is fitting that Arthur Loeb, a maverick himself, should share with us personal
recollections of a fruitful collaboration in Chapter 4, Buckminster Fuller and the Relevant
Pattern.

 
  Philip Johnson’s approach to design is radically different. Best described as a complex,
sectioned, prismatic form, his Crystal Cathedral is a dramatic piece of abstract sculpture. It
demonstrates in a masterful way that, far from hindering freedom of expression, space frames can
lend themselves to the implementation of any building shape. It is not for ideological reasons
that a space frame was selected by the architect, it is because nothing else could do
the job, as Mr. Johnson explained to me in January of 1993. Familiar to millions of
television worshippers who have seen it on Sunday mornings for 16 consecutive years, the
building remains, on many levels, one of the most paradoxical of the second half of
the century. In Chapter 5, Lawrence Davis gives us a fascinating account of these
paradoxes.

 
  The Javits Convention and Exhibition Center, by Pei, Cobb, and Freed, provides a neat
contrast to the Crystal Cathedral. Other than its enormous size, the most impressive feature of
the Javits Center is its designers’ sensitive recognition and acceptance of the geometry of a space
frame. By geometry, I mean the shape of the ‘‘building blocks’’ and the pattern they form:
octahedra juxtaposed to tetrahedra. As Matthys Levy, the engineer in charge of the project,
shows us in Chapter 6, this pattern controls and, to a certain extent, determines the shape of the
building. One admires, in particular, how smoothly space frames are made to ‘‘turn the
corners’’ as well as the expressive effect obtained at the main entrance of this civic
palace. Nothing extraneous was added to the space frame, and nothing was subtracted
from it. Levy’s no-frills writing style seems perfectly suited to the restraint of the
design.

 
  Because of its location and because of its function, a certain austerity is expected in the facade
of a building like the Javits Center. What was called for in the theme building of the exhibition
‘‘Portopia ‘81’’ in Kobe, Japan, to celebrate the completion of a large artificial island, is very
different. The open and cheerful structure is achieved solely with space frames. The airy elegance
of this building, all curves and smiles, makes its loss to demolition regrettable. Conceived to

resist the effects of typhoons and seismic forces, it would have been interesting to see how
it would have fared in the powerful 1995 earthquake. The chapter, entitled Double
Curvature Space Frames, is written by the engineer in charge, the talented Masao
Saitoh.

 
  It cannot be said too often that a cubic frame with hinged joints is unstable, and that it
requires some doctoring to be made indeformable. One treatment consists of adding one member
to each square face, placed along one of its diagonals. If the shape one wishes to achieve is a
cube, the presence of diagonal members on its faces changes nothing of the interior
volume or its bounding surfaces. Because a tetrahedron can be the figure formed by the
diagonals alone, it would have been more direct to ignore the cubic frame and adopt a
tetrahedral frame to begin with. In other words, a cubic volume fits in a tetrahedral
frame as well as it fits in a cube. This little bit of irreverent magic introduces Arthur
Loeb’s chapter, Deconstruction of the Cube, where the coupling of tetrahedron to cube
is shown to beget many other polyhedra. Names like Stella octangula and rhombic
dodecahedron may sound a bit complicated, but they are descriptive and, once you
know them, you find that they refer to interesting and friendly personalities. And
know them one must if one is considering an expansion of design sources beyond the
cube.

 
  As indicated by the title of his chapter, The Polyhedral World, Pieter Huybers reaches away
from the cube and sets out to understand the geometric laws that govern these shapes. This
understanding is necessary if we are to adapt polyhedra to our architectural and structural needs.
Archimedean solids, prisms and antiprisms, domes, and folded-plate structures are
included along with space frames in the discussion, which contains a minimum of
mathematics.

 
  With Rene Motro in Chapter 10, we look for meaning in space frames and polyhedra. For
as long as they have been known, polyhedra have aroused the interest of brilliant
minds who, from Plato to Buckminster Fuller, have tried to understand the world as a
synergy. The five ‘‘perfect’’ polyhedra are often referred to as Platonic solids, not because
Plato discovered them but because each one symbolized one of the five elements in
Pythagoras’s cosmology, in which he, Plato, was deeply interested. Thus the cube
stands for the earth, whereas the octahedron stands for the air. However, symbolic
meaning can be found in everything, and symbolism is not a science. According to
Motro, however, one rule applies, and it stipulates that a symbol cannot be defined
without suffering mutilation, distortion, or total elimination. As for proportion, it can be

more than an attempt to please the eye. Proportion is related to symbolism when
it is understood as an expression of divine harmony, that is, perfection. In reading
Motro’s chapter, we will see that he is an engineer whose thinking is as clear as it is
rigorous.

 
  We return to earth, so to speak, with Ture Wester’s chapter, The Structural Morphology of
Basic Polyhedra. Wester is also a structural engineer, and an imaginative one at that. He does
not confine his thinking to post-and-beam structures stabilized by triangulation or other means.
This would not do with polyhedra, the structural problems of which have little in common with
those of their brother the cube. Three of the five regular polyhedra make perfect rigid lattices.
They are the tetrahedron, the octahedron, and the icosahedron, which all have triangular faces.
Three make perfect plate structures, and they are the cube, the dodecahedron and, again,
the tetrahedron. These three have three-branched vertices. This observation forms
the basis of Wester’s elegant general theory, structural duality, which leads to the
formulation of simple rules for analyzing the rigidity of any arbitrary polyhedra, simple
design methods for geometrically complicated but highly efficient plate structures, and
other interesting possibilities. Some structures of the natural world are included in his
demonstration.

 
  Hoshyar Nooshin has developed a mathematical tool called forniex algebra for the
processing of all kinds of configurations. The advent of the computer made the structural
analysis of space frames easier and faster. In so doing it became the indirect cause of the
profiferation of space frames from the 1950s on. CAD now plays an increasingly useful role
in visualization and formal transformations, which are routine in all architectural
and structural design, and are even more critical with noncubic forms, where the use
of the traditional T-square may be too slow or considered old-fashioned. Nooshin’s
chapter, written in collaboration with P. L. Disney and O. C. Champion, lays down the
foundations of a comprehensive approach for computer-aided processing of polyhedral
configurations.

 
  Chapters 13 to 15 open new horizons for polyhedra in three directions. Tensegrity, a term
coined by Buckminster Fuller, represents structures with discontinued compression. All structures
include parts that are under compression. In tensegrity structures, these elements are not in
direct contact with one another: They are held together by intermediate cables. Tensegrity

structures are a marvel to behold. Ariel Hanaor, in Chapter 13, suggests that practical
applications may be found in combining tensegrity with deployable, or retractable structures,
which are brought on the site in bundles and erected rapidly with a variety of mechanical
devices.

 
  Space labyrinths are structures made of a continuous surface dividing space into two parts, one
being the inside and the other one being the outside. In some cases, inside and outside are
interchangeable and some labyrinths can be constructed with one single module. Space labyrinths
are open-ended, meaning that they could theoretically go on forever. One can see
from this rough description how space labyrinths could revolutionize our concept of
architectural space. Haresh Lalvani conceived his chapter as a pictorial essay that could be
part of a visual encyclopedia of form and structure. Higherdimensional diagrams show
space labyrinths, some already known, others presented here for the first time, grouped
in families. Included are hyperbolic and nonperiodic, that is, quasicrystalline, space
labyrinths.

 
  Tony Robbin defines quasicrystals as three-dimensional manifestations of higher-dimensional
cubes. Essentially, quasicrystals are assemblies of two different polyhedra with similar topological
properties, both derived from the cube, capable of clustering in compact arrangements and
capable of forming nonrepeating patterns. This means that the pattern may duplicate itself, but
not necessarily at predictable intervals. In his realizations, Robbin aims at making works of art,
but he is aware of the structural and architectural capabilities of quasicrystals, which might be
realized at full scale in the years ahead.

 
  I have been interested for many years in the shape of spaces generated by space frames. I am
even more interested in the architectural spaces that can be found within space frames. What are
they like? How can they be connected with one another? How can they be accessed? To what
use do they lend themselves? How do they compare with square rooms? How can
they be built? Some of my investigations are reviewed in the last chapter of the book.
The conclusive ones are given names, such as hexmods and star bea?ns. More are in
progress, and many more remain to be discovered. I think we are in the prehistoric
phases of discovery in an immense and promising field, which we have only begun to
probe.

 
  In general, there is a regrettable shortage of actual polyhedral buildings. This is difficult to
understand for those of us who, having explored and experimented for years with these
forms, marvel at their inexhaustible richness and have a vision of the poetry that
emanates from some of them. This book presents a small but significant portion of the

work done around the world by a number of architects, engineers, and others. Some
speculate, and others build. Some do both. All our efforts are experiments, and many
are successful enough to sustain our enthusiasm. Space frames and polyhedra will
change our ways of building. Eventually, they will bring about a gentle revolution in the
way we design architecture. I hope readers find pleasure in this book, as the material
presented here should stimulate their imagination and encourage them to satisfy their
curiosity.
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2  Polyhedra, from Pythagoras to Alexander Graham Bell

Jos Tomlow

 
  
2.1  INTRODUCTION

Writing about the history of polyhedra up to the year 1900 means either lining up repetitive
quotations from some 400 editions of Euclid’s Elements or—which the author prefers—making a
voyage of exploration through historic objects and images of polyhedral shapes and considering
the specialists involved. Indeed, the very materialization of polyhedral form as a two-dimensional
image or a three-dimensional object turns out to be one of the keys to the significance of
polyhedra in history.

 
  

 

2.2  NATURAL CRYSTALS

The history of mathematics did not start with Pythagoras, who built upon the theoretical and
practical knowledge of geometry that the Egyptians and the
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  [image: PIC] Figure 1.2 Quartz, rock crystal, with prismatic shape and pyramidal ends. (Source:
Private collection. Photo: Jos Tomlow, Stuttgart.)

 
  Figure 1.1 Natural crystals (Almadin) with the shape of a rhombic dodecahedron. (Source:
Private collection. Photo: Jos Tomlow, Stuttgart.)

 
  Mesopotamians had acquired. Even older are Chinese achievements in mathematics. If one
wants to reconstruct the earliest human understanding of polyhedral phenomena, one has to
think rather of natural polyhedra that occur in certain crystals. So, for a start, we may consider
these naturally occurring manifestations that could have urged people to look further. Certain
natural crystals show semi-regular or regular polyhedral forms like the rhombic dodecahedron,

the tetrahedron, and even the cube.1 The transparent quartz crystal shows a polygonal prism
with a pyramidal top. This may have led people to ponder on the geometric properties until
someone may have conceived that six square planes fit together in a logical way into a
cube.

 
  

 

2.3  THE EARLIEST POLYHEDRAL OBJECTS

The next step is the man-made polyhedral object. One such ancient object is the East African
foot ring, whose polyhedral ends may be even older in origin than the semi-regular polyhedral
pyramids of Egypt or related forms in Mesopotamia. The material is hammered and welded
silver. Women wore such lightweight rings loosely around the ankle. The open ring is hollow with
two knob-like endings, shaped like cubes with snubbed vertices. This shape, called a
cuboctahedron, is a semi-regular polyhedron with six squares and eight triangles. The
craftsman took care to smooth some edges of the polyhedra in order to avoid hurting the
foot, whereas all other surfaces are adorned with cut lines or stars. Typical °f this
kind of jewelry worn by Berber women is its cultural origin and age are difficult to
trace.2

 
  Proof that the combination of an open ring with a cuboctahedron is truly
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  Figure 1.3 Old East African silver foot ring with ends shaped like a semi-regular polyhedron
(cuboctahedron). (Source: Private collection. Photo: Gabriela Heim, Stuttgart.)

 
  old can be found in the so-called polyhedral earrings and basket earrings produced in early
medieval Europe. One pair of earrings, now in the German-isches Nationalmuseum Niirnberg,
was probably found in a grave in Romagna, Italy. The material is silver wire with a tiny
solid silver polyhedral knob attached to it.3 Another type of earring, an example of
which is in the Landesmuseum in Stuttgart, was found near Basel in an Alamannic
woman’s grave (end fifth century). One end of the so-called basket earring, made of

either gold or silver, has an open cuboctahedron or similar form, in which a precious
stone (e.g., garnet) is held. Although later on these polyhedral forms were copied by
regional artists, their origin is thought to be Mediterranean, imported by trade or
war.4

 
  

 

2.4  THE ANCIENT GREEKS ON POLYGONS

In my hypothetical chronology, the ancient science of polygons and polyhedra began only after
craftsmen had made simple polyhedral objects like the early cuboctahedra mentioned
previously.

 
  Pythagoras (ca. 570–510 B.C.) is attributed with developing a basic geometric theorem, the
graphic demonstration of the algebraic formula a2 + b2 = c2. The square and the right-angle
triangle play a major role in his proof.5–7To underline the importance of his work, we may recall
here the story of how Pythagoras sacrificed a hundred fat oxen to the gods in gratitude for his
having discovered the 90° angle.8

 
  In Euclid’s Elements we find a discussion of the Pythagorean theorem. An illustration survived,
dating from a time when European prints did not yet exist and can be found in an Arabic
transcription of Nasr ad-Din at-Tusi (who died in 1247). If we consider the quality of the
drawing, we see some interesting, progressive features: Letters permit cross reference to
the text and the figure is drawn in red, whereas the lettering uses dark ink. Negative
features also exist: The drawing is roughly executed with some lines shown double; the
squares do not show true right angles; and the illustration is awkwardly squeezed
between the accompanying text. The non-right angles are especially puzzling, as they
concern the very essence of the geometric construction described. One may think that
the illustration has no meaning on its own and can only be understood in relation
to the mathematics in the text. We may call this a diagrammatic use of the drawn
image.9
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  Figure 1.4 The five ‘‘Platonic’’ regular polyhedra and their symbolism—together
with concave or stellated polyhedra—as depicted by Johannes Kepler in Harmonices
Mundi (1619). (Source: J. Kepler, Die Weltharmonik, R. Oldenbourgh Verlag, Munich,
1990.)

 
  

 

2.5  THE ANCIENT GREEKS ON POLYHEDRA

The Greeks started to theorize about the relationship between polygons and polyhedra and,
in this way, entered into a hermetic realm of knowledge. The observation that only
five regular and convex polyhedra can exist and the notion that these bodies were a
symbol for all and everything were formulated as a doctrine by Timaeus of Lokri:
Fire is represented by the tetrahedron, air by octahedra, 'water by icosahedra, earth
by cubes and, since a fifth arrangement is possible, God has zised the dodecahedron
to serve as a contozir of the zmiverse—cited from Timaeus by Plato (427–348/347
B.C.).5

 
  Euclid (ca. 323–285 B.C.) described the basic geometric principles of these five polyhedra
in his Elements.10,11 As we shall see, it was a long time before the visual image of
polyhedra matched the mathematical rigor of Euclid. It is only from the 18th century
onward that book illustrations can be regarded—more or less—as geometrically correct
projections.10,12
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  Figure 1.5 Polyhedra illustrations, showing poor standard of representation in 18th-century
mathematical handbooks. (Source: B. Lamy, Les Elemens de Geometrie ou de la Mesure de
I'etendue; qui comprennent les elemens d'Euclide;…, Paris, 1731.)
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  Figure 1.6 Polyhedra illustrations in a leading architectural handbook of the early
19th century. (Source: J. Rondelet, Traite theorique etpratique de I'artde batir, Paris,
1812–1817.)

 
  Furthermore, note that it is in 320 A.D. that Pappus published the 13 semi-regular polyhedra
described by the great physicist Archimedes (ca. 287–212 B.C.).6-7


 
  

 

2.6  ANCIENT POLYHEDRAL MODELS

Let us return to the interesting question of polyhedra as three-dimensional objects. Referring to
their autonomous beauty, Plato himself speaks in Phile-bos of the making of such objects ‘‘with a
plane iron’’ and with the help of ‘‘guideline and triangle.’’13

 
  In a recent contribution Malkevitch states that polyhedral objects were being made in late
Roman times. He mentions icosahedra of steatite and faience with Greek letters incised on their
faces.

 
  Quite significant is a bronze dodecahedron found in Carmarthen, Wales (Society of Antiquaries
of London). It is a hollow dodecahedron with 12 circular openings in the faces. The circular
openings are of six different sizes and paired together on opposite faces. Solid spherical knobs are
added on the 20 vertices. The scientific interpretation suggests a use as an instrument with a
technical function or a utensil, like a candlestick. On the other hand, the knobs could
have been added for fixing the object to some land of pole through the openings with
thread.14

 
  

 

2.7  MEDIEVAL APPROACH

Mature ingenuity is shown in the semi-regular polyhedra in the Barbarossa Chandelier in the
Aachen Cathedral (ca. 1270). The Barbarossa Chandelier is one of the few remaining of this
type in Germany, others being in Hildesheim and Gross-Comburg. These chandeliers
symbolize the city of Jerusalem. Individual miniature towers are attached on a metal ring

representing the city wall. The Barbarossa Chandelier is suspended from a chain with
bifurcating iron rods. Whereas the top bifurcating point is a sphere, the four other
nodes, in which three rods meet, are shaped as a cuboctahedron (six squares, eight
triangles).

 
  The nodes are made of solid wood (approximately 12 cm in diameter) covered by
silver sheets and a sphere’s sector in copper sheet protrudes from the square faces.
The rod coming from above enters the node element in one of the square faces and
holds the two lower rods in a shared inclined plane with a horizontal, intermediate
iron bar. This intermediate bar crosses the nodal object between two opposite square
faces. Thus the wooden node was drilled crosswise to accommodate the iron parts. The
node serves an important structural purpose, keeping, as it does, the horizontal bar
perpendicular to the primary rod. As both secondary rods are fixed to the horizontal part
with eyelet hinges, the structural solution for the chandelier and the even heavier
chain,
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  Figure 1.7 The Barbarossa Chandelier in the Aachen Cathedral (1170). (Source: Die
Kunst-denkmaler dec Stadt Aachen, I. Das Munster zu Aachen, Dusseldorf, 1916.)

 
  which together weigh 640 kg (incomplete), shows a maximum degree of freedom within a
symmetrical equilibrium.15

 
  Polygonal geometry is a major principle in the design, not only as applied to the node element
but also in relation to the whole chandelier and even its position in the centralized space of the
Aachen Cathedral, called the Octagon. The chandelier’s ring is divided into eight segments and
carries eight three-story towers, alternating with smaller towers. Forty-eight lamps are regularly
spaced around the wall. The bifurcation occurs in two stages: The chain carries four rods, each of
which holds two more suspension rods. This geometric scheme is related to the symbolism of the
holy city of Jerusalem, which shows similar features as an ideal city in terms of planning.
The upper bifurcation point, a sphere, symbolizes the sun, as can be seen from texts
on these chandeliers, and one may assume that the other smaller spheres and the
semi-regular polyhedra could be interpreted as planets and moons in their ordered position in
space.15,16


 
  The inventive aspect of this application of polyhedra is that geometry is used correctly here as
the basis for a spatial design. Although the angle of bifurcation of the lower rods was a free
choice and is not related to the axes of the cuboctahedron, one may see in this application a
very rare historic predecessor to contemporary space frame nodes developed from
polyhedra.
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  Figure 1.8 The structural parts of the Barbarossa Chandelier in the Aachen Cathedral
(1170). (Source: Aachener Dom, Domkapitel. Photo: Herta Lepie, Aachen.)
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  Figure 1.9 Semiregular shaped knot (snub cube) of the suspension of the Barbarossa
Chandelier in the Aachen Cathedral (1170). (Source: Aachener Dom, Domkapitel. Photo: Herta
Lepie, Aachen.)

 
  

 

2.8  CONTRIBUTIONS FROM THE ARABIC WORLD

Other medieval examples of polyhedral objects are rare and there seems to have been little
theoretical development during this period. This may be because Greek mathematical sources
were only fragmentarily known in Europe and there was only limited communication with the
Arabic world and its fruitful scientific use of Greek sources.9,17

 
  Although Arabic knowledge of polygons and their use in design, for instance, in tile mosaics,
was brilliant and common, no evidence could be obtained that the Arabs took the logical next
step to polyhedra-based applications in three-dimensional space. However, Critchlow refers
to Arabic cosmological speculations—similar to Kepler’s—based on ancient polyhedra
symbolism.18

 
  Of decisive importance for the understanding of three-dimensional space will be the
understanding of the way in which the eye receives a certain image. On the basis of Euclid’s book
on optics, Arabic authors such as al-Kindi (who died in 873) and Abu Ali al-Hasan (965–1039),
known as Alhazen, contributed to the scientific understanding of basic notions like the cone of
vision, the working of the pupil of the eye as a lens, and the necessity of light for visibility of any
object. These Arabic books were translated for use and interpretation throughout Europe.

Subsequently, Arabic knowledge on optics added to the understanding of the physical part of
perspective projection in Italy, outside the tradition of its authors. Richter defends the
hypothesis that a model by Alhazen showing the working of the eye was based on the torus
shape consisting of polygons, which will be discussed in more detail in the following
section.’’

 
  

 

2.9  PAOLO UCCELLO (ca. 1397–1475) AND THE ‘‘MAZZOCCHIO’’

As Gothic gave way to the Renaissance, a Florentine painter named Uccello became interested in
the main problem of early Renaissance painting: perspective. Vasari describes Uccello as an
artist who should have given less time to geometry and more to painting.19 Uccello’s
fascination with perspective and geometry led him to concentrate on details. Overall, his
paintings show a complex composition with several different perspective vanishing
points.20

 
  Drawings from his hand show objects, often of circular shape, reduced to quasi-polyhedral
forms. His favorite is the torus shape, not as a pure abstract form but depicted in some paintings
as the cylindrical hat worn by the men of his time, the so-called ‘‘mazzocchio.’’ Preparatory
drawings of such faceted rings measure up to 20 cm and are extremely precise perspec-tival
projections in ink. The rings, sometimes enriched by pyramidal forms, are divided into 16 or 32
sectors and each ring’s cross section consists of a regular hexagon or octagon. Because all points
of the ring are shown in most of these drawings, the ring appears transparent, much like today’s
CAD line
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  Figure 1.10 Perspective ink drawing of a faceted ring, seen from below, attributed to Paolo
Uccello (1397–1475). (Source: F. Borsi and S. Borsi, Paolo Uccello, Florenz zwischen Gotik und
Renaissance, Belser Verlag, Stuttgart, Zurich, 1993.)

 
  drawings. The reason for the consistent use of this drawing method may be to show up any
mistake in the perspective projection of the ring through a disturbance in the continuity of the
lines. Afterwards these drawings could be copied with all hidden lines eliminated. The drawings
are in one-point perspective and they have an axis of symmetry common to two of the sector

borders. In his painting Bernardino della Ciardi Pushed out of His Saddle (part 2 of The
Battle of Sail Romano), four men with such hats are depicted from various points of
view. In order to emphasize the geometric structure, the hats’ facets are colored like
chessboards.20
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  Figure 1.11 Drawing of a 72-faceted irregular polyhedron with pyramid points attributed to
Paolo Uccello (ca. 1440). (Source: F. Borsi and S. Borsi, Paolo Uccello, Florenzzwischen Gotik
und Renaissance, Belser Verlag, Stuttgart, Zurich, 1993.)

 
  The epitome of these studies is a drawing of a vase with 32 sectors and some 64 nodal points in
its section. Another very interesting drawing—similar to some of the other drawings not positively
identified as Uccello’s but executed according to his drawing method—is a ‘‘sphere with diamond
pyramids.’’13,20,21 The sphere turns out to be a 72-faceted irregular polyhedron. Another
depiction of a polyhedron—a stellated dodecahedron surrounded by a polyhedral ring—is
attributed to Uccello. It is a colorful floor mosaic in the basilica of San Marco in Venice dating
from 1429–1430.22

 
  

 

2.10  PDERO DELLA FRANCESCA (ca. 1420–1492) AND HIS PERSPECTIVE
LESSONS

Unlike Uccello—who often placed the boldly drawn volumes of his figures in dark and somewhat
ill-defined settings in his paintings—Piero della Francesca, one of the major Renaissance
painters, achieved an impression of perfect harmony by using lighter colors and placing
his figures in clearly defined architectural settings masterfully rendered in central
perspective.23

 
  In his old age when almost blind, he produced a work on perspective De Prospectiva Pingendi,
dictating the text to a pupil, who also executed the drawings. Being a major source of
publications by Albrecht Durer and Luca Pacioli and of La Pratica della Perspettiva (1569) by
Daniele Barbaro, this work was highly influential. It was through it and the others that many
artists and architects learned about perspective and geometry.13,24


 
  Piero della Francesca’s didactic approach is characterized by great care in the choice,
composition, and manner of execution of the illustrations. In the Codex Palatin manuscript, in
order to make the procedures as clear as possible, the construction fines are drawn in red and
the finished perspectives of the objects in black. The geometric construction of the
mazzocchio torus form (here called ‘‘torculo’’) is explained as well as that of a polyhedral
cupola similar to Uccello’s 72-faceted polyhedron. However, the text is very dry and
tedious, consisting of page-long listings of the points to be connected as the construction
proceeds.25

 
  

 

2.11  LUCA PACIOLI (ca. 1445–1517) AND THE MODEL APPROACH

The theology professor Luca Pacioli from Borgo San Sepolcro (hence who was also known as Fra
Luca di Borgo) was involved in a research project for the Duke of Urbino, Guido Ubaldo, and
Bishop Valletari, seeking to define correctly the mathematical shapes of polyhedra, which were
thought to have high symbolic significance. His scientific publications included the first Italian
translation of Euclid’s Elements.13,24

 
  A new departure in the search for representation is the devising of different kinds of models of
polyhedra. Pacioli’s method of working essentially develops new forms by truncation
(cuboctahedron) or addition (stellated poly-hedra). His presentation of results is unique for his
time. One can distinguish no fewer than four levels of presentation in his book De Divina
Proportione (1497), which was highly influenced by Piero della Francesca. First, there is the
text, a mixture of dry descriptions of mathematical relationships and witty accounts
of architectural praxis. In this text a treatise on the golden section is followed by a
discussion of polyhedra and their variants. Second, the text contains figures, which are
simple line drawings of the schematic Euclidean type, without proper perspective or
perpendicular projection when they show three-dimensional forms. Third, there are correct
perspective drawings of the more complex stellated polyhedra, drawn on Pacioli’s request by
Leonardo da Vinci, one of his many artist friends.21 These drawings were based on the

fourth level of Pacioli’s presentation, the three-dimensional models of polyhedra. Even
a fifth level of presentation is allowed for by leaving ample white space around the
printed parts on the pages, to enable the reader to add his or her own sketches or
notes.8

 
  In his book Pacioli refers to the usefulness of perspective drawings and he especially
recommends that the reader should visit the models in a sort of exhibition room or
laboratory.

 
  He describes the models—which were lattice structures—as being suspended and in his
perspective drawings Leonardo took care to show how they were suspended with thin threads.
The fact that the models were suspended may have practical reasons. As we know from
experience, lattice models are rather vulnerable to deformation. By suspending them, one ensures
that only their own weight is loading the structure. Even when somebody touches one, it will
simply swing until balance is recovered again.

 
  Other information provided by Pacioli in Chapter LXX of De Divina Pro-portione is that the
Latin names of the polyhedra were written on paper labels attached to the suspension threads of
the models with two pegs (of amber, which is extremely fight). He humbly excuses himself for the
poor material he had to use for his models, owing to a lack of funds, and he remarks that the
noble theme of polyhedra deserves to be proclaimed in precious metals decorated with precious
stones.8

 
  The monk Pacioli’s interest in polyhedra is further documented in a double portrait painting
by Jacopo de’ Barbari (1495), showing him with a young nobleman in the role of a
pupil.13,24,26 A solid wooden dodecahedron is shown on a desk with other objects
relevant to geometry and drawing. Of particular interest is the model of a semi-regular
polyhedron—a rhombicuboctahedron, as Kepler named this shape, made of 18 squares and
8 triangles. This polyhedron of glass polygons, probably blown in one piece, is half
filled with water. A thread crossing the glass bowl in its center is fixed to its bottom
and suspends it in an unstable equilibrium from the ceiling. It should be remarked,
however, that, in an otherwise perfect painting, the polyhedron shape is flawed with a
small perspective mistake: The water level is not parallel with the top and bottom
triangles.

 
  This water-filled glass polyhedron can be interpreted as a measuring device, making use of
physical laws. Because the suspension is vertical and the water level horizontal, any horizontal
section of the polyhedron can be generated by varying the amount of water and the result can be
compared with drawings. This polyhedron and its geometric construction—without referring to

the model—is explained in De Divina Proportione, Chapter LIU. Another example of Pacioli’s
concern for the physical aspects of his models is that he mentions the possibility of enlarging the
form by adding triangular or square pyramids, leading to stellated shapes that will always stand
on the tops of three pyramids ‘‘as one can verify by observation on the materialized
shape.’’

 
  The 72-faceted polyhedral sphere, already mentioned in the discussion of Uccello’s work, is
presented in Chapter LIV Pacioli points out that domes like that of the Pantheon in Rome
with its faceted coffers may be regarded as being derived from a similar geometric
approach.

 
  Pacioli’s aim in his concise presentation of stereometry was to advocate the training
of good craftsmen and he indicates this by warning anecdotes. In Chapter LVII he
recounts that he, together with a painter, once convinced a client to build a pillar
capital in a polyhedral form for its aesthetic impact. The master builder—thinking it
would be an easy job—followed the proposal, but in twenty days of work many marble
blocks were spoiled and compensation had to be paid. This awkward situation was only
resolved when Pacioli offered to teach the workers about polyhedra. A modest type of
polyhedra-based decoration by Pacioli is diamond-faceted masonry, probably developed from a
dodecahedron.24

 
  In a rather mean way—typical of the feeling of superiority of the academic toward the common
worker—Pacioli proposes in Chapter LVH to expose the ignorance of stonemasons by
asking them to make a regular shaped block with 12 regular polygons, but using no
pentagons.

 
  In Chapter XVIII of his book De Architectlira (1509), Pacioli again encourages architects to
build pillar bases and capitals according to polyhedral forms. He mentions Roman
literary references to the famous sculptor Phidias from Cercio, who executed a part of
a work in icosahedron shape (the symbol of water). This icosahedron attracted the
speculative attention of philosophers, more than any other part of his outstanding
work.8

 
  Yet only few architects of his time followed Pacioli’s optimistic vision of polyhedra. Vasari
reports about Michelangelo (1475—1564) that he ‘‘had the goldsmith Piloto make a
ball of seventy-two facets’’ as a decorative finial for the cupola of San Lorenzo.19 An
illustration of the ball consisting of irregular triangle planes is shown in Mainstone’s
book.27


 
  

 

2.12  LEONARDO DAVINCI (1452–1519) AND THE LATTICE STRUCTURE

Leonardo da Vinci’s illustrations for Pacioli’s De Divina Proportione were probably the first to
show polyhedra as lattice structures.21,28 Drawing the edges of a polyhedron with more than one
line allows the artist to show which edges are in front and which are behind, which is a great help
in visualizing structures in space.

 
  Leonardo’s skill as a draftsman shines especially in his drawings of machines and
complex building designs and there is clearly a connection between his illustrations
for Pacioli of latticed polyhedra and his linear stereometric images of architectural
structures.29 Compare his drawings from the Codex Atlanticus: f. 190 r-a, f.3 v-b, and £.335
v-e.

 
  

 

2.13  ALBRECHT DURER (1471–1528) AND THE CLEARING OF POLYHEDRAL
IMAGES

Diirer’s interest in polyhedra is well known from his copperplate engraving Melancholia of 1514.
In Melancholia an angel contemplates an oversized truncated stone block in a puzzling setting
referring to building praxis, eternal time, and religion.

 
  Being influenced by humanist philosophy and Renaissance universalism, Diirer was fond of any
geometric problem relating to art. Around 1506 he visited Italy for the second time and he
himself tells of a master in Bologna who taught him the ‘‘secret perspective.’’ This master is
thought to have belonged to the circle around Pacioli. In Venice Diirer bought a Latin copy of
Euclid’s Elements in order to understand the theoretical background of his newly acquired
knowledge.13,24, 30,31
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  Figure 1.12 Albrecht Diirer: projective image of a dodecahedron and a cutout
plan for a paper model, as depicted in Underweysung der Messung (1525), fourth
book, Fig. 33. (Source: A. Diirer, Unterweisung der Messung, Verlag Dr. Alfons Uhl,
Nordlingen,1983.)

 
  In the fourth book of his Underweysung derMessung (1525), polyhedra are illustrated in a new
way. Here, Durer, probably the most able woodblock cutter of all time, developed a layout of
beautifully worked out lettering with ample space for the illustrations. As in other figures,
polyhedra are shown by line drawing of plan and section, representing the body, as it were,
transparent. Letters facilitate the understanding of the drawings. Other figures show chains of
polygon plans, which can be cut out to make paper models.32

 
  Diirer’s clear-looking images of polyhedra nevertheless often contain mistakes, showing that he
was not quite aware of the mathematical rigor of geometry. For example, he draws the
circumscribing circle of the polyhedral body as if the two-dimensional projection in plan or
section would touch it in all its vertices. Being an artist teacher, his major aim may have been to
give a clear, methodical description rather than to show exact geometry. Similar criticism may be
made of his description of the conical section, the ellipse, to which he gives the name ‘‘eyerlini’’
(egg line) because of the asymmetrical result in his drawn construction. Later Kepler will point
out that Diirer’s ‘‘egg line’’ should be interpreted as a bisymmetrical form when speaking about
the ellipse.24, 33, 34

 
  [image: PIC]

 
  Figure 1.13 Nicolas

 
  Neufchatel: Portrait of the Calligrapher and Mathematician Johann I Neudorfer and His
Son (1561), both studying a lattice model of a dodecahedron. (Source: German-isches
Nationalmuseum, Niirnberg.)

 
  Yet Durer’s method of drawing polyhedra and conical sections was far more accurate than the
illustrations in early manuscripts or editions of Euclid’s Elements, which often seem to be mere
diagrammatic adjuncts to the mathematical text.

 
  

 

2.14  JOHANN NEUDORFER (1497–1563) AND THE DDDACTBC MODEL


The founder of German calligraphy and a teacher of calligraphy as well as calculation was
Johann Neudorfer (1497–1563) from Nurnberg. He executed the text for Durer’s print series
Apostles. A painting (Germanisches Nationalmuseum Nurnberg) by Nicolas Neufchatel (1561)
shows Neudorfer as a mathematician, measuring with compasses a dodecahedral lattice model of
approximately 20 cm diameter, while Neudorfer’s son writes down the results. A cube model is
seen hanging on the wall.

 
  The dodecahedron in the painting shows a profile in L-shape for the bars?1 This may, on the
one hand, save some weight in comparison with a simple trapezoidal profile. On the other hand,
it makes it easier to close the faces with pentagon-shaped boards for demonstration
purposes.

 
  

 

2.15  WENZEL JAMNITZER (ca. 1508–1585) AND RENAISSANCE AESTHETICS

Durer’s hometown of Nurnberg offered the best quality in book production and art
printing. Nobody was more fond of generating new polyhedral configurations than
Wenzel Jamnitzer, a gold-and silversmith and instrument maker, who was also from
Nurnberg.

 
  His perfectly produced book Perspectiva Corporum Regularium (1557) shows a large quantity
of variations, generated from the five regular polyhedra. Beautifully adorned images of the
Platonic symbols (fire, air, water, earth, universe) with short texts introduce four pages with six
polyhedral variants for each polyhedron. Each of them is represented inside a hollow
half-sphere.13 The second part of the book shows polyhedral ‘‘fantasies’’ in architectonic
arrangements: for example, a monumental grave, diamond-like faceted cones, and a latticed
dodecahedron on a richly worked base.


 
  In Jamnitzer we recognize an artist with a systematic approach to geometry but ignorant of
scientific language. Jost Amman, a copperplate engraver, executed Jamnitzer’s designs with
precision.35 Jamnitzer’s method of inventing and drawing complex polyhedra is known,
although he did not describe it himself. Using simplified models of polyhedra, he drew a
correct image based on the empirical perspective method described by Diirer. On the
basis of these drawings, he could generate variations by connecting different nodes or
surfaces.

 
  Portraits show Jamnitzer as an elderly looking, rather heavyset man with

 
  Figure 1.14 Wentzel Jamnitzer: allegory on ‘‘Water,’’ Plato's symbol of the icosahedron, from
his Perspective Corporum Regularium (1568). (Source: Germanisches Nationalmuseum,
Niirnberg.)

 
  Figure 1.15 Wentzel Jamnitzer: dodecahedron variants (1568). (Source: Germanisches
Nationalmuseum, Niirn-berg.)

 
  Figure 1.16 Jost Amman: engraving print of Wentzel Jamnitzer working on his
installation to analyze perspective (ca. 1568). (Source: Germanisches Nationalmuseum,
Niirn-berg.)
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  a long beard. It is amazing that a person with such a physiognomy could—like some brilliant
pianists with short thick fingers—produce the most delicate work of such natural beauty. Of his
silverwork it was said that he could make trees with miniature leaves that were of such fine
workmanship that they would move when one blew on them.

 
  Jamnitzer’s instruments were also inventive and precise. The portrait by Jost Amman in a
copperplate print (ca. 1568) shows Jamnitzer with his perspective apparatus. From a
given viewpoint—the top of a pole on the right—a thread is stretched to the object
to be drawn and is held by a vertical stick with a foot plate on the other side. The
thread is kept under tension by a free-hanging weight inside the pole. (Another possible
interpretation is that the weight hangs in front of the pole but is not shown in the print.)
A second vertical stick, with a small console that can move vertically, is attached
on a rail. The console’s end, fixed by a vertical stick and horizontal rail, gives the
coordinates of one of the points on the projection surface of the drawing. By changing
the direction of the thread toward other marked points of the object, all necessary
points of the drawing can be determined and measured. A special aid was a plate
with the drawing pinned on it, which is fixed with a horizontal hinge parallel to the

rail on the table. If one turns the drawing into a vertical position, the console could
make a small hole to mark the corresponding point on the paper. To permit turning
the paper vertically, the thread and its lower fixture would have to be turned away
temporarily.36

 
  The polyhedral construction in the niche shows a model that Jamnitzer might have used to
draw his polyhedra variants. The model, of rather modest appearance, is of some mathematical
interest as showing the cube in three different positions of balance—stable on a face and unstable
on an edge and a vertex.

 
  As an instrument maker, Jamnitzer would have been accustomed to improving an existing
apparatus and his perspective instrument should be regarded as a product of his cooperation
with other perspective researchers in the Niimberg circle, such as Hans Lencker, Lorenz Stoer,
and Hans Hayden. This development of perspective instruments was known and illustrated by
Paulus Pfinzing in Ein schoner kurtzer Extract der Geometric und Perspectiva (1598, privately
printed with handdrawings) and later published with woodcut illustrations as Optica
(1616).13,36

 
  Both the goldsmith Jamnitzer with his work in gold and silver and the engraver Jost Amman
were famous artists who worked for the imperial family. One wonders why such an odd book
project on abstract polyhedral shapes was established. The engravings by Jost Amman mostly
depict historic events and people against a background of architecture or landscape with
decorative embellishments.

 
  Apart from the preparatory drawings for the book illustrations, Jamnitzer’s remaining working
drawings only once (in the Berlin Sketchbook, page 21) show a sketchy representation of some
polyhedra.36 The isolated position of his polyhedra studies in relation to his usual themes leads
one to interpret Jamnitzer’s purpose as the creation of a training method for drawing
three-
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  Figure 1.17 Wentzel Jamnitzer: polyhedral fantasy (1568). (Source: Germanisches
Nationalmuseum, Niirnberg.)
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  Figure 1.18 Wentzel Jamnitzer: monumental grave as a polyhedral fantasy (1568). (Source:
Germanisches Nationalmuseum, Niirnberg.)


 
  dimensional objects. In his design work, both as a goldsmith and as an instrument maker,
Jamnitzer needed a precise representation of complex bodies, including any volume of curved or
angular appearance and multisymmetric relationships. Apart from this, scholars characterized
the book type as a pattern catalog for use by artists.13,37,38

 
  Jamnitzer’s symbolic interpretation is the best example of the aesthetic approach to polyhedra
typical of the 16th and 17th centuries.

 
  [image: PIC] &efc$2te&en/ mitepempclnavffnct fcnban
tag gegeben tvirb/ei n newer befonber turner/ bodj gcrecfjter onnb
feln leicfcter weg/roie allerlep bing/ea ffren (£oxpoxa/©ebe ro/ober
wa$ mdglidj juerbemfenvnbingrunbju(egeni(i/venucftober
enuerruef t/ferner in bit Pcrfpcetpf gebxacfjt werben mag/ on eini«
ge sergeblice linie/rip vff puneten/xcbergleicften weg biffitio noefc
nit betant gewcfen/ ©urefj fianfen_£encferQ3urger
ju$?iirmberg/allenfieb(jabern guter tflnflen
Ju e(nen vnb ge fallen publieirt.

 
  Figure 1.19 Hans Lencker: front page of his Perspec-tiva (1621), depicting technical
applications of polyhedral forms like sundial, balance, wheel axis, and chain. (Source:
Germanisches Nationalmuseum, Niirnberg.)
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  Figure 1.20 Lorenz Stoer: polyhedral fantasy from his Geometria et Perspectiva
(1567).

 
  (Source: Germanisches Nationalmuseum, Nurnberg.)

 
  

 

  
2.16  JOHANNES KEPLER (1571–1630) AND POLYHEDRAL NOMENCLATURE
VERSUS COSMOLOGY

One of the sadder chapters in the history of science is the retrograde emphasis on polyhedra in
Kepler’s cosmology. As a physicist of Newtonian stature, he made a major contribution to
astronomy by showing that the orbits of the planets were ellipses having the sun as one focus.
However, his pursuit of the idea that the distances of the planets from the sun were
proportionate to the dimensions of the five regular polyhedra nested inside one another was, in
retrospect at least, a stultifying mistake. Even when empirical observations did not seem to fit
this idea, he defended it with great logical ingenuity, seeing no inconsistency between doing this
and indulging in furious polemics against those astrologists who saw metaphysical meaning in
certain number combinations.39

 
  However, as a positive result of his otherwise fruitless battle, Kepler contributed to the best
known astronomical tabellarium of the day, that of Tycho Brahe (1546–1601), and in his book
Hormonices Mundi (1619) he discussed new concave polyhedral solutions and developed a
systematic Latin nomenclature, which is still in use today.39–41
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  Figure 1.21 Johannes Kepler: representation in Harmonices Mundi (1619) of Kepler's
speculative theory that the planets have the same distances as regular polyhedra, which fit
exactly to each other. (Source: J. Kepler, Die Weltharmonik, R. Oldenbourgh Verlag, Munich,
1990.)

 
  LORENZ ZICK (1594–1666) AND POLYHEDRAL SCULPTURE AND TOYS

 
  In the early 17th century, the mathematical story of polyhedra and the precise depiction of
their shapes reached maturity. Craftsmen (fine wood turners), silversmiths, and ivory workers
found an interest in the possibilities they offered. The increasing complexity of geometry in
Renaissance and early baroque art and a general fascination with machinery contributed to this
interest.42'44 In some European courts turning craft had become part of the modern
teaching
system and some noblemen—like August of Saxony (reign 1553–1586)—were taught in the
preparation of ivory objects on turning machines.


 
  In Historische Nachricht von den Niirnbergischen Mathematicis und Kiinstlem (1730),
Doppelmayr published some sculptures by Lorenz Zick. The central part of one sculpture is a
body with some concentric parts inside, which can all turn separately. Twelve circular openings
are regularly located on the sphere’s surface. Hence one could describe this form as dodecahedral.
Doppelmayr refers to the making ‘‘of all kind of polygonal bodies, which are much alike the
dodecahedron and which have inside them 8, 10, 12, 16 identical bodies…and which later often
were copied.’’45
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  Figure 1.22 Lorenz Zick (1594–1666): dodecahedron-based concentric ivory showpiece
with stellated nucleus as published by J. G. Doppelmayr, Historische Nachricht von
den Niirnbergischen Mathematicis und Kiinstlern,…, Niirnberg, 1730, Tab. 5 (Source:
Wurttem-bergische Landesbibliothek, Stuttgart. Photo: Joachim Siener.)

 
  In spite of Doppelmayr’s statement, which suggests that these polyhedral ivories were
invented in Niirnberg, such ivory polyhedra were already being made in Dresden around
1581 by the court turner Georg Wecker, who came from Munich. Other important
artists were Giovanni Ambrogio Maggiore from Milan and Egidius Lobenigk, probably
from Cologne. Beautiful specimens were produced in Dresden until 1620, many of
which were recently restored and can be seen in the famous Grime Gewolbe museum in
Dresden. A certain contribution to the unique quality of the Dresden samples may be
attributed to Niirnberg artists such as Christof Koller, who was charged in 1559 with the
installation of the first turning workshop in the Dresden court, and Hans Lencker,
who from 1576 onward gave lessons in perspective related to the problem of turning
ivory.44

 
  To complete such fine work, special equipment had to be developed, including spherical curved
chisels. During the manufacturing process, the spheres had to be fixed in a concentric position
from the outside through the openings. Such applications of polyhedra became important tests of
mastery in fine carpentry and thus contributed to the development of the mechanics of
precision.43

 
  Similar polyhedral objects were still produced in the 20th century and the book
Drechslerkunst—Meistertechniken alter zmd neuer Zeit by Hugo Knoppe (1929) is dedicated to
the 70-year-old artist turner Saueracker from Niirnberg, who made many fine specimens. Knoppe
mentions that the polyhedral objects were derived from used ivory billiard balls whose spherical
shape was damaged.43
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  Figure 1.23 Hugo Knoppe: working drawing and special chisel equipment for concentric
dodecahedra (1926). (Source: H. Knoppe, Meistertechniken derDrechslerkunst,\/er\ag Th.
Schafer, Hannover, 1986.)

 
  [image: PIC] Figure 1.24 Hugo Knoppe: working drawing and special chisel equipment for concentric
spheres, similar to the Chinese examples (1926). (Source: H. Knoppe, Meistertechniken der
Drechslerkunst, Verlag Th. Schafer, Hannover, 1986.)

 
  

 

2.17  THE CHINESE ‘‘DEVIL’S WORK BALLS’’

The ivory ‘‘devil’s work ball,’’ as the Chinese call it, is the most famous of all polyhedra-based
objects. As we have seen, knowledge of polyhedra was acquired only slowly in Europe. Euclid’s
Elements and the development of perspective were of decisive importance for this development.
However, in nonEuropean cultures with a proper mathematical science—for instance, among the
Arabs, the Mayas, and in cultures of India and China—perspective analysis of comparable rigor
was unknown. Therefore, it seems important to ask how the tradition of carving these concentric
balls was established in China.

 
  In the south of China (Canton region), concentric ivory balls have been carved since the 14th
century and direct European influence is unlikely.46 First, no European examples are known from
that age, and, second, there seems to have been little cultural contact other than indirect trade
at that time, apart from rare examples like Marco Polo’s visit to China in the late 13th century.
The most likely source for the Chinese may have been their own earlier handicraft techniques for
the carving and turning of precious stone (jade), wood, and ivory. Ivory has been carved since
very early times, as it is a very fine-structured material and yet soft enough to be
carved.

 
  Another hypothesis is that the influence of China on the European examples resulted from
colonial trade. Some literature suggests such influence and interesting examples of cultural
contacts are cited after 1500 for comparable artistic production, such as Chinese porcelain
imitated in Portugal and Holland or the mutual influence of Portugal and West Africa in the
ivory-carving field.47


 
  The European examples of Zick and others, however, have some major features differing from
the 19th-century examples from China. The European examples referred to until now are
positively based on polyhedra. The exterior surface of the parts shows the shape of a
dodecahedron, with a hole in the middle of each of the 12 pentagons, whereas the inside surface
is spherical.

 
  Chinese examples consist of true spheres, each having an exterior and interior surface that is
spherical, apart from decorative relief. Often they have 14 holes, like the illustrated modern
example. The 14 holes are conceptually organized according to the faces of a cube and its eight
corners, and on each of the cube’s six faces there is a shallow pyramid. All 14 corner
points touch a common sphere. The number of openings and their size correspond to
the

 
  [image: PIC] Figure 1.26 Ivory ‘‘devil's work ball’’ with all holes in common axes (Hong
Kong, contemporary). (Source: Institut fur leichte Flachentragwerke (IL), Stuttgart
University. Photo: Gabriela Heim, Stuttgart.) specially shaped chisels, which have to
carve a large enough spherical sector to loosen all material between two concentric
spheres.43

 
  Figure 1.25 Sphere-in-a-sphere object with eight independent turning concentric parts—a
‘‘devil's work ball,’’ as the Chinese call it—made out of one piece of ivory. The holes are divided
like the 14 vertices of a semi-regular polyhedron (Hong Kong, contemporary). (Source:
Institutfur leichte Flachentragwerke (IL), Stuttgart University. Photo: Gabriela Heim,
Stuttgart.)

 
  Some speculation on the function of such objects may also be appropriate. They are
showpieces in the first place: a demonstration of handicraft virtuosity.42,46 However,
one can also regard them as puzzles. Tiny fingers or thin sticks may turn the spheres
separately through the openings. Every puzzle or play has a purpose, and in this case the
first goal may be to find a position for all spheres with one opening on a common
axis. One can reach this goal rather easily. The final goal would be to turn all spheres
into such a position that all their openings are organized in the same position as the
outer sphere’s holes. In this way the initial impression of a massive sphere will change
into an image of a ball that seems transparent through its core. In the case of the
contemporary Chinese example, the final goal is rather difficult to reach, because its
semi-regular geometric organization with 14 holes shows two different distances between the
holes.


 
  The Chinese system is finer because interior and exterior surfaces are all really concentric,
whereas the European system shows a polyhedral outer form for each ball, which must be able to
turn freely inside the next larger ball with an inner spherical surface. Thus, in the European
example, some material waste cannot be avoided. Consequently, the number of parts that can
turn around differs: Modern examples of the Canton region reach up to 45 spheres. A sphere that
consisted of 25 concentric pieces was exhibited at the Panama-Pacific World’s Fair in
1919.48

 
  On the other hand, some European examples are spherical like the Chinese balls and we can
find no topological differences between these and the Chinese specimens.43

 
  

 

2.18  BROOK TAYLOR (1685–1731) ON PERSPECTIVE PROJECTION OF
POLYHEDRA

One of the few English contributors to the development of perspective geometry is Brook Taylor,
a Cambridge Doctor of Law, who was also interested in polyhedra.

 
  His Linear Perspective (1715) and Nero Principles of Linear Perspective (1719) take a more
abstract approach than most books, which derive an object image by parallel projection from
plan and front view. Taylor’s approach integrates images as perspective projections on a
plane.49

 
  In these rather short books Taylor prefers to take polyhedra as his examples for demonstrating
perspective projection, probably because the distorted plans of a point-symmetrical polyhedron
can be understood more easily than similar plans derived from a nonsymmmetrical object, such
as an architrave piece resting in an inclined position on a stone block.

 
  Although his geometrical work is considered difficult and his method painstaking,
Taylor became quite famous. An illustration of polyhedra in an architectural setting in
Thomas Malton’s A Compleat Treatise on Perspective (1779) reminds us of Taylor’s
interest.49


 
  

 

2.19  MAX BRUCKNER (1860–1934) AND HIS PAPER MODEL COLLECTION

In the preface of his book Vielecke und Vielflache—Theorie und Geschichte (1900), Max Bruckner
explains that the interest of mathematicians in poly-hedra was diminishing because many known
problems were solved by then, although a compendium such as his, bringing together a historic
survey and an encyclopedic classification of polyhedral examples, still seemed worthwhile to
him.5,14

 
  A very interesting parallel to Pacioli is Bruckner’s care for visual presentation. By means of
many conventional drawings and photographs of 146 paper models, which were made by
Bruckner over the course of many years, a clear overview of the possible range of polyhedral
forms is presented. The reader is kindly invited to study the actual models at Bruckner’s work
place.5

 
  

 

2.20  ALEXANDER GRAHAM BELL (1847–1922) AND INVENTIVE USE OF
TETRAHEDRA

Better known as the inventor of the telephone, Alexander Graham Bell was creative in quite a
universal sense. An active participant in the expanding industry of the late 19th century, he had
an unrestricted vision of the commercial potential of technical improvements of the production
process. He apparently did not aim at solving some specific problem but followed the reverse
procedure: He looked at a technical or mathematical principle and sought a useful application for
it. The accretion of such simple elements as latticed tetrahedra led him to invent a major
structural system: the space frame.

 
  Around 1900 he applied this system to enormous kites: compositions of tetrahedra of
approximately 20 cm on the side. The frames were partly covered with fabric. By means of his
tests he articulated many properties of tetrahedral form, not only in structural, but also in
technical terms.50


 
  He recognized that the latticed tetrahedron, by virtue of its triangles, is stiff against
deformation. Actually, it requires the minimal number of bars needed to generate a rigid frame.
Because of this the structure’s weight is optimal, resulting in a lightness that is decisive for any
flying object. Part of Bell’s research into kites is that their form should be variable in order to
reach optimal flying behavior empirically. For this reason he prefabricated the basic elements.
Like cubes, tetrahedra can be added in a closed packing, but Bell also understood the possibility
of minimizing structural weight through the omission of tetrahedra at the center of the
structure.

 
  Building on the experience gained with his tetrahedral kites, Bell found other uses for space
frames, including a complete architectural structure built in Canada in 1907: a watch tower 28 m
high with a weight of only 5 tons. The edge length of the modular elements is approximately 160
cm. They were prefabricated as complete tetrahedral elements (six rods and four nodes)
and were transported and stored on site as a compact pile of 10 elements. For this
pur-
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  Figure 1.27 Paper models of polyhedra variants by Max Bruckner (1900). (Source: M.
Bruckner, Vielecke und Vielflache—Theorie und Geschichte, Leipzig, 1900.)

 
  pose details had to be such that two or three nodes met in one point. Presumably, this problem
was geometrically solved by reserving modular zones in the node area and specifying the exact
node form for each position in the system. Even the conventional stairway was integrated
into the tetrahedral logic by shaping it as a triangular prismatic frame in one of the
legs.50

 
  The tower was erected in only 10 days by unskilled laborers. In order to manage it with the
least effort, two tower legs and the platform were assembled on the ground, using the third
leg—by assembling it in sections—as a jack for the whole structure. Dining the building process, in
which the legs—owing to their almost horizontal starting position—behaved as beams, Bell
installed an additional triangular frame as a prop in the middle of the tetrahedral
configuration.

 
  For static purposes the three continuous border rods of each tower leg were thicker than the
normal rods.50 It is notable that, at the point where the legs met on the hexagonal platform, Bell
used rods of normal section in the borders, surely because he expected weaker forces in the
compact platform frame than in the three inclined legs. Thus a remarkably transparent tower
was obtained.


 
  

 

2.21  CONCLUSIONS

Polyhedra—spatial bodies of perfect geometric shape—have fascinated human beings throughout
history. Although their major laws were already recognized by the ancient Greeks,
further progress turned out to be extremely difficult and only the best mathematicians,
geometers, and artist-craftsmen—preferably in collaboration—achieved substantial advances in
knowledge.

 
  A typical phenomenon of polyhedra research became the ‘‘mixed visualization’’ of scientific
results, combining the text with diagrams, drawings, and even models. Durer offered cutout plans
for paper models, and Pacioli, Jam-nitzer, and Bruckner relied on spatial models as empiric proof
and control of drawn speculations.

 
  Research into polyhedra has also been historically interpreted as a dangerous field of study. Its
hermetic nature expressed, for instance, by the multitude of symmetry axes in each regular
polyhedron or the finite number of
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  Figure 1.28 Polyhedral chandelier piece, ground from a glass sphere (Belgium, 19th century).
(Source: Institut fur leichte Flachentragwerke (IL), Stuttgart University. Photo: Gabriela Heim,
Stuttgart.)

 
  only five regular polyhedra, made the field a source of metaphysical speculation. In Jamnitzer,
the artist, we find a positive result of this kind of metaphysics, rendered harmless through joyful
humor and presented with considerable artistry. In Kepler’s fate we find a sadder
outcome.

 
  However, in most cases, history demonstrates the creative potential of consistent polyhedra
research. A special result is their role in the development of turning wood and ivory. The
mathematical understanding of ‘‘infinity’’ had its counterpart in the manufacturing of infinitely
precise or infinitely small objects. Ivory sphere-in-the-sphere objects were made in both Chinese
and European cultures. The beauty of these—void of any substantial usefulness—made them an
ideal subject for testing precision in handicraft.


 
  Leonardo da Vinci invented lattice structures based on polyhedral forms. Their brief history
ends around 1900 with the tetrahedron-based space frame of Alexander Graham Bell, which
shows a concise understanding and an original use of polyhedra. Bell’s approach may be seen as
the legacy of all those persons who, in the past, have been drawn affectionately toward
polyhedra.

 
  

 

2.22  METHODOLOGY

A remark on the methodology and the specific goal of this chapter may be appropriate. In
February 1993, J. Francois Gabriel wrote to the Stuttgart Institut fiir leichte Flachentragwerke
(IL), asking if somebody could work on the history of the science of polyhedra and their
applications in architecture. The author accepted such a vast undertaking, encouraged by his
experience with similar studies on the history of geometry (ruled surface structures by Suchov,
Gaudf, and Candela and late-Gothic vault geometry). A basic research approach was discussed
and it was agreed that the study would focus on the time before 1900, as there is little scientific
research and documentation available from this time period. In order to find connections
between the use of polyhedra in science and architecture, the author was forced to
construct a hypothetical historic path, as only in a few cases are polyhedra instantly
recognizable in old architecture. The main stress was given to the technical aspects of the
visualization of polyhedra and of the making of polyhedral models, often related to
the arts. Because of this technical viewpoint, however, decorative aspects from the
international art-nouveau style (Berlage and Gaudi) were not relevant, as was the
case with Haeckel’s interpretation of biological specimens (radiolaria) as polyhedral
shapes.51


 
  My research methodology had to focus on isolated historic examples that—favored by
luck—could be traced during continuous investigations in museums or literature. Thus the result
is quite fragmentary. In some cases, like the early use of the cuboctahedron shape or the Chinese
concentric ivories, the craftsmen may not even have known they were working with a polyhedron.
To the author these examples still seem valuable because a polyhedron is not only qualified as
some geometric shape or material object, as such, but also by the structure of its axes with its
specific technical implications.

 
  Because of this research approach, giving priority to the visual aspects of the polyhedron, the
science of polyhedral geometry was not dealt with systematically. Although the author tried to
establish a chronology of mathematical inventions, this goal could only be reached very
superficially.

 
  The illustrations were chosen with care but they serve different goals. Some were chosen
because they show a plentitude of beauty and can be regarded as symbols of the equal emphasis
on art and science. Others illustrate complex geometrical relationships, necessary because they
are still ill documented. Finally, some illustrations are informative about the cultural setting
of an artist or architect. The first results of my studies on polyhedra history were
presented at the seminar Application of Structural Morphology to Architecture in
Stuttgart.52
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2.25  INTRODUCTION

Bruce Goff (190A-1982),1 architect, painter, educator, and composer,2 created in over six decades
of architectural practice, primarily in the Midwest, an impressive array of buildings and designs
exhibiting an extraordinary profusion of geometric forms—polyhedral, spherical, cylindrical,
conical, toroidal, helicoidal.3 Much of his work also contains less easily defined configurations.4
This chapter examines only that family of forms in Goff’s work directly related to
polyhedra.

 
  We will first define polyhedra and discuss their geometric and nongeometric attributes,
including historical, psychological, and symbolic aspects. We will speculate on why Goff used
polyhedra in his work and mention some of his architectural influences. Comments are
included from Herb Greene on 20th-century thinking about geometry as related to
Goff’s use of geometry. We will touch on formalism and the difficulties of description of
polyhedra. A taxonomic framework is proposed involving four stages of polyhedrality in
Goff’s work. Finally, salient polyhedral aspects of selected buildings are illustrated
and discussed with observations from several who have lived in or worked on those
buildings.

 
  Definition of Polyhedra

 
  A polyhedron is a solid bounded by plane faces. A ‘‘regular’’ polyhedron is arranged according
to a system of symmetries. The boxlike spaces comprising the bulk of the world’s
architecture, from tract house to international style office building, are a special class of
polyhedra—rectangular parallelepipeds, or rectangular prisms; that is, spaces bounded by pairs of
parallel rectangles at right angles to one another. They occur in Goff’s work as well, but are
mentioned in this chapter mainly as a takeoff point.

 
  Regular Polyhedra

 
  Regular polyhedra include the five well-known Platonic solids—the cube, tetrahedron,
octahedron, icosahedron, and dodecahedron—with their simple, powerful, and all-encompassing
symmetries, and the thirteen less familiar Archimedean solids, that is, truncated versions of the
Platonics, and others such as the cuboctahedron and icosidodecahedron.5 Geodesic domes are an
outgrowth of these family members.

 
  Further Classes of Polyhedra


 
  Other branches of the polyhedra family include extrusions (prisms), pyramids, dipyramids,
truncations (e.g., a frustum, or pyramid with its top cut off), skewed and elongated volumes, and
so on. Still other variations are evident in specialized fields such as crystallography, which
identifies by shape, among many other factors, the several thousand of earth’s naturally
occurring minerals, for example, quartz and feldspar.6 ‘‘The mineral world expresses
pure volumetric geometry with the greatest clarity, but it is important to remember
that these solids do not exist in nature. In their perfect form they exist only on a
metaphysical plane, as pure, creative ideation, and can be represented, for the mind
to grasp, only through geometry.’’7 Pure, complete, and intact polyhedra belong, in
various conceptual garb, to the world of mathematics. Geometric space, a rigorously
well defined set of symbols and abstractions, is different from architectural space,
which is not usually so well defined or so abstract—and yet the two are intimately
related.

 
  Why Polyhedra?

 
  Being an architect and not a geometer, why did Goff employ polyhedra—since a major portion
of his oeuvre might be called ‘‘beyond the polyhedron’’? Probably the most compelling reason, in
terms of childhood development, is that ‘‘Goff’s father was a jeweler and gave the boy crystals to
play with. Pyrites, crystalline rocks, and semi-precious stones are to be found all over the
American southwest.’’8

 
  Mental Tools

 
  There may be a universal appeal in polyhedra that Goff felt in common with many other
architects. The abstractions, definitions, and symbols of the world of solid geometry are
among the essential mental tools required for the invention, discovery, and modeling of
space in the real world. One of the major means of delimiting and enclosing space
and creating volumes is by the use of planes (another is through the use of curved
surfaces). Polyhedra provide a rich source for the interrelation of planes and Goff has
drawn on that stock. As Goff said, ‘‘Some people open doors and others walk through
them.’’

 
  Imperfect Polyhedra

 
  In architecture, spaces are enclosed or defined by fragments, repetitions, distortions,
proliferations, and other variations of geometric solids (like the polyhedra examined in this
chapter) realized in ‘‘concrete’’ form. Just as in biological forms ‘‘…the geometry’’ says
mathematician H.S.M. Coxeter, ‘‘…developed to perfection by our soap-films in the twinkling of
an eye, is only roughly developed in an organic structure, even one so delicate as elderpith; the

conditions are no longer simple, for friction, viscosity and solidification have vastly complicated
the case.’’9 In every example of Goffs architecture, where simple, pure, idealized geometric form
is involved—there are functional, spatial, and circulational, that is to say, organic, elements that
modify, develop, anchor, and objectify that ideal. In spite of his respect for Wright’s ‘‘organicity,’’
Goff suggested taking the ‘‘nature of materials’’ with a grain of salt. Rigorous intellectual and
philosophical purity in architectural realization can be self-defeating. Architectural solutions
require unparallel (epiped?) coordination of large arrays and tangled hierarchies of
conditions, levels, elements, and evaluations—so it is not surprising that one does not
often find complete and pure expression of Platonic and Archimedean polyhedra in
architecture.

 
  Historical Position of Polyhedra

 
  A brief glance at architectural history will find Goff, along with a number of other 19th-and
20th-century architects, for example, Antonio Gaudi, R. Buckminster Fuller, and Frank Lloyd
Wright, to mention just several, creating at the growing tip of an evolution of ever more complex
spatial ‘‘conceptioning’’ (to use a Fullerism).

 
  Architecture as metaphor could probably be applied as far back as the big bang, but we will
not go quite that far. Animal architecture is free, curved, rough, organic10—examples of more or
less perfectly straight lines and flat planes are rare as, say, a spider hanging from a strand of its
own silk in a still cave or the planes in a honeycomb. Straight line and plane are more apt to be
approximated in natural inorganic forms—the surface of a pool of perfectly still water, a
fine icicle, a patch of glare ice, but especially in minerals, for example, an iron pyrite
cube.

 
  Geometry is a human endeavor that brings the straight line and plane to building, whence in
architecture the rectangular parallelepiped rears its ubiquitous head—the cube, the box. To
protect the box, the traditional pitched roof appears—enclosing a triangular prism of space.11 The
tent appears as a variation of pyramid, frustum, prism, or cone. An early basic geometric solid
was the Egyptian pyramid—a mass, not spatial. The pyramid’s developmental precursor
was the frustum, or mastaba. Both are polyhedra in the general sense, but they are
not regular polyhedra. Nonpolyhedral forms were exemplified in structures from the
domes (hemispheres) of the igloo to Greco-Roman stonework, in the cones of the Plains
Indians’ tepees, variations on intersections of half-cylinders in vaulting throughout
the ages, full cylinders in masonry towers, warped surfaces and solids generated by
rotation about axes in African paraboloids, the Islamic dome on top of a cube, and so
on.12


 
  Goff’s Work in the Context of the history of Architectural Geometry

 
  Goff’s architectural forms take their place in the historical evolution of an ever more subtle,
complex, and sophisticated knowledge and use of geometry. This is not to say that architectural
work in the past did not have its mind-boggling intricacies, for example, Gothic masonry,
Japanese joinery, Islamic ornament13 as well as the subtleties of proportional systems such as the
ancient Greek orders.

 
  I mention architectural influences on Goff in spite of Ben Allan Park’s daunting challenge: ‘‘It
is useless to consider Goff’s influences. He has a much wider appreciation of the work of his
contemporaries than might be supposed.’’14

 
  Claude Bragdon’s early-20th-century books on the generation of geometric forms were well
known to Goff. When Projective Ornament by Bragdon was published in 1915, Goff would
have been 13 years old—22 when Bragdon’s The Frozen Fountain was published in
1924.

 
  Furness, the Vienna Secessionists, Finsterlin, Mendelsohn, and other late-19th-and
early-20th-century spatial innovators and geometers were among Goff’s interests and exemplified
the subject matter of his modern architectural history courses, which he taught at the University
of Oklahoma.

 
  Goff was not only a dedicated ‘‘student’’ of Wright’s work (although never an apprentice) but
also a friend. Other influences, to mention just a few, were Sullivan, art nouveau, Islamic,
Balinese, Japanese—in short, the expanse of world architecture.

 
     

 

In Goff’s own words:

 
I  prefer  Paestum  to  the  Parthenon  …it’s  more  vigorous.  I  admire  almost
all  Hindu  temples  …Madras  …Fatehpur-Sikri…the  Japanese  works,  of  course
…the Ise Shrines. I love the detachment of the Katsura Palace, the Imperial
Coronation  Hall  in  Kyoto  and  the  palaces  there  …the  Golden  Pagoda.  In
China, the Temple of Heaven in Peking …the whole Peking complex. …I have
so  many  favorites…the  Gothic  at  Cologne  and  Rheims.  I  like  Scandinavian
     
wood  architecture  …pre-Columbian  …the  Monadnock  building  and  others  in
Chicago …Sullivan’s banks. I admire lots of buildings that are not supposed to
be architecture: the hut houses of Samoa, African huts. …Wright, the Heber
master …and the greatest of them all, Gaudf. A completely dedicated man.15
 


  Goff’s complex use of geometry with its triangulated precursors to geodesics, its paraboloidal
reinterpretations of organic lines of structure and growth predates but is unsurpassed in
inspiration by 20th-century developments.

 
  To try to show how specific Goffian forms were derived from such historical osmosis is perhaps
part of the ‘‘uselessness’’ that Park is implying. Goff’s output should be regarded as an original
and consistent unity, informed by and part of global architecture—in spite of the apparent
differences between his varied projects. Here we are spotlighting only that fraction of Goff’s
output that utilized a spectrum of polyhedral prototypes.

 
  Geometry—Theoretical Versus Applied

 
  The practical application of geometric forms in architecture may lag considerably behind the
development of new mathematical concepts, but architectural composition has its own distinct
systems of organization—albeit often related to spatial configurations: from circulation
networks, functional hierarchies, environmental interfaces, and microclimate control
to configurations affected by the strength of materials, safety, security, and ease of
use.

 
  Practical Necessity of a Conceptual Framework

 
  In order to build, such function complexes must be integrated into spatial configurations. This
is where the intimate working sense of sohd geometric forms comes into play—as the conceptual
grid for the organizational/functional entities. Years of experience permit a designer to
coordinate, to marry the substance, skeleton, and skin with appropriate forms through novelty
and inspiration—to create.

 
  Crystallization of an Idea

 
  From these systems of architectural organization several functional vectors might provide the
germ of an idea, which would act as a catalyst to produce a polyhedral concept, just as—when in
a chemical bath—at a certain temperature and pressure an initial prod produces a rapidly
spreading crystallization, unique for those specific conditions.

 
  Goff and Computers?


 
  Goff’s polyhedral designs, accomplished just before the advent of computers, would have been
facilitated and perhaps made more complex had he used computers. The ‘‘human
biocomputer’’16 was already there—the brain; however, we will speculate that Goff would have
used the computer to further the unity of the arts with architecture. A computer could be
used, for example, to replicate metaphorically the shapes derived from Trois Morceaux
en Forme de Poire—the music of the ‘‘spheres’’ as embodied in a pear by Erik Satie
(another Goff favorite), who was in turn alluding to painting. We are reminded of Philip
Johnson’s designing by carving up a pear, the resultant shapes of which were to have been
digitized in Frank Gehry’s (French developed) Catia computer program for a joint
venture.17

 
  Computer usage, logic, and mathematics have much in common with music. Goff
had a wide-ranging interest in music, especially that of the 20th century. One of his
favorites was Claude Debussy whose L’Apres Midi dhm Faun was illustrated by Goff in a
painting for Joe Price’s Studio. (The painting is reproduced in Architectural Design
Profiles 16.) Goff felt a strong kinship between music and architecture and invited his
students to regular listening sessions from his extensive record collection. To teach
design, Goff used musical principles such as theme, variation, development, rhythm,
and counterpoint, specifying their direct analogs to visual and spatial elements in
architecture.

 
  In any case, students and designers who utilize the computer today will be better situated to
assimilate, certainly to manipulate, complex polyhedral and other geometries. Among the
problems that might be expected in using polyhedral forms, for which computers will prove
useful, are: conceiving, visualizing, grouping, drawing orthographically and in perspective, linear
and volumetric measuring, dealing with nonparallel planes, marking, and aligning. In
construction the computer facilitates stereolithography—layout, fitting, joining, and cutting.
Walking tours through computer-animation perspectives are becoming more accessible.18
However, as the electronically aided visual representation of more and more complex forms
becomes easier—so their verbal description becomes more difficult but perhaps more
important—essential to the linkage of the visual/emotional world with the moral/historical
perspective.

 
  Herb Greene on 20th-Century Thinking About Geometry and Goff’s Use of Geometry


 
  Berkeley architect, painter, author, educator, and Goff student Herb Greene, discusses
the mystique of geometry in architectural thinking among the European rationalists
early in this century contrasted with the position that geometry occupied in Goff’s
work:

 
     

 

In the Nineteen Twenties when the functional, mechanical and technological
revolution in architecture was replacing historical eclecticism, the rationalists
began  to  use  geometry  with  conscious  intent  to  create  architectural  forms
denoting  function,  machine  technology  and  an  image  cleansed  of  historical
associations. The geometry selected by the rationalists, however, drew heavily
on a narrow range of Euclidean forms. The rationalists unconsciously inherited
the classical belief that value can reside in explicit forms. The faith expressed
by le Corbusier in the flat plane, cube and cylinder characterized much of the
spirit of the times. The Euclidean forms were conceived as embodying ultimate
simplifications of nature. Exceptions and overlaps were sometimes to be found
in the works of the leading rationalists, but the rectangular flat plane tended
to become a symbol eliciting a response to function, technology and a feeling
for contemporary dynamics. The point is that architects, then as now, tend
to regard historical forms, cubes for instance, as possessing in themselves the
subjective values that only mankind can project into forms. That familiar forms
in the environment are of vital importance to human psychological experience
is not questioned; what is questioned is the belief that certain forms, such
as Euclidean forms, possess immutable value and are to be imposed on the
architectural design situation. Mies van der Rohe was probably the apotheosis
of the modem acceptance of this belief.

 
Bruce  Goff  has  been  cautious  of  using  geometry,  or  any  other  ‘‘tool’’  of
architecture,  to  express  a  predetermined  type  of  perfection  to  be  applied
wholesale  to  a  variety  of  architectural  programs.  Architecture,  rather  than
assuming a geometry sanctified by familiarity and unconscious psychological
associations,  should  evolve  its  geometry  by  responding  more  intimately  to
conditions in the immediate design situation. For Goff, the final design form
     
must  show  evidence  of  being  derived  from  a  multifarious  world.  There  are
the particular conditions of the site, climate and context, the life experiences
of the client or user, the building program, the limitations of materials and
construction techniques, and there are the notions of order and art influenced
by the life experiences of the architect. Goff does not pay lip service to these
ideas. It is his belief that a wholehearted attention to these factors is required,
and that it can only produce a unique solution to every design situation. He
maintains that the architect is both obligated and free to use whatever form
that is suggested by a determinedly open-minded examination of the problem….

 
…the variety of new geometric forms appearing in the architecture of recent
years should be mentioned. The best of these have been derived from structural
and  technological  sources:  shells,  space  frames,  air  forms  and  others.  Goff,
in  addition  to  using  structural  determinants,  has,  since  the  early  forties,
been deriving his unique shapes from cultural, social, esthetic, perceptual and
psychological  determinants.  There  is  a  difference  in  intention  as  well  as  in
results.19
 


  Preconscious Meaning in Polyhedra?

 
  To overlay Greene’s ‘‘structural…perceptual and psychological determinants’’ with
a reconsideration of formal determinants, we ask whether the nodes of precision in
three-dimensional geometry and the symmetry in regular polyhedra resonate in our mind with
some as yet undiscovered inherent preconscious intensity? Is there a structure within our
inherited neural network that corresponds to such three-dimensional geometries? Perhaps
something of this ilk will be discovered among the multidimensional ‘‘point sets’’ that comprise
the brain’s universe of synapses.

 
  Psychological Effects and Symbolic Aspects of Polyhedra

 
  According to the philosopher Suzanne K. Langer, ‘‘Symbolic expression is something miles
removed from provident planning or good arrangement. It does not suggest things to do, but
embodies the feeling, the rhythm, the passion or sobriety, frivolity or fear with which any things
at all are done. That is the image of life which is created in buildings; it is the visible semblance
of an ‘ethnic domain,’ the symbol of humanity to be found in the strength and interplay of
forms.’’20 The affective properties of polyhedra impart a palpable spatial feeling. This
is due both to their multiple three-dimensional symmetries and to their contrast to
conventional ‘‘extruded’’ architectural space, to which most of us have been acclimated. Goff

pointed out that the acute angle, for example, could represent anger, whereas the
obtuse angle has a more relaxed feeling and the circle is more intuitive. As visual
symbols polyhedra grab and hold attention. Polyhedra are jointed, three-dimensional,
straight-line abstractions of the structure of tree branches—the limbs within which the
capabilities of human hand and eye coordination evolved and are thus inextricably
attuned. They convey a feeling of strength, and, indeed, the triangulated geometry of
many polyhedra gives them an inherent structural rigidity. They convey a presence—a
sculptural sense of unified containment beyond the overly familiar square and rectangular
world of grids. Because of this they must be handled carefully and with knowledge
and discipline. The Goff work discussed in this chapter provides examples of such
use.

 
  Monumentality as an Effect of Polyhedral Usage

 
  Monumentality is another ancient phenomenon on the border between illusion and symbolism.
Detailing, massing, scale, and texture can be made to work together to create a larger-than-life
entity. Polyhedral usage appears to contribute to this effect in Goff’s structures. The term
‘‘monumental’’ is related to the word mountain. There is something symbolic of the mountain in
the angular and crystalline forms of polyhedra.

 
  Golden Mean Ratio

 
  The golden mean ratio, occurring so frequently in nature, is inherent in certain Platonic
polyhedra. Le Corbusier, for example, found the ratio and its extension into the Fibonacci series
so vital that he wrote two volumes on the subject.21 As far as I know, however, Goff did not
exploit this mathematical phenomenon in his designs and the topic will not be pursued here. De
Long and others have discussed Goff’s use of magic square proportional systems and the
like.

 
  Parallelepiped Architectural Spaces

 
  The ubiquity of parallelepiped architectural spaces in Western culture makes them invisible,
transparent—one is almost oblivious to such spaces. Mies van der Rohe’s ‘‘Less Is More’’ with its
rectangular box embodiment would seem to arise from a hostage-like or perhaps, Machiavellian,
acquiescence to this convention; however, atop our 21st-century perch we may lose sight of the
excesses of cluttered Victoriana from which these minimalist Miesian urges arose. Goff’s
approach to spatial experience, on the other hand, is emotional and it is expressed—in other
words, brought to one’s attention; meant to be seen, felt, delighted in; made available to the
senses. Does this arise out of necessity from the lonely midwestern plains—an emotional

crescendo, up from pragmatic subsistence—in contrast to the anhedonic, rationalist cubic
formula—a decrescendo from Victoriana. Though affective and emotional, we experience a
powerful intellect at work in Goff’s architecture—always striving for an exuberant expression of
space.

 
  Opposition to ‘‘Formalism’’

 
  Marcel Proust’s character, M. De Norpois, complains, ‘‘All those Chinese puzzles of form, all
these deliquescent mandarin subtleties seem to me to be quite futile.’’ However, to reject the
significance of form, its study, and its conscious application (e.g., formalism?) is to ignore one of
the primary elements of the creative process in architecture (or any other art)—the conceptual
spatial matrix.

 
  Acquaintance with Polyhedra

 
  Practical gain aside, world expositions and the increasing use of space structures
are familiarizing many with the rudiments of polyhedra in architecture; still, few are
practiced in the verbal and visual languages of form necessary for the description of such
spaces.

 
  Description Difficult

 
  Goffs geometric ingenuity makes description difficult. According to former Goff assistant, Larry
Wayne Grantham, Goff said, ‘‘There are two reasons for an element of architectural design—the
reason one gave the client and the real reason.’’ Still, becoming aware of the language of solid
geometry and knowing that some of these forms yield to description and analysis might give
some legitimacy to Goffs work for those who are not practiced in the perception of architecture,
or for those seeking ‘‘rationale.’’ If one already appreciates his work, another layer of meaning
might be added. Grantham says further, ‘‘In my experience with Mr. Goff, when he was from 72
to 76 years of age, I have no recollections of his describing his work using technical descriptions of
the forms…. I will concede, though, that Goff knew his work would be analyzed thoroughly. I do
not understand that some individuals need such descriptions. The danger, as I believe
Goff would have commented, is that people might use such analysis as a means to
create formulas for copying. Goff often spoke of things growing from the problems to
be solved outward to define the space. Such forms are always unique to each design
opportunity.’’

 
  Describing Complex Forms


 
  Descriptive attempts, however, indicate why visual means are preferable to verbal. With
twinnings, abuttings, intersections, interpenetrations, truncations, and so on, the formal
descriptions of polyhedra in architecture tend to be overwhelmed by the complexity of
spaces—the nomenclature can quickly become unwieldy or superfluous. Goff’s architecture,
however, seems to teach itself, nonverbally. The rewards are raised consciousness—greater
satisfaction in architectural use—in the appreciation of the play of light and shadow, in an
awareness of space. Goff had confidence in the inevitable power and rightness of his
work.

 
  Four Stages of Polyhedrality

 
  Goff’s use of polyhedra can be conveniently, if somewhat arbitrarily, placed in four stages from
less to more polyhedrality, as follows: (1) virtual polyhedra, (2) nonregular polyhedra, (3)
single-cell regular polyhedra, and (4) multicell regular polyhedra.22

 
  These ‘‘stages’’ are not intended to carry an implicit value judgment of the worth or beauty of
such forms, for example, that a close-packing arrangement of Stage 4 is somehow better than,
say, a simple horizontally extruded prismatic space. Each should be considered according to its
purposes and situation.

 
  Stage 1: Virtual Polyhedra

 
  (Pseudopolyhedra would be too negative a term.) This category sees surface effects
‘‘striving’’ toward polyhedra and depth, but stymied by limits of economics or function.
It includes diagonal motifs, beveling, truncation, champfers, ornament, and related
nonrectilinear elements occurring within the confines of rectangular boxes. Two-dimensional
iterations (i.e., repetitions, rhythms) would be included. Triangular patterns are also used
frequently.

 
  Some Goff designs have an illusory quality—what might be called ‘‘virtuality’’ (a concept taken
to its extreme today by the spread of computer virtual reality)—the semblance of the third
dimension upon a two-dimensional surface. If it were not economically feasible to develop a full
polyhedral theme for a client, Goff might provide, because his thinking was spatial, a more
limited, two-dimensional representation of polyhedra—or, more generally, of ‘‘depth cues’’23
through the manipulation of ornament, fenestration or, say, the beveling or inclining of surfaces
such as railings, walls, soffits, mullions, or struts. An impression of depth is thus enhanced in
forms and surfaces where it might not otherwise be economically obtainable. There is a hint of
art deco here with its geometric surface pattern orientation; however, this stage is more

concerned with allusions to depth. The effect is apparent in many Goff designs, for
example, the Page Warehouse, Tulsa, Oklahoma, 1927, and the Floral Hills Memorials,
Project, 1959. Still, the love of rhythm and pattern for its own sake is obvious in Goff’s
work.

 
  ‘‘Virtuality’’ is also evident in Frank Lloyd Wright’s use of ornament, especially his leaded
glass—with its overlappings, repetitions, and angles—often giving a strong sense of a third
dimension not unlike the effect of an isometric drawing. The illusion is made more complex when
looking, through such a depth pattern, at the three-dimensional world outside the
window.

 
  Among examples illustrating this stage are the Hyde and Snyder Houses and the Floral
Hills Mortuary complex. In the Blackwell Building, Project, Dallas, Texas, 1961, two
three-story-high 45° triangles side to side at a prominent corner act together to imply a
tetrahedron.

 
  Stage 2: Nonregular Polyhedra

 
  (Proto-polyhedrality; proto-Platonic, or proto-Archimedean geometry) This category includes
nonvertical extrusions, vertical extrusions of nonrectilinear shapes, polygonal prisms, pyramids,
and various sloping surfaces. Extrusion of triangular forms is prevalent.

 
  Limitations of Extrusion. Goff discussed with his students the tired limitations of creating
space via vertical (gravity generated) extrusion from the floor plan. This concept is expressed in
Goff’s work through (1) extrusions along axes other than vertical (e.g., prisms) and (2)
nonextruded spaces such as pyramids and frusta.

 
  Prisms. Prisms are a recurring theme in Goff’s work, prisms, that is, with nonrectilinear
bases—extrusions—but often nonvertical extrusions—very likely terminated by other than simple
planes, but if planar, usually at angles other than perpendicular to the direction of extrusion, for
example, the horizontal prisms of the Price Studio 2.

 
     

 

Prisms as Proto-Polyhedra. To give a polyhedral ‘‘boost’’ to a form, that is,
to enhance its three-dimensional character, one could apply similar operations
to different dimensional axes—that is, to front and side elevations as well as
plan. An extrusion could be terminated (the ends closed) with a shape similar
to its base or cross section. Take a rhombic prism, for example. Rather than
     
trimming or closing the ends with flat planes, those ends might be shaped by
dihedral angles, acute or obtuse, creating concavities or convexities—or virtual
tetrahedra.  In  the  Snyder  House,  Project,  Dewey,  Oklahoma,  1958  (Figure
2.1), V-shaped terminations at the ends of the very prominent ‘‘bay windows’’
are virtual tetrahedra, defined by two pairs of opposite edges (Figure 2.2).
Variations on this idea appear frequently in Goff’s work.

 
Examples of Stage 2 are the Nicol, Bass, and Gutman Houses and the Price
Studio (as built).

 
Stage 3: Single-Cell Regular Polyhedra

 
(Or single-volume polyhedral space) This stage is made up of Platonic and
Archimedean solids and their duals and facially subdivided variations (geodesic
domes)  in  single  units  or  separated  multiple  groupings  in  which  the  single
polyhedra are still obvious units. This stage might occur in the building as
a whole—the Crystal Chapel is a prime example—or in regions or details of a
building, for example, the Rudd House projects. Another characteristic might
be ‘‘soft packing’’ or ‘‘unpacking’’ (as opposed to ‘‘close packing and hard
packing’’). This is simply the repetition of polyhedra without abutting; see the
Rudd House discussion.

 
Geodesic domes fall into Stage 3. Buckminster Fuller (discussed in Chapter
4) lectured at the University of Oklahoma once or twice when Goff held the
architecture department chair in the late 1940s and early 1950s.24 Although
Goff’s polyhedra were usually subordinated to a personal architectural gestalt,
curiously enough, in the several of Goff’s designs involving patented geodesics
the  domes’  triangulated  configurations  remained  dominant  and  essentially
unaltered, for example, the Fitzgerald Realty Office Building, Project, Tyler,
Texas, 1965; the Le Boeuf House, Project, La Grange, Texas, 1967; and the
Harry Goff House, Project, Tulsa, Oklahoma, 1962. Each used, according to
De Long, ‘‘…a patented wood version of a geodesic structure …developed by the
Pease Company and manufactured by Geodesic Domes Inc., Davidson, Miss.
Two diameters were offered: 26 feet and 39 feet. In 1960 these cost $1,300 and
$2,600 respectively.’’25 These domes were, polyhedrally speaking, based on the
triacontahedron.

 
Stage 4: Multicell Regular Polyhedra
     

 
(Cell  iteration)  Stage  4  comprises  clusters  of  Platonic  and  Archimedean
solids or their duals in space-filling, perhaps close-packing arrangements—the
polyhedra abutting, side to side, front to back, and/or up and down—regularly
or irregularly. Among the prominent actors seen on Stage 4 are structural space
lattices (three-dimensional matrices that owe their inherent
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  Figure 2.1 Russell B. Snyder House, Project, El Dorado, Kansas, 1958. Rendered
perspective. (Courtesy of the Ryerson and Burnham Libraries of the Art Institute of
Chicago.)
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Figure 2.2 Snyder House. Virtual tetrahedron.
 


  stability to unit geometry, e.g., the tetrahedral/octahedral space frame). Goff, however, did not
utilize them, perhaps because of the preponderance of smaller, mostly residential, commissions in
his practice—few long-span or column-free spaces.

 
  ‘‘Polyhedrizing’’ a Tessellated Floor Plan. A step after the ‘‘proto-regular-polyhe-dra’’
(prisms with certain basal configurations) discussed previously is an idea concerning the
relationship of the two-dimensional floor plan to three-dimensional space. One can apply an
‘‘organic’’ concept, that is, one in which the smaller ‘‘seed-germ’’ (as Louis Sullivan called it) is
recognizable on a larger scale—or, put another way, provides the information for (as in DNA) the
development of a larger organism.

 
  This idea is symbolized by and inherent in the currently popular Mandelbrot equation graphics
and other ‘‘chaos’’ spinoffs, for example, strange attractors, Sierpinski figures, and other fractals.
‘‘Fractals have a curious mathematical property: they have essentially the same structure on all
scales.’’16 Some of Goff’s buildings are now over 50 years old and our analysis unavoidably
attempts to superimpose various latter-day concepts such as fractals, computer graphics,
deconstruction, and postmodernism.

 
  A floor plan composed of polygonal units (tessellations), rather than simply serving as the
base for a vertically extruded space, could be taken into the third dimension—into
a volume—by using a similar polygon to express the elevations (side views) of each
such plan unit, thus contributing to the formation of a polyhedron. This is a crude

example that works literally with the 4-symmetry of the octahedron, cuboctahedron, and
rhombidodecahedron but would not be sufficient for development of the 5-symmetry icosahedron
and dodecahedron. In this way a tessellated plan could serve as the base for a Stage 4
space-filhng polyhedral matrix of which the Wilson and Pollack/Warriner Houses are
examples.27

 
  Table 2.1 fists stages and polyhedral configurations for representative buildings and
projects.

 
  This list is by no means exhaustive. Most of these works are described and illustrated by De
Long.

 
  Summary of Stages of Polyhedrality

 
     

 

Stage 1. Surface application of triangulation. Boxes striving to go beyond.
Stage 2. Vertical extrusions or pyramids from polygons other than square.
Nonvertical  extrusions  of  triangular  and  other  polygons.  Composites  from
pyramids.

 
Stage 3. Archimedean/Platonic polyhedral single-cell space or overall massing.
Same, but in smaller detail regions, not overall.

 
Stage 4. Cell iteration, close-packing, ‘‘far packing’’ (e.g., the Rudd House,
discussed later). Same, but in smaller detail regions. Vertical packing.
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  2 Interior of balcony, looking east (Photo: J. Francois Gabriel. Reproduced with
permission.)
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  3 Exterior framed by eucalyptus trees. (Photo: J. Francois Gabriel. Reproduced with
permission.)

 
  4 Exterior of northeast entry ventilation louvres and large pulpit doors in closed position.
(Photo: J. Frangois Gabriel. Reproduced with permission.)

 
  5 Detail of space truss. (Photo: J. Francois Gabriel. Reproduced with permission.)
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  6 Four cells of the 16 structures of the family (434) obtained by locating a vertex at
every available position within the fundamental region (shown in exploded view).
The structures are arranged on the vertices of a four-dimensional cube and indexed
accordingly.

 
  7 Portions of 16 periodic spacefilling structures corresponding to Color Art 6.

 
  8 Cells of 16 structures of family (434) obtained by removing red and green faces from the
structures of Color Art 6.
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9. 

	Portions  of  nine  labyrinths  of  family  (434)  having  red  and  green  faces  removed,
corresponding to part of Color Art 8.

     
	
10. 

	A  two-dimensional  lattice  of  continuous  transformations  between  four  different
labyrinths of family (434) shown in Color Art 9.
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11. 

	Cells of nine labyrinths of family (433) having red and green faces removed (shown
in exploded view).

     
	
12. 

	Atwo-dimensional  lattice  of  continuous  transformations  between  four  different
labyrinths of family (433) shown in Color Art 11.


  13 Cells of nine labyrinths of family (533) having red and green faces removed (shown in
exploded view).
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  14 A two-dimensional lattice of continuous transformations between four different labyrinths of
family (533) shown in Color Art 13.
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  TABLE 2.1 Polyhedrality in Goffs Work

 

  

 
 
	
	                         
 


	                         
 


	                         
 


	                         
 


	                           
	
	


	
Building                       
 

	 
Stage  
 

	 
Polyhedra                                                 
 


	
Hyde/Lane
House                               
 

	 
1         
 

	 
Champfers, 
bevels                                                               
 


	
Floral
Hills
Complex                           
 

	 
1         
 

	 
Virtual 
dual 
transformations                                                   
 


	
Ledbetter
Cottage                             
 

	 
1         
 

	 
Virtual 
pyramid 
of 
tension 
rods 
intersecting 
a 
square 
prism                                                                
 


	
Blackwell
Building                            
 

	 
1         
 

	 
Virtual 
tetrahedron                                                        
 


	
Searing
House                               
 

	 
1,2       
 

	 
Hexagonal 
prism                                                                
 



	
Briar
Cottage
A                                     
 

	 
1,2       
 

	 
Truncated 
triangular 
prism                                                                
 


	
Black
Bear
Motor
Lodge                               
 

	 
1,2       
 

	 
Triangular 
prism, 
tetrahedron, 
stellated 
tetrahedron                                                        
 


	
Phi
Beta
Delta
Fraternity
House                               
 

	 
1,2       
 

	 
Trapezoidal 
prism, 
virtual 
tetrahedron                                                        
 


	
Pi
Lambda
Phi
Fraternity
House                               
 

	 
1,2       
 

	 
Triangular 
prism, 
half-cuboctahedron                                              
 


	
Phi
Sigma
Epsilon
Fraternity
House                               
 

	 
1,2       
 

	 
Triangularly 
arrayed 
rectangular 
parallelepipeds                                                    
 


	
Snyder
House                               
 

	 
1,3       
 

	 
Virtual 
tetrahedra, 
window 
bays                                                                 
 



	
Unseth
House
1,
Project                             
 

	 
2,4       
 

	 
(Quasi) 
tetrahedra/octahedra 
space 
frame                                                                
 


	
Unseth
House
2                                      
 

	 
2         
 

	 
Triangular 
prism                                                                
 


	
Nicol
House                               
 

	 
2         
 

	 
Octagonal 
prisms 
and 
pyramid                                                            
 


	
Bartman
‘‘Triaero’’
Cottage                             
 

	 
2         
 

	 
Hexagonal 
diprism 
enclosed 
by 
a 
truncated 
octahedron                                                         
 


	
McCullough
House                               
 

	 
2         
 

	 
Dodecagonal 
prism                                                                
 


	
Hopewell
Baptist
Church                             
 

	 
2         
 

	 
Multisloped 
dodecagonal 
pyramid                                                            
 


	
Bass
House                               
 

	 
2         
 

	 
Partially 
stellated 
dodecahedra 
(or 
intersecting 
pentagramal 
pyramids)                                                          
 



	
Gutman
House                               
 

	 
2         
 

	 
Truncated 
triangular 
dipyramid                                                          
 


	
Miller
House
(porch)                             
 

	 
2,3       
 

	 
(Undefined—facets 
somewhat 
like 
a 
cut 
gem)                                                                 
 


	
Freeman
House
(porch)                             
 

	 
2,3       
 

	 
Pyramid 
and 
inverted 
frustum                                                             
 


	
Price
Studio
1                                      
 

	 
3         
 

	 
Interpenetrating 
square 
and 
rhombic 
difrusta                                                             
 


	
Price
Studio
2                                      
 

	 
2         
 

	 
Horizontally 
extruded 
trapezoidal 
prisms                                                               
 


	
Jones
House                               
 

	 
2         
 

	 
Interpenetrating 
octagonal 
prisms 
and 
pyramids                                                           
 



	
Crystal
Chapel,
Norman                            
 

	 
3         
 

	 
Quasistellated 
rhombic 
hexahedron, 
elongated 
tetrahedra                                                          
 


	
Crystal
Chapel,
Artesia                              
 

	 
3         
 

	 
Intersecting 
or 
multislope 
pyramids                                                           
 


	
Gerald,
Boeuf,
and
H.
Goff
Houses                              
 

	 
3         
 

	 
Geodesic 
domes 
of 
triacontahedron 
base                                                                  
 


	
MacBryde
House                               
 

	 
3         
 

	 
Flattened 
cuboctahedron 
or 
elongated 
tetrahedron                                                        
 


	
Adams
House                               
 

	 
3         
 

	 
Triangular 
diprism 
or 
‘‘octahedroid’’                                                    
 


	
Rudd
House                               
 

	 
3         
 

	 
Truncated 
icosahedra, 
truncated 
tetrahedra                                                          
 


	
Wilson
House                               
 

	 
4         
 

	 
Rhombic 
cuboctahedra                                                      
 



	
Pollock/Warriner
House                               
 

	 
4         
 

	 
Rhombic 
dodecahedra                                                       
 


	
First
National
Bank                                
 

	 
1,2,4     
 

	 
Octagonal 
pyramid, 
horizontal 
prism                                                                
 


	                         
 


	                         
 


	                         
 



	
	                         
 


	                         
 


	                         
 


	                         
 


	                         
 






     

 

Limitations of the Four Stages

 
The  four  suggested  ‘‘stages’’  are  rough-cut  categories  that  overlap  and
intertwine even though one or the other stage may predominate. Unlike the
biologist’s  taxonomy,  they  do  not  indicate  a  chronological  progression  or
evolution. I am not attempting a rigorous comparative anatomy but rather
taking snapshots of different areas of unique designs. Nor are they categories
that Goff claimed, taught, or even mentioned. He did, however, discuss the
concept  of  ‘‘variation’’  in  the  sense  of  theme  and  variations  as  in  musical
composition—emphasizing the possibilities of a gradation or range of possibilities
for  any  given  design  principle.  For  example,  the  effects  of  light  involve
transparency, translucency, and opacity; the relationship of a building to its
site could be blending or contrasting or a mix.
     

 
SELECTED GOFF WORKS

 
The following are more detailed descriptions of salient polyhedral aspects of
selected Goff buildings:

 
The Lawrence Hyde/Scott Lane Mouse, Kansas City,

 
Missouri, 1965

 
The Hyde/Lane House (Figure 2.3) is an example of Stage 1—in which diagonal
details modify and overcome primarily rectilinear volumes. The plan of the Hyde
House consists of rectangular rooms that have been extruded vertically within
a Greek cross perimeter, but with many 45° and other angled details striving
toward  the  polyhedral.  Such  angled  details  consist  of  comer  fenestration,
storage, garage placement, beam terminals, end-wall terminals, door, window,
and railing design, a cathedral ceiling over the living room, roof facia, and an
apron at the bottom of the exterior siding. These disparate elements are focused
and epitomized in a central, open, fireplace, with pyra-
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  Figure2.3 Lawrence Hyde/Scott Lane House, Kansas City, Missouri, 1965. Rendered
perspective.
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  Figure 2.4 Floral Hills Temple of Rest, Project, Las Vegas, Nevada, 1960. Perspective
rendering. (Courtesy of the Ryerson and Burnham Libraries of the Art Institute of
Chicago.)

 
  midal hood and large triangular mirror backdrop—approximating a virtual octahedron. De Long
discusses the ‘‘earth, air, fire and water’’ symbolism in this convergence.28

 
  The Floral Hills Temple of Rest, Project, Las Vegas, Nevada, 1960

 
  This mortuary complex is another example of Stage 1 (Figure 2.4). Goff had taken the square
and ‘‘made it his own,’’ as he might have said. Variations on the theme of one square overlapping
another at 45° resulted in octagonal motifs varied by bends, folds, uplifts, thicknesses, contrasts,
diagonal placement, and the like. Comers were stretched into tetrahedra and emphasized by
bracketing lines at intervals of several degrees either more or less than 90° (Figure
2.5).

 
  Mr. and Mrs. James Nicol House, Kansas City, Missouri, 1965


 
  The Nicol House, as built (Figure 2.6), is the third and simplest of three designs.29 The first
two schemes involved curvilinear forms—cylinders, cones,
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Figure 2.5 The Floral Hills Temple of Rest. Variations on the theme of one
square overlapping another at 45°.

 
beehive-like forms, warped planes, a helix, and so forth, probably beyond budget
constraints.

 
The third and finally built design for the Nicol House is a prototypical step
‘‘beyond the cube,’’ relying on vertical extrusion from forms other than the
square and rectangle (Stage 2), principally variations on the octagon.

 
Plan Octagons

 
The  floor  plan’s  most  obvious  pattern  is  based  on  an  outer  ring  of  eight
octagons, each about 12 feet wide, with sides of approximately 5 feet, linked
(or separated) by eight squares of the same edge length. Each of these outer
octagons is thus centered on one of the eight vertices of a larger imaginary
octagon (Fig. 2.1a). This outer ring of eight encircles four interior octagons,
which in turn surround a fifth, central, focal octagon ‘‘conversation pit’’ (Figure
2.1b).  These  comprise  the  largest  expression,  although  almost  completely
intangible, of a square-octagonal tessellation, creating the somewhat cruciform
central living area or atrium (Fig. 2.1c). Other
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  Figure 2.6 Mr. and Mrs. James Nicol House, Kansas City, Missouri, 1965. (a) Plan; (b)
exterior photo. (Courtesy of the Ryerson and Burnham Libraries of the Art Institute of
Chicago.)
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  Figure2.7 Nicol House. Octagons: (a)ring of octagons; central square/octagon tessellation; (c)
central living commons; (d) Examples of other square/octagon tessellation regions; (e) all 13
octagonal units; (f) all 12 square service/circulation units; (g)the complete grid; (h) a mandala of
primary and secondary spaces; (i) perimeter, both floral-like and crystalline. clusters of two and
three octagons occur as fragments of a square-octagonal tessellation (Figure 2.7d). The outer ring
of 8 plus the atrium ring of 5 bring the octagon total to 13 (Figure 2.7e). These 13 functional
domains alternate with 12 squares acting as service/circulation regions (Figure 2.7/).
The entire grid system is at once simple and complex, unique yet universal (Figure
2.7g).

 
  Both the outer group of eight octagons and the inner group of four (which abut one another)
are extruded vertically to imply eight-sided prismatic spaces (Figure 2.8). They are
implied—because walls occur at only five or six, rather than all eight, sides of each outer octagon,
creating spaces defined by portions of octagonal prisms. Similarly, the four secondary (interior)
octagons are extruded to form octagonal prisms. Each of these interior octagonal prisms is
defined by only two walls—on opposite sides—plus the ends of two other walls that act as edges.
Space ‘‘flows’’ in and out among these hierarchies—blossoming in a mandala with both
central and peripheral, primary and secondary, family and private settings (Figure
2.7Zz).

 
  On the exterior these prisms formed from the ring of eight outer octagons are clearly defined in
a perimeter that is both floral-like and crystalline (Figure 2.1 i).

 
  The living room ceiling consists of an eight-sided pyramid, the base edges of which intersect
vertices of the four secondary octagons.

 
  Obtuse angles (180°±45°) dominate the plan and contribute to a feeling of openness.
Bruce Nicol, who grew up in the house, says that it had the feeling of ‘‘space without
walls.’’

 
  Windows on the four exterior walls of each octagonal prism, and in two cases on interior walls,
consist of inverted 45° isosceles triangles. Their downward pointing 45° angle is the same as the
angle subtended by the side of an
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  Figure 2.8 Nicol House. Octagons extruded into octagonal prism units.


 
  octagon. Why the triangular windows? The use of conventional rectangular double-hung or
casement windows would have ignored the octagonal schemata, squelched the visual dynamics,
and destroyed the unity (Figure 2.8). Between each pair of triangular windows is a triangular
region consisting of two walls meeting in a dihedral angle. This fold is both more and less than a
‘‘corner’’ because it is at a 135° angle and is emphasized by being at the central spine, or
altitude, of a triangular motif. The ceiling and floor lines of these prismatic rooms participate in
this angular dance.

 
  The plurality of rhythmically spaced downward-pointing triangular windows complements
the unity of the upward-pointing, octagonal-pyramid, central roof (and its similar
pyramidal skylight). The herringbone shingle pattern is a textural reflection of this
theme.

 
  According to David De Long:

 
     

 

…The recessed, octagonal shaped area at the center focused upon an elaborate
construction of Goff’s design: a wire sculpture linking the skylight above with a
circular pool below. Again Goff had created a central feature in which a pool and
skylight were linked, here enhanced by the addition of a third element—fire—and
by the subtle motion and sound of the water as it moved down the wires,
reinforcing unities. Its dramatic amplification of changing light added to its focal
strength, transforming the room into an almost ceremonial space as strongly
evocative of family position as any Roman domus. And like the atrium of a
Roman house, or any number of similarly traditional models, the space was
not conceived as a container of conventional furniture, but rather as a place of
grander assembly, with more intimate, less formal areas provided elsewhere.30
 


  In the original color scheme, on which Goff worked closely with Airs. Nicol, electric colors in
the perimeter rooms contrasted strongly with the green central carpet. Bruce Nicol, who
describes the colors as ‘‘very ‘60s,’’ has become a specialist in architectural interior color
design.


 
  The Nicol House is still essentially in the realm of the (vertical) extrusion, although
ingeniously transcended on a relatively low budget. Variations on the octagonal theme
affect doors, windows, tables, counters, and cabinets. However, their subtle visual and
functional interrelations can only be understood and deeply felt through experience of the
building.

 
  Kathy Nicol reflects on living in the house:

 
  …is a home a composition of pieces, design motifs, or a whole…

 
     

 

‘‘O chestnut tree, great rooted blossomer, Are you the leaf, the blossom or the
bole? O body swayed to music, o brightening glance, How can we know the
dancer from the dance?’’
 



  —W.B. Yeats, ‘‘Among Schoolchildren’’

 
  It is a question which needs to be raised about many of Goff’s constructions but few traditional
buildings.

 
  …invariably one of us would drag (Goff) off to see something in the house; the way in which a
moon door framed a red bud limb or the reflection from the lily pool on a bedroom ceiling. BG
always was pleased that someone had noticed and always claimed credit for having anticipated
just such a phenomenon…BG stayed in the house for a month in 1969 when the entire family
went away. It was the first, and I think only time he ever lived in one of his designs.
He was singularly uncommunicative about the experience except to say that it was
interesting…

 
  The building itself inculcates a sense of possibility. It is not set squarely on the lot with a front
door facing the street. Each room is visually open to nature on all sides and above. One need not
look out a window or up through the skylight to know what the weather is. These serve more as
frames than windows or skylights. The view from no two windows is the same. There is a
sense of integration with the outside. The house changes dramatically during the day
and during the year. In the winter when snow covers the skylights there is a sense of
enclosure—not the sense of being protected from the elements but being enclosed by them.
Snow never looks as soft and comforting on the ground as it does when one sees it
from below on a skylight with the reflected light of a fireplace. In spring, the many
trees which surround the house change from day to day. As they begin to blossom

and then leaf, one is aware of the gradual change. Branches are close to windows and
skylights so once again there is no need to look ‘‘out’’ a window; the ‘‘out’’ is brought
into close proximity to the ‘‘in’’ and becomes a part of the interior decoration. The
relationship is not only visual…one knows when the first rain falls and the sound of leaves
falling and the wind blowing them about on the roof makes one realize why someone
living in a cube might crave a recording of a waterfall or birds chirping. The two large
moon doors also contribute to the noise factor; open—one hears not only birds, but
squirrels, frogs and even the splashes as bats swoop at the pools drinking and eating
bugs.

 
  The sense when inhabiting the space is not of forms connected to other forms but of flow.
There are no dead ends in the building…. Those corners which would shelter a corner chair are
lined with built-in shelving at about three feet from the floor. The shelving keeps one back about
18 inches but more importantly, as the shelves are highly wood grained, a soft color, about
fingertip level from a relaxed arm and continuous—the sense is to move about the space rather
than to stop. The more prevalent corner—are they convex and concave?—is that which protrudes.
These move the eye and even the body away from a dead end. They force movement along the
line of one surface around the comer to the next which invariably leads into the central
living area. The beds are on platforms which are continuous. If one sits in the living
room and looks into the bedroom the color and texture continues from where one is
sitting over the top of the conversation pit, across the floor and up the bed platform.
There is flow rather than stasis. (…occasionally first time visitors say they get turned
around in the house. I don’t understand but know that this would never happen in a
cube.)

 
  BG used Pella doors throughout the house so even the actual shapes seem to change with the
closing and opening of these temporary divisions. The structure of the doors is a simplified
microcosm of the building. The rolling feel of the shape and the sense of expansion or
enclosing.

 
  My parents have done no redecoration or modifications to the house, other than
maintenance and removing my brother’s suspended bed, since the house was built. This is
pretty weird when one considers that the house is almost thirty years old. However, the
impetus to change and redecorate is subverted by the structure itself. The interplay with
nature provides constant seasonal change. Additionally, as spaces are not confining
but rather interrelated, visually expandable areas, one’s perception of the structure
changes.


 
  Having spent much of my formative years in the house, I must heartily agree with Winston
Churchill’s belief: ‘‘We make our buildings then our buildings make us.’’

 
  …The shingles on our house are grey stain and the interior carpet is green bordering
on chartreuse. The ‘‘wire’’ fountain was long ago replaced by BG with a string and
mirror sculpture. The lily pool is a square while the swimming pool is the elongated
hexagon which is the shape of the shingles. Tvo tables are circular while two low tables
are the negative space of the moon doors where the glass was inserted. These were
impromptu designs which Goff devised when he saw the quality of the grain in the
Japanese Ash which is used throughout the house. He felt the wood too beautiful not
to use. This inspired the salvaging of most of the negative spaces…These forms and
anti-forms provide a pleasant repetition and visual reversal throughout the house. …Both
staircases are standard metal spiral staircases. The treads of these have been wrapped in
carpeting but would more closely approach a triangular shape than an octagon. The stools
which Goff designed are metal reinforcing bars with balls on one end and circular
cushions on the other—the configuration repeats the crossed reinforcing bar design
above each large skylight, over the chimneys and those on either post of the front
gate.

 
  Goff trimmed many areas with square mirrors in various sizes and textures. In the central
skylight area there are downward pointing pyramids of these in the spaces where shingles come
together. Along the front of the carport there are little rows of these mirrors set on edge.
Although Goff used the octagon as a unifying shape, it does not in practice feel dominant. The
drawer pulls are triangles and many cabinets and shelves are rectangles, cubes, or triangles. The
doors have compressed squares and pyramids as metal trim. In living in the house and viewing
the interior one is impressed by the interplay of many geometric forms rather than the
dominance of one. The polyhedrality is to my mind far more complex than the repetition of
octagons.

 
  As to the personal side of living in an unusual structure, it has been a fascinating experience. It
is hard for me to pull apart the influences and dissect what comes from being reared by people
who hired BG, spending great quantities of time with him over a four or five year period when I
was especially open to new ideas, and the influence of growing up in one of his creations. I always
enjoyed living in the house growing up and often rated people by their reaction to it. I
have been living here again recently and have a more developed respect for the design
elements and the functionality. I am however still surprised by the fact that Kansas
City or maybe the world in general has not yet caught up with Goff. It still rather

startles me when people comment on the house. I have been dealing with realtors
and potential buyers in the past few months and am flabbergasted that many people
believe it demands some strength of character to not five in a box. When we first
moved into the house I was about 14 and thought it very cool and wanted all my
friends to comment. Gradually however, I began to feel that those who felt compelled
to comment on the house were simply displaying a very narrow mind-set. Time has
moderated my stance somewhat. It was a fabulous house for teenagers in the sixties; a great
place for slumber parties; a great place to awaken one to the value of environment
and the importance of living with beauty and many other very valuable lessons. . .
.

 
  P.S. I just finished this after nightfall and forgot to include how the house is never really dark.
There is always some moonlight or even reflected city lights—it’s never like a windowless
apartment bathroom. …Also during full moons when the moon is over my bedroom skylight I
understand ‘‘lunacy.’’31

 
  William H. Bass House, Project, Tulsa, Oklahoma, 1956

 
  Before discussing polyhedra in the Bass House (Figure 2.9), we will let others summarize its
formal and functional aspects:

 
  According to Architectural Design:

 
     

 

The car port is screened from the road by a low wall of translucent glass along
two sides of a lily pool. A covered walk leads through the car port across the
forecourt of white raked sand, with reflecting pools, to the main entrance at
the right. Tall louvered aluminium ‘‘light trees’’ illuminate this area at night.
The entrance door is of pale green marble, as are all closet walls and sliding
doors for same. From the entrance hall we may go into the kitchen, at the
left, or into the ‘‘powder room,’’ coat closets and stairs up to the balcony.
Sliding translucent glass doors in gunmetal frames open into the marble-floored
recreation room with fountain. This space opens out on to the screened porch
and sliding translucent glass walls open to the carpeted parents’ living-room
and the daughter’s living-room.
 



  Figure 2.9 William H. Bass House, Project, Tulsa, Oklahoma, 1956. (a) Plan; (b) rendered
aerial perspective; (c) roof plan. (Courtesy of the Ryerson and Burnham Libraries of the Art
Institute of Chicago.)
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  Bedrooms open off these living rooms, each with marble closet walls, dressing areas and baths.
The dining-room opens off the parents’ livingroom and has direct service from the kitchen. A
service entrance opens into this space, with servants’ stairs leading down to their rooms in the
semibasement. A swimming pool adjoins the porch and dressing rooms and showers are
connected by a wisteria-covered arbor.

 
  The entire house is built on a star-shaped grass-covered berm, with gravel strip surrounding it
for drainage. Sim bathing areas flank the swimming pool. The roof is of Stran-steel construction,
covered inside with metal lath, sprayed with white acoustic-insulating asbestos …all
furniture, including dinnerware, glasses, etc., will be designed by the architect. All
baths are sunken marble-lined pools screened with translucent glass with planting
beyond….32

 
  And De Long:

 
     

 

…the  Bass  house  project—resembles  the  Price  Studio  in  appearance  but  is
composed differently, for it extends the theme of the McCullough project…with
modular shapes overlapped to form systematic variations of interior space. The
repeating unit, however, is itself more complex: a five-pointed star. Four are
overlapped to order both interior and related exterior spaces, and within the
house a regular pattern of hierarchies results, with shared, private, and service
areas given specific spatial character. These are programatically identical to
the McCullough Scheme, and reinforce Goff’s tendency to express a Ghent’s
desire for privacy through clearly defined geometries. Again he had produced
a  geometric  metaphor  for  interlocking  family  structure  [my  emphasis—RR],
one  that  stood  in  marked  contrast  to  the  more  conventionally  open  and
unstructured designs of the time, almost as if compensating for that which he
had rarely experienced but perhaps sought to honor. Typical of Goff’s approach
is his three-dimensional realization of the modular unit, here achieved by angled
     
planes that reinforce the star image…. The house was to have been constructed
of steel joists, with an exterior cladding of pale blue anodized aluminum. Inside,
pale green marble was to be used for floor and wall surfaces and, in sheets
suspended from wheeled ceiling tracks, as movable partitions. Goff explained
that while the clients approved the design, they were discouraged from building
by the strong protests of the neighboring residents.33
 


  The floor plan of the Bass project was based on three abutting pentagons—suggesting
dodecahedral development; however, the scheme developed instead toward a stellated pentagon
(pentagram, or five-pointed star, two-dimensionally speaking). Two nonadjacent pentagon
sides were extended until they intersected, creating an isosceles triangle, the base of
which was the included side of the pentagon. In plan, the pentagon modules were
each stellated on fewer than all five of their sides, resulting in partial pentagrams
(Fig-

 
  Figure 2.10 Bass House. Pentagon modules ‘‘stellated’’ into pentagrams.

 
  ure 2.10). The plan is based on a stellated pentagonal grid—a small region of a quasicrystalline
grid.

 
  A startling expression of the pentagonal geometry was the double-star roof. Two intersecting
pentagrams covered three pentagonal cores, their ridges bisecting the 36° pointed ends of the
stars in a natural outgrowth of the plan. The roofs stars interpenetrated like mirror-image,
twinned crystals. The owner was a two-star admiral! (Goff himself was in the Navy during World
War II)—not the first Goff literal translation of a client attribute into a specific form—note Goff’s
entry in the Cowboy Hall of Fame competition for Oklahoma City, 1956, in which the buildings
were shaped like horseshoes!

 
  Interiors consisted of free-flowing regions defined by pentagramal pyramid ceilings whose bases
were low triangular walls resting on perimeter facias or light troughs, the soffits of which became
the ceilings of the star arms. The pentagons were further defined by screens, glass, storage walls,
seating areas, and so on at key vertices. As in the Nicol House, major spaces were virtual prisms
generated by plan elements capped by corresponding pyramids, with subsidiary outcroppings
around their edges.

 
  The roof over a typical star arm had conventional two-slope pitch; however, the following
handling of surface planes contributed to the polyhedral character (Figures 2.11 and
2.12):
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  Figure 2.11 Bass House. Polyhedral star arm.

 
     

 
	
1. 

	The ridge sloped upward from the outer tips of the star arms as the roof widened.

     
	
2. 

	The roof consisted of four planes with three folds—the eave folds are horizontal.

     
	
3. 

	The lower roof surfaces wrapped down vertically onto the walls, in effect becoming
siding,  their  bottom  edges  sloped  downward  from  the  end  points,  circumventing
the  conventional  wall/roof  dichotomy.  The  roof  predominated  and  walls  became
secondary. Examples of other Goff designs that employ this device are the Rudd
icosahedral bedrooms, the Price Studio, and the Crystal Chapel.

     
	
4. 

	Glazing the ends of the star arms removed the vertical wall planes and let the roof
polyhedra dominate.

     
	
5. 

	These glass walls tilted out at the top—creating a pentagonal cross section.

     
	
6. 

	The apparent slope of the glass was doubled where the two sloping glass planes abut
at the pointed ends of the star arms.

     
	
7. 

	Landscape  berming  repeats  the  dihedral,  pointed  roof  pattern,  emphasizing  the
pentagram fingers. Angular planters articulate vertices where the star arms meet.
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Figure 2.12 Bass House. Section through star arm.
 



  All of this added up to quin-or pentapyramids (an extension of di-pyramid nomenclature); or,
say, ‘‘partially-stellated-proto-icosahedra.’’

 
  Intersections of two tip ends of the star arms are prominent in the front and rear of the
house—the front intersection being articulated further into a mechanical shaft doubling as
entrance totem.

 
  A three-story front entrance area contains a multiplicity of functions—kitchen, powder room,
closets, and utility rooms. Covering these elements are extensions of central portions of the
roof—in a complex departure from the ‘‘purity’’ of the twinned pentagrams. Lateral
halves of the star arms are extended straight beyond the ridge, rather than folding
there.

 
  The star theme proliferates in skylights, pentagonal diprism glass tables, stools and chairs,
exterior planting, walkways, and sunken seating areas.

 
  John Sergeant observes:

 
     

 

On  a  larger  scale,  the  same  problem  [i.e.,  an  ‘‘erosion’’  of  the  centralized
geometry for an ‘‘act of entering’’ which is ‘‘somewhat mean’’] is exhibited in the
Bass project…. A two-star admiral merits a grand plan with family pentangles;
but ultimately there is the same clash between entrance and kitchen, which duel
for the same geometric slot. The brilliantly developed geometrical hierarchy
suffers from one of its points being a dining room while the others are bedrooms.

 
It has been argued that this very abstract, ‘‘frozen’’ geometry is unworkable;
it has been called ‘‘heraldic.’’ De Long, however, feels that it represents only
an extreme development, and draws attention to the geometry as pattern. He
suggests that the complication and ambiguity of architectural experience which
result from such plans parallel the aims of Sufi architecture, where complex
overlapping pattern was used to sustain contemplation. This may be so, but
Goff’s handling of symmetry must also be set in Western culture.54
 



  As this design is unbuilt, no one can vouch for the static-ness versus the fluidity of the
interior space from direct experience. However, based on built designs with similarly
strong generating patterns, for example, the Pollock/Warriner, Wilson, Nicol, and Price
residences, the strength of the geometry and the rigor and variety with which the Bass
pentagonal theme is carried into the third dimension and into the detailing and all
the other aspects of its architecture, establish not only uniqueness, but unity and
tranquillity.

 
  In the Bass House the sense of polyhedral, nonparallelepiped space—exciting and different
space—is strengthened with minimal resources.

 
  The Irma Bartman (Triaero) House, Fern Creek, Kentucky, 1941

 
  This triangular summer vacation cottage (Figure 2.13) with its steeply angled struts, dramatic
overhanging, and shadow-producing trellises heralded several features that were later to appear
in the Bass design: glass end walls, inclined wall storage units, and wraparound, ribbed siding.
Together these elements
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Figure 2.13 Irma Bartman House (Triaero), Fern Creek, Kentucky, 1941.

 
dramatized  the  acutely  angled  corners  of  the  plan,  producing  a  feeling  of
more than just a prismatic, vertically extruded volume, in short, creating the
emotional dynamics resulting from the use of polyhedra. The storage areas
and glass end walls are a sort of hexagonal diprism, capped and enclosed by a
triangular roof and stanchions that form a truncated octahedron.

 
The Emil Gutman House, Gulfport, Mississippi, 1958

 
Another triangular scheme, the Gutman House (Figure 2.14), built in hurricane
country, was raised one story off the ground on pipe columns to avoid flooding.
The  house  was  ‘‘wind-proofed’’  by  its  ‘‘airfoil’’  profile  of  sloped  triangular
underside and pitched roof.
     

 
The pipe columns supporting the house were arrayed like outspread fingers
forming three tetrahedra-like clusters or inverted triangular pyramids (which
were to have been enclosed in the first design, as were the towers of New York’s
George Washington Bridge). In three tetrahedral pipe column clusters, a single
one-inch-diameter steel rod tension member tied down the cantilevered floor
trusses. Professor Robert Faust, of Auburn University, who
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  Figure 2.14 Emil Gutman House, Gulfport, Mississippi, 1958. faPlan; (b) exterior photo.
(Courtesy of the Ryerson and Burnham Libraries of the Art Institute of Chicago.)

 
  organized and supervised the construction was worried about those rods—if anything happened
to one of them (e.g., a fire), presumably down would come the house. There was a fire, but it
affected other parts of the house.

 
  Faust said construction work on the house, which went smoothly, caused a great deal of
excitement. Passers-by (many of whom were from the local Pensacola area) thought it was a
bridge under construction, among other things.

 
  The geometry of the scheme as a whole is based on a triangular grid hierarchy with a unit
triangle of 7 feet on a side (Figure 2.15a). The structural supporting legs conform to this
geometry—three inverted pyramids forming a tetrahedral/octahedral space-frame-like unit (Figure
2.15#). The interior spaces were generated by vertically extruding into prismatic volumes a plan
tiling of triangles with one, two, or three comers truncated, creating both truncated rhombi and
hexagons with unequal sides arranged within a larger overall triangle. The resultant plan is
essentially a tessellation of equal-and unequal-sided hexagons with sides defined by partitions of
varying degrees of
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  Figure 2.15 Gutman House, fa) Geometry, triangular grid hierarchy; (b) structure, inverted
pyramids of supporting legs form a tetrahedral/octahedral space frame (with elevation). (c) roof
plan, pyramid, soffit under similar (with elevation of diagonal structure), (d) open interior
spaces—hexagonal tessellation, partition transparency and views, (e) peripheral service
elements—closets, planting, porches, utilities.

 
  transparency and movability, for example, drywalls, sliding glass doors, fixed glass, and folding
wood doors as room dividers and closet doors (Figure 2.15d). In plan, again the polygon
variations differentiated private, family, utility, and server spaces. In the Gutman House,
however, most of the service elements—closets, planting areas, porches, utilities, stairs—are on the

periphery (Figure 2.15e). The regularity, truncation, and size gradation of opposing triangular
modules is clear in the Gutman House. Alternate triangular prisms are expressed on the exterior
corners and midsides of the larger triangle. All are sandwiched between shallow triangular
dipyramids (hence ‘‘airfoil’’). In other words, the roof (Figure 2.15c) is a shallow pyramid capped
by a single-module tetrahedral skylight; the underside or soffit is a similar, but inverted,
pyramid, the bottom of which accommodates a sunken seating area, the floor framing and
mechanical equipment while portions of the upper pyramid are recessed to reveal sloped
ceilings.

 
  Faust said one thing that did not work as well as Goff expected for the Gutman House was
the use of little chips of broken plate glass added to the stucco and to the driveway
to make them sparkle. Albeit unsuccessful, these little chips of glass mirrored the
crystalline aspects in Goff’s designs—reflected on a larger scale in the chunks of glass
cullet (‘‘culled’’ waste from commercial glass kilns), which Goff used from time to
time in various capacities—as ornament, masonry, and glazing. Athough crystalline,
the glass cullet exhibited complex, curvilinear fracture surfaces, both concave and
convex, producing undulant and sinuous refractions reminiscent of the shapes in Goff’s
paintings.

 
  In the 1980s the Gutman House suffered a fire of suspicious origin. It was said that the fire
department, unfamiliar with the unusual design, was unable or unwilling to obtain access to the
house to extinguish the fire. Faust said the house was then put up for sale for $80,000 of which
$50,000 was for the site. In order to sell the property, the owners apparently felt it was necessary
to get rid of the partially burned structure and demolished it. Grantham and his wife Bonnie
visited the site on their honeymoon in 1987. The only traces remaining of the house were little
rusted nubs from the cut-off pipe-supporting legs protruding from their foundation like the
stumps of tree clusters.

 
  Other Triangular Designs

 
  Goff designed a number of other buildings with Stage 2 triangular plans. These were generally
‘‘tighter,’’ that is, more formally symmetrical, than Frank Lloyd Wright’s triangular plans. The
salient polyhedral features of several are mentioned in the following discussion—private residences,
the Briar Associates prefabricated projects, fraternity houses, and a motel. The Bartman
(Triaero) House was discussed previously in conjunction with the Bass House. The Price Studio

designs and the Crystal Chapel are covered further on. The Searing House was noted in
passing. Each provides a unique example of a variation on the triangular theme—but
they are by no means all simply prismatic spaces extruded vertically from triangular
plans.35
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  Figure 2.16 John Quincy Adams House, Project 1, Vinita, Oklahoma, 1958. Rendered
perspective. (Courtesy of the Ryerson and Burnham Libraries of the Art Institute of
Chicago.)

 
  The John Quincy Adams House, Project 1, Vinita,

 
  Oklahoma, 1958

 
  The Adams House (Figure 2.16), like the Gutman House, was raised off the ground at three
points but with a garage underneath—a modified octahedron—or dipyramid with the base enlarged
(Figure 2.17). The house was partially suspended on cables from pylons at the centers of each
side—the pyra-
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  Figure2.17 Adams House.

 
  (a) Octahedron, two views; f/V Adams House, side view and plan.

 
  midal cable arrangements complementing and giving rise to its polyhedral character, since the
polyhedral edges of the house followed the cable lines. Triangular windows with Y mullions
created ‘‘virtual’’ tetrahedra.

 
  The Helen Unseth/Sheldon Newman House Designs

 
  Version 1—Project, 1939

 
  The tetrahedral-like clusters of roof trusses of the first Unseth design (an equilateral triangle in
plan) were not rigorous space frame or tetrahedral-octahedral matrices, but rather,
three-dimensional prismatic grids
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  Figure 2.18 Helen Unseth House, Project, 1939. Model photo. (Courtesy of the Ryerson and
Burnham Libraries of the Art Institute of Chicago.)

 
  resulting from interlocking two-dimensional trusses—an early suggestion of the Sierpinski
arrowhead mentioned below in connection with the Crystal Chapel (Figure 2.18).

 
  Version 2 of the Unseth House, as Built in 1940, in Park Ridge, Illinois


 
  The plan is a square cut in half along the diagonal, forming an isosceles triangle. The focal
point of this small and modest-seeming house is a dynamic composition of fireplace opening,
sunken hearth, flue, windows, and skylight, together carrying into the third dimension the
diagonally cut-square theme. A similar functional/polyhedral cluster surrounding a fireplace was
seen in the Hyde House, discussed previously.

 
  Triangular windows are covered with shutters that are ‘‘die cut,’’ as it were, from the
continuous diagonally lapped board siding. When opened, a shutter, together with its window
opening, create a virtual tetrahedron. A similar polyhedron is implied in a corner of the
bathroom by two back-to-back triangular windows.

 
  The present owner of the house, Sheldon Newman, feels that the house is a bit small for his
present needs—but that the character of the house more than compensates. Mr. Newman said he
felt that to know a Goff house one should know about the client, because Goff carefully tailored
his designs to their needs. From neighbors he found out that Ms. Unseth was an artist and
horticulture lover who had planted most of the site—now fully mature over half a century later.
From the interiors the windows bear a striking relationship to the trees and bushes
outside—the 45° angled sloping sills provide surprisingly harmonious frames for the
spreading crowns of the yard foliage. (The same is true of the Nicol House windows.) A
tiny triangular window at the floor level may have provided a view of a favorite plant
outside.

 
  Briar Associates Projects, Bartlesville, Oklahoma,

 
  1963 and 1964

 
  Goff again used triangular and hexagonal prisms (vertically extruded—Stage 2) in the several
designs for the Briar Associates prefabricated structures. House A was based on the hexagon
whereas House B and Cabin A were based more on truncated triangular prisms. Cabin A, with
its clearly expressed riveted metal shell, was supported and raised above grade, like the Gutman
House, on three steel finger-like ‘‘quadripod’’ arrays—inverted pyramids. Triangular windows at
the corner truncations of Cabin A (similar to those of the Nicol House) were shaded by the
sharply pointed cantilevered prows of the roof, which extended the equilateral triangle of the
plan out to its vertices.

 
  Black Bear Motor Lodge, Project, Jackson Hole, Wyoming, 1961

 
  The tepee-like tetrahedral ‘‘dormer’’ windows that enliven the roofs of the Black Bear Lodge
(Figure 2.19) connote a Native American theme—a theme that is inevitably suggested whenever a
conical (or many-sided polygon-based
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  Figure 2.19 Black Bear Motor Lodge, Project, Jackson Hole, Wyoming, 1961. Rendered
perspective. (Courtesy of the Ryerson and Burnham Libraries of the Art Institute of
Chicago.)

 
  pyramid) form is used, as in Goff’s Crested Butte Lodge and a number of other projects. The
Black Bear motel rooms are grouped into three rectangular blocks, which in turn are arranged as
a triangle. Within this triangle are three dining, communal, and service tetrahedral
spaces—all one story above grade. This frees up the ground level for parking, circulation,
landscaping, and a swimming pool at the center, which is open above. Tapered skylights cap
the ridges of the tetrahedral roof of each major space and, together with a similar
tapered spire from the peak, create a four-pronged (tetrapodal), stellated-like crown
(Figure 2.20)—three of which dominate the motel silhouette. Zigzag masonry walls
enclose the whole and frame sharply pointed balsam fir and spruce trees, which echo
the rooftop spires—all set against and perhaps inspired by the jagged mountainous
backdrop.

 
  Figure 2.20 Black Bear Motor Lodge. Tetrapodal crown/skylight.
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  Figure 2.21 Phi Sigma Epsilon Fraternity House, Project, Talequah, Oklahoma, 1962.
(Courtesy of the Ryerson and Burnham Libraries of the Art Institute of Chicago.)

 
     

 

Phi Sigma Epsilon Fraternity House, Project, Talequah, Oklahoma, 1962

 
A series of ‘‘A-frame’’ structural members created a triangular prism upon the
sloping wall/roofs of which nestled rows of complementary triangular prism
‘‘dormer’’ windows (Figure 2.21). A similar volume, but a negative variation
on the prism, provided an inviting and protective entrance. Related clusters of
rooms occur in the fraternity houses and the motels as they are both multiunit
residences.
 


  W.R. MacBryde House, Project, Kansas City, Kansas, 1959

 

     

 

The MacBryde House (Figure 2.22), like the Gutman and Adams houses, is
raised one story with the garage remaining at grade. Diagonal corner porches
are joined visually by railing walls with sloping tops that create an illusion
of the entire house resting on a flattened half-cuboctahedral base. Like the
Gutman House, interior volumes are expressed on the exterior as triangular
prisms with sloping bases, penetrating the partial cubocatahedron that defines
the perimeter. As in the Pollock/Warriner House, here the structural framing
runs at a 45°angle to the overall massing of the house.
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Figure  2.22  MacBryde  House,  Project,  Kansas  City,  Kansas,  1959.  (a)
Bird's-eye perspective; fworm's-eye perspective. (Courtesy of the Ryerson and
Burnham Libraries of the Art Institute of Chicago.)
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  Figure 2.23 Phi Beta Delta Fraternity House, Project, Norman, Oklahoma, 1930. Rendered
elevation. (Courtesy of the Ryerson and Burnham Libraries of the Art Institute of
Chicago.)

 
  Phi Beta Delta Fraternity House, Project, Norman,

 
  Oklahoma, 1930

 
  The Phi Beta Delta Fraternity House (Figure 2.23) was an elaborate Stage 1 project, basically
a T-shaped plan, with its member cells canted—producing a ‘‘sawtooth’’ plan, which gave each
room a corner window, expressed the multiplicity of rooms, and created a dynamic, spatial
exterior. Goff had designed a high school in 1930 along similar, serrated lines. The corridor
between two banks of rooms, as a result of this canting, contained wedge-shaped volumes, which
would have invited ‘‘schmoozing.’’ A typical cell comer window consisted of back-to-back
triangles—again, the virtual tetrahedron (Figure 2.24). These ‘‘tet’’ volumes dominated the
exterior of the building and the balance of the exterior wall surfaces were diagonally and

triangularly patterned and scaled so as to unify them into an abstract composition (what
today we might lazily call art deco), emphasizing the vertical stacking of rooms and
downplaying the horizontal. Frank Lloyd Wright used the wraparound window early on (e.g.,
the Henderson House, 1901), as did Le Corbusier (e.g., the Amedee Ozenfant Studio,
1922).

 
  Pi Lambda Phi Fraternity House, Norman, Oklahoma, 1955

 
  As in the Black Bear Lodge, the mostly rectangular spaces in the Pi Lambda Phi Fraternity
House—a dining room, private rooms, and offices—were contained in three longer rectangles,
which in turn defined the edges of a large, two-story, interior triangular commons
(Figure 2.25). At the three comers where these rectangles met, the resulting triangular
entrance and related spaces were extruded vertically into prisms. A very flattened
half-cuboctahe-
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  Figure 2.24 Phi Beta Delta Fraternity House. Corner windows compared: (a) Frank Lloyd
Wright's Henderson House, 1901; (b) Le Corbusier's Ozenfant Studio; (c) Goff's Phi Beta Delta
Fraternity House, virtual tetrahedron.

 
  [image: PIC]

 
  Figure 2.25 Pi Lambda Phi Fraternity House, Norman, Oklahoma, 1955. Plans. (Courtesy of
the Ryerson and Burnham Libraries of the Art Institute of Chicago.)

 
  dron roof with triangular clearstory windows covered the communal area, topped by a large,
open-frame, steel pipe tetrahedron, from the apex of which hung sculptural television antennas.
A prototype for the central triangular prism defined by three peripheral rectangular spaces is
apparent in Goff’s 1924 design for a recital hall in Tulsa, and is echoed two-dimensionally in the
floor plan of the Crystal Chapel.

 
  First NatioiniaD Bank, Project, Independence, Missouri, 1970

 
  James Nicol (of the Nicol House discussed previously) was an officer of the First
National Bank of Independence (Figure 2.26) and was instrumental in getting Goff the
commission for a new building for the bank—the second of two projects (the first had been a
remodel).
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  Figure 2.26 First National Bank, Independence, Missouri, 1970. Rendered perspective.
(Courtesy of the Ryerson and Burnham Libraries of the Art Institute of Chicago.)


 
  The core of the bank was a load-bearing structural steel frame enclosing stairs, elevators, and
utilities. The structural members of the core were exposed at the top of the building and cutaway
into a crown that formed half of a virtual cuboctahedron. From this core were cantilevered
floors of graduated lengths—one could argue that this might lend variety to rental
potential—creating the most striking polyhedral element of the building—a tower mass as a square
rotated 45° to stand on its corner. The visual device of increase in width toward the
top was used occasionally by Wright, for example, the Rogers Lacey Hotel project in
Dallas, 1946,56 and, of course, the Guggenheim Museum in New York. Goff’s design,
however, increases in width much more rapidly from the base upward to its midpoint and
then decreases equally. A square with this orientation seems less a square—more a
quadrangular polygon—its corners predominant. The edges we are used to in conventional
architectural boxes are either parallel to the ground or vertical, the comers scarcely noticed.
This portion is Stage 2—a horizontally extruded, nonrectilinearly oriented, rectangular
parallelepiped.

 
  Adding to the dramatic mass of the square on its corner was a robust, deeply patterned
Cor-ten steel curtain wall. Although he obtained commissions for a variety of high-rise buildings,
Goff never had occasion to use modular polyhedral units in vertical close packing—only a
suggestion appeared in the First National Bank curtain wall. Was the honeycomb-like cladding
intended to allude to the beehive of the office environment?

 
  This polyhedral curtain wall was based on a familiar tessellation of octagons and smaller
squares with the same edge length as the octagons, turned 45°—in sync with the office tower
massing. This grid appears in the plans of the Jones, Wilson, Pollock/Warriner, and Nicol houses
discussed in this chapter and in the Innis House, Project, Coronado, California, 1943,
among others. The octagons of the First National project acted as the bases of shallow
(having a short altitude relative to the width) but visually powerful pyramids—the
octagons were large—equal to the story height. The intermediate squares and their
vertically pivoting window sashes when opened 90° formed virtual octahedra (Figure
2.27).

 
  The purpose of this pyramidal dimpling was the same as that of the pressed metal patterns
employed frequently for cladding of commercial buildings from the 1950s onward, such as the
aluminum curtain wall of the 666 Building in New York—to stiffen a thin metal sheet and
simultaneously provide some tex-ture/omament. Goff’s wall had a real depth but,
at the same time, imparted an even greater illusion of depth through its pyramid
symbolism.


 
  Fitting the multipyramidal integument to the sloping ends of the 45° office block was
accomplished by a slide transformation in which the pyramids were cut so that five segments
stayed in place and three slid inward to the next story (Figure 2.28). ‘‘Slide’’ surfaces resulted in
an accordion pleat, strongly defining the sloping end walls. This curtain wall is a proto-Stage 4
polyhedral tessellation.

 
  Cor-ten steel was the rage for a while in the 1950s and 1960s—it was a preoxidized (rusted) steel
alloy that would presumably oxidize only up to a

 
  Figure 2.27 First National Bank, Independence, Missouri. Virtual octahedron window.

 
  Figure 2.28 First National

 
  Bank. ‘‘Slide’’ surfaces result in accordion pleat.
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  point, retain die rusty reddish-brown color, and not require painting. Structural
steel could be expressed as steel without maintenance problems (where fireproofing
was not a consideration). Grantham believes that Cor-ten eventually lost popularity
because the rust dust would bleed onto other buildings, drip to the ground, and stain the
surroundings.

 
  The First National’s curtain wall is reminiscent of Buckminster Fuller’s 1958 steel geodesic
dome for the repair shed of the Union Tank Car Company in Baton Rouge—each utilizes
prefabricated pyramidal steel cells to form a continuous stiffened skin. There the similarity ends.
Fuller’s was another variation on his geodesic system, involving tension and compression rods as
part of the hexagonal arrangement of sphenoidal structural cells, each cell varying in size and
shape according to its location in the spherical geodesic pattern. Goff’s design was
based on a uniform, equal-celled, essentially planar, square-octagonal tessellation, and
was not structural, beyond its self-bracing, nor was it, of course, covering a spherical
surface.

 
  The floor for customer banking transactions was a box—redefined with Goff’s personal stamp.
Raised one story above grade and distinct from the office zone above, it acted as a transition
from the ground plane and as an underlying base to the 45° angled volume above. Contrasting
with the opaci -
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  Figure 2.29 First National Bank, (a) Secondary outline of tower cladding is reflected in (b)
banking floor rondelle windows. Transition from dodecagon to square frame is done with ‘‘curve
stitching’’ of beams.


 
  ty of the textured steel mass above it, the banking floor was transparent—enclosed by
giant glass ‘‘rondelles’’ on one long side, on the end walls, in the ceiling as skylights,
and set in the floor as well. A variation on the tower cladding, it comprised 12-sided,
tempered-glass pyramids whose base perimeters consisted of overlapping steel beam frames,
another example of curve stitching (Figure 2.29). This ‘‘cage of steel and crystal’’
hovered over the plaza, suspended on cables from the floors above. As Goff said to
Grantham (who spent a month drawing the intricate perspective), ‘‘Same old unusual
stuff.’’

 
  When First National was bought by a larger bank, the project was dropped.

 
  The Howard Jooues House, Bartlesville, Oklahoma, 1958

 
  The Jones House (Figure 2.30) has an open plan that does not readily admit to polyhedral
discoveries. The floor plan is based on squares and octagons in tessellation—the same pattern as
the grid of the First National Bank curtain wall discussed previously. Had the Jones House plan
tessellation been carried into the third dimension (e.g., had the squares and octagons been
orthographically projected in front and side elevation as well as plan) to create an aggregation of
polyhedral cells, it might look something like the schematic representation of a sodalite
crystal.’’

 
  Major functions such as living and dining inhabit the various octagons,
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  Figure 2.30 Howard Jones House, Bartlesville, Oklahoma, 1958. Plans. (Courtesy of the
Ryerson and Burnham Libraries of the Art Institute of Chicago.)
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  Figure 2.31 Howard Jones House. Octagonal prism penetrated by octagonal
dipyramids—schematic view and section.

 
  which He at different levels, whereas the square elements comprise circulation and
service modules—stairs, fireplace, and so on. A basic unit of space consists of an octagon
extruded vertically into an octagonal prism, which is in turn encircled by portions
of the frusta of octagonal dipyramids (Figure 2.31). Most of these prismatic units
are open to one another and have only minimal vertical definition through exterior
sidewalls—fewer than the Nicol House. The frusta—girdling bands of triangular prisms—act as
showcase window/shelf units for Airs. Jones’ pottery collection—an important architectural
determinant for this house. One senses a complex and spacious openness—a sense of

the monumental. Three 1892 Oak Park houses by Wright contain the pyramid cum
prism in a conventional 19th-century juxtaposition—with steep octagonal pyramid
roofs on octagonal prism spaces below—the Thomas Gale, Emmond, and R.P. Parker
Houses.

 
  The Jones House Hes somewhere between Stages 1 and 2.

 
  The Joe Price Studio and Residence, Bartlesville, Oklahoma, 1953–1974

 
  If his designs sometimes proved too controversial or expensive, Goff, rather than
compromise and dilute, would create a completely new scheme, using a simplified
module or straight lines rather than curves or fewer angles. The Price Studio is an
example—stepping down a rung of the ladder to a simpler polyhedral stage—from Stage 3 to Stage
2.

 
  Morphologically, the Price Studio designs were (in brief): Scheme 1—lin-

 
     

 

ear clusters of rhombic frusta along the x, y, and z  axes. This scheme was
rejected for reasons discussed later. Scheme 2a was a ‘‘pinwheel’’ theme with
vertical walls and a pitched roof. Scheme 2b had a similar plan but with sloping
walls, creating less conventionally prismatic spaces. This scheme was built in
1956 and will be referred to in the following discussion simply as Scheme 2. It
received two additions—a gallery and a meditation room.
 


  Scheme 1

 
     

 

Scheme   1   (Figure   2.32),   unbuilt,   consisted   of   variations   on   rhombic
frusta   arranged   in   additive   series   or   stacks   along   the   x,  y,  and   z
axes.  The  approximately  90°  opposition  of  each  axis  to  the  other  two
created  a  three-pronged  reference  armature  in  space,  strongly  expressive
of  three-dimensionality.  The  application  of  this  spatial  tool—individually
articulated  x,  y,  and  z  axiality  (Figure  2.3  3zz)—occurs  not  only  in  the
multiplanar work of Frank Lloyd Wright (e.g., the Robie House) but also in
     
that of Le Corbusier and Mies van der Rohe (the Barcelona Pavilion is an easily
read example). In the Price Studio 1 nonrectilinear volumes, that is, frusta and
prisms, rather than planes or boxes, are oriented along the x,y, and z  axes
(Figure 2.3 3£). The slight inclination of these axes to one another parallels a
common property of crystals.

 
XAxis.  The   thematic   unit   volume   of   the   Price   Studio   1   was   the
rhombic frustum (Figure 2.34zz), extending horizontally and approximately
perpendicular to the slope of the hillside site (Figure 2.34#). The cushioned,
carpeted lower inclined surfaces of these frusta were seating/lounge surfaces.

 
Variations on this theme abound—large and small, frustum, pyramid, and prism,
vertical, horizontal, and sloping, abutting and branching, and so on. The main
studio space was a linear series consisting of two frusta of rhombic pyramids
of  different  ‘‘altitudes’’  (I  emphasize  ‘‘altitude’’  because  in  this  case  it  is
horizontal, whereas we usually think of the altitude of a pyramid as being
vertical) with their truncation faces abutting, plus two rhombic pyramids, in
a generally ABB\AX relationship, with pyramid and frustum bases back to
back (Figure 2.35a)—or two pyramids interpenetrating vertex to vertex with a
rhombic pyramid terminating each end.

 
At each end of the x-axis array, dormers frusta sprouted like crystal growths
or plant buds, a literal expression of organic architecture—part window, part
skylight (inspired by the unfolding spout of a milk carton?)—glazed by boring
holes in the glass and bolting it direcdy onto the gasketed opening.

 
Side planes of the B frusta overlapped to shield and define bands of skylights,
fighting  fixtures,  and  ventilation  grilles—at  the  same  time  emphasizing  the
frustum edge and the separateness of surfaces and downplaying solidity.

 
Y  Axis. Penetrating the x’-axis volumes at not quite a right angle in plan
(in keeping with the rhombic theme, i.e., angles other than right angles) was
a prism extruded parallel to the slope of the hill. The hill slope appears to
have been a major determinant of the rhombic theme—the hill’s angle of repose
projected onto each of the x, y, and z dimensions—schematically, if
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  Figure 2.32 Joe Price Studio and Residence, Project (Scheme 1), Bartlesville, Oklahoma,
1953. (a) Rendered plan; (b) rendered exterior perspective; (c) section. (Courtesy of the Ryerson
and Burnham Libraries of the Art Institute of Chicago.)

 
  Figure 2.33 Joe Price Studio, Scheme 1 (project), (a) Generalized x, y, and z axiality; (b)x, y,
and zaxiality in the Price Studio.

 
  Figure 2.34 Price Studio, Scheme 1. (a) Rhombic frusta; (b) hillside slope as generator of the
angles of the rhombus.
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  not strictly. The base of this inclined prism was a square tilted at 45°. (The First National
Bank was a variation on this theme.) A wood ramp within served as circulation—carport,
entrance, and bridge. The prism acted as tunnel and watercourse for a stream passing through
the house, terminating in a waterfall on the downhill side. In addition to square and triangular
elements, the pentagon (if somewhat modified) can also be found in the Price Studio
1.

 
  ZAxis. Several variations on the prism array were related to the (vertical) z axis. One was an
outdoor lounge or screened porch (Figure 2.35Z>). This was an ABBiAi stack on a vertical axis,
the bottom A acting as a stone base holding up the central BBi porch—a dipyramid. A horizontal
deck was placed within the canted sides of the inverted pyramid. It was topped by another A1
frustum—
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  Figure 2.35 Price Studio, Scheme 1. (a) Main living area with horizontal ABBA arrangement
of units; (b) screened porch, with a vertical variation of the ABBA sequence.

 
  lighting fixture. The z-axis array consisted of, in other words, back-to-back bent pyramids.
Another variation on the z-axis grouping was a kitchen/bath-room/darkroom service module
near the entrance.

 
  The rhombic polyhedra of Scheme 1 hint at the illusory effect of that well-known psychology
experiment in which an object at the end of an experimental room with diminishing dimensions
seems larger than normal because of the unexpected distortion in perspective. In other words, a
frustum might exaggerate its own perspective, a property we will encounter again in the Crystal
Chapel.

 
  Early in the 1920s Goff heeded Wright’s admonition to his followers not to copy his forms
but rather to find their own way. Goff was motivated to steer clear—apparent in his
propensity to create crystalline forms as spaces that could be occupied. According to Larry
Grantham, who feels that Goff’s work can be interpreted as ‘‘building-as-ornament,’’ such

spaces came about as the logical development of two-dimensional ornament being
made three-dimensional. Goff contrasted this concept of ‘‘building-as-ornament’’ (a
concept that he explored in his ‘‘273’’ design lab at the University of Oklahoma) with
that of applied local ornament. In teaching, Goff characteristically neither advocated
nor rejected these ideas, but simply put them forward as possibilities of which to be
aware.

 
  The Price Studio was sited directly across a shallow valley facing the Harold Price House
designed by Frank Lloyd Wright. Wright reacted negatively to the design for the first Price
Studio. After seeing the plans, Wright wrote a scathing letter to Goff in December of 1954,
calling the design a ‘‘travesty,’’ an ‘‘elaborate and expensive fiasco,’’ and a ‘‘manifest
aberration’’ that ‘‘violated the concordant repose.’’38 (Similar barbs had been thrown at
Wright’s work from time to time, e.g., against the Guggenheim Museum!) According to
Grantham, Goff ‘‘altered his course forever after Wright pulled in the reins.’’ Scheme 1 was
abandoned.

 
  Scheme 2

 
  Scheme 2 (Figure 2.36), built in 1956 (three years before Wright’s death), has a cross section
similar to Taliesin West’s sloping rectangle—which carries into three dimensions the nonrectilinear
angles of the plan. To this angle of cross section, Goff compounded another angular
motif—the diagonal orientation (approximately 20°-70°) of the gold anodized aluminum
roofing/siding. The effect is both dynamic and illusionary, approaching a helix (Figure 2.37).
(Nor is, incidentally, the 45°-90° grid of Wright’s Taliesin West plan repeated in its
elevation/section—it is approximately 15°—recalling the slope of the background Paradise Valley
mountains.)
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Figure 2.36 Joe Price Studio and Residence (Scheme 2), Addition, Bartlesville,
Oklahoma, 1956–1974. (a) Loft; (b) photo of tile bathroom with pool above.
(Courtesy  of  the  Ryerson  and  Burnham  Libraries  of  the  Art  Institute  of
Chicago.)
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  Figure 2.37 Price Studio, Scheme 2 (built). Schematic roof plan, elevation, and
section.

 
  The Price Studio is the most opulently appointed of Goff’s residences with its deep pile
carpets, its famous goose-feathered ceiling, and its built-in Goff designed murals, sculpture, and
stained glass; however, in terms of spatial concept, other designs were more daring, for example,
the studio’s first scheme, the Bavinger House, the Dewlin Aparture project, and the first Garvey
House design (the latter three are curvilinear).

 
  Still, the Price Studio, as built with its additions, is a symphony of Stage 2 triangular and
hexagonal prisms and dipyramids, of truncations, elongations, shifting axes, twinning, bi-and
triaxial and rotational (pinwheel) symmetries of plan and roof structure (Figure 2.38), finials,
stretching, bending, rhythms, branching, ornamentation, and texture.

 
  For example, an aquarium at the center of the Japanese Painting Gallery (the first
addition to the studio—a hexagonal prism motif) consists of an inverted hexagonal
pyramid, the faces of which are subdivided into shallow triangular (triakis) stellations
(or pyramids). The water reflects and refracts, multiplying the edges, vertices, and
planes, adding to the pool’s crystalline, polyhedral quality, giving it the feeling of a
large cut diamond.39 A similarly framed skyfight was designed for the roof directly
above.

 
  A meditation room (the second addition to the studio), described by some as ‘‘kaleidoscopic,’’
reprises the rhombic frustum theme of Scheme 1, like Petroushka’s ghost. Its roof is a
rhombus folded into an elongated tetrahedron (in crystallographic terms a tetragonal
bisphenoid) and truncated at the ends to produce smaller, similar virtual tetrahedra (Figure
2.39). The windows of Scheme 2 are another variation of the folded rhombus/virtual
tetrahedron.
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  Figure 2.38 Price Studio, Scheme 2. Schematic ‘‘pinwheel’’ roof framing and pyramidal
skylight over living room.

 
  De Long discusses further symbolic and metaphoric aspects of the crystalline nature of Goff’s
design:

 
     

 

     
Images of crystals …permeate his work, from such large-scale expressions as
the  Crystal  Chapel…to  such  small-scale  applications  as  the  windows  of  the
Snyder project…. In no example does such imagery seem more clearly intended
than in the Price studio, beginning with the unbuilt project of 1953, where
shapes shown in the exterior perspective closely resemble a quartz crystal Goff
had in his collection…. In the built design of 1956 the crystalline forms of the
aluminum-clad structure, reinforced by the prismatical details of the windows,
sustain the image…. The studio appears to emerge from foundations of coal
and encrusted glass as if it were a crystal in formation, recalling Expressionist
postulations regarding the transformation of coal into precious gems, a form
symbolic of the highest ideals. Manipulations of glass, mirrors, and coal within
the Price
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  Figure 2.39 Price Studio, Scheme 2, second addition. Schematic roof configuration—virtual
truncated tetragonal bisphenoids.

 
     

 

studio augment the image, which seems appropriately symbolic, for it would
embody the essence of physical perfection and provide for an ideal retreat set
within the imagined space of a jewel itself. This seems close to a statement
in the article Goff recalled as his introduction to such concepts: ‘‘Thick glass,
clear or colored, for roofs or walls or floors, opens up unconjectured vistas of
luminosity and crystalline splendour, causing a house to vibrate with light, to
unfold like a jewel of many forces, of dynamics and design.’’40
 


  A Note on Construction. In Goff’s working drawings 30°-60° elements such as window
mullions, facias, siding, and trim were often anchored to 90° components such as studs, floors,
and bars by means of easily shaped transition pieces such as bent metal plates. Multidirectional
30°-60° cuts and fillets in woodwork for walls were generally no more complicated than those
encountered in, say, conventional hipped roof framing. Welded pipes and rods were easier to bend

and join in a nonrectilinear way. Beveling was accomplished as it is in ordinary construction. In
short, the construction process was not inherently different—there were just more non-90°
angles. Scheme 2 was based on a triangular grid (as were, incidentally, many Wright
houses).

 
  Joe Price said, ‘‘I didn’t want to go out and build an angular house.’’ That had been Goff’s way
of fulfilling his client’s needs. ‘‘One result of living in it is that I knew it. When you have glass
cullet in the wall you’re conscious of it and you never go up against it—if it’s in your mind. Oh,
I’ve had a couple of guests who were drunk and got some scrapes—nothing serious. But nobody
sober—because you’re always conscious of it.’’ The Prices have since moved west and now five
in a house designed by another former Goff assistant, architect Bart Prince. Price
quips, ‘‘There isn’t an angle in it. We knew we could run into it head on and not get a
bruise!’’

 
  The the former Price residence was tragically destroyed by fire in December 1996 (arson is
suspected).

 
  The Crystal Chapel, Project, Norman, Oklahoma, 1950

 
  The Crystal Chapel project (Figure 2.40), developed for a University of Oklahoma site in 1950,
was to have been, as its name implies, a chapel that was literally and figuratively quite
crystalline—a jewel-like pyramid, faceted with roseate glass (hailproof—important for
Oklahoma!) mounted on a 3O°-6O° angled stainless-steel grid structure—double glazed and
translucently insulated. Each glazing unit consisted of a rhombic pyramid, intensifying the
organic ‘‘self-similarity.’’ The petal-like corners of the pyramid opened up to act as
inviting entrances and to nestle an extended tetrahedral steeple. Opaque, tetrahedral,
subservient spaces (choir and meeting rooms) terminated two corners of the main glass
pyramid—contrasting with its luminosity but harmonizing with its shape. The 300-seat chapel
was the dominant form of a pair of buildings. The other contained a multiuse student religious
center with classrooms, meeting rooms, and ancillary spaces, within a rectangular plan.
Its

 
  Figure 2.40 The Crystal Chapel, Project, Norman, Oklahoma, 1950. (a) Plan; (b) model
photo of chapel; (c) interior rendered perspective. (Courtesy of the Ryerson and Burnham
Libraries of the Art Institute of Chicago.)
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  sloping side walls of rhombic glass were held in a grid similar to the chapel’s—a tessellation with
roots in Goff’s 1922 hypothetical study for a cathedral.41 A variation of the chapel’s elongated
tetrahedral steeple marked its entrance.42


 
  The Crystal Chapel nearly realized the self-fulfilling prophecy of Goff’s youthful dream
‘‘to design a diamond palace for a maharaja.’’ Recall that Goff’s father had been a
jeweler.43

 
  The polyhedral basis for the pyramidal form of the Crystal Chapel can be interpreted in
several ways—owing to the fact that certain regular polyhedra are interrelated. The
interrelationships include component counts, axial orientation, face configuration, distribution of
vertices, dihedral angles, face angles, and dual transformations. In biology the phenomenon of
similar forms arising from different functions is called ‘‘convergence’’ (although here we are just
concerned with geometry).

 
  The following are several interpretations of the chapel’s geometry:

 
  A Developed (Opened and Laid out Flat) Cuboctahedron

 
  Schematically, the Y-shaped plan of the chapel was a central triangle bounded by three square
arms, or wings—or four faces of a developed cuboctahedron (Figure 2.41).
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  Figure 2.41 Crystal Chapel. Schematic plan elements of the chapel folded into a portion of a
cuboctahedron.

 
  A Tetrahedron

 
  The third dimension in the chapel’s development was derived not from the cuboctahedron but
rather from the central plan triangle—and from the tetrahedron (triangular pyramid). The
triangular comers at the base of the tetra faces were folded outward like tent flaps—three pairs in
all, not unlike the wide starched wings of the coronet of the Sisters of Charity or Japanese
origami birds (Figure 2.42).

 
  Effects of the ‘‘Tent Flaps.’’ On so opening, the bottom edges of the flaps were no longer
hugging the ground, a problem similar to that encountered in relating geodesic domes and other
polyhedral volumes to the ground plane—encountered in the Pollock/Warriner, Wilson, and
Rudd Houses. Transition from the sloping bottom of the wall to the horizontal ground
plane was accommodated by a series of graduated pink granite supporting piers, each
of
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Figure 2.42 Crystal Chapel. Origami-like folding of a tetrahedron. Coronet.
 



  which was an equilateral triangle in elevation and a rhombus in plan—a rhombic
pyramid—or half of an oblate octahedron (Figure 2.43). These shrinking triangles acted
as cross sections of attenuated, virtual, horizontal pyramids—matching in scale and
flanking, but at right angles to, the main steeple (Figure 2.44). Their repetition suggested
procession and their receding size would have created the perspective illusion of a longer
passage and diminishing scale as one approached the central major space of the chapel,
making the latter seem more monumental. Nave bays and other elevation features
(balconies? planters?) in Goff’s hypothetical study for a cathedral in 1922 foreshadow the
gradation of dimension and the repetition of the isosceles triangle.44 This ‘‘forced’’
perspective recalls Bernini’s shrinking Scala Regia (or expanding, depending on which
way one is headed). The enabling ‘‘depth cue’’45 is the ‘‘slope,’’ that is, a gradual
change in size of a series of similar objects, or the angular relationship of lines in a
triangular motif. Two adjacent legs of a triangle have a more pronounced convergence
toward their common vertex than do, say, two adjacent sides of a square or of other
regu-
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  Figure 2.43 Crystal Chapel. Supporting piers—halves of an oblate octahedron.
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  Figure 2.44 Crystal Chapel. Piers form virtual pyramids similar to steeple.

 
  lar polygons. The traditional ecclesiastical transition from a relatively intimate narthex
entrance space into a grand lofty central nave was thus translated into polyhedral
geometry.

 
  Goff’s campanile nods a bit to Wallace Harrison’s Trilon, of the 1939 New York World’s Fair
Trilon and Perisphere centerpiece. That famous duo mod-erne is a metaphor for the yang
(Trilon) and yin (Perisphere) opposite pairing of polyhedral and curvilinear forms, not just in
Goff’s work, but in architecture in general. (Incidentally, the twain could meet hypothetically as
the polygon increases in number of sides to approach a circle or three-dimensionally as the
tetrahedron develops by stages of increasing face plane subdivision, as in geodesics, toward the
sphere.)

 
  Octahedral Stellation

 
  The stellation-like wings at the chapel comers can be read as halves of octa-hedra, or
square-base pyramids, although the pyramid face between the inner (nave analogy)
and outer (narthex or transept analogy) polyhedra was omitted (Figure 2.45). The
opposite, outer face plane (a in Figure 2.45) was slipped inward by one rhombic grid

module so that its edges did not meet the edges of the adjacent wings, thus alluding
to an open projected window. This created a sense of hovering, beckoning enclosure
surrounding the steeple and choir and gave the glass a sense of folded, enveloping surface—of
weightlessness.
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  Figure 2.45 Crystal Chapel. Octahedral ‘‘stellation.’’ Face plane ‘‘slippage.’’

 
  The feeling of solidity and mass that is imparted by closed, opaque faces with abutting,
congruent edges was thus substantially decreased. A similar overlapping and offsetting of planes
occurred in the Price Studio 1.

 
  Rhombic Hexahedron

 
  These comer ‘‘flaps’’ surround, isolate, and emphasize three major central 60°-120° rhombi
of the chapel roof, defining half of a rhombic hexahedron (Figure 2.46). A rhombic
hexahedron (or oblate rhombohedron) is like a cube (hex = six, i.e., six faces) that has been
distended by pulling two diagonally opposite comers so that the cube’s faces become
diamonds (rhombi). In the PoUock/Warriner House we encounter one-half of a related
polyhedron—the rhombic dodecahedron (12 faces). The half, rather than the whole,
in each case is due to the truncating intersection of a polyhedron with the ground
plane.

 
  In the Crystal Chapel did the conception of the tetrahedron come first, origamicized, as it
were, with its flaps—an example of a modified Platonic solid projected orthographically onto the
ground plane, or was it one of the other polyhedra mentioned previously? Or does it
matter? Because in the finished design square, triangle, hexagon, rhombus, tetrahedron,
octahedron, rhombic hexahedron,and so on are orchestrated into a complex composition of
variations.
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  Figure 2.46 Crystal Chapel. Haifa rhombic hexahedron.

 
  The Crystal Chapel: A Historical Perspective

 
  The Crystal Chapel’s position in modern architectural history is a fascinating adjunct to its
geometry. It is linked by evolution and influence from the early 19th century through the present.
It is a mid-2 Oth-century focal point for noteworthy unified major spaces enclosed by metal and
glass. Suffice it to mention here a few precedents and antecedents—designs involving
transparent or translucent pyramidal forms with more or less triangulated or rhombi-cally
faceted surfaces. These related buildings anchor the Crystal Chapel in time like prongs

securing a jewel in a setting—upholding Goff’s design as an important statement of
spatial unity, impact, and grandeur. As composer James Heath put it in the title of a
composition dedicated to fellow musician John Burkes Gillespie, ‘‘Without You, No
Me.’’

 
  By the mid-19th century, metal-and-glass construction had come into its own—heralded by the
budding greenhouses or ‘‘palm furnaces’’ erected in Europe, and later long-span structures such
as train sheds—climaxing in the mammoth 1,851-foot-long prefabricated Crystal Palace
Exhibition Hall in London, 1851, designed and built by Sir Joseph Paxton. Perhaps Goff, who
taught the history of 19th-and 20th-century architecture, intended the Crystal Chapel as a
centenary homage to Paxton’s structure.

 
  A throng of experiments arose in the early 20th century—Bruno and Max Taut’s expressionist
Glass Pavilion for the Cologne Exhibition of 1914 (actually a pointed dome, rather than a
pyramid) and their competition entry for
a House of Friendship in Istanbul, 1917, as well as the various crystalline mountain-like forms of
the designs in their publication, ‘‘Alpine Architecture,’’ 1919.46

 
  Wassili and Hans Luckhardt’s House of Culture and other projects (circa 1919–1923) were
equally utopian.47

 
  Two Goff religious projects of 1930 use steeply pointed triangular motifs interacting with
shallow triangular bases: the Gaudf-influenced Hypothetical Study for a Cathedral and the
Hillcrest Methodist-Episcopal Church, Tulsa.48

 
  Frank Lloyd Wright’s work offers a wide range of crystalline examples:

 
  His Steel (and glass) Cathedral project, 1926, with its staggeringly immense atrium—a truly
Boullean scale commensurate with Wright’s talent and vision—predates any John Portman hotel
atrium.

 
  At the opposite end of the scale, an early expression of the pyramidal idea in Wright’s domestic
work can be seen in his Owen Young House, Chandler, Arizona, 1927—a ‘‘textile block’’ project
with 45° angled fenestration and massing.

 
  The Unitarian Meeting House, Madison, Wisconsin, 1947, with its magnificent prow—is more of
a pyramid-like ecclesiastical extension of a Usonian house. Surprisingly, the interior of its
main meeting area is ceilinged not by pyramidal but by warped planes—something of a
rarity in Wright’s work—in this case a natural result of the ceiling, truss, and roof
configurations.


 
  Wright’s Trinity Chapel project, 1958, designed some 10 years later for the same site as Goff’s
Crystal Chapel on the University of Oklahoma campus, was also unbuilt (Figure 2.47). Wright’s
design (the barest hint of a precursor to a Sierpinski arrowhead49) appears to be a variation on
Goff’s Crystal Chapel. Although not so much a ‘‘crystalline’’ building, it is still a
variation on pyramidal forms—with a gradual transition from the completely flat and
horizon-

 
  Figure 2.47 Trinity Chapel project by Frank Lloyd Wright. Transition from horizontal to
vertical.
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  tai ground plane upward through four basic functional/massing elements to a vertical spire at
the peak: long shallow criss-crossing ramps, a trio of opaque buttress-like tetrahedral walls, three
large stained-glass rhomboid windows nestled among these tetrahedra, topped by three long,
narrow, folded, leaf-like roof forms,50 which come together in their upper halves to terminate in a
tapered spire. There are even echoes of the top of the Chrysler Building here! The roofs are
V-textured, probably standing-lock-seam metal and reminiscent of the roofs of Wright’s Nekoma
Country Club project.

 
  Thus Goff’s chapel is echoed by Wright’s in at least four themes: the rhombus, the
tetrahedron, the ‘‘bent’’ theme (i.e., graduated slopes), and the triangular symmetry of plan.
Both chapels assign distinct materials for different functions; however, Wright uses
the more traditional architectural elements of individuated base, wall, window, and
roof.

 
  Wright’s Beth Sholom Synagogue, Elkins Park, Pennsylvania, 1953–1959, bears comparison to
the Crystal Chapel. Although its two intertwining tripod structural frames (symbolizing the
intersecting triangles of a Star of David) hark back to Wright’s steel cathedral, the roof is
translucent and three comers of its modified hexagonal plan are terminated by opaque
tetrahedral-like masses, and the changing slopes are again evident.

 
  The Wayfarer’s Chapel, Portuguese Bend, California, 1946, by Frank’s son, Lloyd Wright, is
not pyramidal (although it is dramatically sited, like a Greek temple, on a hillside
overlooking the Pacific Ocean), but it is more or less rhombically faceted and wholly
transparent.

 
  Skidmore, Owings, and Merrill’s U.S. Air Force Academy Chapel, 1957, is neither
transparent nor pyramidal, but its rhombically faceted (‘‘folded-plate’’) structure,
rectangular plan, and serrated roofline recall the classroom wing of Goff’s Crystal Chapel
complex.


 
  The Religious Center, Project, Artesia College, New Mexico, 1976, by Goff, once again in an
academic setting and also called ‘‘Crystal Chapel,’’ is a series of multisloped or ‘‘bent’’ pyramids
with extensive transparency—a variation on his chapel in Norman, with ‘‘intensified angularity,
less symmetrical massing of the pyramidal shapes, and less regular glazing,’’ according to De
Long.

 
  The Artesia chapel was a transparent pyramid. Its decreasing mullion spacing and the resultant
wedge shapes of the glazing acted together to create gradients—depth cues—which increased the
apparent slopes and heights (Figure 2.48). Transverse mullions spiraled gradually upward.
Motion was symbolized—appropriately ascendant. Dynamism, however, was only implied here, in
contrast to the literal kineticism of Goff’s Rudd House (discussed later), which had movable
walls. Of course, large moving sections of buildings, such as entire roofs (covering stadiums) or
rooms, are not uncommon, as in some works by, to name a few, Calatrava, Lautner, and
Site.

 
  The Artesia multisloped pyramids had a family resemblance to the frustum clusters of the first
Price Studio project—notably the latter’s freestanding screened pavilion—as well as Goff’s Ski
Lodge, Crested Butte, Montana, 1965 (Figure 2.49), based on a 16-sided pyramid (with this
many sides it is
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Figure 2.48 Artesia Religious Center. Multisloped pyramids.
 


  [image: PIC]

 
     

 

Figure 2.49 Ski Lodge, Crested Butte, Montana, 1965. Photo. (Courtesy of
the Ryerson and Burnham Libraries of the Art Institute of Chicago.)
 


  approaching a cone) and Goff’s Hopewell Baptist Church, Edmund, Oklahoma, 1948 (Figure
2.50).


 
  Philip Johnson’s Crystal Cathedral, 1980, Garden Grove, California (see Chapter 5), with its
massive space truss walls and roofs, does not appear to be directly influenced by the Crystal
Chapel, other than in its ‘‘crystallinity’’ and in the fact that Johnson was aware of Goff’s
design.

 
  Similar to Johnson’s Crystal Cathedral in its use of an all-encompassing space frame with
pyramidally faceted glazing is the BioSphere 2 designed by architect Phil Hawes, both Wright
apprentice and Goff student. BioSphere 2 utilizes a commercially available space truss
throughout, enclosing just about everything—biological habitats, offices, and mechanical
equipment—as Goff enclosed both of his major plan functions—the Crystal Chapel and its
multipurpose wing—with the same rhombic envelope. (An example of an architectural precursor
of an all-encompassing envelope is Paxton’s prefabricated glass.) In the BioSphere 2 in the late
20th century, the transparent structure has come full circle from the mid-19th century—back to
its use as a ‘‘palm furnace.’’

 
  R. Buckminster Fuller and Shoji Sadao’s Tetrahedron City project at Yomiuriland, near
Tokyo, 1970, was a megadream proposed perhaps more for the sake of publicizing
prototypical possibilities than for its communal perfection. The glass-clad spherical
space frame of Fuller’s U.S. Pavilion at Montreal’s Expo ‘67 could be considered a
‘‘perisphere’’ to the Pyramid City ‘‘trilon.’’ Although Fuller’s continuous presence hovers
patently over all ‘‘three-dimensionally triangulated’’ structures of whatever-hedra, it does
not,
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  Figure 2.50 Hopewell Baptist Church, Edmund, Oklahoma, 1948. Rendered perspective.
(Courtesy of the Ryerson and Burnham Libraries of the Art Institute of Chicago.)

 
  in my opinion, establish hegemony over the Crystal Chapel.

 
  LM. Pei’s pyramidal addition to the Louvre, an ultimate in mansard roofs (as Egyptian
pyramid follows mastaba), and its smaller companion octahedra, are glazed with rhombi—similar
to the Crystal Chapel. His Rock-and-Roll Hall of Fame, Cleveland, 1995, contains much larger
but less elegant pyramidal elements—Miesian interpretations of the pyramid.

 
  The black pyramid of the 2,500-room Luxor Las Vegas Hotel—with its layer of rooms hugging
the exterior walls and appropriately straddling the River Styx—is a gaudy geometrical Goliath
that runs rampant over history in yet a further display of the American (or perhaps just human)
love of the buck and yet another lurch in the mindless romantic exploitation of the pyramidal
past.


 
  Several other recent entries in the pyramid sweepstakes are Moshe Safdie’s 1988 Canadian
National Gallery in Ottawa and ‘‘Pyramid City’’ for 100,000 byTRY2004.51

 
  The Jones Memorial Chapel as finally built at the University of Oklahoma, over protests from
many prominent architects praising Goff’s project, is timid, conformist, and prosaically
neo-Georgian. Philip Johnson was, incidentally, among those who protested.52

 
  Vernon E. Rudd House, Projects, San Mateo, California, 1959–1962

 
  In the three unbuilt designs for the Rudd House, the prominent polyhedral features are
the bedrooms, individually attached ‘‘like melons on a vine,’’ as Goff put it, to an
S-curve of corridor and common living areas (Figures 2.51 to 2.53 show Schemes 1 to 3,
respectively). Their heritage includes Wright’s Usonian house concept with its linear
arrangement of bedrooms on a long corridor; however, in the Rudd House the individual
chambers are completely separated—surrounded by their own open space—like pavilions or
cabins.53 If ‘‘polyhedral privacy pods’’ (my terminology) is too hard to take, I would
suggest ‘‘truncated tetrahedral sequestration receptacles’’ or ‘‘individuated icosa-hedral
enclaves.’’ The possibilities have yet to be explored—polyhedoir? poly-hedranctum?
icosahedriculum? tetratorium? Goff did not shrink from exploratory terminology—he called
his house for the Dewlins (a design that, incidentally, did not include polyhedra) an
‘‘aparture.’’

 
  In the first version of the Rudd House, truncated tetrahedra (Figure 2.51 a-c) were used as
bedrooms hung from cable and mast to keep them clear of the rough, wooded site. Scheme 2 kept
the truncated tetrahedra but mounted each of them on six short legs (Figure 2.52). Contrast this
Scheme 1 polyhedra—the geometry of the truncated tetrahedron54—with the (slightly modified)
icosahedron—one of the five Platonic solids, used for the same purpose in Scheme 3 (Figure
2.53zz-e).

 
  The ‘‘icosa-pods’’ of Scheme 3 rested on and were lifted above the irregular grade on short
trunks (Figure 2.53ZJ. These raised units are a modest reminder of the late California architect
John Lautner’s spectacular 1960 Malin House (‘‘Chemosphere’’)—an entire house, not just a
room, octago-
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  Figure 2.51 Rudd House, Scheme 1. Truncated tetrahedron units. Theoretical Vierendeel
structural frame, similartothatof the Wilson House unit; (b)triangulated panels of the hexagonal
faces, one of which hinged down to create an open porch.


 
  Figure 2.52 Rudd House. Scheme 2. Truncated tetrahedron with six legs and triangular
hinged-down porch.
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  Figure 2.53 Rudd House. Scheme 3. Icosahedron units: (a} Icosahedron; (b) exploded view;
(c) ‘‘cat's-eye’’ window; M4-symmetry aspects of the icosahedron; pentagons emphasized by
paneling pattern.

 
  nal in plan, perched on a very tall concrete stem to accommodate a steep slope in the
Hollywood hills. Each o£ the Rudd pods was connected to the house corridor with a short
prismatic passage. Bathrooms and storage were contained in the spine.

 
  In Schemes 1 and 2 the hexagonal planes of the truncated tetrahedra served as floor and three
walls, one of which hinged down to become an open terrace in Scheme 1 (Figure 2.51£), whereas
in Scheme 2 only a triangular panel hinged down to become a balcony (Figure 2.52).
Each of the three sloping hexagonal walls were further subdivided into six equilateral
triangular panels. The truncated-tetrahedron walls sloped more steeply than those of the
icosahedron and provided less comfortable headroom per unit of floor area than the
icosahedron. This point is somewhat moot, however, Goff being a master at utilizing the
nooks and crannies of unusual geometric spaces for furniture, storage, mechanical
equipment, and structure. Although the triangulation of the polyhedral faces in the Rudd
House bedrooms strongly recalls Fuller’s geodesics (Figures 2.5lb, 2.52, and 2.53*?),
Goff’s principal thrust seems to be architectural massing and function, rather than
structure.

 
  Slices in 12 different directions through the edges of an icosahedron result in pentagons (Figure
2.53a). In Scheme 3 one of these slices became the floor

 
  (Figure 2.53). The inverse pentagonal pyramid under this slice of floor was flattened
out—thus simplifying and expressing the floor structure and creating a sense of platform.
The five upper triangles of the icosahedron comprised a pentagonal pyramid pitched
roof.

 
  Fenestration

 
  In Schemes 1 and 2 the triangles of truncation served as windows and doors. The fenestration
for each pod of Scheme 3 consisted of a single bold lozenge (or rhombus, composed
of two of the icosahedron’s equilateral triangles). This diamond-shaped ‘‘cat’s-eye,’’
half-window, half-skylight, gave the pod a personal signature beyond just polyhedron or

geodesic (Figure 2.53c). This double-triangle diamond shape was a link, though not
further utilized in the Rudd House, to the 4-symmetry aspects of the icosahedron, that
is, the symmetry that links the icosahedron to the cube/octahedron family (Figure
2.53c).

 
  The slightly more angular shape of the truncated tetrahedron imparted a stronger sense of
individual identity, of unit presence, than the icosahedron. On the other hand, the
icosahedron, being roundish, being perhaps a more familiar geometric solid to some,
having more equitably distributed and smaller surface facets (the smaller triangles as
opposed to the truncated tetrahedron’s hexagons), and so fitting more closely the
curved circulation areas of the house—all this gave the ‘‘icosa-pod’’ a sense of repose and
appropriateness.

 
  James D. WSHsomi Mouse, Pensacola, Florida, 1950

 
  The Wilson House (Figure 2.54) was an example of Stage 4 (multicelled regular
polyhedra). The Wilson House cells were cubelike and, in fact, conveniently called
cubes: ‘‘A cube module of 14 ft. was used, so that the space in each unit is intimate
and is easily expandable. This was the first use of a three dimensional module in this
way.’’55

 
  As stated in Progressive Architecture:

 
     

 

A cube 14 ft on a side is the space module of which this entire house is composed.
Each of the modular spaces is sufficiendy intimate for one or two people, yet
added together they provide an appropriate space for large-scale entertaining.
Each  cube  is  framed  in  welded  boiler  tubing.  Clipped  to  the  framing  are
prefabricated redwood-faced wall panels, similar in appearance inside and out.
The beveled corners have been filled in with glass jalousie units to provide cross
ventilation and a sense of spatial continuity. Corrugated translucent plastic
panels at the roof-line provide additional light.56
 



  They were nevertheless ‘‘beyond the cube’’—truncated cubes, to put it in the simplest of
terms. However, to see the Wilson House modules only as cubes with truncated edges
(and corners; if not for the comer truncations, the edge truncations would produce
elongated hexagons rather than rectangles—see Figure 2.55a) is to miss a number of
subtleties.
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  Figure 2.54 James D. Wilson House, Pensacola, Florida, 1950. fajSection; exterior photo;
(c) plan. (Courtesy of the Ryerson and Burnham Libraries of the Art Institute of
Chicago.)

 
  c
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  Figure 2.55 Wilson House, (a) Edge-truncated cube; (b) pipe frame module; (c)
Rhombicuboctahedron.

 
  The modular floor plan of the Wilson house, entrance, and carport consisted of a dozen
abutting truncated squares. In plan, the modules defined the various functions, for example,
living, dining, sleeping, and carport, whereas four truncated corners together provided
services—fenestration, column locations, a fireplace, sliding doors, and circulation. The plan units
were translated into three-dimensional modules (‘‘close packed’’—somewhat like a tray of
muffins), which define and enclose the space within the house. L. Lines refers to closely packed
polyhedra as ‘‘parallelohedra…. Congruent polyhedra that can be stacked together so as to fill
space completely….’’57 This definition applied only very loosely to the Wilson and
Pollock/Warriner houses—in the Wilson modules there were gaps left between, and in the
PoHock/Warriner the modules overlap.

 
  The Wilson module exemplified the creative possibilities of prefabricated production for
architecture—an idea that reappears occasionally and seems to go nowhere—for example, during
World War H and later with Operation Breakthrough in the 1960s. Prefabrication of the
Wilson modules was more in the symbolic sense, as there was considerable on-site
fabrication.

 
  The generation of the Wilson module can be described in several ways as:

 
     

 
	
1. 

	Truncation. An edge-and corner-truncated cube (Figure 2.55).
     


	   
2. 

	Dual transformation. Dual transformation of either a cube, an octahedron, or a
rhombicuboctahedron (Figure 2.55c).58 The face planes enclosing the Wilson module
consist of:


     

 

6 square cubic faces (Figure 2.56a)

 
8 triangular octahedral faces (Figure 2.56b)

 
12 rectangular intermediate faces (Figure 2.56c)

 
If the design is seen as an RCO transformation, the octahedral edges and faces
become reduced, and the intermediate faces, which would
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Figure 2.56 Wilson House. Unit geometry: (a)s\x cubic faces of the module;
(b) eight octahedral faces; (c) 12 rectangular intermediate faces.

 
have been square in the initial RCO, become rectangles. Dihedral angles remain
the same. Other ramifications of such a transformation can be seen in the
Wilson module.

 
3.  Tesseract.  The  double-edged  effect  of  the  Wilson  module  resembles
one of the possible three-dimensional projections of a tesseract—that curious
four-dimensional relative of the cube, which is illustrated and discussed at some
length by Bragdon.59
 


  Each geometric component of the Wilson module was assigned a specific architectural function,
as follows:

 
  Edges. The edges of the RCO module were structural, consisting of 4-inch-diameter boiler
pipe (Figure 2.55£). The joints (vertices) were welded, creating a kind of three-dimensional
Vierendeel truss. The geometry necessitated welding because RCO geometry does not have the
inherent stability of triangulation (even though the corners are triangles).


 
  One of the RCO modules was left unclad and open, with the pipes describing the edges of its
volume. This particular unit performed a multitude of tasks: It illustrated the module’s abstract
geometry, contrasted with the enclosed bulk of the rest of the house, supported the carport roof,
and served as an entrance totem.

 
  Cubic Faces. On the exterior, the cubic faces dominated the transformed RCO module in
size, pattern, and texture (Figure 2.56a and 2.57). Prefabricated wood siding ‘‘membranes’’ were
intended originally for both walls and roofs, with the boards lapped in a series of nested
squares—both inside and out—recalling the Wright trademark and its Chinese, Japanese,
and Native American precedents. If, instead, the siding had been applied at 90° to
the pipe frames, forming a cross pattern, it would not have emphasized the square
face
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  Figure 2.57 Wilson House. Unit paneling: (a) perpendicularto pipe frame (theoretical); (b)
paneling as built; theoretical rhombidodecahedral dynamics.

 
  and would have fought with the corner jalousie window lines (Figure 2.57 a). Nor
would the overlap of the boards have fit properly against the pipe frames. On the
interior of the house, the nested squares regulated the dimensions of doors and other
openings.

 
  Having been designed originally for a California hillside site with an approach from above, with
an identical pattern on the roofs of the modules as well as their sides, the house would
have read clearly as a cluster of three-dimensional units. The units would become
‘‘supercubes,’’ as it were, in spite of their RCO characteristics, that is, each of the geometric
elements of the cube—corner, edge, and face (i.e., point, line, and plane—which Goff
emphasized in first-year design courses) being articulated and emphasized in its own
right.60

 
  Redwood siding was to have been used in California. When the Wilsons retired instead
to Florida, Goff changed the design to cypress—but none was available—so he stayed
with the redwood; however, on the flat Florida site because the roof surface was not
visible a conventional built-up tar-and-grav-el roof was used. As built, the interior of
the module had equivalent side and ceiling surfaces—on the exterior, only equivalent
sides.


 
  Another interpretation of the pattern of nested squares of wood siding is that they symbolize
the stages of transformation through which a rhombicuboctahedron might pass on its way to
becoming a rhombidodecahedron, thus energizing and reinforcing polyhedral spatial presence and
implying movement and change (Figure 2.57c).

 
  Upper Sloping Planes and Triangles. The long, narrow upper sloping intermediate planes
of the RCO and the upper comer, triangular, octahedral faces held fixed translucent glass fiber
clearstorys (Figures 2.56c and 2.57 b).

 
  Vertical Rectangles. These rectangles contained glass jalousie windows, which were
sandblasted for privacy in two bathrooms (Figures 2.56c and 2.57b).

 
     

 

Lower  Sloping  Planes  and  Triangular  Faces. These  components  were
opaque—cement asbestos board, comprising an apron that concealed the crawl
space between the floor deck and grade (Figures 2.56b and c and 2.57ti).

 
Rex Slack, another Goff student, did additional drawings on the site as needed
and supervised the construction along with fellow student Ray Cobb. Unseen
in the completed house and, in fact, not on the working drawings, according
to Slack, were short, stub pipe columns on which the larger RCO units rested
(Figure 2.55Z>), necessary for anchoring to footings and leveling—the stub pipes
being concealed by the gentle slope of the gravel grade near the house. Some
of the upper pipes were slotted to serve as gutters. Slack said that there had
been some condensation on the interior faces of some of the pipe frames but he
knew of no roof leaks. Larry Grantham visited the site in 1982 and observed
that ‘‘pipes were rusted through at the horizontal roof areas. Roof leaks were
subject to continual maintenance. There could have been many years without
problems, though. One of the typical problems, needless to say, with these
perfect geometric concepts is that such planes create difficult to impossible
places to fabricate without leaking problems. Something to be considered by
students….’’
     

 
The occurrence of the plane of the floor inside rather than on the surface of
the RCO module characterizes a common concern in adapting pure geometric
solids such as polyhedra and geodesics to architecture, that is, the need for
flat circulation areas accompanied by human-scaled headroom. The plane of
the  floor  intersected  the  Wilson  modules  at  the  bottom  edge  of  the  large
square wall membranes, permitting significantly more usable floor space (by
getting the canted triangular corner pieces and their connecting frame members
out from under foot) than had the floor level been at the lowest square face
(Figure 2.58). This created a crawl space, which contained floor bracing plus the
usual mechanical and electrical necessities. It caused the exterior and interior
expressions of the RCO to differ somewhat. Whereas the exterior read clearly
as a set of modules, the interior, although still retaining the modules, appeared
as a grove of abstract tree trunks and branches.

 
Other  elements  of  the  house  interacted  with  the  RCO  module  as  inter-
penetrations (e.g., a pool and a four-way fireplace) and as variations (light
fixtures, folding doors, and shed roof). The fireplace chimney was capped by
an ornamental octahedral sculpture—to symbolize a free passageway for smoke?
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Figure 2.58 Wilson House. Schematic section.

 
The  Wilson  House  was  destroyed  by  fire  in  the  1980s.  The  present  owner,
an  architect,  cut  up  and  reassembled  the  frames,  using  the  original  floor
structure—but it is entirely different now, according to Grantham.

 
The Donald Pollock [House, Oklahoma City, 1957, Remodeled by Goff for John
and Laura Warriner, 1977
 


  The Pollock/Warriner House (Figure 2.59), like the Wilson House, is based on adjacent,
repeated polyhedra derived from a floor plan consisting of abutting truncated squares; however,
the joining of the Pollock/Warriner
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  Figure 2.59 Pollock/Warriner House, Oklahoma City, Oklahoma, 1957. (a) Plan; (b)
photo.

 
     

 

modules is more complicated. Like the Wilson module, the Pollock/Warriner
module can be depicted as having been generated in several ways. Of these,
incidentally, the most likely involves a design process that probably did not
start with the polyhedra that we see in the completed house.

 
To give an overview of the Pollock/Warriner House, we turn to others:

 
De Long writes, ‘‘In plan, nine interlocking squares are arranged symmetrically
upon  a  large  square  plinth.  Nine  pyramidally  shaped  roofs,  each  with  an
individual skylight at the peak, give volumetric expression to the module. In this
realized design, shingles laid along angled lines further emphasize a crystalline
quality, as do the faceted panels of translucent plastic over a porch joining house
and garage. As with the McCullough and Bass projects [discussed previously],
the parents’ and children’s areas are clearly defined along extremities of the
house, and are joined by centrally placed units. And like the Wilson house of
1950 [discussed previously], the implied grid imposed by the strictly applied
module disciplines the open interior.’’ Beginning in 1980, Goff made interior
changes for later owners, Paul and Laura Warriner, who, De Long says, ‘‘became
strong supporters of Goff. Their commissioned alterations included the addition
of a swimming pool and cabana, as well as an elegant interior remodeling…that
reinforced the plan’s clarity.’’61

 
Architectural Design describes the Pollock house as being

 
based on a plan of nine interlocking squares surmounted on a battered stone
base—also in the form of a square. Each of the smaller squares is covered with
a pyramidal roof, the sawtooth fascias of which echo the plan. A pyramidal
skylight  is  positioned  at  the  peak  of  each  roof.  The  roofs,  notes  De  Long,
are covered with wood shingles which were originally painted dark green—the
     
vertical siding of the wood-framed structure is painted fight green. At each
interlocking corner of the squares are narrow full-height windows overlooking
triangular planters formed between the sawtooth plan of the walls and the stone
base. Between the garage and the house, and spanning the entrance, is a large
screened enclosure which follows the geometry of the rest of the house, but
on a slightly reduced scale, and slightly taller. This structure is wholly glazed
and finished with pyramidal formed, translucent, green plastic roof panels. The
structure of this outdoor living area encompasses part of the garage roof which
is used as a sun-deck. Inside, the house is organized around a central kitchen
(at Mrs. Pollock’s request) and divided into various spatial configurations by
accordion doors. Against Goff’s advice the Pollocks commissioned landscape
architects who repeated the 45° geometry of the plan in a hard-edged pattern
of planting areas.’’62

 
The polyhedral module of the Pollock/Warriner House is the rhombidodec-
ahedron  (occasionally  referred  to  below  as  ‘‘RD’’),  which  has  12  rhombic
faces  (Figure  2.60zz).  It  is,  incidentally,  the  dual  of  the  cuboctahedron—an
Archimedean solid.

 
The plan schemata starts with nine 13-foot truncated squares arranged in a
three-module-by-three-module grid, each square anchoring a major func-
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  Figure 2.60 Pollock/Warriner House. Rhombidodecahedral unit geometry:

 
     

 
	
(a) 

	rhombidodecahedron relative to inscribed cube;

     
	
(b) 

	typical corner unit and plantrace; fc/typical edge unit and plan; (d) interior unit and
plan; (e) schematic roof plan key.


  tional area, for example, living, dining, and bedroom (Figures 2.59a and 2.61a).


 
  Truncations of the comers of the grid squares form smaller squares (with 4-foot diagonals) at
45° to the original larger squares (Figure 2.61b). These areas, again as in the Wilson House,
serve as circulation nodes, column locations, and window and door frames. Other
elements in the house occur in harmony with the scale of these truncations, for example,
skylights (one at the peak of each pyramid, recapitulating in miniature the RD shape
of the roof below), distance of floor level to low point of roof, and screened porch
mullions.

 
  The truncations are extended at the exterior walls until they meet, forming the edges of yet
another group of squares (about 16 feet) at 45° to the original group of squares and overlapping
one another (Figure 2.61c). These new 45° ‘‘outcroppings’’ expand the original squares to
provide storage, seating, dining, and bathroom space around the perimeter of the
house. This group (discounting the roof overhangs) comprises plan sections of partial
rhombidodecahedra.

 
  The Pollock/Warriner module is related through transformation to the tetrakis hexahedron
(Figure 2.62a) and the triakis octahedron (Figure 2.62b)— stellation-like derivatives of the cube
and octahedron, respectively. They would not have played a part in the generation of the design,
although the ‘‘stellation’’ aspect of the ‘‘outcroppings’’ mentioned in the preceding paragraph
invites comparison.

 
  The cluster of pitched-roof rhombi are the primary expression of these

 
  Figure 2.61 Pollock/War-riner House. Development of plan grid: (a) square grid; (b) corner
truncations; (c) truncations extended to form another grid at 45°; (d)roof plan; (e)
rhombidodecahedral roof plan unit.
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  RDs, with half-and quarter-rhombi comprising exterior walls (Figures 2.61c and d and 2.63).
However, nowhere is an entire 12-faced rhombidodecahe-dron completed. If it were, the obvious
problem of how to provide a flat floor would occur. As to the roofs, the working drawings
referred to them simply as hipped roofs, and so they are. They are similar to the ‘‘helm’’ roofs of
Romanesque bell towers (e.g., Limburgh, Cologne, and Speyer Cathedrals), though the rhombi of
these roofs are much more elongated than the Pol-lock/Warriner module (Figure 2.64). The
central portion of the Crystal Chapel is a triangular version of the helm roof (Figure
2.46).
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  Figure 2.62 Pollock/War-riner House. Related geometry: (a)tetrakis hexahedron; (b) triakis
octahedron.
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Figure 2.63 Pollock/Warriner House. Roof plan and elevation.
 


  The ceilings under these hipped roofs rise to 15 feet at the top of the skylights and
to just under 3 feet at their low points. The lower areas are consigned to the backs
of closets and alcove-like portions of seating areas, with the underside of the main
4x10 beams at a height to accommodate a conventional 6-foot, 8-inch wood folding
door.

 
  The axial, or orthographic, projections of an RD are square grids (Figures 2.6\d and e and
2.63). A ‘‘4-axis’’ is that projection onto a plane that is perpendicular to an axis through
opposite vertices at which four edges meet. The actual face angles, however, are 70° 32' and 109°
28'—hence the ‘rhombi’ in rhombidodecahedron.63

 
  This square projection appears in both plan and elevation of the polyhedra and in the design
and working drawings of the house—and the actual roof slopes are 45°. Looking at the drawings,
an unsuspecting builder might not be aware of the rhombus nature of the roof segments
until construction was underway. An untoward effect would be the fact that plywood
sheathing would not fit as neatly on the rhombi as onto 90° rectangular shapes. The
original
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  Figure 2.64 Pollock/Warriner House. Unit roof compared to medieval ‘‘helm’’ roof.

 
  shingle pattern of nested V’s, which followed and emphasized the rhombi’s lower edges (a
counterpart to the nested squares of the Wilson House redwood siding) was long ago replaced
with conventional horizontal rows of shingles, eliminating one of the strong echoes of the RD
profile (Figure 2.63).


 
  A rhythm is created by the Pollock/Warriner House modules by three identical geometric
shapes. Similar triplets occur in other Goff works, for example, the square faces of the Wilson
House and the dodecagons of the First National Bank, among many others. The repetition of the
regular faces of polyhedra or other structures symbolizes rationality—but in Goff’s work it also
creates ‘‘music’’—rhythm.

 
  The simplicity of the flat-roofed, corner-truncated, square-on-a-45°-angle garage contrasts
strongly with the sculpted cluster of rhombi of the main house and is derived from the plan
module formed by the roof ridges (Figure 2.63). The two are joined by a translucent green
corrugated glass-fiber-roofed, screened porch that is a transparent, crystalline variation of the
RD based on the module of the truncation dimension discussed previously. The porch variation
is arrived at by extending the RD along two axes and repeating it along the third
axis.

 
  The translucent rhombi of the porch echo the diamond glazing of the Crystal Chapel. Effective
polyhedral volumes can be created relatively economically in elements such as porches by means
of inexpensive screen wire and ribs. The requirements of structural design, detailing,
construction, weatherproofing, and so on are simpler and cheaper. Spatially dynamic screened
porches are frequent in Goff’s work—other examples include the Freeman and Miller
Houses.

 
  The Freeman House, Joplin, Missouri, 1958 (Figure 2.65), consists of an open-plan, rectangular
space roofed by a gently sloping, partially suspended single plane. The roof expressed as a
suspended carpet hovering over most of the house was used frequently by Goff. A counterfoil to
the opaque planar roof element is an elevated, screened porch—an inverted, truncated pyramid
topped by another pyramidal screened ‘‘roof.’’

 
  The Miller House, Project 3, Harrison, Arkansas, 1963, was topped by a similarly spatial
screened porch, more complex than the Freeman House porch and built on a hexagonal
plan—having the faceted effect of a cut stone in a setting.

 
  [image: PIC]

 
  Figure 2.65 Freeman House, Joplin, Missouri, 1958. Photo of screened porch. (Courtesy of
the Ryerson and Burnham Libraries of the Art Institute of Chicago.)

 
  Frank Lloyd Wright frequently increased the sense of space and size in his designs with the
comparatively economical use of porches and carports, which extended axes and elongated
ground-hugging planes and masses.


 
  The composition of the Pollock/Warriner House involved three major elements: (1) the cluster
of roof polyhedra of the main house, (2) the flat-top garage, and (3) the polyhedral variations of
the screened porch. The interaction of these three components, along with their exterior/interior
spatial complexities and the attention to color, material, and detail, results in a grandeur,
an atmosphere beyond the modest size, material, and construction methods of the
dwelling.

 
  Dr. and Airs. Warriner were asked to describe how it felt to live in this house—with emphasis on
the polyhedral aspects. Laura Warriner, a painter, said:

 
     

 

I could never live in an ‘‘ordinary’’ house. The forms of light and shadow in this
house are an education. It feels like living in a giant palace. It amazes people
when I tell them it’s only 1,500 square feet. It was confusing when I first moved
in—maze-like. …It’s amusing to see peoples’ reactions to the house when they
first come in.

 
The light changes during the day because each room has its own skylight.
Thunderstorms—the house puts you in tune to nature—die outside comes in
(visually, that is)—you can see completely through the house. It’s like living
outside—the sense of shelter. If it’s snowing it’s like snowing on you. It’s like
being inside a cut diamond—the faceted light.

 
I felt that [polished stone] surfaces would magnify the effect. The house is
angular but it does not seem to have harsh or sharp angles. There are no
problems with headroom or bumping into things.
 


  Repairs and maintenance are no more difficult than for any house.

 
     

 

It is not hard to furnish. When Bruce redesigned the house for us he said every
other house of mine has a pit in it, let’s put a pit in this one. Most houses have
too much furniture. This one doesn’t need much but I still have too much. But
mostly it has art…
     

 
I’m sorry that everybody in the whole world can’t live in a Bruce Goff house!64
 


  

 

2.26  GOFF’S LEGACY

Goff left a rich body of work both with and without polyhedrality. Some of these
have been lovingly and carefully tended and preserved. Others have suffered neglect,
emasculating alterations, fires, and demolition, and need public attention and nurturing. The
Gutman and Wilson Houses and the Phi Lambda Fraternity House were demolished after
damaging fires. Other Goff houses are gone—the Glen Harder House near Mountain Lake,
Minnesota, was completely destroyed by fire recently. In December 1996, Goff’s masterpiece,
Shin’enkan, the former Oklahoma residence of Joe and Etsuko Price, burned to the
ground. Arson is suspected. The Frank Cole House in Park Ridge, Illinois, an example
of Stage 1 polyhedrality, was demolished several years ago. A number of structures
have undergone radical alterations, for example, the 1967 Mercedes-Benz Building in
Atlanta.

 
  ‘‘…The process of designating as landmarks many of his best designs has just begun, and will
continue as the structures pass the 50-year mark required for official recognition. It is our hope
that the remaining body of Goff’s extant designs will be recognized and preserved as a testament
to one of America’s great architectural minds.’’65

 
  Goff’s contribution to the use of polyhedra in architecture did not originate in a spirit of
rigorous polyhedral form making. Rather, it translates the concepts of Bragdon, Wright, et al.,
by creating new transcendental environments, incorporating polyhedra in their place among the
universe of architectural form/structure/space possibilities.
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2.28  NOTES

     

 
	
1. 

	For  a  comprehensive,  ‘‘rich  and  definitive  account  of  the  life  and  work  of  the
brilliant  maverick  from  the  western  plains,’’  according  to  Helen  Searing  (whose
1996 Goff-designed house in Kansas City, Kansas, includes variations on extruded
truncated hexagonal prisms), refer to David G. De Long, Bruce Goff. Toward Absolute
Architecture, MIT Press, Cambridge, MA 1988.

     
	
2. 

	Refer to Sidney K. Robinson, ‘‘Bruce Goff and Music,’’ in The Architecture of Bruce
Goff, 1904–1982, Art Institute of Chicago/Prestel, 1995.

     
	
3. 

	Examples  of  Goff’s  buildings  utilizing  forms  other  than  polyhedra  include:  the
Ford/Robinson House, Aurora, Illinois, 1948 (torus, cone); the Bavinger House, 1950
(helix, cylinder); the Garvey House 1 project, 1952 (sphere, torus, helix); Sid Lodge,
Crested  Butte,  Montana,  1965  (16-sided,  polygonal  pyramid  approaching  cone);
and the Struckus House, Woodland Hills, California, 1983 (cylinder). In 1978 the
Bavinger House was recognized with a ‘‘Twenty-Five Year Award’’ from the American
Institute of Architects as an ‘‘extraordinary work of imagination …a vivid expression
of American values.’’
     


	   
4. 

	For example, the undulating and ragged ‘‘free forms’’ of the Don Leidig House project,
1946, and the Ledbetter House, Norman, Oklahoma, 1947. Tension structures also
occur in Goff’s output, e.g., the aforementioned Bavinger and Lei-dig Houses, the
Plunkett Guest House project, the Shin’enKan Museum in Los Angeles, etc. Tension
structures  employ  cables  deployed  in  straight-line  configurations.  Both  two-and
three-dimensional arrays of cables occur in Goff’s work, in the latter case resulting
in subtle geometric volumes—cylindrical, conical, pyramidal, etc. Tension arrays were
often used ornamentally by Goff, frequently as ‘‘curve stitching,’’ i.e., the overlapping
of a group of straight lines such that their intersections result in polygonal or curved
shapes.

     
	
5. 

	Many books illustrate and analyze these figures, e.g., Anthony Pugh, Polyhedra,
A  Visual  Approach, University  of  California  Press,  1976;  Magnus  J.  Wenninger,
Polyhedron Models, Cambridge University Press, 1971. The latter covers both regular
and semi-regular polyhedra, or more generally, the 75 ‘‘uniform’’ polyhedra, including
stellations.

     
	
6. 

	Crystallographers  study  centers,  planes,  and  axes  of  symmetry  and  the  relative
orientation of x, y, and z axes in minerals, using terminology such as ‘‘monoclinic,’’
‘‘brachypinacoid,’’ and ‘‘orthorhombic.’’ A recent concern of crystallographers is the
hypercrystal, which is an irregularly organized, quasiperiodic structure. See Chapter
15 for a discussion of quasicrystals.

     
	
7. 

	Robert Lawlor, Sacred Geometry, Philosophy and Practice, Crossroad Publishing,
New York, 1982, p. 104. Here is another source on polyhedra, ‘‘gnomonic expansion,’’
the spiral, the golden section, metaphor, and universal order, etc., with many good
illustrations and diagrams.

     
	
8. 

	John Sergeant, Architectural Design Profiles 16, p. 55.
     


	   
9. 

	D’Arcy  Thompson,  On  Growth  and  Form,  John  Tyler  Bonner,  ed.,  Cambridge
University Press, abridged Ed., 1966, p. 122. Bonner, a biomorphologist, is the author
of  Morphogenesis,  An  Essay  on  Development,  Atheneum,  1963,  which  discusses
three  basic  determinants  of  form  in  the  biological  world:  growth,  differentiation,
and morphogenetic movement. As architectural metaphors, growth is cell (module)
iteration or duplication; differentiation represents the functional variations of spaces
such as living room, dining room, entry, and storage; and morphogenetic movement
represents  uniform  characteristics  carried  throughout  different  parts  of  the  same
building, e.g., structural members, mechanical lines, and materials assemblies.

     
	
10. 

	The startling architecture of the zoological world is revealed in Karl von Frisch,
Animal Architecture, Harcourt Brace Jovanovich, 1974. This book covers habitations
and devices actually built by animals, not the anatomy of the animals themselves.

     
	
11. 

	A steel frame sculpture objectifies this abstraction in Venturi and Rauch’s Franklin
Court, Philadelphia, 1972–1976. It is illustrated in Charles Jencks, The Language of
Post-Modern Architecture, Rizzoli, 1984, p. 89.

     
	
12. 

	For a capsule visual history of architectural form covering 111 ‘‘styles,’’ including
a profusion of recent entries, in 25 pages, see Chap. 1 of Ernest Burden, Elements
of Architectural Design, A Visual Resource, Van Nostrand Reinhold, 1995. For a
capsule history of Goff’s work, see the graphic, multipage pull-out section—pp. 7–14—in
I’Architecture d’Aujourd Hui, No. 227, June 1983.

     
	
13. 

	Islamic ornamental patterns are illustrated and analyzed in Syed Jan Abas and Amer
Shaker Salman, Symmetries of Islamic Geometrical Patterns, World Science, River
Edge, NJ, 1995. The 17 unique symmetry groups are used as a basis for this study.
Another  source  of  clear  graphic  analysis  of  intertwining  Islamic  tessellation  (not
only in architecture, but in planning, poetry, and music!) is Issam E. Said and Ayse
Parman, Geometric Concepts in Islamic Art, World of Islam Festival Publishing Co.,
London, 1976.



     

 

Grids  related  to  the  Islamic  can  be  found  in  Kaiyama  Kyusaburo,  The
Book of Japanese Design—Bansho Shin Hinagata, Bijutsu Oyo, Crown, New
York, 1969. Two-dimensional patterns attempt to rise off the paper into the
third dimension—some quite similar to Goff designs in the Price Studio. The
three-dimensional metal curtain walls of Goff’s First National Bank are related
to these patterns.
 


     

 
	
14. 

	‘‘The Architecture of Bruce Goff,’’ Architectural Design, May 1957, p. 151. Author
and historian Park was the University of Oklahoma architectural school librarian
during  Goff’s  chairmanship.  Goff,  incidentally,  explaining  the  bland  conformity
throughout the profession, said, ‘‘We all read the same magazines.’’

     
	
15. 

	Francine  du  Plessix  and  Cleve  Gray,  ‘‘Bruce  Goff,  Visionary  Architect,’’  Art  in
America, Winter 1965.

     
	
16. 

	See John C. Lilly, Programming and Metaprogramming in the Human Bio-Computer,
Julian Press, 1972.

     
	
17. 

	Mentioned in an interview with Johnson in Vanity Fair, June 1993, p. 157.

     
	
18. 

	An  increasing  number  of  three-dimensional  graphics  programs  are  available  for
computers, e.g., Truespace. One can start with a polygon, drag (extrude) it to make
a prism, shrink one end, see it in three dimensions, and rotate it—here is an embryo
polyhedral unit of the Price Studio. Or one could call up a preformed ‘‘organic,’’
i.e., a single geometric volume and transform it by pulling it through a ‘‘deformation
lattice’’ or ‘‘energy field.’’ Then one can apply a surface texture, shades, and shadows,
     
etc.  Artifice  contains  a  ‘‘solid  modeling  program’’  in  which  a  three-dimensional
background ‘‘space’’ appears with the cursor attached to a ‘‘wireframe,’’ e.g., lines
representing  the  x, y, and  z  axes,  in perspective. Typical  commands  are  ‘‘linear
duplicate,’’  ‘‘wallify’’  and  the  like.  Not  to  mention  the  ubiquitous  Autocad  and
animation  programs  such  as  Lightwave  and  Video  Toaster.  Information  can  be
obtained from Computer Chronicles Newsletter, 1–800–800–9520. See Chapter 12 for
a discussion of computers and polyhedra.

     
	
19. 

	Introduction to A Portfolio of the Work of Bruce Goff, designed and compiled by
William Murphy and Louis Muller, Architectural League of New York and American
Federation of Arts, 1970. For an elaboration of these ideas, see Herb Greene, Mind
and Image, Ait Essay on Art and Architecture, University Press of Kentucky, 1976,
and  Building to Last, Architecture as Ongoing Art, with  Nanine  Hillard  Greene,
Architectural Book Publishing Co., 1981. The Greenes go on to say (in the latter, p.
77), ‘‘Nature seems patient of as many systems of geometries as we can discover. At
this time who can say which warrants the highest metaphysical status.’’

     
	
20. 

	Suzanne K. Langer, Feeling and Form, A Theory of Art Developed from Philosophy
in a New Key, Scribner’s, New York, 1953, p. 99.

     
	
21. 

	Le  Corbusier’s  treatises:  Modulorl  irll,  Harvard  University  Press,  1980.  For  a
discussion of the golden mean or golden section, the ratio 4>> i-e., 1:1.618…as inherent
in certain polyhedra, e.g., the icosahedron and dodecahedron, see H. E. Hunt-ley, The
Divine Proportion, A Study in Mathematical Beauty, Dover, 1970.

     
	
22. 

	This taxonomic series could be continued with a similar grouping for curvilinear
forms—first, extrusions of two-dimensional curves, then curves beyond the flat plane,
i.e.,  spheres,  etc.,  singly  and  in  clusters—continuing  further  with  combinations  of
spherical  surfaces  and  polyhedral  forms  and  finally  ‘‘free  forms’’  and  beyond.  A
transition  from  the  polyhedral  to  the  curvilinear  can  be  seen  in  polygons  with
     
increasing numbers of edges—but this is for another study. A number of Goff designs
were curvilinear in the first go round and later revised to polygonal to fit the budget.
Scaling down occurs with the Price Studio designs, but away from complex polyhedra
rather than away from the curvilinear.


     

 

In his article ‘‘Bruce Goff, The Strict Geometrist,’’ in Architectural Design
Profiles 16  (a special issue on Goff), John Sergeant divides Goff’s work into
crystalline (with three categories—rectangular, diagonal, and triangular) and
curvilinear (four categories—circular, radial, spiral, and processional).
 


     

 
	
23. 

	For a discussion of depth cues, see James J. Gibson, Perception of the Visual World,
Riverside Press, Cambridge, 1950.

     
	
24. 

	As a student of Goff in the early 1950s, I felt that Goff was neither particularly
interested in nor impressed by Fuller’s ideas, unlike a few of his students, myself
included. Goff was, rather, politely respectful and appreciative of Fuller’s work, as
he was with that of technologists such as 'Ibrroja, Candela, Nervi, and Maillart, to
name a few.


     

 

The Louis Kahn/Ann lyng high-rise space frame office tower, part of Kahn’s
Plan for Central Philadelphia, was well publicized at this time (mid-1950s). As
a classroom assignment this writer attempted to design a ‘‘High-Rise Monastery
for Downtown Houston,’’ incorporating living, circulation, and service spaces
within a story-high tet-oct grid (i.e., a space frame whose structural members
were composed of a ‘‘close packing’’ of alternating tetrahedra and octahedra).
     

 
We  also  designed  a  Chinese  restaurant  using  the  Fuller/Kenneth  Snelson
concept  of  discontinuous  compression  in  the  form  of  a  sphere,  or,  more
accurately, a tensegrity-modulated icosidodecahedron, as a structural/envelope
matrix. In both cases almost the entire time allotted for the projects was taken
up just trying to figure out the projective geometrical drawing of these forms,
which today would be a snap on the computer. A pentagonal prism core/mast of
concrete containing vertical circulation, kitchens, mechanical equipment, etc.,
served and supported the tensegrity bubble, which enveloped and supported
the dining platforms. Goff grasped the nature of the beast and was most helpful
in overcoming problems for the utilization of these forms in an architectural
setting.

 
Just as a reminder of the typically strong effect Buckminster Fuller had on
students across the country during the 1950s—another Goff student, New York
architect Robert Tieger, says, ‘‘Fuller gave a talk at the O.U. Student Union.
He talked on and on. The janitor wanted to turn the lights out at 10pm but
Fuller went on ‘til about 12. It was the greatest thing I’d ever listened to.’’
 


     

 
	
25. 

	De Long, Bruce Goff.

     
	
26. 

	Michael Field and Martin Golubitsky, Symmetry in Chaos, A Search for Pattern in
Mathematics, Art and Nature, Oxford University Press, 1992, p. 160.

     
	
27. 

	The variety of space-filling polyhedral units and their manipulation via twisting,
tipping,  and  other  metamorphoses  are  explored  in  Donald  G.  Wood,  ‘‘Space
Enclosure Systems, The Variables of Packing Cell Design,’’ Bulletin 205, Engineering
Experimental Station, Ohio State University, 1968.

     
	
28. 

	De Long, Bruce Goff, p. 304.

     
	
29. 

	Ibid.
     


	  
30. 

	Ibid., pp. 232–233.

     
	
31. 

	Kathy Nicol, letter to author, August 25, 1995.

     
	
32. 

	Architectural Design, May 1957, p. 173.

     
	
33. 

	De Long, Bruce Goff, pp. 152–153.

     
	
34. 

	John Sergeant, ‘‘Bruce Goff, The Strict Geometrist,’’ Architectural Design Profiles
16, Vol. 48, No. 10, 1978, p. 58.

     
	
35. 

	Ibid. This article provides thumbnail illustrations of some two dozen floor plans on a
single page (!) for comparison. Sergeant’s ‘‘crystalline’’ categorization of Goff’s work
is mentioned elsewhere in this chapter.

     
	
36. 

	The  Lacey  Hotel  was,  incidentally,  a  forerunner  of  a  rhombic  grid  of  glass
cladding—recalled  by  Goff’s  Crystal  Chapel—although  Wright’s  diamonds  were
arranged in an overlapping shingle-like pattern, whereas Goffs were set flush within
a supporting grid.

     
	
37. 

	As illustrated in George T. Kerr, ‘‘Synthetic Zeolites,’’ Scientific American, July
1989. Zeolites are minerals composed of silicon or aluminum and oxygen molecules,
which form truncated octahedra. A cross section through the center of a truncated
octahedron is an octagon. This may provide a clue to the subtle yet complex sense of
space imparted in the Jones House—that complex, repeating, spatial symmetries can
be suggested by a few pieces of the grid.

     
	
38. 

	For the full text of the letter, see De Long, Bruce Goff, p. 126.
     


	  
39. 

	This preceded by some years a scene from the sci-fi film Zardoz, in which Sean
Connery  is  trapped  within  a  magic  gemstone.  Note  Mrs.  Warriner’s  crystalline
comment near the end of this chapter.

     
	
40. 

	De Long, Bruce Goff, p. 305. The quote within is from Herman George Schef-fauer,
‘‘Dynamic Architecture,’’ Dial, Vol. 70, March 1921, pp. 323–328.

     
	
41. 

	Ibid., p.13.

     
	
42. 

	For  further  descriptions  of  functions,  see  De  Long,  ibid.,  and  Jeffrey  Cook,  The
Architecture of Bruce Goff, Harper and Row, 1978, pp. 41–45.

     
	
43. 

	Sergeant, ‘‘Bruce Goff.’’

     
	
44. 

	De Long, Bruce Goff, p. 13.

     
	
45. 

	James J. Gibson, Perception of the Visual World, Riverside Press, Cambridge, 1950.

     
	
46. 

	See  Dennis  Sharp,  Modern Architecture and Expressionism, Braziller,  New  York,
1966. An untoward side effect of some of these projects is the chilling recall of the
Nietszchean mountain-climbing mystique in German films of the 1920s such as The
Blue Light by Leni Riefenstahl, who later became a propagandist for Hitler.

     
	
47. 

	Ibid.

     
	
48. 

	Both illustrated in De Long, Bruce Goff.
     


	  
49. 

	The Sierpinski arrowhead, a sponge-like tetrahedral fractal, will probably be used
sooner or later as a basis for high-rise office or apartment buildings, if it hasn’t
already. The figure is illustrated in John Briggs, Fractals, The Patterns of Chaos,
Discovering a New Aesthetic of Art, Science and Nature, Simon and Schuster, 1992,
p. 68.

     
	
50. 

	Reminiscent of the roof trusses of Goffs very low budget Hopewell Baptist Church,
Edmund, Oklahoma, 1949. In this dodecagonal pyramid the subtlety of the basic
‘‘tepee’’ is increased by using over a dozen variations of the angle of the sloping
roof—in walls, bell armature, truss chords, etc.

     
	
51. 

	Safdie, ‘‘Pyramid City,’’ p. 90; Christian W. Thomsen, Visionary Architecture, From
Babylon to Virtual Reality, Prestel Verlag, Munich, New York, 1994, p. 164. Several
others in this book—Bruno Taut’s 1918 ‘‘The Crystal Mountain,’’ p. 81, and Wassili
Luckhardt’s 1919 ‘‘Project for a Sacred Building’’ in concrete and colored glass, p.
85.

     
	
52. 

	For Johnson’s comment about Goff’s Crystal Chapel, as well as high praise from
other architects in support of the Crystal Chapel over a traditional period piece, see
De Long, Bruce Goff, p. 104.

     
	
53. 

	This has a spherical/helical counterpart in Goff’s first Garvey House.

     
	
54. 

	At Expo ’67 in Montreal, multistoried truncated tetrahedra were constructed from
space  trusses  for  (appropriately)  the  Space  Frame  Exhibition  Hall  by  architects
Affleck, Desbarats, Dimikopolous, Lebensold, and Sise; structural engineers de Stein
and Associates, Eskenazi, and Barass.

     
	
55. 

	Architectural Design, Vol. 28, May 1957, p. 163. More on the Wilson House can be
found in Sergeant, ‘‘Bruce Goff,’’ p. 22.
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	Progressive Architecture, Dec. 1962.

     
	
57. 

	L. Lines, Solid Geometry, Dover, 1965. Lines illustrates close packing in polyhe-dra
such   as   hexagonal   prisms,   ‘‘rhomboidal   dodecahedra,’’   ‘‘rhombo-hexagonal
dodecahedra,’’  and  truncated  octahedra—in  order  to  prove  properties  relating  to
vertices, centers, etc.

     
	
58. 

	See Haresh Lalvani, Transpolyhedra, Dual Transformations by Explosion—Implosion,
Lalvani, New York, 1977. See also Chapter 14.

     
	
59. 

	Claude Bragdon, Projective Ornament, Dover, New York, 1992, p. 28.

     
	
60. 

	‘‘Supercube’’ was a term used by Lester Walker, New York architect, teacher, and
author,  for  a  cubic  device,  totally  different  from  the  Wilson  module,  which  he
designed, patented, and built in the 1960s—a prefabricated, unfolding, expanding,
‘‘exploding’’ multipurpose studio furnishing module with a miscellany of built-in
functions such as bed, desk, storage, and fighting.
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	De Long, Bruce Goff, pp. 154, 325
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	Architectural Design Profiles 16, p. 27.
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	Anthony Pugh, Polyhedra, A Visual Approach, University of California Press, 1976,
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	Laura Warriner, telephone conversation with author, 1994.
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	Annemarie van Roessel, ‘‘Bruce Goff’s Built Works,’’ in The Architecture of Bruce
Goff, 1904–1982, Design for the Continuous Present, Pauline Saliga, Mary Wbolever,
and Sidney K. Robinson, eds., Art Institute of Chicago and Prestel Verlag, 1995—the
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2.29  BIBLIOGRAPHY

Abas, S. J., and Salman, A. S.: Symmetries of Islamic Geometrical Patterns, World Science,
River Edge, NJ, 1995.

 
  Baukunst und Werkform, No. 7, Frankfurt, 1953.

 
  Bonner, J. T: Morphogenesis, An Essay on Development, Atheneum, 1963.

 
  Bragdon, C.: Projective Ornament, Dover, New York, 1992.

 
  Briggs, J.: Fractals, The Patterns of Chaos, Discovering a New Aesthetic of Art, Science and
Nature, Simon and Schuster, New York, 1992.

 
  Burden, E.: Elements of Architectural Design, A Visual Resource, Van Nostrand Reinhold,
1995.

 
  Cook, J.: The Architecture of Bruce Goff, Harper and Row, New York, 1978.

 
  Coxeter, H. S. M.: Introduction to Geometry, Wiley, New York, 1961.

 
  De Long, D. G.: Bruce Goff, Toward an Absolute Architecture, MIT Press, Cambridge, MA,
1988.

 
  Field, M., and Golubitsky, M.: Symmetry in Chaos, A Search for Pattern in Mathematics, Art
and Nature, Oxford University Press, 1992.

 
  Frisch, K. v.: Animal Architecture, Harcourt Brace Jovanovich, 1974.

 
  Fuller, R. B.: Ideas and Integrities, A Spontaneous Autobiographical Disclosure, Robert W.
Marks, ed., Collier Books, Macmillan, 1963.

 
  Ghyka, M.: Geometrical Composition and Design, Alec Tiranti, London, 1952.

 
  Gibson, J. J.: Perception of the Visual World, Riverside Press, Cambridge, 1950.


 
  Goff, Bruce, Architect (boxed folio), distributed by Prairie School Press, Chicago,
1978.

 
  Gray, C., and du Plessix, E: ‘‘Bruce Goff, Visionary Architect,’’ in Art in America, Winter
1965.

 
  Greene, H.: Mind and Image, An Essay on Art and Architecture, University Press of Kentucky,
1976.

 
  Greene, H.: Introduction to A Portfolio of the Work of Bruce Goff, designed and compiled by
Louis Muller and William Murphy, Architectural League of New York and American Federation
of Arts, 1970.

 
  Greene, H., with Greene, N. H.: Building to Last, Architecture as Ongoing Art, Architectural
Book Publishing Co., 1981.

 
  Hambidge, J.: The Elements of Dynamic Symmetry, Yale University Press, 1919, reprinted
1948.

 
  Holden, A.: Shapes, Space and Symmetry, Columbia University Press, 1971.

 
  Huntley, H. E.: The Divine Proportion, A Study in Mathematical Beauty, Dover,
1970.

 
  Jencks, C.: The Language of Post-Modern Architecture, Rizzoli, 1984.

 
  Johnson, P.: Vanity Fair, June 1993.

 
  Kerr, G.T.: ‘‘Synthetic Zeolites,’’ Scientific American, July 1989.

 
  Kyusaburo, K.: The Book of Japanese Design—Bansho Shin Hinagata, Bijutsu Oyo, Crown,
New York, 1969.

 
  Lalvani, H.: Transpolyhedra, Dual Transformations by Explosion-Implosion, Lalvani, New York,
1977.

 
  Langer, S. K.: Feeling and Form, A Theory of Art Developedfrom Philosophy in a New Key,
Scribner’s, New York, 1953.

 
  Lawlor, R.: Sacred Geometry, Philosophy and Practice, Crossroad Publishing, New York,
1982.

 
  Le Corbusier: Modtilor I ir II, Harvard University Press, 1980.

 
  Lilly, J. C.: Programming and Metaprogramming in the Human Bio-Computer, Julian Press,
1972.

 
  Lines, L.: Solid Geometry, Dover, 1965.

 
  Mohri, T.: Bruce Goff in Architecture, Kenchiku Planning Center Co., Tokyo, 1970.

 
  Park, B. A.: ‘‘The Architecture of Bruce Goff,’’ in Architectural Design, Vol. 28, May
1957.


 
  Parman, A., and Said, I. E.: Geometric Coticepts in Islamic Art, World of Islam Festival
Publishing Co., London, 1976.

 
  Progressive Architecture, Dec. 1962.

 
  Pugh, A.: Polyhedra, A Visual Approach, University of California Press, 1976.

 
  Robinson, S. K.: ‘‘Bruce Goff and Music,’’ in The Architecture of Bruce Goff, 1904–1982, Art
Institute of Chicago/Prestel, 1995, catalog to the exhibition.

 
  Scheffauer, H. G.: ‘‘Dynamic Architecture,’’ Dial,Vol. 70, March 1921.

 
  Sergeant, J.: ‘‘Bruce Goff, The Strict Geometrist,’’ in Architectural Design Profiles 16, Vol. 48,
No. 10, 1978.

 
  Sharp, D.: Modem Architecture and Expressionism, Braziller, New York, 1966.

 
  Thompson, D’A. W.: On Growth and Form, Abridged ed., John Tyler Bonner, ed., Cambridge
University Press, 1966.

 
  Thomsen, C.W.: Visionary Architecture, From Babylon to Virtual Reality, Prestel Verlag,
Munich, New York, 1994.

 
  van Roessel, A.: ‘‘Bruce Goff’s Built Works,’’ in The Architecture of Bruce Goff, 1904–1982,
Design for the Continuous Present, Pauline Saliga, Mary Woolever, and Sidney K. Robinson,
eds., Art Institute of Chicago and Prestel Verlag, 1995.

 
  Wenninger, M. J.: Polyhedron Models, Cambridge University Press, 1971.

 
  Wood, D. G.: ‘‘Space Enclosure Systems, The Variables of Packing Cell Design,’’ Bulletin 205,
Engineering Experimental Station, Ohio State University, 1968.

 
  [image: PIC] [image: PIC]

 
  
  

 



 



  
3  Louis Kahn and Space Frames

Irene E. Ayad

 
  
3.1  INTRODUCTION

During the 1950s, Louis I. Kahn (1901–1974) inspired by his contemporaries—Buckminster Fuller,
Anne Griswold Tyng, and Robert Le Rico-lais—briefly experimented with space frames. The
Beaux-Arts-educated Kahn, however, was less interested in the technological and economic
advantages of three-dimensional construction than in its spatial, structural, and formal
potentials.

 
  Kahn was particularly interested in the hollow spaces embedded within the frame, which he
first discovered while designing the celebrated tetrahedral ceiling for the Yale University Art
Gallery (1951–1953) and subsequently used to harbor the gallery’s mechanical ducts and
conduits.

 
  Stimulated by the Yale project, Kahn joined forces with Tyng and examined in
earnest the language of space frame architecture, an endeavor that culminated in the
City Tower project, a municipal high-rise complex conceived within the context of
Philadelphia’s redevelopment efforts. The final version (1956), an immense self-bracing concrete
helix, was a total triangulated habitable space frame in which primary and secondary
spaces were hierarchically integrated. The building offered a visionary alternative to the
layered space frame trusses and to the modern braced post-and-beam structures. Except
for
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  the Yale University Art Gallery, none of the other largely visionary schemes were ever
built.

 
  BEGINNINGS: THE YALE UNIVERSITY ART GALLERY (1951–1953)


 
  In 1951, while a visiting critic at the Yale School of Architecture, Louis Kahn was
commissioned to design the addition to the Yale University Art Gallery.1 The Yale
project was to kindle his brief but decisive involvement with space frames. At the
time of the commission, Kahn was a well-respected architect and design critic. Like
many of his contemporaries, he had abandoned his Beaux-Arts roots and embraced the
tenets of modern architecture, including its concerns with social housing, urban and
community development, and technological issues. Most of his housing and community
schemes were small scale in nature and located in the vicinity of Philadelphia, his
hometown.

 
  The Yale Art Gallery was Kahn’s first truly prestigious assignment. The building was to be a
modern loft structure with extremely flexible spaces that could be subdivided at will to
accommodate a host of functions.2 Kahn first considered a conventional post-and-beam structure
with widely spaced concrete columns and concrete floor slabs.3 Suspended acoustical plaster
vaults were to span the preconceived rectangular spaces from east to west. The spaces
above the vaults were to accommodate the building’s mechanical systems. Because
the vaults determined the position of the room dividers, Kahn eventually rejected
the proposal.4 Keen to find a more compelling and innovative solution, he developed
a rather ingenious multiplanar truss system that was to unite floor and ceiling.5 In
this the horizontal planes consisted of equilateral, hollow, and open-base concrete
tetrahedra. Adjacent tetrahedrons were joined at the vertices so that the reinforcing rods
located at the base of each triangle could run in three directions without interference.
The rods were to absorb the tensile stresses in the lower horizontal plane constituting
the ceiling. A continuous concrete slab, connecting the apices, provided the floor’s
base.

 
  To satisfy the New Haven building codes, which required a beam system, and to eliminate
shear where the tetrahedrons joined, Kahn and Henry A. Phisterer, the consulting engineer,
modified the proposal while trying to preserve its original formal and spatial qualities. The
modified scheme called for inclined concrete beams braced by V-shaped elements covered by a
thick top slab spanning 40 feet.6 Though no longer a true space frame, the ceiling maintained its
tetrahedral character (Figure 3.1).7


 
  In the hollow channels running between beams, Kahn threaded the ducts for the electrical and
ventilating systems. The mechanical equipment—which he considered the bane of modern
architect—thus became an integral part of the structure’s hollow fabric.8 Kahn’s desire to
integrate the mechanical with the structural system was a pioneering idea, and one that modern
architecture had largely ignored.9

 
  [image: PIC] Figure 3.1 Yale University Art Gallery (1951–53) interiorview showing ceiling and
column. (Louis I. Kahn Collection, University of Pennsylvania and Pennsylvania Historical and
Museum Commission.)

 
  The beginning of the 1950s witnessed a renewed interest in three-dimensional construction.10
This change from ‘‘plane’’ to ‘‘space’’ construction resonated in the work of Buckminster Fuller
and Anne Tyng, who were both associated with Kahn. Indeed, each claimed some responsibility
for inspiring the Yale ceiling.11 Fuller’s association with Kahn began during the 1930s in
Philadelphia and was renewed in 1951 when he was a visiting critic at Yale.12 Fuller believed
that his ‘‘exhaustive’’ descriptions of the theoretical premise underlying his geodesic
structures had led to the development of the ‘‘octettruss in the Yale Art Department.’’13
These marathon lectures supposedly took place on their joint railroad trips to New
Haven. Kahn first admitted but later denied that Fuller’s work had any bearing on his
scheme, noting that it was ‘‘structurally more advanced’’ and not applicable to a ‘‘flat
ceiling.’’14

 
  The link between Fuller and Kahn was established by Tyng, who had joined Kahn’s office in
1945 and later worked with him on the gallery.15 Fascinated by Fuller’s ideas,16 she had
experimented with his octet truss in a proposal for an elementary school project (1949–1951)
using a multilayered truss system.17 The school consisted of individual buildings, housing three
classrooms. Each classroom was contained within its own frame which grew from a single
triangular unit into wider layers eventually branching horizontally to cover the classroom space.
Here vertical and horizontal elements formed an organic unit. Tyng’s work demonstrated that
Fuller’s single-layered octet truss could be adapted to both a multilayered truss system and to a
conventional building type with its traditional emphasis on facade, orientation, and
division of spaces. In the Walworth Tyng house (1951–1953) located on Maryland’s
eastern shore, she extended the triangulated frame to embrace the entire building: roof,
wall, sunshades, dormers, entrance, and balcony. Applying the octet geometry to a

rectangular house with a pitched roof demanded that she turn the ‘‘geometry so that
the squares in the octahedrons were in the horizontal plane.’’18 The Walworth Tyng
house was probably the first habitable space frame—a concept that was to intrigue
Kahn.19

 
  Although Fuller and Tyng were the catalysts, the Yale ceiling lacked the structural
sophistication of Fuller’s work and the organic growth concept Tyng had pursued in her projects.
A lattice support, for example, would have been a more efficient system for a noncontinuous
space slab, providing a structural and visual continuity between the gallery’s vertical and
horizontal members. Nevertheless, the ceiling slab was the art gallery’s most prominent and
discussed feature.20 Its bold geometric concrete forms not only transcended the gossamer and
lightweight quality that characterized the work of his peers, but also signaled a new
monumentality in Kahn’s work.

 
  The development of the slab had stimulated Kahn’s interest in three-dimensional construction.
He was particularly fascinated by its hidden spatial potential, which he examined more closely in
a project that became known as City Tower.21

 
  THE SPACE FRAME AND ITS ARCHITECTURAL IMPLICATIONS

 
  City Tower (1952–1953)

 
  The City Tower was a proposal for a triangulated frame that Kahn and Tyng designed during
their spare hours. The scheme was based on Kahn’s 1952 Civic Center proposal for
Philadelphia, which included a tall prism-shaped triangular building. After the city planning
commission had rejected the project on the grounds that it was too abstract, Kahn and
Tyng developed the prism-shaped structure into a space frame later known as City
Tower.22

 
  The tower was designed in several stages. The first version, whose biological emphasis suggests
the hand of Tyng, was conceived as a total triangu

 
  lated cantilevered structure with open and trussed spaces that could be further subdivided into
smaller levels.23 Whereas the open spaces were to accommodate the building’s honorific areas,
the trussed spaces were set aside for municipal offices and workshops.

 
  In this early scheme, the tetrahedral floors were stacked above each other and connected to the
angled frames (Figure 3.2). The actual form was inspired by an illustration of a diatom (Figure
3.3), a type of algae depicted in D’Arcy Wentworth Thomson’s On Groivth and Form.™ The book
was held in high esteem by progressive architects. Kahn probably leafed through its
pages studying the images, which revealed that in nature geometry and structure were
organically related.25 The undulating floors are an iconic interpretation of the diatom

whose form was derived from a skewing pattern of hexagonal cells. Later Kahn was to
credit Tyng for recognizing ‘‘the aesthetic implications of the geometry inherent in
biological structures bringing us in touch with the edge between the measurable and the
unmeasurable.’’26

 
  To free the center from internal supports, the angled frames were placed at the periphery and
the vertical circulation shafts for elevators and stairwells were incorporated within its hollow
fabric, creating a clear distinction between what Kahn would soon call ‘‘served’’ and ‘‘servant’’
spaces. The
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  Figure 3.2 City Tower, Philadelphia, Pa., structural floor plan, first version (1952/53). (Louis
I. Kahn Collection, University of Pennsylvania and Pennsylvania Historical and Museum
Commission.)
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  Figure 3.3 A diatom showing skewing pattern of hexagonal cells. (From D'Arcy Wentworth
Thomson, On Growth and Form, Cambridge University Press, 1948.)

 
  building’s spatial hierarchy was echoed in the structural system. Here the small triangles
formed the horizontal planes and the large triangles established the vertical supports, Tyng
observed that it was Kahn who had insisted on seating the tower’s structural members, an
innovative idea within the context of modern space frame architecture.27 Kahn’s interest in
structural clarity was developed during his Beaux-Arts education at the University of
Pennsylvania in Philadelphia where Paul Philippe Cret, the respected French architect and
engineer, had introduced him to the analytical work of Auguste Choisy and the Gothic
rationalism advanced by Emmanuel Viollet-Le-Duc.28 In his 1944 article ‘‘Monumental!ty,’’
Kahn first addressed the importance of structure, observing that in all architectural
‘‘monuments’’ we witness a striving for ‘‘structural perfection’’ manifest in a ‘‘clarity of
form and logical scale.’’29 These qualities, he believed, ‘‘will continue to reappear but
with added powers made possible by our technology and engineering skills.’’30 Kahn
illustrated his ideas in a sketch for an urban civic center, which he envisioned as a
giant skeletal frame made of welded steel tubing (Figure 3.4). The design was derived
from Auguste Choisy’s esquisse of Beauvais Cathedral. Eight years after writing the
essay, Kahn continued his structural dialogue, albeit in relation to the modem space
frame.
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  Figure 3.4 Civic Center, perspective view, 1944, illustrating monumentality. (From Paul
Zucker, ed„ New Architecture and City Planning, New York Philosophical Library,
1944.)

 
  In the summer of 1953, the City Tower was published in Perspecta, the Yale University
architectural journal.31 By then the scheme had evolved into a 216-foot concrete frame covered
with an angled faceted exterior (Figure 3.5).32 The struts forming the frame and the structure’s
six major floor levels came together every 36 feet. Each level could be further subdivided
into three floors measuring 12 feet from floor to ceiling. The tower was trussed by
cross-framing and the intersecting struts. Moreover, two mezzanine levels helped to stiffen the
structure.

 
  The floors had been extended into three hexagonal areas and, following the building’s
triangular geometry, shifted from level to level. The idea of rotating the horizontal planes reveals
the hand of Tyng who, as Buckminster Fuller later observed, ‘‘was Kahn’s geometrical
strategist.’’33 As at Yale, the tetrahedral floor slabs, composed of precast lightweight concrete,
harbored the building’s mechanical duct and conduits. The center was occupied by six cylindrical
shafts, one of which accommodated a stairwell. This central service core was to maximize floor
spaces.

 
  The design reflects the ideas of Robert Le Ricolais, the French structural engineer with whom
Kahn would later form a life-long friendship.34 Early in 1953, Kahn had received two essays by
Le Ricolais respectively entitled ‘‘Hexacore ‘Free Flow’ Industrial & Public Buildings’’ and
‘‘ ‘Multicore’ Building Frame System.’’35 In summary, Le Ricolais argued that a hexagonal space
frame improves the spatial and structural efficiency in multistory public buildings. The optimum
location for the supporting columns, he believed, was in the center of each cell, which could be
used in part as service shafts for air conditioning and ‘‘as drain pipes for evacuating rain
water.’’36 After seeing
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Figure  3.5  City  Tower,  Philadelphia,  Pa.,  section,  later  version  (1953),
illustrating shifting horizontal planes. (Louis I. Kahn Collection, University of
Pennsylvania and Pennsylvania Historical and Museum Commission.)
 



  the Perspecta publication, Le Ricolais sent a letter to Kahn congratulating him on the
project.37

 
  In tandem with Perspecta, Kahn offered his first and only extended discussion on space frame
architecture:

 
     

 

In Gothic times, architects built in solid stones. Now we can build with hollow
stones. The spaces defined by the members of a structure are as important
as the members. These spaces range in scale from the voids of an insulation
panel, voids for air, lighting and heat to circulate, to spaces big enough to walk
through and live in.38
 


  Immediately following these observations Kahn proclaimed:

 
     

 

The desire to express voids positively in the design of structure is evidenced by
the growing interest and work in the development of space frames.39
 


  Reflecting the growing emphasis Kahn placed on integrating the mechanical with the structural
system, Kahn is primarily interested in the interstitial
spaces that he would later examine in other structural systems including the Vierendeel truss.
From this narrow perspective Kahn also arrived at the remarkable idea of developing the
voids into rooms for mechanical equipment and services, an idea whose architectural
consequences he could hardly have anticipated. The City Tower’s hollow service shafts
are the very first manifestation of Kahn’s suggestion to express voids in a positive
manner. The ‘‘hollow column’’ would soon emerge in his work as a distinct architectural
feature.

 
  Yale Revisited (1954)

 
  With a better understanding of the space frame’s structural possibilities, Kahn’s thoughts
invariably returned to Yale. As he noted in a letter to Walter Gropius: ‘‘My work on the Yale Art
Gallery has led me to think about three-dimensional construction and its implications
architecturally. I failed to command the forces which could have produced a truly significant

building.’’40 In 1954, about a year after the gallery was completed, Kahn prepared
two closely related sketches depicting the building as a cantilevered structure with
enormous tetrahedral columns connected to a tetrahedral floor slab (Figure 3.6). In
this conjectural scheme, the vertical supports are in structural sympathy with the
geometry of the spanning members. After reviewing the scheme, Kahn observed: ‘‘A
tetrahedral floor asks for a column of the same structure.’’41 Kahn had considered both
a rectilinear and a hexagonal plan. The latter, of course, would have been a logical
continuation of the building’s triangulated geometry. In subsequent publication of the scheme,
however, Kahn favored the rectilinear plan, an obvious concession to the existing site
conditions.
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  Figure 3.6 Yale University Art Gallery, section and plans showing reevaluation of structural
system (1954). (Louis I. Kahn Collection, University of Pennsylvania and Pennsylvania Historical
and Museum Commission.)

 
  The dwarfed figures and artifacts occupying the gallery spaces illustrate that Kahn envisioned
a building of truly impressive scale. Indeed, if we take the figure holding a tape as a module
measuring about 5 feet 7 inches (the height of an average person) and multiply this number by
the triangles constituting the height of the columns, we find that the ceiling height comes close to
30 feet—the actual height is approximately 10 feet. In the second sketch, the columns are placed
closer together, yet the lofty feeling of the gallery spaces is maintained. These sketches
illustrate that Kahn was more interested in creating impressive monumental spaces than
addressing mere utilitarian concerns, a quality he greatly admired in Imperial Roman
architecture.42 The Baths of Caracalla was his favorite building: ‘‘Here was the will to build
a vaulted structure 100 feet high in which men could bathe. Eight feet would have
sufficed.’’43

 
  Adath Jeshurun Synagogue and School Building (1954–1955)

 
  The idealized Yale scheme inspired Kahn’s design for Adath Jeshurun, a congregation in Elkins
Park, North Philadelphia. Kahn envisioned the synagogue as a two-story tetrahedral scheme with
the lower level serving as assembly hall and the upper level as sanctuary.44 Three columnar
clusters, each consisting of three triangulated columns framing a stairwell, supported a
tetrahedral slab. As at Yale, the columns call to mind Tyng’s elementary school building,
except that here the triangulated layers contract and expand before merging with the
ceiling, thus making a clear distinction between the building’s vertical and horizontal
members.


 
  To improve the fight within the stairwells, Kahn extended the columns beyond the roof,
increased the number of columns per cluster, and pulled them further apart (Figure 3.7). The
column was not only emerging as the dominant tectonic feature in Kahn’s work, but as he
explained in a letter to Tyng: ‘‘Now the column must be hollow like the stem of a leaf or the
trunk of a tree,’’ an observation that, for sure, owed much to his involvement with space frame
construction.45 In this final scheme, each columnar cluster consisted of nine columns forming a
26-foot triangle.46 Its ‘‘hollow trunk,’’ to use Kahn’s biological metaphor, housed the
triangulated staircase.

 
  Kahn subsequently prepared this color sketch to emphasize the synagogue’s structural and
formal characteristics (see Color Art 1). Reflecting his desire to make a clear ‘‘distinction
between things,’’47 the yellow and teal effectively show the difference between the scaled
geometry of the structural members and the building’s horizontal and vertical elements. The
color
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  Figure 3.7 Adath Jeshurun Synagogue and School Building, Elkins Park, North Philadelphia,
Pa., plan (1954). (Louis I. Kahn Collection, University of Pennsylvania and Pennsylvania
Historical and Museum Commission.)

 
  sketch, more than the plan, demonstrates that the servant spaces have emerged as the
building’s salient feature.

 
  A review of the synagogue reveals Kahn’s growing desire to integrate all parts of the building
by using a consistent geometric vocabulary to resolve the conflict witnessed at Yale where he had
used different compositional models.48 In the Yale Art Gallery, the preconceived rectilinear plan
was at odds with the triangulated geometry of the ceiling.49 For the synagogue, Kahn had
originally considered a hexagonal plan before settling on the triangular arrangement.
But even then, he failed to achieve an organic unity between structure and space, an
objective he had mastered in his trabeated projects. With Adath Jeshurun, which
was never built,50 Kahn’s interest in three-dimensional construction was beginning to
wane.
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Figure 3.8 Jewish Community Center-Day Camp, Trenton, N.J., section and
plan, preliminary proposal (ca. 1955).

 
Jewish Community Center/Day Camp (1955–1956)

 
In  the  preliminary  proposal  for  the  Day  Camp  of  the  Jewish  Community
Center  near  Trenton,  New  Jersey  (Figure  3.8),  Kahn  continued  his  quest
to  integrate  structure  and  space.  The  Day  Camp  was  conceived  as  three
tetrahedral pavilions set within an open field.51 Each building was based on a
35-foot square whose four comer posts supported a truncated pyramidal frame
of half tetrahedral and octahedral units. The steel tubular structure, however,
lacked the sinuous and graceful quality of Kahn’s 1944 civic center. With its
truncated roof, proximity to the ground, and large geometric units, the design
brings to the fore Kahn’s increasing interest in mass, and his desire to wed the
building with the ground.

 
Indeed, the Day Camp was modeled after Kahn’s Trenton Bath House (1955)
comprising four square pavilions grouped around a central atrium. The comers
of each square were occupied by a small cubicle whose concrete block walls
supported the building’s truncated pyramidal roof. The cubicles could be used
for a myriad of services. The building marked a watershed in Kahn’s career: not
only were structure and space unified by one compositional model, the square,
but the hollow column had evolved into a separate servant room. In the Trenton
Bath House Kahn first fully realized his ‘‘served’’ and ‘‘servant’’ space concept,
the generative force for all his subsequent work.52

 
City Tower (1956–1957)

 
In 1956 Kahn returned to the City Tower and, in collaboration with Tyng,
developed the project into an imposing 616-foot-tall skyscraper (Figure 3.9).
This final version was prepared for the Universal Atlas Cement Company’s
advertising campaign to promote and show the versatility of concrete.55 The
model was to be published in both the Architectural Record and
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  Architectural Fomm. Kahn and Tyng elaborated on the project’s urban significance, its
‘‘servant spaces,’’ and the structural shortcomings of the earlier project.


 
  The building was to rest on a 700-foot square platform comprising three levels: a parking and
service floor below grade, a shopping concourse at street level, and a pedestrian plaza above
ground. Cylinders placed at the periphery acted as fight and air wells for the lower
levels, which could be reached by ramps, escalators, or staircases. The substructure
served as a transitional element between the surrounding streets and the tower whose
triangular geometry was anticipated in the plaza’s pavement. Here two intersecting
triangular systems, one facing north to south, the other east to west, were superimposed
on an orthogonal grid. The tower was a totally triangulated precast and prestressed
concrete frame whose awesome physicality bore little resemblance to the earlier scheme.
Whereas the building’s monumental scale showed little regard for the surrounding
urban domain, its basic structural unit was an 11-foot tetrahedron, the height of an
average ceiling.55 In this final version, the shifting planes were fully coordinated with
the threefold column clusters.56 The concrete struts forming the frame intersected
with the nine structural levels at 66-foot intervals. Kahn and Tyng prepared a host of
sketches to identify the natural growth of the triangular geometry that gave the tower its
distinct bodily configuration: a helix bracing itself diagonally against the wind. From
this moment, Tyng observed, ‘‘Kahn was able to see the tower as a form which grew
itself.’’57

 
  The column clusters were crowned by ‘‘hollow capitals’’ measuring 11 feet, a variation on the
hollow-column theme. The bell-shaped capitals harbored ancillary spaces for toilets, mechanical
services, and storage. In the section drawing of the capitals, Kahn included a standing
figure to illustrate his earlier claim that voids should be large enough for people to
walk through and live in. In the absence of any decorative details, the servant spaces
assumed an ornamental quality. Like the earlier scheme, the hollow spaces within the
tetrahedral floor slabs carried the air-conditioning ducts, electrical wiring, and plumbing.
The center was occupied by shafts for pipes, which in turn were surrounded by three
stairwells. The vertical circulation shafts, however, were independent of the structural
system.

 
  With its natural growth form, the tower was conceived as an alternative to the modern
post-and-beam slab diagonally braced for wind loads.58 In contrast to Mies van der Rohe’s
Seagram Building, for example, in which the diagonal bracing is hidden to preserve the
structure’s pristine rectilinear frame—Kahn once called the building ‘‘a beautiful bronze lady in

hidden corsets’’59—the tower expressed the very idea of wind bracing.60 However, as Robert
Venturi noted, it did so at the expense of public spaces and elevators.61 In addition
to its spatial shortcomings, the building would have been expensive and difficult to
build.62

 
  Concern for natural elements gave rise to what Kahn called a higher order of construction.
To shade the tower from sun and wind, and to regulate its temperature, the entire
structure was covered by glass panels held in place with permanent sun louvers made of
aluminum strips resembling filigree. The panels, like the planes, shifted from level to level,
creating a texture of light and shade. As Kahn explained: ‘‘I didn’t want to graft on a
wind idea but to find an order which takes care of the wind.’’63 Kahn later compared
the tower to a fairy tale, an affirmation that the geometric language, transcending
any aesthetic and functional concerns, had determined what the building ‘‘wanted to
be.’’64

 
  Civic Center-Foram (1957)

 
  In 1957 Kahn included the final version of the City Tower in his Civic Center-Forum project,
one of his ongoing redevelopment proposals for Philadelphia (Figure 3.1O).65 Like its Roman
predecessors, the forum was to be the city’s new civic center, housing all of its public
institutions—civic, academic, social, and commercial. The triangulated tower was the crowning
element. Within this setting, its visionary vocabulary assumed symbolic overtones, heralding the
renewal of the city and its institutions, which Kahn had come to regard with increasing
reverence. With the City Tower, later shown at the Museum of Modern Art’s exhibition
Visionary Architecture, Kahn’s involvement with three-dimensional construction had come to a
close.66
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  Figure 3.10 Market Street East Studies, Philadelphia, Pa., Civic Center Forum, perspective
view (1957). (Louis I. Kahn Collection, University of Pennsylvania and Pennsylvania Historical
and Museum Commission.)

 
  

 

3.2  CONCLUSION


Kahn’s experiments with space frames, which owed much to the collaborative effort of
Tyng, produced several memorable and rather visionary projects, as did his writings on
three-dimensional construction, leaving us with the indelible image of the ‘‘hollow stone’’ and, by
extension, the ‘‘hollow column.’’ Yet the largely experimental nature of his work, his brief and
limited engagement with the structural system paralleled by his growing interest in orthogonal
planning and mass, all suggest that Kahn never truly felt comfortable with the triangulated
vocabulary of this structural system. Kahn was at heart a master builder and, like Frank Lloyd
Wright, Le Corbusier, and Mies van der Rohe before him,67 did not belong to the age of space
frame architecture.

 
  Nevertheless, Kahn’s foray into three-dimensional construction played a crucial role in the
development of his work. It was here that he discovered that voids could be extended into servant
spaces and that structure and form were explicitly related; and here he also reexamined the
structural ideals of his Beaux-Arts roots, dormant during his encounter with modern
architecture. These themes were to inform his mature work,68 which established Kahn as a
leading voice among 20th-century architects.
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4  Buckminster Fuller and the Relevant Pattern

Arthur L. Loeb

 
  
4.1  INTRODUCTION

In the early sixies R. Buckminister Fuller and I discovered that we were using the same
coordinate system, based on tetrahedral-octahedral space filling, the former for the
design of architectural trusses, the latter in order to understand why minerals have
the structure they do. We both rejected the cube, Fuller because of its instability,
myself because it concealed the natural design of crystals, rather than rendering it
obvious.

 
  This chapter explains this coordinate system, explores Fuller’s discomfort with irrational
numbers and continuous structure, and relates my role in the writing of Synergetics. The five-fold
way of dome structures and its influence on recent molecular physics and on the metallurgy of
alloys is stressed.

 
  

 

4.2  THE RELEVANT PATTERN

Spinel is a mineral and semiprecious stone. Its chemical formula is MNX, where M and N
represent small, positively charged metal ions and X stands for large, negatively charged ions
such as oxide or sulfide. The chemical formula indicates that there are one M ion and two N ions
for each pair of X ions. Over 35 years ago, it was my task1 to investigate the mechanism by
which information in the form of a magnetic flux could be held in materials having a spinel-like
configuration of oxide and magnetic metal ions.2 The magnetic flux results from the
interactions between the various types of ions in the spinel, and especially from their spatial
interrelations.


 
  The configuration of the ions in spinel is apparently complex; a ball-and-rod model of the
‘‘cubic unit cell’’ was forbidding and did not reveal any mechanism explaining why nature would
have chosen to arrange these ions in such a perversely complicated manner. This configuration
was revealed experimentally by means of X-ray analysis; X-ray crystallographers traditionally
index the locations of ions in a solid like spinel relative to a cube, creating the so-called unit
cell.

 
  I decided that the first step in developing an understanding of the interactions of the ions in
spinel was to see what sort of structure each of the metal ions would separately form in
conjunction with the oxide ions, in other words, what the structures of the individual
oxides would be. In spinel, the oxide ions occupy the vertices and the centers of a cubic
unit cell, as shown in Figure 4.1. However, a slight but useful change in perspective
results if we abandon the traditional unit cell, remembering that the crystal is made up
of stacked unit cells. If, instead of slicing out the cube of Figure 4.1, we move over
half a cube edge length, we can slice out a different cube, as shown in Figure 4.2:
Now
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Figure 4.1 Face-centered cubic unit cell.
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Figure 4.2 Cuboctahedron in a cubic cell.
 


  the oxide ions occupy the centers of the new cubes as well as the centers of each of its 12 edges.
The oxide ions are now seen to occupy the vertices of a polyhedron known as the cuboctahedron,
called by R. Buckminster Fuller the ‘‘vector equilibrium.’’

 
  The cuboctahedron has six square and eight triangular faces. It can be constituted of eight
regular tetrahedra and six square pyramids, each of which is half of a regular octahedron (cf.
Figure 4.3). Accordingly, the large oxide ions, located at the center and the vertices of the
cuboctahedron, have octahedral and tetrahedral interstices in between, which may be

occupied by the smaller metal ions. Once one knows whether these metal ions occupy
tetrahedral or octahedral ions in their simple oxide crystals, one has a clue as to where
these ions would go in composite oxides containing several different kinds of metal
ions.

 
  In Figure 4.4 four different hexagonal cross sections through a cuboctahedron are shown. The
center of the cuboctahedron is surrounded by six vertices in each of four regular hexagonal cross
sections; that is to say, of the twelve vertices of the cuboctahedron, six form a regular hexagon
around the center, three He on one side, and the remaining three He on the opposite
side of that hexagon. In the crystal each oxide on a vertex of the cuboctahedron is in
turn the center of a cuboctahedron, the original center being one of twelve vertices
of this new cuboctahedron. Thus we have come by a series of steps from a unit-cell
model to one of stacked, closely packed layers of oxide ions having tetrahedral and
octahedral interstices in which smaller metal ions may be accommodated. It then
turned out that the most symmetrical distribution of the various types of metal ions
over these interstices consistent with their chemical composition produces not only
the spinel structure but also the structures of many other minerals and man-made
materials

 
  Figure 4.3 Cuboctahedron made up of regular tetra- hedra and half-octahedron.

 
  Figure 4.4 Four hexagonal cross sections through a cuboctahedron.

 
  CUBOCTAHEDRON WITH

 
  CONSTITUENT TETRAHEDRA

 
  AND OCTAHEDRA

 
  [image: PIC] [image: PIC]

 
  (Figure 4.5). Whereas the unit-cell model based on the cubic unit cell was obscure and did not
offer any explanation for the distribution of ions in a crystal, the octahedron/tetrahedron model
provided a simple geometric insight into crystal structures.

 
  In 1960 the International Congress of Crystallography took place in Cambridge, UK. I felt like
a real iconoclast in presenting an alternative to the cubic unit cell so sacred to the
crystallographer. When I had finished my presentation, I saw Elizabeth Wood, head of the
U.S. delegation, charging toward me. Somewhat apprehensive, I was surprised to hear her say:
‘‘All my life I have wanted to say ‘TO HELL WITH THE UNIT CELL!’, and now you have done
it.’’


 
  To implement my systematic ordering of crystal structures, I designed four types of modules,3
two tetrahedral and two octahedral (Figure 4.6), which, in various combinations and
permutations, could represent a multitude of crystal structures (Moduledra). Two of these
polyhedra contained a colored sphere in the center, representing a metal ion; the other two were
empty.
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Figure 4.5 Systematic overview of common crystal structures.
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Figure 4.6 Moduledra™ crystal building blocks.
 


  Because regular tetrahedra and octahedra together can fill all of space in a ratio
of two tetrahedra per octahedron, it was possible to arrange these modules without
fasteners. The vertices of the modules represent the centers of the large ions, whereas the
spheres in the centers of the modules represent metal ions. The empty modules represent
unoccupied interstices; if for no other reason, these modules were unique in that there
was an explicit representation of an empty space. I had designed these modules to be
attractive and pleasant to handle, with the result that they were exhibited here and
there.

 
  In 1962 the Educational Network was making a television series on Richard Buckminster
Fuller. William Wainwright, an associate of Fuller’s, had seen my Moduledra on exhibit and
suggested that these should be included in the films. Accordingly, the authors of the films
interviewed me and invited me to meet Fuller. At lunch Fuller told me that he had hoped to find
in nature, and specifically in crystals, building blocks like tetrahedra, octahedra, cuboctahedra,
and others, but not cubes, which are inherently unstable. All the crystallographers whom he had
met, however, referred to the cube as the basic building block, the unit cell that was encountered
previously. Fuller felt encouraged to learn from my work that a model based on tetrahedra and
octahedra gave a clearer understanding of crystal structure than one based on the unit
cell.


 
  Since that first meeting, I have always been impressed with Fuller’s genius in recognizing
the relevant pattern and rejecting the trivial one. Although known primarily for his
lightweight structures capable of spanning large areas with a minimum of matter,
he had also studied the very opposite, namely, the densest packing of spheres.4 The
cuboctahedron and its deconstruction into eight tetrahedra and six half-octahedra were
basic to his understanding of sphere packings.5 The fact that the distance between
adjacent vertices of the cuboctahedron equals that of each vertex to the center of that
polyhedron caused him to call the cuboctahedron vector equilibrium: If there is an optimal
distance between the centers of two interacting objects, then the cuboctahedron is an
optimal configuration of such objects, conserving an optimal number of such optimal
distances.

 
  Fuller kept wrapping layers of spheres around the 12 constituting the vertices of the inner
cuboctahedron and counted the number of spheres in each successive layer. He noted that these
numbers, successively 12, 42, 92, 162…, could be written as the squares of successive integers
followed by the digit 2. I am told that the renowned geometer H.S.M. Coxeter first greeted this
observation with disbelief, but by that time I had already written a proof for Synergetics.6
Fuller’s preoccupation with numbers found an outlet in Chapter 1200 of Synergetics, called
Numerology. In all this work Fuller plays with numbers, delighting in the patterns that turn up.
When, in the preface to Synergetics, I wrote: ‘‘…Fuller…discerns patterns and accepts their
significance on faith. His is not the burden of proof: the pattern is assumed significant unless
proven otherwise.’’ Fuller expressed surprise, because he thought that he had provided a
proof.

 
  Some of my students similarly feel that a demonstration is actually a proof; when
mathematics is transformed into an experimental science, proofs become inductive rather than
deductive. A proof then consists of a generalization encompassing as many diverse
phenomena as possible. Very few physics theorems have withstood the test of time: Even
Newton’s laws of motion eventually were found to be approximations valid only at
sufficiently large scales. The proof of a theorem will, however, offer an insight into the
constraints within which the theorem is valid. I offer two instances in design science as an
illustration:

 
  William Varney was working at Fuller and Sadao’s architectural office in Cambridge while
finishing the requirements for his bachelor’s degree at Harvard through a tutorial on design
science with me. I had shown him that a necessary, but not sufficient condition for the stability
of polyhedra is that


 
  (4.1)

 
  3I/-F<6

 
  where V equals the number of vertices and E the number of edges of the polyhedron.7 For
tensegrity structures, if C is the number of compression members and T the number of tension
members8:

 
     

 

£= 7+ C

 
T=4C

 
V=2C
 


  Hence
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C<6  Varney  had  noted  that  tensegrities  having  more  than  six  compression
members,  although  holding  together  on  a  small  model  scale,  tended,  when
constructed on a large scale, to sag more than the classical six-strut tensegrity,
and was delighted to see that a mathematical analysis actually proved the
fundamental stability of the six-strut tensegrity.
 


  Some years later, Varney was teaching the design science seminar-workshop with me. We were
examining the rhombic triacontahedron, a structure related to domes, having 30 rhombic faces.9
He related to me that Shoji Sadao, Buckminster Fuller’s partner, was using arctan 2 as a
convenient approximation for the surface angle of the triacontahedron. Because the ratio of the
lengths of the diagonals of each of the faces of this polyhedron exactly equals the golden fraction
4>, defined by the equation
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  it seemed unreasonable that the surface angle of the triacontahedron should be independent of
the golden fraction. Wasma’a Chorbachi,10 moreover, had discovered medieval Islamic design
manuals giving rules of thumb for geometrical constructions, which work well on a moderate
scale, but which we could prove to be approximations. Accordingly, I decided to calculate the
tangent of the surface angle of the triacontahedron, which is also the angle between the diagonals
of a golden rectangle. It turned out that the sine of that angle equals 2cf>/(2-d>), the cosine of
<J>/(2-<h). Their ratio, the tangent of the surface angle of the triacontahedron, accordingly
equals exactly 2, and Sadao’s ‘‘approximation’’ was, in point of fact, no approximation at all, but
rigorously correct, and thus valid at any scale! It was not until May of 1995 that I was able to
give Sadao this proof of the exactness of his ‘‘approximation,’’ which still surprised
him.

 
  Fuller was uncomfortable with irrational numbers11 and would have been delighted with the
elimination of the irrational golden fraction from the expression for the surface angle of the
triacontahedron. This discomfort relates to his discrete rather than a continuous view of matter:
a circle is not the locus of all points equidistant from a given point, but rather a polygon with
a great many, but a finite number, of sides, and the number it should therefore be
rational.

 
  Following our first meeting, Fuller sent me two books about his work. Although I had myself
written two books by then, I did not think that their subject matter, the electric double layer
around spherical lyophobic colloid particles and wave mechanics, would hold the slightest interest
for Fuller. Therefore, I decided to send him a book on the Dutch graphic artist M.C. Escher
instead. At the same international congress in Cambridge, where I had presented my Moduledra
crystal building modules, Escher had been invited to deliver an address, and our meeting there
turned into a lasting friendship. Fuller was so impressed with Escher’s art that I decided to
organize a symposium to introduce these two pivotal figures in design science to each
other.

 
  In the fall of 1964, a small number of scholars gathered at the Ledgemont Laboratory of the
Kennecott Copper Corporation in Lexington, Massachusetts, for a symposium on structure
systematics. Both Fuller and Escher were scheduled to be among the speakers, but at the last
moment Escher became ill in Canada, so that I had to read his paper. When Fuller began his
own contribution, he characteristically squirmed, complained about the heat, and
removed his jacket for the first five minutes, then launched into a brilliant survey of
design science and fascinated, charmed, and entertained his sophisticated audience for
hours.


 
  My young colleague Eric Haughton, a psychology graduate student of behaviorist Fred Skinner,
delivered a paper on his work with programmed instruction. Instantly, some of the scholars
turned into parents, interrupting the speaker with their concerns. Suddenly, Fuller said: ‘‘I am
amazed. I thought this was an audience of scientists, yet you keep a scholar from presenting you
his quantitative data.’’ The parents sobered up, and Haughton continued without further
interruption.

 
  Fuller had been with us for the entire week but had to leave early Friday afternoon to get a
flight at Logan Airport. The next Monday my phone rang. It was Buckminster Fuller. ‘‘Where
are you?’’ I asked. ‘‘At Logan Airport’’ was the answer. ‘‘Did you spend the whole weekend
there?’’ was my reaction. No, it turned out that he had gone home to California over the weekend
and happened to be passing through Logan again on his way elsewhere. He graciously thanked
me for including him in the symposium and invited me to collaborate with him on the
forthcoming synergetics book.

 
  Eleven more years were to pass before the actual publication of Synergetics. Fuller
invited Escher to contribute some illustrations to his volume, which the artist agreed to
do. Unfortunately, completion of Synergetics was delayed until well after Escher’s
passing, so nothing came of that collaboration. It was interesting to compare the working
methods of these two geniuses. Interestingly, Fuller, the architect and inventor, appears to
have been the more intuitive (Fuller even named one of his boats as well as one of his
books Intuition), whereas Escher, the artist, was very precise and analytical. Both
became icons of the 1960s counterculture, yet each was very traditional in demeanor and
dress.

 
  In 1972 Buckminster Fuller invited us to his island off Camden, Maine. As I had just joined the
Department of Visual and Environmental Studies at Harvard, which was having a faculty
meeting the day following our visit to Bear Island, I decided, knowing Fuller’s propensity for long
conversations, that it would be the better part of valor to spend the night on the mainland so
that we could get an early start the next morning. On the appointed day a boat was to meet us
at the dock in Camden. I wondered how we would recognize the boat, or be recognized, but I
need not have worried, for Fuller was navigating the Intuition himself. When we first met,
Fuller quickly noted that I had done a lot of sailing in my day. Indeed, growing up
in Amsterdam, I had been a Sea Scout; accordingly, Fuller entrusted the rudder to
me.


 
  As we neared a cruising windjammer, Fuller instructed me to pull up beside her because
there was a person aboard with whom he desired to speak. The passengers looked
rather anxious, apparently fearing piracy, but the party was found quickly and invited
to Bear Island with a promise that he would be restored to his cruise in due time.
The surprised man took a few minutes to collect his wife and some baggage and then
joined us on the Intuition. Fuller told me that he had a group of students working
on a dome on Little Bear Island who were anxious to talk with me, so after lunch
we adjourned there, painted the floor of the new dome being built so that it could
survive the next winter before being completed, and then returned to Bear Island
itself for dinner and one of Fuller’s famous roundtable discussions about the state
of the whole earth. Fuller showed me the various islands in the distance where his
relatives and friends from Milton, Massachusetts, had summer houses; clearly, this world
citizen still felt that his real home was right there. His grasp of the relevant pattern
clearly harks back to his roots in New England transcendentalism, notably to his great
aunt Margaret Fuller. Late at night Fuller himself was kind enough to take us back to
Camden.

 
  Peter Pearce was to be the editor of Synergetics, and we met several times during the next few
years. Fuller’s original intention had been to have my contributions interspaced in a
different typeface as running comments between his text. This did not appear practical,
however, and so I wrote a preface and a number of chapters. I recall a gathering at
our house on a very wintry day, including Fuller, Pearce, and a number of associates.
We had had snow and frost, then a sudden thaw accompanied by a torrential rain.
Suddenly, one of our guests felt wet, and we discovered water leaking through the
living room ceiling. The bathroom upstairs was flooded with backup from the gutters,
and soon the whole house was leaking like a sieve. There was nothing to do but to
place whatever buckets we had in crucial locations and to continue with whatever we
had been doing, which was madrigal singing in the music room, an investigation of
Fuller’s A-and B-modules in the living room, and the refilling of the buffet in the
kitchen.

 
  Fuller suggested installing electric wires on the roof to melt the snow when it started to
accumulate on the roof. We thought that this Yankee architect would be the best expert we could
hope for, but after the installation, the first snow, upon being melted, slid down the roof, taking
the wires with it. Fuller had not realized that we still had a slate roof, which was too slippery to
hold on to the wires!


 
  After Peter Pearce had spent two years on Synergetics, subsidized by a grant, Fuller did not
feel the volume was ready for publication, and the project lapsed. Some time in the early 1970s, I
received a call from EJ. Applewhite, who introduced himself as the editor of Buckminster Fuller’s
next book. Applewhite requested from me a reprint of my article in the Journal of Solid State
Chemistry11 of which I had sent Buckminster Fuller a copy because it dealt extensively with the
vector equilibrium. I gathered during our conversation that Applewhite had a background in
security, for he asked me a great deal of questions but was reluctant to reveal any
information about the book. I found out, however, that indeed the new book was
Synergetics, and Ed Applewhite told me later that he realized then that the few bits
and pieces from my contributions that he had come across were but the tip of an
iceberg. Fuller had apparently rather indiscriminately distributed my contributions,
but I, being apprehensive about having unpublished results so generally accessible,
had bundled them into a copyrighted technical report, which I could then send to
Applewhite.

 
  In the mid-1970s I was working on my Space Structures." Concerned about the fate of my
contributions to Synergetics, I wrote Fuller that regretfully I would need to withdraw these
contributions and instead include them in my own forthcoming book if Synergetics were not
published by 1975. Ed Applewhite told me that the letter built a fire under Fuller, with the
result that Synergetics did appear with my contributions in 1975, followed by my Space
Structures in 1976.

 
  One of the first, and probably one of the few, people to read Synergetics from cover to cover
was Amy Edmondson, who did so as an undergraduate student at Harvard-Radcliffe during a
junior tutorial under my direction. Fuller would often state that a bicycle wheel is actually a
tensegrity structure, a statement that Amy checked out as her senior thesis. I proposed that she
construct a bicycle wheel in which the spokes were strings instead of metal bars and test out its
strength. Although it is sometimes believed that the spokes in a bicycle wheel are compression
members, they are actually tension members, with the hub suspended from the rim
by the spokes. She actually built a tensegrity cart supported by a set of tensegrity
wheels, positioned her brother in the cart, and then proceeded to cut the spokes one by
one, until the inevitable catastrophe occurred. Interestingly, none of the remaining
string spokes snapped, but the rim eventually collapsed; the function of the spokes
is indeed to distribute the load over the rim. In that sense the wheel is a tensegrity
structure.


 
  Upon graduation, Amy Edmondson went to work with Buckminster Fuller in his Philadelphia
office. Just before Harvard Commencement 1983, she called me to say that Fuller had decided to
attend and asked whether we could have dinner with him the night before. We had a delightful
evening, joined by Gyorgy and Juliette Kepes and my father, who had come over from his home
in the Netherlands to celebrate his 90th birthday with us. Fuller, Amy, my wife, and I made a
date to meet in Maine for a working session, but that dinner turned out to be the last time
we met, for early in July we learned of the passing of both Buckminster and Anne
Hewlett Fuller. After the interment in the Fuller family lot, near great aunt Margaret, in
Mount Auburn Cemetery, Amy and I decided that the best tribute to Fuller would be a
book explaining his ideas in more traditional language than Fuller’s own, which I
proposed to Birkhauser for the Design Science Collection. The result was Amy’s A Fuller
Explanation.

 
  Already before Buckminster Fuller’s death, materials scientists began to recognize the
importance of fivefold rotational symmetry.14 The geometer H.S.M. Coxeter lectured at
Harvard on a range of virus structures having fivefold rotational symmetry; I wrote Fuller
afterwards that Coxeter had declared that the viruses most resembling miniature Fuller
domes were also the most deadly. Characteristically, Fuller replied that he was not
surprised, because those would be the most stable and hence the most virulent viruses.
Because fivefold rotational symmetry15 is incompatible with translational symmetry,
crystals, which do necessarily have translational symmetry, cannot also be fivefold
symmetrical.

 
  Fivefold rotational symmetry occurs frequently in organic structures (plants, flowers, shells,
viruses), which have a single symmetry axis, but not in crystals. Crystallographers were therefore
surprised to find alloys whose X-ray diffraction patterns were fivefold symmetrical. After a
characteristic period of denial, they had to abandon the superstition that fivefold symmetry in
the X-ray pattern implies fivefold symmetry in the crystal. When the ions in a crystal diffract
X-rays to generate the pattern from which crystallographers deduce the location of these ions in
the crystal, they do so through the interaction between close neighbors in the crystal. If the
immediate vicinity of each ion appears to be fivefold symmetrical, then, regardless of the fact
that the entire crystal lacks fivefold rotational symmetry, the diffraction pattern will
have fivefold rotational symmetry. Materials having this special structure are called
quasicrystals.


 
  With his dome structures, Buckminster Fuller introduced fivefold rotational symmetry into our
visual culture. The U.S. Pavilion at Expo ‘67 in Montreal was a Fuller dome; altogether, the
exposition was rich in untraditional polyhedral forms. The three-dimensional theme icon was a
truncated regular tetrahedron, and Moshe Safdi’s Habitat abounds in space-filling poly-hedra.
When Smalley and Kroto identified a molecule consisting of 60 carbon atoms, (C60), one of them
used the dome kit he had bought for his young son to construct a possible model for this new
structure.

 
  Much successful science is a matter of pattern recognition, and one cannot recognize that with
which one is not already familiar. Buckminster Fuller familiarized us with many unconventional
structures, among them the truncated icosahedron, already familiar as the soccer ball but
less so as the Fuller dome. That Fuller selected the relevant structure on the basis
of its stability is borne out by his reaction to the Coxeter lecture. When C60 was
named Buckminsterfullerene, popularly known as Buckyball, the attribution was a
proper one because Fuller knew that the structure is stable and because his dome kit
provided the means of constructing a stable structure having 60 mutually equivalent
atoms.
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5.1  INTRODUCTION

Philip Johnson and John Burgee’s Garden Grove Community Chapel is one of the
more enigmatic buildings of its time. Better known as the ‘‘Crystal Cathedral’’ and
constructed between 1978 and 1980, its curious nature has not only to do with its
purpose, form, and treatment but includes the often puzzling intent and ultimate
behavior of its polyhedron structure. The distorted geometry of the building causes a
transformation of the tectonic system referred to ubiquitously as a ‘‘space frame.’’ Because
there is little consensus regarding a precise definition for the term, many structural
specialists often prefer the term ‘‘space truss.’’ Most architects and engineers use ‘‘space
frame’’
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  Figure 5.1 Exterior: carillon and small chapel in base completed in 1990. (Photo: Richard
Payne, F.A.I.A. Reproduced with permission.)

 
  as a catch-all to describe a multi-directional structural system made up of linear elements that
are exclusively in compression or tension. Nearly all descriptions of the system type make no
explicit reference to it in relation to a Platonic and rigorous geometry. Yet it is intriguing that
widely held perception suggests that ‘‘space frames’’ ally themselves and represent a rigorous
geometric and mathematical logic and arrangement.

 
  It is precisely the departure from such expectation that allows the structure of the
Crystal Cathedral to materialize physically Philip Johnson’s expressive vision for the
building. The ‘‘free form’’ of the building suggests that the rhetoric of the system’s
surface and the volume it creates are more compelling than the internal control of a
geometric order. (See Color Art 2.) The building delineates a paradox common to
many contemporary buildings and reflects a number of society’s present architectural
expectations. In late-20th-century America, the meaning of geometry as a metaphysic and
organic order influencing the composition of building components and programmed
space
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  Figure 5.2 Section toward east. (Illustration: Kristin Simonson.)

 
  is, if not decreased, at least transformed in value. In many instances strict Euclidean geometry
is replaced by an architecture of easily recognizable and ‘‘consumable’’ emblematic shapes and
objects. The Crystal Cathedral is embedded in a common negotiation in the built environment
between a representation of rigorous geometry and expressive form. This dialogue demands
an acceptance of the often mercurial readings that come from such work. Indistinct
and frustrating indicators seem characteristic of much of postwar building. At the
same time the potential richness of such inconsistent interpretations suggests a device
through which to observe an era of considerable social conversion. In addition to an
architectural description of the Crystal Cathedral and its structure, a comparison
of the elements to historic influence and evolving societal circumstance can position
the building within a set of intrinsic contemporary myths and values that sustain
them.

 
  

 

5.2  AMERICAN EVANGELISM: IMPROVISED RITUAL AND SPACE

The Crystal Cathedral is not only the product of a mix of common contemporary social
conditions, the visions of the architect and client, but a little documented history of the
evangelistic built environment in the United States. Exported from Puritan Britain, the
informality and inventiveness of ‘‘gospel
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Figure 5.3 Ground floor plan. (Illustration: Kristin Simonson.)
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Figure 5.4 Balcony floor plan. (Illustration: Kristin Simonson.)
 


  preaching’’ have periodically generated great popular appeal by challenging the authority and
procedures of the established and politically authorized church.1 Partly out of necessity and in
many cases due to a conscious rejection of the instituted symbolism that ecclesiastical
architecture contained, the growing movement threatened the preconceived notion of religious
space. Particularly in the rural South and West, the emotional and antiintellectual optimism of
evangelical revivalism has evolved into what is perhaps the most distinguishing quality of
America’s common spiritual heritage. The Crystal Cathedral, and its principal client, Dr. Robert
Schuller, are a part of a fertile and resourceful revivalist tradition that includes D.L. Moody,
Billy Sunday, and Billy Graham and stretches back to what many religious historians
agree
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  Figure 5.5 Interior of pulpit and organ, looking north. (Photo: Richard Payne,
F.A.I.A. Reproduced with permission.)

 
  was the seminal Cane Ridge, Maryland, ‘‘Camp Meeting’’ organized by Barton Warren Stone
in 1801.

 
  Revivalism in the United States has always benefited from at least the appearance of
spontaneity. In most cases the representation of informality is highly planned. This dexterous
character allows revivalism to transform as society changes. Examples of this include
the early circuit ministries of the Methodists who were able to follow the frontier,
D.L. Moody’s use of big business money and methods to preach ‘‘old time religion’’ in
large 19th-century cities, the vaudevillian and ethically questionable tactics of Billy
Sunday in the early 20th-century circuit, and, after World War II, Billy Graham’s highly
organized manipulation of all forms of media within a given city during his crusades.2
Like Graham, Schuller’s evangelical message gives a charismatic voice to conservative
Protestants frustrated with the increasingly progressive social agenda followed by
mainline Protestant churches. Although their followings are often characterized as
‘‘nondenominational,’’ they do not embrace the ecumenical movement, which is supported by
established churches and is seen to broaden the civil rights movement to include religious
plurality.


 
  Because of its often consciously peripheral political position, revivalism has historically
been transient, moving from place to place. The camp meetings of the young nation
were often in rural and socially developing locations. The newness of the tents, like
the land itself, became a symbol of rebirth and salvation. As society industrialized,
revivals moved to the larger cities. D.L. Moody and Billy Sunday both conducted
successful urban crusades, filling to capacity large auditoriums and exhibition halls.
In the late 20th century, revivalism has continued the temporal theme by using the
ephemeral ‘‘space’’ of broadcast media versus the established power of a particular
location. Recalling the traveling revivals of frontier and rural America, but using the
media’s expanding influence, Billy Graham established a national reputation with his
enormously successful 1949 ‘‘tent meeting’’ in Los Angeles, California? Originally using the
Hollywood Bowl, Graham would frequently utilize the large spaces of stadiums and
auditoriums.

 
  From the start of his ministry, Dr. Schuller has been part of the non traditional spirit of the
American evangelical tradition. Unlike his counterparts, he seldom, if ever, embarks on physically
mobile campaigns. Delivered from a single location, Schuller’s ministry nevertheless relies on the
itinerant character of revivalism. As with physically mobile campaigns, Schuller uses television to
diffuse questions about the relevance of physical and established ritual that plagues traditional
religion. Schuller is among those who understood the gaining influence of broadcast media in
the daily lives of common Americans. Aware of its effect on social and intellectual
change, he takes advantage of television as an efficient means for capturing the public’s
attention.

 
  In 1970 Dr. Schuller began to televise his weekly service, ‘‘The Hour of Power.’’ Through
television he offered a populist spiritualism for what Peter Rowe, author of Making a Middle
Landscape, paraphrasing Robert Wood, describes as, ‘‘ . . the hardworking corporate yeoman,
who while materially

 
  consumptive wants both economic security without risking personal ambition.’’4 One might
speculate that this ‘‘inner-directed man’’ from the ‘‘19th century’’ might be seeking spiritual
security as well. The often corporate style of Schuller’s message differentiates his sermons from
those of other evangelists. He often laces his message with a marriage of ‘‘self-help’’ psychology
and the terminology of a motivational retreat for middle-and high-level managers. It is often
argued that what John Pastier described in a 1979 article as Schuller’s ‘‘I’m O.K., You’re O.K.’’
approach is a means for caressing further financial support from his strong associations with big
business.5


 
  

 

5.3  THE REPRESENTAT8ON OF MORALITY: THE CATHEDRAL AND THE
HISTORICAL AVANT-GARDE

The Crystal Cathedral, like other recent evangelical structures, is a large arena-like auditorium.
In addition, the scale, technical spirit, and function of this relatively new building type are oddly
reminiscent of the self-promoting qualities of Tatlin’s 1919–1920 Monument to the Third
International. Both are used for administration and for the dissemination of information
through a broadcast theater. In expression, construction, and purpose, the Crystal
Cathedral is part of a new breed of large-scale churches that in themselves become
enormous metaphors bepraising a new evangelical social order. As with the difference in
Schuller’s corporate preaching style, the uniform character of the polyhedron structure
distinguishes the Crystal Cathedral from other structures in this emerging class of church
architecture. The cathedral’s space truss is indicative of the industrial power and prestige of
American corporate culture. Its homogeneous texture and transparency are similar to
much of the architecture of postwar big business: a language codified best in the later
work of Mies van der Rohe, simultaneously referring to the diaphanous and optimistic
compositions of the suprematists as well as to the stable heritage and order of Roman
classicism.6

 
  The surface and space of the cathedral connect it to a mythic and transitory religious building
tradition associated with evangelism. The white translucent scrim of the entire space
truss system recalls the light and space of revivalist tents. The naturally fit tentfike
space suggests a connection to Le Corbusier and Pierre Jeanneret’s Pavilion de Temps
Nouveaux in the Paris World Exposition of 1937: a pavilion advocating the ethicacy of
the industrialized aesthetic. More to the point, in Towards a New Architecture, Le
Corbusier identifies the tent as an essential temple paradigm. Although he is using
the example primarily to discuss the virtues of geometric regulation, Le Corbusier
discusses the instinctive and sophisticated act of inhabiting a location, regardless of the
modesty of the means for doing so.7 The use of structure as the prime generator of
architectonic form connects Le Corbusier’s example with a Franco-structuralist tradition that

includes Viollet le Due and originates in Gothic architecture. There is no evidence that
Johnson intended the Crystal Cathedral to recall this specific legacy. What is more
certain is that the simple nature of the building’s tentlike interior suggests a compelling
reference to the informal structures of American evangelism. The structure’s ephemeral
symbolism can be read to intentionally challenge established theological authority often
enclosed in the heavy, dark, and '‘‘enduring’’ buildings. The transparent polyhedron
structure of the Crystal Cathedral continues to express the improvisational and resistive
nature of evangelical spirituality. As in the revivals of early America, which offered an
exhilarating social and spiritual occasion to break from the lonely and monotonous life of
the frontier, Schuller’s intention seems to create a crystalline ‘‘tent’’ as an analogous
inspiring experience for the deserted souls of the grueling uniform world of postmodern
America.

 
  As well as connecting it to the history of evangelical space, the white color of the cathedral’s
interior structure bespeaks of an ethicacy found in much of the modern movement. This is
particularly true of the cubistic architecture of Le Corbusier. In The Decorative Arts of Today,
written to protest the 1925 Decorative Arts Exposition in Paris, Le Corbusier discusses ‘‘The
Law of Ripolin: A Coat of White Wash.’’ Finding beauty in the functional and rational forms of
the Machine Age, Le Corbusier wrote that every citizen should be required to paint everything
on the interior of their homes with a coat of white ripolin. This ‘‘moral act’’ would establish a
sense of ‘‘inner cleanliness’’ that would ‘‘improve conditions.’’8 Le Corbusier seems to
feel that the decorative nature of most interior spaces was overly sentimental and
undermined its rational beauty as a functional object. He also considered the prevalent use
of ‘‘white wash’’ in the built environments of the less industrialized cultures to be
an agent that bound all segments of the society. He describes the socially objective
spirit of white wash in a metaphor: ‘‘bread, milk and water are the wealth of slave and
king.’’9

 
  Although Johnson’s selection of white for the color of the structure is useful in reflecting
natural light, it also refers to an idealized and moral side of early modem architecture with which
the architect is well acquainted. The connection between the salvation found in the
machine and that of ‘‘The Word of God’’ becomes an association that reconciles the
conservative politics of Schuller’s congregation with a common technical and corporate
representation found in today’s society. As with Le Corbusier’s recommendation of
the use of ‘‘white wash’’ in preindustrial society, the vast white field of structure in

the Crystal Cathedral unifies an electronically connected multitude of individuals,
frequently of different economic and social backgrounds. This consensus by structure
strengthens the universal intentions of the nondenomina- tional organization of Schuller’s
ministry.

 
  Philip Johnson has stated that the nave on the short axis of the deformed star shape of the
plan is inspired by Bernini’s San’ Andrea al Quirinale in Rome. This exposes a difference in
background and intention with regard to the essential geometry of the building. Whereas
Johnson, albeit randomly, appropriates from the history of European architecture, he seems less
impressed with this pedigree and sees a plan that falls clearly within the evangelical spatial
tradition that brings the congregation closer to the speaker. Whereas older, more liturgical faiths
emphasize the mystery of ritual associated with the Eucharist performed from the altar, the
evangelical Protestant tradition emphasizes the spectacle of the sermon about the
‘‘Gospel’’ performed from the pulpit. This influences the nature of the service and
very often the shape of the space in which it is performed. In many cases American
Protestant sanctuaries have shorter, less hierarchical naves, frequendy containing a
semicircular arrangement of pews facing a central pulpit. Along with the pulpit, the altar
and choir become part of a tabernacle-like stage that faces, and is surrounded by, the
audience. This more intimate relationship allows the sermon and service to be easily
experienced by the congregation and represents a God that is accessible to the common
man.

 
  Perhaps because of the tradition of a less formal relationship between minister and audience,
many evangelical ministers found radio and television uncompromising to the sacred nature of
the ‘‘Gospel.’’ The very definition of evangelical ministry implies an emphasis on the importance
of preaching, as contrasted to ritual. Whereas rejection of established ceremony was a means for
challenging the authority of mainstream churches, the evangelical movement would create its
own unofficial power base through the media. Many found the emerging broadcast
media the most efficient means for projecting their message and influencing as many as
possible.

 
  Dr. Robert Schuller was among those who had been willing to innovate in his ministry and to
pioneer new techniques for relating to and enlarging his congregation. Because a traditional, or
even enclosed, structure was unattainable at the time, he began preaching to people on
Sunday mornings in 1955 from the roof of the concession stand of an Orange County
drive-in theater.10 What he discovered was an untapped audience in need of spiritual
inspiration who felt more at home in their automobiles than in a conventional church

setting. When, in the late 1950s, Schuller commissioned Richard Neutra to design his
first chapel in Garden Grove, California, the sanctuary was arranged to house both a
congregation within the building and an audience seated in an adjacent ‘‘amphitheater
of cars.’’ Presumably because of his experience with his ‘‘drive-in’’ ministry and the
pioneering ministry of such leaders as Billy Graham, Schuller recognized and embraced the
power of television, too. Like the car, it presented a comfortable and familiar setting to
experience the service. The eventual broadcast of the service allowed him to reach an
increasingly larger audience. Today the services are televised to an estimated audience of two
million viewers each week across North America and Australia.11 The success of the
televised ministry meant that Schuller could not only spread his message to more
people but appeal to a much larger audience for the funding of his growing organization
and its projects. Additionally, television allowed the Crystal Cathedral to become an
important focal point in Orange County. Schuller’s cathedral is an additional stop on the
constellation of Southern California tourist destinations as well as a contemporary
pilgrimage church attracting religious travelers from across the United States, Canada, and
Australia.

 
  Different from the evangelical movements of the 19th and early 20th centuries, many of which
were located in destitute urban areas and had strong social service components to their missions,
Schuller’s broadcast ministry is based in the relatively affluent suburb of Garden Grove. Many
criticized Dr. Schuller’s organization for channeling the bulk of its fund raising toward ever more
extravagant and expensive broadcasts. The flexibility and openness of the structure and
volume support transforming spectacles that match the circus-like ‘‘theater of action’’
proposed in Walter Gropius’s unrealized Total Theater project of 1927.12 Although
arguably these productions create a new consciousness in the congregation, critics of
Schuller contend that the economic energies of the organization might focus more on the
disadvantaged. The theatrical broadcast format has the net effect of cultivating a
rather passive congregation, one that is not physically active in the day-to-day pursuits
of the church. Questions arise regarding the intentions of the message, means, and
mission of the cathedral. The facile manipulation of perceived purpose is arguably a
distinctive trait of the evangelical movement in particular and postmodern society in
general.


 
  The appeal of experiencing what had traditionally been a physically public event, namely, the
church service, from, at first, one’s automobile and later from one’s television transforms the idea
of ‘‘space’’ through which ‘‘public’’ dialogue is maintained. The allure of this spatial type
represents a perceived anxiety toward an increasingly uncontrollable and misunderstood public
realm. Schuller seems to understand that the automobile and television are tools that
allow people to experience culture without having to contend with many of the daily
problems of society. The car and the television have become controllable capsules
from which to observe the volatile production of culture and a selective portrait of
society.

 
  One suspects that Schuller also recognizes that the television and automobile are artifacts that
are part of what David Harvey has identified as basic changes in contemporary human
psychology, emerging in large part from the volatility and ephemeral nature of culture and
contributing to the swift change of values and a breakdown of consensus.13 Schuller might
propose a contrary argument: that television and the auto instead of eroding society actually
assist in coping with disorienting contemporary conditions. Both ‘‘spaces’’ allow people to be
selective about what they experience and at what distance they choose to experience it. Because
of their limitations, the automobile and, in particular, television contribute to culture’s
oversimplification. As suggested previously, Schuller and the Crystal Cathedral take advantage
of this. On the other hand, many think, as David Harvey, that the television and
the auto appear to reinforce a sense of denial of problems that exist outside one’s
immediate experience. This significantly contributes to a general blase attitude in society at
large.14

 
  Schuller, at least intuitively, understands both the negative and the positive effects of the
television and car. Regarding the design of the Crystal Cathedral, he knows how they influence
the character of contemporary built environments. As with the television and car, a sense of
security, contentment, and choice is the principal goal of most contemporary common
commercial

 
  spaces. Schuller has claimed that the Crystal Cathedral is a ‘‘22 acre shopping center for Jesus
Christ.’’ Shopping malls and privately owned urban atria are prosaic spatial paradigms that block
out uncontrollable stimuli, simplify the meaning of the message in order to appeal to a larger
audience, and often restrict access to marginalized segments of the population. This last quality,

in particular, contributes to what Harvey has described as a ‘‘collective sense of denial’’
toward the unpleasant aspects of society. The refusal to respond to the full range
of circumstances, including those that are lamentable, changes the nature of public
space.15

 
  

 

5.4  THE GLASS CHAIN BORN AGAIN

Schuller’s attempt to connect with the common built environment may begin to explain why he
rejected the first scheme proposed by Philip Johnson. Dr. Schuller felt the initial proposal was
too dark and introverted. The second scheme was inspired, according to Johnson’s own account,
by the early expressionist work of Bruno Taut and the glass office tower projects of the early
1920s proposed by Mies van der Rohe.16 In particular, Johnson was intrigued by the free form
plan of the Friedrichstrasse, Berlin Project of 1921 and the instinctive and emotional character
of Taut’s ‘‘Stadtkrone,’’ or City Crown.17 Taut’s crystalline universal paradigm for
religious buildings simultaneously connected the building to the tradition of cathedral
making as an urban and cultural centerpiece (see Color Art 3). Taut’s commitment to a
new architecture of glass allowed the tectonic vision to respond to and exaggerate the
potential of contemporary transparent construction materials. For Taut this position is
epitomized by his 1914 Werkbund Exhibition Pavilion. Has articulation of the idea
additionally influenced a broader audience of emerging designers who were beginning to
experiment with transparent construction of skin and frame, among them Mies van der
Rohe.

 
  In a recent interview Johnson claims that he has always been an ‘‘expressionist’’ and not a
‘‘structuralist’’ architect.18 It is not clear if this assertion is made retroactively. It does seem to
connect this particular work with the instinctive factions of the earfy-20th-century avant-garde.
It can also be argued that such an expressive streak is consistent with some of Johnson’s earlier
work and explains Kenneth Frampton’s observation that his work is many times ‘‘determined to
obscure structure through surface manipulation.’’1’ There was, in fact, an additional motivation
for referring to Taut’s Stadtkrone. The promotion by Taut and ‘‘The Glass Chain’’ of an
architecture of individually asserted and expressive ‘‘will to form,’’ or ‘‘Kunstwollen,’’ offers a

further ideological justification for Johnson’s historically conscious architecture. The terse and
optimistic text Glasarchitektiir of 1914 by Paul Scheerbart, a member of Taut’s expressionist
group ‘‘The Glass Chain,’’ advocates a new crystalline architecture that has the potential of
‘‘restructuring society.’’20 It is unknown whether Johnson referred to Scheerbart’s position
when presenting the second scheme to his client. However, one can imagine that the
connec-
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  tion between the inspirational qualities of ‘‘The Glass Chain’’ and Schuller’s ministry is
more than coincidental. It is also intriguing to note that the Stadtkrone character
appears to have migrated into the design of a number of glass office towers that were
erected around the time of the Crystal Cathedral, placing the church in a larger body
of corporate work executed by Johnson and Burgee in the 1970s and 1980s: among
them the PPG Headquarters in Pittsburgh and the Transco Tower in Oak Park near
Houston.

 
  More to the point of this chapter, understandingjohnson’s position is critical in evaluating the
architect’s means for realizing the Crystal Cathedral’s idea. The free-form interpretation of the
polyhedral structure of the building allows the architect to disregard the collective expectation of
the normative and Euclidean configuration of the ‘‘space frame.’’ Johnson’s expressionist position
no longer obliges him to represent the scientifically and mathematically driven spatial
agenda begun in the Enlightenment. The architect is able to engage in a new and
dexterous organization of form and meaning that not only recalls the beginnings of the
modern movement but, because of its varied and simultaneous readings, positions the
building as representative of the postmodern condition. The intuitive crystalline form
permits the work to become both historically grounded and, at the same time, a volatile
and ephemeral piece of ‘‘fashion en masse’’ that scholars such as David Harvey and
Jean-Frangois Lyotard describe as essential to the palette of characteristics ascribed to
postmodernism.

 
  It was Johnson’s initial intention to use a space frame to accommodate the crystalline form
without ‘‘posts or beams.’’21 The scenographic program is enclosed in a vast interior landscape
that includes a large tabernacle stage with space for the altar, pulpit, choir, and organ. These
iconographic elements are set against the suburban Southern California landscape viewed
through the lattice of the polyhedron structure and the transparent skin that clads it. Because of
the distorted geometry of the building volume, Johnson was forced to abandon the use of a
common multidirectional polyhedral system.22 The varying spans caused by the shape of the

building in plan and section demanded that increasingly greater depths be generated toward the
center of the building’s longer dimension.23 Johnson and his structural engineer, John Muller of
Severud—Perrone-Szegezdy-Strum, designed a system of parallel ‘‘space trusses.’’ These were
intended to be a series of parallel and coincident one-way structural systems.24 Because of the
structure’s height and relative thickness, stiffness is achieved through a diaphragm action created
by the parallel trusses acting together as a shear wall. This wall of combined space
trusses, when tied to the independent balcony structures at the lateral comers, creates a
stiff homogeneous ‘‘beam-like’’ unit.25 Each 5-foot-wide space truss was assembled off
site, driven on flatbed trucks, and erected in prefabricated segments of two and three
space trusses each. Two rows of shoring were used to stabilize the structure during
construction.26

 
  The compositional emphasis on the vertical dimension of the interior suggests a similar
emphasis found in Gothic interiors. The outside surface of the assembled structure comprises
horizontal and vertical members. The inside
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  Figure 5.7 Detail of space truss. (Photo: J. Frangois Gabriel. Reproduced with
permission.)

 
  surface has no primary horizontal or diagonal members.27 Like the Gothic interior, the vertical
members express structure as a series of one-way systems. The compositional difference between
the inside and the outside also separates the building’s structure from a common plate-like
structural system, typically a means for transmitting loads on both interior and exterior surfaces.
It is a fortuitous irony that the combination of many one-way space trusses in the Crystal
Cathedral results in what structural engineers often refer to as ‘‘space effect’’: The shedding of
the loads laterally creates a two-way behavior that shares the essential characteristics of a normal
‘‘space frame.’’28

 
  Ideally, to have each element and node support the loads equally, a space frame
should be a flat plate of a geometrically pure shape and have supports on all sides at
each node.29 When support conditions are not consistent, as is usually the case, all
loads on all members are different. Support conditions are more important than the
overall shape of the surface or volume when sizing individual elements and designing
connections. In most cases the rhetoric of a continuous and uniform system requires that the
system’s members be sized to carry the largest load. This means that many of the
members are often oversized and redundant. In some cases, in order to achieve an
apparently uniform diameter of all members, their actual wall thickness is varied to

address different loading conditions. In extreme cases members are solid where loads are
highest. This technique is relatively expensive because of the retooling required to create
the different casts for the various wall thicknesses necessary to maintain consistent
diameters.

 
  More than most polyhedral structures, the unusual shape of the Crystal Cathedral generates a
number of different loading conditions. This problem is addressed by varying the depth of the
space trusses to accommodate the various moments created by the increasingly larger spans
toward the center of the plan. This solution produces a large number of diameter types for the
individual pipe sections. This also demands a complex and idiosyncratic set of joints.30 This
strategy is opposite to the techniques that manipulate the wall thickness of members to retain
uniform diameters. The diameters of the members of the Crystal Cathedral vary from 2 to
5 inches to accommodate inconsistent loading conditions throughout the structural
network.31 One suspects the relatively modest project cost, $10 million, required that the
space truss system comprise a modified ‘‘off the shelf’ system, in this case, tubular
sections from preexisting stock. This frugal strategy eliminates the option of varied tube
wall thickness as a technique for accommodating dissimilar loads. The irregularity of
the member sizes and the complex geometry produced a widely varied set of joint
conditions. Johnson and Muller’s solution contrasts greatly with the typical space
frame, which attempts to minimize the number of joint conditions as a method for
achieving a consistent or uniform surface treatment. The architect and engineer devised
an arrangement of connections that call for the pipe members to be welded at their
slotted ends onto gusset plates.32 Owing to the distorted geometry, these are often
complicated because as many as 11 members come into one joint. Where the roof meets
the wall, castings are added to the gusset plates.33 The castings themselves were so
complex that George Kent, a steel detailer and consultant to the structural engineer, had
to model them with rubber balls and cardboard tubes in order to understand their
configuration.34

 
  Although somewhat compromised with regard to a typical space frame, there is an effort by the
architect to minimize the heavy visual impact of gusset plates, service ladders, catwalks, and
fighting fixtures by burying them deep within the truss system.35 In addition, ventilation is
achieved through natural means. The glass itself is tinted to allow only 8 percent of the daylight
and heat into the interior. A series of glass panels on the exterior skin are mechanically
operable and comfortably modify air movement and the interior temperature.36 By using
the depth of the space truss as a service zone, Johnson produces a discrete version

of Kahn’s ‘‘served and servant’’ space idea. The structure becomes a tectonic and
rhetorical object containing mechanical and electrical systems whose regularized surface
dominates the character of the interior. Simultaneously, the frame supports a singular
exterior glass wall whose smooth, reflective, and atectonic surface comes from a world of
contemporary industrial production and the glossy veneers of many modern consumer
goods.37 The atectonic exterior recalls the nearby Los Angeles Pacific Design Center
built in 1971 by Cesar Pelli. The dialectic between the glazed exterior and the skeletal
interior is part of a rhetorically industrialized tradition that includes buildings such as
John Paxton’s Crystal Pavilion of 1851 and Norman Foster’s Sainsbury Centre of
1978.

 
  Each of these examples is informed by industrial lofts. Kenneth Frampton has labeled such
restatement of the uninterrupted volume typology as ‘‘productivism.’’ Specifically, the term is
used to describe a class of innovative commercial and office structures built since the
mid-1960s. It is closely allied to the original modernist idea of the building as ‘‘an
elegant act of engineering.’’38 The Crystal Cathedral is representative of the American
branch of productivism that demonstrates little concern for the elegantly detailed and
revealing tectonic language of its British counterpart, led by such figures as Sir Norman
Foster and Sir Richard Rodgers.39 Because of its reductive form and deemphasized
detail, Johnson’s cathedral can also be placed at the end of a line of postwar American
minimalists who include Eero Saarinen, Kevin Roche, Gunnar Birkerts, and Cesar Pelli.
Often monumental in scale and institutional or corporate in purpose, the work of this
group frequently places an emphasis on the making of a refined abstract shape: The
taut quality of the building’s language makes it difficult to manipulate in a manner
that signifies such familiar architectural moments as building entry and individual
window.

 
  The transparent skin as well as its romantic framing of the sky and landscape connect the
Crystal Cathedral to a second species of modernism specific to Southern California.
Predominantly domestic in function and thus vastly smaller in scale than the cathedral, work by
Richard Neutra and Charles and Ray Eames and the buildings of the Case Study House
Movement share some tectonic characteristics and existential themes. The lightweight cladding
and steel frame construction of this group derive inherent tectonic qualities from a concern
for an improved programmatic and spatial relationship with natural elements. The
California architects felt that the building should take advantage of the psychological and
physiological benefits of the mild arid climate of the region.40 In particular, Frampton

has characterized the works of Eames and the Case Study Movement as possessing a
concern for standardization and mass production. This suggests a connection with the
work of the later, albeit more heroic, productivist agenda. Using a more lyrical and
personal formal vocabulary, the work of the Los Angeles architect Rudolf Schindler offers
a vocabulary more intuitive and far less committed to standardization than other
California modernists of the era. Johnson has never claimed to be influenced by Schindler’s
work in the design of the Crystal Cathedral. In fact, Johnson has been accused of
being indifferent to Schindler, a criticism that has its roots in the California architect’s
absence from the 1932 Museum of Modem Art’s exhibition on the International style.
What is striking is that many of the California projects by Schindler and the Crystal
Cathe-

 
  dral share an instinctive character that modifies normally standardized systems of construction
to create expressive form.

 
  The Crystal Cathedral corresponds to a set of larger attitudes that reveal values and conditions
peculiar to postindustrial America: one of a technological monument emblematic of a
productivist postwar economy and another of a building that engages in the changing American
mythology of nature. In addition, the Crystal Cathedral can be connected with the previously
described American tradition of temporary and makeshift environments in which religious
revivals were staged.

 
  

 

5.5  FROM BOULLEE TO OLDENBURG: THE STRUCTURE IN A POSTMODERN
CONTEXT

Philip Johnson claims that the enormous geometric volume of the cathedral alludes to an
expressionist utopia. Others have found the Crystal Cathedral to be similar to the architecture of
the Enlightenment and more recently much of pop art. The building’s boldness and heroic scale
recalls the projects by Boullee and Ledoux. This courageous yet eccentric architecture from the
Enlightenment, among other things, spoke in confident terms of the power of reason
and a comprehension of natural laws of the universe. American society has been a
principal descendant of this legacy because of (1) the society’s commitment to capitalistic

production, (2) its historically strong individual work ethic, and (3) its view that the natural
environment is a resource meant to be transformed through the laws of nature for the
good of society. In particular, the Anglo-American Enlightenment was the parent of a
number of evangelical and reform movements. These two sets of offspring have often
radically alternated between being mutually supportive of or distincdy at odds with
each other. Albeit for vastly different reasons, they both currendy participate in a
broader contemporary critique of America’s philosophical commitment to science and
technology.

 
  A departure from the ‘‘reasoned’’ spirit of the Enlightenment appears to contradict a primary
reading of Johnson’s polyhedral structure: a group of evangelical Christians being housed in a
system that symbolizes a secular heritage. This apparent discrepancy makes sense when one
considers that Dr. Schuller’s ministry is unique in that it is not part of the ‘‘creationist’’
branch of the modern evangelical movement. The rhetoric of technology is compatible
with Schuller’s rejection of the common evangelical belief of ‘‘original sin.’’ Schuller
contends that ‘‘sin’’ is the primary source of ‘‘guilt,’’ a principal inhibitor of human
potential. For Schuller, technology becomes a symbol of the material, psychological, and
spiritual maximization of human nature. This positions him on the edge of more familiar
reactionary strains of evangelism, placing him closer to moderate contemporary American
belief.

 
  In addition to its compatibility with a secular society, the building is also part of a 19th-and
20th-century tradition that embraces the revelatory nature of technology. This mystic optimism
is epitomized in the exhibition structures
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  Figure 5.8 Interior toward east across nave. (Photo: Gordon H. Schenck, Jr. Reproduced with
permission.)

 
  of the 19th century, the reconsideration of architectural language of the 20th century, and the
built artifacts of the space program of the 1960s and 1970s. Ironically, it is the social upheaval of
this last period that most recendy called into question the credence of this shared faith in
science.

 
  The overt representation of technology in the Crystal Cathedral can be interpreted as
nostalgia for America’s historic leadership and prestige in the first two-thirds of the
century in science, technology, economics, and politics. Many have interpreted the
structure’s white tubular members and the intricate shadows they produce as connoting the
assembly building and launch towers of Cape Canaveral. According to the architect,

the cathedral’s large 70-foot-high doors, which, when open, connect the pulpit to the
audience in their cars in the parking lot, were inspired by the poetics of the structures at
NASA’s Florida rocket-launching facility.41 The large doors require a motor the size
of that needed to operate a washing machine to open; ironic because their motion
alludes to the incomprehensible nature of a powerful cybernetic apparatus (Color Art
4).

 
  On first inspection, the inspirational reading of the structure and doors seems consistent with
what Manfredo Tafuri describes as the ‘‘mystic transparency’’ pursued by the ‘‘Glasarchitektur’’
of the early modem movement in Germany.42 Conversely, Tafuri has also suggested
that the building’s lack of technical development, manifest in the crudeness of its
detail, keeps it from truly achieving its revelational potential. The large scale and
the undiscriminating character of the structural connections deny a specific identity
that reduces both the interior and the exterior surface to an indifferent quotation
free from a profound reading of the relationship between material, craftsmanship,
and gravity. The lack of differentiating inflection of the building’s structure to its
external context, which includes Richard Neutra’s most recognized works, or the internal
context of specific programmatic or technical requirements implies that the building is
emblematic of the passive, casual, and overly inclusive nature of the contemporary built
environment: a set of qualities shared with much of current culture and the media in
particular.

 
  It is tempting to read Johnson’s design as an intentional and subtle critique of common
life, a highly considered piece of ‘‘culture en masse,’’ that is, at the same time, as
Schuller claims, a ‘‘22 acre shopping Center for Jesus Christ’’ to be inhabited by the
common man. Its bluntly assembled off-the-shelf building system has the ability to be a
powerful icon of contemporary times. The generic nature of the structure recalls the
mechanical and serial form making of pop art (Color Art 5). As with pop art, the
nondiscriminating nature of Johnson’s work, particularly the Crystal Cathedral, has
attracted both a critical and a popular following. The boldness of the imagery and
candor of the overall statement can be considered more consequential than a classically
inspired elaboration of a glass-and-steel construction. It is often argued that such
technical bluntness distinguishes American art and architecture from that of Europe.43
This rejection of the seriousness of ‘‘high culture’’ and its art has been described as
characteristically ‘‘American’’ as well.44 These contentions become difficult to defend
when one considers that the ‘‘anti-art’’ segments of dadaism began in Europe. On the

other hand, its descendant, American pop art, simultaneously embraces and critiques
the popular culture of postwar America as well as both historical and contemporary
avant-garde. For the inhabitant and viewer the Crystal Cathedral, like much of pop art, can
be impersonal, monotonous, banal, lonely, disturbing, and oddly at the same time,
glorifying.

 
  Ultimately, comparing the Crystal Cathedral to pop art becomes problematic. Missing from the
Garden Grove Chapel is the intentional wit or derision of Warhol, Lichtenstein, Oldenburg, and
others of the movement. One senses that Johnson is not consciously iconoclastic in the design of
the church. In fact, Johnson’s stated reference to the architecture of expressionism and the
optimistic reading of technology suggest that the building is very traditional in that it is
conspicuously heroic. It is precisely the underarticulated character of the building systems that
undermines this reading, reinforcing instead the mechanical and potentially ‘‘senseless’’ ritual of
viewing a televised service.

 
  

 

5.6  THE STRUCTURE AND AMERICAN MYTHOLOGIES OF NATURE

The nation’s transforming relationship to nature and spirituality is arguably of greater
metaphysical significance to American society and culture, and the Crystal Cathedral in
particular, than the pragmatics of pop. The American connection to nature and God gives the
building its serious dimension. Understanding changes in the American mythology of nature is
useful in comprehending the relationship of the cathedral to the contemporary natural
environment.

 
  Leo Marx’s paradigm and the title of his influential text published in 1964, The Machine in the
Garden, describes a set of important models for grasping the historic relationships of American
society and the landscape. Initially, the New World was understood by Europeans through a set
of conflicting views of the vast unsettled continent: one as a terribly untamed and savage realm;
the other a pure unspoiled opportunity to recast and reform European civilization. This
perception would significantly change with the rise of industrialism. In no small part due to the
19th-century romantic movement in Britain, the philosophical debate about nature in

America centered around a pair of attitudes that saw the natural environment, on the
one hand, as an endless resource in service to the accumulation of commercial wealth
and, on the other, as a finite and diminishing realm, aiding individual initiative and
prosperity.

 
  In his book The Machine in the Garden, Leo Marx describes this conflicting set of 19th-century
views about the utility of nature as ‘‘pastoralism.’’ In Making a Middle Landscape,
Peter Rowe contends that, ‘‘Pastoralism,’’ as defined by Marx, is ‘‘a cornerstone of
American intellectual and artistic experience….’’4S In the 19th century the politics and
culture of the pastoral ideal evolved to serve simultaneously the symbolic interests
of the individual and the collective interests of industry. Small property owners and
big

 
  business both saw the natural environment as an energetic and inspiring mythology coming
from wilderness and a means to exchange and generate wealth. The 19th-century landscape
painter Thomas Cole, in particular, depicts the unique relationship Americans have with
nature.4* His work often juxtaposes cultivated landscapes with wild landscapes. Cole’s
somewhat didactic paintings frequently imply a Biblical narrative that propounds the
transformation of a raw and sublime wilderness to a productive garden because of the persistent
and virtuous progress of civilization. These portrayals place American nature myths
with the future, or at least the here and now. This is in contrast to the conventional
European mythology about nature, which often cultivates cultural relationships with the
past.47 It is interesting to compare Cole’s work with the views of nature portrayed
by European, and classically romantic, painters such as William Turner. Turner’s
atmospheric work depicts a less optimistic image, indicating that nature and culture
are both cast as a sublime, terrifying, and ultimately incompatible dichotomy. This
melancholic view is often described as being nostalgic toward a perceived ‘‘semiprimitive’’
time before industrialization. Selected works of George Inness represent an important
shift in the 19th-century American pastoral metaphor. His painting The Lackawanna
Valley creates an idyllic pastoral setting but moderates the scene by introducing the
dialectical promise of technology: a railway locomotive pulling a train of freight cars in the
middle ground. In contrast to the dominant British view of technology, later placed in
architectural terms by John Ruskin, William Morris, and others, that enslaves the individual,
Inness portrays the machine as something that can free the individual and tap into
a new constructive potential for the benefit of society. This is consistent with the
American proclivity to place industry in a visionary light. Peter Rowe describes this as

an accommodation in American pastoralism that allows the coexistence of nature
and technology.48 This historically has allowed society the material advantages of
industry and the moral benefits of honest social values associated with a Virgilian
rural existence.49 Over the course of the nation’s life, this contention becomes an
important element of the complex imprecise environment of the American suburb, a
cultural and social condition critical to understanding the character of the Crystal
Cathedral.

 
  

 

5.7  THE CONTEMPORARY PASTURE: A CATHEDRAL IN A PARK

In coming to terms with the contemporary state of pastoralism in the city and suburb, Peter
Rowe describes a fundamental difference between the pastoral ideal and society’s technical
alignment: the former prescribing a state of being and the latter, a means for doing things. He
submits that contemporary society awkwardly attempts to quantify the pastoral condition. This
occurs in such practices as describing the qualitative social benefits of open space and parks in
empirical terminology.50 Rowe suspects that the tendency to measure conventionally qualitative
criteria has to do primarily with the modem and universal means of production, the technocratic
method of managing things, and the scientific manner of interpreting the world. He also describes
how a technocratic orientation has the unfortunate characteristic of bypassing the
‘‘symbolic realm of human experience,’’ favoring instead limited but empirical modes of
measurement.51

 
  In the postindustrial context, although transformed, the pastoral ideal still has much to do
with explaining the character of the suburb, particularly in the domestic setting. Rowe
describes the current state of the natural myth as becoming a nostalgic presentation
of a bucolic landscape framing ‘‘kitsch’’ period-style structures. The image of moral
superiority of the 19th-century pastoral ideal over the tainted traditions of European
society is transferred to the 20th-century American suburb. The lower-density parldike
setting of suburbia represents the perception of a more virtuous environment compared
to the decay of the inner city.52 Corporate and commercial suburban environments

are often just as committed to a dialogue with nature. These nonresi-dential types
usually have an architectonic vocabulary and site strategy that are less nostalgic toward
historic styles and are often more overtly expressively ‘‘rational’’ and ‘‘functional’’ in
nature.55

 
  More than most buildings that are open to a large segment of the public, the Crystal Cathedral
engages in the two themes of modern pastoralism. First, its sheer transparency, informed by the
expressive architectural language of the early-20th-century avant-garde, connects the interior
with the suburban landscape, one that, through decentralization, portrays a socially natural
and ideal terrain. Recalling the work of Thomas Cole, the view of the contemporary
pastoral setting suggests a Biblical reference to the ‘‘Garden of Eden’’ and American
mythology, which romanticizes the cultivation of the frightening wilderness. In the case of
Orange County, California, a prototypical suburban version of a ‘‘New Jerusalem,’’
one suspects that the definition of ‘‘wilderness’’ includes not only the historic vision
of undeveloped land but, more importantly, the chaotic and threatening nature of
‘‘Babylon’’ in the form of America’s contemporary urban and threatening inner-city
‘‘wilderness.’’54

 
  Second, the use and reading of nature and the garden as a recreational diversion is now
significantly different from what it was in the 19th century. Today, nature and God are seen to
be therapeutic resources. In an age of overstimulation and a proliferation of morally
undifferentiated choice, the white structure and transparent skin of the cathedral open to the sky
and to an idealized landscape suggest a soothing, if not semiconscious, state separate
from the profane nature of the everyday environment. The diversion of idyllic nature
becomes a remedy for dealing with the estrangement caused by the fragmentation of
daily rituals, necessary where international and regional affiliations have become more
important than local relationships. As the traditional separation between city and
country becomes blurred, nature becomes a more exceptional experience. Green space
becomes a distinct realm, readily available to be manipulated by those who control their
environments.

 
  In the Crystal Cathedral nature is highly controlled and is used to represent the rehabilitative
effects of Christian spiritual salvation. In addition to the panorama of suburban Garden Grove,
the resplendent interior houses a row of gentle fountains lined in a pool that is on axis with the
altar, itself overgrown with tropical ferns and flowers. Between services, a bath of religious
Muzak further acoustically tranquilizes the interior. As well as recalling the integrated
environment of a shopping mall, these attributes further strengthen the perception of

the cathedral as a suburban ‘‘Garden of Eden.’’ The Crystal Cathedral becomes a
condensed and collective version of the ideal Southern California backyard comprised of
house, pool, and lawn. David Hockney portrays this emblematic personal space in his
1967 painting?! Lawn Being Sprinkled. Peter Rowe describes the work as representing
a paradigmatic space of the postmodern condition, a realm supporting the ‘‘blank
good life…loaded with intriguing cliches that are simultaneously surreal, energetic,
alienating and filled with a deep sense of ennui.’’ ’’ The contemporary view of nature is
distinct from the traditional separate character of city, suburb, and countryside of
the past. It is now part of the synchronic ubiquitous matrix of the urban/suburban
metropolis.

 
  The coincident usage of the contemporary city structure suggests an alternate reading of the
Crystal Cathedral’s polyhedral structure. The articulated and non-rectangular frames refer to the
uniform texture of the endless metropolitan environment. Like Jennifer Bartlett’s famed
Rhapsody, which uses the grid as a symbol and means for creating semiautonomous image
fragments from a larger image, Johnson’s white lattice structure creates a pictorial quilt
of the exterior landscape’s segregated and diverse functions stitched together by a
relentless system of high-speed roadways. Unlike in the 19th century, nature is no
longer a civilized and separate pastoral ground. Today, nature is a set of figures woven
into an uneven context with an indistinct purpose. At the scale of an individual plot,
nature’s figural function takes the shape of the autonomous suburban backyard. At the
scale of the metropolis, nature is formed in city, regional, or national parks; the latter
being a paraurban destination intended psychologically and physiologically to separate
people from their customary environment, thereby refreshing the mind from its fatigued
condition. It is easy to contend that nature’s commodified and isolated image is itself
compromised and itself ‘‘un-natural.’’ At its best nature is rewoven into the placeless space of
the metropolitan terrain. At its worst it becomes a nebulous decoration used as a
green skirt for industry, recreational facilities, residential districts, and commercial
zones.

 
  In addition to engaging with a transformed pastoral ideal found in the contemporary
decentralized city, the Crystal Cathedral is participating in a traditional, though no less
converted, relationship between technology and a natural context. To many architects and urban
designers, most suburban residential architecture presents a discrepancy between its practical
purposes, which are often arranged in a highly functional manner by accommodating the most
sophisticated consumer technology, and its use of decorative styles, which are firmly entrenched

in the often quasihistoric or pseudorustic pretensions of the architecture that society desires.
Along with a body of his smaller-scale work in the 1950s and 1960s, Johnson’s Crystal
Cathedral through its transparent glazing and its polyhedral shape begins to imply a
20th-century pastoralism for contemporary suburban culture. Particularly given the historicist
nature of the work he and John Burgee designed and built shortly after the Garden
Grove Chapel, it would be inaccurate to portray Johnson as a utopian committed to
reshaping the nature of the American pastoral tradition. Although smaller and more
private in function, the Glass House in New Canaan, the Roofless Church in New
Harmony, and the Underground House in suburban Cincinnati offer a body of conceptually
imaginative work in parklike settings. More than most works of this century, these are
very close to Leo Marx’s ‘‘machine in the garden’’ paradigm. In all three buildings
and the cathedral, the visual and often spatial movement between a modem building
and the landscape is uninterrupted, highly contemplative, and ultimately intensely
poetic.

 
  What separates the Crystal Cathedral from Johnson’s earlier body of work is its somewhat
more frightening and indifferent relationship to the landscape. Whereas its transparency connects
the inside with the outside world, its large scale, reflective treatment, and prismatic form seem to
render a sense of imposition and disengagement with the scale of its surroundings. This may have
much to do with the fact that Reverend Robert Schuller did not retain Johnson and
Burgee to plan or coordinate the landscape immediately surrounding the building.
It may also have to do with an intention, or at the very least a reading, that links
the building to the pandemonium of signs and visual stimuli of the local suburban
environment.

 
  The directness of the building creates an ironic contrast to the bucolic character of its
suburban setting. The chapel’s graphic vitality recalls a suburban ‘‘Babylon,’’ a ‘‘city of
vice’’ found in the ‘‘architecture of the strip’’ that Robert Venturi and Denise Scott
Brown describe in their studies of highway iconography. In the case of the Crystal
Cathedral, the form and treatment together recall the figurative, though no less symbolic,
quality of the surrounding suburban office parks and the mysterious tinted glass of
limousines slipping by on the nearby Santa Ana and Garden Grove highways. Like
other buildings in the suburban realm, the client priorities often reduce the design
of such landscape elements as parking lots to their most basic level to keep the cost
of the entire project down. This places most of the emphasis on the more efficient
symbolic reading of the building’s form and materiality. Such subtraction denies the

possibility of developing an architecture that is sensitive to many scales. By spatially
modulating the building’s surroundings, a more concentric and intimate set of scales could
have been introduced. By not adequately dealing with the leftover spaces, namely,
the parking lots, the Crystal Cathedral contributes to the unfortunate perception
that most modem architecture is indifferent to the scale of human occupation and
that the rhetoric of the frame and massing dominates the conceptualization of the
project, precluding any attempt to foster an intimate relationship between humans and
architecture.

 
  SOME

 
  
5.8  CONCLUSION

S

 
  The paradoxical structure and space of the Crystal Cathedral represent the religious
organization that uses the building and are emblematic of many rich inconsistencies found in
American society. Through monumental form and mannered geometry, the expressive and
unorthodox character of Johnson’s design addresses not only a desire for informality but the need
for validation of a historically controversial and spiritually conservative segment of the nation’s
population. The cathedral’s glass skin and structure both frame the idealized suburban Southern
California context: a part of the United States that, more than most, romanticizes the benefits of
civil fiberties and unlimited choice. The building’s overt embrace of the television and the
automobile, two of the most important postwar technological influences of contemporary culture,
adds ammunition to the project’s ability to accommodate an additional and, one suspects, an
increasingly authentic set of myths. Its transparency and polyhedron construction
connect the Crystal Cathedral to the familiar atria of malls and shopping centers to
reinforce: (1) the reading of the American terrain as a cultivated palimpsest of public and
private gardens dedicated increasingly to diversionary activities; and (2) the nation’s
historic and characteristic attachment to standardized technology, which appears to
encourage corporate capitalism as long as it serves the concept of unlimited consumer
choice.


 
  The geometric distortion of Philip Johnson’s polyhedron structure is both intriguing and banal
because it is the result of, and at the same time exemplifies, contemporary circumstances.
Johnson and Burgee’s structure was never intended to position itself in the long line of
geometrically precise structuralist designs that historically and intellectually owe much of their
existence to the philosophical traditions of Europe. It is easy to contend that, although Johnson
has been strongly influenced by European architecture, his appropriations have favored an, at
times, random and expressionist set of architectural projects and movements. If there is a
consistency in Johnson’s work it is that Euclidean geometric order, particularly with regard to
structure, is of little metaphorical concern. This indifference toward intellectual precision and
cosmologic arrangement, while troubling to many of the profession’s theoreticians, is of no small
importance because it seems that the American public does not often care either. What this
chapter attempts to suggest is that such apathy to external order is part of the American
cultural and social legacy and goes a long way to explain the dearth of representational
geometric space in the Crystal Cathedral, Johnson’s work, and in the current built
environment.
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6  Tetrahedral Purity: The Javits Center

Matthys Levy

 
  
6.1  INTRODUCTION

New York’s Javits Center, one of the world’s largest exhibition spaces contained in a single
building, sits on Manhattan’s waterfront on a 9-hectare site. Its distinctive architectural profile is
identified by a unique space frame that both encloses and defines interior spaces. Because the
center is a major public facility, the building’s architect, James Ingo Freed of Pei Cobb Freed,
sought to create a design that welcomes the public while creating a dynamic interplay between
the purely commercial and the public uses of the project. To achieve this result, Freed took
advantage of the special features of the site: the views toward the river, the changes in ground
elevation over the site, and the difference in relative importance of the surrounding
streets.

 
  

 

6.2  ARCHITECTURE AND POLITICS

The building is oriented along 11th Avenue, which slopes down from the southern to the northern
end of the site, permitting the development of a two-level entry system. A ceremonial entrance at
the highest point leads directly to a great entrance hall on the level of the upper exhibit hall. A
roadway entered from the northern end provides access to a 300-m-long bus and taxi dropoff that
is directly outside the concourse, which is at midheight between the two exhibit floors. The lower
exhibit floor, with a 6-m ceiling height, contains about 60,000 m2 of space, including
restaurants, meeting rooms, and a specialevents hall. The upper exhibit hall, with a ceiling
height of 10 m and an area of 50,000 m2, is over 300 m long. A galleria floats above

this hall in an east-west direction, providing access from the entrance hall to a future
restaurant and bar overlooking the Hudson River. At the back of the exhibit halls, along 12
th Avenue, truck bays are provided on both levels with direct access to each exhibit
floor.

 
  The exhibit hall, the galleria, the concourse, and the entrance hall are all covered with a
continuous space structure with a plan area of over 53,000 m2 supported on a grid of
columns spaced 27 m on center. This roof structure climbs in giant steps from the general
roof line over the exhibit hall to a point 47 m above the entrance hall. The multilevel
cubes give the appearance of a crystalline structure reminiscent of the 1851 Crystal
Palace.

 
  New York had long sought to build a new convention center to meet the ever-growing demand
of the public and trade show sectors that were inadequately served by the small (30,000 m2)
coliseum. After a failed attempt in 1972, the needed legislation for a new center was passed in the
spring of 1979 and married the state’s Urban Development Corporation, which had construction
and planning expertise, to the Triborough Bridge and Tunnel Authority to provide the necessary
financing. To further complicate matters, separate development and operating corporations were
established to build and manage the new facility. This proved to be an awkward arrangement
that was finally changed, centralizing all responsibility in one agency, but only after the building
was completed.

 
  GEOMETRY AND STRUCTURAL FORM

 
  The two most challenging problems in the overall design were first to devise a structural system
to unite the building’s diverse functions in a coherent pattern of visual and spatial rhythm, and,
second, to articulate this structure in a way that visually reduced the scale of so large a
building. The center’s form represents a synthesis between these related objectives (Figure
6.1).

 
  Derived from the 27-m spans used within the exhibition halls, the basic structural unit of the
exhibition center is a 27-m bay covered with a space frame roof supported at each 8.725-m-high
column at four comers of an inverted pyramidal column capital on 400-mm-diameter circular
base plates 3 m apart. At each of these points, the space frame is either fixed, free, or permitted
to slide in either the N-S or E-W directions, depending on the location of expansion joints in the
roof and the requirement for restraint to support lateral loads. Below the inverted pyramidal
top are four 400-mm shafts centered on the four comers of a 1.5-m square that are
welded to a base plate bolted to the concrete floor of the upper exhibition level. The
sculptured
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  Figure 6.1 Axonometric view of the Javits Center.
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  shape of these columns somewhat resembles delicate, multistemmed champagne glasses rather
than gross single-legged piers (Figure 6.2).

 
  The 27-m repetitive bays, visible throughout the building, unify the structural rhythm of the
entire exhibition center: The concourse and galleria are the width of one bay, whereas
the exhibition halls are formed by the repetition of many such bays. Through the
variety of heights defined by the space frames and the sculptural quality of the frames
themselves, the design achieves a reduction of scale in the formation of the building
itself.

 
  Along the building’s exterior, the form of the space frames and columns is mirrored in the
building’s facade. The skin of the building is modulated by the metal of the frames and a range
of reflective glasses. Transparent glass forms the lower facade of the entrance hall and the
concourse, as well as that of the galleria and restaurants; the remaining facades are translucent or
opaque glass. The skin articulates the functions of the building and expresses the form of the
structural unit. The result is a single, unified rhythm, integral to the structure, patterned to
reduce scale (Figure 6.3).

 
  The interior illumination of the building differs significantly from most
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Figure 6.2 Column elevation.
 


  glass architecture in realizing the possibility of using natural light as a means of visually
defining interior spaces. The public spaces are articulated, not by walls, but by a soft, evanescent
fight filtering in from outside the building through the tinted glass that reduces the light entering
the building and permits views outside the building.


 
  The center’s design presents a rare opportunity, in the tradition of the great exposition palaces
of the 19th century, to demonstrate the innovative use of modem technology. It is
perhaps closest in concept to the Crystal Palace built for the 1851 London Exhibition,
although images are also present of the Galerie des Machines built for the 1889 Paris
Exhibition.
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  Figure 6.3 Juxtaposition of column and space frame.

 
  The Crystal Palace, a 72,000-m2 structure, 555 m long (which is 1,851 feet long,
matching the year of its construction), was a prefabricated iron structure based on a 1.2-m
module corresponding to the maximum glass size that was produced at the time. Those
who saw it before its destruction by fire in 1937 spoke of its romantic beauty and
said, ‘‘it is a Midsummer Night’s Dream seen in the clear light of midday.’’ It is this
same image that the Javits Center tries to evoke. Clearly, it is the structure of the
building, more than any other element, that contributes to the crystalline quality of the
design.

 
  What is interesting is the process leading to the solution. From the beginning, an organic
approach was sought that would tie together the various forms. The space frame, which covers
the horizontal planes, turns comers, climbs in steps to the top of the great hall, and descends to
the ground, does so without violating the ‘‘pure tetrahedral geometry’’ of its smallest unit.
Specified as an assembly of steel pipes and spherical steel nodes, the space frame geometry is the
master to which the designer is the servant. The deft and elegant maimer in which the elements
are handled demonstrates how imaginatively prefabricated elements can be handled by a
competent designer.

 
  Based on a 3 X3-m horizontal module, 1.5 m deep, the space frame is stiffened along the
column lines by diamond trusses formed by a second layer of the standard tetrahedral
geometry. The whole assembly behaves much like a flat plate with reinforced column
strips. At the columns, a third layer of space frame creates a drop panel completing the
analogy. The column itself contains the capital, an inverted pyramid, sitting on four
stiffened shafts of steel-clad reinforced concrete (for fireproofing) (Figure 6.2). The
column capital member sizes use 400-mm tubes, 40 mm thick for diagonals and 13
mm thick for horizontals. Material for these tubes is ASTM A618 Gr 2 (F7 = 345

MPa). The crossed base of the inverted pyramid consists of butt-welded 38-mm-thick
gusset plates of ASTM A3 6 steel (F? = 248 MPa). These are, in turn, welded to
bearing plates at the top of the four vertical 400-mm-diameter concrete-filled steel
shafts.

 
  

 

6.3  

JOINTING

 
  Because of its size, it was necessary to divide the roof area into eight units, each of which
would respond independently to movements and deformation resulting from temperature
variations (Figure 6.4). Two conditions were considered:

 
     

 
	
1. 

	Maximum temperature variations during construction: 3 5 °C with large permissible
deformations and stresses.

     
	
2. 

	Maximum  ambient  temperature  variation  during  operation,  after  the  building  is
closed in: 15°C with small deformations and stresses.
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Figure 6.4 Layout of roof regions.
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  Figure 6.5 Unidirectional sliding bearing.


 
  Figure 6.6 Expansion joint
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  Figure 6.7 Wall/roof expansion joint.
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  Consistent with these principles, three types of supports were designed for the space frame at
the top of the columns: fixed, free, and one-way sliding (in one of the two orthogonal directions).
In general, the center of a unit between expansion joints was fixed and the unit was permitted to
expand outward from this center. As a result, no more than two bays, or 54 m, of the continuous
space frame is fixed against expansion and the resulting bar forces are no more than 10 percent
of the total design forces.

 
  Most of the roof units are required to resist lateral wind forces, because they are either
continuous with exterior walls or support mullions from entrances or curtain walls. These wind
forces are resisted at fixed supports as well as sliding supports that are perpendicular to the wind
direction (Figure 6.5).

 
  In plan, the repetitive grid of column locations is carried out without regard to the location of
expansion joints. As a result, the pure geometry of the space frame is distorted at these locations
to accommodate the expansion joints. Two such conditions exist in the building. In the flat roof
area, the diamond-shaped beam is split into two triangular edge beams spaced 450 mm apart,
each of which is continuous with the space frame on either side of the joint (Figure
6.6). Where the flat roof intersects with a vertical wall, a more complicated division is
provided (Figure 6.7) with one triangular beam hanging from the wall. For stability, the
triangular trussed beams have diagonals in the vertical plane, completing the truss
configuration.

 
  In general, the roof is supported on the columns, even where the wall continues down to the
ground along the 11th Avenue facade. At these locations, the space frame wall is laterally
supported at the base with a detail connection that permits vertical sliding (Figure 6.8). The
walls of the three bays on 12 th Avenue, however, are bearing and supported on the floor slab.
This condition, which is normally not allowed by fire regulations, was permitted on the
condition that an automatic sprinkler system be provided covering the full area of the
walls.

 
  ASSEMBLY


 
  Apart from its size, this space frame is unusual because of the loads imposed on the roof. The
entrance hall and restaurant area are both covered with a skylight. The balance of the roof area
is opaque and is structured with a 75-mm-deep metal deck resting directly on the upper chords of
the space frame. Over the exhibit area, packaged air-conditioning units sit on concrete pads
provided on the roof. Each of these units weighs up to 10,000 kg and as many as three are placed
in one bay. In order to service these units, pathways have been provided, constructed
with precast-concrete pavers. The sum of these loads, in addition to the normal snow
loads, are substantially higher than the loading required for a conventional space frame
roof.

 
  The space frame consists of hollow steel nodes, tubes, and threaded rods used to bolt two
nodes and a tube together. This patented system, which is known as the PG System, operates as
follows: The tubes carry all compressive
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  Figure 6.9 Typical member-hub connection detail.
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Figure 6.10 Top chord roof deck support.

 
forces, and rods, all tensile forces. The rods, which run from node to node,
provide a level of prestress to the system, which varies depending on the rod
size (Figure 6.9). The diameter of the rods varies from 13 to 83 mm and they
are made of high-strength steel with an ultimate strength of 1,035 MPa and a
yield strength of 863 MPa. A total of 75,000 rods are used in the project.

 
Tubes, which vary in diameter from 75 to 215 mm, are 365-MPa-yield- strength
material. The actual tube strength varies by ± 13 percent, depending on the
tube diameter. Larger tubes are swaged (tapered down at the ends) to avoid
interference with adjacent tubes at nodes. Where tubes are required to support
transverse loads, such as at the top chord of the roof, they are reinforced with a
tee or channel. This reinforcing extends onto the node to provide a positive load
transfer device (Figure 6.10). For light lateral loads, a bearing washer between
     
the tube and the rod placed within 20 mm of the end of the tube provides the
load transfer mechanism. Tubes are cut square at the ends and therefore bear
on the spherical node along a line. Local yielding is assumed to take place along
this line bearing due to the Hertz contact pressure.

 
Hollow nodes used on this project have an outside diameter of 215 and 240 mm
and vary in thickness from 19 to 38 mm. These nodes, with a strength of 863
MP a/1,03 5 MPa (yield/ultimate), were originally conceived as cast steel. In
order to provide the required 19,000 nodes in time, it was necessary to seek
more than one supplier. A Japanese manufacturer (who eventually supplied
one-third of the total required) was found who was able to forge the nodes
rather than casting them.
 


  ANALYSIS

 
     

 

The analysis of the structure was performed using the NASTRAN program,
modeling the space frame as a truss system. Each region defined by expansion
joints or free edges was analyzed separately.

 
The largest region, with over 20,000 bars and 5,100 nodes, is the central hall
area. It is also the most complex with both vertical and horizontal surfaces as
well as columns made up of space frame elements. The second-largest region, a
portion of the exhibit hall roof, has almost 15,000 bars, and the smallest region
is a single bay with 1,500 bars (on average, there are four bars per node). Each
region was analyzed for five loads, dead loads, wind and temperature effects
as well as snow loads in a checkerboard pattern. Various combinations of these
loads were considered and the most critical combination was determined for
each member in the roof. An iterative approach was used to size members with
corrections introduced in each subsequent run. A maximum of three iterations
was used to produce a final list of members.
     

 
In addition to the design analysis, a progressive collapse analysis was performed
to determine the sensitivity of the structure to local failure. As a starting point
for this analysis, it was assumed that a critical member failed for whatever
reason. For this purpose a critical member was defined as the bottom chord
of  the  diamond  beam  at  the  center  of  the  span,  or  a  diagonal  just  above
the support column. Nonlinear member properties were defined for the bars:
Tension bars were modeled as elastoplastic members; compression bars were
modeled as nonlinear elastic bars approximating the buckling behavior obtained
from actual tests of a range of tube diameters (Figure 6.11). An additional
criterion was imposed stating that if a node became unstable due to failure
of  all  but  two  bars  connected  to  the  node,  the  load  applied  at  that  point
was removed. From a physical viewpoint, this implies that the load falls to
the  ground  if  the  node  fails.  A  stepwise  solution  of  the  problem  using  the
MARC program was performed with four load increments. In order to obtain
preliminary indications of the extent of a potential collapse, static runs were
performed with critical bars removed at various locations. The inherent strength
of the continuous indeterminate space frame is apparent from these preliminary
analyses. Removing members anywhere within the fabric of the structure was
shown to be not critical and redistribution of forces easily accommodated the
loss of the member. Only on the perimeter bays was any significant collapse
shown to occur due to removal of a critical member. Even here, the extent of
the potential collapse was shown to be limited to the affected bay.
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Figure 6.11 Stress-strain diagram for tension rod and compression tube.
 


  FABRICATION AND CONSTRUCTION

 
     

 

     
For ease of fabrication, the roof was assumed to be built without any camber.
As a result, the natural deflection of the roof under load results in a low point at
the center of a bay. For redundancy against possible ponding, two drains were
provided in the vicinity of this point. In addition, a minimum deflection was
specified to assume adequate slope for drainage of the roof. The bays covered
by skylights, on the other hand, drain to channels that were incorporated into
the skylight construction along a square 3 m from the edge of the roof. In this
case, the skylight channel is posted up from the space frame and sloped to these
drains. This imposed a stiffness requirement on the space frame as maximum
deflections were specified.

 
On the facade and at entrances, the design of the space frame is controlled by
stiffness rather than strength requirements. The limitation on the deformation
of glass panels and entrance doors, both of which are attached to the space
frame, limits the permissible deflection of the space frame. This requirement
resulted  in  oversizing  members  and,  in  the  case  of  the  concourse  facade,
in  adding  a  stiffened  edge  to  the  space  frame  wall.  Two  criteria  were  the
determinants for this condition: First, the racking of a 3-m square facade panel
is limited to 6 mm and, second, the out-of-plane twist is limited to 6 mm.

 
The sculptural columns supporting the space frame were required to conform
to  a  building  code  ordinance  that  the  columns  be  fireproofed  to  a  point
7.5  m  above  the  floor.  This  requirement  was  met  by  filling  the  four  steel
shafts with reinforced concrete. Under symmetrical loads, the pyramidal capital
acts essentially like a truss with tension in the horizontal tie members and
compression in the diagonals. Under nonsymmetrical loads, significant bending
is introduced in the diagonals, which tend to act as cantilevered branches from
the vertical trunk of the column. The details at the four comers of the capital
were developed without external gussets to provide an elegant solution. The
400-mm-diameter space frame base plate is supported by a 250-mm vertical
pipe, which is, in turn, welded to an inclined 38-mm-thick plate welded to the
diagonal arms of the capital. The horizontal tubes are then welded to each
other and the 250-mm vertical pipe at the mitered comer. After welding, a
reinforced epoxy filler was used at the mitered comer to form a clean curved fine
after welding, a solution that proved to be more economical than filling with
     
weld metal and grinding (Figure 6.3). The comers themselves were originally
conceived as three-dimensional cast-steel elements, but because the same visual
and structural result could be obtained by a weldment at substantially lower
cost, the welded solution described here was chosen.

 
The four 400-mm-diameter columns below the capital are filled with 40- MPa
concrete as are the midlength cross braces. This concrete was pumped in from
the bottom prior to the attachment of the capital. At the base of the columns,
both the shell and the reinforcing bars are welded to the base plate, achieving
the required tensile resistance against overturning moments.

 
Stringent  vertical  and  horizontal  tolerances  had  to  be  maintained  in  the
assembly  and  fabrication  of  the  capital.  The  four  bearing  points  have  a
center-to-center tolerance of 2 mm in 3 m and were required to be in plane
within 3 mm. In order to meet these tolerances, a sequence of welding and
assembly was developed to minimize thermal distortion due to welding and a jig
was used for both the subassemblies and the final assembly. Welding procedures
required both preheat for all heavy plates and tubes and the use of E70XX
electrodes. In the final assembly, a boxed cover enclosed the crossed plates below
the capital to match the dimensions of the cross-stiffeners of the vertical shafts
of the column. Apart from this concession to visual architectural requirements,
the structure of the column assembly is totally exposed, protected by a thin
film of epoxy paint.
 


  CONSTRUCTION

 
  Stringent tolerances were maintained throughout the fabrication and erection of this structure.
These tolerances started with the column location, which was controlled to within 8 mm in the
two orthogonal directions. For the space frame itself, individual tubes are within 1
mm of specified length and the overall assembly is within 8 mm per 27-m bay. These
strict tolerances were required to ensure proper fit of the elements without forcing
and inducing built-in stresses into the assembly. In order to obtain these tolerances,
extraordinary controls were established for the fabrication and assembly process. Jigs were
used to check each tube length and subassemblies were prepared in highly accurate
frames.


 
  The erection process was devised taking into account the required final tolerances. The flat roof
of the exhibit hall was divided into subassemblies, each of which was transportable. A typical bay
consisted of four beam elements, two of which sat on the columns, and a central 18-m square
divided into three 6X18-m strips. These three strips were joined together by stitching on the
ground prior to lifting (Figure 6.12).

 
  Erection started with the four beam elements. When these were stitched together to form a
ring, the center section was lifted in one piece and temporarily suspended from four corners at
an elevation slightly below that of the adjacent beams while the stitching process
took place. Stitching members were first loosely installed. Torquing of nuts at the
end of the rods pulled the central section into alignment with the previously placed
beams.

 
  Erection of the cubes over the central hall presented a further complication. Each cube,
except the one at the center, is supported by four walls, one of which belongs to the
cube at the next-higher level. This required a sequence whereby the supporting walls
had to be erected first before placing the central sections, which, in turn, entailed
temporary cable bracing particularly for the four space frame columns in the central
hall.

 
  The schedule for erection required completion of a minimum of two bays per week. As
there are a total of 71 bays, a total erection time of nine months was anticipated and
met!
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  Figure 6.12 Layout of subassembly units.

 
  Stringent controls were established for every step of the fabrication and erection process. The
cast-steel nodes were subject to visual, magnetic particle, and radiographic inspection. Flaws in
the castings such as cracks or voids, which were not repairable by welding, were cause for
rejection. Particular attention was focused around the open mouth of the casting where high
stresses were shown to exist by analysis. The high-strength rods with upset rolled threads were
inspected for defects. Rolled threads were called for, instead of cut threads, to avoid notch
sensitivity. The material for the rods has

 
     

 

     
a high Charpy notch toughness, which alleviates sensitivity to stress corrosion,
a concern for the extended life span of the structure.

 
COMPONENT TESTS

 
A series of load tests of the elastic and inelastic behavior of the rods and tubes
were conducted to confirm properties used in the space frame analysis. The
resulting force-deformation relationships for both rods in tension and tubes in
compression (including postbuckling behavior) were used to define the material
properties in the progressive collapse analysis described previously. Verification
of the design was provided by a full-scale load test of a 14-bay region of the
roof. In order to further probe the safety of the structure, the response of
the structure to a series of improbable events was explored, culminating in a
progressive collapse analysis.

 
RISK MODELS

 
Five events that might cause failure of a space frame component were identified:
 


     

 
	
1. 

	Defective Member: Critical defects in a member are likely to be detected during
construction. The probability of failing to detect a defective member should be very
low. The probability of a small 13- mm-diameter tension rod having a significant
defect is greater than that of a large 83-mm rod, because the smaller tension rods are
more susceptible to discontinuities and notches introduced during the manufacturing
and  fabricating  process  and  possibly  because  of  less  stringent  inspection  during
erection. In addition, the majority of the large tension members greater than 36
mm in diameter were proof-tested before installation. The probability of a significant
defect in a tube is also low, because compression members are less sensitive to loss
of strength due to defects.
     


	   
2. 

	Abnormal Loading: Loading exceeding the design load is considered abnormal. A
1.9 kN/m2 overload above the design five load over at least one bay, owing to an
accumulation of slushy snow, for example, would be a very rare occurrence. Even
application of the full design five load of 1.9 kN/m2 , with no overload, over at least
one bay would be an uncommon occurrence, happening perhaps only a few times
during the lifetime of the roof.

     
	
3. 

	Human-Induced Accident: The probability of failure as a result of an event such
as a crane hitting a critical member or uncontrolled welding on a sensitive, highly
stressed member is very low. Fire was not included in this analysis.

     
	
4. 

	Catastrophic Event: Events such as an airplane or a large wind-driven missile
crashing into the structure are also extremely rare. Even with the high level of air
traffic in the area, the annual probability of such a catastrophic event is on the order
of 1 in 1,000,000.


     

 

5. Unknown Deterioration: Corrosion inside tubular members, or inside
joints, could be missed by normal maintenance procedures. This deterioration is
possible, although very unlikely, in an inside environment over a normal service
life.
 


  Approximate probability values were assigned to each of the five initiating events
for three different types of members (13-mm-diameter tension rods, 76-mm-diameter
tubes, and 83-mm-diameter tension rods). These values are summarized in Table 6.1,
where

 
  P(A) is the annual probability that an initiating event

 
     

 

     
will occur;
 


  P(M/A) is the probability of a critical member failing and

 
     

 

becoming unavailable for loading given that the initiating event has occurred;
and
 


  P(M)=P(A) X P(M/A) is the overall probability of member failure.

 
  It should be pointed out that the estimates of probabilities in Table 6.1 are subjective; the
available data are limited and the probabilities should be considered in terms of their orders of
magnitude rather than exact numerical values. Even with these limitations, the analysis shows
that the risk of failure is several times greater for the 13-mm-diameter tension rod than for the
tube or larger rod. It is recognized that the risk of failure during a catastrophic event is the same
for all members. However, the analysis suggests that the probability of failure for all of the other
events may be 10 times higher in the small 13-mm tension rods (approximately 2 X 10-6) than in
the compression tubes (approximately 2 X 10'7) or 50 times higher than in the large rods
(approximately 10*). More importantly, the analysis also indicates that, in absolute terms,
the annual probability of failure is low even for the small rods: on the order of 1 in
500,000.

 
  TABLE 6.1 Annual Probabilities of Critical Members Becoming Unavailable for
Loading Given the Occurrence of an Initiating Event and Probabilities of Initiating
Events
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ULTIMATE LOAD CAPACITY

 
Based on the results of the risk analysis, four cases were explored to determine
the ultimate capacity of the roof structure. The region of the roof that was
analyzed consisted of the 14 bays on the north end, with a uniform live load of
1.9 kN/m2, in addition to the dead load applied over the entire roof. The corner
bay (Figure 6.13) was then loaded until a large number of members had failed
as defined by fracture of tension members and postbuckling of compression
members. The four cases that were studied and the results are as follows:
 


  Ultimate Load Capacity
as a Multiple of Design

 
     

 

Case Condition Live Load (1.9 kN/m2)
 


     

 
	
1. 

	Roof as built 3

     
	
2. 

	Smallest tension member: 3


     

 

13-mm rod removed from

 
bottom chord of diamond truss
 



     

 
	
3. 

	Small compression member: 3


     

 

76-mm tube removed from

 
bottom chord of diamond truss
 


     

 
	
4. 

	Largest tension member: 0.75


     

 

83-mm rod removed from

 
bottom chord of diamond truss

 
The analysis on which these results are based considered nonlinear member
properties and assumed a 3 percent sliding friction coefficient at the Teflon
support bearings. Intermediate cases were also studied with results similar to
those shown previously.

 
COLLAPSE ANALYSIS

 
A  nonlinear  model  of  the  structure  includes  separate  force-deformation
relationships  for  tubes  and  rods.  For  tubes,  the  postbuckling  behavior  is
modeled  based  on  earlier  tests.  For  tension  rods,  yielding  and  fracture  are
similarly  based  on  tests  with  the  tensile  area  at  the  thread  used  to  define
member strength. Because of different steel quality, the ductility of rods below
18 mm in diameter was less than that of large bars (Figures 6.14 to 6.16).
     

 
Using  a  nonlinear  version  of  the  SAP  IV  program  run  on  a  CDC  7600
mainframe, loads were applied incrementally to the roof, making multiple runs
to obtain convergence of the solution. Initial load increments were large (0.9
kN/m2) and were decreased to 0.2 kN/m2 as the capacity of the structure was
approached. Loading was continued until a load level was reached for which
no stable solution was achieved. The following table summarizes the results
obtained for the five cases studied:
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  Figure 6.13 Loading condition for ultimate load capacity.

 
     

 
	
1. 

	As built—uniform dead load plus 3+


     

 

0.9 kN/m2 over entire roof. Loaded

 
in the southwest corner incrementally.
 


     

 
	
2. 

	13-mm tension rod removed from 3+


     

 

bottom chord of diamond truss. Same loading as case 1.
 


     

 
	
3. 

	As built—incrementally applied load over 3.5+



     

 

entire roof.
 


     

 
	
4. 

	8 3-mm tension rod removed from 0.25+


     

 

bottom chord of diamond truss.

 
Incrementally applied load over entire roof.
 


     

 
	
5. 

	Catastrophic  event:  diamond  truss  and  0.10+  portion  of  adjacent  space  frame
removed. Incrementally applied load over


     

 

remaining roof.
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  Figure 6.14 Force-deformation relationship for 13-and 16-mm tension rods.
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  Figure 6.15 Force-deformation relationship for 18-mm and largertension rods.

 
  Figure 6.16 Force-deformation relationship for typical compression tube.
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  These results must be evaluated in the context of conditions that would tend to make the
results either conservative or nonconservative. Such factors are:

 
  Conservative

 
  Nonconservative

 
     

	Dynamic effects ignored

     
	Secondary effects owing to large deflections (geometric nonlinearity) neglected


     
	Contribution of the metal deck to stiffness is neglected

     
	Secondary moments resulting from end restraint of tubes owing to friction at the
joint are neglected

     
	Stiffness resulting from prestressing of rods is neglected

     
	Actual test results on tubes and rods higher than assumed capacity
     


	Conservative interaction equation used to define flexural members


  

 

6.4  CONCLUSION

The analyses indicate that a space frame has a large reserve load-carrying capacity. Even with
the condition imposed by a catastrophic event, progressive collapse is initiated only by the
presence of sufficient live load. The particular structure used for the Javits Center was highly
optimalized, and, as a result, has small members in the neighborhood of lines of contraflexure. A
more generalized design, although less economical, would be more highly resistant to progressive
collapse.

 
  The design and construction of the space frame for New York’s Javits Center presented unique
and complex problems. The solutions to these problems demonstrate the adaptability of the
space frame concept to specialized applications. Starting with a defined geometric configuration,
modifications to a standard-component prefabricated system are shown to be readily made. The
flexibility of the system extends to the originality of the construction solution. Although few
structures of such a large scope may be built, lightweight, steel, space frame construction should
find application to more modest enclosure problems and should be an integral part of the design
repertoire of architects and engineers.
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7  Double Curvature Space Frames Supported on Four Points: Design and Construction of the
International Plaza of Portopia ‘81

Masao Saitoh

 
  
7.1  INTRODUCTION

Port Island, which is off the coast of Kobe, is the first large-scale man-made marine city in the
world. It has an area of 436 ha in which a hundred baseball stadiums could entirely be laid out.
Fifteen years after the reclamation work began, major urban facilities such as hotels, hospitals,
residences, and parks, as well as a fully automated mass-transit system, were completed in
1981.

 
  The exhibition, called PORTOPIA’81, to commemorate the completion of Port Island was held
during a 180-day period beginning March 20, 1981, in an area of about 65 ha in the south of Port
Island (Figures 7.1 and 7.2). The
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  Figure 7.1 Aerial view of P0RT0PIA'81.

 
     

 

main theme of the exhibition was ‘‘Creation of a New Marine City of High
Culture’’ with the aim of presenting an ideal future-oriented marine city as well
as promoting international friendship and peace. The International Plaza was
plarmed as the main facility for the exhibition.
     

 
The International Plaza is an open space for events in which an octagonal space
shelter covers the spectators’ seats. In this plaza such international events as
dances, choral concerts, and dramatic presentations were held every day during
the entire period of the exhibition. Sixteen hundred spectators’
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  Figure 7.2 Aerial view of International Plaza.
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  Figure 7.3 Interior view of space frame.

 
  seats and a stage with a width of 18 m and a depth of 8 m were installed around an open space with an
area of 700 m1
2

. The
plaza had a seating capacity of 2,600 with the addition of movable seats from the adjacent vacant
lot.
The shelter that covered the International Plaza was in the shape of four triangular eaves
connected to a central elliptical paraboloid shell, giving the appearance of open flower petals.
The plan of the shelter was a square with sides of about 51m and was supported by hinges at the
center of each side.

 
 
  1It has a high degree of applicability to a shape with a free-form curved surface.
 
 
2Stiffness and stress can be controlled by regulating the depth between the upper and lower layers.
 

                                                                                   
 
   The
spectators’ seats and the stage were designed to be enclosed under one roof. At the same time,
the external shape was designed so that many people would be interested in entering the plaza.
The shape chosen for the International Plaza was arrived at after a survey of shapes having
either a static and closed image of an internal space or a dynamic and expansive image of an
external atmosphere (see Figure 7.3). Both the shelter and the International Plaza were removed
after the end of the exhibition.

 
  OUTLINE OF THE STRUCTURE

 
  In order to realize a column-free large-scale roof with an area of about 2,600 m2, which
possesses the shape of such a unique doubly covered surface, a double-layer space truss structure
composed of a system truss was employed (Figure 7.4). This structure was chosen for the
following four reasons:
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3. 

	Manufacturing accuracy of members is high owing to the fact that they are made in
a factory with a dimensionally controlled production system.

     
	
4. 

	A short construction period is possible.


     

 

The roof truss consists of upper and lower layers with a two-way square grid
of about 2 m and a depth between layers that varies from 1 to 2 m. The TM
(Taiyo-Mero) system adopted for this roof has 5,600 steel tubes for the chords
and web members and 1,560 steel nodes for its joints. The self-weight of the
roof truss is about 85 tons corresponding to 33 kg/m2 and the long-term design
load is estimated at 50 kg/m2, including the weight of the roof fabric.

 
In general, the structural design followed the flow diagram shown in Figure 7.5.
It is important to note that there are two phases, a preliminary design to decide
the structural system and a final design to examine the structural behavior.
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  Design of
Structural Element

 
  Figure 7.5 Structural design flow of space frame.

 
  STRUCTURAL PLANNING

 
  During the design of the space frame, attention was paid to three basic factors:

 
     

 
	
1. 

	Form

     
	
2. 

	Arrangement
     


	   
3. 

	Connections ‘‘Form’’ is the shape of the overall space frame, ‘‘arrangement’’ in the
internal structure means the arrangement of the individual members consisting of
several elements, and ‘‘connections’’ refers to the joint system of the space frame.
When the support conditions and the perimeter conditions of the space frame are
predetermined, its structural properties are determined by the factors mentioned
previously. In this chapter we shall discuss form and arrangement.


  Finding the Form

 
  Finding the form of the roof surface is the starting point in the preliminary design of a shell
structure. It is also the approach used in the design of a space frame and starts with a general
form—a surface curved in space—which is then replaced with a similar structure composed of
discrete elements.

 
  Therefore, the technique for the form design of space frames is the same as the technique in the
design of shell, tension, or pneumatic structures. Three methods of design can be distinguished:
geometrical, mathematical, and experimental.

 
  In this case, from the architectural point of view, the form was desired not only to provide the
enclosed space for the audience but also to be attractive as monumental architecture. One can
imagine a number of curved surfaces with four supporting points. Here, the author
proposed three forms of shells, characterized by the curved edge line as shown in Figure
7.6.

 
  Type A has four wing shells spread from a central dome, type B is obtained by the
combination of four hyperbolic paraboloid surfaces, and type C is the continuous surface as a
whole having both properties of types A and B. Types A and B are pure geometrical surfaces and
type C is a free form that can be determined mathematically or by experimental methods such as
by hanging a weighted net.

 
  To compare the structural behavior of the proposed form of types A and B (Figures 7.7 and
7.8), stress and displacement analyses were carried out for the case of self-weight, which is
dominant in large-span space frames. Using the finite-element method of numerical analysis,
units are replaced with equivalent beam sections. Consequently, the effective stiffness in tension
and
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  Figure 7.6 Proposed form of the roof.
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  Figure 7.7 Model of Type A.

 
  bending and shearing of two kinds are measured in the unit and are put into the equivalent
beam that makes up the grid surface of the shell roof.

 
  Figure 7.9 shows the results of calculations using the equivalent-grid model. Both the deflection
and the bending moments of type B shells are smaller than those of type A. On the other hand,
the axial force along OC is larger in type B than in type A. From these results, type B behaves
more like a membrane than type A.

 
  After considering the architectural requirements, especially the creation of a theater-like space,
type A (composed of transitional surfaces of an elliptical paraboloid) was adopted for the actual
shell roof.

 
  [image: PIC]

 
  Figure 7.8 Model of Type B.
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  Figure 7.9 Comparison of Types A and B.

 
  In order to comprehend the structural effect obtained by the curvature in the type A shell, the
models that demonstrate the stages of development, starting with a plate to arriving at a final
structure, are presented in Figure 7.10.

 
  [image: PIC] Each stage of the models was subject to uniform loads (50
kg/m3
4

) and
the structural behavior was calculated by the equivalent-grid method. The following

 
 
  3The bending moment is larger in stage 1 than in stage 3 and the deflec
 
 
4tion in stage 1 is smaller than in stage 3.
 
                                                  
 

7.2  CONCLUSION

s are drawn from the deflection and bending-moment distribution (Figure 7.11):

 
  Figure 7.10 Five stages in the development of the shell.

 
  [image: PIC]

 
  Figure 7.11 Transition of the structural behavior.

 
     

 
	
2. 

	The apparent effects of the curvature in shell structures can be seen in the deflection
of stages 2 and 4.
     


	   
3. 

	Because the change in deflection is only slighdy different between stages 4 and 5, the
structural rationality of stage 5 to cover a larger area is evident.


  Member Arrangement

 
  The fundamental patterns of double-layer space frames can be obtained geometrically by
various combinations or arrangements of the upper and lower layers and web elements, as shown
in Figure 7.12. Unit HI, which is the most popular square unit type, the so-called offset grid, was
adopted for this structure.

 
  Because this unit has no twisting rigidity and is not internally stable, sufficient external
supports have to be provided to compensate for the lack of internal stability. It should be noted
that with internal stability (such as is provided by triangular grids) additional stresses during
construction or due to differential settlements may be avoided.

 
  Member arrangement and the constituent frequency (the scale ratio of the element dimension
to the overall dimension) determine the stiffness and the load-carrying capacity of a space
frame.

 
  For the purpose of studying the influence of depth and frequency on structural behavior, a
numerical analysis was carried out for the unit models as shown in Table 7.1. In this table the
frequency ratio and the depth ratio for the basic unit used in the realized structure are presented
as a (the ratio of unit frequency) and Ji (the ratio of unit depth) respectively. The numbers in
parentheses represent the ratio of total volume of truss members used in the whole
structure.

 
  The analytical method used was the one mentioned earlier and only the effective rigidities are
changed for the beams of the grids of the shell. Figure 7.13 shows the deflection at points A and
0 in nondimensional units with a=y?=1.0.

 
  (a) Square units

 
  (b) Triangular units

 
  upper layer

 
  web layer

 
  lower layer

 
  Unit

 
  Unit n

 
  Figure 7.12 Fundamental pattern of units.

 
  Table 7.1 Analytical Models of Different Units.
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  point A | point O

 
  So: the deflection of the basic unit at point 0

 
  Figure 7.13 Comparison of the deflection.

 
  In this figure two numbers are shown: the deflections for each case divided by the deflection of
the basic unit at point 0 and the actual values of deflection.


 
  As the depth ratio / becomes large, the deflection decreases considerably and the point of
maximum deflection moves from point A to 0, corresponding to increasing bending
rigidities.

 
  The economical efficiency concerning the depth and frequency is difficult to estimate. Although
the deflections have a tendency to decrease as a and Ji increase, care should be taken to ensure
that the tolerable force due to buckling decreases simultaneously.

 
  NUMERICAL ANALYSIS OF THE SPACE TRUSS SHELL

 
  Static Analysis

 
  The structure was analyzed as a grid framework in the preliminary design to select the form
and member arrangement of the structural system. A final calculation was made using the
displacement method, assuming a hinged connection at every intersection of the truss elements.
Axial forces on truss members and the deflection of all points were numerically obtained under
dead load (50 kg/m2), horizontal earthquake force (seismic coefficient = 0.3) and wind force (v =
35m/sec). Wind tunnel tests were performed on a 1/100 scale model to obtain the design
loads.

 
  Because the roof is fight and an open-air type, the wind force has considerable influence on its
structural behavior. The maximum tensile axial force of truss members due to wind forces was
4.6 times as large as that due to dead loads.

 
  Furthermore, for the case of temperature forces, the elongation of the tie beam and differential
settlement of the supports were examined.

 
  Dynamic Analysis of the Roof

 
  The dynamic analysis for seismic forces was carried out using a model composed of 85 nodal
points and 168 equivalent beams. A lumped mass system was adopted for this analysis, and the
damping factor and the maximum acceleration were assumed to be h = 0.02 and 200 gal
respectively .

 
  For a comparison of the vertical displacement of the influence coefficients given by
each method, the RMS (root mean square) method of analysis was used based on
a response spectrum. The maximum magnification of acceleration response is 8.43
(EL CENTRO UD 1940) and the maximum deflection is 14.2 mm (MIYAGIOKI UD
1978).


 
  The distribution of bending moments was obtained from the above response displacement by
means of the replacement method with equivalent beam. It is important to emphasize that the
axial forces in this case are very large. That is, the maximum force of 15.6 ton corresponds to a
magnification of 10.9 of the one due to horizontal earthquake forces (seismic coefficient
= 0.3) and 0.96 of the one due to wind forces (q= 148 kg/m2; return period = 30
years).

 
  STRUCTURAL DESIGN

 
  The member size of the steel tubes used in the roof are of eight kinds, 114.34>X6.0 to
48.6<J>X3.2, with slenderness ratios of about 50–100, 80–120, and 60–130 for upper chords,
lower chords, and diagonal members, respectively. The ball joints used for the intersections have
five different diameters ranging from 150c|> to 85<j>.

 
  The roof has eight supporting pin joints at the lower chords sitting on the four reinforced
concrete supports. To resist the rotation due to the horizontal thrust of wind or earthquake,
these supporting columns are fixed to a complex foundation and are also connected to each other
by an underground tie beam (Figures 7.14 and 7.15).
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Figure 7.14 Supporting point.
 


  Figure 7.15 View of supporting point.
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  The catwalks for maintenance were provided in the space frame by utilizing the space within
the roof depth. From the viewpoint of statics, the depth of the wing shell changes from 2 to 1 m.
Therefore, the upper and lower surfaces of the roof are defined by two kinds of elliptical
paraboloid.

 
  The lower surface of the whole roof and the upper surface of the central shell are given by Zo
and the upper surface of the wing shell is given by 7,\ as follows:

 
     

 

Zo = -—(x2 + y2) + 2f
     

 
iy

 
u f2

 
Z1=(f1 + f‘‘+h1)--(x2 + y2)-z lyz
 


  '1 A-J lx2ly2

 
  Using the geometrical nature of transitional surfaces, all chords of the lower surface and the
upper chords of the central shell have the same length, equally dividing the parabola (Figure
7.16).

 
  CONSTRUCTION

 
  The assemblage and the erection of the roof truss were completed on the ground. After the
central shell was set on supporting columns, four wing shells were attached to it one by one
(Figures 7.17 and 7.18). It took about 30 days to construct the truss shell, including checking the
torque in the joints.

 
  Although the TM (Taiyo-Mero) system, in which a tolerable error in member length is 1 mm,
has no error-absorbing capacity, the construction was achieved without scaffolding or adjusting of
the support position. The reason
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Figure 7.16 Surface of the shell.
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  Figure 7.17 Process of the construction.

 
     

 

for adopting this construction method was because this structure is not too large
and the unit of space frame used has no twisting rigidity. In the construction
of  a  large-span  space  frame,  particular  attention  must  be  paid  to  member
deformation due to temperature change and self-weight.
     

 


 
     
7.3  CONCLUSION

At present, many double-layer space truss structures of the type described in this
chapter are being constructed. However, we often forget that this type of
structure has low applicability to shapes formed by such permanent finishing
materials as glass and membranes, although it can be freely formed as a
structure. As for the roof finish, a membrane material was adopted and
attached to each upper joint of the space frame. Sometimes the existence of
secondary members to support finishing roof material seems to prevent the
rationalization of a space frame in which all members are attached with pin
joints.

 
We live in an age when ‘‘any kind of shape can be formed’’ because of the remarkable
development in computer and analytical technologies. It is now true that the degree
of freedom for conceiving any design and shape seems to have become
unlimited.
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  Figure 7.18 View of space frame during construction.

 
  Consequently, a firm concept concerning the ‘‘integration of structure and design’’ must be
established. As this chapter shows, a sound and attractive structure with a double-layer space
truss can be developed based on this concept.
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8  Deconstruction of the Cube

Arthur L. Loeb

 
  
8.1  INTRODUCTION

The arbitrary assumption that a cube having unit edge length has unit volume has given the
cube an undeserved fundamental significance. This notion is a superstition in the sense that it
has been handed down for many generations without ever having been subjected to experimental
verification: It is, in point of fact, an assumption that cannot be experimentally proven or
disproven. The cube is a space filler but, then, so are other forms such as the rhombic
dodecahedron and the truncated cube, each of which is more fundamental to an understanding of
crystal structure than is the cube.1 Although it is true that the edges of a cube define a
forward-backward/up-down/left-right system of reference in which we move, Rudolf von Laban in
his time-motion and dance notation actually preferred the icosahedron to the cube as a
frame of reference. Unfortunately, he found that dancers are culturally conditioned to
the cube as a reference frame, whereas von Laban’s choreography stressed diagonal
motions.2

 
  The cube has six square faces, twelve edges, and eight vertices. It is unstable, that is to say,
when eight flexible joints at the vertices of a cube are joined by twelve struts along that cube’s
edges, this structure will collapse, because it has six degrees of freedom.3,4 It will be stabilized by
joining the vertices by six additional struts. There are many ways of accomplishing such
stabilization,
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Figure 8.1 Tetrahedron inside a cube.
 


  one being the creation of a tetrahedron inscribed inside the cube in such a manner that the six
edges of the tetrahedron constitute the face diagonals of the cube (Figure 8.1). The inscribed
tetrahedron occupies exactly one-third of the volume of the cube.5


 
  

 

8.2  THE REGULAR TETRAHEDRON AND OCTAHEDRON

A regular tetrahedron may thus be considered as a truncation of the cube: Four comers of the
cube are completely removed. These four corners may be juxtaposed to form a square pyramid
whose four lateral faces are equilateral triangles (Figure 8.2). This pyramid constitutes one-half
of a regular octahedron: Its volume equals exactly two-thirds of that of the original cube.
Accordingly, this regular octahedron has a volume exactly four-thirds of that of the cube.
We may therefore conclude that the volume of a regular octahedron equals exactly
four times that of a regular tetrahedron having the same edge length. The portions
truncated from the cube to produce a regular tetrahedron are called octants of an
octahedron: Eight of them constitute a regular octahedron. The regular tetrahedron is the
polyhedron with the smallest number of vertices and the only one in three-dimensional space
in which all vertices are equidistant from each other. It is also the most resistant to
compression.

 
  The cube does not occur much in nature,6 nor does the right angle occur in the art and
architecture of peoples much in touch with nature. It is, however, a convenient reference solid; as
we have just noted, it may be deconstructed into an inscribed tetrahedron and half of a regular
octahedon. I shall
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  Figure 8.2 Cube deconstructed into a tetrahedron and half an octahedron.

 
  call this tetrahedron the reference tetrahedron and assign it a unit volume; then the cube
circumscribed around it (the reference cube} has volume 3, and the octahedron having the same
edge length as the tetrahedron (the reference octahedron) has volume 4. (For a discussion of units
of volume, see Chapter 4.) The cube is a space filler; that is, it and its clones may
fill all of a space without gaps or overlaps. Therefore, its components, the regular
tetrahedron and half-octahedron, which individually are not space fillers, may together fill
a space in the ratio of one tetrahedron per half-octahedron, which amounts to two
tetrahe-dra per octahedron. Structures that have the same symmetry as the cube, and

that includes all polyhedra considered here (with the possible exception of the regular
tetrahedron whose symmetry is a subsymmetry of the cube), may be built out of octahedra
sharing faces with tetrahedra only and of tetrahedra sharing faces with octahedra
only.

 
  

 

8.3  THE CUBOCTAHEDRON

The cube may also be truncated as far as the midpoints of its edges (Figure 8.3); eight octants of
an octahedron are removed, leaving a polyhedron having eight triangular and six square faces,
called the cuboctahedron. The octahedron thus removed from the cube has half the edge length of
the reference tetrahedron; its volume therefore equals one-eighth the volume 4 of the reference
octahedron, that is, 1/2. Because the reference cube has a volume equal to 3, the volume
of the cuboctahedron that remains after the truncation equals one-half less, that is,
5/2.

 
  In Figure 8.4 we note that the cuboctahedron has four hexagonal cross
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  Figure 8.3 Truncation of a cube to form a cuboctahedron.

 
  sections: Each vertex of the cuboctahedron functions as a vertex of two of these regular
hexagons. Accordingly, the cuboctahedron has 12 vertices, each at the center of one of the edges
of the reference cube. The distance between the center of the cuboctahedron and each of its 12
vertices equals exacdy the edge length of the cuboctahedron, a characteristic that led R.
Buckminster Fuller to name the cuboctahedron vector eqtiilibrium.

 
  The cuboctahedron may itself be constructed out of regular octahedra and tetrahedra. As
neither of these constituent forms has square faces and the cuboctahedron has six of these, the
regular octahedra need to be bisected, so that their equatorial cross sections may supply the
square faces for the cuboctahedron. The tetrahedra and octahedra constituting the
cuboctahedron all


 
  have half the edge length of the reference tetrahedron; hence their volumes are, respectively,
1/8 and 1/2. If we call the number of tetrahedra constituting the cuboctahedron x and that of
the octahedra y, then the volumes of the cuboctahedron and its constituent polyhedra are related
by the following equation:
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  Figure 8.4 Four hexagonal cross sections of a cuboctahedron.

 
  (1/8) x+(1/2) y= 5/2 or x+4/=20 (8.1)

 
  Furthermore, since the cuboctahedron results from the subtraction of eight octants
of the octahedron from the cube, it is one octahedron short of being a space filler.
Hence

 
  x=2(y+1) (8.2)

 
  From Equations (8.1) and (8.2) it follows thatjy = 3, x = 8: The cuboctahedron may be built
from six half-octahedra, that is, three regular octahedra and eight regular tetrahedra (Figure
8.5).

 
  

 

8.4  THE STELLA OCTANGULA

A tetrahedron inscribed in a cube shares four of its vertices with the cube. The remaining four
cube vertices could be shared by a second tetrahedron (Figure 8.6), whose six edges are each
perpendicular to one of the edges of the first tetrahedron. The two tetrahedra overlap: The space
shared by them is occupied by a regular octahedron. The space not shared by the two
overlapping tetrahedra is constituted of eight tetrahedra having an edge length half that of the
reference tetrahedron; their volumes are therefore 1/8 each. The central octahedron has four
times that volume, that is, 1/2. Together, this octahedron and its eight satellite tetrahedra
form a Stella octangula, or eight-pointed star, having a volume equal to 3/2 (Figure
8.6/z).


 
  Accordingly, the Stella octangula occupies one-half of the cube in which it is inscribed.
Nevertheless, it is not a space filler, because it is constituted of one regular octahedron and eight
tetrahedra, six tetrahedra in excess of the ones required for space filling. For the purpose of filling
space, these six excess tetrahedra would require three additional octahedra; indeed, 12
quarter-octa-hedra at the edges of the cube will exactly fill the space between the inner walls of
the cube and the external faces of the Stella octangula.

 
  THE TRUNCATED OCTAHEDRON

 
  A Riddle: Imagine a hollow cube partially filled with water up to a level where the water
surface is a regular hexagon. What fraction of the cube volume is filled with water? (Do not turn
the page until you have at least considered the question.)

 
  

 

8.5  CUBOCTAHEDRON WITH CONSTITUENT TETRAHEDRA AND OCTAHEDRA

Figure 8.5 Exploding cuboctahedron.

 
  Figure 8.6 Two tetrahedra inscribed in a cube.
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  The answer is one-half: The cube was placed with one vertex on a table and its body diagonal
vertical, or, as our editor asserts, hanging by a thread attached to one of its vertices. The cube
can thus be bisected into two halves (Figure 8.7) having one hexagonal, three triangular, and
three irregularly pentagonal faces, which, of course, are space fillers as well. These half-cubes are
themselves octants of a truncated octahedron (Figure 8.8), that is, a regular octahedron with
its six vertices amputated. If we consider the truncated octahedron inscribed in the
reference cube, the volume of the cube will be 3. Hence the volume of the truncated
octahedron equals 3/2, exactly the same as that of the Stella octangula inscribed in
the cube. The truncated octahedron may itself be constructed out of tetrahedra and
(half) octahedra; at least six half-octahedra are needed to provide the six square faces.

These octahedra and tetrahedra have an edge length one-quarter that of the reference
octahedron and tetrahedron, so that their respective volumes are 1/16 and 1/64. Once
again, if x is the number of tetrahedra and y the number of octahedra in the truncated
octahedra:

 
  (1/64) x + (1/16) y= 3/2 or x+4/=96 (8.3)

 
  and

 
  x=2y (8.4)

 
  Therefore, x= 32 andy= 16: The truncated octahedron maybe built from 32 tetrahedra and 16
octahedra. Of the latter, three need to be halved. Because
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  Figure 8.7 Bisection of the cube.

 
  [image: PIC]

 
  Figure 8.8 Truncated octahedron.

 
  the number of remaining octahedra, 13, is odd, it follows that one of these 13 octahedra will go
in the center of the truncated octahedron. The latter polyhedron has 36 edges, of which 24 bound
the square faces. Twenty-four tetrahedra are configured adjacent to the six square faces. The 12
octahedra all have the same dihedral angles as the angles between the hexagonal faces of the
truncated octahedron, for these hexagons and their adjoining edges are what is left of the
faces of the original truncated octahedra. Accordingly, the 12 remaining octahedra will
be situated at the intersections between hexagonal faces, of which there are just 12,
namely, the edges of the large octahedron from which the truncated octahedron was
generated.

 
  This leaves eight tetrahedra unaccounted for. These are attached to the faces of
the central octahedron; each of these tetrahedra has a vertex in the middle of one of
the hexagonal faces of the truncated octahedron. Together, the central octahedron
and the eight tetrahedra attached to it constitute a small Stella octangula inside the
truncated octahedron. The truncated octahedron may therefore be constituted of a Stella
octangula, 12 octahedra between the ‘‘horns’’ of the Stella, 6 half-octahedra to provide the
square faces of the truncated octahedron, and 24 tetrahedra, three for each hexagonal
face.


 
  

 

8.6  THE RHOMBIC DODECAHEDRON

We shall show now that this form may be considered as a special stellation of either the
cube or the regular octahedron. There are [?z(?z-l)]/2 connections between n points.
There are, accordingly, 28 connections between the eight vertices of a cube. Of these,
12 are edges of the cube. Another 12 are the diagonals of the six faces of the cube,
constituting the edges of the two tetrahedra inscribed in the cube. The remaining four
connections pass through the center of the cube; they are the four body diagonals of the
cube.

 
  These body diagonals intersect at the center of the cube, at angles arc- cos±(l/3) to each other.
The cube may be subdivided into six mutually congruent square pyramids whose lateral edges
run along the body diagonals of the cube. Two of these pyramids may be joined along their
square faces to form an octahedron; because the triangular faces of the pyramids are not
equilateral, this octahedron is not regular. However, because the cube is a space filler,
this octahedron will also fill space by itself: Three of such octahedra may be bisected
into six square pyramids, which may then be reassembled into a cube and thus fill
space.

 
  When the six constituent square pyramids of the cube are each positioned with a square face
contiguous with one of the faces of a second cube, the result (Figure 8.9) is a rhombic
dodecahedron,7 which, accordingly, may be considered a special stellation of the cube. Of
the 12 rhombic faces the 12 short diagonals are the 12 edges of the reference cube
from which it was generated. Because the volume of the reference cube is 3 and the
dodecahedron was generated from two such cubes, the volume of the rhombic dodecahedron
equals
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Figure 8.9 Rhombic dodecahedron in an array of cubes.
 



     

 
	
6. 

	The edges of the dodecahedron correspond to the body diagonals of the cube; the
surface angles of the rhombic dodecahedron are therefore arc-cos±(l/3).


  The 12 long diagonals of the faces of the rhombic dodecahedron constitute the edges of a
regular octahedron, which is equal in size to the reference octahedron: Its volume equals 4. The
space between this octahedron and the outer shell of the rhombic dodecahedron has a volume
equal to 2; this space will just accommodate eight quarter-tetrahedra, of which one is shown in
Fig-
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Figure 8.10 Quarter-Tetrahedron.
 


  ure 8.10, supplying just the two needed volume units. The rhombic dodecahedron may
therefore be considered as well as a regular octahedron stellated by eight quarter-tetrahedra.

 
  DUALS

 
  The valency of a vertex of a polyhedron is defined as the number of edges meeting at that
vertex. The valency of a face equals the number of edges around that face. Two polyhedra are
each other’s duals if to each face of one there corresponds a vertex of the other, and vice versa. A
cube has eight trivalent vertices and six quadrivalent faces, whereas an octahedra has eight
trivalent faces and six quadrivalent vertices: Cube and octahedron are a pair of duals. The
rhombic dodecahedron has twelve quadrivalent faces and eight trivalent and six quadrivalent
vertices. Its dual should have twelve quadrivalent vertices and eight trivalent and six quadrivalent
faces: We have seen that this is the cuboctahedron. The tetrahedron has four trivalent faces as
well as four trivalent vertices; it is self-dual. Duals always have the same number of
edges.

 
  

 

  
8.7  CONCLUSIONS

The term deconstruction, which is being used by historians of art and architecture in a
figurative sense, has been applied here in its original literal sense of taking apart. The
cube can be deconstructed in many different ways, but stronger, more stable, and
more fundamental building blocks to be retrieved from it are the regular tetrahedron
and octahedron. These fill space in a ratio of two tetrahedra per octahedron. In turn,
the regular tetrahedron and octahedron may be combined in a diversity of ways to
construct semi-regular solids: truncated octahedron, cuboctahedron, Stella octangula,
rhombic dodecahedron, and others. Conversely, the cube may be constructed out of its
component parts; these component solids may be combined in various ways to fill
space.

 
  When these various forms are juxtaposed so that their three fourfold axes of rotational
symmetry are aligned, their volumes are found to be related by simple rational numbers. Such
‘‘nesting’’ is possible because the numbers of vertices, edges, and faces of these polyhedra
are all products of their rotational symmetry values 2, 3, and 4, as shown in Table
8.1.

 
  In Table 8.1 all volumes are normalized with reference to their circumscribed or inscribed cube.
When the vertices, edges, or faces are of two different kinds, their numbers are shown as a sum,
for instance, the truncated octahedron has 6 square and 8 hexagonal faces, and the Stella
octangula has 12 edges corresponding to its internal octahedron and 24 edges corresponding to
the 8 corner tetrahedra.

 
  In three-dimensional design it is useful to know how diverse numbers may be represented
spatially by means of polyhedra. These numbers are obtained from Table 8.1 and listed in Table
8.2.

 
  TABLE 8.1 Parameters of Diverse Polyhedra Having Cubic Symmetry
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  Note that for each of these forms Euler’s relation holds: The sum of the number of faces and
vertices is two units greater than the number of edges.

 
  In summary, then, in spite of the cube’s use as a space filler and because its faces may be
aligned parallel and perpendicular to gravitational forces, the tetrahedron and octahedron and
their symmetrical subdivisions are stable and offer an expanded view of the possibilities of
three-dimensional forms, their interrelationships and transformations, and their ability to fill
space in an attractive diversity of permutations and combinations.

 
     

 

TABLE 8.2 Polyhedral Representation of Numbers
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9  The Polyhedral World

Pieter Huybers

 
  
9.1  INTRODUCTION

It seems that the cube and the prism are at present the most common building shapes. As
these two belong to the family of the so-called Platonic and Archimedean polyhedra,
or, in other words, that of the regular and the semi-regular solids, this preference
means a very limited choice out of a much greater source of available forms. Most of
these solids have a form that is so perfect that they exert a great attraction to artists,
scientists, and engineers. We find many examples in nature the shape of which is based on
one of these forms, like some of the monocellular beings and crystals. However, they
are also of great aesthetic as well as of practical importance. When we look more
closely at the building structures around us, it appears that the polyhedral solids are
actually used as a form-giving principle in building to a much greater extent than
we would at first sight realize (Figure 9.1). The tetrahedron and the octahedron, for
instance, have often been used in building for the composition of space structures,
and the icosahedron usually serves as the starting point for a further subdivision of
spherical surfaces. However, there are many more possibilities for the use of the other
polyhedra, and of the forms that are derived from them, in building applications. It is
therefore necessary to know in what form they occur and what their characteristics
are.

 
  Beyond the Cube: The Architecture of Space Frames and Polyhedra, edited by J. Francois
Gabriel ISBN 0–471–12261–0 © 1997 John Wiley & Sons, Inc.
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Figure 9.1 Houses in the shape of tilted cubes by Pieter Blom in Rotterdam,
the Netherlands.
 



  

 

9.2  WHICH POLYHEDRA DO WE KNOW?

Definition of a Polyhedron

 
  First of all we must agree on a workable definition of what we consider in this context to be a
polyhedron.1 We assume that:

 
     

 
	
1. 

	They are covered with a closed pattern of plane, regular polygons. At this point
we shall only look at the so-called Platonic solids, which are composed of identical
polygons, and at the Archimedean solids, which consist of two or three different
polygons. Both groups are named after the ancient scientists to which their discovery
is usually ascribed.2,3 The different polygons that occur in these solids have either 3,
4, 5, 6, 8, or 10 edges.

     
	
2. 

	All vertices of a polyhedron lie on one circumscribed sphere.

     
	
3. 

	All the vertices are identical. This is so because around each vertex of a particular
polyhedron  the  polygons  are  grouped  in  the  same  number,  kind,  and  order  of
sequence.

     
	
4. 

	The polygons meet in pairs at a common edge.

     
	
5. 

	The dihedral angle at such an edge is always convex. This means that the dihedral
angle between two adjacent polygons is less than 180°, if seen from the interior, or,
in other words, the sum of the polygon face angles that meet at a vertex is always
smaller than 360° (see Table 9.1).



  The Various Kinds of Polyhedra

 
  It is easy to understand that under these conditions the minimum total number of polygons
around a vertex is three, the maximum number five, and it is also simple to prove that not more
than five totally regular polyhedra can exist (Figure 9.2). These are the regular or Platonic solids
and they are each composed of one kind of face. Polyhedra are called semi-regular, or
Archimedean, if more than one kind of polygon is used for their construction. According to the
first condition of the previous definition—namely, that the polygon has no more than 3, 4, 5, 6, 8,
or 10 edges—a group of 15 principally different semi-regular polyhedra is found (see Figures 9.3 to
9.5).

 
  The polyhedron numbers in Table 9.1 were introduced by the author and they are merely used
here and in the following discussion in an ‘‘administrative sense.’’4 They indicate an order of
sequence, based on the numbers of their faces. The Euler formula is applicable, which means
that: V -E + F =2.

 
  The names of the semi-regular solids show that they are generally considered to be derived
from the regular solids by truncation. If this truncation is done through the vertices,
so that the original faces convert to polygons with double the number of sides (i.e.,
triangle becomes hexagon, square becomes octagon, and pentagon becomes decagon), five
new polyhedra are found: the truncated versions of the regular solids (Figure 9.4:
Nos. 6, 8, 9, 13, and 14). The original face edges are divided into three parts. The
truncation procedure can be carried out a little bit further so that the original edges are
exactly
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  Figure 9.2 Derivation of the five possible Platonic polyhedra, composed of one kind of
polygon, with three, four, or five sides.

 
  Figure 9.3 Sketch of the 5 Platonic and the 15 Archimedean polyhedra, including two
left-handed versions.
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  Figure 9.4 Photograph of the Archimedean solids.
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  Figure 9.5 The different polygons in the regular and semi-regular polyhedra.

 
  TABLE 9.1 Some Characteristic Aspects of the Platonic and Archimedean Polyhedra
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336        
 

	 
24            
 

	 
1.61803399 
 


	
13        
 

	 
5–6-6       
 

	 
Truncated 
icosahedron                    
 

	 
32       
 

	 
90       
 

	 
60        
 

	 
348        
 

	 
12            
 

	 
2.47801866 
 


	
14        
 

	 
3–10–10   
 

	 
Truncated 
dodecahedron                 
 

	 
32       
 

	 
90       
 

	 
60        
 

	 
348        
 

	 
12            
 

	 
2.96944902 
 



	
15        
 

	 
3–3-3–3-4 
 

	 
Snub 
cube                             
 

	 
38       
 

	 
60       
 

	 
24        
 

	 
330        
 

	 
30            
 

	 
1.34371337 
 


	
16        
 

	 
3–4-5–4    
 

	 
Rhombicosidodecahedron  
 

	 
62       
 

	 
120      
 

	 
60        
 

	 
348        
 

	 
12            
 

	 
2.23295051 
 


	
17        
 

	 
4–6-10     
 

	 
Truncated 
icosidodecahedron            
 

	 
62       
 

	 
180      
 

	 
120      
 

	 
354        
 

	 
6             
 

	 
3.80239450 
 


	
18        
 

	 
3–3-3–3-5 
 

	 
Snub 
dodecahedron                 
 

	 
92       
 

	 
150      
 

	 
60        
 

	 
348        
 

	 
12            
 

	 
2.15583738 
 


	       
 


	       
 


	       
 



	

	       
 


	       
 


	       
 






  P = polyhedron index. Code = side numbers of respective polygons that meet in a vertex. V, E,
and F = number of vertices, edges, and faces. Total angle = summation of face angles that meet
in a vertex. Deficient angle = 360° (or flat situation) -Total angle. Radius = radius of
circumscribed sphere.

 
     

 

bisected.  This  gives  two  new  solids,  the  cuboctahedron  (No.  7)  and  the
icosi-dodecahedron (No. 12). These two are peculiar ones and they are called
quasiregular, because they are, as their names already suggest, compounds of
two pairs of regular solids. P7, the cuboctahedron, is composed of six squares
(like  the  cube  P2)  and  eight  triangles  (like  the  octahedron  P3).  Pl2,  the
icosido-decahedron, is composed of 20 triangles (like the icosahedron P5) and
12 pentagons (like the dodecahedron P4).

 
Truncation can also take place along the edges. This generally produces square
extra faces and it yields four new semi-regular solids (Nos. 10, 11, 16, and 17).
     

 
Finally, there are two other solids that are found by truncation of the corners
and a double truncation of the edges. There are, in fact, four of them, as they
occur in a right-handed as well as in a left-handed (enantiomorphic) version.
These are the snub cube (No. 15) and the snub dodecahedron (No. 18). These
two are called after their circumscribed figures. The snub cube has six squares,
each completely surrounded by triangles, whereas the snub dodecahedron has
12 pentagons in a corresponding location. They have the common characteristic
that they all are based on a polygon or p-gon with a variable number/; of edges,
and that these p-gons come together in a vertex with four triangles. As this
variable p can have any value—with six as a maximum (one
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  Figure 9.6 (a) The row of hypothetical ‘‘snub’’ solids. (b)The snub solids P18, P15, and
P5.

 
     

 

hexagon and four triangles form a plane grid)—a row of figures with common
characteristics is found havingp-gons with a successively increasing number of
sides: six at one end and three at the other end (icosahedron). One can even
go further and also take into consideration the combination of a 2-gon, which
is, in fact, a line of unit edge length with four triangles. This would produce an
octahedron. Thus the complete row of ‘‘snub figures’’ consists of: octahedron,
icosahedron, snub cube, snub dodecahedron, plane tessellation of triangles, and
hexagon.5 (See Figure 9.6a.)

 
It  is  also  possible  to  obtain  the  snub  cube  and  the  snub  dodecahedron  by
truncation from the octahedron and from the icosahedron, respectively. These
are two Platonic solids that are composed of triangles only and they differ by
the fact that a variable number of triangles meet on each vertex: four in the
octahedron and five in the icosahedron. There are indications that the latter
     
derivation—from the triangular regular solids—is even more logical than the first.
This would mean that the two snubs could as well be called ‘‘snub octahedron’’
and ‘‘snub icosahedron.’’ Correspondingly, the snub tetrahedron is identical to
the icosahedron. (See Figure 9.6b.)
 


  Vertex Situations

 
     

 

If one connects the outer ends of the edges that meet in a vertex of any of the
convex polyhedra, one obtains a—sometimes irregular—polygon, which is called
a vertex figure. This polygon is regular for the Platonic solids, but it can have
a more or less irregular shape in the case of the Archimedean solids. It has as
many sides as the number of polygons that meet in such a vertex and it forms
the basis of a pyramid with the original vertex as its apex. This cap is called
‘‘Eckenpyramide’’ by M. Bruckner or vertex pyramid.6

 
This  pyramid  contains  all  data  that  are  relevant  for  the  geometry  of  the
polyhedron, that is:
 


     
	edge length

     
	face angles of the meeting polygons

     
	curvature of the circumscribed sphere, which is defined by the fact that the vertex
as well as all its neighbors are situated on it
     


	all possible dihedral angles between the faces


     

 

A vertex pyramid is characteristic for a specific polyhedron and it can be either
three, four, or five sided, depending on the number of polygons that meet on
each vertex of a particular polyhedron.

 
The Reciprocals

 
The reciprocal or dual figure of a polyhedron is found by interconnecting the
midpoints of all edges that meet in a vertex. The plane thus obtained can be
expanded until it meets similar adjacent planes. The section lines between these
planes bisect the original edges of the polyhedron perpendicularly and are also
perpendicular to the line that connects the midedge with the center of the
polyhedron.7,8 (See Figures 9.7 and 9.8.)

 
The reciprocals of the semi-regular or Archimedean solids have the following
characteristics (see also Table 9.2):
 


     
	All faces are identical and have as many edges as the number of the polygons, meeting
on the vertices of the original polyhedron.

     
	The number of faces is equal to the original number of vertices.

     
	The number of vertices is equal to the original number of faces.
     


	The number of edges remains the same.

     
	The edges bisect the original edges perpendicularly and tangent to the midsphere
(Figure 9.10).

     
	All dihedral angles in a reciprocal solid are equal and specific for each of them.


     

 

The Reciprocal Faces

 
The  face  of  a  reciprocal  figure  can  have  either  three,  four,  or  five  edges,
depending on the number of w-gons in the original solid that occur on each
vertex (Figure 9.9).

 
The  five  regular  polyhedra  appear  to  be  self-reciprocal,  for  example,
tetrahedron-tetrahedron,   octahedron-cube,   and   dodecahedron-icosahedron
(Figure
 


  deficient angle

 
  Figure 9.7 faThe vertex pyramid of a polyhedron (in this case P13). 6W The Dorman-Luke
construction method of the reciprocal solids.
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Figure 9.8 The Dorman-Luke construction demonstrated on the polyhedron
P7.

 
9.10). The reciprocals have in this case regular polygon faces. The reciprocal
faces of the semi-regular polyhedra, however, are more or less scalene. They can
be constructed by drawing tangent lines around the circle through the midpoints
of the edges (Figure 9.11). This construction is known as the Dorman-Luke
construction (see Figure 9.7).9 Two famous representatives of this group are
the rhombic dodecahedron (honeycomb cell) and the triacontahe-dron (Nos. 7
and 12) (Figure 9.12zz and V).
 


  TABLE 9.2. Names and Numerical Data of the Reciprocal Figures

 

  

 
 
	

	            
 


	            
 


	             
	
	
	
	
	


	
R Number  
 

	 
Name                            
 

	 
V         
 

	 
E          
 

	 
F            
 

	 
Dihedral Angles   
 


	
1                 
 

	 
Tetrahedron 
(edge 
= 
1)                                      
 

	 
4          
 

	 
6            
 

	 
4             
 

	 
70° 31'43.61’’         
 


	
2                 
 

	 
Octahedron 
(edge 
= 
/T)                                    
 

	 
6          
 

	 
12          
 

	 
8             
 

	 
109° 28' 16.39’’       
 


	
3                 
 

	 
Cube 
(edge 
= 
1/2 
/T)                                    
 

	 
8          
 

	 
12          
 

	 
6             
 

	 
90° 00' 00.00’’        
 



	
4                 
 

	 
Icosahedron 
(edge 
= 
t)                                 
 

	 
12         
 

	 
30          
 

	 
20            
 

	 
138° 11'22.87’’        
 


	
5                 
 

	 
Dodecahedron 
(edge 
= 
1/t)                              
 

	 
20         
 

	 
30          
 

	 
12            
 

	 
116° 33' 54.18’’       
 


	
6                 
 

	 
Triakis 
tetrahedron                         
 

	 
8          
 

	 
18          
 

	 
12            
 

	 
129° 31' 16.31’’       
 


	
7                 
 

	 
Rhombic 
dodecahedron                      
 

	 
14         
 

	 
24          
 

	 
12            
 

	 
120° 00' 00.00’’       
 


	
8                 
 

	 
Tetrakis 
hexahedron                         
 

	 
14         
 

	 
36          
 

	 
24            
 

	 
143° 07' 48.37’’       
 


	
9                 
 

	 
Triakis 
octahedron                          
 

	 
14         
 

	 
36          
 

	 
24            
 

	 
147° 21'00.36’’        
 


	
10                
 

	 
Trapezoidal 
icositetrahedron                   
 

	 
26         
 

	 
48          
 

	 
24            
 

	 
138° 07' 04.65’’       
 


	
11                
 

	 
Hexakis 
octahedron                          
 

	 
26         
 

	 
72          
 

	 
48            
 

	 
155° 04' 55.85’’       
 


	
12                
 

	 
Rhombic 
triacontahedron                    
 

	 
32         
 

	 
60          
 

	 
30            
 

	 
144° 00' 00.00’’       
 


	
13                
 

	 
Pentakis 
dodecahedron                      
 

	 
32         
 

	 
90          
 

	 
60            
 

	 
156° 43' 06.79’’       
 


	
14                
 

	 
Triakis 
icosahedron                         
 

	 
32         
 

	 
90          
 

	 
60            
 

	 
160° 36' 45.19’’       
 


	
15                
 

	 
Pentagonal 
icositetrahedron                   
 

	 
38         
 

	 
60          
 

	 
24            
 

	 
136° 18' 33.24’’       
 



	
16                
 

	 
Trapezoidal 
hexecontahedron                  
 

	 
62         
 

	 
120         
 

	 
60            
 

	 
154° 07' 16.9’’        
 


	
17                
 

	 
Hexakis 
icosahedron                         
 

	 
62         
 

	 
180         
 

	 
120          
 

	 
164° 53' 16.41’’       
 


	
18                
 

	 
Pentagonal 
hexecontahedron                  
 

	 
90         
 

	 
150         
 

	 
60            
 

	 
153° 10'43.44’’        
 


	            
 


	            
 


	            
 



	

	            
 


	            
 


	            
 






     

 

Thenames in this table give an indication of the number of faces. The suffix
‘‘-kis’’ means: number of subdivision. Furthermore, r = 11 + J 5 ):2 or the
golden section. The numbers in the first column of this table refer directly to
that of their related polyhedra in Table 9.1.
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  Figure 9.9 Sketch of the reciprocal faces.
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  Figure 9.10 The mutual reciprocity of the regular polyhedra.
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  Figure 9.11 The derivation of the rhombic triaconta- hedron (P12).
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  Figure 9.12 (a) Sketch of the reciprocal figures. The numbers refer to those of the solids from
which they are derived (see also Figure 9.3). (6/The reciprocal figures of the semi-regular
solids.

 
  b

 
  Prisms and Antiprisms

 
  Prisms have two identical, parallel polygonal faces that are kept apart by a closed ring of
squares, like the top and bottom of a box with square side faces. Antiprisms are similar to
prisms, but they have one polygonal face rotated with respect to the other, so that the
square side faces turn into triangles (Figures 9.13 and 9.14). The two polygons and the
square or triangular faces of the mantle enclose a portion of space that is completely
surrounded by regular polygons. In addition, they satisfy all of the previously mentioned
criteria of the Archimedean polyhedra. Specimens of both groups can be called p- gonal
after the number of sides p of the parallel polygons.They have vertex pyramids with
a basis of the form 4–4-x for prisms (triangular) and 3–3-3-x (trapezoidal) for the
antiprisms. They too have reciprocal forms; these are called polygonal (or /i-gonal, again
with p for the number of sides) dipyramids and trapezohedra (Figure 9.15). They
differ from the other polyhedra in one respect: The two parallel polygons can have any
number of sides. Therefore, the two groups of prisms and antiprisms form endless
rows.

 
  In this context the name of Johannes Kepler must be mentioned.10 He lived from 1571–1630
and in his Harmonices Mundi he gave a complete survey of the 5 regular and the 13 semi-regular
solids. As explained before, two members of the second group, the snub solids (Nos. 15 and 18 in
Figure 9.3) have a lefthanded and a right-handed version. Kepler mentioned explicidy for the
first
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Figure 9.14 Regular antiprisms.
     

 
time in history the prisms and antiprisms and showed them in sketch form.
He introduced the principle of duality and he gave all these figures the Latin
names by which they are still known. There are a few overlaps with the other
solids: The square prism is identical to the cube and the triangular antiprism
is identical to the octahedron. It is sometimes interesting to include also the
2-gonal antiprism, as it is identical to the tetrahedron (Figures 9.14 and 9.18&).

 
The Stellated or Kepler-Poinsot Polyhedra

 
Kepler also mentioned two stellated figures, the small and the great stellated
dodecahedra (Figure 9.16). The small stellated dodecahedron (No. 3) can be
constructed by placing on the faces of a dodecahedron pentagonal pyramids
of such a height that they are in extension with some of the adjacent faces
of the basic polyhedron. The result is that they have the appearance of 12
interpenetrating, pentagonal star polygrams, or pentagrams (Figure 9.17). The
great stellated dodecahedron (No. 4) is derived similarly by the placement of
triangular pyramids on an icosahedron. This also results in a compound of 12
pentagrams. Poinsot in 1809 discovered two more stellated regular polyhedra:
the  great  dodecahedron  (No.  2)  and  the  great  icosahedron  (No.  1),  which,
respectively, can be considered as an intersection of 12 pentagons or of 20
triangles.11 The star polyhedra, in fact, do not satisfy the fifth condition of the
definition that was given for polyhedra, as they are not convex at all places.
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  Figure 9.15 (a) A number of compounds of polyhedra and their reciprocal figures. 6W
Antiprisms and their reciprocals.
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Figure 9.16 The four regular star polyhedra.
 



  Both prisms and antiprisms also have star-shaped versions (Figure 9.18). The two parallel
polygonal faces can be replaced by regular stars or polygrams. This produces two
new families: star prisms and star antiprisms. In the first group a mutual distance,
equal to the unit edge length, can be chosen, as in the normal prism. The resulting
figure has a mantle, consisting of rectangles. The star antiprisms have a somewhat
unexpected appearance. On closer examination the forms with even numbers of sides
seem to be composed of two antiprisms with half the number of faces, but with a
greater edge length. Among these the square version is a peculiar one. The four-sided
polygram, or tetragram, is identical to a set of crossing lines and it therefore leads to a
figure, which can be considered as a pair of intersecting tetrahedra. This figure was
also discovered by Kepler and he called it the Stella octangula (No. FS-4 in Figure
9.18).
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Figure 9.17 A row of successive pentagrams, with t = (1 + /5~):2.
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b
 


  Figure 9.18 Star prisms and antiprisms.

 
  POLYHEDRA IN BUILDING

 
  The form-giving possibilities that polyhedra can bring to buildings is very important, and their
applications are manifold although this fact is not always fully recognized.

 
  All Trivial Uses of Cubic and Prismatic Shapes

 
  As stated in the introduction, most of our present-day architectural forms are prismatic (with
the cube as the most common member). Prisms are used in a vertical or in a horizontal position,
in pure form or in distorted versions. This family of figures is therefore of utmost importance for
building.


 
  Solitary Applications of Regular or Semiregulair Polyhedra

 
  Architecture can become more versatile and interesting with macro forms, derived from one of
the more complex polyhedra or of their reciprocal (dual) forms. Unfortunately, this has not often
been done (Figures 9.19 to 9.22).

 
  Close Packings of One or More Kinds of Solids in Conglomerates or in Space Structures

 
  Some of the polyhedra lend themselves to being put together in tight packing formations
(Figure 9.23). In this way quite complex building forms can be realized. Such packings are also
suitable as the basic configuration for space frames, because of their great uniformity: identical
mem-
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  Figure 9.19 Full-scale cardboard house based on P8.
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  Figure 9.20 Scale model of a polyhedron house.

 
  Figure 9.21 Office building in Bamako, Mali, based on P10.

 
  Figure 9.22 P16 model, made of GRP sandwich panels.
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Figure 9.23 Packing of polyhedra (P11).
 


  bers meeting at specific angles. These members usually meet at joints having a polyhedral
form. The rhombianboctahedron (PIO) is well known in this respect, as it is the node of the
famous MERO system. The struts meet the joint on the square faces. The joint has 18 such faces
that have mutual positions and angles allowing the formation of various frame shapes (Figures
9.24 to 9.27).

 
  Prismatic and Antiprismatic Forms

 
  The simplest structural forms are the prismatic shapes. They usually fit well together and they
allow the formation of many variations of close packings. Figure 9.28 shows examples of such
applications: Matrices can be formed with regular or deformed prisms, parts can be linked up in
rows to make cylinders, or elongated prisms can serve as the struts of space frames. If a
number of antiprisms is put together according to their polygonal faces, a geometry
is
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Figure 9.24 Possible space frame configurations.
 


  Figure 9.27 Triple-layer space grids, based on P7.
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  Figure 9.28 Prismatic forms.
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  obtained that is often used as the basis for structural applications. The outer mantle has the
appearance of a cylindrical, concertina-like folded plane. These forms can be described with the
help of only a few parameters. Tonon mentions methods that modify the general shape of
antiprismatically folded planes.12 This has been worked out by the author for circular
transformations, so that toroidal and spherical overall forms are found on the basis of polygonal
or star-formed prisms and antiprisms.13 Parts of these can be combined into larger compounds
(Figure 9.29).

 
  Hemispherical Structures

 
  Compactness of Polyhedra

 
  A polyhedron can be composed of polygons that have either 3,4, 5, 6, 8, or 10 edges. These
polygons are facets of the circumscribed sphere, which can be thought of as going through the
vertices. The volume of this sphere is therefore larger than that of the corresponding polyhedron.
This is also the case for the area of their envelopes. The closer these two values are, the better is
the approximation of the sphere that is reached by a particular polyhedron. The closeness of this
approximation can be expressed in a value called the compactness of a polyhedron (Table
9.3).

 
  The compactness Cp is equal to the quotient of the area of a sphere with

 
  TABLE 9.3 Compactness of Polyhedra

 

  

 
 

	

	       
 


	       
 


	        
	
	
	
	
	
	
	
	
	


	
2=p    
 

	 
Number of Polygon Sides
                                  
	 
2=Volume    
 

	 
2=Area       
 

	 
2=Compactness 
CP
 


	       
 

	 
3        
 

	 
4        
 

	 
5        
 

	 
6       
 

	 
8         
 

	 
10      
 


	
1         
 

	 
4          
 

	 
—         
 

	 
—         
 

	 
—         
 

	 
—        
 

	 
—         
 

	 
0.11785113      
 

	 
1.73205080     
 

	    
0.67113929
 


	
2         
 

	 
—          
 

	 
6         
 

	 
—         
 

	 
—         
 

	 
—        
 

	 
—         
 

	 
1.00000000      
 

	 
6.00000000     
 

	    
0.80599597
 


	
3         
 

	 
8          
 

	 
—         
 

	 
—         
 

	 
—         
 

	 
—        
 

	 
—         
 

	 
0.47140452      
 

	 
3.46410161     
 

	    
0.84558252
 


	
4         
 

	 
—          
 

	 
—         
 

	 
12        
 

	 
—         
 

	 
—        
 

	 
—         
 

	 
7.66311896      
 

	 
20.64572881   
 

	    
0.91045318
 


	
5         
 

	 
20        
 

	 
—         
 

	 
—         
 

	 
—         
 

	 
—        
 

	 
—         
 

	 
2.18169499      
 

	 
8.66025403     
 

	    
0.93932565
 


	
6         
 

	 
4          
 

	 
—         
 

	 
—         
 

	 
4         
 

	 
—        
 

	 
—         
 

	 
2.71057599      
 

	 
12.12435565   
 

	    
0.77541318
 


	
7         
 

	 
8          
 

	 
6         
 

	 
—         
 

	 
—         
 

	 
—        
 

	 
—         
 

	 
2.35702260      
 

	 
9.46410161     
 

	    
0.90499718
 


	
8         
 

	 
—          
 

	 
6         
 

	 
—         
 

	 
8         
 

	 
—        
 

	 
—         
 

	 
11.31370850    
 

	 
26.78460969   
 

	    
0.90991772
 


	
9         
 

	 
8          
 

	 
—         
 

	 
—         
 

	 
—         
 

	 
6         
 

	 
—         
 

	 
13.59966329    
 

	 
32.43466436   
 

	    
0.84949368
 


	
10        
 

	 
8          
 

	 
18        
 

	 
—         
 

	 
—         
 

	 
—        
 

	 
—         
 

	 
8.71404521      
 

	 
21.46410161   
 

	    
0.95407961
 


	
11        
 

	 
—          
 

	 
12        
 

	 
—         
 

	 
8         
 

	 
6         
 

	 
—         
 

	 
41.79898987    
 

	 
61.75517243   
 

	    
0.94316565
 


	
12        
 

	 
20        
 

	 
—         
 

	 
12        
 

	 
—         
 

	 
—        
 

	 
—         
 

	 
13.83552594    
 

	 
29.30598284   
 

	    
0.95102430
 


	
13        
 

	 
—          
 

	 
—         
 

	 
12        
 

	 
20       
 

	 
—        
 

	        
 

	 
55.28773076    
 

	 
72.60725303   
 

	    
0.96662189
 


	
14        
 

	 
20        
 

	 
—         
 

	 
—         
 

	 
—         
 

	 
—        
 

	 
12       
 

	 
85.03966456    
 

	 
100.99076015  
 

	    
0.92601248
 


	
15        
 

	 
32        
 

	 
6         
 

	 
—         
 

	 
—         
 

	 
—        
 

	 
—         
 

	 
7.88947740      
 

	 
19.85640646   
 

	    
0.96519625
 


	
16        
 

	 
20        
 

	 
30        
 

	 
12        
 

	 
—         
 

	 
—        
 

	 
—         
 

	 
41.61532378    
 

	 
59.30598284   
 

	    
0.97923697
 


	
17        
 

	 
—          
 

	 
30        
 

	 
—         
 

	 
20       
 

	 
—        
 

	 
12       
 

	 
206.80339887   
 

	 
174.29203034  
 

	    
0.97031268
 


	
18        
 

	 
80        
 

	 
—         
 

	 
12        
 

	 
—         
 

	 
—        
 

	 
—         
 

	 
37.61664996    
 

	 
55.28674495   
 

	    
0.98201136
 


	       
 


	       
 


	       
 



	

	       
 


	       
 


	       
 






     

 

The values of Volume, Area, and Compactness are expressed in unit edge length.

 
the same volume as the polyhedron with index p, divided by the surface area
of this polyhedron. This value is given by the following equation:
 


  Vse-ir* Volume,2
Cp =

 
  Area,

 
     

 

Pyramided or Polar Versions of Solids

 
Pyramidization or ‘‘sphere point raising’’ is a technique whereby the center of
a polygonal face of a polyhedron is raised until it lies on the circumscribed
sphere. If these new polar points are connected to the polygon corners with
inclined lines, a further subdivision is obtained that has a better approximation
to the sphere. The technique is often applied in order to reduce the size of larger
polygons. It can therefore be considered as the first grade of subdivision of the
circumscribed sphere, which can be done with any of the known poly- hedra. It
is clear that the 8-and 10-gon are not very useful in this respect, as we would get
long inclined edges and narrow triangular faces. We know, however, of a number
of applications where polyhedra consisting of polygons with smaller numbers
of edges have been used. Many radomes have been built of hexagonal and
pentagonal pyramids, usually made of GRP (glass-fiber-rein-forced polyester)
(Figures 9.30, 9.31, and 9.43).14
     

 
Polyhedral Sphere Subdivisions

 
Triangular Subdivision Methods. For the further subdivision of spherical
surfaces in most cases the icosahedron is used as a starting point, because it
consists of
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  Figure 9.30 Scale model of pyramidized P8 compound.

 
  Figure 9.31 Octagon House by K. Critchlow, based on a compound of truncated and
pyramidized reciprocal solid R7. (Source: R. Sheppard et al., Paper Houses, Survival Scrapbook
4, Unicorn Bookshop, Caerffydin, USA, 1974.)
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  20 equilateral triangles that can be easily covered with a suitable pattern that is subsequently
projected upon a sphere. This leads to economical kinds of subdivisions up to high
frequencies and with relatively small numbers of different member lengths. There are two
other triangular regular solids that can be used similarly: the tetrahedron and the
octahedron.15"20

 
  The original polyhedron triangle has to be subdivided up to a suitable frequency, so that
elements are produced of the required maximum or minimum length. This can be done using
several methods, each of which has its own advantages.

 
  Generally, two main methods are considered:

 
     

 
	
1. 

	Subdivision of the polyhedron edge in equal parts and successive interconnection of
corresponding points on opposite edges of the triangular face, so that a pattern of
regular small triangles is found. This pattern is then projected from the center onto
the surface of the sphere.

     
	
2. 

	Subdivision of the polyhedron edge in equal parts of the spherical angle under which
this edge is seen from the center, so that, in the case of the sphere, equal chords
are found. The parts into which the edge is subdivided are no longer equal and, if
opposite points are interconnected, the connection lines therefore do not intersect in
points but form small triangular ‘‘windows,’’ as Clinton calls them.21 The centers of
these windows are successively projected onto the envelope.



  Polygonal Subdivisions. Similar kinds of subdivisions can be made on any of the other
regular and semi-regular solids. Even their reciprocals as well as regular prisms and antiprisms
can be used this way, as long as they are properly subdivided.19,22,23 Subdivision patterns are
written on the faces of these figures and the coordinates of the intersection points can be
converted from Cartesian into polar coordinates. If all distances are then taken equal to the
radius of the circumscribed circle, the originally polyhedric form is turned into a sphere. The
spherical coordinates can also be written in a general form, so that the shape of the sphere can
be modified.

 
  It was previously mentioned that the polyhedra considered here are composed of polygons with
3, 4, 5, 6, 8, or 10 sides. In the literature one discerns mainly three so-called classes of subdivision
of the triangular faces; see, for example, Ki trick.18 Class I is the basic subdivision type for
triangles and is generally used in combination with icosahedra (only rarely with octahedra);
Class II is, in fact, reciprocal (the rhombic triacontahedron); and Class III is the snub
dodecahedron type (P18 in Figure 9.3).

 
  The subdivision of the polygons can be worked out more or less analogously to the general
concept used by Kitrick et al. (Figures 9.32 to 9.36).

 
  Class I: Radial Type. The triangle is taken as the starting point. This can be subdivided
into smaller triangles. Two basically different methods are in use: edge based and arch based. The
polygon is first subdivided into its own plane and each intersection is projected radially onto the
sphere (Figure 9.37). In the next part, byway of example, triangular patterns with frequencies of
3 or 6 are used and also a particular hexagonal pattern. This equilateral triangle can
be
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Figure 9.32 Three kinds of subdivision of polygons.
 


  Figure 9.33 Further breakdown of the polygons.

 
  Figure 9.34 P7 with hexagonal pattern, pumped up to spherical form.
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  Figure 9.35 Examples of polyhedral breakdowns of spherical surfaces, based on the Platonic
solids.


 
  shifted, transformed, and subsequently reproduced by rotation around the axis perpendicular
to its plane in order to fill the radial patterns of the polygons with more than three
sides.

 
  Class II: Parallel Type. The square can be subdivided rectangularly, for instance into
smaller squares. These can be provided with diagonals. A further subdivision of the polygon is
found by placing another polygon with half the number of sides in the middle and connecting
this to alternate edges by rectangles. The remaining parts are triangular. The triangular and the
rectangu-
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Figure  9.36  Further  examples  of  breakdowns,  based  on  some  of  the
Archimedean solids.
 


  lar parts can be filled in with transformations of the regular versions. The basic
polygon must have an even number of sides. The square is trivial and this leaves only the
polygons with 6, 8, and 10 sides having a triangle, a square, or a pentagon in the
center.

 
  Class III: Chiral Type. This is comparable to Class II but with the central—smaller—polygon
slightly rotated over the angle ir/n (n is the number of the sides). The remaining part can be
made up of smaller triangles, which can again be subdivided. If seen from above, this type recalls
very
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  Figure 9.37 Projection of pattern on sphere.

 
  much the snub polyhedra. The term chiral means that the mirror image is unlike the original
pattern. This is only true in one direction. Polygons with 4, 6, 8, or 10 sides are suitable for this
type, but the square leads to a somewhat trivial solution.

 
  Reciprocal Sphere Subdivisions

 
  The dual or reciprocal versions of the polyhedra can also be further subdivided
(Figures 9.38 and 9.39). This is easily understandable for those that have a triangular
composition, such as those with the numbers Rl, 2, 4, 6, 8, 9, 11, 13,14, and 17. These do not
particularly throw a new light on the subject, but there are two others that are much more
interesting in this respect: R7 and R12, or the rhombic dodecahedron and triacontahedron.

R3 (cube), which can be considered as the dual of the octahedron, also belongs to
the category of rhombic polyhedra by analogy. So there are three reciprocals that
act as the counterparts of the three triangular regular polyhedra. The subdivision of
the spherical surface is accomplished in this group in a way similar to the Class H
triangle.
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  Figure 9.38 Reciprocal subdivisions.
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Figure 9.39 Hexagonal geodesic, based on R12.
 


  Modifications of the Sphere

 
  The shape of the sphere can be altered in many ways.4,16,l7,27 The equation of the
sphere can be transformed into a set of two expressions, describing it in a more general
way:

 
  /?, = EJ sin"'4> + cos",(p),/n'

 
  /?2 = /?,£/ (£?* sinn20 + Rf2 cos"2'"2

 
  where nx and n2 are the exponents of the horizontal and vertical ellipses, respectively, and E1
and E2 are the ratios of their axes (see also Figure 9.40).

 
  The curvature is a normal ellipse for m=2, but if n is raised, a form is found that approximates
the circumscribed rectangle. If n is decreased, the curvature flattens until 72=1 and the
ellipse then has the form of a pure rhombus with straight sides, connecting the maxima
on the coordinate axes. For n<\ the curvature becomes concave and obtains a shape
reminiscent of a hyperbola. For ?z=0 the figure coincides completely with the X and Y
axes.

 
  By changing the value of both the horizontal and the vertical exponents, the visual appearance
of a hemispherical shape can be altered considerably. The pure sphere forms, in fact, only one
specific representation out of a great number of possible shapes that can be formed by a
combination of different horizontal and vertical ellipses. Some of these do not even resemble the
original convex ellipsoidal shape, yet are very familiar, such as the pyramid, the cone, the
cylinder, the cube, and so on.
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  If for both ellipses an exponent nx = n2 = 2 is chosen and if the ratio of the axes is kept equal
to = E2 = 1, the pure sphere is found. The subdivision of the surface of such an ellipsoidal shape
may be based on the same methods described previously. The resulting pattern is projected
onto the surface of the ellipsoid from the inside, using the origin as the projection
center.

 
  Truncation

 
  For practical purposes, parts of the sphere have often been cut off in order to make it fit on
horizontal or against vertical planes. This can be done as demonstrated in Figure 9.41. A certain
value for the angle of the desired truncation plane has to be chosen and an area around it where
all occurring nodes have to be transferred to this plane in order to obtain a properly closed lower
boundary. The pattern itself can be rotated or translated before the projection upon the sphere
takes place.

 
  Augmentation

 
  Upon the regular faces of the polyhedra other figures can be placed that have the same basis as
the respective polygon. In this way polyhedra can—so to speak—be ‘‘pyramidized,’’ as already
mentioned earlier. This means that shal-
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  Figure 9.41 Truncation and adaptation to horizontal plane.
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Figure 9.42 Augmented polyhedra.
 


  low pyramids are put on top of the polyhedral faces, having their apices on the circumscribed
sphere of the whole figure. This can be considered as the first frequency subdivision of
spheres.

 
  In 1582 Simon Stevin introduced the notion of ‘‘augmentation’’ by adding pyramids, consisting
of triangles and having a triangle, a square, or a pentagon as a base, to the five regular
polyhedra.3 In 1990, the late D.G. Emmerich extended this idea to the semi-regular polyhedra
(Figure 9.42). He suggested using pyramids, with 6-, 8-, or 10-sided bases, that are

composed of regular polygons. There are seven such pyramids, that are suitable for this
purpose and that are, in fact, parts of other polyhedra. Emmerich found out that
they can be combined to form 102 different combinations, which he calls composite
polyhedral
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  Figure 9.43 Structure of pyramidized pentagonal and hexagonal GRP panels.
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Figure 9.44 Model of augmented P9 and P11.
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10  Proportion and Symbolism in Polyhedra

Rene Motro

 
  
10.1  INTRODUCTION

The task of understanding the ‘‘architecture’’ of polyhedra can be made easier by the study of
proportion and symbolism in polyhedra, which gives access to some fundamental meanings. Since
ancient times, polyhedra and their associated symbolism were a matter of thinking and
contemplation: Readers can refer to the major works of Plato1 and Fra Luca Pacioli.2 Papers
concerning the symbolic approach have been recendy published by Critchlow,3,4 Meu-rant,5–7
and Lawlor8 among others. Concerning proportion and specifically the golden one,
a major contribution was made by Ghyka.9 Coxeter and Hilbert are the authors of
comprehensive studies that give the necessary mathematical basis.10,11 As far as the
golden proportion is concerned in relation to architecture, Le Corbusier’s work The
Modular plays a major role.12 Moreover, Lal-vani paid attention to hyperspaces based on
polyhedra.13

 
  In such a context, we only present here the main features of proportion and symbolism in
polyhedra, and focus on the five so-called Platonic or regular polyhedra, which can be related to
one another in geometric and symbolic terms.

 
  Beyond the Cube: The Architecture of Space Frames and Polyhedra, edited by J. Francois
Gabriel ISBN 0–471–12261–0 © 1997 John Wiley & Sons, Inc.

 
  □ 281

 
  PROPORTION AND POLYHEDRA

 
  It may be necessary to recall some elementary definitions regarding polyhedra before we
proceed. Most of these developments are included in the previously cited references with more
details, but they are given in this chapter in order to allow an easier reading for people who are
not familiar with this topic.

 
  A polyhedron is a closed surface composed of plane polygons assembled by their edges in such
a way that each edge is common to two of them. It is convex if it is entirely positioned on one
side of the planes that form the faces. Only the first three regular polygons, the equilateral
triangle, the square, and the pentagon, can be assembled to make a regular polyhedron,

which is characterized by the fact that all of its faces, edges, and apices are identical.
While the geometrical construction of the first two polygons can be achieved simply
with a ruler and a compass, knowledge of the golden proportion is necessary for the
pentagon. This proportion also plays a major role in the geometrical construction of
regular polyhedra and their relative inscription. We introduce it now in relation to the
pentagon.

 
  The Golden Proportion and the Pentagon

 
  The Golden Proportion

 
  Mathematically speaking, a proportion is the equality of two ratios and can be understood as a
comparison and, furthermore, as an analogy. It is not surprising to learn that Jamblique used the
Greek word ‘‘avaXo'yia’’ (analogy) for the golden proportion that establishes a specific relation
between three numbers or, if extended to a symbolic approach, between three concepts. The
value of the ratio in this specific case was called the ‘‘golden number’’ and was designated by
the letter 4>; in reference to the architect Phidias who used it in his architectural
works.

 
  According to historical evidence, the ‘‘golden number’’ was related to the observations made by
the Greek astronomer Meton: Every 19 years, the moon’s cycles were identical at the same dates
(related to the motion of the earth around the sun). This discovery allowed for improvement of
the calendar. This 19-year period, known as ‘‘Meton’s cycle,’’ was adopted in 453 B.C. and
inscribed in golden letters on the columns of Minerva’s temple; the rank of any year of the cycle
was its golden number. Later on, a golden number designation was conferred on the whole cycle.
The relation between this historical explanation and the mathematical value of the golden
number is not obvious. Perhaps it could be found in the proportions of Minerva’s
temple.

 
  Only three terms, a, b, and c, are necessary to establish a proportion. One of them, say b, will
be considered as the ‘‘middle term’’ (|xe8i6Te in Greek) between the two others. In the
same way, one idea can relate the two others, allowing a better understanding of their
relationship.

 
  From the algebraic point of view, three main kinds of proportions are known. In the case of the
arithmetic proportion, the three terms are related by the equality

 
  a-b= b-c

 
  where b is the arithmetic mean between a and c:

 
  a+ c

 
  2


 
  The harmonic proportion is governed by

 
     

 

a-b _a

 
b-c~ c
 


  A specific case of this proportion occurs when

 
  c= a+ b

 
  which leads to

 
     

 

b=a-/2
 


  The golden proportion is a special case of the geometric proportion characterized
by

 
     

 

c_ b

 
b~ a
 


  or

 
  b = yj a-c

 
  where

 
     

 

c= a + b
 



  If we write

 
  the governing equation becomes

 
  <|>2 + 4> -1 = 0

 
  This equation has two roots
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  The approximate absolute root values are 1.618 and 0.618 and they are both known as ‘‘golden
numbers.’’ Many mathematical developments have been made based on the golden number and
specifically in terms of the Fibonacci series. However, if we are interested in the symbolic
approach, then it can be noted that, c being the result of the combination of a and b, ‘‘b is to c
as a is to b.’’ Establishing in such a way a continuous relationship between the whole and its
parts, the division in mean and extreme ratio for a segment is such that the ratio of the
smaller segment to the larger is the same as that of the latter to the whole. It is of
great importance when c is considered as the ‘‘principle,’’ the ‘‘primal unity,’’ the
‘‘one’’; and it is interesting to notice, as did Ghyka, that this irrational number can
be reached with calculations made only with the number 1. It can be demonstrated
that

 
  1

 
  = lim ;

 
  and
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  In symbolic studies, the number 1 has a great importance; it is the principle from
which all things are derived, and expressions of <±> based on this value attest to its
direct filiation with unity, known as the key to harmony in many fields, particularly in
architecture.

 
  Besides the algebraic approach, the geometrical approach can also be used and two
geometrical constructions are traditionally described. We give these two constructions
next.

 
  For a given segment AB (Figure 10.1), the division must be done in such a way that ‘‘the
smaller part be to the greater what this last one is to the initial segment,’’ achieving by
geometrical means the specific case of geometric proportion.

 
  On the straight line perpendicular to AB at B, we transfer a segment BC =
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  Figure 10.1 First geometrical construction of the golden proportion.
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  Figure 10.2 Geometrical construction of the golden proportion based on a square.

 
  AB / 2. On CA we plot point E defined by CE = CB and on AB a point F such that AF =
AE. This point produces the required division and it can be verified, by calculation of the
different lengths, that

 
  1.618

 
  rD

 
  The other geometrical construction commonly used is as follows: A square with unity-length
edge AB is first divided into two equal rectangles (Figure 10.2). M being the middle point of AB,
pointFis taken on the line AB and its position is defined by MF = MT (MT being the diagonal
of either one of the two rectangles).

 
  These two constructions are based on the division of the initial segment AB into two equal
parts and the drawing of a square angle, which can be done with a compass. They can be
grouped together in a single diagram (Figure 10.3). When it is repeated again and again, the first
construction leads to the
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  Figure 10.3 Geometrical construction of the golden proportion: synthesis.

 
  infinitely small, the second one to the infinitely large, thus creating a sequence of lengths in
accordance with the definition of the Fibonacci series for which

 
  un=un_1+un_2

 
  The Pentagon

 
  The equilateral triangle, the square, and the pentagon are the constitutive faces of regular
polyhedra. Several constructions of the pentagon are used, based either on the circumscribed
circle or on an edge as initial data.

 
  When considering the first kind, based on the circumscribed circle (Figure 10.4), the
construction begins by plotting F in the same way as in Figure 10.3, AB being the circle radius.
It can be verified that TF is the required edge of the pentagon. The resulting value
is

 
  7F = Vl + 0.6182 =1.176

 
  which is in accordance with the algebraic value calculated with trigonometry, that
is,

 
  7F=2-sin (tt/5) = 1.176

 
  It is interesting to notice that the pentagon apex angle is equal to 108°, and that sin (54°) =
0.809 = <j> / 2
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Figure 10.4 Pentagon inscribed in a circle.
 


  which allows the calculation of the ratio between the edge TG and the diagonal GH in the
pentagon (Figure 10.4):

 
  GH = 2-IG = 2-TG -sin (54°) = c|>-TG

 
  This ratio is equal to <f> and this is one of the pentagon’s significant properties. Two
constructions based on the edge as initial datum are described next. The first construction
using the edge as basis rests on this property (Figure 10.5). AB is the edge of unit
value, and Fis defined as in Figure 10.2. Then AF = <b and a first pentagon apex E is
found at the intersection of two circles: one of center A and radius AB = 1, the second
of center B and radius BE = c{). Other apices are simply obtained from a similar
construction.

 
  A second construction using the edge as basis can also be employed (Figure 10.6). We draw two
circles Cl and C2 (centers A and B, radius equal to AB) that intersect at J and J'. A third circle
(center J, radius equal to AB) intersects Cl and C2, respectively, at points G and H,
and straight line at point I. Apex E is given by the intersection between Cl and the
line HI. Apex C is given by the intersection between C2 and the line GL The last
apex D Res on line JJ’ and on a circle of center f and radius equal to 1. (This last
construction is graphically sufficient but resulting apex angles are not strictly equal to
108°.)

 
  Polyhedra

 
  Five Regular Polyhedra

 
  There are five regular polyhedra and only five. For each of them, faces, edges, and apices are
identical. The faces are regular polygons characterized by their
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Figure 10.5 Pentagon of a given edge, exact construction.
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Figure 10.6 Pentagon of a given edge, approximate construction.
 


  edge number (let p be this number) and the number of edges related to one apex (let q be this
number). Apart from Coxeter’s demonstration,10 based on the apex angle values, another one
can be established on the basis of topological properties dealing with the number of edges E,
faces F, and apices A. It is derived from the application of Descartes’s relationship
(often referred to as Euler’s rule), which, in the case of a convex polyhedron, is of the
form:

 
  A-E+F=2

 
  Each edge is related to two apices, such that

 
  A-q=2-E

 
  Similarly, when considering faces and edges, we can write

 
  F-p = 2-E

 
  Descartes’s relationship can be expressed only in terms of E, p, and q in the following
form:
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  Figure 10.7 The five regular polyhedra: (C) cube, (0) octahedron, (T) tetrahedron, (I)
icosahedron, (D) dodecahedron.

 
  Taking into account that p and q, which are integers, must satisfy

 
  p>3, q>3

 
  because faces are at least equilateral triangles, there are only five admissible values for the
couple {p, q}. Denomination and topological characteristics of these five regular polyhedra
(Figure 10.7) are fisted in Table 10.1.

 
  Geometrical Properties of Regular Polyhedra


 
  Relative Inscriptions of Regular Polyhedra. In his famous book Timaeus, Plato
establishes a correspondence between the four elements with four of the five regular polyhedra
(Table 10.2). This correspondence is completed by the specific role assigned to the last
polyhedron, the dodecahedron, which represents what is called ‘‘ether’’ and which contains all
the other elements. Symbolic derivations can be made by analogy on this basis and many authors
agreed with this correspondence. Fra Luca Pacioli devoted a large part of his book
on

 
  TABLE 10.1 Regular Polyhedra: Topological Properties
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  TABLE 10.2 Correspondence between Polyhedra
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  the ‘‘golden proportion’’ to the geometrical interpretation of this proposal. In the following
discussion, we give a comprehensive study of the relative inscriptions of regular polyhedra within
one another. The word inscription is here defined by the fact that all apices, edges, or faces of
one polyhedron are coincidental, or in contact with the apices, edges, or faces of another
polyhedron. This study can be achieved on the basis of topological and symmetry properties of
the polyhedra, taking into account that the possible coincidences and contacts are classified as
follows (condensed notations are given in parentheses with two letters for each kind of
inscription):

 

     

	an apex with an apex (AA)

     
	an edge with an apex (EA)

     
	a face with either an apex (FA) or an edge (FE)


  From the systematic study of mutual correspondence between one polyhedron and the other
four, the inscriptions given in Table 10.3 can be estab-fished. Table 10.3 shows that only the
dodecahedron can ‘‘receive’’ the other four polyhedra in accordance with the geometrical
interpretation given by Plato. Simultaneously, the tetrahedron is inscribable in the other four.
These geometrical properties will be subsequently exploited at the symbolic level. The relative
inscriptions of the four polyhedra in the dodecahedron will first be described in detail. No
calculations are given here in terms of angles and length ratios: They have been carried out on
the basis of spherical and Cartesian coordinates in order to obtain the appropriate size required
for display.14

 
  Dodecahedron and Cube.The cube’s construction is very well known and is not presented
here. Proceeding ‘‘Beyond the Cube,’’ we begin with a description of the drawing procedures for
the dodecahedron.

 
  Each of the dodecahedron’s 12 faces is related to corresponding cube’s

 
     

 

TABLE 10.3 Relative inscriptions of regular polyhedra
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  edges: The latter become the diagonals of the pentagonal faces. As has been established
previously, the ratio between the cube’s edge and that of the dodecahedron is equal to the golden
number <£>.

 
  Let ABCD be a cube’s face. Then AB and BC are the diagonals of two of the dodecahedron’s
faces. AB is divided according to the golden proportion (Figure 10.8/z). AF is the length of the
dodecahedron’s edge and is plotted on the middle of ABCD as A'F' (Figure 10.Sb). The final
step to define the apex G requires the determination of the distance F'G; BF' is known, and also
BG, as the dodecahedron’s edge. Therefore, G is at the intersection between the perpendicular to
BF' and the circle of center B and of radius equal to AF (Figure 10.8c). The 12 faces of the
dodecahedron are then drawn on the basis of this procedure (Figure 10.8d) in order to inscribe
the cube in a dodecahedron (Figure 10.8c). Five cubes can thus be placed inside the
dodecahedron.
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  Figure 10.8 Dodecahedron and cube: (a) determination of dodecahedron's edge length; (b)
plotting A' F', projection of dodecahedron's edge on ABCD; (c) determination of F'G; (d) two
dodecahedrons' faces on the cube; (e) cube inside a dodecahedron.
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  Figure 10.10 Dodecahedron and octahedron.

 
  Dodecahedron and Tetrahedron. As the tetrahedron is inscribed in the cube by
coincidence between its four apices with four of those of the cube, one position is immediately
determined (five positions can be found according to the relative number of apices between the
dodecahedron and the tetrahedron) (Figure 10.9).

 
  Dodecahedron and Octahedron. Identical orthogonal symmetries exist for both of these
polyhedra; inscription is obtained from contact between the six apices of the octahedron and six
of the thirty edges of the dodecahedron at their middle (Figure 10.10). Five octahedra can be
placed inside a dodecahedron.

 
  Dodecahedron and Icosahedron. Correspondence between these two polyhedra is dual in
terms of apices and faces: Icosahedron apices are situated at the centers of dodecahedron faces
(Figure 10.11).

 
  Polyhedra and Spheres.Three spheres are associated with each regular polyhedron: The
insphere is tangent to the faces, the intersphere is tangent to the
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  Figure 10.11 Dodecahedron and icosahedron.

 
     

 

TABLE 10.4 Radii of Associated Spheres
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  edges, and the circumsphere contains all the apices of a regular polyhedron. This a geometrical
characteristic of regular polyhedra.

 
  Corresponding radii have been calculated (Table 10.4) for the inscription situation of all
polyhedra inside a dodecahedron. As a basis, we chose an edge cube equal to 2. It can be seen
that there are 10 distinct spheres because some of them are common to two or three
polyhedra (Figure 10.12). Table 10.4 corresponds to the inscription of the four polyhedra in
the dodecahedron (Figure 10.13). In symbolic terms, the number 10 is important; it
recalls the famous Pythagorean tetraktis and is, of course, closely associated with the
number 5 and also the golden number. It can also be related to the 10 sephiroth of the
cabala.

 
  

 

10.2  CONCLUSION

From the preceding discussion we want to underline, among the important properties that have
been described, the inscription of regular polyhedra in
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  Figure 10.12 Ten spheres.

 
  the fifth one, the dodecahedron (Figure 10.13), and the number of associated spheres.

 
  

 

10.3  SYMBOLISM AND POLYHEDRA

Introduction

 
  Because this book is concerned with architecture, in the following discussion we will give some
landmarks that relate geometrical properties and symbolic meanings for polyhedra which are
inherent in architecture.

 
  The purpose of this section is necessarily humble because of the very subject under discussion:
We only hope to indicate a pathway or two for research in the visible and the invisible. The guide
to these pathways can be the symbolism of polyhedra, which is as present in polyhedral
architecture as it was in Plato’s cosmogony in his Timaeus.

 
  On Symbolism

 
  The symbolic approach is rare enough in these days to justify a few reminders concerning this
procedure. The essence of the ‘‘symbol’’ is that it cannot be
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Figure 10.13 Inscription of the four elements inside a dodecahedron
 


  defined without being mutilated, limited, deformed, or even eliminated. Indeed, the question is
not to define ‘‘a’’ specific symbol but to determine what is found under the heading ‘‘symbol.’’
‘‘The’’ symbol is a collective singular—simply indicating symbolism that must be investigated
from a multiplicity of angles. It is usually accepted that the origin of the word is the Greek
symbolon, which was a sign of recognition formed by two halves of a broken object; joining two
members of the same brotherhood. The verb symballein also implies the idea of togetherness
through the prefix ‘‘sym’’ but includes the idea of throwing or projection. A symbol is an image

presenting an analogical representation of its object. It consists of three elements:
the outward, that is, the visible, perceptible, concrete, and rational representation,
the word; what is represented, that is to say, the invisible, the irrational, the idea
represented by the symbol; and, finally, the relation between the outward and the
idea. The symbol moves from the visible and rational to the hidden and irrational.
The symbol requires both comprehension from analysis of each of its components and
intuitive perception. However, although the symbol expresses an idea—or enables it
to be expressed—it does not provide an explanation because the visual image given
by the symbol is only the reflection of what is not known. It awakens, suggests, and
provokes.

 
  The symbol underlines the connections between the various parts of the cosmos. It reveals the
harmony of the world and the bonds that join what is separated, or that which seems to
be separated. It gives homogeneity of meaning to what is represented. It reveals by
veiling and achieves while destroying. As a prism between body and spirit, the symbol
returns light and image in a different manner depending on the illumination that it is
given and depending on the direction from which it is regarded. In this, it is a living,
perpetually changing, and moving image, which remains constant in its metaphysical
span.

 
  A simple illustration of this is what Vieux15 called ‘‘le Pavilion des Can-tonniers’’ (the
roadmenders’ hut), consisting of a cube topped by a squarebased pyramid of four faces with
identical slopes (Figure 10.14).14 We are here at the heart of an elementary polyhedral
construction. The layout of the four slopes is obtained from a pentagon whose side is equal to
that of the square; only four sectors of the pentagon are used. The symbol associated with this
form recalls the need to divide the pentagon. This construction, consisting of a cube topped by a
pyramid, symbolizes a call for spiritual elevation from the visible world (the cube corresponds to
the quaternary of the visible and material, e.g., to Plato’s four elements: earth, air, fire, and
water). The notion of ascension is suggested by the slopes of the pyramid, whose summit is the
final point. The outline of this pyramid contains the symbolism of the golden number. It
requires the construction of a pentagon, which cannot be obtained, as we previously
remarked, without tracing with a compass the proportion of the golden number. As such,
this structure contains the elements required to awaken consciousness and acts as a
catalyst on the imagination. It acts as any symbol in leading from the concrete to the
idea.
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  Elevation

 
  Figure 10.14 Roadmenders' hut: geometrical construction.

 
  Plato’s Cosmogony in Timaeus

 
  The Four Elements

 
  The symbolic role of polyhedra reaches its full dimensions in Plato’s cosmogony.1 Plato’s
writings are not analyzed here—interested readers can profitably consult Critchlow’s
work.4 In brief, three ideas should be stressed: harmony, duality, and ternary. The first
idea is that of harmony in the Greek sense of the term, the idea being that any and
all manifestations of the principle must preserve a harmonious relationship between
the elements created and must be complete. This idea is discussed in the following
quotation:

 
  The Platonic Cosmos, then, in the words of Timaeus, was created by a ‘‘maker’’ who, wishing
to make this world most nearly like that intelligent thing which is best and in every way
complete, fashioned it as a single visible creature, containing within space itself all living things,
whose nature is of the same order space. (Timaeus 30d)

 
  Now that which comes to be must be bodily, and so visible and tangible; and nothing can be
visible without fire, or tangible without something solid, and nothing is solid without earth.
Hence the god, when he began to put together the body of the universe, set about making it of
fire and earth. (Timaeus 31b)

 
  These two elements cannot be satisfactorily united without a third; for there must be some
bond between them drawing them together. And of all the bonds the best is that which
makes itself and the terms it connects a unity in the fullest sense; and it is of the
nature of a continued geometric proportion to effect this most perfectly. (Timaeus
31c)

 
  …The ‘‘maker’’ set water and air between fire and earth, and made them so far as was possible,
proportional to one another, so that as fire is to air, so is air to water, and as air is to water, so is
water to earth, and thus he bound together the frame of a world visible and tangible. (Timaeus
32b)

 
  The world is then a living being, whole and complete, of complete parts …and he turned its
shape round and spherical, equidistant every way from center to extremity—a figure the most
perfect and uniform of all; for he judged uniformity to be immeasurably better than its opposite.
(Timaeus 33b)1


 
  

 

10.4  The Constitution of Polyhedra and Their Interrelations

Recall that the regular polyhedra that symbolize the four tangible elements are: the tetrahedron
for fire, the octahedron for air, the cube or hexahedron for earth, and the icosahedron for water.
A fifth and last regular polyhedron, the dodecahedron, is taken to represent the ether—the
quintessence of which the heavenly bodies are made and in which the four other elements are
impregnated.

 
     

 

…To the tetrahedron they ascribed the fire, for that it is ascendeth upward
according  to  the  figure  of  the  Pyramis.  To  the  ayre,  they  ascribed  the
Octohedron for that through the subtle moisture which it hath, it extendeth
it selfe every way to the one side, and to the other, accordyng as the figure
doth. Unto the water, they assigned the Ikosahedron, for that it is continually
flowing and moving, and as it were makyng angles on every side according to
that figure. And to earth they attributed a Cube, as to a thing stable, firme
and sure as the figure signifieth. Last of all a Dodecahedron, for that it is made
of Pentagons, whose angles are more ample and large than the angles of the
other bodies, and by that meanes draw more to roundnes, & to the forme and
nature of a sphere, they assigned to sphere, namely, to heaven. Who so will read
Plato in his Timeaus, shall read of these figures and of their mutual proportion,
straunge matters, which here are not to be entreated of, this which is sayd,
shall be sufficient for the knowledge of them and for the declaration of their
definitions. …16
 


  The geometrical inscriptions of the four elements in the dodecahedron, described in
the previous section, are in total agreement with the symbolic approach described by
Plato.


 
  We know that there cannot be other polyhedra satisfying the definition of regularity. It is
fundamental to note that these five polyhedra, together with the thirteen Archimedean
polyhedra and all those subsequently studied by scholars, form part of a continuum, which makes
it possible to return to the source by simple geometrical transformations of truncation, duality,
similitude, and so forth. Numerous authors have discussed this question using different
approaches but displaying a common desire to return to the principle. Noteworthy research
includes that of Pacioli,2 with the collaboration of Leonardo da Vinci, and more recently the
works of Critchlow,4 Lalvani,13 and Pearce.171 beg to be forgiven for only mentioning
a few bibliographical landmarks, knowing that, as with symbols, one idea leads to
another.

 
  The symbolism of polyhedra cannot be dissociated from the symbolism of numbers.
This relationship is illustrated, for example, by distinguishing three classes among the
regular and semi-regular polyhedra. One class consists only of the tetrahedron and
the truncated tetrahedron; the second comprises the cube, the octahedron, and their
Archimedean derivatives; and the third consists of the icosahedron, the dodecahedron, and
their Archimedean derivatives. This classification reveals a symbolic analogy. Through
rotational symmetries, the first class can be linked with the number 3; the second with the
number 4, the outwardness number, and the third with the number 5, representing the
quintessence and the proportion between mean and extreme ratio characterized by the golden
number. This series 3, 4, 5 is reminiscent of the Isiac triangle dear to the Egyptians, and
at the same time shows which geometrical procedure can be used to move from one
of these classes to another. It is known, for example, that obtaining the volumes of
the icosahedron class requires the truncation of a polyhedron edge with a ratio of
4>.

 
  

 

10.5  CONCLUSION


Many architects design their projects in accordance with the proportions of the human figure,
which are close to the golden proportion. Ancient temples were built on the basis of man’s
measurements; it was sufficient to use a 13-node rope to trace a double square and the Isiac
triangle. Builders knew the golden proportion, which is present in numerous constructions. With
his Modular Le Corbusier tried to put together the double square and the golden proportion and
generated a human scale of measurements. Symbolism gave meaning to architecture by
using suitable proportions, which are inherent in polyhedra. Today, proportion and
symbolism in polyhedra are a way, among others, to give sense to architecture ‘‘beyond the
cube.’’
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11  The Structural Morphology of Basic Polyhedra

Tore Wester

 
  
11.1  INTRODUCTION

The fascinating world of polyhedra has a long and diverse history. These archetypical geometrical
configurations have influenced numerous aspects of art and science. When introduced in a theme
or subject, polyhedra seem to be the carriers of a strange and satisfying basic order to the
subject, for example, Plato’s pythagorean cosmology, Kepler’s planet shells, the crystal
symmetry groups, and so forth. Different fields, such as crystallography, engineering,
mathematics, astronomy, architecture, art, cosmology, astrology, and religious and divine
orders, have all been affected by the scientific and philosophical conceptual content of
polyhedra.

 
  Polyhedra almost always play a role in architecture as architects think in terms of plane facets
such as walls, roofs, ceilings, facades, and so on, combined to form spatial configurations, making
up what are basically nothing other than clusters of polyhedra! Unfortunately, the
connection with polyhedra is often unperceived and unreflected, and the cube seems to
be the absolute favorite. This book is a serious and qualified attempt to challenge
this
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unfortunate situation. Moreover, the lattice structure, based on bars and nodes
in the simple rigid triangular configuration, has been considered as the only
structural  archetype.  This  defines  the  triangulated  members  of  the  regular
polyhedra—the tetrahedron, octahedron, and icosahedron—as the only inherently
rigid  ones,  leaving  the  nontriangulated—the  cube  and  the  dodecahedron—as
incomplete and inferior structural configurations.
 


  This chapter will try to bring a satisfactory order to the concept of basic

 
  Figure 11.1

 
  Figure 11.2
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  BOX 1: Expressions and Definitions

 
     

 

A simple polyhedron is a one-connected polyhedron where all facets are planar
and  one  connected.  Connectivity  is  the  maximum  number  of  closed  chains
required to divide the polyhedron into two separate parts; that is, a ball is one
connected, whereas a torus is two connected (Figure 11.1). A facet that has a
boundary consisting of only one loop is one connected, whereas a facet with a
single hole (i.e., two loops) is two connected (Figure 11.2). A simple polyhedron
may be convex or nonconvex.

 
Basic polyhedra, in the present context, mean polyhedra that might be fixed to
the ground, and perhaps with some elements or links removed or added, but
geometrically based on one or more simple polyhedra.

 
Elements are plates (facets) or nodes (points), whereas links (lines) are their
connectors (shear lines or bars). Linking is a list of information concerning
which elements are finked together. The linking of a node is the information
concerning which other nodes the node is connected to (by bars). In the case
of plates, linking is the information concerning which of the neighboring plates
the plate is connected to (by shear lines). In order to define a plate based on
the plane of the plate and its linking, the links must be listed in the required
order as when walking around the boundary of the plate.
     

 
The valency (Figure 11.3) of an element (plate or node) is its number of links
(shear  lines  or  bars).  Valency,  linking,  and  connectivity  are  all  topological
information. Topological information is information about geometric values that
are counted but not measured. Metric

 
[image: PIC]  geometry  is,  on  the  other  hand,  information  about  positions  given  by
coordinates, lengths, angles, and so on, that is, all characteristics that can be
measured. Mathematically, topology is described by integers (e.g., 1, 5, 112,
etc.) and metric geometry by real numbers (e.g., 4.37, 5.00001, 199.998, etc.).
 


  structures in terms of their relationship to the Platonic polyhedra. In order to understand why
this structural order in space has not been described a long time ago, it is necessary to take a
brief look at the history of the theory of structures.

 
  Brief History of Polyhedra as Structures

 
  The history of the theory of basic structures related to polyhedra and topology is short and
uncomplicated.

 
  The French bridge and road engineer, but primarily mathematician, Augustin-Louis Cauchy
(1789–1833) described in 1813* the rigidity of arbitrary convex polyhedra from a purely
geometrical viewpoint. This means that he did not consider the equilibrium and the type of
forces inherent in their geometry.

 
  A few years later, in 1837, the German professor of astronomy August Ferdinand Mobius
(1790–1868), inventor of the famous nonorientable Mobius strip in 1858, made what is probably
the first statical description of polyhedra as structural objects. In his textbook on statics,2
Mobius states, probably for the first time ever, the minimal number of bars (BA) required
to

 
  BOX 2: Expressions and Definitions

 
     

 

A polyhedral lattice structure is composed of nodes (polyhedral vertices) that
are linked by bars (polyhedral edges). The bars are hinged to the nodes; that
is, it is not possible to transfer bending moments between bars. The nodes
distribute axial forces—tension or compression—between bars (Figure 11.4).
     

 
A  polyhedral  plate  structure  is  composed  of  flat,  rigid-in-plane  plates
(polyhedral facets) that are hinged together along shear lines (polyhedral edges)
as lines of intersection between plates. The plates distribute the forces between
the shear lines. In plate action only shear forces are transferred across the
shear lines. A shear force is a pair of oppositely directed parallel forces of equal
magnitude and with zero distance between them, acting between two plates
that are interconnected by a shear line (Figure 11.5). The plates distribute the
forces as shear forces among the shear lines.

 
In solving the static equilibrium, each of the elements (a node or a plate)
represents three equations, whereas every link (a bar or a shear line) represents
one unknown.
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  BOX 3: Expressions and Definitions

 
     

 

Two  objects  are  dual  if  they  are  based  on  the  same  information,  but  this
information is interpreted in a different way. A dttal transformation implies a
switch between the interpretation of data. Further, a dual transformation must
preserve all data, and the dual of the dual must be the original. It may be
described as a kind of mirror image, two sides of the same thing, and so forth.

 
Whereas  duality  is  a  technical  expression,  dualism  is  a  philosophical  term
often  used  as  a  contradiction  to  monism  and  related  to  two  opposites
(good/bad,  yin/yang,  closed/open,  feminine/masculine,  day/night,  etc.).  In
the  actual  context,  duality  in  many  ways  appears  to  approach  dualism.  In
three-dimensional geometry dualism is related to the substitution of vertices
with planes. After a dual transformation the valency, linking, and connectivity
remain the same, but the element type has changed, as nodes and plates are
exchanged.
     

 
Gaussian curvature: The two principal curvatures at a point on a surface may
have either equal signs if the centers of curvature are located on the same side
of the surface (Figure 11.6) or opposite signs if the centers of curvature are
on different sides of the surface (Figure 11.7). If the signs are equal, then the
Gaussian curvature is positive because +(+) = + and -(-) = + and negative if
they are different because -(+) = -. Positive Gaussian curvature is also called
synclastic, elliptic, or dome shaped, whereas negative Gaussian curvature is
called anticlastic, hyperbolic, or saddle shaped. If one or both of the principal
curvatures are 0, then the Gaussian curvature is 0 because 0 times anything is
0.
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  Figure 11.6 Figure 11.7

 
  (Figures courtesy of Ola Wedebrunn.)

 
  stabilize a certain number of nodes (NO)' BA = 3NO -6 (this should therefore rightly be called
Mobius’ theorem of rigidity). By combining the important theorem of Euler (1707–1783) for
polyhedra consisting of vertices, facets, and edges (V+ F = E + 2), Mobius also proved that the
number of equations and the number of unknowns are equal (neutral configuration) for
any triangulated simple polyhedron regarded as a pure lattice structure. The same
neutrality holds for an arbitrary simple polyhedron regarded as a lattice structure supplied
with rigid-in-plane plates filling out all facets with more than three edges. In this case
rigidity is achieved by means of the transfer of forces parallel to the bars between the
plates and the lattice structure. However, it is remarkable and quite surprising that he
did not describe the bar-and-node free system: pure plate action and its theorem of
rigidity.

 
  Mobius wrote a whole chapter,3 Von der unendlich kleinen Beweglichkeit

 
  BOX 4: Expressions and Definitions

 
     

 

     
Neutrality (or kinematical neutrality): A structure is neutral if it is just rigid;
that  is,  it  has  no  redundancy.  It  becomes  movable  if  a  single  link  (bar  or
shear line) is removed from the structure. A neutral structure is statically and
geometrically determinate; that is, it is in equilibrium by static considerations
alone  and  complies  with  the  theorems  on  the  minimum  requirements  for
rigidity—and it may be built and determined geometrically with no constraints
on the metrical values.

 
Rigidity, stability: A structure is rigid or stable if it has enough links (bars
or  shear  lines)  to  fix  all  elements  (nodes  or  plates)  and  they  are  arranged
geometrically and topologically in such a way that static equilibrium can be
achieved; that is, the static equations can be solved. A rigid or stable structure
may be sensitive (see below). In the case of a critical situation, it is called
flexible. Stability is used here as a kinematic—not an elastic—property.

 
Movability, flexibility: If a structure has too few links (bars or shear lines) to
fix the elements (nodes or plates), it is movable or unstable. If the links in a
rigid structure change length or position, the structure may become movable. If
the geometry of a rigid structure is changed, it may go into a critical (flexible)
or a near-critical (sensitive) form. In these cases the static equations give no
solutions or give unreliable solutions.

 
Sensitivity: If a structure is in a near-critical state, a number of internal forces
become very large even for moderate external loadings. Hence the deflections
will be large and the structure feels movable. This will often happen under very
particular external load combinations, whereas it is perfectly rigid for other
loading cases.

 
Redundancy:  If  a  structure  has  more  links  (bars  or  shear  lines)  than  are
needed  for  rigidity,  it  is  redundant.  If  a  redundant  structure  has  a  special
geometry and/or a special linking, it may be movable, flexible, or sensitive.
The redundancy number indicates the number of links—but not which specific
ones—that may be removed without changing the stability situation.
 



  (On the Infinitesimal Movability), where he explains that there are special critical cases where
a plane neutral lattice structure (the equation for the plane two-dimensional lattice, BA = 2NO
-3, was also first stated by Mobius) is not absolutely rigid. The statical characteristic is that the
determinant of the equilibrium equations approaches 0; hence the magnitude of the forces
approaches 00. Furthermore, he describes methods to create these critical configurations as
follows:

 
     

	Make a plane neutral lattice structure movable by removing one bar.

     
	Choose two nodes that can be moved relative to each other.

     
	The distance between these two nodes has a maximum and a minimum.

     
	Place the previously removed bar (with its new appropriate length) in one of these
two extreme positions and the system becomes flexible.


  This method also works sometimes for creating flexible three-dimensional structures.

 
  Unfortunately, Mobius’ work on statics has been dormant for many years and he rarely gets
credit for his important work. A notable exception is in the classical work by Stephen P.
Timoshenko.4 Although Mobius’ theorems were rediscovered several years later by a number of
prominent engineers, it appears that, for many years, very few discoveries regarding polyhedral
structures were made.


 
  In the field of flexibility, R. Bricard5 constructed, in 1897, flexible but selfintersecting
octahedra, and in recent years Robert Connelly6 has, on a purely geometrical basis, found true
non-self-intersecting and flexible polyhedra—also based on the octahedron. A very interesting
paper by Jorgen Nielsen7 shows unexpected instability, argued on the basis of static
equilibrium, for some combined plate and lattice structures that are shaped as step
pyramids.

 
  The historical work on polyhedral structures by Mobius has three of the four necessary
ingredients for the full description of the basic structural morphology of polyhedra,
namely, bars, nodes, and plates, but it lacks shear fines as a unique structural member.
Probably because Mobius did not consider plate action as being just as basic as lattice
action, the inherent structural activity of polyhedra has ever since been based on bars
and nodes only. Accordingly, only three of the five Platonic solids appear inherently
rigid—namely, all the triangulated ones—the tetrahedron, octahedron, and icosahedron,
whereas the two remaining, the cube and the dodecahedron, are basically movable,
that is, incomplete as rigid structures (Figure 11.8). In order to make them rigid,
one can either add extra bars or plates or introduce bending stiffness in the bars and
nodes.

 
  This cosmology of structural action has been common knowledge and supported
very actively by, for instance, R. Buckminster Fuller and many others. Of course, this
situation is unsatisfactory, as the five Platonic polyhedra in so many other aspects
form an archetypical entirety. This entirety can easily be achieved by using Mobius’
considerations about rigid-in-plane plates by intersecting them directly along what become the
shear lines and arranging them as polyhedral structures and—importantly—avoiding
bar-and-node action similarly to the way that pure lattice polyhedra avoid plate action
when
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Figure 11.8 The three rigid and the two movable regular polyhedra as pure
lattice structures. (Courtesy of Ola Wedebrunn.)
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  Figure 11.9 The three rigid and the two movable regular polyhedra as pure plate structures.
Note that vertices are removed in order to avoid nodal (i.e., lattice) action. (Courtesy of Ola
Wedebrunn.)

 
  triangulated. The way of avoiding lattice action, hence isolating plate action in a simple
polyhedron, is to require that all vertices are trivalent, which is the dual of the pattern for
triangles, equal to trivalent facets. The trivalent vertex is topologically significant for the cube,
the dodecahedron, and the tetrahedron but not for the octahedron and the icosahedron, which
are unstable as plate structures (Figure 11.9). Note that all vertices are removed in order to
avoid lattice action, hence isolating plate action. The stabilizing forces are shear forces
transferred along the shear lines.

 
  As Mobius’ theorem for pure lattice structures, when using geometrical symbols, is E = 3 V -6,
the corresponding theorem for pure plate action can easily be found8 to be E = 3F -6,
which, combined with Euler’s theorem for polyhedra, results in 2E = 3 the geometrical
requirement of trivalent vertices for structurally neutral pure plate action for simple
polyhedra. It is seen that if V and F are exchanged we shift between the two theorems of
rigidity—which means a shift between geometrical duals, because V and F are interchangeable,
whereas E remains unchanged in Euler’s theorem V + F = E + 2. With structural
symbols the theorem of rigidity for plate action will therefore be SL = 3 x PL -6,
where SL and PL are, respectively, the number of shear fines and plates. This is seen
to be the dual to Mobius’ theorem of rigidity for lattice structures: BA = ?>NO -
6.

 
  Now the five Platonic polyhedra are all equally basic as structural objects. They are divided
into two groups of three (Figure 11.10), where the tetrahedron is present in both groups,
following exacdy the pattern for geometrical duality. The trivalent facet has the same structural
impact for lattice action as the trivalent vertex has for plate action. This leads to the principle
that topology and rigidity (with reservation for the previously mentioned critical situations) for
simple polyhedra are the geometrical and structural expressions of the same thing and, at the
same time, they are complementary.

 
  Even though these considerations put statics in a satisfactory connection with polyhedra, their
importance would have been very limited if the previously mentioned principles were
restricted to the five Platonic solids. Fortunately, these static/geometric principles,
based on the replacement of lattice nodes with plates and node-connecting bars with
plate-intersecting shear fines, are valid, in general, for any arbitrary polyhedron—and any cluster
of


 
  [image: PIC] [image: PIC] [image: PIC] [image: PIC]

 
  Figure 11.10 The basic structural behavior of the regular polyhedra follows exactly the
geometrical duality: One of the dual versions is rigid by plate action, whereas the other is rigid
by lattice action. (Courtesy of Ola Wedebrunn.)

 
  polyhedra—independent of connectivity, linking, convexity, and so forth. For any given
three-dimensional pure lattice structure, there always exists a dual pure plate structure, and vice
versa, but, of course, it may not be suitable as a structure for architecture—or anything
else.

 
  The trivalent vertex and trivalent facet are geometrical extremes (Figure 11.11) as no plane
facet can have fewer edges than three and no vertex in three-dimensional space can have fewer
than three adjacent edges. Between these two extremes there are countless possibilities for
polyhedra with facets and vertices with different valencies. These not fully trivalent, simple
polyhedra are movable either as pure plate structures or as pure lattice structures. They may be
regarded as lattice structures stabilized by fill-in plates as considered by Mobius, or they may be
regarded as two independent movable structural types (Figure 11.12) stabilized by the transfer of
forces between the equally positioned bars and shear fines. I have suggested that these forces
that
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  Figure 11.11 The triva I ent vertex and the equivalent facet are both geometrical extremes
and form the geometric pattern synonymous with pure plate and lattice action. (Courtesy of Ola
Wedebrunn.)

 
  are working in between the two pure structural types are called buffer forces.9 These
considerations give rise to the general theorem for the necessary requirement for rigid, simple
polyhedra10

 
  B4+S£+BL/ = 3x(/V0+W)-6

 
  where BA, SL, BU, NO, and PL refer to the number of bars, shear lines, buffer forces, nodes,
and plates, respectively. As all three variables on the left-hand side of the equation refer to edges,
the equivalence of the general requirement as being identical to Euler’s theorem for polyhedra, E
= E+ F -2, is easily rec-
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  Figure 11.12 The rhombic triacontahedron (left) and its dual, the icosidodecahedron (right),
are both unstable as pure lattice and pure plate structures. However, if they are constructed so
that both structural actions are possible at the same time and if buffer forces can be transferred
between equally positioned bars and shear lines, they then become rigid. Note that trivalent
nodes and equivalent plates may be removed without affecting the rigidity. (Courtesy of Ola
Wedebrunn.)

 
  ognized. It is also easily seen that the previously stated theorems for pure lattice and plate
action will appear if the relevant parameters in the general theorem are required to be 0 (if NO
= 0, then BA = 0 and BU = 0, and if PL = 0, then SL = 0 and 517= 0). This interpretation,
which equates the level of plate and lattice action, has the advantage of following the concept of
geometrical duality. The close topology-rigidity connection between the duals forms a promising
basis of a ‘‘form-and-force language.’’ This is because it is possible to set up a number of
surprisingly simple and unique rules for the description of the structural action of any
three-dimensional configuration that is a combination of planes, vertices, and edges, as explained
below.

 
  The duality as described so far works on the level of topology and rigidity. This
level of understanding is the most important for the architectural, morphological, and
conceptual aspects: choice of structural types, choice of faceting, where to open up the
building and where to close it, choice of structural material, and so forth. It does not,
however, condition the exact shape, size, and form of facets and so on. However, the
dual transformation concept may be extended to the level of metric geometry and
statics.

 
  This transformation is based on simple but essential and fundamental considerations:

 
     

	Let the upper left of Figure 11.13 be an w-valent node in a three-dimensional lattice
structure. Then Figure 11.13, upper center, shows the force vectors acting on this
node and Figure 11.13, right, is the corresponding three-dimensional force vector
polygon, which means that the force vectors are arranged unidirected and one after
     
another in correct direction and magnitude. If the vector polygon forms a closed loop,
then this is the necessary and sufficient requirement for this node to be in static
equilibrium. If all nodes in the lattice structure are in equilibrium, then the whole
structure is in equilibrium.

     
	Now, let Figure 11.13, lower left, be an n-valent plate in a three-dimensional plate
structure, and let a point (the origin) be positioned outside the plane of the plate.
In this case Figure 11.13, upper center, represents the moment vectors acting on the
origin.11 Figure 11.13, right, shows the three-dimensional moment vector polygon
derived from the moment vectors acting on the origin. If this is unidirected and forms
a closed loop, as before, then this is the necessary and sufficient requirement for this
plate to be in static equilibrium. If this is the case for all plates in the plate structure,
then the whole structure is in static equilibrium.

     
	If a force vector polygon for a node in a lattice structure (Figure 11.13, right) and a
moment vector polygon for a plate in a plate structure (also Figure 11.13, right) are
identical, then the system of force vectors (Figure 11.13, upper center) is identical to
the system of moment vectors (also Figure 11.13, upper center). It is significant that
it is not possible to judge from the system of vectors and its polygon if it represents
the equilibrium of a plate or a node—this is up to you. This means that if
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  Figure 11.13 The equilibrium offerees on a node and the equilibrium of moments created by
forces on a plane plate around a reference point (the origin) can be required to be
equal. This forms the basic static requirement for structural duality. (Courtesy of Ola
Wedebrunn.)

 
     

 

     
you  do  statical  calculations  on  a  three-dimensional  lattice  structure,  you
calculate a plate structure, of which form you have absolutely no idea, at the
same time—quite an interesting thought. It is also evident that the two systems
cannot  be  mixed  as  the  equilibrium  requires  the  vector  polygon  to  consist
entirely of either force vectors or moment vectors.
 


     
	If there is a transformation method that assures that the force vector and moment
vector systems are identical, then we can switch between the two systems.

     
	The  force  vector  and  moment  vector  systems  can  be  made  identical  if  the
transformation of a node creates a plane plate, if a bar creates a line of intersection
between plates (shear line), and if the force vector and the corresponding moment
vector are always parallel. These simple requirements are fulfilled if the structures
are transformed by the geometrical relation called polar reciprocation as described by
Cundy and Rollet.12 A thorough explanation of the particular geometry inherent in
polar reciprocation is given by Wenninger, based on his correspondence with Cundy.13


  Polar reciprocation relates the location of a vertex and its dual plane simply as follows (Figure
11.14):

 
     

	The method requires a reference point, chosen as the origin for simplicity.

     
	The vertex is located on the line from the origin perpendicular to the plane.

     
	The distance from the origin to the vertex multiplied by the distance from the origin
to the plane is a chosen constant. If this constant is chosen as 1, the two distances
are reciprocal.
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  Figure 11.14 Dual transformation by polar reciprocation. (Courtesy of Ola Wedebrunn.)

 
  Figure 11.15 Direct dual transformation. (Courtesy of Ola Wedebrunn.)

 
  This transforms the metric geometrical information between planes and vertices, whereas the
topological information, that is, the linking of the vertices and the planes, respectively, remains
unchanged.

 
  A similar transformation, called direct transformation (Figure 11.15), simply changes the
interpretation of the geometrical data between nodes and plates, and vice versa. This means that
it is identical to polar reciprocation except that the distance between the elements is not
reciprocated. Direct transformation maintains the valency of the elements, as does polar
reciprocation, but not the statics. Polar reciprocation and direct transformation may be
executed repeatedly one after the other, eventually in combination with changes in the
position of the origin between the transformations. This combination makes a powerful
tool for computerized methods for form finding of structures, not least because they
relate architecturally very significant and different geometries—without changing the
topology.

 
  The polar reciprocation method proves to be as valid as the transformation method for
structural duality for the following reasons:

 
     

	It satisfies the requirements of the topological duality as shown in Figure 11.10.

     
	There exists a line through the origin that intersects both the line that includes the
bar and the line that includes the dual shear line. Furthermore, these three lines are
perpendicular to each other (Figure 11.16). This quality implies that the moment
vector will always be parallel to the corresponding force vector of the dual structure.
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  Figure 11.16 The perpendicular dual nature of geometry and forces: The line through the
origin intersects both the action line for the axial force (which includes the bar) and the action
line for the dual shear force (which includes the edge between the plates). These three lines are
perpendicularto each other. (Courtesy of Ola Wedebrunn.)

 
  The transformation factor between the magnitude of the bar force and the corresponding plate
force in the dual structure is simply the actual distance d from the origin to the shear tine,
because the bar force is required to be equal to the force in the shear line times its distance to
the origin. The elastic properties are dually transformed14 by the factor dr. These
transformations are very suitable for computers.

 
  The preceding explanation is the extremely simple verification of the existence of structural
duality. The static and elastic equations for dual structures are outside the scope of this chapter,
but can be studied in the author’s paper.15

 
  The procedure for the creation of dual structures will then be as follows:

 
     

	Move your structure in space so you have the origin where you want it.

     
	Perform a polar reciprocation. If the initial structure is a lattice structure, then the
definition of which part of the plane should be materialized as a plate is a free choice
and does not affect the statics, except that part of all the shear lines connected to
this plate must be part of the materialized plate. Of course, the chosen geometry for
the plate must enable the plate to be rigid in plane. Often it is practical that the
shear lines define the boundaries of the plates.

     
	All forces are transformed as explained previously.


  A static calculation of a statically determinate plate structure can be executed as
follows:
  

 
   

	Transform the initial plate structure to its dual lattice structure. Any point of origin
is possible, so you do not need to move the structure, unless the origin is very close
to the plane of one of the plates. If the origin is too close to the plane of the plate,
this will result in a computation that includes very small and very large numbers,
which may create inaccuracy in the results.

     
	Transfer all external loadings to act along the shear lines. For example, loads acting
perpendicular to the plates can be transferred to the vertices by bending as in slabs,
and these vertex forces can be resolved in the directions of the shear lines.

     
	The dual external loads acting along the bars are determined by multiplying the
external loads acting along the shear lines by the distance d from the origin to the
actual shear line.

     
	Compute the internal equilibrium of forces in all bars by a conventional computer
program for three-dimensional structural design.

     
	Transform the bar forces back to the plate structure as shear forces by dividing the
bar forces by the same d used previously.


  GEOMETRICAL QUALITIES OF DUAL STRUCTURES

 
  Using the polar reciprocation method, the following qualities of dual structures can be
identified:

 

     

	The dual of an w-valent node is an 72-valent plate, and vice versa; see Figure 11.3.

     
	There exists a line through the origin that is perpendicular to both a bar and its dual
shear line and this bar and shear line are perpendicular to each other (Figure 11.16).

     
	There is a certain distance from the origin where a node is part of the dual plane.

     
	The origin can never be positioned in between a node and the dual plane.

     
	Polar reciprocation cannot be executed if the origin coincides with a node, as the
dual plane will be infinitely far away in any direction.

     
	Polar reciprocation cannot be executed if the origin is part of the plane of a plate,
as the dual node will be infinitely far away in the direction of the axis through the
origin and perpendicular to the plane.

     
	Polar reciprocation cannot be executed if the origin is part of a bar, as the dual shear
line will be infinitely far away and the plates it should connect would be parallel,
hence never intersecting.
     


	A node close to the origin will, after polar reciprocation, produce a plate far from
the origin, and vice versa, as the product of the two distances is a constant; that is,
if the initial is very near to the origin, then the dual will be very far from the origin.
The near to the for is an inherent dual quality.

     
	The sign of Gaussian curvature remains unchanged during polar reciprocation. A
saddle shape remains a saddle shape and a dome shape remains a dome shape.

     
	Although the facets of a triangulated surface give no information about the sign of
the Gaussian curvature for the main shape, the dual facets
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Figure 11.17 Each  individual  plate  in  a  trivalent  polyhedral  structure  is
convex if the Gaussian curvature of the main shape is positive—and nonconvex
if the curvature is negative. A triangular mesh in a lattice structure does not
reveal the sign of the Gaussian curvature. (Courtesy of Ola Wedebrunn.)

 
turn  out  to  be  convex  for  positive  Gaussian  curvature  and  nonconvex  for
negative curvature; see Figure 11.17. A plate in a pure plate polyhedron may
reveal the curvature of the main shape of which it is a part.
 


  STRUCTURAL QUALITIES OF DUALS

 
     

	The bar in a lattice structure connects hinged nodes and transmits axial forces,
whereas the dual plate structure transmits shear forces across the hinged intersections
between plates.

     
	Bars, shear lines, nodes, and plates are basically bending moment free; that is, they
are surface-active membrane structures. Bending moments in bars (e.g., beams) and
plates (e.g., slabs) are secondary to the lattice and plate action. Bending may be used
in transferring and resolving the external loads into the plate-active or lattice-active
surface.

     
	The  statical  determinacy  (i.e.,  redundancy)  does  not  change  during  a  dual
transformation.

     
	All static and elastic information is preserved after a dual transformation.

     
	An axial force is perpendicular to the dual shear force (Figure 11.16).

     
	Any plate structure including loadings and elastic properties may be transformed into
its dual lattice structure, which could be analyzed by any three-dimensional lattice
design software. The computed axial forces may then be transferred back to the dual
plate structure as shear forces along the shear lines.

     
	As a lattice structure concentrates forces in nodes and bars only, it will appear open
if it is materialized according to the forces only. Nothing is hidden behind theoretical
points and lines. Its openness is total. On the other hand, a plate structure distributes
the internal forces to the full area of the plates and transfers forces along the full
length of the shear lines. A plate structure will therefore appear totally closed and
everything behind it will be hidden. The duality will therefore relate the following
qualities: the concentrated to the distributed, the open to the closed, the opaque
to the transparent. It is interesting to observe that, when pure geometry obtains a
structural content, duality approaches the concept of dualism.

     
	According to the previously mentioned statical considerations, it turns out that there
is a dual relationship between forces and moments, translation and rotation.


  THE STRUCTURAL MORPHOLOGY OF POLYHEDRA AS ARCHITECTURAL
OBJECTS

 
  Visually Based Structural Analysis and Design

 
  One of the most fascinating qualities of plate-lattice duality is that it brings a unity to the
concept of basic structures. The structural action of polyhedra is so closely and uniquely related
to the geometry of polyhedra that they are as one. We have seen that the structural issue of
rigidity may be solved either in a purely geometrical or in a statical way, which appear to be
complementary. Plate and lattice action seems in this context to be as two sides of the same coin.
They form two structural archetypes, which, in an antagonistic way, do not need each other, but
together give a full and complementary understanding of basic structures and their
interaction with geometry. They indicate that nodes and plates have equal status as
main elements in structures, defined in exactly the same metric geometrical way. Bars
and shear lines are the connecting links, defined by the topological information of
their linking. Just as the geometry of the five Platonic polyhedra can be regarded as
two groups with three in each, related by duality, statics fits exactly into the same
pattern.


 
  Traditionally, we consider zero-dimensional points as basic geometrical entities and then define
the one-dimensional line as a direct connection between any two of them (which do not
coincide), while a two-dimensional plane is defined by any three points (which are not
collinear). However, in three-dimensional space we may use an alternative definition: We
may introduce the two-dimensional plane as the basic geometrical element (a plane
may
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  Figure 11.18 The dual perception of basic geometry (from top to bottom and left to right):
One point, two points define a line, and three points define a plane; one plane, two intersecting
planes define a line, and three intersecting planes define a point. A set of three coordinates gives
the free choice of defining either the position of a point or the position of a plane, by defining the
normal to the plane through the origin of the coordinate system. (Courtesy of Ola
Wedebrunn.)

 
  be defined, like the point, by three coordinates) and then define a one-dimensional
line as an intersecting line between any two of them (which are not parallel) and a
one-dimensional point as the intersection between any three planes (which do not have a common
line).

 
  For lattice structures the point (node) is the basic element (Figure 11.18, left), and two linked
points define a line (bar) whereas three points define a plane, which is a nonactive open mesh.
For plate structures the plane (plate) is the basic element (Figure 11.18, right), two linked planes
define a line (shear line), and three planes define a vertex, which, if regarded as a node, is
nonactive because any trivalent node may be removed from a structure without changing the
redundancy of the structure.

 
  A given set of geometrical and topological data can be interpreted in these two different ways,
often resulting in very different looking configurations but uniquely tied together by geometrical
and structural duality. It appears that all computer software with three-dimensional applications
is based on the first interpretation and is therefore not suitable for handling geometrical and
structural duality.

 
  Modeling Polyhedral Structures

 
  Physical models seem to be without peer in the study of faceted structures. Pin-jointed bars as
connectors between nodes will indicate not only the
architectural appearance of a proposed lattice structure but will often also reveal the structural
characteristics of rigidity and sensitivity. Note that the pure lattice structure only uses two of the

basic components, the vertex (node) and the edge (bar), not the facet. In a similar way a
rigid-in-plane material such as cardboard, which is hinged by bending or gluing along the
edges, will be relevant as a simple model for pure plate structures. This type uses two
components, the facet (plate) and the edge (shear line), but not the vertex, and as
it is important to prevent nodal, that is, lattice action, the vertices should be cut
away.

 
  A very good exercise to get a feeling for the characteristics of lattice-and plate-based
rigidity is to build models of the five Platonic polyhedra in the two versions and then
try to flex them (Figure 11.9). It is indeed important to get a fingertip feeling for
the difference between rigidity-movability and strength-failure. The latter quality is
connected to the strength and elasticity of the material and connectors and hence
irrelevant when investigating the kinematic qualities of such structures. Three of the
models turn out to be rigid as pure plate structures, namely, those that have trivalent
vertices: the tetrahedron, hexahedron, and dodecahedron; and three are rigid as pure
lattice structures, namely, those with trivalent facets: the tetrahedron, octahedron,
and icosahedron. It is remarkable that the tetrahedron, with trivalent vertices as well
as trivalent facets, is rigid as a pure plate as well as a pure lattice structure. This
polyhedron is, in fact, so simple that acting and reacting forces directed along the edges are
balancing each other directly and no internal force distribution in the structure is
needed.
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  Figure 11.19 Methods of opening up plates without compromising the rigidity. (Courtesy of
Ola Wedebrunn.)

 
  Another interesting quality of these rigid structural archetypes is that they are neutral (i.e.,
statically and geometrically determinate or having zero redundancy), that is, on the edge
of rigidity. This may easily be checked by removing one connector: a bar or a shear
line.

 
  The unstable versions of the regular polyhedra, for example, the octahedron and
icosahedron as plate structures or the cube and dodecahedron as lattice structures, can
all be stabilized by adding either bars to the lattice types or shear lines to the plate
types.


 
  Physical models are superior to computer models for testing structural qualities, not least
because they give answers to much more than what is being asked; for instance, the flexibility or
structural sensitivity of any combination of particular loading cases can be determined
by physical models, whereas the computer only gives an answer to already specified
loading cases. Perhaps virtual-reality technology will be developed in the future that will
resolve this issue. Physical models are not often appropriate in the preliminary stages
of the creative design process as it is time consuming to build good models. In the
process of investigating different geometries, interactive computer modeling is obviously
superior to physical models, whereas the latter are superior in investigating structural
behavior.

 
  Most of the computer graphics software works with wire frame models that are geometrically
similar to lattice structures. These programs are often interactive and the geometry can be easily
manipulated. Advanced structural analysis and computer design programs have also implemented
interactive and user-friendly shaping features.

 
  Computer modeling is a good deal more complicated for plate structures, but some of the
advanced graphics software packages can facilitate the cutting of solids, which can be utilized for
shaping plate structures, but the present software is still not efficient enough for this purpose. An
adequate program should work like its lattice counterpart, with the difference that the
coordinates, instead of defining nodes, should be regarded as the geometrical information for
defining planes,16 and the information for linking the plates should be fisted in the correct order
as if walking, either way, around the perimeter of the plate. With this information the
intersections between a plate and its neighbors can be calculated and the defined plate can
be isolated from the rest of the infinite plane of which it is a part. Such software is
unfortunately not yet commercially available.17 Plate structures are probably not developed to
the same level of complexity and sophistication as lattice structures because of their
more complicated and computer-dependent geometry. If plate structures are to be
used to their full potential, it is absolutely necessary to add dual transformation and
the previously mentioned alternative geometrical interpretation of data to existing
software.

 
  Opening Up a Plate

 
  One of the evident advantages of plate action compared to lattice action is that, when the
enclosure of a building is designed to resist external load such as wind, snow, and dead load, it
usually has an excess of bearing capacity in its own plane so that its utility for plate action is
often possible. As the covering material must be there anyway, why not use it to transfer forces

in its own plane by plate action? A transformation of a covered lattice structure into a plate
structure often makes it possible to eliminate the bars and nodes. The cladding could then be the
structure itself. The only extra property that has to be introduced is shear force resistance
between adjacent plates.

 
  The dual quality of lattice action, which is concentrating forces in nodes and bars, and plate
action, which is distributing forces over the surface, has the effect that lattice structures tend to
be constructed from strong material like metal, whereas plate structures may utilize
weaker material like wood panels, plywood, plastics, reinforced concrete, and even
glass!

 
  That plates are essentially closed elements might be seen as a problem, as buildings usually
need openings like windows, doors, and so forth. However, plates may be opened, as long as the
essential requirement that they remain rigid in plane and sufficiently strong and stiff to
transfer the design forces is maintained. There are essentially two different ways to
open up plate structures: either by making holes inside the plates or by removing
vertices (Figure 11.19). In both cases the plates develop into frames with bending
rigidity in the plane of the plates. The plates become geometrically open but remain
structurally closed. Plates with large openings will, of course, need more or stronger
material than if they were made without holes. The larger the openings, the more plate
structures will approach lattice structures from the point of view of the type of material
employed.

 
  PLATE AND LATTICE STRUCTURES IN NATURE

 
  Structure is a major issue in our earthly environment of gravity and other loadings and many
living organisms have developed highly sophisticated structural systems over millions of years.
Nature’s strategy for improving solutions to structural and other vital challenges, and which has
proved to be very creative and efficient, is known as ‘‘survival of the fittest.’’ A major difference
from man-made structures is that organisms need to grow. It is vastly more complex to maintain
strength and rigidity during a growth process than to erect a safe and rigid building. Just think
of the difficulties of many beetles and crabs that have to throw away their external
chitin skeleton and become very vulnerable until their new armor has solidified. Other
organisms, like the sea urchin, have developed more sophisticated solutions to a similar
problem.

 

     

 

It appears that many structures in nature, which can be typified as plate or
lattice structures, are very close to being structurally neutral. The shell (also
called the test in biological terms) of the sea urchin is one instance (Figure
11.25). Many other echinodermata, the skeleton and armored skin of many
vertebrates,  the  Venus’s-flower-basket  (Figure  11.24),  the  spongy  trabecula
inside bones (Figure 11.23), different types of spider webs, microscopic plankton
such as radiolaria (Figure 11.20), foraminifera (Figure 11.21), coccolithophores
(Figure  11.22),  and  many  others  are  further  examples.  One  of  the  obvious
advantages  is  that  a  structure  with  low  redundancy  requires  less  material,
which means less dead load, and uses less energy for its construction than a
structure with high redundancy. Another advantage is that a neutral or slightly
redundant structure develops lower internal stresses during growth and other
structural rearrangements than a highly redundant structure. Rearrangements
of the structure may therefore be achieved more easily and with less adjusted
growth of the total system. Of course, kinematic neutrality is also an obvious
disadvantage as the structure tends to become movable if local failure occurs,
but often it seems possible to use an alternative structural action if needed. To
prevent collapse, the structural action often changes into one that is less stiff
than the plate or lattice action, for example, bending. For this softer type of
action, the structure is redundant—this is an expansion of our normal conception
of the word redundancy in the sense that a failure of the more rigid structure
must occur to activate the alternative softer structural type of action. This
system can be exemplified by a house in which the main structure has been
badly damaged, for example, by an explosion, but has not collapsed because
the forces have found alternative rearrangements, (e.g., bending).

 
The  sea  urchin  may  transfer  bending  moments  over  the  shear  lines  during
the  ‘‘repair  period’’  of  a  plate.  The  trabecula  inside  our  bones  and  the
Venus’s-flower-basket do not have hinged nodes and must therefore also carry
loads  by  the  transfer  of  bending  moments  between  bars  if  necessary.  It  is
significant that these auxiliary ways of stabilizing are secondary as they produce
larger elastic deformations than the very stiff plate and lattice action.
     

 
In order to understand the appearance of pure plate structures in nature, it
should be noted that a random single-layer configuration of planes will always
intersect in trivalent vertices,18 which is the required geometrical pattern for
pure  plate  action  in  single-layer  structures.  The  same  geometry  is  seen  on
randomly organized close-packed organic cells or soap bubbles, either on its
surface or in cross section. One might conclude that the ‘‘creator’’ has been
dealt an incredibly strong hand of cards, when the lowest geometrical order
of all—the random—produces the ideal configuration for pure plate action! The
rest is ‘‘just’’ to create rigid-in-plane plates and shear resistant connections in
order to introduce plate action to nature. The plate type of structure is very
appropriate for faceted structures as the covering surface is at the same time
the main structural element, while the more complicated bar-and-node action,
which requires higher-strength materials, can be avoided.
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  Figure 11.20 Radiolaria: Aulosphaera dendrophora (x80) (upper left) and Aulonia hexagonia
(x30) (upper right) compared with geodesic polyhedra as a pure lattice structure (lower left) and
its dual as a pure plate structure (lower right). (Source: Upper drawings: Ernst Hackel,
Challenger Monograph, 1987.)
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  Figure 11.21 Foraminifera (x450), a multichambered living unit of calcium carbonate
polyhedral shells. (Source: Geological Institute, University of Copenhagen.)

 
  Planktonic Organisms

 
  Microscopic plankton floating around in the oceans are subjected to equal loading from all
directions. Plankton do not develop up-and-down orientation as many organisms subjected to
gravity do. Instead, they often develop nonoriented spherical or polyhedral geometry. The
biologist Ernst Hackel19 has been extremely productive in describing comprehensively the
siliceous plankton called radiolaria (Figure 11.20), many of which are beautiful images of
polyhedral structures. The external skeleton, even when not studied in detail, often shows either
a lattice (triangular facets) or a plate (trivalent vertices) configuration—or both. Foraminifera
(Figure 11.21) are calcitic organisms with similar polyhedral configurations to radiolaria. They
often form clusters of polyhedral skeletons with holes producing trivalent vertices. The
foraminifer starts out by forming a single chamber with one opening. When the soft organs
inside grow too large to fit into the chamber, it bubbles out of the hole and creates a

larger chamber, which also has one hole, and so it continues and becomes a cluster of
ever-larger polyhedral cells. Coccoliths are another calcitic plankton but with the habit of
collaborating to estabfish colonies forming polyhedral shapes called coccolithophores (Figure
11.22). There are several types of connections between the single coccoliths, some
of them with a wedge-and-cleft connection and some where the coccoliths are just
touching and held close by soft tissue, forming configurations reminiscent of plate
structures.

 
  Bone Structures

 
  The classic example of lattice structures in nature is the trabecula inside the enlarged
extremities of our tubular bones (Figure 11.23), such as are found in our thigh20 and heel bones.
The calcitic trabecular structure is oriented in the optimal structural direction, which is that of
the main tension and compres-
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  Figure 11.22 Coccolithophores: Braarudosphaera bigelowii (x5000), a perfect dodecahedral
configuration (left). Pontosphaera discopora (x4000), forming polyhedra from packed ellipses in
a trivalent vertex pattern, which indicates rigidity by plate action (right). (Source:
Coccolithophores, Amos Winter and William G. Siesser, eds. Courtesy of Cambridge University
Press. Photos: S. Nishida.)
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  Figure 11.23 The spongious trabecula in the femur follow the stress trajectories for the body
weight. The trajectories follow the direction of the principal stresses (shown as a pattern of white
lines) in a similar solid structure at any point of the cross section. (Courtesy of Ola
Wedebrunn.)

 
  sion forces, the so-called stress trajectories. The trabecula are connected to the compacta,
which is the compact bony layer forming the outer surface of the bone. The trajectories,
forming a cubic lattice of six-valent nodes, will, together with the compacta, form an
ideally shaped three-dimensional structure which, if regarded as a lattice structure,
turns out to be close to neutrality, only slightly redundant. Clinical observations of the
trabecular pattern of the femur (the upper extended part of the thigh bone) of astronauts
and other individuals who have been subjected to unusual loading of these structural
parts, show rearrangements of the pattern consistent with the quality of being almost
neutral. Hence a configuration of minimum energy consumption and minimum risk of
unwanted internal stresses, which might lead to failures during the rearrangement
process.


 
  Some of these spongious bone structures are configured as cubic cells with thin cell walls and
are therefore more probably stabilized by plate action than by lattice action. It is interesting that
if pure plate action is considered for plates forming a cubic matrix configuration, it will have the
same kinematically neutral status as the cubic lattice.

 
  Venus’s-Flower-Basket

 
  The Venus’s-flower-basket Euplectella (Figure 11.24) is a deep-sea siliceous glass sponge,
consisting of a cylindrical chimney-like structure topped by a
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  Figure 11.24 Venus's-flower-basket(Z. = 30 cm, D = 3 cm). Total structure and
detail.

 
  dome and rooted in the sea bottom with long shiny siliceous fibers. The soft organic tissue is
located on the surface of the cylinder. It feeds by filtering small organisms from the sea water
sucked through the meshes in the cylinder, pushing the filtered water up and out through the
chimney. The meshes of the cylinder are basically squares. Every second mesh, in a chessboard
pattern, is cross-braced and forms spiral lines. Half-octahedra are positioned on top of the
cross-braced meshes and their upper vertices are interconnected, forming spiral ridges on the
outside of the cylinder. If considered as a pure lattice structure, the configuration turns out to be
neutral. The nodes are able to resist bending, which means that any local damage
does not necessarily lead to total failure. The structure would also be stable if all
meshes were braced, but this would interfere with the flow of nutritious water through
the surface of the cylinder. Hence, the solution with the ridges appears to be very
appropriate.

 
  The Shell of the Sea Urchin

 
  The hard shell of the so-called regular1 sea urchin (Figure 11.25) complies with all the
requirements of a perfect plate polyhedron with great functionality in the design of shape,
joining, and necessary geometrical openings. In addition to its ability to resist external loading,
the polyhedral structure of the
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  Figure 11.25 Regular sea urchin. Seen from above (upper left) and below (upper right). Note
the trivalent vertices on the inside of the shell. Scanning electron microscopy (SEM) (x600) of the
toothed link between two plates (middle left) and a drawing showing that the direction of
growth and the direction of stabilizing forces are perpendicular, hence uncorrelated

(middle right). Lower left and lower right are images of a computer-generated sea
urchin subjected to loadings perpendicular to the surface, resembling the action and the
appearance of the spines. (Courtesy of Dr. Margit Jensen, Zoological Museum, University of
Copenhagen.)

 
     

 

sea urchin must, at the same time, be able to grow. This problem has been
solved in a theoretically elegant way.

 
The regular sea urchin surrounds its soft organs with a protective polyhedral
shell  of  calcite.  It  consists  of  an  upper  almost  hemispherical  part  and  a
somewhat flattened bottom part. On the outside of this hollow calcite skeleton,
a great number of movable sharply pointed or club-shaped spines are arranged,
providing efficient protection against attacks from enemies or rough sea. It is
probably the spines that transfer the major external forces to the shell.

 
The shell is basically composed of two types of plates, dividing the surface into
five areas and converging at the two poles. Each area consists of two rows of
plates, which may be regarded as plane plates, arranged in such a way that all
vertices are trivalent. The individual plates are normally connected to between
five and seven other plates.

 
The larger of the two openings appears at the bottom pole where the plates meet
a strong and stiff pentagonal frame, on which the highly developed chewing
apparatus ‘‘Aristotle’s lantern’’ is mounted. This frame is therefore structurally
closed even if it is geometrically open.

 
The joins between the plates, the shear lines, are distinctly toothed (Figure
11.25). This type of connection is extremely efficient in transferring shear forces,
which strongly supports the assumption of plate action. The collagen fibers
almost lacing the plates help to keep the plates close together, which will enable
the transfer of bending moments from plate to plate. The lacing is important
for maintaining sufficient strength and stability during ‘‘repair’’ after a fracture
of one or more plates. It is obvious that the plates combined with the collagen
fibers enable structural actions other than plate action, for example, bending.
     
The shell may, for example, function as a continuous shell structure. Shell action
is very close to plate action because a finely faceted plate polyhedron is nothing
but a slightly discontinuous shell, stabilized only by shear forces, acting across
the edges.

 
The sea urchin grows by increasing the number of plates and increasing the
size of the single plates as a simple two-dimensional geometrical expansion. By
expanding the size of the plate, the direction of growth will be perpendicular
to the shear lines (Figure 11.25), hence perpendicular to the direction of the
stabilizing shear forces. Growth and transfer of stabilizing forces can therefore
be  managed  concurrently  without  any  interference.  Seen  as  an  engineering
problem, the combination of growth and maintained rigidity is solved by the
sea urchin in a structurally elegant way.

 
The analysis of the sea urchin as a pure plate structure leads to speculation
on the structural nature of other similar configurations. Such configurations
are found in the armored skin of reptiles, the shell of the tortoise, the bone
structure of the skull, and many other places in nature. Scientists often find it
difficult to explain the function of this significant pattern of sutures—maybe a
part of the answer is given by ‘‘rigidity during growth’’!
 


  EXAMPLES OF MAN-MADE STRUCTURES

 
     

 

Polyhedral lattice structures appear to be increasingly popular, especially for
large spans where the high efficiency of metal lattice structures forms slender,
elegant, and extremely lightweight structures. The recent demand for large
sports arenas has produced a great number of sophisticated and brilliant lattice
structures.  There  seems  to  be  some  chance  that  these  large  coverings  will
influence smaller-scaled buildings such as houses.
     

 
Today’s use of plate action is mostly limited to the stabilizing of buildings
against horizontal loads such as wind and earthquakes by activating floors,
facades, gables, internal walls, walls around staircases, elevators, and so forth.
This is a very limited use compared to the vast possibilities of complex spatial
plate structures.

 
As  mentioned  earlier,  most  buildings  can  be  characterized  as  polyhedra
or  clusters  of  polyhedra.  On  the  other  hand,  common  buildings  are  not
characterized or analyzed as polyhedra, and polyhedra are usually not on the
mind of the architect during the creative process of organizing the building
geometry, or on the mind of the structural engineer when making decisions
about  structural  action  and  design.  In  fact,  almost  an  entire  generation  of
building designers, such as architects and engineers, are generally unaware of
polyhedra and their morphological qualities. I am sure that our architectural
landscape, in terms of the shape and structure of our buildings, would become
increasingly interesting if architects and engineers were better trained in using
the geometrical, topological, and structural archetypes for their buildings.

 
A  very  simple  example  of  implementing  plate  action  in  buildings  is  the
traditional gable or pitched-roofed house. A view of such a roofscape (Figure
11.26)  confirms  the  frequency  of  trivalent  vertices.  This  is  therefore  a
configuration where the plate action of facades, gables, roofs, attics, bays, and
oriels is obviously a potential that is not realized. Of course, it is necessary
that the plates be rigid in plane and that the connections be shear resistant.
However,  these  extra  requirements  would  often  be  simple  additions  to  the
existing construction tradition. An obvious advantage of utilizing the latent
plate  action  would  be  to  increase  the  structural  activity  of  the  building’s
surface, hence the possibility to open up the attic space by reducing frames
and trusses—partially or totally. Another advantage would be that the roofs
would tend to be shaped in an appropriate way for efficient plate action or
for combined lattice and plate action. Making proper use of this structural
potential would lead to more diverse and interesting shapes and structures for
roofs as well as for enclosures and interior partitioning.

 
The Rigidity of Polyhedral Buildings
     

 
A major structural difference between a polyhedron and a polyhedral building
is that the building is supported by a connection to the ground. To form an
idea of the rigidity situation of a supported polyhedron, an unsupported rigid
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  Figure 11.26 A common roofscape shows many trivalent vertices, indicating potential—but not
utilized—plate action. (Courtesy of Ola Wedebrunn.)

 
  polyhedron is first considered. Such a rigid body has six degrees of freedom22 within which to
move and therefore, under the necessary general requirement for the rigidity of unsupported
polyhedra, mentioned earlier, the number 6 will be replaced by the number of support conditions
(SU):

 
     

 

BA + SL+ BU + SU =3x{N0 + PL)
 


  Note that SU is equivalent to either a bar, a shear line, or a buffer force.

 
  Imagine now any arbitrary closed and rigid simple polyhedron. Make a single cut according to
the proposed foundation boundary, which does not necessarily have to be plane but in such a way
that the initial polyhedral surface is still triangulated (Figure 11.27). The new polyhedron is now
movable because the free edge is an n-gon (for n > 3). The number of extra bars needed to
triangulate the hole will be (n -3), which are added. Now the structure has become
a simple closed triangulated polyhedron and will therefore again comply with the
equation

 
     

 

BA+ SL+ BU = 3x(N0+ PL)-G
 


  which means that the number of support conditions only needs to be 6. As every one of
the added bars is equivalent to a support, all the extra bars are equivalent to (n -3)
supports. The total number of supports required to stabilize the polyhedron with the
free cut edge and no extra bars is therefore 6 + (t2–3) = 72 + 3. The number of
vertices on the formerly free boundary is n. If all these n points are provided with one

support condition (e.g., vertical) and three of the boundary edges are provided with one
support condition each (e.g., horizontal), the necessary requirement for rigidity is
met. If more (e.g., horizontal) support conditions are added, the structure becomes
redundant. This means that if all n free comers and all n free edges along the boundary are
supported, the structure will have a redundancy of 72 -3. If this is the case, it leads to
the

 
  
11.2  CONCLUSION

that a maximum of (72 -3) bars, shear lines, buffers, or support conditions may be removed from
the rest of the structure—enabling, for example, larger openings—without affecting the rigidity.
Fol-

 
  Figure 11.27 Stabilizing a part of a polyhedron by adding bars or supports along its
periphery. Shown rotated from below. (Courtesy of Ola Wedebrunn.)
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  lowing this procedure for removing structural parts, it is very important to investigate for local
movability and critical and sensitive situations. The preceding considerations are based on
a pure lattice polyhedron, but the same result concerning support requirements is
achieved if it is applied to any polyhedron based on plate or combined plate and lattice
action.

 
  Pure Lattice Structures

 
  Steel lattice structures were developed by the early pioneering work of engineers
during the industrial revolution, mainly in the 18th century. Progressive architects and
engineers began to cultivate a significant form-and-force language for the new iron
material, based on engineering qualities such as reliability, high strength, and stiffness,
coincidental with the architectural qualities of airy delicacy and feathery lightness.
We see the results in railway stations, exhibition halls, palm houses, libraries, and so
forth.

 
  Structures based on simple spherical polyhedra23 were developed by European engineers with
the ‘‘father of dome structures,’’ the German, J. W. Schwedler in the lead. Later in the United
States, R. Buckminster Fuller became a legend for developing—with an exceptional energy and
originality—his thoughts and ideas24 on what he called the geodesic dome. The system had, in

fact, already been developed and used by the German engineer Walter Baursfeld for
the steel reinforcement of the Jena Planetarium in 1923. Fuller, however, became a
kind of guru of the 1960s counterculture, and whole villages25 were built according
to Fuller’s thinking, not only on building structures but on his total cosmology. At
the other end of the spectrum, Fuller developed, in collaboration with other skilled
engineers and architects, larger and fighter dome structures than had ever been erected
before.

 
  Polyhedral lattice buildings range from the small ‘‘homemade’’ one-family dwelling to high-tech
retractable roofs for large arenas but seem to attract interest, regardless of the scale of the
building. They belong to a field where engineers, because of the comprehensive structural
content, must put at least as much energy into the creative process of organizing and shaping the
building as the architect.

 
  The lattice structure is today so commonly used, so well known, and so well documented that
it will not be further dealt with here.

 
  Pure Plate Structures

 
  Introduction

 
  As already mentioned, plate action in today’s buildings is more or less limited to
the resisting of horizontal forces, but it would be interesting to consider some of the
possibilities for plate structures designed with the degree of sophistication typical of lattice
structures.

 
  Regular Geodesics

 
  Because pure plate domes can be created by the simple dual transformation of pure lattice
domes (Figure 11.28), it seems obvious to consider the possibili-
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  Figure 11.28 Dual configurations are sometimes very easy to match as in this geodesic
polyhedral structure with the reference point in the center. (All art on this page courtesy of Ola
Wedebrunn.)
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  Figure 11.29 The dual (right) of the Schwedlertype of dome (left) is very reminiscent of the
sea urchin type of faceting.
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  Figure 11.30 Dual configurations for a geodesic polyhedron. The reference point is located at
one of the focal points of the ellipsoidal plate structure.


 
  ties for these configurations. The pure lattice dome of the Schwedler type (Figure 11.29) will,
after a dual transformation, give an almost perfect model of the shell of a regular sea
urchin.

 
  The duality implies that for any arbitrary pure lattice structure a dual plate structure can be
found. In fact, countless numbers can be found as each position of the chosen origin produces a
geometrically different plate structure (Figure 11.30). Whether the result of such a
transformation creates a realistic and constructable form can often only be evaluated after the
transformation.

 
  A geodesic dome, according to Fuller, is produced by further triangulation (breakdown) of the
triangulated regular polyhedra (the tetrahedron, octahedron, and icosahedron). Dual
transformation of this kind of Fuller dome produces structural configurations for a family of
interesting geodesic plate domes. As the typical nonsignificant node26 in a geodesic Fuller dome
is six-valent, the dual plate becomes hexagonal.

 
  There is a major difference in the visual perception of the lattice and plate dome pattern. Even
with small frequencies of breakdown, the lattice dome gives a diffuse and spherical appearance,
whereas the dual plate pattern appears as a more obviously faceted form. This is especially
pronounced in the
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Figure 11.31 Ideas for smaller domes as pure plate structures. The possibility
for requiring vertical plates along the perimeter in contact with the ground is
latent, and the very simple geometry involved in adding units makes the plate
dome in many ways superior to lattice domes. (Courtesy of Ola Wedebrunn.)
 


  lower breakdowns for tetrahedron-and cube-based geodesics. In addition, these strong, almost
sculptural plate forms carry a number of possibilities for direct combination with other units or
as the basis for further shaping (Figure 11.31). One shaping possibility is zooming, obtained by
stretching a sequence of plates with parallel intersection lines. Another possibility is stretching of
the dome by applying factors to one or more of the axes, which changes, for example, a spherical
shape into an ellipsoidal shape.


 
  A third method for elongation of the shape I have called dual manipulation: Like stretching,
this changes the inscribed sphere into an ellipsoid, but whereas stretching maintains the origin at
the geometrical center, in dual manipulation the origin is situated at one of the focal points of
the inscribed ellipsoid. This transformation changes the size of the plates in an interesting way, in
fact so suggestive that the correct construction of a perspective view can be obtained using the
following sequence (Figure 11.32):

 
  ° Consider the origin in the center of the plate polyhedron.

 
  ° Execute a polar reciprocation. This produces a lattice polyhedron.

 
  ° Move the origin.

 
     

 

° Execute a polar reciprocation again. This produces a plate polyhedron that
is different from the initial one.

 
° If the new plate polyhedron is projected onto a plane that is perpendicular to
the direction in which the origin was moved, this projection shows a perspective
image of the initial polyhedron, as will be explained later.
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  Figure 11.32 A dual manipulation creates not only a family of interesting geometric
configurations but also a perfect perspective image of the original: The upper right appears
to be a perspective view of the upper left The same configurations are shown lower
left and lower right and both are viewed from above from the left (Courtesy of Ola
Wedebrunn.)
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Figure 11.33 Next to the traditional Danish farmhouse is a pure plate dome
with extremely open plates constructed as wooden frames with plywood knees.
The open framed plates are bolted together. (The structure was designed by
the author in collaboration with the architect Torkild Ebert in 1981.)
 



  Observe now that the size of the plates has changed in such a way that those closer to the
origin become smaller and plates farther from the origin become larger. The plates are
circumscribing an ellipsoid as mentioned, but because of the different shapes of the plates it gives
an illusion of an egg shape. Figure 11.32 shows that if the dual-manipulated polyhedron is
projected onto a plane perpendicular to the direction in which the origin was moved, it creates a
perfect perspective view of the original polyhedron, where the location of the eye is dual
(reciprocal) to the point where the origin was moved. If the origin is moved a little compared to
the size of the polyhedron, the location of the eye is far away, hence the perspective distortion is
small, and vice versa.

 
  Figure 11.33 shows a polyhedral plate dome of the cube family with a diameter of 12 m. The
plates are open rigid wooden frames that are bolted together. Instead of all frame members or
holes in the plates being of equal size, they could be adjusted to reflect the magnitude of the
internal stresses. This method could be chosen to save material or to open up the roof for
daylight, and not least to tell a story of the structural action: A heavily stressed plate would be
completely closed, whereas a lightly stressed plate would be wide open. Figure 11.34
illustrates this method when applied to a dome of the cube family with a dominant dead
load.

 
  Plate structures, in their basic form, are appropriately made of two- dimensional sheet
materials of limited strength. The internal stresses are distributed all over the plate surfaces and
smoothly transferred along the connections, hence avoiding the concentration of forces at
lines and points. A material that would fit this role perfectly is plane glass sheets.
Because of the particular properties of glass—if it is used as part of the main structure
of a building, it should be used as structural plates. A pure glass plate dome is one
answer to the ultimate vision for modern glass design in buildings. Like a ‘‘reversed’’
Emperor’s New Clothes, it is not seen but it really is there—it is only perceived by means of
the surroundings, as a reflector of the clouds, skies, neighboring buildings, and so
forth.
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  Figure 11.34 A shallow plate-faceted shell where the openings in the plates are adjusted to
the magnitude of the internal forces for self-weight. Perspective view and plan. (Courtesy of Ola
Wedebrunn.)

 
  Other Polyhedral Shapes


 
  A 3-m-high parabolic sculpture, called Pentagonia (Figure 11.35), was built as a pure plate
structure, not from glass but from glazed ceramic tiles, which are basically similar to glass from
a structural point of view. Its name is derived from the fact that both the top tile
and the ground plan are regular pentagons. The 10–15-mm thickness of the tiles is
greater than is needed from a structural point of view, but it is necessary in order to
prevent warping of the tiles during their firing in the kiln. Clay slabs of the required
thickness were cut directly from the ‘‘fold-out’’ net generated on the computer by
CADual and, after firing and glazing, a sand/cement mortar was used to link the ceramic
tile plates. The actual dead load is close to the ideal load for the parabolic shape.
This means that the efficiency of the structural shape will be high for the dead load,
and as it is the dominant load, the structure and its shape fit perfectly together. In
other words, the magnitude of the shear forces to be transferred at the shear fines is
minimized.

 
  [image: PIC] [image: PIC] Figure 11.35 The domeshaped ceramic sculpture, called Pentagonia, circumscribes
a paraboloid of revolution, which is a structurally very efficient shape for the dominant
selfweight. It forms a 2.5-m-high ceramic pure plate dome. To ensure the transfer of shear
forces, the plates are linked with ordinary mortar. The horizontal projection shows
a very regular pattern consisting of one pentagon and just two types of hexagons.
(Ceramic artists Esben Madsen and Gudrun Rud-jord designed and produced the
sculpture in collaboration with the author. It is on display at the Silkeborg Museum in
Denmark.)

 
  Polyhedral Clusters

 
  Introducing plate action into traditional cubic building design should be very easy, not only
with respect to the roofing, as mentioned earlier, but also for the traditional concrete
element building technique. Increasing the strength of the connections between the
traditional precast elements might easily enable extensive plate action and increase the
architectural and functional possibilities of this building type. Figure 11.36 shows a typical
example for a two-level building opened up at the lower level and carrying the loads by
activating all horizontal and vertical plates and shear lines. In the same way, it is possible
in
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  Figure 11.36 A simple two-story building structure based on cubic geometry and extensive
use of plate action in order to open up the lower level. The building is stabilized for horizontal
and vertical loadings by the transfer of shear forces between plates—and not by bending.
(Courtesy of Ola Wedebrunn.)

 
  a multilevel building to have alternate floors free of internal vertical structural walls. This
indicates that it is possible to increase the structural efficiency and architectural possibilities by
adding plate action to the conventional precast concrete building system. This is quite similar to
the previous considerations for roofs.

 
  Other types of polyhedral clusters are those proposed by J. F. Gabriel.27 These
structures are combinations of different simple polyhedra and may be regarded as
structures composed of either rigid cells, pure plates, or a combination of plates and
lattices.

 
  Combined Lattice and Plate Structures

 
  The pure structures, plate and lattice, have their respective significant qualities, advantageous
or disadvantageous, which have been outlined in the previous sections of this chapter. They form
opposite poles of the structural world. They may be regarded as geometrical and structural
extremes, hence the majority of their possibilities probably fie in between. The statics for the
combined plate and lattice action has already been described, and the most interesting
architectural potential probably lies in the area of expressing all the basic structural actions such
as tension, compression, and shear.

 
  An examination project investigated by engineering students considered a palm
house (Figure 11.37), which is a combination of a coarse-meshed steel lattice and a
fine-meshed glass plate structure. Both the steel and the glass structure adhere to the
same theoretical paraboloid of revolution with the glass plates as tangential planes,
whereas the steel nodes touch the same surface at the connection points with the
glass plates. The rather complicated geometry, where the horizontal projection of the
configuration patterns shows regular triangles (lattice structure), regularly arranged with the
regular hexagons (plate structure), is easily generated by dual transformations using
CADual.

 
  A common problem when combining faceted spherical forms is the diffi-

 
  [image: PIC]


 
  Figure 11.37 Palm house project. Physical model and horizontal projection of the steel
and glass structure. (The illustration is of a model that was produced as part of a
B.S. examination project by P. Ohannessian and N. Grunnet The project, entitled
Design of a Glass Plate Dome,\Nas submitted to the Danish Technical University in
1991.)

 
  culty of matching boundaries geometrically but, as the projection of the structural
configuration onto the horizontal ground plane has such a strict regularity, the combination of
equal types of paraboloids fits perfectly together, as shown in Figure 11.37. Because the
fragile glass is part of the structure, it is important that the shape be ideal for the
dead load in order to reduce the internal stresses as much as possible. The glass is
self-supporting for all loading cases, but, in the case of local fracture, the redundant
steel structure will prevent collapse and ensure stability until the broken glass plate is
replaced.

 
  Another way of combining lattice and plate action is, as with the non- trivalent simple
polyhedra, to achieve strength and rigidity by transferring buffer forces along their common
edges. This is exemplified (Figure 11.38) by another student project. The general shape of the
highly efficient parabolic structure is the same, but all the facets are now quadrilateral
and project into perfect squares on the ground plane. This time the glass is almost
unaffected by dead load but plays a structural role for wind loads—similar to that of
many
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  Figure 11.38 Project for a fruit market covering. Elevation, horizontal projection, and
internal view. (The illustration is of a model that was produced as part of an M.S.
examination project by P. Ohan-nessian and N. Grunnet The project, entitled Interaction
Between Plate and Lattice Structure, was submitted to the Danish Technical University in
1993.)

 
  old palm houses. Both projects prove that the structural performance of glass makes it very
suitable for quite large structures and that the problem of brittleness could be dealt with by
ensuring sufficient redundancy. The general shape and the faceting are created in a very simple
way by dual transformations. At the same time, the surface turns out to be a translation
surface.28 As one of the characteristics of these shapes is that the facets are plane parallelograms,
which are very simple to produce, they belong to a family of structures appropriate for combined
lattice and plate action.


 
  Another example of the combined action is a quite interesting structure (Figure 11.39), where
square plates are arranged in a chessboard pattern and hinged at the corners. This structure
forms, of course, a highly movable mechanism. One can now crumple it into the desired spatial
configuration and brace the open meshes in both directions. If the elements of this
double brace do not intersect, then they form edges on a tetrahedron together with
the
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  Figure 11.39 A chessboard pattern plate system, folded in space and braced over both the
diagonals of all open meshes, becomes a rigid structure, combining plate and lattice action. The
shape is defined by the actual lengths of the bracing bars. (This architectural students' project
was developed by S. Krohn-Hansen and M. S. Skadborg of the Royal Danish Academy of Fine
Arts.)

 
  plate edges. In this case the bracing will not only stabilize the shape, but it will also enable the
boundary to be free from stiffening elements, hence producing a slender and beam-free edge. If
the configuration is too small or too narrow, it cannot become rigid, but above a certain size it
becomes rigid and then more and more redundant as the size increases. To check this, the
simplest method is to use the rigidity equations for pure lattice structures and regard the plates
as braced lattice squares.

 
  

 

11.3  CONCLUSION

It seems quite surprising that these simple relationships between lattice and plate (and
combined) structures have been—even though Mobius came very close—so recently described.
They finally have brought a perfect polyhedral order to the concept of basic structural action. On
the other hand, it is strikingly difficult to change the firm opinion of many professionals that the
lattice is the one and only basic static principle and the triangulated polyhedra are the only
inherently rigid configurations.


 
  This chapter introduces the concept that plate and lattice action are equivalent and dual in our
‘‘normal’’ three-dimensional space. This is important, as the static and geometrical rules for pure
plate structures or combined lattice and plate structures produce a new and different syntax and
vocabulary for shaping spatial structures—a structural morphology based on simple algebra and
equally simple considerations. This basic concept for what can be called the foundation of a
form-and-force language has an impact at several levels: from considerations of the
dualistic qualities of basic structures to simple rules for configurational design and
analysis of structures, including many biological structures, to operational tools for
numerical statical analysis. As can be seen, the theory has not only led to the solution of a
number of interesting structural morphological problems but also produced a tool for
the design of efficient structures with the possibility of great visual and architectural
qualities.
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12  Computer-Aided Processing of Polyhedric Configurations

Hoshyar Nooshin, P. L. Disney, and O. G. Champion

 
  
12.1  INTRODUCTION

The objective of this chapter is to establish a methodology on which computer-aided techniques
for the processing of polyhedric configurations may be based. The term polyhedric configuration
is used to refer to any geometric arrangement that is based on polyhedra. In particular, the focus
of attention is on polyhedric configurations that are of importance in the architectural and
structural engineering fields.

 
  The natural medium for the processing of polyhedric configurations is a programming language
that incorporates the concepts of formex algebra. Formian is such a programming language in
which the processing of polyhedric configurations can be carried out using the standard
elements of the language.1 The term processing of polyhedric configurations in the present
context
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  simply means the creation and manipulation of polyhedric configurations.

 
  The actual usage of the ideas presented in this chapter is envisaged to be through a
programming language such as Formian. However, the main body of the material presented is
independent of any particular mathematical system or computer software. The emphasis is on
the primary concepts that are fundamental for the processing of polyhedric configurations in any
medium.

 
  The approach used in presenting the material is to begin by exploring the basic classes of
polyhedric configurations. This is followed by a review of the properties of two families of
polyhedra that are of central importance in relation to polyhedric configurations. The rest of
the chapter is devoted to describing the basic procedures for processing of polyhedric
configurations.

 
  SOME BASIC POLYHEDRA


 
  Polyhedra have been the subject of fascination and interest since ancient times. They have
been studied throughout the ages by mathematicians, philosophers, and artists and they play an
important role in a number of branches of science and technology.

 
  The interest in polyhedra in this chapter stems from the fact that they provide a basis
for the generation of a number of important classes of structural forms. Examples of
polyhedra that are of particular interest in the present chapter are shown in Figure 12.1.
These are the tetrahedron, octahedron, dodecahedron, icosahedron, and cuboctahedron,
where

 
     

	the tetrahedron has four triangular faces,

     
	the octahedron has eight triangular faces,

     
	the dodecahedron has 12 pentagonal faces,

     
	the icosahedron has 20 triangular faces, and

     
	the cuboctahedron has eight triangular faces and six square faces.


  [image: PIC]

 
     

 

(a) Tetrahedron (b) Octahedron (c) Dodecahedron
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  (d) Icosahedron (e) Cuboctahedron

 
  Figure 12.1 Some basic polyhedra.
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  Figure 12.2 Mapping onto faces of an icosahedron.

 
  MAPPING ONTO FACES OF POLYHEDRA

 
  The first class of polyhedric configurations to be considered is obtained by placing objects onto
the faces of polyhedra. For example, the configuration shown in Figure 12.24? is a polyhedric
configuration that is obtained by placing a triangulated pattern on five faces of an icosahedron.
A configuration that is used for mapping onto the faces of a polyhedron is referred to as a
face-object. The face-object in the example under consideration is shown in Figure 12.2a. Also,
the faces of the icosahedron that are to be mapped onto are shown in Figure 12.2b. These faces
are shown again in Figure 12.2c, with one of them having the face-object placed onto it. The
complete arrangement with the face-object mapped onto all five faces is shown in
Figure 12.24?. In the preceding description of the procedure for obtaining a polyhedric
configuration, the terms mapping and placing have been used interchangeably. This is
appro-
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Figure 12.3 Mapping with different face-objects.
 


  priate because mapping in the present context simply means placing.

 
  Another example of a polyhedric configuration is shown in Figure 12.2/ This configuration is
obtained using the same procedure as described previously. However, in this case, a different
face-object is used for mapping. The new face-object is shown in Figure 12.2e and the boundaries
of one of the faces of the icosahedron on which the face-object is mapped are shown by dotted
lines in Figure 12.2/

 
  Further examples of polyhedric configurations that are obtained by face mapping are shown in
Figure 12.3. The configurations shown in Figures 12.3/z—d are obtained by mapping
different face-objects onto five faces of an icosahedron. The point illustrated by these
configurations is that face-objects are not limited to simple primary patterns and one is free
to choose any required pattern for mapping. The polyhedric configuration shown in
Figure

 
  12.3c illustrates the fact that a face-object need not necessarily ‘‘match’’ the boundaries of the
faces onto which it is mapped. Indeed, in general, a faceobject may only partially ‘‘fill’’ a face or
may extend beyond a face. The point illustrated by Figure 12.3 d is that a polyhedric
configuration may involve more than one type of face-object. In the configuration of Figure
12.3d, three faces have a face-object with a uniform pattern and two faces have a faceobject with
openings that create a ‘‘daisy window’’ effect.

 
  Figure 12.3e shows a polyhedric configuration that is obtained by mapping a face-object onto
three neighboring faces of a dodecahedron. These faces are shown by thick lines on a small sketch
at the top left comer of the figure. The face-object has a pentagonal boundary with internal
hexagonal subdivisions. The polyhedric configuration of Figure 12.3/ is obtained by mapping
face-objects onto five faces of a cuboctahedron. These faces are shown by thick lines
on a small sketch at the top left comer of the figure. A new situation is encountered
here in that the faces are of different types. Namely, there are four triangular faces
and one square face. This, however, does not create any problem because one can use
different face-objects for different types of faces, as required. The face-objects used for the
polyhedric configuration of Figure 12.3/are a square-shaped face-object for the top
face and a triangular face-object for the four side faces. It is to be noted, however,
that the triangular face-object used does not fill the side faces. This fact is indicated
in Figure 12.3/ where the actual boundaries of the side faces are shown by dotted
lines.


 
  The polyhedric configurations shown in Figures 12.2 and 12.3 are samples of a wide variety of
configurations that may be created by mapping different face-objects onto the faces of polyhedra.
These polyhedric configurations constitute an important class of structural forms. In
addition, they provide the bases for the creation of geodesic forms, as will be discussed
later.

 
  MAPPING ON EDGES OF POLYHEDRA

 
  The constitution of a polyhedron may be perceived in different ways. A tetrahedron, for
example, may be regarded as a solid body with four faces, six edges, and four vertices.
Alternatively, it may be regarded as a ‘‘stick arrangement’’ consisting of six line segments (sticks)
that meet at the vertices. With this new way of visualizing a tetrahedron, one can again
recognize four faces, six edges, and four vertices. Another way of perceiving a tetrahedron is to
think of it as a basis for mapping. Thus the tetrahedron is regarded as a ‘‘geometric
jig’’ that has four faces, six edges, and four vertices and is used for the positioning of
mapping objects. This way of perceiving a polyhedron is helpful in visualizing the
process of mapping face-objects as described in the previous section. This point of
view is also useful for visualizing the mapping of objects on the edges of polyhedra.
Mapping on the edges of polyhedra is the production mechanism for a major class of
polyhedric configurations. Examples of this kind of configuration are shown in Figure
12.4.
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  Figure 12.4 Mapping on edges of polyhedra.

 
  Figure 12.4c shows a polyhedric configuration that is obtained by mapping (placing) a space
truss configuration on the edges of a tetrahedron. A configuration that is used for mapping on
the edges of a polyhedron is referred to as an edge-object. The edge-object in the example under
consideration is shown in Figure 12.4/z. Also, the edges of the tetrahedron with the
edge-object mapped on one of them is shown in Figure 12.4Z>. In this example the
ends of the edgeobject are shaped such that when it is mapped on the edges of the
tetrahedron the ends match with one another at the vertices. Figure 12.4// shows a
polyhedric configuration that is obtained by mapping a space truss configuration on the
edges of an octahedron. The ends of the edge-object are again suitably shaped such
that they match with one another after mapping. Figure 12.4e illustrates the fact
that the mapping of an edge-object need not necessarily involve all the edges of a
polyhedron. In the case of the polyhedric configuration of Figure 12.4e, the edge-object is
mapped on eight edges of an octahedron. In Figure 12 Af an icosahedron has been

used as the basis for mapping. The edgeobject is again a space truss with its ends
suitably shaped. The same edge-object is used to produce the polyhedric configuration
of Figure 12.4g. In this case a group of 10 edges of an icosahedron is used for the
operation.

 
  The pioneering work of Gabriel involves a number of examples of polyhedric configurations of
the type described above.2,3

 
  MAPPING ON VERTICES OF POLYHEDRA

 
  The idea of mapping objects on the vertices of polyhedra is a natural extension of the processes
of mapping objects on the faces and edges of polyhedra. Examples of polyhedric configurations
that are obtained by mapping objects on the vertices of polyhedra are shown in Figure
12.5.

 
  Figure 12.5a shows a polyhedric configuration that is produced by mapping (placing) a
star-like object on the vertices of a tetrahedron. In this figure the dotted lines indicate the
positions of the edges of the tetrahedron. A configuration that is used for mapping on the
vertices of a polyhedron is referred to as a vertex-object. The vertex-object used for the creation
of the polyhedric configuration of Figure 12 .Sa is shown in Figure 12.5&. A similar operation is
performed to produce the configuration of Figure 12.5 J using an icosahedron as the basis. The
vertex-object is shown in Figure 12.5c.

 
  Figure 12.5e shows a polyhedric configuration that is obtained by mapping the vertex-object of
Figure 12.5/on the vertices of a tetrahedron. This vertexobject has an interesting effect. Namely,
it creates end bases for the edges of the tetrahedron. The facets of the vertex-object that
create the end bases are shown shaded in Figure 12.5f and the significance of these end
bases becomes clear in relation to the polyhedric configuration of Figure 12.5g. This
configuration is obtained by a combination of vertex mapping and edge mapping. To
elaborate, a smaller version of the vertex-object of Figure 12.5/is mapped on the vertices of
a tetrahedron. This is followed by mapping the space truss configuration of Figure
12.5h on the edges of the tetrahedron. The scale and position of this edge-object are
chosen such that the ends of the space trusses fit the triangular bases created by the
vertex-object. A similar procedure is followed in producing the polyhedric configuration
of Figures 12.Si xn&j. In this case an octahedron has been used as the basis for the
operation.


 
  The technique employed to create the polyhedric configurations of Figures 12.5g and/ can be of
value in some practical applications. The technique provides an alternative way of
dealing with the ‘‘end matching’’ problem. Thus, instead of shaping the ends of the
edge-object for matching at the vertices, the vertex-object is designed to act as a connecting
medium. This will result in a simpler edge-object because it only requires straightforward
ends.
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Figure 12.5 Mapping on vertices of polyhedra.
 


  Another point that is illustrated by Figures 12.5g andy is worth highlighting. Namely, a
polyhedric configuration may involve a combination of edge and vertex mappings. Indeed, in
general, there is no restriction regarding the mixing of different types of mappings
and any combination of face, edge, and vertex mappings may be used without any
problem.

 
  GEODESIC CONFIGURATIONS

 
  The configuration shown in Figure 12.6a is obtained by projecting the configuration of Figure
12.2 onto the surface of a sphere. The sphere is concentric with the icosahedron on which the
configuration of Figure 12.2d is based.
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  Figure 12.6 Some geodesic forms.

 
  This common center of the sphere and icosahedron is also chosen as the center of
projection. A polyhedric configuration of the type shown in Figure 12.6a is referred to as a
geodesic form or geodesic configuration. The same procedure is used to produce the
geodesic configurations shown in Figures 12.6b-d. These configurations are obtained
using the polyhedric configurations of Figures 12.2f and 12.3£ and c as the bases for
projection.


 
  The surface on which a geodesic form is produced need not necessarily be spherical.
Indeed, a variety of different surfaces such as ellipsoids and paraboloids may be used
for the creation of geodesic forms. Also, the type of projection need not necessarily
be central and other kinds of projections, such as parallel projection, may be used
instead.

 
  Figure 12.6e shows a geodesic form that is obtained by projecting the poly-
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Figure 12.7 Some double-layer polyhedric configurations.
 


  hedric configuration of Figure 12.2/ onto an ellipsoidal surface. A different process is involved
in producing the configuration shown in Figure 12.6/ This is obtained by stretching the
configuration of Figure 12.6b in one direction.

 
  The configuration shown in Figure 12.6/illustrates a point of general importance. Namely, any
polyhedric configuration may be subjected to modifications and alterations to suit a particular
application. In other words, there is no ‘‘inherent’’ final stage in the processing of a
polyhedric configuration. Like a lump of steel in the hands of a blacksmith, a polyhedric
configuration may be worked, in as many stages as required, to turn it into a desired
shape.

 
  A geodesic form may involve two or more layers. For example, the geodesic configuration shown
in Figure 12 .lb has two layers of elements that are interconnected together by intermediate web
elements. This double-layer geodesic form is based on the configuration shown in Figure 12.7/z.
This is a polyhedric configuration that is obtained by mapping (placing) a double-layer
face-object onto five faces of an icosahedron. The geodesic form of Figure 12.1 b is
obtained by projecting the two layers of the configuration of Figure 12.7/z onto two
concentric spheres. A similar procedure is used in obtaining the double-layer geodesic
forms of Figures 12.Id and/from the configurations shown in Figures 12.7c and e,
respectively.


 
  The projection stage in the creation of a geodesic form involves a relatively simple
operation. This is true for projection on a single surface as well as projection on two
or more surfaces. The reason for the simplicity of operation is that projection is a
straightforward concept and can easily be dealt with through a standard computer-based
routine.4

 
  An abundance of structures have been constructed all over the world using various forms of
geodesic configurations. These begin with the pioneering work of R. Buckminster Fuller and
include many impressive examples.5,6

 
  PROCESSING OF POLYHEDRIC CONFIGURATIONS

 
  The processing of polyhedric configurations in precomputer days was an extremely
difficult task. In spite of this, a number of gifted designers managed to deal with the
problem and create many beautiful structures based on polyhedric configurations.
The constraint of the processing difficulties, however, did not allow the designers to
take full advantage of the whole spectrum of possibilities and their scope remained
rather limited. Even today, the processing of polyhedric configurations is mainly carried
out using computer programs that lack generality and have many limitations and
shortcomings.

 
  In contrast, the conceptual methodology that will be presented in this chapter, combined with
suitable computer software such as Formian, provides a means for dealing with the processing of
any kind of polyhedric configuration with relative ease.

 
  One key factor in dealing with the processing of polyhedric configurations is the ability to
generate face-objects, edge-objects, and vertex-objects in a convenient manner. The creation of
these objects in Formian can be carried out using the concepts of formex algebra. The algebra
works through concepts that effect movement, propagation, deformation, and curtailment of
forms (Figure 12.8).1,7

 
  PLATONIC AND ARCHIMEDEAN POLYHEDRA

 
  In this chapter the use of polyhedra in the creation of structural forms is discussed in terms of
Platonic and Archimedean polyhedra. There are five Platonic polyhedra, whose views are shown
in Figure 12.9. These five polyhedra

 
  Formex algebra includes:
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  concepts that allow movement of forms

 
  G=verad(0,0) | E

 
  concepts that allow propagation of forms


 
  G=lamid(5,5/2)|E

 
  concepts that allow deformation of forms G=bb(l,3/2)|bp(l,9)[E \

 
  Figure 12.8 Basic concepts of formex algebra.

 
  were known to the ancient world before Plato and the designation ‘‘Platonic’’ is due to the
fact that Plato paid special attention to these polyhedra.8 Each one of the Platonic
polyhedra is a convex body with faces that are congruent regular polygons of the same
type.

 
  An Archimedean polyhedron is also a convex body with faces that are regular polygons.
However, unlike the Platonic polyhedra, the faces of an Archimedean polyhedron are not all
of the same type. There are 15 Archimedean polyhedra, whose views are shown in
Figure 12.9. Each of these polyhedra has either two or three different types of faces.
Archimedean polyhedra were discovered in ancient Greece and were described by Archimedes.
However, the writings of Archimedes in this regard together with the knowledge of these
polyhedra were lost and it was not until the Renaissance that they were gradually
rediscovered.8

 
  The Platonic and Archimedean polyhedra are closely related and a family tree indicating the
relationships between them is shown in Figure 12.10. This
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  PLATONIC POLYHEDRA

 
  Pl: Tetrahedron P2: Cube P3: Octahedron P4: Dodeca

 
  PS: Icosa

 
  hedron hedron
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  ARCHIMEDEAN POLYHEDRA

 
  P6: Truncated P7: Cubocta-

 
  Tetrahedron

 
  hedron

 
  P8: Truncated P9: Truncated

 
  Cube Octahedron

 
  PIO: Small Rhombicub-octahedron

 
  Pl 1: Great Rhombicub-octahedron

 
  P12: Icosido-decahedron

 
  P13: Truncated

 
  Dodecahedron


 
  P14: Truncated

 
  Icosahedron

 
  P15: Left

 
  Snub Cube

 
  P16: Right

 
  Snub Cube

 
  P17: Small Rhombicosi-dodecahedron

 
  P18: Great Rhombicosi-dodecahedron

 
  P19:Left Snub Dodecahedron

 
  P20: Right Snub Dodecahedron

 
  Figure 12.9 Platonic and Archimedean polyhedra.

 
  is a modified version of a family tree produced by Motro.5 It is seen from Figure
12.10 that the tetrahedron is the ‘‘mother polyhedron’’ and all the other Platonic and
Archimedean polyhedra may be derived from it. This may be done through five basic
transformations, which are briefly described in Figure 12.11. These transformations are
referred to as truncation, canting, snubbing, duality, and planing. Detailed general
descriptions of Platonic and Archimedean polyhedra may be found in many excellent
publications.8'10

 
  POLYHEDRON CODES AND P-NAMES

 
  A numeric code is required for identification of the Platonic and Archimedean polyhedra in
computer-based procedures for the processing of polyhedric configurations. This numeric code is
chosen to consist of the integer numbers 1 to 20, associated with the Platonic and Archimedean
polyhedra in the order
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  Figure 12.10 Family tree of Platonic and Archimedean polyhedra.

 
  Snub Cubes

 
  Snub Dodecahedra

 
  Cuboctahedron

 
  Icosidodecahedron

 
  Great

 
  CANTING + PLANING

 
  TRUNCATION + PLANING

 
  Small

 
  Rhombicuboctahedron


 
  Great

 
  CANTING + PLANING

 
  TRUNCATION + PLANING

 
  Small

 
  Rhombicosidodecahedron

 
  they appear in Figure 12.9. These identity numbers are referred to as polyhedron codes. For
instance, the polyhedron codes for the tetrahedron, cuboctahedron, and icosidodecahedron are 1,
7, and 12, respectively. A polyhedron code, preceded by the letter P, is used as an
alternative name for the polyhedron. A name of this form is referred to as a P-name. The
P-names of the Platonic and Archimedean polyhedra are shown in Figure 12.9 together
with the traditional names of the polyhedra. In the following material the P-names
are sometimes used by themselves or together with the traditional names to identify
polyhedra.
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  Canting of Cube

 
  Truncation: Each edge is divided into a central segment and two end segments and the vertex
pieces obtained by connecting the division points are cut off, as shown.

 
  Canting: Each edge is divided into two equal segments and the vertex pieces obtained by
connecting the division points are cut off, as shown.

 
  Snubbing of Cube

 
  Dual of Cube

 
  Snubbing: A smaller rotated version of each face is placed centrally on the face
(shown shaded) and the regions between the edges of the new faces are trimmed off by
faceting.

 
  Duality: The center of each face is regarded as the vertex of another polyhedron (or each
vertex is regarded as the center of a face of a polyhedron).

 
  Planing of Canted Cuboctahedron

 
  Planing: The term ‘planing’ implies ‘planing down’ (scraping off) the surface of a
polyhedron. For instance, in producing the small rhombicuboctahedron, a cuboctahedron is
subjected to canting, as shown above. This will give rise to a polyhedron that is similar to
the small rhombicuboctahedron but in which the faces that are shown shaded are
rectangular rather than square. To overcome the problem, the shaded rectangular faces
together with the triangular faces are planed down to a depth that equalizes all the
edges.


 
  Figure 12.11 Truncation, canting, snubbing, duality, and planing.

 
  PROPERTIES OF PLATONIC AND ARCHIMEDEAN POLYHEDRA

 
     

 

The basic particulars of the Platonic and Archimedean polyhedra are given in
Table 12.1. The first column of this table gives the names of the polyhedra
together with their P-names. The second column of Table 12.1 fists the numbers
of faces, edges, and vertices. For instance, these items for a tetrahedron are
given as
 


  F3:4

 
  F:6
I/: 4

 
     

 

Here, the letter F stands for face and the digit that follows F indicates the
number of sides of the face. Also, the letter E stands for edge and the letter
V  stands for vertex. The items given in the second column of Table 12.1 for
a tetrahedron indicate that it has four triangular faces, six edges, and four
vertices. Also, the information given in the second column of the table for P7
(cuboctahedron) indicates that it has 8 triangular faces, 6 square faces, 24
edges, and 12 vertices.

 
The third column of Table 12.1 lists the radii of inspheres of the Platonic and
Archimedean polyhedra. An insphere is a sphere that is tangent to all the
faces of the same type of a polyhedron. A Platonic polyhedron has only one
insphere. An Archimedean polyhedron, on the other hand, has either two or
three inspheres, depending on whether it has two or three different types of
faces. The radius of insphere for an Archimedean polyhedron given in the third
column of Table 12.1 corresponds to the smallest insphere, that is, the insphere
     
that is tangent to the largest faces. Also included at the end of Table 12.1 are
two general formulas for evaluation of the radii of inspheres for Platonic and
Archimedean polyhedra. Each value in the third column of Table 12.1 is given
in terms of a parameter L that represents the edge length of the polyhedron.

 
The parameter L, representing the edge length, also appears in columns 4 and 5
of Table 12.1. Columns 4 and 5 list the radii of interspheres and cir-cumspheres
of the Platonic and Archimedean polyhedra. An intersphere is a sphere that is
tangent to all the edges of a polyhedron and a circumsphere is a sphere that
passes through all the vertices of a polyhedron. Each Platonic or Archimedean
polyhedron has one intersphere and one circumsphere.

 
The last column of Table 12.1 lists the dihedral angles of the Platonic and
Archimedean polyhedra. A dihedral angle is the angle between two faces of a
polyhedron that share an edge. For any Platonic polyhedron, all the dihedral
angles are equal. In contrast, an Archimedean polyhedron may have up to
three  different  dihedral  angles,  as  shown  in  the  last  column  of  Table  12.1.
For an Archimedean polyhedron that has more than one dihedral angle, the
faces that correspond to each dihedral angle are specified by the numbers of
their sides given in square brackets. For example, in the case of P6 (truncated
tetrahedron), the first dihedral angle is preceded by [6—6] indicating that the
angle is between two hexagonal faces and the second dihedral angle is preceded
by [6–3] indicating that the angle is between a hexagonal face and a triangular
face.

 
The properties of the Platonic and Archimedean polyhedra, as given in Table
12.1, are incorporated into the part of Formian that deals with the processing
of polyhedric configurations. The information is built into Formian in terms
of the formulas given in Table 12.1. The use of formulas will allow the full
available accuracy of the computer to be utilized. High accuracy of the basic
polyhedral data is essential in many situations. This is the case, for instance,
when  dealing  with  complex  polyhedric  configurations  that  consist  of  many
thousands of elements, in particular, when the generated geometric details are
to be used as a basis for other operations, such as structural analysis.
     

 
In regard to the accuracy of the entries in Table 12.1, it should be noted that
for the snub polyhedra (P15, P16, P19, and P20), the accuracy of the entries
for radii of insphere, intersphere, and circumsphere depends on the accuracy of
a parameter k. The value of this parameter in Table 12.1 is given accurate to
nine decimal places. The values of the dihedral angles for the snub polyhedra
in Table 12.1 are also given accurate to nine decimal places.
 


  POLYHEDRAL COORDINATE SYSTEMS

 
     

 

A  view  of  a  polyhedric  configuration  is  shown  in  Figure  12.12/z.  The
configuration is obtained by mapping a triangulated pattern onto the faces of
a tetrahedron. When a computer-aided approach is used in processing such a
configuration, the internal computer representation of the configuration will be
a numerical model that describes the configuration in terms of the coordinates
of its nodal points. It is therefore necessary to have a coordinate system with
respect  to  which  the  nodal  coordinates  are  specified.  The  most  convenient
approach in this regard is to establish a standard coordinate system for the
tetrahedron and to use it for all polyhedric configurations that are based on a
tetrahedron.

 
The chosen standard coordinate system for the tetrahedron is the right- handed
Cartesian coordinate system that is shown as X—Y—Z in Figure 12.12a. Figure
12.12# illustrates the conventions used in specifying this standard coordinate
system. The origin of the coordinate system is at the center of the polyhedron.
This point is indicated by a large dot. The points where the X, Y, and Z axes
intersect the body of the polyhedron are referred to as the X-point, Y- point,
and Z-point, respectively. The X-point is at the center of the circle with an X
inside it. The T-point is indicated by a little circle and the Y axis is shown as
an arrow emanating from the K-point. Similarly, the Z-point is indicated by a
tittle circle and the Z axis is shown as an arrow emanating from the Z-point.
     

 
The standard coordinate system for the tetrahedron is shown again in Figure
12.13 together with the standard coordinate systems for all the other Platonic
and  Archimedean  polyhedra.  Some  of  the  polyhedra  in  this  figure  have
additional sketches shown near them. The tetrahedron, for example, has such
a sketch. These sketches provide information about the precise positions of
the X-points and are included whenever the positions of the X-points are not
obvious from the main figures.
 


  A view of a set of cardboard models of Platonic and Archimedean polyhe-

 
  TABLE 12.1 Properties of Platonic and Archimedean Polyhedra

 

  

 
 
	

	              
 


	              
 


	               
	
	
	
	
	


	
Polyhedron       
 

	 
Faces, 

 
Edges, 
Vertices
 

	 
Radius of 
Insphere         
 

	 
Radius of 
Intersphere        
 

	 
Radius of 
Circumsphere     
 

	 
Dihedral Angle         
 


	
Pl:
Tetrahedron     
 

	 
F3:4 

 
E: 
6 

 
V:4      
 

	 
12 
(0.204124145 
Z)                 
 

	 
4 (0.353553390 
Z)                    
 

	 
     
4 
(0.612372435 
Z)
 

   
         
	 
/ 1 X acos(y) 
(70.5287794°)          
 


	
P2: Cube         
 

	 
F4: 
6 

 
E: 
12 

 
V: 
8         
 

	 
L 2               
 

	 
Z 

 
■Ji 
(0.707106781 Z)  
 

	 
—Z 2
(0.866025403 Z)  
 

	 
90°                        
 



	
P3:
Octahedron      
 

	 
F3: 
8 

 
E: 
12 

 
V: 
6         
 

	 
_L_ 

 
JU 

 
(0.408248290 
L)                
 

	 
L 2                 
 

	 
Z 

 
■Ji 
(0.707106781 Z)  
 

	 
/-lx acos(—) 

 
(109.471221°)          
 


	
P4:
Dodecahedron   
 

	 
F5: 
12 

 
E: 
30 

 
V: 
20        
 

	 
725+1175 
2710 
(1.11351636 
Z)                 
 

	 
3 + 75 T la 4 
(1.30901699 Z)   
 

	 
718
+
65/5
r       

 

4 
(1.40125854 
Z)
 

           
  
	 
acos(-) (116.565051°)
 


	
P5:
Icosahedron      
 

	 
F3:20 

 
E: 
30 

 
V: 
12        
 

	 
3+ 473 
(0.755761314 
Z)                 
 

	 
l + 75z 4 
(0.809016994 Z)  
 

	 
     
710 
+ 
25/5 
r 
‘‘"la
 


4

 
(0.951056516 Z)
 

  
	 
/-75 k acos(—) 
(138.189685°)          
 



	
P6: Truncated

 
Tetrahedron     
 

	 
F3:4 
F6:4 
E: 
18 
V: 
12        
 

	 
Z 4 
(0.612372435 
Z)                 
 

	 
372 _ 4 
(1.06066017 Z)   
 

	 
722z 4 
(1.17260394 Z)   
 

	 
[6–6] acos( 1/3) 

 
(70.5287794°) 

 
[6–3] acos(-l/3) 
(109.471221°)          
 


	
P7:
Cuboctahedron 
 

	 
F3: 
8 

 
F4: 
6 

 
E:24 

 
V: 
12        
 

	 
L 

 
■Ji 
(0.707106781 
Z)                 
 

	 
     
2 
(0.866025403 
Z)
 

   
         
	 
Z                     
 

	 
acos(-y) 
(125.264390°)          
 


	
PS: Truncated
Cube               
 

	 
F3: 
8 
F8: 
6 
E: 
36 

 
V:24     
 

	 
l+£ 2 
(1.20710678 
Z)                 
 

	 
2+-J2 r 


 
—JL

 
2

 
(1.70710678 Z)   
 

	 
77 + 472 T la 

 
2 

 
(1.77882365 Z)   
 

	 
[8–8] 90° 

 
[8–3] acos(-1/5/3) 

 
(125.264390°)          
 


	
P9: Truncated
Octahedron      
 

	 
F4: 
6 

 
F6: 
8 

 
E: 
36 

 
V: 
24        
 

	 
Z 2 
(1.22474487 
Z)                 
 

	 
3-l 2             
 

	 
TiOz 2 
(1.58113883 Z)   
 

	 
[6–6] acos(-l/3) 

 
(109.471221°) 

 
[6–4] acos(-1/5/3) 

 
(125.264390°)          
 



	
PIO:
Small

 

Rhombicub-octahedron
 

 
 
	 
F3: 
8 

 
F4: 
18 

 
E: 
48 

 
V: 
24        
 

	 
i+z 2 
(1.20710678 
Z)                 
 

	 
J1 + 2-J2 r 

 
…. ■ 2z 

 
2 

 
(1.30656297 Z)   
 

	 
75
+
25/2
r       

 

2 
(1.39896633 
Z)
 

           
  
	 
[4–4] 135° 

 
[4–3] acos(-5/6/3) 

 
(144.735610°)          
 


	
PH: Great
Rhombicub-octahedron 
 

	 
F4: 
12 

 
F6: 
8 

 
F8: 
6 

 
E: 
72 

 
V: 
48        
 

	 
1+2–72 r jlz 
2 (1.91421356 
Z)                 
 

	 
J12 + &J2 r 
' la 2 
(2.26303344 Z)   
 

	 
713
+
65/2
T      

 

2 
(2.31761091 
Z)
 

           
  
	 
[8–6] acos(-l/x/J) 

 
(125.264390°) 

 
[8–4] 135° 

 
[6–4] acos(-5/6/3) 

 
(144.735610°)          
 



	
Pll:
Icosido-decahedron 
 

	 
F3: 
20 

 
F5: 
12 

 
E: 
60 

 
V: 
30        
 

	 
J5+245 t ■Js 
(1.37638192 
Z)                 
 

	 
75+2–75 T 2 
(1.53884177 Z)   
 

	 
1 + 5Z 2 
(1.61803399 Z)   
 

	 
     
(-75 
+ 
275 
\ 
acosl 
,——I 

 
k 
5/15 
' 
(142.622632°)
 

 
   

	
P13:
Truncated

 
Dodecahedron   
 

	 
F3: 
20 

 
F10:12 

 
E: 
90 

 
V: 
60        
 

	 
J50 + 22J5 
T la 4 
(2.48989829 
Z)                 
 

	 
5 + 35/5 _ 

 

4 
(2.92705098 
Z)
 

           
  
	 
774 + 305/5 T 

 

4 
(2.96944902 
Z)
 

           
  
	 
[10–10] acos(-1/5/5) 
(116.565051°) 

 
[10–3] acos( ) 

 
(142.622632°)          
 


	              
 


	              
 


	              
 



	

	              
 


	              
 


	              
 






  TABLE 12.1 Properties of Platonic and Archimedean Polyhedra (continued)
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Some General Relations
 


  [image: PIC] (l)Rc=7/?t2+Z2/4 (2)Ri=Rc2-L2/4 Q)Rip=Rc2 -rp2 (4) Rip = yj R12 -bp2 (5) L =
2'Jrc2-Ri2 (6) a - 2 asin(Z/2Rc) (7) a = 2 acos(A//7?c) (8) a = 2 atan(Z/2Rt) The above
relations are applicable to every Platonic and Archimedean polyhedron, where: ■ Z is the
edge length ■ a is the angle subtended by an edge at the center of the polyhedron ■
Rc is the radius of the circumsphere ■ Rt is the radius of the intersphere ■ Rip is
the radius of an insphere, that is, a sphere which is tangent to all the faces of type p
■ rp is the distance between the center and a comer of a face of type p ■ bp is the
distance between the center and the midpoint of a side of a face of type p ■ The radius
of insphere for an Archimedean polyhedron given in the third column of the table
corresponds to the smallest insphere, that is, the insphere which is tangent to the largest
faces.
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  Figure 12.12 A coordinate system for tetrahedron.

 
  dra is shown in Figure 12.14. The models of the Platonic polyhedra are placed in the front row
and those of the Archimedean polyhedra are arranged in the three back rows. The X-point
and Z-point for each model are situated at the centers of the circular spots on the
model. The darker spot that appears in front of the model indicates the position of the
X-point and the lighter spot that appears on the top indicates the position of the
Z-point.


 
  From the point of view of compatibility of the coordinate systems, as given in Figure 12.13, the
Platonic and Archimedean polyhedra may be divided into three groups. First, there is a
group consisting of two polyhedra, namely, the tetrahedron and truncated tetrahedron.
These two polyhedra occupy the central part of the family tree in Figure 12.10. The
coordinate systems for these polyhedra are compatible with each other. By the term
compatible, in this context, it is meant that when a truncated tetrahedron is produced by
cutting off the comers of a tetrahedron, then the original coordinate system of the
tetrahedron will become the coordinate system for the truncated tetrahedron without any
change.

 
  The second family of polyhedra with compatible coordinate systems consists of nine polyhedra.
These are the polyhedra that can be derived from the cube or octahedron and appear to the left
of the center in the family tree of Figure 12.10. The third family of polyhedra with compatible
coordinate systems again has nine members. These are the polyhedra that can be derived from
the dodecahedron or icosahedron and appear to the right of the center in the family tree of
Figure 12.10.

 
  The standard coordinate systems shown in Figure 12.13 are used in Formian as the basis for
formulation of the transformations necessary for the creation of numerical models representing
polyhedric configurations.

 
  IDENTITY NUMBERS AND BASELINES FOR FACES OF POLYHEDRA

 
  Figure 12.15e shows a polyhedric configuration that is obtained by mapping the face-object of
Figure 12.15a onto the top five faces of an icosahedron. If the face-object for mapping onto the
faces is chosen to be that of Figure 12.15b, then the result will be the polyhedric configuration
shown in Figure 12.15/ In the case of the polyhedric configuration of Figure 12.15g, the
faceobject of Figure 12.15/7 is mapped onto one of the top faces of an icosahedron and the
face-object of Figure 12.15c is mapped onto the remaining four faces. The polyhedric
configuration of Figure 12.15b is obtained by a similar procedure using the face-objects shown in
Figures 12.15b and d.

 
  The point that is meant to be illustrated by the above examples is that in most practical cases
a face-object is mapped onto a selected number of the faces rather than all the faces of a
polyhedron. In the examples of Figures 12.15 e-h, the top five faces of an icosahedron have
been selected for mapping. Furthermore, in the examples of Figures 12.15g and b, one
of the faces has been selected for mapping of a face-object and the other four faces

have been selected for mapping of a different face-object. In order to select faces, it is
necessary to have a means of identifying the faces of a polyhedron. This is achieved by
associating an identity number with each face of a polyhedron, as will be described
later.

 
  Another problem that has to be addressed is illustrated in terms of the polyhedric
configurations shown in Figures 12.15/ and/. Figure 12.15/ shows a polyhedric configuration that
is obtained by mapping the face-object of Figure 12.15c onto the top five faces of an
icosahedron. However, the orientation of the face-object as mapped onto the faces in
Figure 12.15/ is different from the orientation of the face-object as it appears in Figure
12.15c. The polyhedric configuration shown in Figure 12.15/ has the face-object of
Figure 12.15/7 mapped onto three of the faces and the face-object of Figure 12.15c
mapped onto two of the faces with different orientations. These examples show that,
in addition to the requirement of an identity number for each face of a polyhedron,
it is also necessary to associate a frame of reference with the face. This would then
allow the required position of a face-object for mapping onto the face to be specified
unambiguously.

 
  A frame of reference for a face of a polyhedron is established by assigning the status of baseline
to one of the sides of the face and by associating the letters A and B to the end points of this
baseline, as shown in Figures 12.16a and b. The end of the baseline that is associated with the
letter A is referred to as the 4-end and the end that is associated with the letter B is
referred to as the 2?-end. The baseline of a face is indicated by a vector. The vector is
placed near the baseline with its arrowhead showing the direction from the A-end to
the 5-end. In addition, the identity number of each face is placed near the baseline
vector.

 
  The baseline vectors and the face identity numbers for the top part of an icosahedron are
shown in Figure 12.16a. The allocation of identity numbers and the selection of baselines for the
faces of polyhedra are governed by a number of rules, which are described in the Appendix. Also,
the face identity numbers together with the baselines for a group of six polyhedra are shown in
Figure 12.17. This group contains all the Platonic polyhedra and one Archimedean polyhedron,
namely, the cuboctahedron.
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  P4: Dodecahedron

 
  P5:Icosahedron

 
  P6: Truncated


 
  Tetrahedron

 
  P8: Truncated Cube

 
  P9: Truncated
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  PIO: Small Rhombi-cuboctahedron

 
  Pl 1: Great Rhombi-cuboctahedron

 
  Figure 12.13 (part 1) Coordinate systems of Platonic and Archimedean polyhedra.

 
  [image: PIC]

 
  P12: Icosido-Pl3: Truncated Pl4: Truncated

 
  decahedron Dodecahedron Icosahedron

 
  Pl5: Left Snub Cube

 
  Pl6: Right Snub Cube

 
  Pl7: Small Rhomb-

 
  icosidodecahedron

 
  [image: PIC] [image: PIC]

 
  Pl8: Great Rhomb-icosidodecahedron

 
  Pl9: Left Snub Dodecahedron

 
  P20: Right Snub Dodecahedron
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  Figure 12.13 (part 2) Coordinate systems of Platonic and Archimedean polyhedra.
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  Figure 12.14 Models of Platonic and Archimedean polyhedra with the darker front spots
indicating the X-points and the lighter top spots indicating the Z-points.
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  Figure 12.15 Examples of face mapping.
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  Figure 12.16 Face-mapping process.

 
  MAPPING OF FACE-OBJECTS

 
  The process of mapping a face-object onto a face of a polyhedron involves the following
steps:

 

     

 
	
1. 

	A face-object is specified by a formex relative to the standard X-Y-Z  coordinate
system of the polyhedron.

     
	
2. 

	Two points of the face-object are specified by their X-Y-Z coordinates. These points
are referred to as the A -point and B-point. The role of the /(-point and B-point is
to provide information regarding the required
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  Figure 12.17 Identity numbers and baselines for the faces of a selection of polyhedra.

 
     

 

position, orientation, and size of the face-object in its final mapped position on
the face of the polyhedron, as exemplified in Figures 12.16c-f.
 


     

 
	
3. 

	The face-object is scaled such that the distance between the A-point and 5-point is
equal to the edge length of the polyhedron. In this scaling process, the same scale
factor is used in the X, Y, and Z directions.

     
	
4. 

	The mapping plane is determined. This is the plane of the face-object that is to
coincide with the face of the polyhedron. If the line containing the A-point and
B-point of the face-object is parallel to (or coincident with) the X  axis, then the
mapping plane is the plane that contains the A-point and 5-point and is parallel to
(or coincident with) the X-Y plane. This simple case is applicable in most practical
situations and is the only case considered here.

     
	
5. 

	The face-object is subjected to a sequence of rigid-body movements (translations and
rotations) such that the following conditions are satisfied:


     

	The //-point of the face-object is coincident with the ?/-end of the baseline of the
face.

     
	The B-point of the face-object is coincident with the B-end of the baseline of the
face.

     
	The mapping plane is coincident with the face.


     

 

° The direction that was initially the positive Z direction of the faceobject is
pointing to the outside of the polyhedron.
 


  Two examples of the face-mapping process are shown in Figure 12.16. Figure 12.16c shows the
top part of an icosahedron with a face-object mapped onto five faces. The boundaries of these
faces are shown by dotted lines. The face-object is shown in Figure 12.16d with the line that
passes through the-point and B-point being parallel to the X axis. The mapping is achieved by
suitably scaling the face-object and then placing it on each face in a position where the /(-point
coincides with the /(-end of the basefine of the face and the B-point coincides with the B-end of
the baseline of the face.

 
  It is important to note that the //-point and B-point of the face-object need not necessarily be
actual points of the face-object. For example, in the case of the face-object in Figure 12.16d, the
//-point and B-point are outside the face-object altogether. The dotted lines here are included to
indicate the positions of the y4-point and B-point. These dotted lines are not supposed to be part
of the face-object.


 
  A second example of face mapping is shown in Figures 12.16e and/ The face-object in this
example is the same as that of the previous one. The only difference is in the positions of the
//-point and B-point. To be specific, the positions of the /(-point and B-point have crossed over
as well as being shifted. Consequently, the face-object has been turned around for
mapping.

 
  IDENTITY NUMBERS AND DIRECTIONS FOR EDGES OF POLYHEDRA

 
  The upper part of Figure 12.18/z shows a polyhedric configuration that is obtained by
mapping a truss configuration on the edges of an octahedron. The edge-object is shown in the
lower part of Figure 12.18a with the //-point and B-point being assumed to be on the X axis.
The mapping is carried out by placing a suitably scaled version of the edge-object on the edges of
the octahedron. For each edge, the edge-object is positioned such that the end points of the top
chord of the truss coincide with the end points of the edge and the plane of the truss passes
through the center of the octahedron. The angle of the inclined sides of the truss is chosen such
that, after mapping on the edges of the octahedron, the ends of the bottom chords of the trusses
meet without any gaps. The term miter angle is used to refer to the angle that will
allow the ends of the trusses to match after mapping. Figure 12.18b shows the result
of

 
  [image: PIC] [image: PIC] [image: PIC] [image: PIC] where L is the edge length of the polyhedron and Rc is the radius of its
circumsphere.

 
  * The ‘mitre angle’ is given by: asin(L/2Rc)

 
  Edge-object

 
  Miter Angle

 
  (c)

 
  Figure 12.18 Examples of edge mapping.

 
  mapping a Vierendeel-girder-type configuration on the edges of a dodecahedron. Also, the
result of mapping a truss-like configuration on the upper half of a cuboctahedron is shown in
Figure 12.18c.

 
  If the edge-object consists of a plane configuration and if this is to be mapped on the edges of a
Platonic or Archimedean polyhedron, then the miter angle may be obtained from the general
formula given at the right bottom corner of Figure 12.18.


 
  In order to carry out the mapping of an object on an edge of a polyhedron, it is necessary to
identify the edge on which the object is to be mapped and to estabfish a way of specifying the
position, orientation, and size of the object at its final mapped form. The identification of the
edges of a polyhedron is achieved by allocating an identity number to each edge, as exemplified
in Figure 12.18d for the upper half of a cuboctahedron. Also, each end of an edge
is
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  P4: Dodecahedron

 
  P5:Icosahedron

 
  Figure 12.19 Identity numbers, directions, and handles for edges and vertices of a selection of
polyhedra.

 
  P7: Cuboctahedron

 
  associated with a letter. One end is associated with the letter A and is referred to as the /4-end
and the other end is associated with the letter B and is referred to as the 5-end. The /Tends
and 5-ends for two of the edges of a cuboctahedron are shown in Figure 12.18d. The
convention is adopted that the positions of the /Tend and 5-end of an edge are indicated by
placing an arrowhead on the edge pointing from the /Tend to the 2?-end, as shown in
Figure 12.18*7. Thus the /Tend and 5-end effectively establish a ‘‘direction’’ for the
edge.

 
  The identity numbers of the edges together with the arrowheads indicating the /Tends and
5-ends for the Platonic polyhedra and a sample of an Archimedean polyhedron (namely, a
cuboctahedron) are shown in Figure 12.19. This figure also includes some information
relating to the vertices of the polyhedra, as will be discussed later. The allocation
of identity numbers to the edges as well as the choices of the/(-ends and 5-ends, as
shown in Figure 12.19, are governed by a number of rules, which are described in the
Appendix.

 
  MAPPING OF EDGE-OBJECTS

 
  The process of mapping an edge-object on an edge of a polyhedron involves the following
steps:

 
     

 
	
1. 

	An edge-object is specified by a formex relative to the standard X-Y-Z coordinate
system of the polyhedron.
     


	   
2. 

	Two points of the edge-object are specified by their X-Y-Z coordinates. These points
are referred to as the A -point and 5-point. The role of the /(-point and 5-point is
to provide information regarding the required position, orientation, and size of the
edge-object in its final mapped position, as illustrated in Figure 12.18.

     
	
3. 

	The edge-object is scaled such that the distance between the 24-point and 5-point is
equal to the edge length of the polyhedron. In this scaling process, the same scale
factor is used in the X, Y, and Z directions.

     
	
4. 

	The mapping plane is determined. This is the plane of the edge-object that is to
coincide with the plane that contains the edge and passes through the center of the
polyhedron. If the fine containing the A- point and B-point is parallel to (or coincident
with) the X  axis, then the mapping plane is the plane that contains the /(-point
and 5-point and is parallel to (or coincident with) the X-Z plane. This simple case is
applicable in most practical situations and is the only case considered here.

     
	
5. 

	The edge-object is subjected to a sequence of rigid-body movements (translations
and rotations) such that the following conditions are satisfied:


     
	The /(-point of the edge-object is coincident with the /(-end of the edge.

     
	The 5-point of the edge-object is coincident with the 5-end of the edge.

     
	The mapping plane is coincident with the plane that contains the edge and passes
through the center of the polyhedron.
     


	The direction that was initially the positive Z direction of the edgeobject is pointing
to the outside of the polyhedron.


  IDENTITY NUMBERS AND HANDLES FOR VERTICES

 
  OF POLYHEDRA

 
  Examples of mapping of objects on the vertices of polyhedra are shown in Figure 12.20. lb
begin with, as for the faces and edges, it is necessary to allocate an identity number and a frame
of reference to each vertex of a polyhedron.
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  B-point -—(To be placed at the B-end of the handle)

 
  Vertex-object

 
  A-point (To be placed at the A-end of the handle)

 
  (b)

 
  Vertex-object

 
  (To be placed at the B-end of the handle)

 
  A-point (To be placed at the A-end of the handle)

 
  (c)

 
  Figure 12.20 Examples of vertex mapping.

 
  Identity numbers for vertices in the upper half of a cuboctahedron are shown in Figure 12.20a.
The convention is adopted that a vertex identity number is shown in a circle placed at the vertex.
The frame of reference for a vertex is provided by selecting one of its edges to become a base
with respect to which vertex-objects may be mapped on the vertex. This edge is referred to as
the handle of the vertex. Also, the vertex end of the handle is referred to as the A- end and the
other end is referred to as the 5-end. The convention is adopted that the handle of a vertex is
indicated by placing a dot (referred to as a handle dot) at its Af-end, as shown in Figure
12.20#.

 
  The vertex identity numbers and handles for all the Platonic polyhedra and a sample of
an Archimedean polyhedron (cuboctahedron) are shown in Figure 12.19. The rules
governing the choices of identity numbers and handles for vertices are given in the
Appendix.

 
  MAPPING OF VERTEX-OBJECTS


 
  Figure 12.20£ shows the result of mapping a vertex-object on the vertices of the upper half of a
cuboctahedron. Another example of vertex mapping is shown in Figure 12.20c, where a
vertex-object is mapped on the vertices of a dodecahedron.

 
  With one important difference, which will be discussed below, the process of mapping a
vertex-object is identical to the procedure for mapping an edgeobject. To elaborate, if a
vertex-object is to be mapped on a vertex of a polyhedron, then the procedure followed will be as
though the vertex-object is an edge-object that is to be mapped on the edge which is the handle
of the vertex.

 
  The important difference between vertex mapping as compared with edge mapping (and face
mapping) is that, in some cases, a vertex-object is to be subjected to reflection in the mapping
process. To elaborate, the mapping of a face-object or an edge-object is always carried out
through a sequence of rigid-body movements (translations and rotations) and simple scaling.
This fact remains true for a vertex-object in most cases. However, for two Archimedean
polyhedra the process of mapping a vertex-object may require an additional operation of
reflection. These two polyhedra are Pll (great rhombicuboctahedron) and P18 (great
rhombicosidodecahedron) and the reason for the need for reflection in these cases is discussed in
the Appendix.

 
  POLYMATION FUNCTION

 
  The processes involved in mapping objects on the faces, edges, and vertices of polyhedra
are discussed in the previous sections. In Formian, these processes are carried out
through the polymation function. For example, a Formian instruction that creates a
formex representing the polyhedric configuration of Figure 12.20c may be written
as

 
  G = pol(3, 4, '[all]', 1, [0,0; 1,01)1 E

 
  where

 
     

	E is a formex representing the vertex-object.

     
	G is a formex representing the polyhedric configuration of Figure 12.20c.
     


	pol is an abbreviation for the name of the function, that is, polymation.

     
	The first item in parentheses is the operation code specifying the type of mapping to
be performed, where the integer 3 indicates mapping on vertices.

     
	The second item in parentheses is the polyhedron code specifying the
'Operation code' specifies the type of operation to be performed, namely, mapping
on faces, mapping on edges or mapping on vertices. The operation code is an integer
expression whose value is 1, 2 or 3 specifying mapping on faces, edges or vertices,
respectively. In the example shown, the integer 2 specifies mapping on edges.


     

 

'Polyhedron code' specifies the type of polyhedron to be used as the basis for
the operation. The polyhedron code is an integer expression whose value is in
the range 1 to 20 specifying one of the Platonic or Archimedean polyhedra. In
the example shown, the integer 7 indicates cuboctahedron.

 
'Radius specifier1 determines the size of the polyhedron by specifying the radius
of its circumsphere. The radius specifier is a numeric expression whose value is
a nonzero positive number. In the example shown, the radius is given as 10. It is
possible to specify different radii for different layers of the object to be used for
mapping. In this case, the radii are specified in terms of a formex expression.
 


  T

 
     

 

     
'Entity list' gives the list of face, edge or vertex numbers on which mapping is
to be performed. The entity list is a string expression whose value is a list of
items separated by commas. The items in the example shown are 1–7, 11 and
12, where 1–7 is equivalent to 1, 2, 3,4, 5, 6 and 7. It is possible to use 'all' as
an item implying all the faces, edges or vertices, as appropriate, listed in the
ascending order. An item may also be a negative integer, like -8, or a negative
parenthesised list, like -(6,12–15,9). A negative item has a cancelling effect

 
'Locator1 is a formex expression whose value specifies the coordinates of the
A-point and B-point of the object to be used for mapping. In the example
shown, 0,0 and 1,0 are the coordinates of the A-point and B-point of the object
respectively.
 


  Figure 1221 Polymation function.

 
  polyhedron to be used as the basis for mapping. The polyhedron code is the integer that
follows the letter P in the P-name of a polyhedron. The integer 4 in the example implies a
dodecahedron.

 
  The third item in parentheses is the entity list specifying the vertices on which mapping is to
be performed. The entity list as given in the example indicates all the vertices.

 
  The fourth item in parentheses is the radius specifier, which determines the size of the
polyhedron by specifying the radius of the circumsphere of the polyhedron.

 
  The last item in parentheses is the locator specifying the yl-point and B- point of the
vertex-object. In general, the /{-point and 5-point are to be specified by giving their X, Y, and Z
coordinates. However, if the third coordinates are not given, then it will be assumed that the Z
coordinates are equal to 0. In the example, the X and Y coordinates of the /4-point are given as
0,0 and those of the B-point are given as 1,0. The Z coordinates will then be assumed to be equal
to 0.

 
  The items within parentheses provide information about the manner in which the mapping is
required to be carried out. Further details about these items are given in Figure 12.21.
Information about the locations of all the faces, edges, and vertices of Platonic and Archimedean
polyhedra, in terms of their identity numbers, is incorporated into Formian. This information is
used by the polymation function for determining the locations of the faces, edges, or vertices
specified by the entity list (third item in parentheses in Figure 12.21). Also, Formian

incorporates complete information about the baselines of faces, directions of edges, and
handles of vertices for the Platonic and Archimedean polyhedra. This information
is used by the polymation function for the correct positioning of the objects to be
mapped.

 
  The argument of the polymation function in Figure 12.21 is represented by E and is separated
from the function by the symbol I. Normally, this argument is a formex variable that
represents the object to be used for mapping. Examples of formex formulations for the
creation of formex variables representing the mapping objects are shown in Figure
12.22. Figure 12.22a shows a face-object together with its formex formulation, which
is shown in a box. This formex formulation gives rise to a formex variable F that
represents the face-object. The face-object has a pattern similar to the one used for the
poly-
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  F=bb(l,sqrt 13) | lux(genid(4,M,2,2,-l) | [15,5]) | genid(21,21,2,1,1,-!) | {[0,0;2,0],[2,0;l,l],[l,l;0,0]}

 
  (a)

 
  E=pan(2,0) | (rin(l,20,l) | [0,0;l,0]#rin(l,10,2) | lam(l,l) | [0,0;l,-2]#rin(l,18,l) |
[l,-2;2z-2]#rin(l,19,l) | [l,0;l,-2]) s /

 
  (b)
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a=-0.15; b=0.25; c=-a*tan | asin | (0.5/1.40125854) 'V=iosax(0,0,0:,0,a,'12D)
| {[0,0,0;b,0,0],[0,0,0;c,0,a],[c,0,a;
 


  Figure 12.22 Formex formulations for a face-object, an edge-object, and a vertex-object.

 
     

 

b,0,a/2],[c,0,a;b/2,0,0j,[b/2,0,0;b,0,a/2],[b,0,0;b,0,a/2])
 


  (c)

 
  hedric configuration of Figure 12.3zz. A truss-like edge-object together with its formex
formulation is shown in Figure 12.22k Also, a vertex-object with its formex formulation is shown
in Figure 12.22r. This is the vertex-object used for the polyhedric configuration of Figure
12.20c.

 
  A reader who is familiar with the concepts of formex algebra will be able to follow the formex
formulations of Figure 12.22. However, a reader who is unfamiliar with formex algebra should not
worry about the details of the formulations at this point. In the present discussion the main aim
is to describe the basics of the processes that are involved in the creation of polyhedric
configurations. The formex formulations in this context may then be seen as ‘‘boxes of
instructions’’ that imply the given configurations.

 
  SHAPING AND COMPOSING POLYHEDRA

 
  The polymation function may be employed to create a variety of different kinds of polyhedric
configurations, some of which are outside the categories of configurations discussed so far. Two
such classes of polyhedric configurations are discussed next.

 
  The configurations shown in Figure 12.23 are obtained by cutting away
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  G=pex | pol(l,l,'[all]',l,[0A0;l,0,0]) | rosad(l/2,sqrt 13/6,

 
  3,120) | {[0.4,0,0;0.6,0,0],[0.4,0,0;0.2,sqrt 13/5,0])

 

     

 

GoKl/faUJMJO.OAlAOJJIAOltfpol/ig-lMlO,)]',  l,[0,0,0;l,0,0D  |  dil(3,05)  |
tranix(05,0.5,0.5) | poipA'11–8]’, sqrt 13/2,[0,0,0;!,0,0]) | [0,0,0;l,0,0]
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  G=pol(l,2,'[l]',l,[0,0,0;2,0,0]) | rosad(l,l) | [0,l,0;l,0,0]#rosad(0,0) |
pol(l,2,'[2]',l,[0,0,0;2,0,0]) |{[0,0,0;2,0,0],[2,0,0;1,2,0],[1,2,0;0,0,0]}
k. /

 
     

 

(b)
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  G=rosad(0,0) | pex | lam(3,0) | pol(lA'[ir/l,[0,0,0;4,0,0]) |
{[0,0,0;4,0,0],[0,0,0;l,tan 160,0],[l,tan 160,05, tan 160,0]}
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  G=pol(25,'[aU]',1/sqrt 12,[0,0,0;l,0,0]) | [0,0,0;l,0,0]#pol(l ,3,,[1,7]', 1/sqrt 12,[0,0,0;l,0,0]) |
ver(2,1,0,0) | tranix(-cos 130/3,0.5, 1/sqrt 124) | pol(2,l,'[l-3]',sqrt 16/4,[0,0,0;l,0,0J) |
[0,0,0;l,0,0]
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  G=pex | lam(3xos | (2*asin | (05/0.951056516))) |
pol(25,'[l-10]',l,[0,0,0;l,0,0]) | [0,0,0;1,0,0]

 
  (c)

 
  (c)

 
  Figure 12.23 Examples of polyhedron shaping.

 
  Figure 12.24 Examples of polyhedral compositions.

 
  parts of three polyhedra, where the original polyhedra are shown by thin lines and the resulting
configurations are shown by thick lines. All three configurations are obtained using the
polymation function and the formex formulation for each case is given enclosed in a
box.


 
  The configuration shown by thick lines in Figure 12.23# is similar to a P6 (truncated
tetrahedron), but its proportions are different from those of a P6. The configuration shown by
thick lines in Figure 12.23£ is a decahedron (a polyhedron with 10 faces), which is obtained by
cutting away parts of a cube, and the configuration shown in Figure 12.23c is again
a decahedron, which is obtained by cutting away the top and bottom corners of an
octahedron.

 
  Examples of another class of polyhedric configuration are shown in Figure 12.24. Here, the
polymation function has been used to create polyhedric configurations involving a combination of
polyhedra or their parts. The formex formulations for these configurations are shown enclosed in
boxes.

 
  Figure 12.24/z shows a configuration that is obtained by placing half-cubes on four faces of a
cuboctahedron. Figure 12.24Z* shows a configuration that is obtained by placing two
tetrahedra on two opposite faces of an octahedron. Figure 12.24c shows a configuration that
is obtained by taking the top part of an icosahedron and combining it with its own
reflection.

 
  PROCESSING OF MULTILAYER POLYHEDRIC CONFIGURATIONS

 
  An example of a double-layer polyhedric configuration is shown in Figure 12.25#. Here, a
Vierendeel-girder-type edge-object is mapped on a number of edges of a dodecahedron
and a formex formulation for the operation is shown enclosed in a box. The approach
employed in handling the process is the same as that described for the example of Figure
12.18A

 
  Figure 12.25b shows a different approach in dealing with the problem. Here, the mapping of
both the top layer and bottom layer of the edge-object is controlled by the polymation function.
Thus there are two /l-points and two B-points with additional fourth coordinates for layer
identification. A formex formulation for the operation is shown in a box in Figure 12.25 b. Also,
the setup of the polymation function for the problem is given in Figure 12.26. The procedure
followed in this approach is more elaborate than that used in relation to Figure 12.25#. The
main advantage in the second approach is that the problem of mitering is sorted out
automatically.

 
  The approach employed in creating the polyhedric configuration of Figure 12.25b may also be
applied in cases when there are more than two layers and in cases involving multilayer face or
vertex mapping.


 
  It should be noted that the polyhedric configurations of Figures 12.25# and b are not
completely identical. The difference is in the orientations of the web elements. To be specific, the
web elements in Figure 12.25# remain perpendicular to the top and bottom chords, whereas the
web elements in Figure 12.25b are along radial lines emanating from the center, as
indicated by the dotted lines in the figure. However, this particular feature of the
configuration of Figure 12.25b should not be considered as a necessary consequence of the
second
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  rc=1.40125854; a=-0.15; b=l/9; c=-a*tan | asin | (0.5/rc) E=lam(l,0.5) |
{[0z0z0;cz0za],[cz0za;bz0za]}#lux([lz0za]) | rin(lz9zb) | {[0z0z0;bz0z0]z[bz0z0;bz0za]z[bz0za;2*bz0za]}

 
  G=poI(2z4z'[l-13z-8z18–26z-(23–24)z30]'zrcz[0z0z0;lz0z0]) | E

 
  (a)

 
  rc=l .40125854; a=-0.15; b=l/9; d=-a/cos | asin | (0.5/rc)

 
     

 

E=rin(l,9zb)  |  [0z0z0zl;bz0z0zl]#rin(lz9zb)  |  [0z0zaz0;bz0zaz0]#rin(lz10,b)  |
[0z0z0zl;0z0,az0]

 
G=poI(2z4z'[l-13z-8z18–26z-(23–24)z30],z[2z4;lzrc;0zrc-d]z
[0z0z0;lz0z0]z[0z0,a;lz0za]) | E
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  Figure 12.25 Double-layer mapping.
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  Figure 12.26 Polymation function for double-layer mapping. mapping approach. The
situation, in general, may be described as follows.

 
  In the first mapping strategy, as exemplified by Figure 12.25#, the geometric proportions of
the face-object, edge-object, or vertex-object remain unchanged in the process of mapping. Here,
the term geometric proportions is used to mean those aspects of a configuration that remain
unchanged under photographic enlargement or reduction. In the second mapping strategy, as
exemplified by Figure 12.2 Sb, the geometric proportions of the face-object, edge-object, or
vertexobject may change in the process of mapping. However, there are no general rules
regarding the manner in which the proportions may change. These changes are governed by the
choices of the H-points and 5-points.
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APPENDIX

 
  Ordering Rules


 
  This appendix contains a collection of rules for ordering the faces, edges, and vertices of a
Platonic or Archimedean polyhedron, where the term ordering is

 
  used to mean putting in a sequence. The sequencing would then allow identity numbers to be
assigned to the faces, edges, and vertices of a polyhedron. This is done by taking the serial
position number of an entity in the sequence as its identity number. Included in the appendix are
also rules that govern the choices of baselines for faces, /4-ends and E-ends for edges, and
handles for vertices. The rules are as follows:

 
     

 
	
1. 

	If all the faces of a polyhedron have the same number of sides, then the faces are
ordered with respect to the ascending values of the angular spherical coordinates r
and t of the centers of the faces, where the value of t is considered first and the value
of s is considered only if the centers of the faces compared have the same value of t.
The disposition of the r and t spherical coordinates together with the X-Y-Z global
coordinate system in relation to a polyhedron (cuboctahedron) is shown in Figure
Al2.1.


     

 

If the faces of a polyhedron have different numbers of sides, then all the faces
that have the same number of sides are considered together for ordering, starting
with the faces that have the least number of sides and proceeding in the order
of increasing number of sides.
 


     

 
	
2. 

	For each face of a polyhedron, one of its sides is designated as the baseline. The
baseline of a face is chosen in the following manner:


     

 
	
a. 

	If only one of the sides of the face is parallel to the r=90° plane (i.e., the X-Y plane),
then this side is chosen as the baseline of the face. The ?=90° plane is referred to as
the equatorial plane or the E-plane (Figure A12.1).
     


	  
b. 

	If only two of the sides of the face are parallel to the E-plane, then, of these two sides,
the one that is nearer to the E-plane is chosen as the baseline, and if the sides are
equidistant from the E-plane, then the ‘‘southern’’ side is chosen as the baseline.

     
	
c. 

	If the face is parallel to the E-plane and one of its sides intersects the r=0° semiplane,
then this side is chosen as the baseline of the face. The r=0° semiplane is referred to
as the Greenwich plane or the G-
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  Figure A12.1 Cartesian and spherical coordinate systems for a polyhedron.

 
     

 

plane. This is the part of the X-Z plane for which X > 0 (Figure A12.1).
 


     

 
	
d. 

	If the face is parallel to the E-plane and the G-plane passes through a corner of the
face, then, of the two sides that are connected to this comer, the one whose midpoint
has the smaller r coordinate is chosen as the baseline of the face.

     
	
e. 

	If the face does not have a side that is parallel to the E-plane, then the face is imagined
to be subjected to a rotation in the ‘‘right-handed screw direction’’ and, as the angle
of rotation increases, the first side that assumes a position satisfying either condition
(a) or (b) is chosen as the baseline of the face. To describe the term right-handed
screw direction, imagine a right-handed screw whose head is at the center of the
polyhedron and is pointing toward the center of a face. The direction of rotation that
causes the screw to move toward the face is referred to as the right-handed screw
direction or the RS-direction.



     

 
	
3. 

	Each  end  of  the  baseline  of  a  face  of  a  polyhedron  has  an  associated  letter.  To
elaborate, one end is associated with the letter A and is referred to as the /Tend
and the other end is associated with the letter B and is referred to as the 5-end. The
allocation of the letters A and B to the ends is made such that movement from A to
B is in the .RS-direction.

     
	
4. 

	The edges of a polyhedron are ordered with respect to the ascending values of the
angular spherical coordinates r and t  of their midpoints, where the value of t  is
considered first and the value of r is considered only if the midpoints of the edges
compared have the same value of t.

     
	
5. 

	Each end of an edge of a polyhedron has an associated letter. To elaborate, one end
is associated with the letter A and is referred to as the A- end and the other end
is associated with the letter B and is referred to as the 5-end. The allocation of the
letters A and B to the ends is made in the following manner:


     

 
	
a. 

	If the edge is parallel to the E-plane, then the /1-end and 5-end of the edge are chosen
such that movement from A to B is in the positive r direction (Figure A12.1).

     
	
b. 

	If the edge is not parallel to the E-plane, then the /1-end and 5-end of the edge are
chosen such that


     
	if the midpoint of the edge is in the E-plane or if its midpoint is in the northern
hemisphere, then movement from A to B is southward and

     
	if the midpoint of the edge is in the southern hemisphere, then movement from A to
B is northward.


     

 
	
6. 

	The vertices of a polyhedron are ordered with respect to the ascending values of their
angular spherical coordinates r and t, where the value of t is considered first and the
value of r is considered only if the vertices compared have the same value of t.

     
	
7. 

	For each vertex one of the edges that is connected to it is designated as the handle.
The  handle  of  the  first  vertex  of  a  polyhedron  (i.e.,  vertex  no.  1)  is  the  edge
that connects it to vertex no. 2. The handle of any other vertex is obtained by
mapping the configuration of the first vertex onto the configuration of that vertex
and  selecting  the  edge  that  corresponds  to  the  handle  of  the  first  vertex.  The
configuration of a vertex of a polyhedron can, in most cases, be mapped onto the
configuration of any other vertex of the same polyhedron by simple rigid motion (by
translation and rotation). However, in some cases, the mapping of the configuration
of a vertex onto that of another vertex cannot be achieved unless an additional
reflectional  operation  is  performed.  To  elaborate,  with  two  exceptions,  for  every
Platonic or Archimedean polyhedron, all the vertices of the polyhedron are directly
congruent. That is, the configuration of each vertex of the polyhedron may be mapped
onto that of every other vertex of the polyhedron by simple rigid motion of the
configuration. The exceptions are Pl 1 (great rhom-bicuboctahedron) and Pl8 (great
rhombicosidodecahedron). For each of these two polyhedra, some vertices are directly
congruent to the first vertex of the polyhedron and the other vertices are oppositely
congruent  to  the  first  vertex.  The  term  oppositely  congruent  is  used  to  refer  to
two configurations that cannot be mapped onto one another without reflection (in
addition to rigid motion). The need for reflection in vertex mapping for Pl 1 and Pl8
arises as a consequence of the shapes of their vertex figures, as shown in Table Al 2.1
(a vertex figure is a poly-


  TABLE A12.1 Vertex Figures of Platonic and Archimedean Polyhedra
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gon  obtained  by  connecting  the  midpoints  of  the  edges  that  meet  at  a
vertex). From Table Al2.1 it may be seen that every Platonic or Archimedean
polyhedron, other than Pl 1 and Pl8, has only one vertex figure. On the other
hand, in the case of Pl 1 or Pl 8, there are two vertex figures that cannot be
mapped onto one another without reflection.

 
The vertex-mapping procedure described above will allow the handles to be
‘‘uniquely’’  determined  for  all  the  vertices  in  all  the  cases  except  for  P12
(icosidodecahedron), P7 (cuboctahedron), and the Platonic polyhedra. For each
of these seven polyhedra, the mapping of the configuration of the first vertex
onto  that  of  another  vertex  can  be  done  in  more  than  one  way.  This  is  a
consequence of the shapes of the vertex figures of these seven polyhedra. To
elaborate, it may be seen from Table Al2.1 that the vertex figure of each of
these polyhedra can map onto itself in more than one way. In the case of these
polyhedra, the handles of vertices are chosen using the following rules:
 


     

 
	
a. 

	For a ‘‘ring’’ of vertices, that is, for a circularly disposed set of vertices that lie in
a plane parallel to the E-plane, the handles are chosen such that they constitute a
cyclically symmetric configuration.

     
	
b. 

	The disposition of the handles for a southern ring of vertices is obtained by ‘‘turning
over’’ the corresponding northern ring (and rotating it, if necessary).

     
	
c. 

	If there is a vertex whose handle is not uniquely determined by the above rules, then,
among different possible handles, the one that has the smallest vertex number at the
other end is chosen.



     

 
	
8. 

	Each end of the handle of a vertex of a polyhedron has an associated letter. To
elaborate, the end that is at the vertex is associated with the letter A and is referred
to as the/l-end and the other end is associated with the letter 5 and is referred to as
the S-end.
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13  Tensegrity: Theory and Application

Ariel Hanaor

 
  
13.1  INTRODUCTION

Characterization

 
  The terms tensegrity and tensegrity structures are not well defined, and have been used to
designate widely differing types of structures in different contexts. The vagueness of the term,
which was coined by R. Buckminster Fuller, stems from Fuller’s lack of clear definition in either
the geometrical or the structural context:1–3

 
     

 

The word tensegrity is an invention: it is a contraction of tensional integrity.
Tensegrity  describes  a  structural-relationship  principle  in  which  structural
shape  is  guaranteed  by  the  finitely  closed,  comprehensively  continuous,
tensional behaviors of the system and not by the discontinuous and exclusively
local compressional member behaviors. Tensegrity provides the ability to yield
increasingly without ultimately breaking or coming asunder.4
 


  Fuller’s definition implies a network consisting of tension members (cables) and compression
members (bars), in which the cable network is continuous (hence ‘‘tensional integrity’’), and the
bar system presumably is not (‘‘exclusively local,’’ see the following figures). He endows the
concept with mystical qual-
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  ities: ‘‘All structures, properly understood, from the solar system to the atom, are tensegrity
structures. Universe is omnitensional integrity.’’ Such a sweeping generalization renders the
definition useless. Fuller goes on to equate tensegrity and pneumatic structures (‘‘Tensegrity
structures are pure pneumatic structures…’’), when, in fact, these are totally different
structural systems. Following are some of the more precise definitions used in the
literature.

 
  The widest definition of tensegrity structures, from the geometric point of view, is
sometimes used by mathematicians in the field of discrete geometry. They define tensegrity
structure as a pin-jointed network consisting of any combination of bars, struts, and
tendons. Bars are straight members of fixed length and can sustain either compression
or tension. Struts are straight members with a lower bound on length. They cannot
contract but they can extend indefinitely in a ‘‘telescoping’’ fashion and therefore
cannot support tension. Tendons are straight ‘‘cables’’—members with an upper bound
on length. They cannot extend but can contract freely and therefore cannot sustain
compression.

 
  This definition covers the whole range of pin-jointed structures, including trusses and cable
networks. The narrowest definition of tensegrity structures, in the geometrical context, is: a
network consisting of tendons and bars (or struts), such that any one bar is connected only to
cables but to no other bar (except, perhaps, at the boundary). Thus the bar system, under
this narrow definition, is completely disjointed. Such a system can be called ‘‘pure
tensegrity.’’

 
  A more general definition, in the structural context, is: an internally prestressed cable network.
The ‘‘tensile integrity’’ aspect is covered by the well-defined term cable network, whereas the
presence of bars is implied by the term intent ally prestressed, which indicates that the network
does not require an external anchoring system, like conventional cable networks, but is
prestressed internally by means of compression members (bars), which form part of the network.
Emmerich5 calls them ‘‘self-tensioned structures,’’ but because any prestressed structure is
‘‘self-tensioned,’’ this is not appropriate. The concept of internal prestress is the key concept in
tensegrity, because it is precisely this feature that distinguishes this type of structure
from conventional cable networks and from pneumatic structures. This definition is
generally adopted in the present work, but most of the discussion is limited to the
more restricted class of ‘‘pure’’ tensegrity networks, in which bars are not mutually in
contact.


 
  One type of structure encountered in the literature under the ‘‘tensegrity’’ caption is a certain
class of dome (e.g., the Georgia Dome in Atlanta), consisting of cables prestressed against a
disjointed system of bars, but requiring a compression ring in the perimeter. This
type of dome is clearly excluded from the preceding definition of tensegrity networks,
because it is externally prestressed, incorporating an external anchorage system (the
compression ring). Cable dome would be a more appropriate term for this type of
structure.

 
  Background

 
  Few, if any, engineered structures of substantial scale exist that can fit the preceding definition
of tensegrity structures. The London Zoo aviary (Figure 13.1) contains elements of tensegrity in
the form of disjointed tetrahedra used
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  Figure 13.1 The London Zoo aviary.

 
     

 

in prestressing the cable network, but it also involves external anchoring (to
the  ground).  A  number  of  tensegrity sculptures  exist,  most  notably  by  the
artist Kenneth Snelson (Figure 13.2). These are ornamental objects of quite
striking  appearance  located  in  various  public  places,  mostly  in  the  United
States (Figures 13.3 and 13.4). The simplest object that can be perceived as a
tensegrity structure, under the definition in force, is the kite. It probably served
as the inspiration and starting point for more complex objects such as Snelson’s
‘‘sculptures.’’

 
The first to conceive of tensegrity as a building structure was probably Fuller,
arguably  as  a  result  of  his  collaboration  with  Snelson.  His  first  patent  for
‘‘Tensile-Integrity  Structures’’  was  filed  in  1959.6  It  is  a  dome  of  spherical
surface consisting of struts and tendons such that struts are connected only
to tendons at their ends and at the midpoints (Figure 13.5a and £)• In the
patent application Fuller claims that the invention ‘‘has special application to
structures of vast proportions such as free-span domes capable of roofing a
stadium or housing an entire village or city,.. .’’7 This vastly exaggerated claim
     
is based on the misconception that in very large domes the struts themselves
can be constructed as tensegrity structures (Figure 13.5c), thus progressively
reducing the relative length (or volume) of struts and generating an almost
purely tensile structure, like a balloon. In the words of Fuller:

 
Every  time  we  can  see  a  separate  strut  and  can  devise  means  for  making
a tensegrity strut of that overall size, we can substitute it for a previously
‘‘solid’’ strut. By such a process of progressive substitutions in diminishing
order of sizes, leading eventually via sub-sub-sub-miniaturizing tensegri-ties to
…a minimum ‘‘solid state’’ strut diameter, which corresponds exactly with two
diameters of the atoms of which it is constructed…. The atom is a tensegrity,
and there are no ‘‘solids’’ left in the entire structural system…. ’’8
 


  [image: PIC]

 
  Figure 13.2 Kenneth Snelson in his studio in lower Manhattan (1990).
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Figure 13.3 Snelson's sculpture in front of the Maryland Science Museum,
Baltimore.
 


  [image: PIC]

 
     

 

Figure 13.4 Snelson's ‘‘Needle Tower’’ at the Hirshhorn Museum of Modern
Art, Washington, DC: (a) general view, (b) view from below.
 


  Since the miracle of a purely tensile, freestanding structure has been achieved (‘‘no solids’’),
there is practically no limit to achievable spans. The basic theoretical principle involved in this
reasoning is that of material dilution. This principle, which applies to all structures, involves
increasing structural depth without adding material (and therefore weight) in order to

achieve larger spans. In tensegrity structures, as in all structures, the application of the
principle is limited by practical constraints. The concept of tensegrity in general, and
Fuller’s version of it in particular, suffers from other drawbacks, which will be discussed
later.

 
  Nevertheless, the credit goes to Fuller for opening the field of tensegrity structures for research
and invention. Several other patents have followed over the years, including Fuller’s,9 but these
appear to have produced no actual structures. The sections that follow review some of the
main research topics and results. The research falls into two general areas. Most of
the work is concerned with geometric configuration. Some limited research has been
carried out into the actual load response of this type of structure, but a lot more is
needed. The last section is a critical evaluation of the concept and its prospects for
implementation.
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  Figure 13.5 Fuller's tensegrity dome of his 1962 patent (a) plan, (b) detail, fc) tensegrity
strut (Source: R. B. Fuller, ‘‘Tensile-Integrity Structures,’’ U.S. Patent 3,053,521, Nov. 13,
1962.)

 
  Not. 13, 1962 r. b. fuller 3,063,521

 
  GEOMETRY

 
  Polyhedra

 
  The simplest three-dimensional tensegrity object is the tensegrtty prism (T prism), the simplest
of which is the triangular prism, sometimes termed simplex. A tensegrity prism is
a skew prism formed by cables along the edges of the prisms, with bars along the
diagonals of the side faces in a consistent sense. Figure 13.6 shows a number of these
prisms. The two bases of the prism are rotated relative to each other by an angle
that is dictated by the requirement for stability of the shape.10 For regular prisms
(i.e., having regular base polygons), this angle is half the base polygon angle (30°
for a triangular prism, 45° for a square prism, etc.). Right-handed and left-handed
configurations can be distinguished, in accordance with the sense of rotation of the two
bases. It is possible to add cables along diagonals of skew prism faces—the diagonals
not occupied by bars—to obtain a reinforced prism. Figure 13.6e shows a triangular
rein-

 
  [image: PIC]

 
  [image: PIC]

 
  [image: PIC]


 
  Figure 13.6Tensegrity prisms: (a) triangular, 6Wsquare, (c) pentagonal, (d)hexagonal, (e)
triangular, reinforced.

 
  forced prism, which has the property of geometric rigidity (see the following discussion under
Load Response). The relative base rotation of reinforced prisms is no longer predetermined but
can be varied in a range between the simple prism value, as a lower bound, and double that
value, as an upper bound (at the upper bound the bars intersect at the centroid of the
prism).

 
  Higher polyhedra can be constructed. Figure 13.7 shows some relatively simple polyhedra, but
any polyhedron can be constructed as a tensegrity.11,12 Emmerich shows a systematic way of
deriving tensegrities from a range of Platonic and Archimedean polyhedra.13 Some of
these polyhedra are shown in Figure 13.8. Fuller’s dome (Figure 13.5) is, in effect, a
high-order tensegrity polyhedron obtained by geodesic subdivision of the sphere. It can be
termed a geodesic tensegrity dome and is closely related to Fuller’s geodesic dome. It
is

 
  [image: PIC] [image: PIC] [image: PIC] [image: PIC] [image: PIC] Figure 13.8 Some of Emmerich's Archimedean polyhedra:
/a/truncated dodecahedron, /"truncated icosahedron, (c) great rhombicosidodeca-hedron, (d)
small rhombi-cosidodecahedron. (Source: D. G. Emmerich, ‘‘Self-Tensioning Spherical Structures:
Single and Double Layer Spheroids,’’ International Journal of Space Structures (Special Issue on
Geodesic Forms), T. Tarnai, ed., Vol. 5, No. 3/4, 1990, pp. 353–374. Courtesy of Multi-Science
Publishing.)
interesting to note that although the geodesic dome concept found widespread application, the
tensegrity concept has so far found none.

 
  Figure 13.7 Tensegrity polyhedra: (a) truncated tetrahedron, (b) octahedron, (c)
cuboctahedron.

 
  Networks

 
  Whereas tensegrity polyhedra enclose a finite space, networks consist of repetitive patterns of
bar-cable connections covering surfaces or filling space. Vilnay conceived single-layer infinite
networks, a sample of which is shown in Figure 13.9.14 As a planar surface, these networks are
not stable. They require curvature to produce shell-like surfaces. Double-layer networks can be
produced by joining together tensegrity prisms. Some ways of joining such prisms to generate
double-layer tensegrity grids (DLTGs) are shown in Figure 13.10.15 Figure 13.11 shows grids
generated by these methods (only prism top and bottom bases are shown, for clarity). While the
patterns are quite intricate, the lines joining the centroids of individual prisms form quite
regular grids, termed the arch-grids. Figure 13.12 shows some simple models. A different

way of joining T prisms to generate DLTGs is due to Motro and is shown in Figure
13.13.16 It differs from other networks in that it contains bar-bar connections at the
joints, but it has certain advantages, such as continuity of cables and simplicity of
geometry.

 
  More complex network geometries can be generated by joining polyhedra of higher order.
Emmerich produced some rather complex surface-covering and

 
  Figure 13.9 Some of Vil-nay's single-layer tensegrity networks.
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  Figure 13.10 Methods of forming double-layer tensegrity networks from tensegrity prisms.
(Source: A. Hanaor, ‘‘Double Layer Tensegrity Grids,’’ in Studies in Space Structures, H.
Nooshin, ed., Multi-Science Publishing, Brentwood, 1991.)
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  Figure 13.11 Double-layer tensegrity grids formed by the method of Figure 13.10. Top and
bottom cable layers only are shown. Dash-dot line indicates arch-grid.
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Figure 13.12 Models of double-layer tensegrity grids: (a) triangular type la,
/d) square type II, (c) triangular type II.
 


  space-filling configurations.17 Fuller and Grip developed a different type of space-filling
network, a sample of which is shown in Figure 13.14.18,19

 
  Structural Forms

 
  Single-layer domes or domical surfaces can be formed on the basis of tensegrity polyhedra and
geodesic spherical subdivision, such as Fuller’s dome (Figure 13.5). The use of polyhedra without
face subdivision is limited to relatively small spans, as faces become impractically large with
increasing spans. Single-
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  Figure 13.13 Metro's double-layer tensegrity grid using square prisms or truncated pyramids
connected at vertices. (Source: R. Motro, ‘‘Tensegrity Systems and Geodesic Domes,’’
International Journal of Space Structures (Special Issue on Geodesic Forms), T. Tarnai, ed.. Vol.
5, No. 3/4,1990, pp. 341–351. Courtesy of Multi-Science Publishing.)
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  Figure 13.14 Some of Grip's multilayer and space-filling tensegrity grids. (Source: R.
Grip, ‘‘The Correspondence Between Convex Polyhedra and Tensegrity Systems: A
Classification System,’’ International Journal of Space Structures (Special Issue on
Tensegrity Systems), R. Motro, ed., Vol. 7, No. 2,1992, pp. 3115–3125. Courtesy of
Multi-Science

 
  Publishing.)

 
  layer curved surfaces of any shape can be generated from single-layer networks. Figure 13.15
shows a dome based on Vilnay’s network.20 This dome differs significantly from Fuller’s dome. In
Fuller’s dome, as spans increase and curvature decreases, bars quickly come into contact with one
another if module size is to be kept to a reasonable value. This is avoided in Vilnay’s concept but
at the cost of increased bar lengths.

 
  Emmerich developed double-layer domes based on hyper-polyhedra, in which the polyhedron
face is replaced with a tensegrity truncated pyramid (T pyramid).21 This is, in fact, a T prism
with base polygons of similar geometry but different sizes. Figure 13.16 shows one such
hyper-polyhedron. The comment on the span limitation of domes based on polyhedra also
applies to this concept, but the concept can be extended to include geodesic subdivision
and to avoid both bar contact and excessive bar lengths. Bars are laced between two
parallel cable surfaces and these surfaces can be kept wide enough apart to prevent bar
contact.
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  Figure 13.15 Vilnay's tensegrity dome based on single-layer tensegrity grid. (Source: 0.
Vil-nay, Cable Nets and Tensegric Shells, Analysis and Design Applications, Ellis Norwood, New
York, 1990.)

 
  [image: PIC]

 
  Figure 13.16 Emmerich's double-layer hyper-polyhedron and its derivation (from truncated
icosahedron). (Source: D. G. Emmerich, ‘‘Self-Tensioning Spherical Structures: Single and Double
Layer Spheroids,’’ International Journal of Space Structures (Special Issue on Geodesic
Forms), T. Tanai, ed., Vol. 5, No. 3/4,1990, pp. 353–374. Courtesy of Multi-Science
Publishing.)
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  Figure 13.17 Double-layer tensegrity dome constructed using type la connection triangular
truncated pyramids (only top and bottom cable layers shown). The dash-dot line represents the
arch-grid, which is a geodesic subdivision of a hexagonal pyramid. (Source: A. Hanaor,
‘‘Geometrically Rigid Double-Layer Tensegrity Grids,’’ International Journal of Space
Structures,\lo\. 9, No. 4,1994, pp. 227–238.)

 
     

 

Double-layer surfaces of any shape, including flat surfaces, can be generated
from double-layer networks based on T prisms or pyramids, as shown in Figures
13.10  to  13.13.  Figure  13.17  shows  a  DLTG  dome  based  on  the  triangular
grid type la of Figure 13.11 (only top and bottom cable layers are shown).22
Although the pattern appears complex, the arch-grid forms a simple geodesic
subdivision of a hexagonal pyramid. The arch-grid nodes indicate the locations
of the centroids of the T pyramids constituting the dome. Figure 13.18 shows
a model of part of a dome constructed on this basis.
 


  Figure 13.18 Scale model of double-layer tensegrity dome segment using triangular truncated
pyramids in type la connection.
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  LOAD RESPONSE

 
  Geometric Rigidity

 
  Referring back to the definition of tensegrity structures, tensegrity structures are prestressed
cable networks, from the structural point of view. This implies that they are in most cases
geometrically deformable. The terms geometric deformability and geometric rigidity require some
explanation, as there is considerable confusion in terminology concerning this topic. The
essence of the concepts is best explained by the simple prestressed cable structures
shown in Figure 13.19. Figure 13.19/z shows a geometrically deformable prestressed
cable. The deformability is expressed by the fact that the system cannot maintain
equilibrium with the applied load in its original geometry. It must deform and change its
shape in order to develop internal force components to balance the external load.
The magnitude of the deformation depends primarily on the load and on the level of
prestress—the tension force in the cable. It can be quite large, even for small load values. By
comparison, the planar cable ‘‘network’’ of Figure 13.19£ (the cables are loaded in their

plane) can maintain equilibrium in its original geometry, and its deformation is a
result of elastic deformations (elongation and shortening) of the cables alone. These
deformations are small in comparison to the geometric deformations of the cable of Figure
13.19a.

 
  Some sources refer to geometrically deformable structures as ‘‘unstable,’’ but this is clearly a
misnomer, because they are perfecdy capable of sustaining load, albeit at large deflections,
compared with geometrically rigid structures such as trusses. Other sources refer to them as
kinematically indeterminate, referring to the fact that the geometry changes depend
on the load. A more rigorous discussion of this topic can be found in Pellegrino and
Calladine.23

 
  Most cable networks are geometrically deformable, including all tensegrity
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  Figure 13.19 Illustration of geometric rigidity: (a) geometrically deformable prestressed cable,
(b) geometrically rigid cable configuration.

 
  configurations discussed up to this point, with the exception of the reinforced prism of Figure
13.6e. Geometrically rigid structures do not require prestress to maintain a reasonable stiffness.
Some degree of prestress is nonetheless applied in cable networks, in order to ensure the tautness
of cables. A geometrically rigid DLTG is described and discussed later (Figure 13.20#).
Geometrically deformable networks are insensitive to inaccuracies in cable lengths. Tension in all
cables is easy to maintain either by the shortening of a relatively small number of
cables or by the elongation of bars. The inaccuracies in member lengths translate into
deviations in the overall geometry. Geometrically rigid structures, on the other hand, are
statically indeterminate. They can maintain equilibrium with the prestress force in
the original geometry and do not adapt their geometry to compensate for changes in
member lengths. Consequently, inaccuracy in bar or cable lengths may result in some
slack cables. This tolerance sensitivity is a price that has to be paid for enhanced
stiffness.

 
  Features of Structural Analysis

 
  A detailed discussion of structural analysis techniques for cable networks is beyond the scope of
this chapter, but some general comments are warranted on the problems involved in analysis and
design. Owing to the large deflections associated with geometrically deformable structures,
nonlinear computational methods are needed, which are considerably more complex than the
analysis of stiff, geometrically rigid structures such as trusses. Typically, the analysis of cable

networks requires two phases. Phase I is a shape-finding procedure aimed at determining the
equilibrium geometry of the network under prestress. Except in some special cases (such as
tensegrity prisms and simple polyhedra), the initial geometry is not known, as it depends on the
prestress. An initial geometry is assumed close to the desired final shape, prestress is then
applied, and the new geometry is found in an iterative procedure. If this geometry
is not satisfactory, the prestress has to be modified, and the process resumed. Once
the prestressed geometry is known, the external load is applied and the forces in the
members and the displacements of nodes are computed. This constitutes phase H of the
analysis.

 
  Several techniques exist for the analysis of cable networks. Levy and Spillers give a concise yet
rigorous presentation of the stiffness method for geometrically nonlinear structures,
including cable networks (computer programs implementing the algorithms are also
presented).24 Barnes presents the principles of the dynamic relaxation method, developed
specifically for tension structures (cable and membrane structures).25 This method is
more powerful in dealing with highly nonlinear problems than the stiffness method,
which may have convergence problems when the assumed initial geometry is greatly in
error.

 
  Characteristics of Load Response

 
  As mentioned previously, very few studies—analytical and experimental—have been carried out
on real-scale prototypes. Such studies are essential for the assessment of the concept of tensegrity
structures and of the range of its feasible or practical applications. Two such studies are
presented in the following sections, illustrating both the strengths and the weaknesses inherent in
the concept of tensegrity.

 
  Analytical Study

 
  The study by Hanaor involves the full design, including nonlinear analysis (using the stiffness
method), of several types of DLTGs of the triangular type la geometry (Figures 13.10 and
13.11).26 To facilitate the assessment of tensegrity structures in comparison with ‘‘conventional’’
space structures, a space truss of similar dimensions is also designed. The truss is a
square-on-square offset double-layer grid (DLG). Figure 13.20/z shows the dimensions and layout
of the DLTGs. Only the arch-grids are shown for clarity. Figure 13.20b depicts the layout of the
DLG. Both types cover an area roughly circular in plan, with a diameter of approximately 27
m.


 
  The four configurations of DLTGs included in the study are: planar (flat), geometrically
deformable; planar, geometrically rigid; geometrically deformable dome; and geometrically rigid
dome. It should be noted that in order to obtain a geometrically rigid DLTG, it is not sufficient
to join together reinforced T prisms (Figure 13.6e); the units have to be laced together by the
diagonal cables forming the prism side edges. A detail of the lacing is shown in Figure 13.20/z.
Full details of the study are given in Hanaor.27

 
  Results of the study are given in Figure 13.21 as normalized load (uniformly distributed) versus
deflection of the central node. The abbreviations used in Figure 13.21 to denote the four DLTG
configurations consist of two letters. The first letter denotes the geometry: P—planar (flat);
D—dome. The second letter denotes the geometric rigidity: R—rigid; F—deformable (flexible). The
curves represent the stiffness of the structure. The stiffness of deformable DLTGs
depends on the level of prestress. The average level of prestress in bars was assumed
as approximately half the capacity of the bar (initially assuming constant bar cross
section).

 
  Table 13.1 presents the relative unit weight (weight per unit surface area) of the
structure, without the covering, with the DLG serving as control. This value may
represent the structural efficiency of the system (the lower the value, the higher the
efficiency).

 
  It can be observed from Figure 13.21 and Table 13.1 that all DLTG configurations are
considerably less stiff than the truss, and that all but the configuration marked with an asterisk
have lower structural efficiency. The reason for the low structural efficiency is the length of
the bars, as compared to the length of the bars in the truss (maximum forces are
of the same order). The configuration marked with an asterisk relates to the rigid
dome, with bars restrained against buckling at their midlength (e.g., by joining them
together at this point). It can be seen that this has dramatic influence on structural
efficiency.

 
  Relatively long bars (compared with the length of cables) is a feature of all tensegrity
structures encountered in the literature—refer to all figures. Unless this problem is addressed, it
appears that structural inefficiency’ is inherent in tensegrity structures, at least those with no
bar-bar connections. It is not a trivial matter, for instance, to restrain midpoints of bars in the
DR*

 
  CROSS-SECTION OUTLINES DETAIL OF

 
  RIGID CONNECTION


 
  Figure 13.20 Grids for analysis/design study: (a) double-layer tensegrity grid configurations,
(b) double-layer grid space truss.(Source: A. Hanaor, ‘‘Geometrically Rigid Double-Layer
Tensegrity Grids,’’ International Journal of Space Structures, Vol. 9, No. 4, 1994, pp.
227–238.)
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  Figure 13.21 Normalized load-deflection curves of grids in design study. (Source: A. Hanaor,
‘‘Geometrically Rigid Double-Layer Tensegrity Grids,’’ International Journal of Space Structures,
Vol. 9, No. 4,1994, pp. 227–238.)

 
  configuration, without actually joining the bars. In all fairness it should be noted, however,
that the comparison between space truss and tensegrity structures may be somewhat misleading.
For a start, it does not include the roofing weight, which in tensegrity structures is expected to
be a fight membrane, nor does it include the walls and other nonstructural elements absent in the
dome configuration. In addition, the range of overlapping applications for the two types
of structures (where a selection has to be made) is expected to be narrow. A more
appropriate comparison might be with ‘‘conventional’’ cable and membrane structures,
where the weight of anchoring systems has to be included. A discussion of the merits,
limitations, and range of applications of tensegrity structures forms the substance of the last
section.

 
  Experimental Study

 
  No load tests of large-scale tensegrity structures have been performed to date. Tests on some
small-scale models are presented in Figures 13.22 and 13.23.28

 
     

 

TABLE 13.1 Relative Unit Weights of Grids
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* Bars restrained at midlength.
 


  Figure 13.22 presents the test models and Figure 13.23 presents the results as load-deflection
curves. Full details of the tests can be found in Hanaor.29 One geometrically deformable and one
geometrically rigid model were tested to failure. Failure in both cases was by rupture of a cable.
The curves of Figure 13.23 present analytical curves (dash-dot lines) and actual behavior (solid
lines). Although failure by cable rupture is undesirable (failure by bar buckling would be more
ductile), it helps to illustrate some important features of the behavior, which are probably
characteristic of tensegrity structures:

 
     

	The  geometrically  deformable  model  failed  to  reach  the  predicted  load  capacity,
whereas the geometrically rigid model exceeded it. This is probably due to lack of
member redundancy in the deformable configuration, with cable rupturing at a point
of stress concentration in the connection. The statically redundant geometrically rigid
configuration, on the other hand, allowed for some load redistribution as some bars
buckled elastically.

     
	Both  configurations,  but  particularly  the  deformable  one,  regained  a  substantial
portion  of  their  load-bearing  capacity  following  cable  rupture,  even  though  this
rupture amounted to the loss of a whole unit, representing one-seventh of the members
in the structure. This feature is due to the way in which the structure is constructed
of individual tensegrity units, with the rupture of one not affecting the integrity
of  others.  In  the  geometrically  rigid  structure,  this  unit  separation  is  somewhat
compromised by the interlacing of units. This characteristic is an expression of
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  □ Support O Load point * Critical member

 
  Figure 13.Z2 Double-layer tensegrity grids for load testing. (Source: A. Hanaor,
‘‘Geometrically Rigid Double-Layer Tensegrity Grids,’’ International Journal of Space Structures,
Vol. 9, No. 4, 1994, pp. 227–238.)
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  Figure 13.23 Load-deflection curves of tested tensegrity grids. (Source: A. Hanaor,
‘‘Geometrically Rigid Double-Layer Tensegrity Grids,’’ International Journal of Space Structures,
Vol. 9, No. 4,1994, pp. 227–238.)

 
     

 

structural redundancy (as distinct from static redundancy or indeterminacy),
which is a major factor in avoiding progressive collapse.
 


  ASSESSMENT

 
  Evaluation

 
  Table 13.2 presents an evaluation of tensegrity structures, in terms of positive and negative
features, based on current knowledge and understanding. There is no attempt at assigning weight
or significance to these features. The negative features probably constitute a major factor in the
nonimplementation of the concept to date, but psychological and other nontechnical factors
probably play a role as well.

 
  Applications


 
  In view of their peculiar features, both positive and negative, it is not expected that tensegrity
structures will find widespread application, replacing more familiar structural systems.
Implementation of the concept is expected to be limited to applications of unusual or exotic
nature. Following are some applications where it is thought that tensegrity structures could
provide a viable and effective solution:

 
     

	Large  open  spaces  with  light  or  translucent  coverings,  such  as  swimming  pools,
conservatories, covered ‘‘outdoor’’ cafes, and other public spaces.

     
	Temporary,  dismountable  structures,  such  as  exhibition  halls,  temporary  storage
facilities, and hangars.

     
	Deployable (i.e., folding/unfolding) structures, such as mobile reusable
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exhibition  and  display  spaces;  temporary  shelters  for  various  functions
(celebrations,  festivals,  etc.);  shelters  in  inaccessible  places;  and  deployable
structures in space.
 


     
	Additional,  emergency  support  for  air-supported  structures  to  allow  for  unusual
loading, such as asymmetrical snow loads, loss of pressure, and rupture.

     
	Exotic architectural features where dramatic visual effects are sought.


  Implementation

 
  Two of the negative features of tensegrity structures mentioned in Table 13.2 are a lack of
complete understanding and some unresolved questions. Some of these questions have to be
resolved and practical solutions provided for implementation in actual, functional
structures. Following are a few of the more immediate requirements that come to
mind:

 

     

	There  has  been  very  little  work  done  on  the  roofing/surfacing  material  for  the
structures. It is recognized that in most cases the surfacing has to be fabric or other
flexible material, yet most of the surfaces of structures proposed to date consist of
planar facets. Such facets are unsuitable for fabric covering, which requires surfaces
of negative Gaussian curvature (saddle shaped). How such surfaces are to be achieved
is a question that requires thorough investigation and may fundamentally affect the
geometric design of these structures.

     
	The  incorporation  of  surfacing  material  affects  other  topics  such  as  loading  and
structural analysis. It also offers the challenge of trying to use the fabric in a system
to stabilize bars against buckling. Bar buckling is another major problem requiring a
solution that will not detract from any of the concept’s main assets, such as its eerie
‘‘floating bars’’ appearance.

     
	Deployability is another topic that has received little attention. It may yet prove to
be one of the main, if not the principal, assets of the concept, yet very little thorough
research has been done into its theory and technology. Figure 13.24 presents a small
deployable model.30 The
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Figure 13.24 Deployable tensegrity dome model: (ajfolded, (b)deployed.
     

 
model was constructed under primitive conditions, yet it proved to be quite
efficient.  It  consists  of  telescoping  bars  with  O-ring  seals.  When  bars  are
contracted, all cables are slack and the structure collapses into a bundle (Figure
13.24/?). Deployment is by means of air pressure (supplied by a bicycle pump
in this case) applied into the bars’ outer tubes by means of thin flexible tubes
laced between them. Deployment was quite smooth with the flexible bars easily
compensating for any inaccuracies in construction.

 
• Although such simple models demonstrate the inherent deployability of the
concept, there are many technical problems to be overcome. The effect of scale
is of critical importance in mechanical devices in general. A major advantage
of the present device is that it is self-adjusting and free of the problem of
accumulating ‘‘free-play,’’ which plagues bar-folding structures. Nevertheless,
means of adjusting the final geometry and providing adequate prestress are
needed. The possibility of cable entanglement and its prevention also needs
investigation. Another scale problem is the effect of cable stiffness and joint
dimensions. Incorporation of roof covering adds another level of complexity to
the deployment problem.
 


  With these and other questions in mind, it can be said that the concept is long
overdue for its first full-scale implementation in a highly visible prestigious architectural
project.
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14  Visual Morphology of Space Labyrinths: A Source for Architecture and Design

Haresh Lalvani

 
  
14.1  INTRODUCTION

The spatial and visual appeal of morphological images is inescapable for architects, designers,
and engineers willing to explore new geometries and structures for architectural space making
and the fundamental order of space underlying structures across the disciplines. Such an order
imposes itself upon every architect who experiments with geometry as a device for shaping and
structuring space, and upon every engineer who searches for a morphologic basis of improved
structural performance. Basic morphological principles are embodied at varying levels of
complexity in architecture and in the design process itself. The knowledge of such principles is
essential for architects willing to ‘‘create’’ lasting works that integrate the art with the science of
architecture.

 
  Beyond the Cube: The Architecture of Space Frames and Polyhedra, edited by J. Francois
Gabriel ISBN 0–471–12261–0 © 1997 John Wiley & Sons, Inc.
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This pictorial essay is put together to show a small fragment of the vast design
resources offered by the study of morphology and design science. The examples
shown here demonstrate the limitless scope of this new design field, which is in
need of a comprehensive visual encyclopedia of morphology. An atlas of form
and structure, noticeably absent in the field of architecture and design, can serve
as a standard reference for architects, artists, designers, engineers, scientists,
and mathematicians. Morphology provides the underpinnings of a taxonomy for
such an atlas. Our work in the development of a unified morphological system
of space structures provides a candidate model for such a taxonomy.
     

 
In this chapter we illustrate excerpts from our morphological system by focusing
on  an  interesting  class  of  structures  called  space  labyrinths,  based  on  the
author’s ongoing research on these particular structures.

 
SPACE LABYRINTHS

 
Reminiscent of the Cretan legend where the labyrinth designed by Daedalus
was a single ‘‘sequential’’ linear space, the space labyrinths described here are
‘‘distributed’’ spaces in three or more dimensions. These labyrinths are spatial
structures composed of a continuous surface (called a manifold) that divides
space into two parts, one on the ‘‘inside’’ and the other on the ‘‘outside.’’ Seen
as surfaces, these configurations are not unlike the commonly used boxshaped
rooms in architecture or the familiar donut shape, with the essential difference
that these space labyrinths are surfaces that are ‘‘open’’ and can be extended
finitely  as  well  as  infinitely,  whereas  the  box  is  a  finite  ‘‘closed’’  region  of
space. Three such structures were known to mathematicians in 193 71 and the
concept was extended independently by Burt et al.,2 Pearce,3 and Schoen,4
and additional examples were developed by Lalvani.5 This catalog shows some
of these and several interesting cases from new classes of labyrinths already
mentioned in the author’s previous works. These include nonperiodic space
labyrinths,6  -dimensional  space  labyrinths  termed  hyperlabyrinths)  •’’  and
hyperbolic labyrinths.9

 
Space labyrinths are inherently interesting for architecture because of their
continuously  winding  three-dimensional  space.  The  first  example  of  a  built
space  labyrinth  with  curved  surfaces  is  provided  by  Pearce’s  structure  for
the  Brooklyn  Children’s  Museum.  Burt  has  suggested  novel  applications
for  very  large  span  building  structures.10  Our  new  periodic,  nonperiodic,
and  higher-dimensional  labyrinths  provide  alternative  geometries  for  such
large structural spans. In aquatic environments, the ‘‘outside’’ space of the
labyrinth can accommodate the water displaced by the ‘‘inside’’ space, thereby
providing a natural marriage of geometry with Archimedes’ buoyancy principle.
Transformational labyrinths provide candidates for deployable and adaptable
architecture, which changes its size and shape with changing needs.
     

 
The study of space labyrinths is an active area in the sciences, especially in
certain classes of biological structures, and it also provides new directions in
crystallography. In macroscopic biological structures, the trabeculae of bones
are  among  the  common  examples  of  irregular  curved-faced  labyrinths.  The
use  of  labyrinths  at  a  micro  level  in  nature  is  found  in  the  structure  of
zeolites, which act as molecular sieves. Such sieves are filters that remove or
trap  undesirable  substances.  Recent  applications  to  car  filters,  and  spin-off
applications to surfaces and ‘‘openings’’ of smart buildings that ‘‘breathe’’ or
otherwise maintain homeostasis through a labyrinth membrane, are promising
applications of micro space labyrinths to architecture.
 


  SYSTEMATIC METAMORPHOLOGY

 
  We have adopted Anne Tyng’s term metamorphology to define our approach to the systematic
morphological classification and generation of form. We use the concept of higher-dimensional
(72-dimensional) periodic tables, or hypertables. Our method permits an exhaustive classification,
indexing, generation, as well as transformation, of a wide variety of space structures.11 Here, we
show the use of this technique for the generation of labyrinths, both known and new. The chapter
is, in most part, restricted to labyrinths that have a single type of vertex only. All vertices of
such structures are identical, with each vertex having the same number of polygons
and edges meeting at it in the same sequence. This restriction offers a convenient
starting point for exploring the fundamental order of space and is, in addition, significant
for modular building systems where identical components translate into economy in
construction. For the purposes of illustration, we show structures composed of plane
regular polygons, but the method extends to all of its topologic variants: curved-space
labyrinths composed of curved polygons, nonperiodic labyrinths, labyrinths projected
from higher dimensions, and labyrinths in non-Euclidean space. Some examples of
these different types of labyrinths, most of them new, are shown toward the end of the
chapter.

 
  Regular Structures

 
  The concept of hypertables is briefly recapitulated from our previous work and is followed by
its application to space labyrinths. For 72-dimensional regular structures, characterized by the
Schlafli symbol \p,q,r,s,…,u,v,ru)}, the hypertable is a hypercubic lattice of dimension 72-I, where
each distinct regular structure occupies a different vertex of this lattice; for details, see Lalvam.12
In this space the structures are indexed by corresponding higher-dimensional Cartesian

coordinates (p,q,r,s,…;u,v,'u)'). Three-dimensional structures {p,q}, comprising polyhedra,
plane and hyperbolic tessellations, and characterized by/2-sided polygonal faces, q of
which meet at every vertex, are indexed (p,q) and are arranged in a two-dimensional
lattice with the integer p varying along one axis and the integer q along the other.
Four-dimensional structures [p,q,r}, comprising four-dimensional polytopes, which are
composed of cells {p,q} and vertex figures {q,r}, are indexed (p,q,r) and are arranged in a
three-
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  Figure 14.1 A portion of a three-dimensional lattice of four-dimensional polytopes designated
by the Schlafli symbol {p, q, /}.

 
     

 

dimensional cubic lattice defined by the integer variables p, q, and r. And so
on for higher-dimensional structures.

 
Figure  14.1  shows  a  portion  of  a  square  lattice  extracted  from  the
three-dimensional  cubic  lattice  of  polytopes.  This  figure  includes  nine
four-dimensional polytopes, which are indicated by their Schlafli symbol. Of
these nine, five are finite structures in Euclidean space and include the simplex
{3,3,3} (or 5-cell), the four-dimensional cube {4,3,3} (or 8-cell) and its dual
{3,3,4} (or 16-cell), and the 120-cell {5,3,3} and its dual {3,3,5} (or 600-cell).
The structure {4,3,4} is the simple cubic lattice, a degenerate four-dimensional
structure,  and  the  remaining  three  are  structures  in  hyperbolic  space.  The
computer-animated film Not Knot by Charles Gunn and Delle Maxwell and
based on William Thurston’s work,13 shows the transformation of the structures
in the last column on the right. Clearly, our hypertable system provides a basis
for a multitude of such intertransformations between these and other structures
within the hypertable.

 
Semiregular Structures

 
Semiregular structures, composed of more than one type of regular polygon
meeting  identically  at  each  vertex  of  the  structure,  can  be  mapped  in  an
extended hypertable. Each vertex of the hypertable of regular structures splits
into n additional directions to accommodate 2’’ semi-regular structures; for
details, see Lalvani.12  The extended hypertable is composed of regular and
semi-regular  structures  and  provides  a  starting  point  for  generating  space
labyrinths. The structures in this space are indexed in binary combinations of
0’s and l’s or 0’s and X’s, where X  is any integer for the number of stages
(frames in an animation) in the transformation process between labyrinths. The
index gives the location of each structure within the hypercubic lattice.
     

 
Figure   14.2   shows   the   tetrahedral   fundamental   region   PQRO   of   a
fourdimensional polytope {p,q,r}. It is composed of six edges, which join the
centers of a cell, a face, an edge, and a vertex to each other. The fines radiating
from the cell center 0, the ‘‘radial’’ edges, are coded in three primary colors,
 


  Figure 14.2 The tetrahedral fundamental region of a fourdimensional polytope in six edge
colors orthree pairs of complementary colors.

 
  Figure 14.3 Six planes meeting at one vertex within the fundamental region; each plane is
perpendicular to one of the six edges of Figure 14.2 and colored correspondingly.
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  and the ‘‘circumferential’’ edges are coded in three secondary colors with the complementary
colors coding the opposite edges.

 
  Figure 14.3 shows portions of six dual planes (faces) meeting at a vertex within the
fundamental region. The faces are defined by four different edges, each perpendicular to the face
of the fundamental region. Each face plane is perpendicular to one of the six axes and colored
accordingly; that is, a red plane is perpendicular to the red axis, and so on. Alternatively, a pair
of complementary colors could be used to illustrate the line-plane duality. The six planes define
the faces of a semi-regular polytope 1111 composed of four different cells. This is one of a family
of 16 four-dimensional polytopes obtained by different combinations of the four different edges,
with each edge corresponding to a different dimension of the hypertable. Within the
fundamental region of each structure, the vertex occupies a distinct position different from
the others. In fact, only 16 distinct positions are possible and hence 16 structures.
Details of this organization have been described elsewhere for one family of structures
corresponding to the simple cubic lattice {4,3,4} and referred to as family (43 4).7
The left-handed and right-handed ‘‘snub’’ structures require the introduction of two
additional dimensions to the hypertable, one for left-handedness and the other for
right-handedness.

 
  The six planes defining the structure corresponding to Figure 14.3, and belonging to the cubic
family (434), are shown in Figure 14.4. Its associated

 
  [image: PIC]

 
  Figure 14.4 Six planes at a vertex located within the fundamental region of the simple cubic
lattice {4,3, 4}, a degenerate fourdimensional polytope. The structure obtained this way is
indexed 1111.
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  Figure 14.5 Four cells corresponding to the six planes of Figure 14.4, shown here in an
exploded view.

 
  four cells are shown in an exploded view in Figure 14.5. The entire set of regular and
semi-regular structures of this family comprises a total of 16 structures and is illustrated in Color
Art 6 in a four-dimensional hypertable; only four cells associated with a fundamental region are
shown in an exploded view. This fundamental region, when repeated by symmetry
operations, generates the complete structure which, in the example shown, is space filling.
A portion of this space filling for each of the 16 structures is shown in Color Art 7.
In
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  q=3

 
  Figure 14.6 Structures 1111 of four families of polytopes corresponding to Figure 14.1 and
arranged in a corresponding three-dimensional lattice; only a two-dimensional portion of this
lattice is shown.

 
  continually transforming structures the four edges ‘‘implode’’ and ‘‘explode’’ gradually in all
combinations along the four directions of the hypertable generating all ‘‘intermediates’’ between
these 16 structures. The intermediates are themselves interesting space structures as shown later
with a few examples.

 
  In Figure 14.6 the four cells of the semi-regular polytopes 1111 of four different families,
families (333), (433), (533), and (434), are shown in a square lattice corresponding to Figure 14.1.
The cells are shown in exploded views in each case and are analogous with one another. The
corresponding faces of the corresponding cells have the same color and in each case the same six
colors are needed. Color Art 7 and Figure 14.6 combined are part of a larger sevendimensional
table that maps all the regular and semi-regular four-dimensional structures in one
space.

 
  LABYRINTH GENERATION

 
  Families of space labyrinths, which divide space into two parts, can be derived from the families
of regular and semi-regular structures by removing all faces in complementary colors. In fact, the
removal of complementary colors is a convenient selection because any single color, or any
combination of colors, could be removed to provide space structures composed of cells with
different types of openings. This aspect of systematic face removal by color was addressed by
Lalvani.11 Clearly, labyrinths, where only two complementary-colored faces are removed, are
special cases in such an extended family of space structures produced from each source
family.


 
  Cells of one family of labyrinths belonging to the cubic family (434) are shown in Color Art 8
in an exploded view. Here, red and green faces are removed from the cells of structures in Color
Art 6. Several ‘‘degenerate’’ labyrinths, composed of isolated closed cells, are produced in the
process. Of the 16 structures generated this way, 9 are ‘‘legitimate’’ labyrinths having a
continuous interior space. The cells of these are shown in Figure 14.7 in a portion of the
hypertable. The same nine structures are shown as cubic portions of a space-filling array in
Color Art 9; in this illustration the continuous surfaces of the labyrinths can be better
appreciated.

 
  One of the four two-dimensional tables, each defined by a different face of the hypertable and
embedded in Color Art 9, is shown in Color Art 10. In addition to the structures lying at the
vertex positions of the table, intermediate structures are added to show the continuous
transformations between the labyrinths. The intermediates preserve angles but have more
than one different edge length. They also provide visually and spatially interesting
variants of the ones with regular faces only. Close-up views of three labyrinths located at
the vertex positions in Color Art 10 are shown in exploded views in Figures 14.8 to
14.10.

 
  Labyrinths from other families of polytopes can be derived in a similar way. Cells of labyrinths
for families (433) and (533) are shown in Color Art 11 and 13, respectively, in analogous tables.
Continuous transformations within
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Figure 14.7 Basic cells of labyrinths of family (434) in exploded view.
 


  each table are suggested by the structures shown in Color Art 12 and 14. Compared with the
cubic family (434), these labyrinths are more legitimate four-dimensional labyrinths and can be
built in three-dimensional space as ‘‘projections.’’ The cells, as well as the labyrinths composed of
these cells, are completely analogous to one another between all the families. These structures are
part of a larger table of labyrinths obtained by interconnecting the families. The complete larger
table includes all four-dimensional labyrinths, finite as well as infinite, and Euclidean as well as
hyperbolic, -dimensional labyrinths (w>4) are similarly included in a larger, more inclusive
hypertable.


 
  Additional labyrinths for each family are obtained by removing the remaining pairs of
complementary-colored faces, namely, blue and orange and yellow and violet. The legitimate
labyrinths in these cases are much fewer. Cells of such labyrinths having blue and orange faces
removed are shown in Figure 14.11 in a portion of an extended table for four families (333),
(433), (533), and (434). In Figure 14.12, cells of labyrinths having yellow and violet faces
removed from the structures 1111 of the same families are shown; compare this illustration with
Figure 14.6.

 
  Figure 14.8 A detailed view of the labyrinth 1111 in an exploded view (compare with Color
Art 9).
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  Figure 14.10 A detailed view of the labyrinth 1101 in an exploded view (compare with Color
Art 9).

 
  Figure 14.9 A detailed view of the labyrinth 1011 in an exploded view (compare with Color
Art 9).

 
  Figure 14.11 Cells of labyrinths of families (333), (433), (533), and (434) having blue and
orange faces removed.
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  Figure 14.12 Cells of labyrinths 1111 of families (333), (433), (533), and (434) having yellow
and violet faces removed.

 
  CURVED VARIANTS AND OTHER DERIVATIVES

 
  A large variety of labyrinths and related structures can be derived from the regular and
semi-regular labyrinths described in the previous sections. Nonperiodic space labyrinths related
to the new class of quasicrystals, curved labyrinths having curved edges and faces, and periodic
as well as nonperiodic labyrinths in non-Euclidean space are interesting examples. Other
possibilities include ‘‘curved space’’ labyrinths, which are in non-Euclidean space, as
opposed to ‘‘curved surface’’ labyrinths like Pearce’s and Burt’s, which are in Euclidean
space.

 
  An assortment of examples is shown in the illustrations that follow. Figures 14.13 to 14.20
show examples of a variety of nonperiodic labyrinths projected from higher dimensions. These are
embedded in spaces defined by hypercubes and hypercubic lattices and are analogs of the ones
derived from the simple cubic lattice shown in the earlier sections. They can be built as
three-dimensional projections of the hyperlabyrinths.


 
  Figure 14.13 shows a portion of a nonperiodic space labyrinth embedded in an array
of six-dimensional cubes. The cells (in their three-dimensional states) are tilted
rhombicuboctahedra and the labyrinth is the higher-dimensional analog of the structure 0011
in the simple cubic family of Color Art 9. Similar structures can be built for other
dimensions. Figure 14.14 shows another example of a nonperiodic labyrinth composed of
tilted truncated octa-hedra and analogous to the cubic labyrinth 0110 of Color Art
9 and Figure 14.7 and belonging to the six-dimensional cubic family. Similarly, the
nonpe-

 
  Figure 14.13 Portion of the nonperiodic labyrinth having tilted rhombicuboctahedral
cells and embedded in a six-cubic lattice (compare with labyrinth 0011 of Color Art
9).

 
  Figure 14.14 Portion of the nonperiodic labyrinth having tilted truncated octahedral
cells and embedded in a six-cubic lattice (compare with labyrinth 0110 of Color Art
9).
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  Figure 14.16 Portion of the nonperiodic curved surface labyrinth having tilted truncated
octahedral cells and embedded in a six-cubic lattice (compare with labyrinth 0110 of Color Art
9).

 
  Figure 14.15 Portion of the nonperiodic labyrinth having tilted truncated octahedral cells
connected by parallelepipeds and embedded in a six-cubic lattice (compare with labyrinth 1110 of
Color Art 9).

 
  Figure 14.17 A variant of the nonperiodic curved labyrinth of Figure 14.16.

 
  Figure 14.18 Another variant of the nonperiodic curved labyrinth of Figure 14.16.

 
  Figure 14.19 Schwarz-type cells of dimensions 3,4, and 5 for periodic and nonperiodic
labyrinths based on zonohedra.
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  Figure 14.20 Alternative geometries for cells of dimensions 3,4, and 5 for labyrinths.
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  riodic labyrinth in Figure 14.15, which is similar to the one in Figure 14.14 but has, in
addition, parallelepipeds that connect the truncated octahedra, is a higher-dimensional version of
the structure 1110 of Color Art 9.


 
  Figures 14.16 to 14.18 show curved variants of the hyperlabyrinth of Figure 14.14; the edges are
curved inwards or outwards along the plane of the rhombic faces of the hidden hypercubic lattice.
These three examples are embedded in the curved variants of the hyper-Schwarz surface. The
Schwarz surface is the three-dimensional case first described by Schwarz over 100 years ago,14
and the first example of a hyper-Schwarz surface was developed by Brisson.15 The
nonperiodic labyrinth embedded in the hyper-Schwarz surface was first described by
Lalvani.6

 
  Figure 14.19 shows Schwarz-type cells based on zonohedra (outer shells of hypercubes or
zonotopes) of dimensions 3,4, and 5. These cells can be used in various combinations to generate
periodic and nonperiodic labyrinths. Figure 14.20 shows variations of the cells in Figure
14.19.

 
  Figure 14.21 shows a single layer (on the left) from a nonperiodic curved-surface labyrinth
based on the upright or tilted prism version of the Penrose tiling. The prisms can be visualized
from the illustration in the middle. The space-filling cells of this labyrinth are shown on the
right.

 
  Figure 14.22 shows three types of cells based on the rhombic dodecahedron for periodic and
nonperiodic labyrinths; the openings can lie on any combination of the vertex, midedge,
or midface of the rhombic dodecahedron. The illustration on the left is a cell of the
hyper-Neovius surface, the higherdimensional analog of the one described by Neovius over 100
years ago. Figure 14.23 shows two versions of another cell, illustrated with connectors,
and

 
  Figure 14.21 A single-layered portion of the nonperiodic curved labyrinth corresponding to
the prism version of the Penrose tiling. The two small illustrations on the right show cells of
multilayered versions of the labyrinth shown on the left
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  Figure 14.22 Cells of labyrinths based on rhombic dodecahedra. The cell on the left is a
higherdimensional version of the cells in the labyrinth discovered by Neovius.
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  Figure 14.25 A cell based on a rhombic dodecahedron and composed of parallelogram-shaped
openings (shaded).

 
  Figure 14.23 Two variations of a cell of a labyrinth based on the rhombic dodecahedron
shown here with connector prisms.


 
  Figure 14.24 A periodic array of curved labyrinth composed of cells based on the rhombic
dodecahedron.
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  Figure 1426 A variety of cells for periodic and nonperiodic labyrinths having digonal
openings.

 
  also based on the rhombic dodecahedron. Figure 14.24 shows a periodic array of a
curved-surface labyrinth composed of cells based on the rhombic dodecahedron. Figure
14.25 shows a cell with parallelogram-shaped openings and also based on the rhombic
dodecahedron.

 
  Figure 14.26 shows a variety of cells for periodic and nonperiodic labyrinths with digons
(two-sided and two-vertexed polygons) as openings. Architecturally, digons (as well as
monogons) provide natural shapes of openings for tensile membranes. Frei Otto termed the
monogons as ‘‘eyes’’ in his tensile net for the German Pavilion at the Montreal Expo
held in 1967. Figure 14.27 shows three examples of labyrinths with digons; the one
on the top is periodic, the one on the bottom left is nonperiodic, and the remaining
could be either periodic or nonperiodic. Figure 14.28 shows two different cells with
digonal openings (on the left), each based on the truncated tetrahedron from which
tetrahedral connectors protrude. A periodic array using the cell on the top left is shown
alongside. A large variety of other structures composed of digonal openings are similarly
possible.

 
  Additional labyrinths can be derived from other layered and nonlayered periodic plane and
space fillings, and having plane or curved faces, following the labyrinth-generation method
described previously. Interesting cases are
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  Figure 14.27 Portions of periodic and nonperiodic curved labyrinths composed of cells with
digonal openings.

 
  Figure 14.28 Two types of truncated tetrahedral cells with digonal openings and curved
tetrahedral connectors with digonal ends; a periodic labyrinth based on one of the cells (on top
left) is also shown.

 
  the multilayered labyrinths composed of hyperbolic prisms in multilayered versions of
Poincare’s hyperbolic disk space. This concept was mentioned by Lalvani9 and one example is
shown in Figure 14.29. Other hyperbolic space labyrinths follow and are arranged in families in
analogous hypertables. Spherical, ellipsoidal, cylindrical, saddle-shaped, toroidal, and other
curved-space labyrinths in non-Euclidean curved space are similarly possible. The spherical and

cylindrical cases, based on periodic subdivisions of the sphere and the cylinder, were first
mentioned by Burt.10 A portion of a nonperiodic spherical labyrinth is shown in Figure 14.30.
Several possibilities are suggested in different parts of the illustration, and the concept extends to
all hypergeodesic surfaces developed by the author.16 Interesting cases are fractal
labyrinths where the surface of the labyrinth is itself a labyrinth, a process that can be
used recursively as well as self-similarly or randomly. One example is shown in Figure
14.31, where a saddle face of a Schwarz-type surface is composed of Schwarz-type
modules.

 
  Space labyrinths expand the repertoire of spaces and structures available to the
architect. Many of the labyrinths presented here, and elsewhere in the author’s work, are
mathematically new and await imaginative use as architectural space enclosures and
alternatives to building systems. These are presented here to display the exploratory and
open-ended nature of morphology, which can continually provide new possibilities for
design.

 
  Author’s Note

 
  Last year (summer of 1995), while curating the Buckminster Fuller Centennial Exhibit, the
author received two models of four-dimensional space labyrinths related to the 120-cell from Koji
Miyazaki. These models were displayed in the exhibition. In the same exhibition we also
displayed the author’s independent work on four-dimensional labyrinths.5,7,8 These
hyperlabyrinths, including those derived from the 120-cell, were included in the computer
drawing of our higher-dimensional periodic table of space structures, also shown in the
exhibition.

 
  Figure 1429 One example from a large family of single-, double-, and multilayered hyperbolic
labyrinths composed of hyperbolic prisms.
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  Figure 14.30 A portion of a nonperiodic spherical labyrinth; several alternatives are
shown.

 
  Figure 14.31 A saddle face of a fractal labyrinth where the face is itself a labyrinth
surface.
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15  Quasicrystal Architecture: The Space of Experience

Tony Robbin

 
  
15.1  INTRODUCTION

Whatever else architecture is, it is also geometry. If the geometrical concepts of a designer are
old-fashioned, then no matter how elegant a building is in its details, it cannot help but look a
bit recycled. We live in an era of marvelous new geometries, and it is the purpose of this chapter
to demonstrate to architects and engineers the value of considering these modem geometries as
the basis of new architecture.

 
  GEOMETRY AND ARCHITECTURAL SPACE

 
  It is a human capability to see the fourth dimension; exotic geometries such as three-dimensional
hyperbolic manifolds and quasicrystals can become natural, effortless models of experience.
Indeed, they must become so because

 
  Beyond the Cube: The Architecture of Space Frames and Polyhedra, edited by J. Francois
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  human experience at the turn of the 21st century is far too complex and omni-attentive to fit
comfortably in an old-fashioned model of three-dimensional rectilinear space. We designers of
spaces that people inhabit—artists, architects, and engineers—owe it to our audience to make
spaces that enhance our capability to visualize the four-dimensional, hyperbolic, fractal, and
quasicrystalline world that we are really living in.

 
  Consider engineers first. Most engineers would reject such a directive; their duty is not to
make mathematical spaces visible and comprehensible but primarily to be efficient and
only secondarily to be artistic, a goal considered to have nothing to do with esoteric
geometries. (It goes without saying that public safety is the foremost duty of engineers and
architects.) However, do engineers really act as though efficiency is more important than
aesthetics? As Ariel Hanaor has pointed out, space frames, tensegrity systems, and
other popular engineering concepts are not necessarily the most efficient solutions in
either labor or materials.1–3 Membrane combinations can easily cost more than $100 a
square foot of installed coverage; some nodes of the tensegrity roof in Atlanta weigh

two tons; and free-form shells require troublesome single-use formwork. Is it possible
that engineers select options on the basis of aesthetics first and efficiency second?
From my experience talking with many of the world’s great engineers at engineering
conferences in Copenhagen, Surrey, and Atlanta, I am convinced that tastes drive
engineering as surely as the science of new materials and new engineering systems drive
architecture. Therefore, it is important for engineers to understand that a great source
of new aesthetics, I believe it is the only true source, is the idea of space found in
contemporary mathematics (including morphology studies) and physics. Designers should feel
permitted to explore the aesthetics of mathematical space, how the subjective space of
experience and the objective space of contemporary physics and mathematics mutually
reinforce each other, and substitute this sophisticated understanding for the knee-jerk
minimalist aesthetic still popular among engineers but abandoned by almost everyone
else.

 
  Architects and artists also resist such a directive. They fear that to explore the intellectual
world of mathematics and physics is to submerge sensibility; or (they might say) that to submit
to the rigors of geometry is to resign one’s creations to a boring repetitive simplicity that is
totally out of character with the self-referential, ironic, and mock-heroic styles now in fashion.
These assumptions are false. The new geometries are not repetitive, nor rectilinear, nor
simplistically grasped by the mind. Instead, they promote a sensual involvement, an
intriguing, intuitive relationship with space. Furthermore, the mock-heroic may be fun at
first, but a building is an expensive way to tell a joke and most jokes do not bear
revisiting. Architects love theory; they should perceive new geometries as the liberating
theories they are, rather than the constraining rectilinear boxes they most certainly are
not.

 
  Two examples from history may demonstrate that space in art, space in architecture, and
coeval space in mathematics are alike. Alberti’s St. Andrea in Mantua, built in 1470, was an
astoundingly original building, capturing the imagination of patrons and architects for centuries,
and becoming the model for such divergent buildings as St. Peter’s in Rome and Grand Central
Station
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  Figure 15.1 With St Andrea in Mantua, Alberti revolutionized architecture by using the
conception of space created by the mathematics and science of his time.


 
  in New York. The concept that so excited onlookers was that both mass and void could
be sculpted: Both building and air had substance, both were plastic elements that
could be manipulated, interlocked. This was very different from the planar and linear
Gothic architecture where tracery planes prop each other up. In both Gothic and
Renaissance architecture, the detailing of the walls and facade reinforce the concept of space;
the flat patterns of the stained glass or colored marble of the Gothic contrast with
the blocks and hollows of the Renaissance. Alberti formed his new building space
when ideas of space, in general, were changing. Masaccio’s paintings put humans in
space, in the same space as gods, and Leonardo (a few years later) first studied air
as material capable of filtering light. Space was no longer the zero-density symbol
and body of a god, but earth-bound stuff under human control, defined by the very
new, human-oriented, instantaneously fixed projective geometry, also pioneered by
Alberti.

 
  The Eiffel 'lower (1889), too, was a work of mathematical space as much as a work
of iron. Eiffel depended on new calculation techniques to sum over the forces of so
many members in so many directions in three-dimensional space, but more than that,
mathematics and physics presented Eiffel with a concept of space as a force field that he
could use in a more conceptual way. Maxwell’s field equations of 1864, made part of
popular culture in the famous 11th edition of the Encyclopedia Britannica (1875–1889),
demonstrated how small local forces could aggregate to effect action at a distance, like
metal filings on a sheet of paper over a magnet. Indeed, it was suggested that all the
space of the world was filled with field: an active multidirectional ether capable of
inducing powerful forces on test particles: ‘‘…that there is an ethereal medium filling
space and permeating bodies, capable of being set in motion and of transmitting that
motion….’’4 To build his tower to the sky, Eiffel had only to select and stack elements of
this force-field space, confident that a solid core to the top of the tower would not be
necessary.

 
  In his paintings of the period, van Gogh abandoned the delicate atmospheric perspective of the
French naturalists and even the more robust atmospherics of the impressionists to construct
instead a space packed with texture, color, and brush strokes freed from their role of describing
objects, free to act on their own and influence one another. His Night Cafe (1888) presents space

as a pressure chamber with tilted-up floor and pressed-in walls, thick with radiation powerful
enough to overwhelm the inhabitants. Thus the space-as-field that was created by
science at the end of the 19th century became the space of both architecture and
painting.

 
  The ‘‘two cultures’’ hypothesis is incorrect: Even if art and science no longer study each other
directly, reciprocal influences and the sharing of basic paradigms are inevitable. Practitioners
often think they are in a private tradition: Mathematics comes out of mathematics; architects
work from the example of other architects. However, mathematicians and architects are
both in culture, liberated and constrained by the same cultural constructs; it never
happens that Gothic architecture is developed in a culture also working on the physics of
relativity.

 
  THE FOURTH DIMENSION

 
  To begin the study of space in our culture, we must first realize that the fourth dimension is
not time; it is another dimension just like the other ones. On a pool table the third dimension is
time. On a map the second dimension is north. We must not confuse the applications
of geometry with the geometry itself. Think not of space-time, but of four mutually
perpendicular fines intersecting at a point, the axes of a grid on which space and time
dimensions could be plotted, or on which any other four scalar variables could be
plotted. Points in the four-dimensional grid can be connected to make regular geometric
figures, analogous to the Platonic solids: As the square begets the cube, the cube begets
the hypercube; as the triangle begets the tetrahedron, the tetrahedron begets the
four-simplex. For over a hundred years, mathematicians have studied these four-dimensional
figures, the four-dimensional polytopes, and have been stimulated by efforts to visualize
them.

 
  Now the effort is far more manageable. Computers can show us the projections, the shadows, of
the four-dimensional polytopes and show us how the projections deform when the polytopes are
rotated in four-dimensional space. Henri Poincare repeatedly suggested that successive models of
the projections of four-dimensional figures when seen in sequence could lead to a vision of the
fourth dimension, a geometry no more or less true or sacrosanct than any other ‘‘convenient’’
geometry. Since the late 1960s, numerous researchers have written computer graphics programs
that carry out Poincare’s suggestion, some in real-time motion and with binocular vision
(including one such useful program written by the author). As a result, this once arcane branch
of


 
  [image: PIC] Figure 152 Eight hypercubes are stacked around a central hypercube and drawn in
perspective. All the cells of all the hypercubes are the same size and shape; those farthest away
are shown to be

 
  smaller.

 
  mathematics is accessible to all. Often misunderstood and filled with romance and mysticism,
the idea of the fourth dimension has inspired artists, writers, and philosophers since the early
part of this century. Now that nonmathematicians can know the real—the geometric—fourth
dimension, much more profound inspirations await us.

 
  It is important to realize how pervasive four-dimensional geometry is in contemporary
mathematics and physics. Relativity, cosmology, and quantum physics take place in varieties of
four-dimensional space. Few problems in modern geometry, such as linear programming or
three-dimensional topology, can avoid reference to a higher-dimensional space. Like calculus,
higherdimensional geometry is part of the basic conceptual tools of mathematics, part
of the furniture. I suppose individuals differ in the degree to which they take these
higher-dimensional spaces to be literal spaces as opposed to abstract bookkeeping devices, but
to be efficient, to gain an intuitive and insightful mastery, some sense of the reality,
the objecthood, of these higher-dimensional structures and spaces is necessary and
inevitable.

 
  SEEING THE FOURTH DIMENSION

 
  For the last 25 years, my painting and sculpture have been dedicated to the principle that
four-dimensional geometry can be and should be the operating model of the space of our
experience. In Fourfield, a 27-foot wall relief completed in 1981,1 used two-dimensional and
three-dimensional elements working together to provide the visual information of four spatial
dimensions, the space defined by four mutually perpendicular lines.

 
  It is true that we possess no biological organ capable of seeing the fourth dimension directly;
however, that is not such a limitation as one might imagine, considering that we have
no organ capable of seeing the third dimension directly either. By the time that a
three-dimensional object reaches our eyes, it is a flat wavefront of light, a changing
two-dimensional pattern that we nevertheless experience as three dimensional, an
experience primarily due to cultural conditioning. Two-dimensional projections of
three-dimensional structures, say a lattice cube, are full of paradox. As the cube is
rotated, the shadows swim through each other; lines we know to be perpendicular to two

other lines instead bisect them; lines of constant length grow and shrink; lines hide
whole faces. It is precisely these paradoxes that give us the visual information that
we are seeing a three-dimensional object and not just an intricate two-dimensional
pattern.

 
  Changing characteristic projections from four-dimensional space are as effectively
communicative of four-space as are projections of three-space. However, only planar rotations are
characteristic in this way: A plane can rotate around a point; a three-dimensional cell can rotate
around a line; only an object in four-dimensional space can rotate around a plane, a particular
action best revealed to us by Thomas Banchoff in his pioneering film The Hypercube, Projections
and Slicings (1979). It is precisely this planar rotation that I have captured with the simple
formal device of using welded steel rods the same color and dimension as painted lines that are
made with half round skeins of thick paint. As one passes by Fourfield, the three-dimensional
elements parallax, but the painted lines do not, yet both are perceived to be part of the same
rigid object. All the paradoxes of planar projection and rotation are present in Fourfield.
Parts of rigid three-dimensional objects move relative to one another and pass through
each other without interference (two objects are in the same place at the same time);
cells grow, shrink, and disappear altogether, hidden behind lines. It is precisely these
paradoxes that prove that we are witnessing a four-dimensional experience and not
merely an intricate three-dimensional one. With practice, that four-dimensional visual
experience
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Figure 15.3 Fourfield, based  on  four-dimensional  geometry,  replicates  the
experience of a four-dimensional planar rotation as the viewer walks by. (Acrylic
on canvas with welded rods, 8.5x27x1.5 feet. Collection: The General Electric
Company, Fairfield.)
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  Figure 15.4 A detail of Fourfield shows that the image is composed of three-dimensional
elements, welded steel rods, and two-dimensional elements, painted lines, that work in
concert


 
  can become as natural, as automatic, as the seeing of three-dimensional space.5 In my light
pieces of the late 1980s, I have pushed the same formal strategy a step further. Because both the
three-dimensional elements and the two-dimensional elements of the rod/canvas pieces are
shadows from the fourth dimension, it is elegant to have the two-dimensional elements be
the actual cast shadows of the three-dimensional elements. We still walk around the
three-dimensional welded steel rods, and still the two-dimensional elements are unaffected
by our movement, being a function of the fixed fights and the fixed rods. However,
now, two lights, one red and one blue, illuminate the piece, and where they shine
together they make white light, and where a rod blocks the red light, a blue line is
created, and vice versa. The different colored lights are each filtered separately by
assorted Plexiglas plates. The simple piece is filled with various colored planes and
colored lines, two-thirds of which are only light—a painting of light. Three-dimensional
glasses can be worn, and the two-dimensional elements of red-and-blue shadows fuse to
become a three-dimensional structure more present and closer to the viewer than the
welded steel boxes; the paradoxes of planar rotation are dramatically and unmistakably
created.6

 
  A QUASICRYSTAL FOR DENMARK’S COAST

 
  As Haresh Lalvani and Koji Miyazaki have separately pointed out, quasicrystals are the
three-dimensional projections of higher-dimensional objects. In fact, they are regular and rational
in their original space and only take on quasicrystalline properties as a result of their projection
to three-dimensional
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  Figure 15.5 In the light pieces the two-dimensional components of the image are the colored
cast shadows of the three-dimensional elements. The shadows are colored because the work is lit
by strongly colored blue and red lights. (Untitled #1,1986, welded steel, acrylic, and colored
light, 35 inch diameter.)

 
     

 

     
space.7–9 All the visual richness of four-dimensional geometry is here: multiple
objects in the same place at the same time, objects appearing and disappearing
by rotation, objects passing through one another without interference. Thus
quasicrystals can be seen as an application of four-dimensional geometry, and,
for us three-dimensional beings, a way to experience and communicate a greater
awareness of four-dimensional space.

 
In 1993 I made a large sculpture based on quasicrystal geometry for the Center
of Art Science and Technology at Denmark’s Technical University. This new
geometry is only 15 years old and has four interesting properties that make
it fundamentally different from all previous patternings. First, a quasicrystal
is nonrepeating; although it fills space with standard elements, it confounds
our expectations by repeating elements only at irregular intervals. Second, it
has simultaneous fivefold, threefold, and twofold symmetry, which means that
sometimes it appears to be made up of right angles, other times of triangles,
and from still other vantage points it appears to be made up of star pentagons.
This multiplicity of image results, in part, from using dodecahedra for nodes,
as Steve Baer first did in the early 1970s, followed soon after by Miyazaki.
Third, a quasicrystal is assembled from intermediate groupings; the four golden
zonohedra (a skewed cube, a rhombic dodecahedron, a rhombic icosahedron,
and a rhombic triacontahedron, all with faces whose diagonals are in the golden
ratio). These geometric solids float in the quasicrystal. Finally, the components
of a quasicrystal subdivide into smaller self-similar elements, something like a
fractal foliation. There are two such deflations in the sculpture: one with the
golden ratio, 1:t, and another l:r3.

 
The three-story atrium of the Danish Technical University is an ideal set
ting for such a quasicrystal sculpture. Open stairs and two bridges allow the
viewer  to  pass  under,  over,  around,  and  through  the  work,  and  to  happen
upon the many and unexpected occurrences of fivefold, threefold, and twofold
symmetry. In winter, sunlight is caught by mirrored plates and reflected down
into the room and into the sculpture. Half mirrors on the bottom of the work
reflect crisp moving colored light paintings onto the walls and the ceiling of
     
the space. In summer, direct sunlight passes over the sculpture, casting direct
shadows onto the floor that transform from fivefold to threefold to twofold
images as the sun passes overhead. Finally, on cloudy days, six strong artificial
lights illuminate the morning, noon, and afternoon patterns.
 


  The sculpture is in four parts, each of which illuminates one of the special qualities of the
quasicrystal. First is the dome: From above the fivefold symmetry of this structure is apparent,
but from below we see the near chaos that is inside. A large pinwheel shape is opposite the dome.
There are 15 ways that a rhombic dodecahedron can be oriented in a quasiciystal, and this spiral
pinwheel is composed of those 15 dodecahedra. The snake is a curvaceous, linear section that
connects the dome and the pinwheel. It is based on three five-petal flower shapes, and from
above it presents a perfect Penrose pattern.10 Finally, there is the large-scale section, based
on the 1:t5 deflation discovered by the Japanese physicist T. Ogawa. Like a fugue,
the geometry breaks apart and appears to run wild, only to converge again at key
nodes.

 
  Imagine a quasicrystal architecture. When approaching the structure from the east, squares
and cubes are seen; when the car passes by to the north, the structure has the fivefold symmetry
of a Penrose pattern with star pentagons; moments later looking back from the northwest, the
structure is not only a different overall shape but appears to be made up of triangles, hexagons,
and 60° parallelograms. The structure as kaleidoscope is never more apparent than when the sun
casts shadows through the structure; truss systems make triangular nets that slide across the
floors and walls, while quasicrystals transmute to an astounding variety of shapes all
through the day. This kaleidoscope is the protean space of our experience of the world,
suggested to us by our understanding of the objective world, reinforced in us by the
multiplicity of images and media imploding on us. Why insist on a mechanistic, repetitive
structur-
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Figure 15.6 A computer drawing of a quasicrystal dome shows the patterns of
the dome on the floor as they change from morning, to noon, to afternoon.
 



  Figure 15.7 Shadows at noon from a model of a quasicrystal space frame make a
two-dimensional quasicrystalline pattern—sometimes called a Penrose pattern.
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  al pattern? Why nudge toward this vision with little, ironic architectural gambits when the
tools are at hand to master such a vision.11,12

 
  Because engineers make design decisions on the basis of their aesthetics, they owe it to
us all to become more conscious of their aesthetic choices. Because architects live in
culture, they owe it to us all to help us experience the spaces we mentally inhabit.
Problems arise when the idea of beauty is anachronistic; if the public feels that its built
environment is less vital than its conceptual environment, then buildings become a drag on
consciousness. It is as if the engineers of France were to present the people of the
United States with a full-scale replica of the Statue of Liberty, only one made with
inflated
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  Figure 15.8 The plans for the two cells that make up all three-dimensional quasicrystals. By
photocopying, cutting, and folding the patterns to the right, the reader can begin to build
quasicrystals.
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  Figure 15.9 Quasicrystal at COAST. A view of the dome and snake from the first floor.
(Aluminum and acrylic, 17 x 10 x 8 m, 1993. Collection: COAST at the Danish Technical
University. Photo: Poul lb Henriksen.)

 
  Figure 15.10 View from the back of the large-scale section of the COAST sculpture.
(Photo:

 
  Poul lb Henriksen.)

 
  plastic sheeting. A technological marvel perhaps, but one that mocks history and mocks the
current audience. Such a joke would not be funny for long; but what would linger is a sense of the
abdication of designers to make culture new. Three-dimensional geometric space frames of the
Eiffel Tower variety are a similar abdication; they come from another time and were fresh in a
context long past. We have our own discoveries of space to make, based on the mathematics and
physics of our own time.
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  Figure 15.11 A detail of the dodecahedral nodes and standard-length rods that make up the
nonrepeating patterns in quasicrystal space frames.
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  Figure 15.12 The first proposal for COAST was an exterior structure, a canopy that
appeared to change its shape as one passed by.

 
  northwest
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16  Are Space Frames Habitable?

J. Francois Gabriel

 
  
16.1  INTRODUCTION

The preceding chapters offer good arguments in favor of an architecture of polyhedra. The
purpose of this chapter is to look at the spaces within, the spaces we would be living in.
Are they practical, comfortable, pleasant? Are they varied as well as versatile? Can
they be flooded with sunlight? Can they accommodate our furniture, our tools, the
equipment on which we depend? In other words, are they as good as our conventional
rooms?

 
  Most of us live and work in rooms whose shape approximates a cube. Since we spend a
lifetime in variations on the cubic theme, we have come to take it for granted that a
cube, or a near-cube, is the best shape for a room, in fact the only possible shape
for it. We know that generations of other cultures have dwelt successfully in yurts,
tepees, and igloos, but few of us would seriously entertain the possibility of living our
present lifestyle in one of these. Is it possible to take a rational look at our conventional,
‘‘square’’ dwellings and learn to distinguish between the features that respond to our real
needs, practical or emotional, and what is around us thoughtlessly, simply by force of
habit?

 
  As you can probably see by looking around you from where you are sitting right now, a
conventional room is characterized by a horizontal floor and a number of vertical planes: walls,
partitions, doors, and windows. There is a logic to that, as gravity makes us stand vertically for
balance, and it is easier for the average person to evolve on a horizontal floor than on a slanting
one. It also feels good to be surrounded by a modicum of vertical surfaces, for reference or for
reassurance. What is not necessary at all is a horizontal ceiling. In fact, the best architecture is
more often than not distinguished by shapely roofs or vaults. And what is even more unnecessary
is that all the walls meet one another at right angles. We need to orient ourselves easily
and to know where we are, and therefore we need an orderly environment, but many
orderly environments can, and have been, designed that do not rely on rectangular
plans.


 
  It is true that we, the people (for whom architecture is made), have a front, a back, and two
sides. When life used to be structured around the sun cycles and when religion was
unquestioned, to build a room on a square plan was a meaningful, indeed a sacred act.
For better or for worse, neither the sun nor religion controls modern life today. The
survival of rectangular rooms and buildings is just that: a survival. This is not to
say that rectangular spaces are fundamentally wrong. Superb architecture has been
generated on a rectangular basis and will undoubtedly continue to be. The points I am
trying to make are simply that there are many other avenues to explore in the making
of architectural space, and that we deprive ourselves of rewarding experiences when
we fail to explore and experiment. Furthermore, many aggregates of polyhedra, in
particular, all those discussed in this chapter, do fit in an orthogonal axial system
and accept bilateral symmetry as naturally as any buildings conceived on rectangular
plans.

 
  An important issue to consider when discussing the essential aspects of a room is its height.
Ideally, the height of a room should not be considered independently from the shape of its roof.
However, most buildings consist of several stories piled up on top of one another and, for reasons
of economy, the floor of a room will often be the ceiling of the room underneath. The
minimal height is determined by the necessity for even tall individuals to stand up,
move about, and wave their arms around without hitting the enclosures. Eight feet in
America and 2.5 m in Europe are the standard heights, although some architects are
unhappy with such rigid constraints. Frank Lloyd Wright, for instance, ordered a ceiling
height of 6 feet, 4 inches in the vestibule of his marvelous design for the famous house
Fallingwater.

 
  However, there is no upper limit to the height of a room, not only because some of them must
contain large objects, but because others might be tall to express an ideal: Have you
ever heard anybody complain that the 40-m-high nave of a Gothic cathedral is too
high? Probably not. Indeed, the art of architecture does not consist in packing the
most in the smallest possible amount of space. It is rather the art of wasting space
wisely.

 

  

 

16.2  INSIDE POLYHEDRA

In this chapter polyhedra will be discussed from an architectural standpoint, an important
part of which concerns, naturally, their habitability. There are so many polyhedra
and combinations of polyhedra with architectural possibilities that a selection had to
be made for our case study. Only two polyhedra were retained: the tetrahedron and
the octahedron. In fact, a further restriction proved necessary: Our two polyhedra
will be examined with their position remaining constant with regard to the ground.
What we learn from these two will increase our understanding of any other polyhedral
combination.

 
  There are several reasons for selecting the tetrahedron and the octahedron. One is that they
are the simplest of all polyhedra. Another is that they can together organize space, something
that neither one can do individually. If a tetrahedron is placed on each face of an octahedron,
clones of the octahedron will fit perfectly against the exposed faces of the tetrahedra. The
process can be repeated indefinitely, producing what is called an infinite structure (Figure
16.1).

 
  What may appear to be a digression will be useful here. The names given to polyhedra indicate
the number of their faces. Thus we know from their names that a tetrahedron has four faces and
an octahedron has eight. However, if all the faces were removed and only their edges
remained, the three-dimensional configuration would be essentially the same. Only our
perception changes. What we understood as an aggregate of solids is now a space
lattice.
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  Figure 16.1 Octahedra and tetrahedra can organize space without gaps or overlap when the
faces of the octahedra are in contact with the faces of the tetrahedra. In this top view, polyhedra
are pulled apart to show that an octahedron (0) is surrounded by six tetrahedra, three of them
straight side up and the others (T) upside down.

 
  Both are infinite structures; in fact, they are the same. (The reader who is not familiar with
this space lattice will probably experience difficulties at this point. Alan Holden would
recommend the making of a model. As he says: ‘‘The best way to learn about these objects is to
make them, next best to handle them.’’11 would recommend the use of wooden toothpicks, the
round sort that are tapered at both ends. Assemble them with a good glue and keep in mind that
accuracy is important.)


 
  We are interested in the spaces found within our tetrahedron-octahedron space lattice. They
are our ‘‘rooms.’’ What shapes are they? The answer depends on the position of the space lattice
with regard to the ground. When the struts found in horizontal planes meet at right
angles, the space lattice is called a two-way space frame, and all the rooms are in the
shape of cubes.2 When the horizontal struts form triangles, the space lattice is called a
three-way space frame, and all the rooms are in the shape of hexagonal prisms (Figure
16.2).

 
  Most people are already familiar with the cube, and the object of this book
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  Figure 16.2 A three-story aggregate of octahedra and tetrahedra with faces deleted. Only
edges remain, in the form of struts, to form a space lattice, or space frame. Because the
horizontal struts are arranged in triangles, this is called a three-way space frame. A
honeycomb pattern of hexagonal rooms is obtained by the addition of vertical planes against
the diagonals, which are the struts connecting one floor to the next. (Source: J. F.
Gabriel, ‘‘Three-Dimensional Suburbs,’’ Proceedings of the IASS World Congress on
Space Enclosures, P. Fazio, G. Haider, and A. Biron, eds., 1976, pp. 89–99, Fig. 3.
Reprinted with permission of the Centre for Building Studies, Concordia University,
Montreal.)

 
  is to present other, lesser known spaces, waiting for discovery inside polyhedra. We will
therefore abandon the two-way space frame and its cubic spaces to focus our attention
exclusively on the three-way space frame. How exactly are the hexagonal spaces seen in Figure
16.2 obtained? Simply by applying a vertical surface (wall panel or cladding) to the struts that
connect one floor to the next. These struts are called diagonals, and the floor structures
they connect are referred to as chords. Spatially, we have gone from an aggregate of
octahedra and tetrahedra to a honeycomb pattern: Each octahedron has increased
in size and volume by absorbing, as it were, a third of the volume of six adjacent
tetrahedra.

 
  The natural place for doorways is where diagonals form ‘‘A-frames,’’ that is, where three
diagonals are joined by their upper extremities. Three doorways can be found in each hexagonal
room, in alternate comers, and each doorway gives access to two other rooms (Figures 16.2 and
16.3).


 
  For my studies I have usually adopted a regular octahedron with an edge length of 4 m. A
standard octahedral frame of that size would provide a rather small but adequate room within.
The corresponding floor-to-floor height will be 3,266 m. Headroom will be ample regardless of the
depth of the floor structure itself, which depends on many factors such as building materials,
building program, size and shape of the overall structure, climate, and so forth. The width of
the room, measured between parallel walls, is 4 m and, measured diagonally, 4.62
m.

 
  In many cases it will be possible to give hexagonal rooms what might be a more pleasant
height-to-width ratio by decreasing their height. The angle between a diagonal and the floor
plane is 54° 44' 8". Reducing this angle to 45° might improve the proportions of the
space within and have the advantage of squaring off the vertical faces of hexagonal
prisms.

 
  With this said, it should be clear that a space frame of appropriate depth meets the basic
requirements for habitability. Horizontal floors, headroom,
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  Figure 16.3 Three diagonals meeting overhead provide the space for doorways. This occurs in
alternate corners of each hexagonal room, that is, three times per room. Thus each room can
have access to six others.

 
  vertical walls, accessibility are necessary in buildings, but are these conditions enough? Can a
space frame accommodate vertical shafts, or wells, of varied cross section wherever they are
needed? We will address the problem of fitting stairs, elevators, and flues, without which
buildings are not viable, in the next section of this chapter.

 
  At this point, a word of clarification is in order. This chapter is written by an architect and is
about architecture, not structure. Of course, structural considerations should never be ignored
altogether, especially since they are an important argument for the increased use of space frames,
but here they are looked at in their broadest general aspects. Space frames are attractive to me,
as an architect, because their geometry makes them essentially indeformable. They are
lightweight structural frameworks made versatile by their structural redundancy. They lend
themselves to the design of large buildings, the form of which could not be obtained otherwise,
and they can provide the answer to many difficult urban problems. They are modular and
therefore orderly. They can be produced industrially, and they can be designed for
reuse.


 
  

 

16.3  

CUMBERSOME CHORDS

 
  Unlike the conventional post-and-beam system, which is three directional, our space lattice is a
six-directional system. Seen from above, a multistory, three-way space frame presents an intricate
mesh. The introduction of vertical shafts would be very difficult, for it would require
the elimination of considerable portions of the space frame. It would also lead to a
breakdown of the system because chords and diagonals would not be lined up (Figure
16.4).
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  Figure 16.4 Top view of a multilayer, three-way space frame. Although the chords are all
made of the same triangular pattern, they shift with the diagonals from floor to floor with the
end result a complicated, obtrusive mesh. The insertion of vertical shafts is difficult. Many
structural members would have to be removed, opening up irregular spaces that do not coincide
with the vertical surfaces of shafts.

 
  With the reader’s permission, I would like to make a recommendation. Visualization of the
six-directional space lattice is not easy to achieve for one who is not thoroughly familiar with the
morphology of noncubic configurations. It requires patience. To avoid fatigue and
discouragement, I would suggest that the reader go over the drawings with color pencils and
tracing paper until the spatial relationships described in this chapter become clear and
familiar.

 
  The next drawing represents the same configuration as Figure 16.4, also seen from above, but
with the chords deleted. Only diagonals are shown, up
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  Figure 16.5 Top view of the same configuration as in Figure 16.4, with the chords deleted.
Diagonals are shown up to two-thirds of their height and attached to a joint at their lower
extremity. Instead of identifying consecutive floors with numbers such as 1,2, and 3,1 prefer to
use the letters L, M, and U, referring to lower, median, and upper levels. One sees
that the L-M-U sequence is complete and will repeat itself again and again as the
structure goes up. The honeycomb pattern formed by the diagonals on every floor
can be clearly seen. The triangular pattern resulting from the horizontal projection

of the diagonals indicates that vertical shafts could be found anywhere, as long as
the chords are not allowed to interfere. Chords can indeed be modified in order to
superimpose exactly with the diagonals. As long as the floor joints continue to be
connected by a triangular grid, no weakening of the structure will ensue. (Source: J. F.
Gabriel, ‘‘Three-Dimensional Suburbs,’’ Proceedings of the IASS World Congress on
Space Enclosures, P. Fazio, R Haider, and G. Biron, eds., 1976, pp. 89–99, Fig. 11.
Reprinted with permission of the Centre for Building Studies, Concordia University,
Montreal.)
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Figure 16.6 Vertical shafts can be inserted anywhere in a three-way, multistory
space frame without interfering with either chords or diagonals when the chord
pattern is made to conform with the horizontal projection of the diagonals. A
larger shaft, such as is shown on the right, would only require the elimination of
one diagonal on every third story. The profile of the chord elements is modified
in  response  to  the  different  loading  conditions  that  affect  inhabited  space
frames, as opposed to space frames simply used to cover or enclose large, open
spaces. (Source: J. F. Gabriel, ‘‘Habitabilite des structures tridimensionelles
a  I'echelle  urbaine,’’  Techniques  et  Architecture,  No.  309,  Paris,  1976,  pp.
110–112, Fig. 6. Reprinted with permission.).
 


  to two-thirds of their height, and attached to a joint at their lower extremity (Figure 16.5). A
triangular pattern is formed by the horizontal projection of the diagonals. If the chord pattern
could be made to conform with that of the diagonals, triangular wells could be introduced
anywhere in a three-way space frame and this without interference from either chord members or
diagonals. It so happens that this can be achieved quite easily: Chords -will superimpose precisely
'with the diagonals when they are rotated 30° in their own plane, which is, of course, the
horizontal plane (Figure 16.6).


 
  Triangular shafts obtained from this simple operation measure 2.31 m on the side. A large
elevator could fit comfortably in a shaft of this size, and any number of shafts can be created
anywhere, either in bundles or scattered throughout the structure. It should be underlined that
triangular elevator cabins are more efficient than rectangular cabins, for they fill up and empty
faster.

 
  For stairs, larger wells can be made by opening up several triangular shafts onto each other.
This requires the elimination of some diagonals, but remaining chords and diagonals will always
coincide with the ‘‘walls’’ of the shafts, whether their shape is a triangle, a hexagon, or a
parallelogram.

 
  We are interested in lived-in space frames and polyhedra, where loading conditions are quite
different from those in single-or double-layer space frames used to cover large, column-free
spaces, such as sports arenas or convention centers. Our new floor structure reflects this
difference in a new, tapered profile. The floor structure itself is fully triangulated in all
directions. Its configuration is of the space frame type, and the elimination of certain portions of
it would not compromise its geometric rigidity.

 
  The tapering of the floor structural elements, added to the minor modification performed on
the chords, open up a number of architectural and structural possibilities, some of which are
described in the following sections.

 
  

 

16.4  THE HEXMOD: ITS MORPHOLOGY

This chapter began with a description of the space frame considered as an aggregate of octahedra
and tetrahedra. These shapes are also called geometric solids and, for that reason, they are
unfortunately perceived not as spaces but as solid masses. Because we are interested in them as
voids, it will be useful to
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  Figure 16.7 Originally, the diagonals represented the edges of octahedra and tetrahedra, but
that reading has been replaced by a new one. When vertical planes are placed along the
diagonals, a honeycomb pattern is created. Doorways find their place where diagonals meet on an
upper joint. Each doorway gives access to two other hexagonal rooms. Because there are

three doorways in each room, each room has access to the six rooms that surround it.
(Source: J. E Gabriel, "Space Frames: The Space Within-A Guided Tour,’’ International
Journal of Space Structures, Vol. 1, No. 1, 1985, pp. 3–12, Fig. 3. Reprinted with
permission of Elsevier Science Ltd, The Boulevard, Langford Lane, Kidlington 0X5 1GB,
UK.)

 
  think of a space frame as an infinite structure of hollow ‘‘geometric solids.’’ I have already
dispelled the myth that the spaces within must of necessity be in the shape of either a
tetrahedron or an octahedron. This was done by showing that a space frame can form a
honeycomb (Figure 16.7).

 
  Now, a honeycomb may satisfy the crudest needs for shelter, but it can hardly be
expected that a honeycomb will have the malleability required by the complexity and the
variety of our building programs. All the rooms cannot be the same shape and the same
size.3

 
  Is it possible to ‘‘open up,’’ as it were, the honeycomb pattern and not lose the structural
strength of the space frame, which is one of the main reasons for our interest in them? One of the
major differences between the post-and-beam structural system and the three-way space frame is
this: Whereas there can only be one vertical column in one place in the former, there are
normally three diagonals in the latter. This may be redundant under certain conditions, but it
must be remembered that diagonals do more than carry loads; they ensure the rigidity
of the structural framework. It is conceptually possible to eliminate in a systematic
way some of the diagonals from the framework without compromising its geometric
rigidity.

 
  Once again, this chapter is concerned with concepts and speculation, and one should, of course,
never forget that the safety of structures depends precisely on their redundancy. Changing winds
and seismic effects create load reversals that must be met somehow.

 
  What if we assumed that the standard cell of our honeycomb is a building block? It is, after all,
basically an octahedron, which is indeformable. From the antiprism that it was, it has been
transformed into a hollow, hexagonal prism.
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  Figure 16.8 The framework of a hexagonal room can be considered as a building block called
a hexmod. Instead of remaining tightly packed, the building blocks are here separated by a
distance equal to their width, that is, 4 m. This redistribution lets architectural space flow
around freestanding hex-mods. The lower left area of the drawing shows where the eliminated
diagonals used to be. The new, open pattern uses only one-half of the original number of
diagonals.

 
  However, it is still a geometrically rigid frame. We call it a hexmod because it is a module and
it has a hexagonal plan. What if we distributed hexmods on a horizontal base, 4 m apart (which
is also their width) and on a repeating pattern of hexagons and triangles? The spatial
transformation is radical and can be appreciated by imagining ourselves standing between
‘‘building blocks’’ and looking around: We can see between building blocks and our line of vision
is uninterrupted in six directions (Figure 16.8). An axonometric drawing of one story will help us
to better understand the relationship between all the elements of the structure. Three joints of
the upper floor, out of four, are still supported, but instead of each joint being supported by
three diagonals, it is now supported by two. This means that half the diagonals can be
eliminated. A hexmod sits on three others, situated on the floor below, and shares one
of its three lower joints with each. Likewise, a hexmod shares its three upper joints
with three hexmods situated on the floor above, helping to support them (Figure
16.9).

 
  A hexmod consists of six diagonals connecting two very similar hexagonal frames, one
forming the floor of the hexmod and the other forming its roof. These frames are called,
respectively, the lower cap and the upper cap of the hex-mod, or LC and UC (Figure
16.10).
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  Figure 16.9 The six diagonals of a hexmod connect three lower joints to three upper joints. In
a regular, multilayer space frame, a joint would receive six diagonals, three underneath and three
above the joint In the new pattern, a joint receives only two diagonals from above and two from
below. For greater visual clarity, the tops of the hexmods are deleted on both upper and lower
floors. (Source: J. F. Gabriel and J. Mandel, ‘‘A Space Frame Building System for
Housing,’’ Proceedings of the Third International Conference on Space Structures,
H. Nooshin, ed., Elsevier, London, 1984, p. 1054, Fig. 5. Reprinted with permission
of Chapman and Hall, Cheriton House, North Way, Andover, HANTS, SP10 5BE,
UK.)
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  Figure 16.10 A building system based on the hexmod building block requires an inventory of
only two components, the hexmod itself and a hexagonal subassembly, called a complementary
cap, that is used to connect hexmods with one another. It is called CC, while the upper and
lower caps of the hexmod itself are called DC and LC, respectively. The drawing also shows
a stairs component. Although not structural, it is an indispensable element of the
building system. It fits within a hexmod and does not require the elimination of any
diagonals to be functional. (Source: J. F. Gabriel and J. Mandel, ‘‘The Application of
Lightweight Modular Structures to Housing,’’ in Housing, the Impact of Economy and
Technology, 0. Ural and R. Krapfenbauer, eds., Pergamon Press, 1981, p. 65, Fig.
1.)

 
  Another subassembly contributes to the building system. It is also hexagonal and it is called
the complementary cap, or CC. It is an essential component for two reasons. It makes floors
continuous by filling the gaps between hex-mods. Its three-dimensional design makes it a
geometrically rigid unit and, theoretically at least, this renders a number of diagonals
structurally redundant. In the original space frame, six diagonals would have met at the joint
that is now at the center of a CC. Because of its geometrically rigid shape, the CC should no
longer require support at its center. Presumably, the six diagonals that would have met at the
center of the CC—three above and three below—can be deleted. Spanning, vertical load transfer,
and resistance to lateral stresses can all be theoretically handled by hexmods and
CCs.

 
  Whereas these two modules constitute the complete inventory of parts, another component
must be added to make the building system complete and viable: a stair module. The proposed
helicoidal design fits comfortably within a hexmod and can also be used between hexmods. The
clear space between handrails is 1 m or even wider.

 
  Returning to Figure 16.8 for a moment, we see that LCs and UCs form two out of three
hexagons of the floor structure, on this and any other story.

 
  The hexagons marked CC, for complementary cap, complete the pattern of hexagons
of the floor structure. Each CC is connected with six caps by its corners; three of
them are UCs and the others are LCs. This relationship can also be seen in Figure
16.13.


 
  To finish our description of the spatial relationships that exist between hexmods and between
hexmods and CCs, one more remark will be useful: In a vertical sequence, a hexmod
is always found on an intermediate floor, between two superimposed CCs (Figure
16.11). The next drawing shows the structural connection between subassemblies: Six
diagonals carrying a CC belong to three distinct hexmods. Likewise, six diagonals
belonging to another set of three hexmods carry the hexmod directly above a CC (Figure
16.12).

 
  The trade-off caused by the eventual elimination of half of the diagonals would be total
structural interdependency between the hexmod and CC com-

 
  Figure 16.11 Hexmods and CCs always alternate in a vertical sequence of several stories. The
joint at the center of the CC is not connected with diagonals, as it would be in the original space
frame. (Source: J. F. Gabriel and J. Mandel, ‘‘The Application of Lightweight Modular
Structures to Housing,’’ in Housing, the Impact of Economy and Technology, 0. Ural and R.
Krapfenbauer, eds., Perg- amon Press, 1981, pp. 64–65, Fig. 2© J. F. Gabriel and J.
Mandel.).

 
  Figure 16.12 This figure shows the same relationship as Figure 16.11 does, but here all the
diagonals are shown. A hexmod is carried by three hexmods underneath. Vertical planes placed
against the diagonals make the location of these hexmods explicit A CC is also carried by three
hexmods.
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  Figure 16.13 A six-story structure may be too ambitious for a building system that relies on
structural members, presumably made of steel, the cross sections of which should be as small as
possible. The intent of this drawing is merely to confirm the three-dimensional relationships
described in the text Although not representing a finished building, the drawing gives an
idea of how such a building might appear. Except for the six hexmods on the upper
floor, all the others play a structural part in a configuration like this. (Source: J. F.
Gabriel, ‘‘Dwelling in Space Structures,’’ in Studies in Space Structures, H. Nooshin, ed.,
Multi-Science Publishing, Brentwood, UK, 1991, pp. 69–86, Fig. 7. Reprinted with
permission.)

 
     

 

     
ponents.  Structural  interdependency  exists  to  a  point  in  any  building
technology, and it cannot be regarded as a serious hindrance to design. As with
any language, be it verbal or visual, the discipline of a syntax is only an obstacle
to expression when it is not mastered. Without a language, complete with
rules and limitations, nothing can be expressed, nothing can be communicated.
However, there is no single building technology capable of satisfying all the
building  requirements  of  our  time.  Like  all  systems,  the  hexmod  has  its
limitations, but it also has its special merits (Figure 16.13).

 
If I described in some detail the interrelationships of all the components, it is
because they are essential to an understanding of the structural concept as a
whole and to an overview of the architectural horizons it opens. A good part
of the rest of this chapter will discuss formal variations on the same theme. We
will see designs that the hexmod system cannot handle alone but which can be
built with other combinations of the same parts.
 


  THE HEXMOD: A BUILDING SYSTEM

 
  My fascination with space frames stems in part from the multiplicity of stable configurations
that can be obtained from the six-directional space lattice. For this reason, it would be of
questionable interest to choose a space frame as the matrix for a low, ground-hugging building.
On the other hand, fire safety imposes limitations on the height of a structure relying on
thin structural members. Hexmods are adequate for buildings three or four stories
high.4

 
  It is obvious that stairs are vital in walk-up buildings. The hexmod system can accept a great
number of different stair designs. One approach is to confine stairs to an enclosed vertical shaft,
and certain building codes do indeed require such a solution for emergencies. This
conventional design can be accommodated within a hexmod framework because, as we
have seen, vertical shafts of varied size and shape can be inserted anywhere (Figure
16.6).

 
  Instead of being confined into a sort of rigid, vertical ‘‘tube,’’ the stair modules could overlap
and, in doing so, engage the user in a spatial experience that calls to mind Le Corbusier’s
architectural promenade. Perhaps this point should be elaborated. It is true that the shortest
distance between two points is a straight line, but it is not necessarily true that a

straight path will always feel shorter. A boring walk will seem longer to the user, or
at least to the user who is aware of his/her environment, whereas an interesting or
pleasant walk will seem shorter. An architect must know how to make the distinction.
By

 
  [image: PIC] Figure 16.14 In a three-way, multilayer space frame, octahedra overlap by one-third, as
do the bee cells of a honeycomb. A modular stair, 1 m wide, can fit in a hex-mod (see Figure
16.10). Hexmods containing stairs must be rotated by 120° when they are superimposed, in order
to achieve these objectives: No diagonals need be removed to create headroom in the stairs.
Landings will consist of two-thirds of the floor of a hexmod. Two doorways on every landing will
give access to the rest of the floor. The configuration of hexmods will approximate a helix,
completing a revolution in three stories. (Source: J. F. Gabriel, La Poutre-etoile,’’
Techniques et Architecture, No. 320, Paris, 1978, pp. 70–71. Reprinted with permission. J. F.
Gabriel, ‘‘Dwelling in Space Structures,’’ in Studies in Space Structures, H. Nooshin, ed.,
Multi-Science Publishing, Brentwood, UK, 1991, pp. 69–86, Fig. 22. Reprinted with
permission.)

 
  [image: PIC] [image: PIC] Figure 16.15 Plan and elevation of the configuration shown in Figure 16.14.
(Source: J. F. Gabriel, ‘‘Dwelling in Space Structures,’’ in Studies in Space Structures, H.
Nooshin, ed., Multi-Science Publishing, Brentwood, UK, 1991, pp. 69–86, Fig. 20. Reprinted with
permission.)

 
  engaging users in the stories through which they travel, stairs can enhance the quality of life in
certain types of buildings.

 
  Interesting designs like these can make use of modular stairs that actually fit within hexmods
(Figure 16.10). These can even be inserted in a ‘‘saturated’’ space frame, which is one from which
no diagonal has been deleted (Figures 16.14 and 16.15). The same helicoidal module can be
oriented in one of three directions. If the modules were rotated 120° from floor to floor, they
would generate a helicoidal path that would repeat every three stories. Another pattern can be
obtained from assembling the same stair modules in a straight line parallel to one set of diagonals
(Figure 16.16).


 
  For the helicoidal module to fit inside a hexmod, the width of the stairs can barely exceed 1 m.
Domestic programs do not normally require wider stairs than that. Wherever wider stairs are
needed, however, they too can be accommodated within the hexmod system. Of course, more
space must be cleared for them. Stairs as wide as 2 m, or even 4 m—the equivalent of a hex-mod’s
width—should satisfy the circulation requirements of any building (Figure 16.17). The drawings
actually suggest several design solutions for varying widths, all of them fitting in a vertical shaft
2 or 4 m wide.

 
  This brief survey of possible stair designs is not exhaustive, and the hex-

 
  [image: PIC] Figure 16.16 Instead of being rotated on every floor, the orientation of the stairs can
remain constant Instead of a helix, the new pattern will move in the direction of one set of
diagonals. (Source: J. E Gabriel, ‘‘Dwelling in Space Structures,’’ in Studies in Space Structures,
H. Nooshin, ed., Multi-Science Publishing, Brentwood, UK, 1991, pp. 69–86, Fig. 19. Reprinted
with permission.)

 
  mod system can accept many others. Indeed, this structural framework is not restrictive at
all.

 
  To illustrate the architectural possibilities of the hexmod building system, I would like to
present a design for a small building: a two-bedroom residence (Figure 16.18). The main rooms
are all on the second level. A central living space with openings in three directions is extended by
two outdoor decks. The kitchen and dining zone is at one end of the living space, the
sitting area at the other end. There is a private study and, opposite to it, the two
bedrooms, sharing a bathroom. The study and the bedrooms, which are in greater
need of privacy, occupy three of the hexmods on the main floor. The fourth hex-mod
houses the stairs. As for the single hexmod on the roof, it does nothing more than
enhance the dynamics of the space. Its lower cap has been removed, and the opening in
the plane of the roof stretches the verticality of the enclosed space for the viewer.
As one prepares to ascend the stairs and looks up, one is silently invited to move
upwards.

 
  Entering the house is done under the shelter of the main floor, which is cantilevered. One end
of the hall can be closed off to serve as a utility room, a workshop, a garden room, a powder
room, or storage. Access to the main floor is gained by a stair of a design we have not
yet seen. The steps form a 30° angle with the stringers, to be consistent with the
hexagonal/triangular
plan. I have walked on similar stairs, in Frank Lloyd Wright’s Hanna House among others, and I
found the experience both safe and pleasant.


 
  Two intentions were at the origin of the design. One was to show that a convenient and
attractive residential space can be obtained from hexmods. The other was to demonstrate as
many of the structural capabilities of the system as possible, using the smallest number of
modules. There are eight hexmods altogether. Three rest on the ground and support the
entire structure. Four are on the main floor, and the last one is above them, not for
any structural or practical purpose but for a poetic or architectural reason (Figure
16.19).

 
  The large joints express their structural importance. Perhaps more to the point, they are easy
to make. All they require is bent steel plates and straightforward welding. The diagonals
are bolted to the joints and so are all the struts of the floor structure. Commercial
mass-produced joints compatible with square tubes are available and would result in a more
polished appearance. Either way, two unskilled workers could put the house together
without
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  Figure 16.17 Although they demand much more space, stairs up to 4 m in width only require
the deletion of a few diagonals on every floor. Nowhere must a complete hexmod be removed to
accommodate the stairs. (Source: J. F. Gabriel, ‘‘Dwelling in Space Structures,’’ in Studies in
Space Structures, H. Nooshin, ed., Multi-Science Publishing, Brentwood, UK, 1991, pp. 69–86,
Fig. 23. Reprinted with permission.).
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  [image: PIC] Figure 16.18 Plans of the ground level and of the main floor of a two-bedroom house.
Three hex-mods are in contact with the ground and carry the entire structure. (Source: J. F.
Gabriel and J. A. Mandel, ‘‘A Space Frame Building System for Housing,’’ Proceedings of the
Third International Conference on Space Structures, H. Nooshin, ed., Elsevier, London, 1984, p.
1052, Fig. 8. Reprinted with permission of Chapman and Hall, Cheriton House, North Way,
Andover, HANTS, AP10 5BE, UK.)

 
  Figure 16.19 Scale model of the house shown in Figure 16.18. Only the hex-mods are shown
with enclosures.
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  Figure 16.20 Quarter-scale model of several hexmods. Partial view. (Source: J. F. Gabriel
and J. A. Mandel, ‘‘A Space Frame Building System for Housing,’’ Proceedings of the Third
International Conference on Space Structures, H. Nooshin, ed., Elsevier, London, 1984, p. 1057,
Fig. 11. Reprinted with permission of Chapman and Hall, Cheriton House, North Way, Andover,
HANTS, AP10 5BE, UK.)

 
  mechanical help. Alternatively, hexmods and CCs could be preassembled on the ground and
lifted in place with the help of a crane. A third possibility would consist of finishing hexmods as
individual rooms off site (Figures 16.20 and 16.21).

 
  The hexmod system as described here uses diagonals of small cross section to limit the wall
thickness, especially if cladding is added on both sides of the diagonals, interior and exterior.
This restriction to the size of diagonals makes the
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  Figure 16.21 Simplified drawing of a large assemblage of hexmods. Most CCs are
deleted to show the points of contact between hexmods. This is only a diagram, not a
realistic design. A building of this size would have to rely on a complementary structural
framework.

 
  hexmod system practical only for buildings of limited height We will see later on that there are
other ways to use its space-making potential in very tall buildings.

 
  THE star beam

 
  Although the hexmod building system makes possible the conception and the construction of
many building forms, it has limitations. All building systems do. We could retain the
same floor structure, with all its advantages, and select a different set of diagonals
between floors. The building blocks could be dispensed with but would the structural
framework remain stable? Could we create different, more open architectural spaces?
Might these possibly lend themselves to architectural programs that hexmods could not
accommodate?

 
  In a hexmod framework, the floor structure is made of hexagonal subassemblies interconnected
by their comers. The triangles formed in the intervals between hexagons can give each CC, UC,
or LC the shape of a six-pointed star (Figures 16.8 and 16.9). We could describe the floor
structure as entirely made of star shapes centered on CCs and connected laterally to one another
by their points.


 
  Consider one of these stars and the corresponding one on the floor above. They are not at the
vertical of one another. Indeed, they are shifted. Connect the points of one star to the
points of the other with diagonals and you will have a three-dimensional module, a
geometrically rigid configuration that will be our new ‘‘building block.’’ We call this a
star module because of the shape of the chords. There are eight faces altogether to
what amounts to a convex polyhedron. What opposes its collapse is the fact that the
ten diagonals form eight triangular frames situated in four different planes (Figure
16.22).

 
  The star module is interesting in spatial terms. The diagonals divide themselves into two
groups of five, symmetrically distributed on either side of the long axis. They frame a single
space between them, 8 m wide. This space
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  Figure 16.22 A star is a CC extended by six triangles. The star module consists of two star
shapes located on consecutive floors and connected to each other. Ten diagonals connect the
points of one star to the points of the other. The triangular frames formed by the diagonals and
the different planes in which these triangles are found add up to an inde-formable
configuration. (Source: J. F. Gabriel and J. A. Mandel, ‘‘The Star Beam,’’ in Shell and
Spatial Structures Engineering, F.L.LB. Carneiro, A. J. Ferrante, R. C. Batista, and
R.

 
  L. Palanco, eds., Pentech Press, London, 1984, p. 14, Fig. 2.)

 
  can be entered from both ends through rectangular bays that measure 4 m across. The space
within then widens from 4 m at one end, to 8 m in the middle, and narrows down again to 4 m at
the other end.

 
  Let us see how this module combines with others, first vertically, then horizontally, then in all
directions. It is a directional shape, in the sense that the stars that form its floor and its roof are
shifted in the direction of the six diagonals that are parallel to one another. Matching points of
the two stars are found at the top and at the bottom of a diagonal. Because there are three sets
of diagonals, each leaning in a different direction, star modules can be rotated 120° one at a
time, as they are piled up on top of one another. The result is an elegant configuration
approximating a helicoid and as close to the vertical as can be obtained from star modules
(Figure 16.23).


 
  A major difference between the hexmod system and the star system is this: Hexmods enclose
portions of space and they mold the spaces between them into other shapes. The star module
creates only one space. It is a ‘‘space filler’’ by itself, meaning that it can organize all space
without gaps or overlaps. Therefore, minimal towers like the one just described can be
juxtaposed to
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  Figure 16.23 This minimal tower is made of star modules, each one rotated by 120° in
relation to the one immediately below. Because the imaginary line connecting the
centers of the stars is parallel to one set of diagonals, there are only three orientations
possible for a star module. Consequently, the fourth module has the same orientation as
the first one and the two share precisely the same vertical projection. (Source: J. F.
Gabriel, ‘‘Dwelling in Space Structures,’’ in Studies in Space Structures, H. Nooshin, ed.,
Multi-Science Publishing, Brentwood, UK, 1991, pp. 69–86, Fig. 6. Reprinted with
permission.).

 
  one another, as many times and in any direction as desired, if what the designer wants is a
structural matrix approaching the vertical. The following configurations that are derived from
the star module are mostly space fillers (an unfortunate term, because the modules organize
space but do not fill it).

 
  Superimposing star modules without changing their orientation results in leaning towers, or
pods. This suggests that they should, perhaps, lean against one another and form
pyramidal/tetrahedral constructions (Figures 16.24 and 16.33).

 
  There are several possible ways to assemble star modules horizontally. The most obvious is to
line up their larger openings in order to form a throzigh-truss (Figures 16.25 and 16.26). The
space within is entered at one end through a 4-m-wide bay, then the space swells to 8 m, to
return to 4 m, and so on, until the user reaches the other end and leaves through a last 4-m-wide
bay.

 
  As with hexmods, space is defined laterally by vertical planes applied against the diagonals.
And, as in hexmods, natural passageways are also found wherever two diagonals form an A by
meeting overhead. Needless to say, windows could be installed where doors are not wanted
(Figures 16.27 and 16.28).

 
  We have seen that star modules can be superimposed in two different
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  Figure 16.24 Here, the star modules all face the same direction. They are superimposed to
form a rectilinear tower that leans at an angle of 54° 6', which is the angle formed between a
diagonal and the ground. (Source: J. F. Gabriel, ‘‘Space Frames: The Space Within—A Guided
Tour," International Journal of Space Structures, Vol. 1, No. 1,1985, p. 9, Fig. 10. Reprinted with
permission of Elsevier Science Ltd, The Boulevard, Langford Lane, Kidlington 0X5 1GB,
UK.)

 
  [image: PIC] [image: PIC] Figure 16.27 This figure shows the space within a five-unit star beam. The
roof has been deleted, but the stars are clearly visible on the floor. Vertical cladding
coincides with diagonals and lateral openings are found where diagonals form A-frames.
Depending on the location of a star beam within a larger structural context, these
openings would frame doors or windows. The floor structure has been expanded laterally.
Otherwise, this structure is identical to that shown in Figure 16.25. (Source: J. F.
Gabriel, ‘‘La Poutre-Etoile," Techniques et Architecture, No. 320, Paris, 1978, p. 70,
Fig.

 
  Figure 16.25 The star beam is, in fact, a hollow, or ‘‘through," truss. The width of the open
space within alternates between 4 and 8 m. There are five star modules here, connected in such a
way that their large openings coincide. This configuration is geometrically rigid (Source: J. F.
Gabriel, ‘‘From Space Lattice to Architecture,’’ Bulletin of the International Association for
Shell and Spatial Structures, Vol. 20, No. 2,1979, pp. 19–23, Fig. 12. Reprinted with
permission.)

 
  Figure 16.26 Schematic model of a star beam. The only portions of the floor planes to be
shown are the CCs. (Source: J. F. Gabriel, ‘‘La Poutre-Etoile," Techniques et Architecture, No.
320, Paris, 1978, p. 70, Fig. 4. Reprinted with permission.)

 
  [image: PIC] 3. Reprinted with permission.)
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  Figure 16.28 Top: Simplified plan of a five-unit star beam. Diagonals and chords coincide, as
described in the first part of the chapter. Bottom: A similar configuration based on the
conventional three-way space frame. Chords and diagonals do not coincide. (Source: J. F. Gabriel
and J. A. Mandel, ‘‘The Star Beam,’’ in Shell and Spatial Structures Engineering, F. L. L. B.
Carneiro, A. J. Ferrante, R. C. Batista, and R. Palanco, eds., Pentech Press, London, 1984, p. 16,
Fig. 4.)


 
  ways: They can be joined horizontally to form through-trusses, and they can also be juxtaposed
laterally to partition all space. In all these formal arrangements, interior spaces are identical, and
one might think that the only difference between one building and another would come from
their overall shape. This impression would be true if the spanning capabilities of the star
beam were overlooked. Indeed, combinations of star modules are endless and so is the
variety of spaces generated by these combinations. There is an especially interesting
one because it is simplicity itself, and I find the yield spectacular. It consists of using
one star beam to cover the space between two others. This results in 8-m-wide open
spaces, alternating with 12-m-wide spaces as one walks in and through (Figures 16.29 to
16.32).

 
  Many building programs require galleries lined up with rooms wider or narrower than the
galleries. Schools, museums, shopping centers, offices, and hotels come to mind. Furthermore,
applications of star modules need not be limited to the design of stiff rectilinear buildings.
Hexagonal and Y-shaped plans and combinations of these can be made (Figures 16.33 and
16.34). Finally, star beams can also overlap in such a way as to form large pyramidal structures
(Figure 16.35).
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  Figure 16.29 The width of the space within a star beam varies from 4 to 8 m. When a star
beam is used to span the interval between two more star beams, the width of the space between
these reaches 12 m, with a minimum of 8 m at its narrowest.

 
  Figure 16.30 The purpose of this diagram is to show how star beams can create wider spaces
than the spaces they contain. (Source: J. F. Gabriel and J. A. Mandel, ‘‘The Star
Beam,’’ in Shell and Spatial Structures Engineering, F. L. L B. Carneiro, A. J. Ferrante,
R.

 
  C. Batista, and R. L. Palanco, eds., Pentech Press, London, 1984, p. 18, Fig. 7.)
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  Figure 16.31 Detail of the configuration shown in Figure 16.29. The roof of the lower star
beam is deleted so that the space within can be seen. (Source: J. F. Gabriel and J. A. Mandel,
‘‘The Star Beam,’’ in Shell and Spatial Structures Engineering, F. L. L. B. Carneiro, A. J.
Ferrante, R. C. Batista, and R. L. Palanco, eds., Pentech Press, London, 1984, p. 20, Fig.
11.)


 
  Figure 16.32 If star beams are used to cover the interval between other star beams, this is
how the spaces on the lower level will be, within the star beams and between them. (Source: J. E
Gabriel and J. A. Mandel, ‘‘The Star Beam,’’ in Shell and Spatial Structures Engineering, F. L.
L. B. Carneiro, A. J. Ferrante, R. C. Batista, and R. L Palanco, eds., Pentech Press, London,
1984, p. 19, Fig. 9.)
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  Figure 16.33 Schematic model of a star beam supported by a leaning tower of the type shown
in Figure 16.24. It is worth observing that the space molded by the star beam is not interrupted,
or even modified, by the presence of the tower. It continues right through it, totally unaffected in
its shape. (Source: J. F. Gabriel, ‘‘La Poutre-Etoile,’’ Techniques et Architecture, No. 320, Paris,
1978, p. 70, Fig. 5. Reprinted with permission.)

 
  Figure 16.34 Although essentially rectilinear, star beams can generate rich and varied
building forms, as this diagram shows. The dotted line indicates the outline of the floor above.
(Source: J. F. Gabriel and J. A. Mandel, ‘‘The Star Beam,’’ in Shell and Spatial Structures
Engineering, F. L. L. B. Carneiro, A. J. Ferrante, R. C. Batista, and R. L Palanco, eds., Pentech
Press, London, 1984, p. 21, Fig. 12.)

 
  Figure 16.35 Another relationship between star beams, where one of them would cover most
of the one immediately below. Although there is little difference in structural continuity between
this configuration and the one shown in Figure 16.31, the architectural results are fundamentally
dissimilar. This drawing does not represent a finished building; it only shows different
construction stages of a building. (Source: J. F. Gabriel, ‘‘From Space Lattice to Architecture,’’
Bulletin of the International Association for Shell and Spatial Structures, Vol. 20, No. 2,1979, p.
23, Fig. 14.)
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  SPACE TRUSSES AND MEGAPOLYHEDRA

 
  Should space frames also be used for very tall buildings? Yes, of course, for the taller the
building, the more critical the stresses. A triangulated structure is not necessary for
small buildings such as houses, where stresses are minimal. Square frames will do.
However, when in 1889 Gustave Eiffel conceived and built ‘‘la tour de 300 metres,’’ he
designed a triangulated structure. So did the engineer Fazlur Khan in 1967 for the John
Hancock Tower in Chicago, which, at the time, was the tallest building in the world.
And so did I. M. Pei and Partners at the Bank of China building in Hong Kong more
recently.5


 
  It is malicious to say that architects dream up a building form and turn to a structural
engineer to do whatever is necessary to make it stand up. This is a caricature of the
architect. It is also a myth to give credit to engineers for always thinking rationally.
However, why is it that so many architects and engineers conceive tall structures as
aggregates of cubes? A cubic frame is not a sound structural unit until cross-bracing
is added to it, as an afterthought. And a cubic volume does not necessarily make a
good room. Would it not make more sense to approach the design of tall buildings
from a structural frame with integrated triangulation in mind? One suspects that
reluctance to do so is based on the widespread myth of the uninhabitable triangular
form.

 
  Buildings with sharp comers can indeed be unfriendly. A room with a triangular plan is likely
to be unfriendly, too, but six triangles can form a hexagon, with 120° angles, which are friendlier
than right angles. Frank Lloyd Wright remarked on that in the following words: ‘‘…I am
convinced that a cross section of honeycomb has more fertility and flexibility where human
movement is concerned than the square. The obtuse angle (120 degrees) is more suited to human
‘‘to and fro’’ than the right angle.’’6 A room shaped Eke a pyramid is also likely to make an
uncomfortable space, especially if it comes with a triangular base, as tetrahedra do. However, a
hexmod, which is a modified octahedron, makes as friendly a room as any cubic or shoebox-like
room. Probably a friendlier one. And hexmods are found in space frames, not in cubic
frameworks.

 
  Another reason for the puzzling ubiquity of the rectangular framework in tall buildings may be
found in another widespread myth: the belief that columns must be vertical to do their job.
Paradoxically perhaps, columns can be replaced by diagonals, whereas columns, in and of
themselves, cannot ensure the wind-bracing of a structure. Even at the scale of furniture, it is
easy to see that four sticks under a board do not make a table, unless the connections are made
rigid. However, rigid connections have their price, which is excess material and inelegant
structural workings.

 
  What, then, if we conceived very large space frames? What sort of buildings would we be
able to create? Would they be beautiful, practical, and lasting? Would they possibly
have a potential not found in conventional buildings? Might they open up possibilities
we do not dare to dream of because we do not know we have the means to realize
them?7


 
  The concept of gigantic space frames is not new. Louis Kahn (with Anne Tyng), Buckminster
Fuller, Yona Friedman, and Peter Cook are among the best known to have explored the
idea.8 What is new here is the systematic use °f a 4-m octahedron as a conceptual
building block containing enough space for a small room. Eight such octahedra, joined
in a straight line to one another by a shared edge—here a strut—constitute our next
module, which we will call the space truss. Tetrahedral shapes fit in the interstices
between the octahedra and make the space truss rigid. Each one of our modular space
trusses, 32 m long, comprises eight octahedra and 14 tetrahedra. Why eight octahedra?
Because this is the number of 4-m octahedra that will make possible the erection of
regular megapolyhedra with a standard space truss. It is also the largest preassembled
module that can be moved to a construction site and raised without too much difficulty.
Finally, shorter space trusses would be redundant and cumbersome (Figures 16.36 and
16.40).

 
  The terms space truss and space frame are often given the same meaning. As there is
no consensus among architects, engineers, morphologists, and historians, I hope the
reader will bear with me and, for now, understand them in the sense I have intended
them.

 
  Eight-story octahedra and tetrahedra can be erected with the modular space truss, which is to
say that mega-space frames can be erected with it. Whatever the orientation of a space truss in
space—and six of them are possible as well as necessary—the orientation of all the 4-m octahedra
remains the same, wherever their location in the structure. Although this is generally true in
space frames, it cannot be repeated too often. Whether they belong to the three horizontal space
trusses or to the three oblique ones, all the 4-m octahedra retain the same orientation in
space.

 
  In addition to the tetrahedron and the octahedron, three possible megapolyhedra are
illustrated here: a cuboctahedron, a (so-called) truncated tetrahedron, and a (so-called)
truncated octahedron. The cuboctahedron is fortunate in having a descriptive name, for it
has the four square faces of a cube and the eight triangular faces of an octahedron
(Figure 16.37). The same cannot be said of the other two polyhedra. They could, it is
true, be obtained by a process of truncation, but they can also be the result of an
additive process instead. Four octahedra can be seen in the drawing as entering into the
for-
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  Figure 16.36 Top view, elevation, and side view of a space truss. Eight 4-m octahedra are
joined together edge to edge. Interstitial spaces are filled by tetrahedra. (Source: J. F. Gabriel,
‘‘Multi-Layer Space Frames and Architecture,’’ Proceedings of the International Conference on
Lightweight Structures in Architecture, Sydney, 1986, V. Sedlak, ed., Vol. 1, 1986, pp. 104–111,
Fig. 2. Reprinted with permission).
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  Figure 16.37 Top view of a cuboctahedron made of 36 interconnected space trusses. Six
horizontal and six oblique space trusses meet at the center, which can be clearly seen. This is a
19-story structure. In addition to the 16 stories corresponding to two superimposed
sets of oblique space trusses, there are three sets of horizontal space trusses, each a
story high. In this and the following drawings, the physical connections between space
trusses are not shown in their entirety. They would only obscure the picture. The
shape of the connections is worth describing, even if it is difficult to describe clearly.
In the case of 12 converging space trusses, a gap appears, the shape of which is a
stellated octahedron, or Stella octangula. Each space truss is in contact with four others,
but none can touch the space truss opposite. Converging space trusses generate an
additional octahedron between them, each space truss contributing one of the 12 edges.
Eight tetrahedra fill the interstices between the butts of the space trusses and the
additional octahedron. (Source: J. F. Gabriel, ‘‘Megapolyhedra,’’ Proceedings of the
IASS Symposium on Spatial Structures at the Turn of the Millennium, Copenhagen,
1991, T. Wester, S. J. Medwadowski, and I. Mogensen, eds., 1991, pp. 35–44, Fig.
7A.)

 
     

 

mation of the truncated tetrahedron. They are nestled among seven tetrahedra
(Figure 16.38).

 
As  for  the  truncated  octahedron,  it  includes  half-octahedra  in  addition  to
complete octahedra and tetrahedra. The cuboctahedron has eight tetrahedra
but comprises no complete octahedra, only six halves (Figure 16.39).

 
The cuboctahedron shown here has 19 stories; the truncated tetrahedron also.
The truncated octahedron would have 28 stories. Included in this count are the
stories contributed by the horizontal space trusses.
     

 
I  am  not  recommending  that  buildings  should  adopt  the  shape  of  these
megapolyhedra. I am showing them in the hope that they might open up new
horizons in architecture and urban design. We are accustomed to buildings
sitting squarely on the ground. We also expect buildings to fill up the totality of
the space occupied by their structure. I am suggesting that, if we take advantage
of the most efficient structural configuration available to us, which
 


  [image: PIC] Figure 16.38 Top view of a truncated tetrahedron obtained by the aggregation of
fourmegaoctahedra and seven megatetrahedra.This also is a 19-story structure. (Source: J. F.
Gabriel, ‘‘Megapolyhedra,’’ Proceedings of the IASS Symposium on Spatial Structures at the Turn
of the Millennium, Copenhagen, 1991, T. Wester, S. J. Medwadowski, and I. Mogensen, eds.,
1991, pp. 35–44, Fig. 8.)

 
  is that of the space frame, we could conceive structural frameworks at the urban scale rather
than at the scale of individual buildings, and buildings could be hovering over the ground where
necessary.

 
  I would like to point out that our three polyhedra can be combined to form varied infinite
structures. One pattern can be formed by using them all. Another pattern can be obtained from
the exclusive use of truncated octahedra, and a third pattern is possible with octahedra
and cuboctahedra. This is in addition to the octahedron-tetrahedron pattern. These
infinite structures are compatible with one another and, naturally, with the underlying
six-directional space lattice that originated them all. If I add that large open spaces can
alternate with enclosed spaces without a breakdown in geometric continuity, it becomes
clear

 
  [image: PIC] Figure 16.39 Top view of a truncated octahedron. Four of the eight hexagonal faces and
three of the six square faces can be recognized. This structure has 28 stories. Three sets of
oblique space trusses correspond to 24 stories and four sets of horizontal space trusses
correspond to four stories. (Source: J. F. Gabriel, ‘‘Megapolyhedra,'’ Proceedings of the
IASS Symposium on Spatial Structures at the Turn of the Millennium, Copenhagen,
1991, T. Wester, S. J. Medwadowski, and I. Mogensen, eds., 1991, pp. 35–44, Fig.
9.)

 
     

 

     
that we have a mind-boggling number of design options at our disposal for a
truly spatial urbanism. All these possibilities depend on the prefabrication of a
noncombustible space truss that can be securely attached to others.9

 
So  far,  so  good.  We  have  a  three-dimensional  urban  framework  that  can
accommodate buildings. The next question is: What sort of buildings? Consider
one of the simplest forms within the urban space frame: an octahedron. It is
an eight-story space defined by space trusses (Figure 16.40). What structural
system should be used to organize that space in architectural terms? Obviously,
the  answer  is  a  system  based  on  the  same  geometry  as  the  space  trusses;
more precisely, a six-directional network of thin members attached to the space
trusses.  This network reintroduces the hexmod system with a fanfare: The
thin members, stretched from one space truss to another, can now work more
efficiently because they are put in tension. The structural capabilities of the
hexmod system, limited to three or four stories, can be extended to eight stories
within a framework of space trusses (Figures 16.41 and 16.42).

 
The hexmod system does not use all the diagonals of the space lattice, but the
diagonals it uses are continuous from one end of the building to the other. Some
will be attached to space trusses and others will not, but none will have to be
in compression for more than three consecutive stories.
 


  igure 16.40 Twelve space trusses frame an eight-story Dctahedron. Next to it, on the ground,
is a 4-m octahedron. It is the basic, conceptual "building block’’ of space truss and hexmod alike.
(Source: J. F. Gabriel, ‘‘Skyscrapers or Space Towns,’’ in Developments in Structural
Engineering, Proceedings of the Forth Rail Bridge Centenary Conference, He riot-Watt
University, Edinburgh, 1990, B. H. V. Topping, ed., 1990, pp. 657–666, fig. 3. Reprinted with
permission of Chapman and Hall, Cheriton House, North Way, Andover, HANTS SP10 5BE,
UK.)

 
  Figure 16.41 The hexmod system is used to implement the eight-story building shown here.
(Source: J. F. Gabriel, ‘‘Skyscrapers or Space Towns,’’ in Developments in Structural
Engineering, Proceedings of the Forth Rail Bridge Centenary Conference, Heriot-Watt University,
Edinburgh, 1990, B. H. V. Topping, ed., 1990, pp. 657–666, Fig. 3. Reprinted with permission
of Chapman and Hall, Cheriton House, North Way, Andover, HANTS SP10 5BE,
UK.)
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  Figure 16.42 Model of the megaoctahedron with the lower two stories partially built with
hexmods. (Source: J. F. Gabriel, ‘‘Space Frames: The Space Within—A Guided Tour,’’
International Journal of Space Structures, Vol. 6, No. 4,1991, pp. 287–295, Fig. 15.
Reprinted with permission of Multi-Science Publishing, Brentwood, UK. Model by John
Tanzi.)

 
  [image: PIC] Figure 16.43 The bottom three stories of the building shown in Figure 16.41 are
represented sequentially here, from the bottom up. The drawings convey an airiness that is not
apparent in Figure 16.41. Careful experimentation showed that the elimination of certain
hexmods is possible. Three hexmods on the first floor, three on the second floor, and one on the
third floor were deleted, opening up large, column-free spaces. Upper caps show part of the floor
structure. Attentive examination of the drawings will allow the reader to verify the continuity of
diagonals from one floor to the next Hexagons shown on the floor of the upper two
stories indicate the location of the hexmods underneath. The presence of space trusses
interferes with six hexmods on the first floor. These hex-mods are deleted in Figure 16.41.
(Source: J. F. Gabriel, ‘‘Megapolyhedra,’’ Proceedings of the IASS Symposium on
Spatial Structures at the Turn of the Millennium, Copenhagen, 1991, T. Wester, S. J.
Medwadowski, and I. Mogensen, eds., 1991, pp. 35–44, Fig. 5A. Reprinted with permission of
T. Robbin, Engineering a New Architecture, Yale University Press, 1996, p. 94, fig.
7.17.)

 
  [image: PIC] [image: PIC]

 
  Figure 16.43 shows the hexmod structure of the first, second, and third stories, with the lower
story at the bottom. Figure 16.44 provides more information on the relationships between the
same hexmods by showing them as enclosed rooms.

 
  However, an eight-story building like this is only a small part of the sort of urban
ensembles that are feasible. Space trusses arranged in megaoctahedra and megatetrahedra
create powerful frameworks that should find their applications in vast structures. As an
example, I would like to discuss briefly a study for a 135-story structure. It is a relatively
conservative design, in the sense that it resembles a skyscraper in some ways. The reason
for this choice is that elevators that run in vertical shafts are more acceptable to a
conservative public. Also, vertical shafts occupy less space than oblique shafts. Settlements
nor-


 
  Figure 16.44 Whereas the hexmods were drawn as structural elements in Figure 16.43, they
are shown here as rooms, with enclosures. (Source: J. F. Gabriel, ‘‘Space Frames: The Space
Within—A Guided Tour,’’ International Journal of Space Structures, Vol. 6, No. 4,1991, pp.
287–295, Fig. 14. Reprinted with permission of Multi-Science Publishing, Brentwood,
UK.)
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  Figure 16.45 Space trusses can be assembled in multilayer frameworks of vast dimensions.
Here is 3135-story structure composed of megaoctahedra and megatetrahedra arranged vertically
in three identical helicoids. (Source: J. F. Gabriel, ‘‘Dwelling in Space Structures,’’ in Studies in
Space Structures, H. Nooshin, ed., Multi-Science Publishing, Brentwood, UK, 1991, pp. 69–86,
Fig. 18. Reprinted with permission.)

 
     

 

mally occur along roads, and elevators are modem roads. They determine the
shape of vertical configurations (Figures 16.45 and 16.50).

 
The similarities with a skyscraper end here. The greatest difference after the
adoption of oblique, rather than vertical, supports is the division of the building
bulk into nearly independent units. Each unit is an eight-story module, already
familiar to us (Figure 16.41), fitted into an octahedral frame of space trusses.
Because of the morphology of a space frame, which makes it impossible for an
octahedron to share a face with another, each unit is practically freestanding.
No unit is ever found directly above or below another; it is always offset. For
this and other reasons, the concept is not so much of a building as of a space
town.10

 
To bring the configuration closer to the vertical, megaoctahedra are arranged
in a helicoidal pattern. They are connected to one another by megatetrahedra,
which render the whole rigid. The description of an unfamiliar pattern often
sounds complicated but, more often than not, the pattern itself is simple: In the
present case, it consists of one tetrahedron above and one under the octahedron.
Together, the three polyhedra add up to a simple, six-sided geometric solid
(called an oblate rhombohedron) resembling an elongated cube (Figure 16.46).
     

 
The entire structure is made of three helicoids attached to one another for
stability, surrounding an open space for elevators. Every ninth floor, a platform
Figure  16.46  A  detail  of  one  of  the  helicoids.  There  is  a  tetrahedron
above,  and  another  one  under  each  octahedron.  The  resulting  form,  which
has six rhombic faces, is an oblate rhombohedron. The drawing shows four
of these, connected by their faces. The uppermost oblate rhombohedron is in
contact, tip to tip, with the one at the very bottom. (Source: J. F. Gabriel,
‘‘Dwelling in Space Structures,’’ in Studies in Space Structures, H. Nooshin, ed.,
Multi-Science Publishing, Brentwood, UK, 1991, pp. 69–86, Fig. 17. Reprinted
with permission.)

 
[image: PIC] connects the helicoids. This is where the main elevators discharge their
passengers, who will find other, smaller elevators within the eight-story unit
where they five, work, or do other business. The platform functions as a fire
barrier: The horizontal space trusses are linked by two reinforced concrete slabs
that would prevent an eventual fire from spreading. People escaping from the
building will reach safety by moving on to the next helicoid (Figure 16.47).

 
A space town has certain advantages over a conventional building. Depending
on  functional  needs  and/or  climatic  conditions,  the  large  tetrahedral  space
adjacent to each eight-story unit can be made into a garden or an ‘‘atrinm.’’
This space can also be used for expansion of the eight-story unit if it becomes
too small (Figures 16.48 to 16.50).
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  Figure 16.47 Top view of three helicoids forming a space town. Hexmods are used in the
building units, which occupy the octahedral spaces framed by space trusses. Glass walls
enclose building units. The hexagon at the center outlines the elevators and stairs
zone.
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  Figure 16.48 In the helicoids a tetrahedron is adjacent to every octahedron. The building
unit housed in the octahedron can expand in the tetrahedral space if necessary. An alternative
use for that space is an open garden or an enclosed greenhouse.


 
  Figure 16.49 Two stages of the construction of a building unit. From the bottom up,
construction of the fourth, fifth, and sixth stories. Hexmods push out the glass enclosure where it
interferes with their formal integrity. (Source. J. E Gabriel, ‘‘Megapolyhedra,’’ Proceedings of the
IASS Symposium on Spatial Structures at the Turn of the Millennium, Copenhagen, 1991, T.
Wester, S. J. Medwad-owski, and I. Mogensen, eds., 1991, PP-35–44, Fig. 4A, B, C. Reprinted
with permission.)

 
  Figure 16.50 Model of the three helicoids forming the bare bones of the space town. The
structure shown here has 89 stories. A few eight-story buildings are already inserted in the upper
part. The central space reserved for the elevators can be better seen in the top view
(see Figure 16.47). Figure 16.45 shows a similar configuration at a more advanced
design stage, with the special needs of the base and the top taken into consideration.
(Source: J. F. Gabriel, ‘‘Skyscrapers or Space Towns,’’ in Developments in Structural
Engineering, Proceedings of the Forth Rail Bridge Centenary Conference, Edinburgh,
1990, B. H. V. Topping, ed„ 1990, pp. 657–666, Fig. 1. Reprinted with permission
of Chapman and Hall, Cheriton House, North Way, Andover, HANTS SP10 5BE,
UK.)
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  SPACE FRAMES AND POLYHEDRA

 
  This chapter begins with a study of the space within two polyhedra that are closely
related to the cube: the octahedron and the tetrahedron. These are the modules that
form space frames. They are most habitable when their faces are deleted and only
their edges remain as the integral part of a space lattice structure. Vertical enclosures
and partitions can then be introduced to create a rather conservative architectural
environment.

 
  Although the process yields simple, honeycomb-like clusters of rooms, further investigation
reveals that richer patterns are also possible. Hexmods, star beams, and megapolyhedra describe
some of these patterns. They are variations on a single theme, which is the transformation of an
octahedron into a hexagonal, prismatic space.

 
  Although intimately related, the hexmod and the octahedron bear little resemblance to one
another. From an architectural point of view, the most distinctive feature of polyhedra is
their oblique walls. To some critics, this appears to be their most disturbing attribute.
Regardless of whether one likes or dislikes oblique walls, it could be argued that the
substitution of vertical planes for oblique ones is a betrayal of the fundamental nature

of polyhedra. But what of livability? What of the mental and physical comfort of
the dweller? Do oblique walls make a space impossible to live in? Certainly not. But
how serious an impediment are they to livability? The question must be examined
closely.

 
  From studies conducted over several years with students from various universities, including
Syracuse, Harvard, and MIT, I learned that many polyhedra are not only habitable but they also
have a rich architectural potential when used as the modules of infinite structures. They all
cannot be dealt with here, but the following list may be a starting point for readers interested in
doing research on their own. This is certainly not an exhaustive list, and it is not presented in
any particular order, but it includes useful clues concerning viable positions of polyhedra in
space. By ‘‘viable,’’ I mean that the orientation of the polyhedra relative to the ground is such
that the interior spaces meet essential architectural requirements. For ease of visualization,
orientation is indicated by the words ‘‘resting’’ or ‘‘poised’’ and should not be taken
literally.11

 
     

	Cubes, resting on a face or poised on an edge or a node.

     
	Truncated octahedra, resting on a square face, a hexagonal face, or an edge shared
by hexagons.

     
	Truncated octahedra in combination with cubes and great rhom- bicuboctahedra,
resting on an octahedral face or on a square one.

     
	Truncated  cubes  in  combination  with  great  rhombicuboctahedra  and  truncated
tetrahedra, resting on a hexagonal or an octagonal face.
     


	Truncated octahedra in combination with cuboctahedra and truncated tetrahedra,
resting on a square face or on a hexagonal one.

     
	Octahedra  in  combination  with  truncated  cubes,  resting  on  an  octahedral  or  a
triangular face.

     
	Octahedra  in  combination  with  cuboctahedra,  resting  on  a  square  face  or  on  a
triangular one.

     
	Octahedra and tetrahedra, resting on a face (three-way space frame) or poised on a
node (two-way space frame) or poised on an edge.

     
	Small rhombicuboctahedra in combination with cubes and tetrahedra, resting on a
square face or poised on a node.

     
	Small rhombicuboctahedra in combination with cubes and cuboctahedra, poised on
a node or resting on a square or a triangular face.

     
	Rhombic dodecahedra resting on a face or poised on a node (nodes are either at the
intersection of three or four faces).



  What system of polyhedra shall we choose to investigate? Although spatially and formally
different from one another, most polyhedra have common characteristics, and one of them is
oblique walls. Because we normally stand upright and are accustomed to having vertical walls
around us, these provide a useful reference. It can be argued, however, that not all the walls
surrounding us need be vertical. Only a few are useful for reference. Most habits dull the senses,
and the vertical-wall habit is no exception: In many cases vertical walls fail to interest us because
they are all around us. If, on the other hand, the actual enclosure of a space is made of oblique
walls, our awareness of being sheltered will be enhanced. And so will be our sense
of being in a specific place, with all its implications, including an increased sense of
identity for ourselves. Knowing where we are goes a long way toward telling us who we
are.12

 
  One of the most commonly heard arguments against oblique walls is that they waste space. If a
wall leans inward, it will be said to interfere with headroom. If a wall leans outward, it will be
presumed to be unusable in itself and to generate an unusable space in front of it. Yet a look at
traditional building plans shows that a considerable amount of floor space is taken up by closets
and other storage spaces. This is wasteful, and it is a consequence of the exclusive use of vertical
walls: In conventional buildings, that is, ‘‘cubic’’ buildings, closets must occupy floor space
because there is no other place for them. On the contrary, walls that lean out make room for
storage without taking up any floor space. A vertical plane, placed in front of the
oblique wall, supplies both the space for storage and the wanted vertical surface for
reference. Many other ingenious uses have been proposed for spaces found near oblique
walls.13

 
  Almost any single polyhedral form can be used to explore the advantages or disadvantages of
oblique walls—but only to a certain point. A better, more comprehensive picture is obtained from
polyhedra in clusters. Because I have looked more closely at combinations of truncated
octahedra, cuboctahedra, and truncated tetrahedra than at any other infinite structure, I
propose this system for our case study (Figures 16.51 and 16.52).

 
  As already mentioned, the names of both the truncated octahedron and the truncated
tetrahedron are somewhat misleading. Although it is true that these forms could result from a
subtractive process of truncation, it is more significant for us to consider them as compound
forms, obtained from the addition of tetrahedra to octahedra. That their names are
misleading cannot be helped, but that the same names are cumbersome can be remedied:
From
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  Figure 16.51 Design study for a kindergarten by Hans Graf. The formal components are the
truncated tetrahedron, the cuboctahedron, and the truncated octahedron (TT, CO,
and TO). The implicit layering of these polyhedra made it possible to introduce two
simultaneous scales: Rooms are successfully planned for little human beings whose height is
approximately half that of the others. (Source: J. E Gabriel, ‘‘The Architectural Potential of
Polyhedra,’’ in Space Structures, G. A. R. Parke and C. M. Howard, eds., Thomas
Telford, London, 1993, pp. 2025–2032, Fig. 6. Reprinted with permission. Photo: J. F.
Gabriel.)

 
  here on, we will call the truncated octahedron TO, the cuboctahedron, CO, and the truncated
tetrahedron, TT.

 
  If the octahedra used to form TOs, COs, and TTs are the size of hexmods, the TO will be a
three-story unit, whereas both the CO and the TT will be two-story units (Figure
16.53).

 
  Ideally, a building matrix should accommodate both large and small habitable spaces. The TO,
the CO, and the TT can contain and determine the shape of large rooms, which will be as wide
as they themselves are. As for their height, it can be one to three stories. For the space within
these rooms to be entirely free of structural elements, the octahedra and tetrahedra that were
originally used to shape it would have to remain purely conceptual (Figures 16.54 to
16.57).

 
  If the structural system used in the building is a multilayer space frame, it will have to be
external to the larger rooms. For this to be possible, a choice must be made between TOs, COs,
and TTs. Where will the large, open spaces be created? The structural space frame cannot be
eliminated from all polyhedral spaces at the same time. Many options are available. For instance,
TOs can be ‘‘hollowed out,’’ leaving COs and TTs to carry the structural framework or,
conversely, the TOs will consist of three stories of space frames and the open spaces
will be in COs and TTs. The choice will be made on the basis of programmatic and
functional needs. As to the smaller rooms, they can be found within the space frame itself,
most likely in the shape of hexmods. Visually as well as spatially, the result of this
conceptual approach will be buildings combining the form language of the hexmod
system—an aggregate of hexagonal prisms—and that of polyhedra retaining their oblique
faces.14


 
  Figure 16.52 The six layers of this configuration, clearly visible, suggest a six-story
structure. This is the scale adopted for the rest of this discussion. A TO divides itself
spontaneously into three layers, whereas a CO and a TT divide themselves into two. COs
always share their triangular faces with TTs in this pattern. The large space at the core
is a TO. Each of its six square faces is shared with a CO. Its eight hexagonal faces
can only be shared with TTs. There are four TTs in the model, all straight side up.
(Source: J. F. Gabriel, ‘‘Space Frames and Polyhe-dra,’’ in Spatial, Lattice and Tension
Structures, Proceedings of the IASS-ASCE International Symposium, J. Abel, J. Leonard,
and C. Penalba, eds., 1994, pp. 1037–1044, Fig. 1. Reprinted with permission of the
ASCE.)

 
  Figure 16.53 The relationship between the polyhedra of an infinite structure is fixed. A
vertical sequence reveals this relationship: From the bottom up, four elements complete the
inventory: a CO, a TT, a TO, and a TT again. On top of that, another CO signals the beginning
of a new cycle. The TT appears twice, in upright position above and inverted below. In this
drawing proportions were changed for experimental purposes, but the topology of the system is
not affected. (Source: J. F. Gabriel, ‘‘Polyhedra: Skin and Structure,’’ Application of
Structural Morphology to Architecture, Proceedings of the Second International Seminar on
Structural Morphology, R. Holler, J. Hennicke, and F. Klenk, eds., 1994, pp. 37–46, Fig.
2. Reprinted with permission of Institute for Lightweight Structures, University of
Stuttgart)

 
  [image: PIC] [image: PIC] [image: PIC] Figure 16.54 Horizontal sections engage all the polyhedra of the system and
reveal their relationships. Here, a CO, at the center is connected with three TTs by their
triangular faces. These TTs are ‘‘upside down,’’ and the level involved is the upper one. The TTs,
in turn, are connected with six CO|S, and so on. There is a total of seven COs and six TTs
in the configuration represented. There are also three TOs, with their interiors free
of structural members: Their outer form is defined by the continuous space frame
found in adjacent TTs and COs. The larger rooms required in most building programs
would be accommodated in the TOs. The space frame would accommodate the smaller
rooms and also assume a structural function. Structural members that indicate the
outline of polyhedral fragments are shown in black. The space frame is completed
with structural members shown white. On this story, passing directly from a CO to a
TT is impossible. To solve this problem, hexmods should replace the octahedra of

the space frame. (Source: J. F. Gabriel, ‘‘Polyhedra in Architecture,’’ International
Journal of Space Structures (Special Issue on Morphology and Architecture), H. Lalvani,
ed., 1996, Fig. 8. Reprinted with permission of Multi-Science Publishing, Brentwood,
UK.)
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  Figure 16.55 This horizontal section shows the story directly above that of Figure 16.54. The
upper half of a CO can be recognized at the center. It is connected with three other TTs, but
these are ‘‘straight side up,’’ and they are located above TOs. There are also three TOs, located
above the ‘‘upside-down’’ TTs. (Source: J. F. Gabriel, ‘‘Polyhedra in Architecture,’’ International
Journal of Space Structures (Special Issue on Morphology and Architecture), H. Lalvani,
ed., 1996, Fig. 5. Reprinted with permission of Multi-Science Publishing, Brentwood,
UK.)
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  Figure 16.56 On this plan, located directly above that of Figure 16.55, we find the median
story of three TOs. No structural member is allowed inside. The space frame surrounding the
TOs belongs to the upper level of three ‘‘straight-side-up’’ TTs and to the lower level of three
‘‘upside-down’’ TTs. This story does not carry any COs. (Source: J. F. Gabriel, ‘‘Polyhedra in
Architecture," International Journal of Space Structures (Special Issue on Morphology and
Architecture), H. Lalvani, ed., 1996, Fig. 2. Reprinted with permission of Multi-Science
Publishing, Brentwood, UK.)
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  Figure 16.57 This story, directly above that of Figure 16.56, repeats the pattern shown in
Figure 16.54, three stories below, and would appear again three stories above. Although identical,
repeating patterns such as these are not superimposed: It is only every ninth story that identical
patterns share vertical projections.

 
  UNADULTERATED POLYHEDRA

 
  The problem is different if the structural system used to build the TO-CO-TT matrix is not a
space frame. Consider a monolithic structure of the shell or folded-plate type, such as shown in
Figure 16.52. There, presumably, the space within all the TOs, all the COs, and all the TTs
could theoretically be wide open, that is, not cluttered with posts or braces. As in any building,
smaller rooms will also be necessary, and the most coherent means to make small spaces out of
large ones is probably to use, once again, octahe-dra and tetrahedra, and to use them in

their modified, hexmod version. Some modifications will always be necessary to make
polyhedra habitable but my main effort, here as always, aims at reducing changes to a
minimum. Thus the choice of the word unadulterated in the subtitle of this section (Figure
16.58).

 
  Large rooms can be found in the TO-CO-TT matrix whenever they are required by the
functional program of the building. Their height will normally be limited to three stories, which
is the height of the TO. Observe that bays permitting passage from one polyhedron to another
have the shape of a triangle, a square, or a half-hexagon. Triangular bays present an occasional
obstacle where they are ‘‘upside-down,’’ that is, where an apex is at the floor level and the
opposite base of the triangle is at the ceiling level. This situation is only found on the story
where the lower level of COs and the upper level of upside-down TTs are adjacent (Figure
16.58£).

 
  Because the conditions of habitability within unadulterated polyhedra cannot all be reviewed
together, we will look at all basic spaces separately. We already know that the TO is a
three-story volume and the TT and the CO are two-story volumes. In the infinite structure of
which these polyhedra are the modules, only the TT is found in two different positions, that is,
either resting on a hexagon or resting on a triangle. Depending on their relative position,
the
four spaces within are totally dissimilar. Consequently, it is a series of nine spaces altogether,
each with its own distinct shape, that we must examine.

 
  The three-dimensional relationship between the polyhedra obeys rigorous rules. Hexagonal
faces always separate—and also unite, for that matter—TOs and TTs. Triangles are always shared
by COs and TTs. Finally, squares connect COs to TOs. A vertical sequence will then always
consist of a CO, a
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  Figure 16.58 The nature of the spaces within is shown in a selection of four horizontal
sections, one above the other. Beginning with the first of the four stories, the lower level of a TO
occupies the center of the cluster (d). Surrounding it are two sets of alternating spaces: the lower
level of a TT and the upper level of a CO, each repeated three times. On the story directly
above, the central space is the median level of the TO, surrounded by the upper level of aTT,
repeated three times (c). The spaces that would be found above the COs of the story below are
deleted. The reader is invited to identify them and, in the process, become familiar with the
complete three-dimensional pattern. The third story, with the upper level of the TO at the
center, is surrounded by the lower level of another set of COs (b). Here again, three peripheral

spaces are missing: What are they? On the fourth story, last of the sequence, the lower
level of aTT is at the center of the cluster (a). The upper level of three COs is shown
around it What are the spaces that would nestle in the interstices? As a reminder that
spaces can be higher than one story, floors are deleted from all the drawings. In (a)the
upper level of the TT is shown as well as the lower level. (Source: J. F. Gabriel, ‘‘The
Architectural Potential of Polyhedra,’’ in Space Structures, G. A. R. Parke and C. M.
Howard, eds., Thomas Telford, London, 1993, pp. 2025–2032, Figs. 2,3. Reprinted with
permission.)

 
     

 

TT, a TO, and another TT, after which this order is repeated again. Only the
TT appears twice in the sequence, because of its inverted position in space
(Figure 16.53).

 
As stated previously, there are nine basic spaces in the matrix. Before we set
out to visit them, I would like to clarify my point of view once again: It is
that of an architect in search of the essential conditions of habitability. What
are these conditions? They consist of enclosures, horizontal floors, doors, and
windows. Do our polyhedra meet these conditions? What adjustments must be
made? How will these adjustments affect the formal integrity of the poly-hedra?
Will they deform the polyhedra beyond tolerable limits? Ultimately, is the use
of polyhedra in architecture capable of enriching our environment? Those are
some of the questions we will pursue.

 
Beginning our exploration—arbitrarily—with the upper level of the TO (TOU),
we find a space sandwiched between two hexagons corresponding to horizontal
sections  of  the  TO  (Figure  16.59).  The  smaller  hexagon  occupies  the  top
position,  and  glazed,  vertical  enclosures  are  placed  on  three  sides.  They
illuminate the room and they give it a shape. Decks materialize on the periphery,
accessible through conventional door openings in the vertical glass enclosures.

 
In this diagram and in the others of the series, oblique walls are deleted to
facilitate comprehension of the space behind them, but a little imagination will
reconstitute them for the reader.
     

 
Looking now at the floor directly above, given by the lower level of a TT (TTi),
we find again a hexagonal floor plan, but a triangular ceiling. Vertical glazing
takes the shape of pairs of triangles, in which doors are placed to give access to
triangular, outside decks. The corners of the room are complex, shaped as they
are by three adjacent triangular planes, two of which lean inside and the other
of which leans out.

 
The  third  story  (TTU)  has  a  triangular  floor—an  awkward  shape  to  begin
with—and a smaller, triangular ceiling, making the space even more awkward.
It would be a useless room in isolation, but it is improved by the insertion of
vertical, glazed planes, which create a hexagonal space. Here again, the shape
of the glazed walls is triangular, but their position is inverted. They provide the
third design of the series and carry the last module of the window inventory.
The reader, proceeding with the tour without a guide, will see how the three
window modules are used to different effects in various contexts on all nine
stories (Figures 16.59 and 16.60). The shape of the next story (COi) appears
to be even more awkward and wasteful than the third one, but in context, it
plays an important role as a space connecting others (Figure 16.61a).

 
What led me to this particular design of glazed walls? In part, the necessity to
draw something: If I am to make a case for architectural polyhedra, I must be
able to represent them. To do so, a basic formal vocabulary must be chosen. In
addition to the needs already mentioned for enclosures and openings, doors and
windows, two considerations influenced the design of the glazed walls. One was
the desire to accommodate conventional doors, which can only be done with
vertical walls. The other was a wish to respect the for-
 


  mal integrity of polyhedral forms, and this led to glazed walls, which, except in one case, do
not project outside the faces of polyhedra. If this rule had not been observed, the
polyhedra would have been transformed into monsters. After all, polyhedra do not
exist simply for the enjoyment of architects. If they are to become building forms, the
process of adaptation should be handled with sensitivity. In other words, my goals were
truthfulness, simplicity, and consistency. The search for a personal style was not a
consideration.
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  Figures 16.59 and 16.60 There are three stories in a TO and therefore three distinct
spaces. There are two in a CO, two in a TT, and another two in an ‘‘upside-down’’
TT. Going down, for instance, from the upper level of a CO (Figure 16.59, top), we
can examine all nine different spaces in a sequential order that never varies. After
reaching TO,, at the bottom of Figure 16.59, we continue the visit with T0ra, at the
top of Figure 16.60. The last space of the complete series is TT, (reversed), at the
bottom of Figure 16.60, but the sequence can be repeated, starting with C0u, which
would be found directly under TTt (reversed) already seen at the top of Figure 16.59.
It is unlikely that any of these spaces would be freestanding, but looking at them
in isolation is a good preliminary to understanding them when grouped in clusters.
Vertical glazing replaces certain faces of the polyhedra, and conventional doors can
be installed. The complete inventory of glazed, modular parts consists of a total of
three designs. (Source: J. F. Gabriel, ‘‘Polyhedra: Skin and Structure,’’ Application of
Structural Morphology to Architecture, Proceedings of the Second International Seminar on
Structural Morphology, R. Holler, J. Hennicke, and F. Klenk, eds., 1994, pp. 37–46, Figs.
3,4. Reprinted with permission of Institute for Lightweight Structures, University of
Stuttgart.)

 
     

 

The formal vocabulary used here is not the only possible one. Far from it.
The imaginative reader will quickly discover many other design possibilities
and  derive  a  great  deal  of  satisfaction  from  trying  them  out.  A  wealth  of
design possibilities is one important aspect of the field and perhaps the least
understood of all.

 
Having looked individually at the nine basic spaces found in a vertical sequence,
we are now ready to look at them in context (Figure 16.61). As a consequence
of the threefold symmetry that rules the pattern, each basic space is surrounded
by six others, divided into two sets of three. For instance, the upper level of a
CO is adjacent to the lower level of three TTs, alternating with the lower level
of three TOs (Figure 16.61a). The TTs are shown, but
 



  [image: PIC] [image: PIC] Figure 16.61 Instead of being isolated, some basic spaces are now shown in clusters.
We see here four of the nine stories that form a complete cycle. In (a)the upper level of a CO
(COJ is surrounded by the lower level of a TT (TT|) repeated three times. The lower level of
three TOs would nestle in the intervals. On the story directly below /&),the lower level of
the CO (CO,) is surrounded by the upper level of three TOs (TOJ. The intervals
would receive the upper level of three upside-down TTs (TT„, reversed). Below the CO
at the core, we find the upper level of a TT (TTJ in (c). The reader is invited to
identify the three adjacent spaces that are drawn, as well as the three that would fit in
between. Finally, in (d),the reader should be able to identify all the spaces found on
this level, whether they are entirely drawn or implied. The faces that would affect
the legibility of the interior spaces are deleted in these drawings. All the ‘‘edges,’’
however, are retained. (Source: J. F. Gabriel, ‘‘Habitability Studies of Certain Polyhedra,’’
Spatial Structures: Heritage, Present and Future, Proceedings of the IASS International
Symposium, Milan, 1995, G. C. Giuliani, ed„ Vol. 1, 1995, pp. 165–170, Figs. 2,3, 4,5.
Reprinted with permission of SGEditoriali, Padova, Italy.) the TOs are not. For a
more thorough representation of our spaces, a rotation of 60° has been implemented
between the series shown in Figures 16.59 and 16.60 and the series shown in Figure
16.61.

 
     

 

Polyhedral spaces are fundamentally changed when placed at the core of a
cluster and opening onto adjacent polyhedra. The differences can be observed
when comparing, for instance, the TT, at the center of Figure 16.61J with the
same space shown by itself in Figure 16.59. Portions of the faces that have
been replaced with glazing in one case are kept solid in the other. Rectangular
bays now appear where a complex assemblage of triangular planes existed.
Beyond observations like these, an adequate description of the spaces and of
the transformations that occur is difficult and probably pointless.
     

 
The reader should keep in mind that these are only diagrams, not complete
designs. It might not be necessary to eliminate an entire face to create a passage
between adjacent polyhedra. It will be observed that all edges are retained on
all floors. What edge refers to here is a structural member placed where two or
three polyhedral faces would intersect. Also note that in Figure 16.61 additional
vertical planes close the gaps between vertical and oblique enclosures.

 
Of the nine stories forming a complete sequence, four are shown in Figure
16.61. These four stories include seven of the nine basic spaces. As I already
mentioned, one of them appears in relation to two sets of polyhedra: It is TTb
shown once surrounded by three TOs (Figure 16.61d) and again when its turn
comes to cluster around a CO (Figure 16.61a).

 
The next two series of diagrams include all the polyhedra that can be clustered
around another one at the core (Figures 16.62 and 16.63). The three stories,
represented once in axonometric views and once in plan views, are those that
would have had a TO on center, but for which stairs and elevators have been
substituted. Elevator shafts take over the structural role that the TO would have
played. Stairs and elevator shafts belong to the public zone, at the core of the
building, whereas the more private spaces are found in the peripheral polyhedra.
They are distributed as follows: On the lower story, that is, at the first level
of the truncated octahedron (TOi), a TTj alternates with a COU. On the next
story, which corresponds with the median level of the TO (TOm), the upper
level of the TT (TTU) alternates with the lower level of an upsidedown TT
(TTi, reversed). On the third story (TOU), the upper level of the upside-down
TT (TTU, reversed) alternates with the lower level of a CO (COi).

 
Further   horizontal   subdivision   may   be   necessary,   depending   on   the
programmatic needs of the building. This can be done by means of vertical
planes disposed on a hexagonal grid. The reader will recognize the hexmod
system  in  this  approach,  for  the  form  and  the  location  of  the  dividers  are
consistent with the octahedra that implicitly ‘‘fill’’ the larger polyhedra. The
vertical elements may also contribute added rigidity and support to the whole
structure.
     

 
Readers who still question the title of this section, Unadulterated Polyhedra,
are begged to remember that polyhedra must be modified to some degree when
we use them in the design of buildings. Nor should this be regretted because
polyhedra are pure abstractions—concepts of the mind—whereas construction is
a physical reality. Polyhedra should be modified and lose some
 


  [image: PIC] [image: PIC] Figure 16.62 Three more stories of the cycle, with a TO at the core. All six
polyhedra, or portions thereof, surrounding its three levels are shown. In (a) the lower level of a
CO alternates with the upper level of an upsidedown TT. Stairs and elevator shafts are fitted in
the space conceptually occupied by the TO, whose form is no longer recognizable. The shafts can
accommodate up to six elevators or they can house services; they are drawn shorter than they are
so as not to interfere with our perception of the main spaces. On the story immediately
below (b) which corresponds to the median level of the TO, the lower level of three
upsidedown TTs alternates with the upper level of three straight-side-up TTs. The
reader who makes the effort to identify the spaces shown on the next story (c) will be
rewarded with an understanding of a three-dimensional pattern rich in architectural
possibilities. Whatever the use of the building, its functional organization will probably
require further subdivision of the space within. In (a)the triangular faces shared by
COs and TTs suggest a possible means of subdivision. Another method, shown in
(b) and (c), consists of using vertical dividers derived from the hexmod pattern. In
either case, the dividing elements can also contribute to the structural framework, if
necessary.

 
  [image: PIC] [image: PIC] Figure 16.63 These three floor plans match the diagrams of Figure 16.62. The only
variations between the two sets of drawings concern some of the dividers.

 
     

 

of their geometric perfection in the process of becoming architecture. I chose
that title simply because, in the last section of this chapter, my intention was to
keep polyhedra and infinite structures as close to their ideal states as possible
(Figures 16.64 to 16.66).

 
We have seen, on the contrary, that when a three-way, multilayer space frame
is transformed into the hexmod system, it undergoes such changes that an
observer might find it difficult to recognize the kinship of one with the other.
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Figure 16.64 This is how the elevation of an eight-story building based on the
three poly-hedra discussed in this chapter might appear. {Source: J. F. Gabriel,
‘‘Habitability  Studies  of  Certain  Polyhedra,’’  Spatial  Structures:  Heritage,
Present and Future, Proceedings of the IASS International Symposium, Milan,
1995, G. C. Giuliani, ed., Vol. 1,1995, pp. 165–170, Fig. 6. Reprinted with
permission of SGEditoriali, Padova, Italy.)
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  Figure 16.65 Shown here in elevation is the complete cycle of all nine possible spatial
patterns discussed in this chapter. The three basic polyhedra are arranged in superimposed
rings of six, with a seventh one at the core. Although the relationship between the
polyhedra is always the same, all nine floor plans are different, as are their spatial
characteristics.
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  Figure 16.66 Models give an idea of the possible appearance of buildings based on an infinite
pattern of truncated octahedra, cuboctahedra, and truncated tetrahedra. As in Figure 16.65, the
nine stories of the cycle are included.

 
  

 

16.5  CONCLUSION

I hope this last chapter makes a substantial contribution to the argument that the space within
space frames and polyhedra is habitable, versatile, and pleasant.

 
  This chapter is placed at the end of the book because in it we take a look inside polyhedra. It
is inside, in the shapes we give our rooms, that the essence of architecture is always found:
Ultimately, it is by the quality of its spaces that an architecture of space frames and polyhedra
will be judged.


 
  Is this truly a new form of architecture? The major structural innovations of the
second half of the 20th century occurred in the decade following World War II. New
ways were then devised to span larger spaces with less material, giving birth to a
new family of structural systems called space structures, or lightweight structures.
Although economy was certainly a motivating force behind this revolution, a loftier
way of looking at it is as one more effort to ensure the supremacy of the mind over
matter.

 
  Among the varied types of space structures, the space frame is still the only one
applicable in multistory buildings. At the origin of my interest in space frames, there was
indeed the recognition that a tetrahedron made a rigid structural framework, whereas a
cube did not. Because I am an architect, what inevitably followed was the search for
architectural space within space frames. What I discovered over the years were countless
architectural possibilities. Because the space within space frames yields all sorts of
perfectly habitable shapes, it seems to me that space frames should be more commonly
employed in multistory buildings than conventional post-and-beam, or post-and-slab,
systems.

 
  Octahedra and tetrahedra, being the basic structural units of a space frame, can be used as
‘‘building blocks.’’ They can also be used at the conceptual level to generate other, larger,
polyhedral forms and spaces, the construction of which would rely not on steel but on different
materials—reinforced concrete most likely—and different structural principles, such as shells or
folded plates.

 
  Polyhedra that have more faces than the cube have a better ratio between the area of their
envelope and their volume than the cube. These polyhedra would presumably use less material to
build and suffer less heat loss than a cubic box. Motivations like these are valid, but there are
others, just as legitimate. The intrinsic beauty of polyhedra is one. The visual and spatial order
of infinite structures is another. The necessity to simply explore new avenues is yet
another.

 
  While I was engaged in my voyage of discovery among polyhedra, fashion in architecture
tended more and more to turn its back on logic, clarity, and order. Imagination, is of course,
crucial in architectural design and fantasy is by no means unwelcome, but, in the
last few decades, arbitrary new building forms have been sprouting at an alarming
rate. The license to do anything that fancy suggests can result in aberrations and,
eventually, chaos. I hope the time has come for a turnaround. Design is the search for
order, not irresponsible self-expression. A structuralist approach, combined with the

discipline of geometry, would provide a renewed logic and a sound philosophical basis for
architectural design. The application of a consistent formal language, with its many rules
and restrictions, has never inhibited creativity. On the contrary, it always liberates
it.

 
  In this chapter I have tried to show the architectural potential of a limited number of
configurations derived from the 12-connected network. There are many more configurations,
waiting to be discovered by the curious mind, that could be applied in the design of buildings by
imaginative architects and engineers. I believe that infinite structures—space frames and
polyhedra—could be the means toward a sensible and dynamic architecture, one that could
contribute to the visual and spatial expression of an organized and democratic society. As one
would drive or walk around one of these structures, its appearance would slowly change, but
always return to the reassurance of symmetry. Inside, one would experience a variety of spaces,
some of them unexpected, but all devoid of the unbearable boredom of the modern bare box
effect.
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Ficure 10.9 Dodecahedron and tetrahedron.
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Ficure 6.8 Space frame wall support detail.
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FicURE 5.6 Axonometric of construction sequence. (lustration:
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